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Sammendrag

Denne masteravhandlingen presenterer den seismiske responsen av en parkert vindturbin ut-

satt for jord-struktur interaksjon i tidsdomenet. Vindturbinens egenskaper etterligner en V90-

3.0MW turbin produsert av Vestas og er montert på et skjørtefundament som etterligner proto-

typen installert i Aalborg. Vindturbinen er diskretisert i elementer i analyseprogrammet ABAQUS/-

CAE og responsen i form av forskyvninger, akselerasjoner, skjærkrefter og momenter langs tår-

net er beregnet for to sammenlignbare modeller. Bare den horisontale komponenten fra virke-

lige jordskjelvmålinger er inkludert i analysene.

Referansemodellen integrerer vindturbinen, fundamentet og jorda i en sammensatt model hvor

tårnet er modellert ved bruk av skallelementer. Jorda er validert med hensyn til den teoretiske

amplifiseringen av et homogent jordvolum, mens eksperimentelle resultater er brukt til å valid-

ere den numeriske algoritmen for tårnet. En forenklet fjærmodell er etablert i samsvar med

tre-stegs metoden. Modellen bruker bjelkeelementer til å representere tårnet, mens jorda og

fundamentet er representert av to statiske fjærer og en viskøs demper. Alle simuleringene er ut-

ført i det linær-elastiske området og fundamentet er antatt å være i full kontakt med jorda under

den seismiske belastningen.

Den seismiske responsen fra den forenklede modellen er sammenlignet og evaluert med refer-

ansemodellen. Det er vist at den forenklede modellen underestimerer viktige designparametre

som skjærkrefter og momenter langs tårnet, men at dynamikken ivaretas. Relevante feilkilder

er verdien på dempningskoeffisienten som representerer dempningen i kontaktsonen mellom

fundament og jord i tillegg til de frekvensuavhengige stivhetene i fjærene. Den største feilkilden

antas likevel å være relatert til bjelkeegenskapene i tårnet, ettersom identiske forskyvninger
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oppnås i tårnets bunn og avviket i bunnens rotasjoner er ubetydlige for bjelkens respons. Forbedringer

på bjelkemodellen må foretas dersom modellen skal være et troverdig analyseverktøy hvor fokuset

er å oppnå virkelige seismiske resultater.

Det er vist at høyere egenmoder dominerer deformasjonsforløpet i tårnet for turbiner i denne

størrelsesordenen, mens derimot første mode dominerer responsen for mindre enheter.

Hovedbidraget i denne avhandlingen er en parameterstudie som undersøker endringer i mak-

simale responser langs tårnet for forskjellige fundamentgeometrier. Fundamentets radius og

dybde er uavhengig variert og den samme seismiske eksitasjonen er påført alle simuleringer.

Det er vist at en økning i fundamentets fleksibilitet gir større responser i tårnet for alle be-

traktede fundamentgeometrier. Den tilsvarende "fixed-base" responsen underestimerer be-

traktelig den seismiske belastningen for visse geometrier. Denne observasjonen illustrerer vik-

tigheten av å inkludere effekten av jord-struktur interaksjon for høye og slanke konstruksjoner,

som samsvarer med kravet gitt i Eurokode 8.

Det vises videre at fundamentets radius påvirker den seismiske responsen i større grad enn

dybden på grunn av den dominerende svingebevegelsen i tårnet og radiusens dominerende

innflytelse på rotasjonsstivheten. Sist, så varieres tårnets høyde for å undersøke endringer i

basekrefter og momenter i tillegg til nacelleforskyvninger og akselerasjoner. Det vises at visse

kombinasjoner av tårnhøyde, fundamentstivheter og seismisk last kan betydelig forsterke re-

sponsen i tårnet.
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Summary

This thesis presents the time-domain seismic response of a parked wind turbine with a skirted

foundation exposed to soil-structure interaction. The properties of the wind turbine imitate

the V90-3.0MW turbine produced by Vestas, while the skirted foundation imitates the prototype

installed in Aalborg. The wind turbine is discretized using the finite element program ABAQUS/-

CAE and the response in terms of displacements, accelerations, shear and moments along the

tower height is computed using two comparative models. Only the horizontal component of

real earthquake measurements is considered in the simulations.

The reference model assembley the wind turbine, the foundation and the soil into a single model

where shell elements are used to represent the tower. The soil is validated with respect to the-

oretical transfer functions for homogeneous soils while seismic experimental results are used

to validate the numerical algorithm applied to the tower. A simplified model is established in

accordance with the three-step method. The model uses beam elements to represent the tower,

while the underlaying soil and foundament are represented by two static springs and a viscous

dashpot. All simulations are performed in the linearly elastic range and the foundation is as-

sumed bounded to the soil during the seismic excitation.

The seismic response of the simplified model is compared and evaluated to the reference model.

It is shown that the simplified model underestimates important design quantities such as shear

and moments along the tower, whereas the dynamic oscillations are well represented. Sources

of errors are the radiation damping coefficient and the frequency independent spring. The ma-

jor source of error is assumed to be related to the beam properties in the tower, since identical

displacements are obtained in the tower bottum and the deviation in the bottum rotation is

shown to be insignificant to the beam response. Improvements must be made to the spring

model if the approach should produce real-life reliable results.

It is demonstrated that higher modes is important to the seismic response for wind turbine

heights in this range, whereas the first mode dominates the response for smaller units. This

suggests that careful considerations regarding seismic design should be taken for the middle

tower sections as well, in addition to the base.
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The main contribution in this thesis is a parametric study which investigates changes in peak re-

sponses along the tower for different foundation geometries. The foundation radius and depth

is independently varied and the same seismic excitation is applied to the spring model in all

simulations. It is shown that an increase in the flexibility of the foundation gives larger peak

responses along the tower for all the geometries considered. The corresponding fixed-base so-

lution is shown to highly underestimate the seismic loads for certain geometries. This observa-

tion illustrates the importance of including the effects of soil-structure interaction for tall and

slender structures, which is in accordance with the requirement given in Eurocode 8.

It is further shown that the foundation radius influences the seismic behaviour to a larger ex-

tent that the depth due to the dominating rocking oscillations and the radius’ particularly in-

fluence on the rotational stiffness. Lastly, the tower height is varied to investigate changes in

base moments and shear forces in addition to nacelle displacements and accelerations. It is

demonstrated that certain combinations of tower heights and seismic load can result in large

amplifications of all response quantities.
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Chapter 1

Introduction

1.1 Background

The global cumulative energy from wind turbines continues to increase as shown in figure 1.1.

More than 350 000 MW is installed word-wide at the end of 2013 and the technology is now

also considered used in seismic activ zones in North America, China, India and others coun-

tries. This makes winnd energy to an increasingly important energy source that is essential to

maintain electrical power supply.

Hence, during the possible event of an earthquake, it is important to assure a maximum of safety

for the power supply and reduce potential damages of wind turbines to a minimum. A damaged

wind turbine causes direct cost related to the repairs in addition to the indirect costs related

to the disturbance in the electric power supply. It is hence crucial to understand the seismic

behaviour of wind turbines such that preventive seismic design can be implemented.

1.2 Problem Formulation & Objectives

This thesis focuses on the global seismic response of the wind turbine tower. A particular prob-

lem of interest is how the soil-structure interaction influences the seismic response. Soil-structure

1



CHAPTER 1. INTRODUCTION 2

interaction (SSI) is the process in which the soil influences the response of the structure and vice

verca. Eurocode 8 (EC8) requires that SSI is included in seismic simulations for tall and slender

structures. Wind turbine towers are indeed tall and slender structures, which could make SSI

to an important factor for the seismic response. This motivated for closer investigation of the

SSI-problem.

Including SSI in numerical simulations generally increases the complexity of the model. There-

fore, the main aim is to develop a simplified model which includes this interaction such that

parametric studies can effectively be carried out. It is interesting to investigate how changes in

the foundation geometry or the tower’s height influence the peak structural responses along the

tower and in which cases SSI-effects can be ignored.

The main objectives of this Master’s thesis are:

1. Establish a fully integrated FE-model consisting of soil, foundation and a wind turbine

and validate each part against theoretical solutions or experimental results.

2. Establish a simplified FE-model which includes the effects of SSI.

3. Study the importance of kinematic interaction for the skirted foundation.

4. Investigate the importance of SSI compared to a fixed-base configuration.

5. Examine how changes in the geometry of the skirted foundation and the tower’s height

influence relevant peak structural responses.

Figure 1.1: Global cumulative installed wind capacity [4].
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1.3 Limitations

The numerical results are limited to the linearly elastic range for both the wind turbine tower, the

skirted foundation and the soil. Further, the foundation is assumed bounded to the soil, which

prevents sliding and occurence of gaps in the foundation/soil interface. Rayleigh damping is

used to represent material damping. Static spring stiffnesses and a viscous dashpot representing

the radiation damping is applied in the simplified models.

The seismic response is computed for the horizontal component of the 1985 Nahanni earth-

quake if nothing else is specified. Thus, the response from earthquakes with a different fre-

quency content or magnitudes are not investigated.

1.4 Approach

The numerical models are established in the finite element program ABAQUS/CAE. To ensure

that the established models behave in a realistic manner, the separate parts (i.e the tower and

the soil) are validated with respect to theoretical or experimental results.

Two different real-life wind turbines from the wind turbine producers Vestas and Nordtank are

used as reference for the geometry and mass properties in the models. There exists no detailed

information freely available about these properties. Consequently, several approximations and

simplifications are adopted to the models.

1.5 Structure of the Thesis

The thesis is structured as follows:

• Chapter 2; Concepts of Wind Turbines, Skirted foundations & Earthquakes introduces the

most important terminology and concepts related to wind turbines, skirted foundations

and earthquakes.
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• Chapter 3; Theory presents the dynamic equations related to seismic excitation of MDOF-

systems and selected solution procedures.

• Chapter 4; State of the Art presents the most relevant research related to wind turbines,

skirted foundations and SSI.

• Chapter 5; Numerical Model of Soil presents and validates a linearly elastic numerical

model of a homogeneous soil profile.

• Chapter 6; Validation of the Nordtank Wind Turbine Model validates the numerical algo-

rithm applied to the wind turbine tower against experimental results.

• Chapter 7; Model of a Vestas 3.0-MW Wind Turbine with a Skirted Foundation presents a

fully integrated model consisting of the soil, skirted foundation and the wind turbine.

• Chapter 8; Simplified FE-models presents a simplified spring and dashpot model devel-

oped in accordance with the three-step-method.

• Chapter 9; Results is divided into two parts. Part A compares the accuracy of the simpli-

fied model with respect to the fully integrated model. Response in terms of accelerations,

displacements, shear forces and moments are computed in the time domain for several

points along the wind turbine tower. Effect of soil-structure interaction is studied for two

soil profiles. Part B is a parametric study which studies the change in peak responses for

different foundation geometries and tower heights.

• Chapter 10; Conclusions & further Work presents the conclusions obtained from the re-

sults provided in chapter 9 and answers the problem definition defined. Lastly, sugges-

tions to further work is proposed.

Additional theory, MatLAB scripts and results are provided in the appendix. Note that some

results supporting the conclusions made is found here to reduce the amount of graphs in the

main text.



Chapter 2

Concepts of Wind Turbines, Skirted

Foundations & Earthquakes

2.1 Wind Turbines

Figure 2.1 provides a sketch of the main parts in the wind turbine; the tower, nacelle, hub and

blades. The blades capture the energy from the wind and spins a generator in the nacelle. The

nacelle contains all the machinery and hence stands for a large part of the total weight. The hub

is fixed to the rotor shaft which drives the generator through a gearbox.

2.2 Skirted Foundations

Figure 2.2 provides sketches of the different components of a skirted foundation. The founda-

tion consists roughly of a skirt penetrating the seabed and a top lid where the superstructure is

mounted. The skirt is made of hollow cylindrical concrete or steel walls connected to the tower

through stiffeners as seen in figure 2.2b. The loads from the superstructure are transmitted into

deeper and stronger soil strata by friction forces and skirt tip forces.

The skirted foundation is often installed into the soil by suction as illustrated in figure 2.2c. By

5
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Figure 2.1: Components of a wind turbine [23].

lowering the water pressure inside the skirt, a water flow is generated flowing from the outside

to the inside of the skirt. The flow reduces the stresses at the skirt tip and reduces the pene-

tration resistance during installation. Skirted foundations are extensively used as anchors and

foundations of offshore platforms in deep water and are currently being considered as possible

foundations for offshore wind turbines [14].

Skirted foundations provide a reduction up to 50 % in steel weight compared to traditional

monopile solutions in addition to the easy installation [16]. This makes large skirted founda-

tions for offshore wind turbines an upcoming cost-effective technology. Structural buckling

during installation is a relevant risk for such foundations and is further studied by Madsen [21].

2.3 Earthquakes

An earthquake is the result of a sudden release of energy in the earth’s crust that creates seis-

mic waves. The waves propagate through the soil medium as shear and pressure waves and

their amplitudes can either increase or decrease depending on the soil material properties. For

example, the 1985 Mexico City earthquake were amplified by over a factor of five due to the

local soil properties [28]. Hence, the determination of realistic free-field surface motions is of

strongest importance in the seismic design of any structure.
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(a) Dimensions (b) Bucket top lid

(c) Forces during suction

Figure 2.2: Skirted foundation components and installation [21].

A commonly used approach to site response analysis is the concept of transfer functions [20].

A transfer function gives the ratio between the steady-state harmonic response of two point as

a function of frequency. This approach is later used as a validation tool for the numerical soil

model. Free-field motions for more realistic soil profiles can be computed using for example

SHAKE2000 software [12].



Chapter 3

Theory

3.1 Seismic Response: Equation of Motion for Linear Systems

This section presents the equation of motion for linear systems subjected to seismic loadings.

All theory presented originate from Chopra [3]. The general equation of motion for a single

degree of freedom system (SDOF) is given as

f I + fD + fS = p(t ) (3.1)

where f I is the inertia force related to the total acceleration üt of the mass m, fD is the damping

force, fS is the internal force in the structure due to the relative displacements of the structure

and p(t ) is an external force. An example of a SDOF-system is shown in figure 3.1a; a can-

tilevered beam with a concentrated top mass m and stiffness k.

One important application of structural dynamics is to predict base moments and shear in the

structure during a seismic event. Knowing the total displacement of the structure is useful to

provide enough seperation between adjacent buildings to prevent their pounding against each

other. The total accelerations are relevant if the structure is supporting sensitive equipment as

is the case with wind turbines.

The internal forces are linearly related to the displacement u when the displacement does not

8
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u
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tower

(a) A SDOF-tower.

ug

uj
t
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1

j

N

(b) A MDOF-tower.

Figure 3.1: Dynamic systems.

exceeds the linear elastic range. Assuming viscous damping the equation of motion for a SDOF-

system can further be expressed as

müt + cu̇ +ku = p(t ) (3.2)

For a system subjected to seismic loading the total displacement is decomposed into a relative

displacement u and the ground displacement ug such that

m(ü + üg )+ cu̇ +ku = 0 (3.3a)

mü + cu̇ +ku =−müg (3.3b)

Adapting the dynamic properties k =ω2
nm and c = 2ξωnm give

ü +2ξωnu̇ +ω2
nu =−üg (t ) (3.4)
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All structures have an infinte number of degrees-of-freedoms, but only a finite number is needed

to accuralety describe the dynamic response. The dynamic equations for multi-degree-of-freedoms

structures (MDOF) are first established for a case where all the dynamic degrees of freedom are

displacements in the same direction as the ground motion as the tower shown in figure 3.1b.

Later a more general approch is derived. The total displacement for each degree of freedom is

expressed in vector form as

ut (t ) = ug 1+u(t ) (3.5)

where 1 is a vector of order N (number of DOF) with each element equal to unity. The equations

in (3.3) is expressed for a MDOF-system under the given conditions as

m
(
ü+ üg

)
+cu̇+ku = 0 (3.6a)

mü+cu̇+ku =−m1üg (t ) (3.6b)

where m is the mass matrix, c is the damping matrix and k is the stiffness matrix. A generaliza-

tion of the preceding derivation is useful for structures where not all the DOFs are in same the

direction as the seismic excitation. The L-shaped frame in figure 3.2 ilustrates such a system. In

this approach the total displacement of each mass can be represented as

u1

u2

2m m

Figure 3.2: L-frame with 2-DOF
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ut(t) = ιug (t )+u(t ) (3.7)

where the influence vector ι represent the displacement of the masses resulting from static ap-

plication of a unit ground displacement. For the L-frame the influence vector reads ι=
[

1 0

]T

since the vertical DOF is not affected by the horizontal ground displacement. The equation of

motion for this general approach is then

mü+cu̇+ku =−mιüg (t ) (3.8)

3.2 Seismic Response: Solving the Equation of Motion

The response of a system subjected to dynamic loading can be obtained in the time-domain

(RHA) or in the frequency domain (RSA). An RSA analysis concerns the computation of the peak

response of a structure during an earthquake directly from the earthquake response (or design)

spectrum. The method is not exact, but provides sufficiently accurate results for structural de-

sign applications.

3.2.1 Time history methods

This section focuses mainly on the modal method used to determine the response of a MDOF-

system. Only a brief introduction is given to the direct method. Table 3.1 gives an overview of the

area of application and their solution for the two time-domain analysis methodologies. Modal

analysis can only be applied to linear systems with classical damping.

The modal method

The modal method utilize the orthogonality properties of the modes to reduce a MDOF-system

to n sets of SDOF-systems. Mathematically stated, any set of N independent vectors can be
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Table 3.1: Overview of the analysis methodologies

Modal Analysis Direct Analysis

Characteristics M̃{η̈}+ C̃{η̇}+ K̃{η} = R̃ext M{ü}+C{u̇}+K{u} = Rext

Application
• Linear systems
• Classical damping

• Linear or non-linear systems
• Classical or non-classical

damping

Solution
• Simple excitation: Closed

form
• Complex excitation: Numer-

ical

• Numerical

used as a basis for representing any other vector of order N. The natural modes ϕi of a dynamic

system are independent, and thus any displacement vector u can be represented by a modal

expansion as

u(t ) =
n∑

i=1
ϕiηi (t ) =Φη where i = 1,2, . . . ,ndo f (3.9)

where ϕi is the i -th natural mode shape and ηi is the i -th modal coordinate. The natural mode

shapes represent the nodal displacements relative to other nodes and the modal coordinates are

scalars and adjust the amplitude of the modes.

The same principle is used to expand the inertia forces Mι into a summation of the modal inertia

forces as

Mι=
N∑

n=1
sn =

N∑
n=1

ΓnMϕn = MΦΓ where i = 1,2, . . . ,ndo f (3.10)

where sn is the spatial distribution of the effective earthquake forces, Γn is the n-th modal co-

ordinate adjusting the contribution of the n-th modal inertia force Mϕn. Premultiplying both

sides by ϕT
r and utilizing the orthogonality property of modes gives
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ϕT
r Mι=ϕT

r

N∑
n=1

ΓnMϕn = ΓMn since ϕT
r Mϕn = 0 for n 6= r (3.11)

Hence

Γn = L̃n

Mn
L̃n =ϕT

n Mι Mn =ϕT
n Mϕn (3.12)

The modal contribution sn represents the contribution of mode n to the total excitation vector

Mι and is independent of how the modes are normalized.

The modal SDOF equation for a seismic system is obtained by substituting the modal expan-

sions for both the displacement and the inertia force vector in equation 3.8 and premultiply by

ΦT . Thus

ΦT MΦ︸ ︷︷ ︸
M̃

·η̈+ΦT CΦ︸ ︷︷ ︸
C̃

·η̇+ΦT KΦ︸ ︷︷ ︸
K̃

·η=−ΦT MΦΓüg︸ ︷︷ ︸
R̃ext

(3.13)

Using the notation indicated, the modal equation is expressed as

M̃{η̈}+ C̃{η̇}+ K̃{η} = R̃ext (3.14)

where the content in each matrix is given in equation (3.15), (3.16) and (3.17).
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M̃ =



M̃1 0 · · · 0

0 M̃2 · · · 0
...

...
. . . 0

0 0 0 M̃n


= di ag

[
M̃i

]

K̃ =



K̃1 0 · · · 0

0 K̃2 · · · 0
...

...
. . . 0

0 0 0 K̃n


= di ag

[
K̃i

]

C̃ =



C̃1 0 · · · 0

0 C̃2 · · · 0
...

...
. . . 0

0 0 0 C̃n


= di ag

[
C̃i

]

where M̃i =ϕT
i Mϕi

where K̃i =ϕT
i Kϕi

where C̃i =ϕT
i Cϕi

(3.15)

Φ=
[
ϕ1 ϕ2 · · ·ϕn

]
=



ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n

...
...

. . .
...

ϕn1 ϕn2 · · · ϕnn


η=



η1

η2

...

ηn


(3.16)

R̃ext =



M̃1Γ1

M̃2Γ2

...

M̃nΓn


üg =



L̃1

L̃2

...

L̃n


üg

where Γi = L̃i

Mi

L̃i =ϕT
i Mι

(3.17)

The equivalent SDOF-system for the n-th mode is

mn q̈n +2mnξωn q̇ +mnω
2
n qn = L̃nüg (3.18a)

q̈n +2ξnωn q̇ +ω2
n qn =−Γnüg (t ) (3.18b)

The factor Γn is sometimes called a modal participation factor even if it is not a measure of the

contribution of the mode to a response quantity nor is it independent of the normalization of

the modes. These drawbacks are overcome by the modal contribution factor r̄n later presented.
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The solution to equation (3.18b) is written in terms of the response of a SDOF-system with unit

mass

D̈n +2ξnωnḊn +ω2
nDn =−üg (3.19)

and identical natural frequency ωn and damping ξn as the seismic n-th mode SDOF system.

Comparing equation (3.18b) and (3.19) it is seen that the solution qn is related to Dn by

qn(t ) = ΓnDn(t ) (3.20)

Thus, the solution to a MDOF-system subjected to seismic loading is found by first solving a

SDOF-system with unit mass and equal natural frequency ωn and damping ξn and multiply by

the modal participation factor Γn . This is truly a smart approach, as solutions to SDOF-systems

are available for harmonic, step and impulsive forces.

The equivalent static force associated with the n-th mode response is

fn(t ) = kun(t ) =ω2
nmϕnqn(t ) = mϕnΓn︸ ︷︷ ︸

sn

ω2
nDn = snω

2
nDn (3.21)

The n-th mode contribution to any response quantity r(t) is determined by static analysis

rn(t ) = r st
n

[
ω2

nDn(t )
]

(3.22)

where r st
n is the modal static response. Combining the response contributions of all modes gives

the total response

r (t ) =
N∑

n=1
rn(t ) =

N∑
n=1

r st
n

[
ω2

nDn(t )
]

(3.23)

Equation (3.23) can further be expressed as
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rn(t ) = r st r̄n[ω2
nDn(t )] (3.24)

where

r̄n = r st
n

r st
(3.25)

is referred to as the n-th modal contribution factor.

Modal Analysis

For a SDOF-system with cosine loading; mü+cu̇+ku = F0 cos(w t ), basic vibration theory gives

the following expression for the harmonic response:

u = 1[(
1−β2

)2 + (
2ξβ

)2
]1/2

︸ ︷︷ ︸
D

(
F0

k

)

u = u cos(w t −θ)

where

θ = arctan
2ξβ

1−β2

β= ω

ωn

ωn =
p

k/m

(3.26)

It is seen that the harmonic response amplitude u is proportional to the static displacement

F0/k, modified by a dynamic magnification factor D that depends on β and ξ. The same equa-

tions are valid for the uncoupled modal equations for a MDOF-system subjected to sinusoidal

loading; m̃i η̈i + c̃i η̇i +k̃iηi = R̃ext
i . The MDOF-system is solved for its natural frequenciesωi and

the corresponding eigenmodes ϕi by solving the eigenvalue problem (k−ωn,im)ϕi = 0.

The Direct Method

The direct method uses numerical integration to solve the equation of motion directly with re-

spect to u.

Mü+Cu̇+Ku = P(t ) (3.27)
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A solution algorithm is the Newmark integration method given in appendix B.1.

3.2.2 Response Spectrum Methods

A plot of the peak value of a response quantity as a function of the natural vibration period of

a SDOF-system is referred to as a reponse spectrum. Before proceeding to the response spec-

trum method, an introduction related to the origin of the pseudo-quantities is given to better

understant how it differs from the real quantities.

Concept of equivalent static force

One important task in earthquake engineering is to estimate the internal forces as base shear

and moments. This can be done by the concept of equivalent static force, which uses the lateral

stiffness k of the structure found by for example static condensation.

fS(t ) = ku(t ) (3.28)

fs can be interpreted as the static external force that will produce the same deformation u as a

dynamic system including mass and damping. Using the relation k = mω2
n gives

fS(t ) = mω2
nu(t ) = m A(t ) (3.29)

where

A(t ) =ω2
nu(t ) (3.30)

is the pseudo-acceleration of the SDOF-system. The term pseudo is used to seperate this quan-

tity from the real acceleration ü(t ). Once the deformation response u(t ) is determined, the

pseudo-acceleration can easily be determined and the internal forces as base shear Vb(t ) and

base moment Mb(t ) then reads
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Vb(t ) = fs Mb(t ) = h fs (3.31)

Deformation, pseudo-Velocity and pseudo-Acceleration Response Spectra

The deformation response spectra plots the peak value u0 = D of the deformation history for a

range of SDOF-systems with varying natural periods Tn . The pseudo-acceleration and pseudo-

velocity response spectra are related to the deformation reponse spectra as

An =ω2
nD Vn =ωnD (3.32)

where An and Vn are the peak value of A(t ) and V (t ) for the n-th period correspondingly. The

pseudo-acceleration A(Tn) for a SDOF is related to the peak value of the base shear, whereas the

pseudo-velocity V (Tn) for a SDOF is related to the peak value of the systems strain energy ES .

V =ωnD = 2π

Tn
D (3.33)

ES0 =
ku2

0

2
= kD2

2
=

k V
ωn

2

2
= mV 2

2
(3.34)

Thus RSA-analysis avoid the dynamic analysis of SDOF-systems since this is already done to es-

tablish the response spectras. The spectras can be used to estimate the peak response of MDOF-

systems as the method is not exact for such systems, but accurate enough.

3.3 Damping

The process by which vibration steadily diminishes in amplitude is called damping. Energy

dissipation sources are for example friction at steel connections, opening and closing of mi-

crocracks in concrete and friction between elements. In models, damping is most commonly
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represented by a viscous dashpot because it is mathematically simplest.

The damping matrix must be completely defined if classical modal analysis cannot be used.

This is the case for non-linear systems and for systems with non-classical damping.

Classical damping is an appropiate idealization if similar damping mechanisms are distributed

throughout the structure, for example a multistory building with similar structural system and

structural materials over its height.

Non-classical damping applies for systems that consist of two or more parts with significant

different levels of damping, for example a soil-strucure system. For such cases, the damping

matrix is constructed by assembling the damping matrices for the two substructures; the soil

and the structure.

The damping matrix for a structure should be determined from its modal damping ratios, which

account for all energy-dissipating mechanisms. The Rayleigh Ritz methodology is commonly

used to construct a classical damping matrix.

3.3.1 Rayleigh damping

Rayleigh damping is a classical damping modelling method that combines a mass-proportional

and a stiffness-proportional damping matrix, hence

c = a0m+a1k (3.35)

The computional steps in establishing the Rayleigh coefficients as a function of modal damping

ξn is shown in equation (3.36) for both the mass-proportional term and the stiffness-proportional

term. The transformation from matrix c to modal coordinates Cn is valid because the mass m

and stiffness k both exhibit modal orthogonality properties.
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c = a0m

Cn = a0Mn

ξn = Cn

2Mnωn
= a0

2ωn

a0 = 2ξnωn

c = a1k

Cn = a1Kn = a1ω
2
n Mn

ξn = Cn

2Mnωn
= a1

2
ωn

a1 = 2ξn

ωn

(3.36)

Equation (3.36) shows that the modal damping ratio ξn strongly depend on the natural fre-

quency ωn considered. This is not consistent with experimental data which indicates roughly

the same damping ratios for several vibration modes of a structure. The damping ratio of the

nth mode of a Rayleigh damped system is then

ξn = a0

2ωn
+ a1

2
ωn (3.37)

The damping coefficients a0 and a1 is determined by assigning specified modal damping ratios

ξi and ξ j to the i-th and j-th mode. This results in the algebraic system in equation, which needs

to be solved for a0 and a1.

1

2

 1
ωi

ωi

1
ω j

ω j


a0

a1

=

ξi

ξ j

 (3.38)

If both modes are assumed to have the same damping ratio, i.e ξi = ξ j = ξ, then the following

expressions for a0 and a1 is obtained

a0 = ξ
2ωiω j

ωi +ω j
a1 = ξ 2

ωi +ω j
(3.39)

Figure 3.3 shows the variation of the modal damping with frequency f .
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Figure 3.3: Variation of modal damping ratio ξ with frequency.

3.4 Transfer function of linear elastic soil with harmonic ground

excitation

The derivation of the response and amplification function Rd of an uniform soil over rigid bedrock

is presented in this section and follows the steps of Kramer [20].

3.4.1 Uniform Soil without damping

The partial differential equation of the soil is obtained by equilibrium of an infinitesimal ele-

ment as

∑
Fx = 0

⇒ ∂τ

∂z
d zd A−ρd Aü(z, t )d z = 0

∂τ

∂z
−ρü(z, t ) = 0

Introduce

τ=Gγ=G
∂u(z, t )

∂z

G
∂2u(z, t )

∂z2
−ρü(z, t ) = 0

(3.40)
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The solution of this partial differential equation is obtained by assuming a harmonic displace-

ment with time in each point of the soil, hence

u(z, t ) = ū(z)cosωt ⇒ ü(z, t ) =−ū(z)ω2 cosωt (3.41)

Insert these expressions into the partial differental equation to obtain the following general so-

lution

G
∂2ū(z)

∂z2
cosωt +ρū(z)ω2 cosωt = 0

∂2

∂z2
ū(z)+ ρ

G
ū(z)ω2 = 0

Insert for V 2
s = G

ρ
and rewrite as

∂2

∂z2
ū(z)+

(
ω

Vs

)2

ū(z) = 0

This diff. eq. has the general sol.

ū(z) = A cos

(
ω

Vs
z

)
+B sin

(
ω

Vs
z

) (3.42)

The two boundary conditions are 1. no shear forces at z = H and 2. the displacement amplitude

at the bedrock is identical to the ground displacement amplitude u0.

at z=0 ⇒ ū = u0 ⇒ A = u0 (3.43a)

at z=H ⇒ τ=G
∂u(z = H , t )

∂z
= 0 (3.43b)

The boundary condition in equation 3.43b implies that the displacement amplitude term ū(z)

need to fulfill

∂ū(z = H)

∂z
= 0 (3.44)

⇒−A
ω

Vs
sin

(
ω

Vs
H

)
+B

ω

Vs
cos

(
ω

Vs
H

)
= 0

⇒ B = A tan

(
ω

Vs
H

)
= u0 tan

(
ω

Vs
H

) (3.45)

Insert the expressions for the constants A and B into equations 3.42 to obtain the result for the
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displacement amplitude ū(z) in a linear elastic soil layer.

ū(z) = u0 cos

(
ω

Vs
z

)
+u0 tan

(
ω

Vs
H

)
sin

(
ω

Vs
H

)
(3.46)

To find the natural frequenciesωn and the corresponding eigenmodesϕ of the soil, the response

u(z, t ) of the soil need to be analyzed when to there are no excitation of the ground, i.e u0 = 0

and also A = 0. Solving equation 3.44 when A = 0 for the natural frequencies of the soil gives the

following result:

∂ū(z = H)

∂z
= 0

⇒ B
ωn

Vs
cos

(
ωn

Vs
z = H

)
= 0

Non-trivial sol. is obtained by(
ωn

Vs
H

)
= π

2
(2n −1) for n=1,2...

ωn = 2n −1

2

πVs

H

and the mode shapes

ū(z,ωn) = B sin

(
ωn

Vs
z

)
= B sin

(
2n −1

2

πz

H

)
(3.47)

The three first modeshapes of a linear elastic soil is plotted in figure 3.4. The expression for the

three first modeshapes and the corresponding natural frequencies are

ω1 = πVs

2H
⇒ ϕ1 = sin

(
πz

2H

)
(3.48)

ω2 = 3πVs

2H
⇒ ϕ2 = sin

(
3πz

2H

)
(3.49)

ω3 = 5πVs

2H
⇒ ϕ3 = sin

(
5πz

2H

)
(3.50)

The theoretical amplification in displacement between a point at the bedrock and a point at the

soil surface without damping in the soil is given as
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Figure 3.4: Plot of the five first modeshapes of a uniform linear elastic soil

Rd (ω) = |u|z=H

|u|z=0
=

u0 cos
(
ω
Vs

z
)
+u0 tan

(
ω
Vs

H
)

sin
(
ω
Vs

H
)

u0

= cos

(
ω

Vs
H

)
+

sin2
(
ω
Vs

H
)

cos
(
ω
Vs

H
) = 1∣∣∣∣cos

(
ωH
vs

)∣∣∣∣
(3.51)

3.4.2 Uniform Soil with damping

Damping is present in all materials and needs to be included to obtain more realistics responses.

The differential equation of an infinitesmal soil element with damping is

G
∂2u(z, t )

∂z2
+η ∂3u

∂z2∂t
= ρü(z, t ) (3.52)

where the only additional term compared to equation (3.42) is the frequency independent damp-

ing term η ∂3u
∂z2∂t

. The solution of this wave equation is on the form
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u(z, t ) = Ae i (ωt+k?H)+Bei (ωt−k?z)
(3.53)

where k? is the complex wave number. Further details of the derivation can be found in Kramer

[20]. The final expression for the amplification factor
∣∣H(ω)

∣∣ is

∣∣H(ω)
∣∣≈ 1√

cos2
(
kH

)+ (
ξkH

)2
= 1√

cos2
(
ωH/Vs

)+[
ξ
(
ωH/Vs

)]2
(3.54)

The amplification for different soil materials is given in figure 3.5.
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Figure 3.5: Theoretical amplification factor for uniform linear elastic soil for different
Vs and damping ratios ξ
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3.5 Soil-Structure Interaction

Soil-structure interaction (SSI) refers to the process in which the structure influences the re-

sponse of the soil and vice versa. Ground motions not influenced by the presence of structures

are referred to as free-field motions.

The two sources of soil-structure interaction are 1) the inability of the foundation to conform to

the free-field motion of the soil and 2) the influence of the dynamic response from the structure-

foundation system to the surrounding soil. The first cause is referred to as kinematic interaction

and is illustrated in figure 3.6 for different foundation geometries.

Figure 3.6: Kinematic interaction with free-field motion indicated by dashed lines

Figure a) shows a surface foundation subjected to vertical displacements due to wave travelling.

The bending stiffness will prevent the foundation to entirely conform to the free-field motion

indicated by the dashed lines. Figure b) shows an embedded foundation subjected to horizontal

displacements where its rigidity prevents it from following the free-field motion. Figure c) shows

that also the axial stiffness of a foundation can prevent immediatly underlaying soil to deform

for a case with a incoherent (note the reversed wave) free-field motion.

Kinematic interaction is present whenever the stiffness of the foundation impedes development

of the free-field motion. The relation between the wave length and the embedment depth is also

important for the extent of rocking deformation in the structure. The first case in figure 3.7 will

experience more rocking compared to the second case. The forces on the latter will to a greater

extent outbalance each other and thus result in a smaller moment.
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Figure 3.7: Excitation of rocking in embedded foundations by vertically propagating
S-waves.

3.5.1 Equivalent System Frequency

An important effect of SSI is a reduction in the natural frequency of the soil-structure system

compared to the corresponding fixed-base configuration. The derivation of the equivalent nat-

ural frequency for a SDOF-system is found in Kramer [20] and is repeated here as

1

ω2
eq

= 1

ω2
0

+ 1

ω2
h

+ 1

ω2
r

(3.55)

whereωeq is the system equivalent natural frequency,ω0 is the fixed-base natural frequency,ωh

is the swaying natural frequency of the foundation and ωr is the rocking natural frequency of

the foundation.

3.6 Three-Step-Method

The three-step method refers to a solution procedure where the kinematic and inertial interac-

tion are separated. The theory presented originate from Kausel et al. [18].
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3.6.1 The superposition theorem

The equations of motion for the soil/structure system are given by

MÜt +CU̇+KU = 0 (3.56a)

MÜ+CU̇+KU =−MÜg (3.56b)

The equation system is equivalently described by a kinematic interaction and a dynamic inter-

action as

Kinematic interaction: M1Üt
1 +CU̇1 +KU1 = 0 (3.57a)

Dynamic interaction: MÜ2 +CU̇2 +KU2 =−M2Üt
1 (3.57b)

Added: M1Üt
1 +M2Üt

1︸ ︷︷ ︸
MÜt

1=MÜ1+MÜg

+MÜ2 +C(U̇1 + U̇2)︸ ︷︷ ︸
CU̇

+K(U1 +U2)︸ ︷︷ ︸
KU

= 0 (3.57c)

where variables with subindex 1 (i.e Ü1,U̇1,U1) refers to the solution of a system with a massless

structure and foundation, whereas subindex 2 (i.e Ü2,U̇2,U2) refers to the solution where the

system is subjected to inertia forces originating from the kinematic step. When the two equa-

tion systems are added the original equations are obtained. The equations in 3.57 are visually

illustrated in figure 3.8.

The kinematic interaction step represent the solution of the system with a massless structure

and foundation subjected to a seismic ground motion Üg. Thus, the inertia from the structure

is excluded in this step. The total response in the kinematic interaction step is persued to the

dynamic interaction step.

For the particular case where the combination foundation/structure is very rigid, the structure

will move as a rigid body. The rigid body motion is then fully described by the vertical, torsional,
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Figure 3.8: Superposition theorem

rocking and swaying stiffness functions at the foundation level.

3.6.2 Method

The three steps needed to obtain a simplified spring solution are illustrated in figure 3.9. The

method consists of a kinematic step, an impedance step and a combination step.

1. Kinematic interaction: Kinematic interaction occurs whenever the stiffness of the foun-

dation system impedes development of free-field motions. Determination of the input

motion of the massless rigid foundation under seismic base loading; i.e solution to the

kinematic interaction equations. For an embedded foundation it will yield, in general,

both translations and rotations.

2. Subgrade impedances: Determination of soil stiffnesses as equivalent static or frequency

dependent springs for the relevant degrees of freedom.

3. Combination: Computation of the response of the structure supported with springs and

dashpots and subjected to the input motion calculated in step 1).

Note that the three-step-method is only a faster method compared to a full numerical model if

reasonable approximations for the kinematic base inputs and foundation stiffnesses excists. If

not, a numerical simulation of the seismic soil response with a massless foundation must be car-
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ried out. The three-step-method is a flexible method as it separates the base input motion from

the inertial responses. This make the method highly suitable for parametric studies without the

need to rerun entire analysis.

Note, that the superposition principle is only valid for linear systems. While the modulus and

the damping of the soil are strain dependent, studies have shown that most of the non-linearity

occurs as a result of the earthquake motion, and not as a results of soil-structure interaction

[18].

3.6.3 Dynamic Impedances

The dynamic impedances represent the frequency dependent stiffness and damping charac-

teristics in soil-foundation interaction. The importance of the frequency dependent properties

varies with the foundation type considered and the soil material properties. Harte [13] suggest

that the frequency variation can be important for soft soils materials.

For each harmonic excitation with frequency ω, the dynamic impedance (or the dynamic stiff-

ness) is defined as the ratio between the steady-state force (or moment) and the resulting dis-

placement (or rotation). For a SDOF-system, the dynamic impedance reads

K? = P (t )

u(t )
(3.58)
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where k? consists of an imaginary part and a real part

K?(ω) = K1(ω)+ i K2(ω) (3.59)

where the imaginary component reflects the frequency dependent radiation damping and ma-

terial damping of the system [9]. The derivation of the dynamic impedance for a single oscillator

is given in section B.3 in the appendix to introduce the concept.
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State of the Art

A brief summary of the most relevant reserach related to wind turbines, bucket foundations

and numerical methods is presented in this chapter. A more comprehensive description of two

full-scale shake table experiments of a 65 kW wind turbine is given.

4.1 Wind Turbines, Skirted Foundations and SSI

The scientific development and basic theory for simplified methods in soil dynamics is summa-

rized by Dobry [5]. Stiffness and damping formulas for surface foundations were first presented

and validated in 1986 by Dobry and Gazetas for all six degrees of freedom [6] [7]. The formluas

were further developed to include embedded foundations of arbitrary shape. In 1991 Gazetas

presented formulas and charts for dynamic stiffnesses and damping coefficients in a homoge-

neous halfspace [10]. The formulas proved to accurately represent numerically obtained natural

frequencies, but overestimates the radiation damping in swaying [11].

Kausel et al. [18] made the following conclusions for use of the spring method for embedded

foundations:

• It is more important to correctly represent the static stiffnesses of embedded foundations

than their complete frequency variation.

32
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• The increase in stiffness due to embedment is very sensitive to the properties of the lateral

soil, which may be disturbed, and to the degree of adhesion of the lateral walls to the soil.

Gazetas [9] presents simple formulas and dimensionless graphs for the dynamic impedance

functions of circular, strip, rectangular and arbitrary-plan-shape foundations. The formulas are

later used to estimate the stiffness of the bucket foundation.

Ishihara [17] made the following observations with respect to seismic simulation of wind tur-

bines:

• The contribution of higher modes towards the structural response is small for middle-

sized wind turbines. However it becomes important for large wind turbines resulting in

overestimation of the base shear and base moment when WEE model, i.e rotor-system

modeled as a lumped top mass, is used.

• The present acceleration response spectrum used in building codes in Japan does not cap-

ture the characteristics of the acceleration response spectrum obtained for structures with

very low damping such as wind turbines.

Kourkoulis et al. [19] made the following observations concerning offshore bucket foundations

subjected to lateral monotonic, cyclic and earthquake loading:

• In the case of monotonic and slow cyclic loading it is shown that imperfect interface bond-

ing could reduce the moment capacity and may lead to foundation detachment or even

uplifting in the case of shallowly embedded caissons.

• Increasing the bucket diameter while maintaining the embedment is more efficient in

terms of material than increasing the skirt length while keeping the diameter constant.

• For soil/foundation/wind turbine interacting systems subjected to simultaneous environ-

mental and seismic loads, the system kinematics may prove crucial to the response of

large wind turbines. The accumulation of foundation rotation could lead to the turbine

reaching serviceability limits early during its operation.

A recently study by Torabi [27] demonstrates that rigid slender structures are highly susceptible

to the SSI effects including alternation of natural frequency, foundation rocking and excessive
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base shear demand. The relative stiffness between the structure and foundation and their aspect

ration were found to be crucial parametres controlling the inertial soil-structure interaction in

flexible-base structures.

4.2 Full-scale Shake Table Test of a Nordtank Wind Turbine

In 2004 and 2010 researches from University of California San Diego performed a full-scale

shake table test of a 65 kW wind turbine. The aim was to assess natural frequencies, mode

shapes and equivalent viscous damping and compare the result from numerical simulations

with experimental results. A comprehensive description of the experiments are given, since the

results are used to validate a FE-model of a wind turbine in chapter 6.

The wind turbine was excitated at its fixed-base configuration with the East-West component

of the strike-slip Landers earthquake from 1992, recorded at Desert Hot Spring station. The

earthquake has a peak ground acceleration of PG A = 0.15g and a moment magnitude of Mw =
7.3 [8]. The seismic response was measured on four points along the tower as seen in figure 4.2a.

From 2004

Figure 4.1 shows the wind turbine installed at the shake-table in its side-side direction with one

blade pointing downwards. Two models were developed in OpenSees; a open-source system

for earthquake engineering simulations. The first model consists of a several beam elements

representing the tower, whereas a lumped top mass accounts for the nacelle and blades. Addi-

tional beam elements were included in the second model to explicitly represent the geometric

configuration of the nacelle and the rotor. A summary of the experimental and numerical eigen-

frequencies of the parked wind turbine is given in table 4.1.

The following observations and conclusions were made:

• The simplified beam-column models estimated the foundamental modes accurately. The

fundamental frequency estimation formula developed by the International Building Code
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(a) Configuration (b) Mounted at shake-table

Figure 4.1: Shake-table test from 2004

(IBC) closely matches the experimental value when using the hub height and 2/3 of the

blade length as input.

• First mode damping was estimated below 1% for the parked wind turbine. Depending

on the underlying ground properties, SSI may increase overall damping due to energy

radiation.

• For small utility scale turbines, a first mode response was shown to provide a reasonable

approximation. Hence, the response spectrum approach may provide a convenient ap-

proach for estimating the seismically induced peak shear force and moment.

• For larger modern wind turbines, higher modes may play an more important role in seis-

mic response. More credible models needs to be developed for such cases.

From 2010

In 2010 an extended full-scale shake table test of the Nordtank wind turbine was carried out at

the University of California San Diego. This time the response of the wind turbine was examined

in two states; while the wind turbine rotor was still (parked state) and while spinning (opera-

tional state). The wind turbine was also shaken in both the fore-aft direction and the side-side
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direction for different earthquake loads. The orientation of the blades was also different from

the previous test; now one blade was horizontally oriented.

A FE-model of the wind turbine was developed in FAST, which uses modal damping. Several

adjustment were made to match the experimental mode shapes.

(a) Fore-aft configuration (b) Side-side configuration

Figure 4.2: Shake-table test from 2010

The following observations and conclusions were made:

• Shaking imparted in the fore-aft direction while spinning is the only observed situation

where operational effects appear significant, with reduction up to 33% in seismic bending

moment demand near the tower base [24].

• In the fore-aft direction the equivalent viscous damping was approximately twice as high

in the operational state compared to the parked state (2.0% vs 1.0%). The higher damp-

ing is due to additional aerodynamic effects caused by blade flap vibrations. Gyroscopic

forces from rotation of the rotor may also contribute to changes in the dynamics proper-

ties while the turbine is operating [23].

• When a wind turbine is subjected to both wind and seismic load it is important to consider

the orientation of shaking and the aerodynamic damping.
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Table 4.1: Summary of experimentally and numerically obtained eigenfreqencies of the
parked 65-kW wind turbine. The numerical result represent model 2.

2004 2010

fn Shake table FE-Model1) Shake table FE-Model2)

Type f [Hz] Type f [Hz] Type f [Hz] Type f [Hz]

1 S-S 1.70 S-S 1.68 F-A 1.70 F-A 1.70
2 Coupled 11.7-12.3 F-A 1.7 S-S 1.71 S-S 1.71
3 - - T 9.2 Coupled 11.3 - -
4 - - F-A 9.7 F-A 11.9 F-A 11.9
5 - - S-S 12.1 S-S 12.4 S-S 12.4

S-S: Side-side, F-A: Fore-aft and T: Torsional

1) FE-program: OpenSees (Rayleigh damping)

2) FE-program: FAST (modal damping)



Chapter 5

Numerical Model of Soil

It is widely recognized that site effects can significantly change the nature of the ground motion.

The 1985 Mexico City and 1989 Loma Prieta earthquakes revealed that soft soil deposits can

significantly amplify the ground motion which in turn affects the response of the structures

[27] on the surface. Therefore, it is important that the numerical model is able to accurately

describe the correct soil amplification. To ensure correct behaviour of the modeled soil, this

chapter validates the numerical soil algorithm with respect to the theoretical transfer function

derived in chapter 3.4.

5.1 Model Description

When a soil in free-field conditions is excitated by a horizontal ground motion, the soil behaves

like a shear-beam where the soil particles in the same horizontal plane move together. The soil

will not behave like water subjected to the same seismic loading, because it is not possible for

the soil to slide on the rock surface. In comparison, the water is able to move up and down

relative to the surface because of the low friction coefficient of water. This type of sliding is

highly restricted in a soil, which causes pure horizontal motion. This difference between water

and soil materials is illustrated in figure 5.1.

38
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Figure 5.1: Behaviour of soil and water near the boundaries subjected to seismic excita-
tion.

Geometry & Material Properties

The soil slice in figure 5.2b has a length of Lx = 100m in the x-direction, Ly = 1m in the y-

direction and a depth of H = 50m. The relation between the shear modulus G , poisson’s ratio ν

and shear wave velocity Vs is

Vs =
√

G

ρ
and G = E

2(1+ν)
(5.1)

The soil material properties is given in table 5.1. The first and fifth theoretical mode shape are

assigned a damping coefficient of ξ = 5% which corresponds to the Rayleigh coefficients a0 =
0.8511 and a1 = 0.0011.

Table 5.1: Material properties of modelled soil

Young’s mod. Poisson’s ratio Shear mod. Density Shear wave
E [MPa] ν [-] G [Mpa] ρ [kg/m3] Vs [m/s]

540 0.50 180 2 000 300

Boundary Conditions & Constraints

The soil slice is excitated in the longitudinal x-direction. The shear-beam lateral boundary con-

dition is applied to the two vertical end planes by a tie constraint. Further, the bottum nodes are

pinned to the ground and free to move in the excitation direction.
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Figure 5.2: Applied tie constraints in the soil model

Elements & Mesh

The element size must be able to represent a propagating shear wave in the soil. A mesh with

approximatly 10 elements over the wave length λ is experienced to be adequately. The following

relations are used to determine the element size;

λ= Vs

f
and Le = λ

10
(5.2)

where f is the highest harmonic load frequency of interest and Le is the minimum element size

for linear elements. For a maximum frequency in the considered earthquake of fmax = 15H z

and a minimum shear wave velocity in the soil of VS,mi n = 300m/s the smallest wave length and

element size required is then

λmi n = 300 m
s

15s−1
= 20m and Le,max = 20m

10
= 2m (5.3)

The soil is validated for the three meshes shown in figure 5.3 which consists of a) a quadrilateral

of linear order, b) a quadrilateral of second order and c) a tetrahedron on second order.
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(a) Linear quadrilateral (b) Quadratic quadrilateral (c) Quadratic tetrahedron

Figure 5.3: Different soil meshes.

5.1.1 Results

Accurate numerical results are obtained for both the natural frequencies and the amplification

of the homogeneous soil for a range of harmonic base excitations. Table 5.2 shows that the five

first modes shown in figure 5.4 are predicited by an error less than 0.4%. Identical results were

obtained for both of the second order elements. Note that the size of the second order elements

are four times larger than the linear elements, and still better results are obtained.

The ground amplification computation is done for three cases to control the agreement in the

results; a) a soil-slice with only one element in the y-direction with a unit length, b) a soil-

volume with ten elements in the y-direction and c) a time domain simulation. The two time

domain simulations are given in figure5.6. For an excitation frequency of f = 2.00H z it is shown

that the maximum displacement occurs in the transient phase as shown in figure 5.6. However,

the purple dots in figure 5.5 is taken as the maximum displacement in the steady-state phase of

the time series plots.

Table 5.2: Natural frequencies of soil for elements C3D8R (linear), C3D20R (quadratic)
and C3D10 (quadratic).

Mode Theoretical [Hz] Numerical [Hz] Error
Linear 1) Quadratic 2) Linear Quadratic

1st 1.5050 1.5050 1.5050 0.00 % 0.00%
2nd 4.5150 4.5134 4.5151 0.04 % 0.00%
3rd 7.5250 7.5174 7.5258 0.10 % 0.01%
4th 10.535 10.514 10.539 0.20 % 0.04%
5th 13.545 13.500 13.558 0.33 % 0.10%

1) Element size 1m; 2) Element size 4m
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(a) 1st eigenmode (b) 2nd eigenmode (c) 3rd eigenmode

(d) 4th eigenmode (e) 5th eigenmode (f) 6th eigenmode

Figure 5.4: The six first eigenmodes of the homogenous linear-elastic soil model.

The result for the linear elements is shown in figure 5.5 together with the theoretical result. Since

the damping coefficient ξ in the model depends on the excitation frequenciy due to applied

Rayleigh damping, the damping in the theoretical result has been modified correspondingly.

The mesh and the applied constraint is able to accurately represent the correct displacement

amplification in all three cases. The same conclusion is also valid for the three element meshes.

It is observed that the numerical result start to deviate from the theoretical solution for frequen-

cies above approximatly 12 Hz. An explanation to the deviation can be explained with respect

to the choosen mesh size. Larger load frequencies require a smaller mesh size to obtain an ade-

quate amount of elements per wave length.

The validation of the soil provided satisfactory results and the modelling techniques used can

confidently be used in the fully integrated model.
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Figure 5.5: Amplification of soil with harmonic base excitation, 5 % Rayeigh damping,
Vs = 300 m/s and linear elements. The purple dots indicates the maximum displace-
ment from the steady-state phase from a time-domain simulation.
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Figure 5.6: Time domain response of a soil with a base excitation with frequencies f =
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Chapter 6

Validation of a Nordtank Wind Turbine

Model

In this section a FE-model of a parked 65-kW Nordtank wind turbine is presented and validated

against experimental results from a full-scale shake table test performed at the university of

California San Diego. The two models created are a) a model which explicitly models the blades

and hub and b) a model with a lumped top mass which account for the mass of the blades and

hub. The numerical algorithm in the most accurate model is transmitted to the four times higher

Vestas model.

6.1 Experimental Results

A description of the experimental shake-table tests is given in section 4.2. The experiments pro-

vides useful information about natural frequencies, mode shapes and damping of the Nordtank

65-kW wind turbine for parked and operational conditons. The modal properties for the parked

wind turbine is given in table 6.1 and shown in figure 6.1 and figure 6.2.

The bending mode in the fore-aft direction is the lowest mode, closely followed by the side-side

direction. A coupled mode occurs at 11.3 Hz and the two second bending modes at 11.9 Hz and

12.4 Hz. Also a torsional mode around 9Hz was observed in addition to the modes shown. Note

44
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that the modal values is from the shake table test from 2010 where one blade was horizontally

orientated. Even if the blade orientation in the model differs from this, these values are choosen

to comparison because the experiment from 2004 only studied the turbine properties in the

side-side direction.

(a) Fore-aft at 1.69Hz (b) Side-side at 1.71Hz

Figure 6.1: Observed 1st tower mode shapes [24]

(a) Coupled at 11.3Hz (b) Fore-aft at 11.9Hz (c) Side-side at 12.4Hz

Figure 6.2: Observed 2nd tower mode shapes [24]

6.2 Model Description

This section presents the two established Nordtank wind turbine models. Model 1 explicit mod-

els the nacelle/rotor system and model 2 has a lumped top mass. The two models are shown

in figure 6.3. Several simplifications and estimates are made due to insufficient available data

conserning geometry, mass distribution and interior structural elements.



CHAPTER 6. VALIDATION OF A NORDTANK WIND TURBINE MODEL 46

Table 6.1: Summary of the modal properties of the parked 65-kW wind turbine 1) [24]

Frequency Damping
Number Type Mean Range STD Mean Range STD

1 FA 1.69 1.69-1.70 0.002 0.57 0.49-0.64 0.04
SS 1.71 1.70-1.72 0.004 0.84 0.61-1.25 0.16

2 Coupled 11.3 11.2-11.4 0.054 1.5 0.9-1.9 0.27
FA 11.9 11.8-11.9 0.041 1.6 1.4-2.0 0.21
SS 12.4 12.3-12.6 0.065 1.9 1.5-2.7 0.29

Note: FA=fore-aft; SS=side-to-side; STD=Standard deviation
1) The blade orientation from the test in 2010 was different compared to the
test in 2004 and the model.

X
Y

Z

(a) Model 1

X
Y

Z

(b) Model 2

Figure 6.3: The two FE-models of the 65-kW Nordtank wind turbine

Geometry, Materials & Mesh

The tested unit is a 23m high wind turbine manufactured in Denmark by Nordtank. The wind

turbine is relatively small in size and capacity, but represents after all the typical structure of a

wind turbine with a tabular cylindrical steel tower topped with a nacelle [24]. The geometry and

mass properties of the Nordtank 65-kW wind turbine is given in table 6.2. Note that 40% of the

total weight is located at the top of the tower.

The mass properties and elements used in the model is given in table 6.3 and 6.4 respectively.

The mass of each component is assumed uniformly distributed and the material damping is ap-
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proximated from the experimental modal damping ratios. A damping of 1% for the first bending

mode and 3.5% for the second bending mode is used which corresponds to Rayleigh coeffisients

a0 = 0.043 and a1 = 0.0006.

Table 6.2: Properties of the experimental 65-kW wind turbine subjected to the shake
table test. The data is also transferred to the FE-model in ABAQUS [25, 24]

Component Value

Geometry

Rotor diameter 16.0 m
Tower height 21.9 m

Lower section length 8.0 m
Lower section diameter 2.0 m

Middle section length 7.9 m
Middle section diameter 1.6 m

Top section length 6.0 m
Top section diameter 1.2 m
Tower wall thickness 5.3 mm

Rotor hub height 22.6 m

Mass

Tower 6 400 kg
Nacelle 2 700 kg

Hub 700 kg
Rotor blade (each) 300 kg

Nacelle + hub + blades 4 300 kg
Total mass 10 700 kg

Table 6.3: Material properties and element types in the FE-model in ABAQUS

Component Mass density Youngs Modulus Poisson’s ratio
ρ[kg /m3] E [MPa] ν[−]

Tower 10947 200 000 0.3
Nacelle 492 210 000 0.3
Blades 1194 10 000 0.3

The geometry of the nacelle is visually determined from available figures in technical data sheets.

In the FE-model the nacelle is modelled as a box with dimensions l xw xh = 3.9mx1.6mx1.4m

and the hub is modelled as a point mass at the connection between the nacelle and blades. The

models matches the given hub height of 22.6m. The nacelle in the tested unit is slightly offset to
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Table 6.4: Mesh properties

Component Element Number

Tower Shell, S4R 2222
Nacelle Solid, C3D8R 2112

Hub Point mass 1
Blades Beam, B31 24

reduce the overall eccentricity of the combined rotor/nacelle system [25]. In model 1 the nacelle

is placed with an estimated offset of e = 0.35m between the nacelle and tower’s center of gravity.

This reduces the bending moment from the hub and blades around the tower top from 30.6kNm

(e = 0m) to 15.8kNm. The lumped top mass in model 2 has no offset.

Constraints & Boundary Conditions

The nacelle is coupled to the tower with a shell-to-solid coupling shown in figure 6.4a and the

blades are constrained to follow the motion of the nacelle surface with a beam connector. In

reality the wind turbine tower is stiffened by floors and other structural elements that are not

known in detail. To make the tower deform in a realistic manner, stiffening rings are assigned to

the tower approximatly every fourth meter as shown in figure 6.4b. A link multipoint constraint

constrains all the translational DOF in a node region to a master node. Further, the connection

between the tower base and shake table is assumed rigid.

6.3 Model Simplifications & Sources of Errors

A FE-model contains two main sources of erros; modelling errors and discretization errors. A fi-

nite element analysis is performed on a mathematical model which represent a simplification of

real geometries, boundary conditions, material properties and loads. The mathematical model

is further discretized into a mesh of finite elements. Modelling errors can be reduced by mak-

ing the mathematical model more realistic, and discretization errors can be reduced by mesh

refinement and better suited element types. The simplifications listed under are all sources of
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(a) Shell-to-solid coupling at the nacelle-tower connection.

MPC Link

(b) MPC applied to regions of
the tower.

Figure 6.4: Applied constraints to the Nordtank wind turbine model.

modelling errors.

• The tower base is assumed rigidly connected to the shake table, whereas the bolted con-

nection will behave more flexible in real-life.

• Interior structural elements are excluded. Real-life turbines have floors, stairs and ad-

ditional stiffening along the tower. Instead, constraints are applied to the tower make it

obtain a realistic deformation pattern during seismic excatation.

• The geometric shape, size and placement of the nacelle, hub and blades are simplified. In

addition, constant thickness is assumed for all tower section.

• All masses are uniformly distributed, whereas real-life wind turbines have a more complex

mass distribution along the tower and in the nacelle.

• Damping is represented by Rayleigh damping which depend on the assigned damping

coefficient of two frequencies.
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6.4 Results & Discussion

The six first eigenmodes for the two models are given in table 6.5 and shown in figure 6.5 for

model 1. Both models are able to accurately represent the two first bending modes. Model 1 has

an opposite order in which the modes occurs compared to the experimental results.

Table 6.5: Eigenfrequencies obtained from two different models; one model including
hub and blades and one with a lumped top mass.

Number Real Model 1 Model 2
Type f [Hz] Type f [Hz] Type f [Hz]

1 FA 1.69 SS 1.68 FA 1.69
2 SS 1.71 FA 1.68 SS 1.70
3 Coupled 11.3 T 8.05 FA 11.20
4 FA 11.9 SS 9.72 SS 11.74
5 SS 12.4 FA 9.93 T 13.09

Model 1: Explicit models hub and blades

Model 2: Lumped top mass

FA: fore-aft; SS: side-side; T: torsional

The reason can be the assumed geometry of the nacelle. 40% of the total mass in located in the

tower top, and hence the distribution of this mass will highly influence the response. It is ob-

served that the torsional mode increases from 8.05 Hz to 13.09 Hz in model 2. The blades and

hub contribute to a large moment of inertia around the tower, and this contribution is signifi-

cantly reduced in model 2. As a consequence the torsional frequency increases. Further work

may suggest to study the torsional seismic response of wind turbines.

The second bending modes are less accurately compared to the first ones; model 1 and 2 exhibits

20% and 6% lower values respectiviely. The results may suggest a too soft tower. Assuming a too

soft tower, accurate results for the first bending modes are still obtained due to the rigid base

boundary condition which stiffens the response. A softer tower in combination with a rigid

connection results in a overall accurate response.

For higher modes the eigenfrequencies are less influenced by the base boundary condition caus-

ing in softer response. The combination of a rigid base and a too soft tower is an explanation to

the increasing deviation between the two first and the two second bending modes.
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Figure 6.5: The six first modeshapes and corresponding eigenfrequency of model 1.
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Figure 6.6: Acceleration time serie, Fourier amplitude spectra and response acceleration
spectra (β= 5%) for the normal component of the Landers earthquake.

The seismic excitation is from the Landers earthquake shown in figure 6.6. The models are exci-

tated in the side-side direction and the seismic response is given for the four localizations along

the tower shown in figure 6.7. The time history response of the accelerations is given in figure

6.9 for both models. The displacements are given in figure D.2 in the appendix.

The experimental result in terms of acceleration time history response is shown in figure 6.8. It

is seen that the tower is mainly excitated in its foundamental mode since the response from the

tower bottum to the nacelle is monotonically increasing. The numerical results for both models

are shown figure 6.9. The peak nacelle acceleration is apeak,1 = 0.4016g and apeak,2 = 0.3545g

for model 1 and model 2 respectively. The deviation compared to the experimental result of

apeak,exp = 0.28g are 43% and 27%.

The validation concludes that model 2 with the lumped to mass gives more accurate results

in both the modal analysis and in the time domain analysis. Model 1 contains too many un-

certainties with respect to nacelle placement and blades properties. Since accelerations are a



CHAPTER 6. VALIDATION OF A NORDTANK WIND TURBINE MODEL 53

Viewport: 1

Step: Frequency
Mode         2: Value =   310.20     Freq =   2.8031     (cycles/time)

Deformed Var: U   Deformation Scale Factor: +8.175e+00

Include the base springs in the frequency analysis
ODB: Beam_frequency_springs.odb    Abaqus/Standard 6.12−1    Fri May 09 10:47:30 Vest−Europa (sommertid) 2014

X

Y

Z
Base joint

Lower joint

Upper joint

Nacelle joint

Figure 6.7: Localization of output sections and points

highly sensitive measurement, a error of 27% is satisfactory. Hence, this model type 2 will be

used later in the simulations conserning the Vestas wind turbine.

6.5 Parametric Study

To obtain a better understanding of how changes in the model influence the response, a pa-

rameter study of selected parametres is carrid out. The considered parametres are the tower

stiffness, nacelle mass, tower mass and initial moment about the tower top. The parameters are

independently varied with model 2 taken as the reference model and the appurtenant change

in the eigenmodes are presented and discussed.

Figure 6.10 shows the variation of the first natural frequency as a function of different model

properties. It is seen that the tower thickness and nacelle mass influences the natural frequency

the most. These properties should be carefully determined to ensure correct responses. Further,

all results coincide with the expected tendency; an increase in tower stiffness (tower thickness)

increases the number of oscillations as the tower gets stiffer, an increase in the tower mass or

the nacelle both give an reduction in frequency as the inertia gets larger and an increase in the

tower top moment reduces the frequency for the same reason.
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Figure 6.8: Experimental acceleration time history response of the Nordtank wind tur-
bine.
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Figure 6.9: Acceleration time response of the shell model for a) model 1 which explicitly
represent the nacelle and blades and b) model 2 which has a lumped mass representa-
tion of the nacelle and blades
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Figure 6.10: Change in the first natural frequency for different model parametres.



Chapter 7

Model of a Vestas 3.0-MW Wind Turbine with

a Skirted Foundation

This section presents a fully integrated model consisting of a parked Vestas wind turbine, a

skirted foundation and a uniform soil.

7.1 Model Description

Figure 7.1 provide a sketch of the Vestas wind turbine and the skirted foundation prototype

installed in Aalborg. The tower is a tappered hollow steel tube mounted to the top lid of the

skirted foundation and stiffened by twelve triangular plates. The turbine has a total weight of

approximately 270 tons where as much as 40% of the mass is localized in the top.

The integrated model consists of four individual parts that must be correctly assembled; the soil,

foundation, wind turbine shaft and the nacelle. The main challenge was to model the founda-

tion into the soil. The two tested approaches were:

1. Contact: The bucket was created as an individual part and placed in the adapted cut in the

soil. Contacting surfaces were defined and a rough sliding formulation was applied which

represent fully bounded interacting surfaces.
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Figure 7.1: Sketch of the different parts of the wind turbine and skirted foundation [15].

2. Skin: The bucket was created as a skin property in the interior of the soil. A skin is a thin

layer of elements sharing the same nodes as the surface it is assigned to, but can have

different material properties. A skin is fully bounded to its surface.

The contact formulation was challenging to manage for the skirted foundation geometry be-

cause of all the contacting nodes at the skirt and soil and the circular skirt profile. The contact

formulation was evaluated to contain to many uncertainties based on a visual observation of

the obtained stress field shown in figure 7.2. The bucket obtained a realistic stress field for an

applied unit moment, whereas the soil displayed an odd stress distribution.

To eliminate the uncertainties related to the contact approach, the simpler skin definition was

adopted. The final model is shown in figure 7.3 and the skin definition is illustrated in figure 7.4.
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(a) Bucket foundation (b) Soil

Figure 7.2: Stress field in bucket and soil with a contact formulation. A unit moment is
applied at the top lid.

Geometry & Materials

The soil volume has dimensions lx = 120m, ly = 30m and lz = 60m. The geometry and mass

properties of the wind turbine, foundation and soil are given in table 7.1, 7.2 and 7.3. All mate-

rials are assumed homogenous and linear elastic.

Table 7.1: Properties of the Vestas V90 3.0 MW wind turbine [2, 15].

Geometry

Tower height 80 m
Tower diameter bottum 4.19 m

Tower diameter top 3.14 m
Rotor diameter 90 m

Blade length 45 m
Swept area 6.362 m2

Nacelle length 9.65 m
Nacelle width 3.65 m

Nacelle height ∼ 3.5 m

Mass

Nacelle 70 t
Blade 6.7 t

Hub 22 t
Hub inc. blades 42.1 t

Tower 155 t
Total 267.1 t
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Figure 7.3: Model of the Vestas wind turbine mounted in soil.

  RP

Figure 7.4: Visualization of the skin elements in the soil.
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Table 7.2: Properties of the bucket foundation [15].

Component Value

Geometry

Radius 6.0 m
Skirt length 6.0 m

Skirt thickness1) 25-30 mm
Top lid thickness2) 50 mm
Stiffener thickness 15-30 mm

Mass

Total ∼ 140 t
Mass density 11300 kg /m3

1) 30mm is used in the FE-model

2) Estimated value

Table 7.3: Material properties in the fully integrated model.

Type Density Elasticity Poisson’s

ρ
[

kg
m3

]
E

[
N

mm2

]
ν [-]

Clay 1700 200 0.47

BC & Constraints

Only half parts are modeled due to the symmetric model definition. The tower is rigidly con-

nected to the assumed rigid top lid of the foundation. Further, the boundaries and constraint

defined in section 5 and 6 are adapted.

The seismic loads creates horizontally propagating waves which is reflected at the soil bound-

aries. It is effective to have a relative large soil length to reduce the wave reflections since the

wave amplitudes decrease due to material damping. Hence, a soil length of 120 m is choosen in

the longitudinal direction, whereas a shorter length of 30 m is used in the transversal direction.

An improvement to the model would be to include dashpots at the wave reflecting surfaces.

Then, also smaller soil volumes could be used in the simulations.
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Elements & Mesh

A summary of the mesh properties is given in table 7.4. An element size of 1 m was requested

at the skirt boundary to obtain a more detailed stress distribution in the interacting zone. The

element size is linearly increasing to a maximum of 5m at the outer soil boundaries.

Table 7.4: Mesh properties Vestas wind turbine model.

Component Element Number

Tower Shell, S4R 468
Nacelle Solid, C3D4 158

Hub Point mass 1
Soil Solid, C3D10 26353

Foundation Shell, S3 349

7.2 Model simplifications

In addition to the simpllifications mentioned in section 5 and 6, the following simplifications

applies to the fully integrated model:

• All materials are linearly elastic, whereas a more realistic soil material definition would

have viscoelastic properties.

• The skin definition prevents occourance of gaps and sliding in the foundation/soil inter-

face, whereas this is highly present in real structures.

7.3 Seismic Load & Eigenmodes

The model is subjected to the Nahanni earthquake with properties given in figure 7.5. The fre-

quency content in this earthquake matches the design response spectra in EC8. The fully inte-

grated model is used as a reference to the simplified models later presented. The responses are

given for the four points along the tower shown in figure 7.6a. An eigenfrequency analysis shows

satisfactory results with experimental results. The result is given in table 7.5 and figure 7.6b.
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Table 7.5: The two first natural frequencies of a parked V90 3.0 MW wind turbine in-
stalled at the bucket foundation [15].Compared to a FE-beam model.

Configuration Experimental FE- model1)

f1 [Hz] f2 [Hz] f1 [Hz] f2 [Hz]

Total 0.3 2.13 0.32/0.33 2.64/2.85
Without blades 0.33 2.10-2.14 - -

Without blades + nacelle 0.72 2.88 - -

1) Ten beam elements with varying profiles and a lumped top mass
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Figure 7.5: Acceleration time serie, Fourier amplitude spectra and response acceleration
spectra (β= 5%) of the horizontal component of the Nahanni earthquake.
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Bottum node

Lower joint

Upper joint

Top joint

Nacelle joint

(a) Output nodes (b) f1 = 0.325 Hz, f2 = 2.643 Hz

Figure 7.6: Output nodes and eigenfrequencies of the wind turbine tower.



Chapter 8

Simplified FE-models

This chapter presents the numerical procedure to create a linear elastic spring and dashpot

model of the Vestas V-90 wind turbine installed at the skirted foundation. The three-step-method

presented in section 3.6 is utilized. Further, focus is given to how changes in soil/foundation in-

terface conditions influences the stiffness.

8.1 Static Stiffnesses & Damping of the Bucket Foundation

This section presents static stiffnesses and damping of the skirted foundation embedded into

a soil stratum-over-bedrock. Numerical values are compared to analytical stiffness formulas

for homogeneous soils provided by Gazetas [9]. The frequency dependent terms in the spring

stiffnesses are ignored. The analysis is performed for two different soil profiles: 1) a homogenous

soil and 2) a soil with a thin inner soil layer with varying elasticity to model soil/bucket interface

conditions.

Methodology

A horizontal translational and rotational DOF are sufficient to describe the motion of the top lid

of the foundation. A static unit force and moment is applied to the reference point of the foun-
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(a) Unit force (b) Unit moment

Figure 8.1: Displacements for a unit force and moment at the bucket foundation. Scale
1 ·1010.

dation as shown in figure 8.1 and the correspondingly displacement and rotation is computed.

Mathematically, the following relationship is established:

FR = D −→ KD = R where K = F−1 (8.1)

The terms in the flexibility matrix fi j reads displacement/rotation in node i due to a unit force/-

moment in node j . The terms in the stiffness matrix ki j reads force/moment in node i due to

a unit displacement/rotation in node j . The matrices are symmetric about the diagonal, such

that i 6= j fi j = f j i and ki j = k j i .

F =

 f11 f12

f21 f22

 and K =

k11 k12

k21 k22

 (8.2)

Note that an unit displacement in general also produces a rotation and vice versa. These re-

sponses are represented by the off-diagonal terms in the flexibility and stiffness matrix, but are

not included in the spring model.

8.1.1 Analytical Formulas

A key parameter in determining the static stiffnesses for rigid embedded foundations is the em-

bedment ratio D
R ; the embedment depth to foundation radius. Table 8.1 gives the static stiff-
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Table 8.1: Static stiffnesses of rigid embedded cylindrical foundation welded into a ho-
mogenous soil stratum-over-bedrock

Loading Static stiffness Profile

Vertical 4GR
1−ν

(
1+1.28 R

H

)(
1+ 1

2
D
R

)(
1+0.85−0.28 D

R
D/H

1−D/H

)

H

D

RRigid

Bedrock

Range of validity:

D/R  2

D/H   0.5 

Horizontal 8GR
2−ν

(
1+ 1

2
R
H

)(
1+ 2

3
D
R

)(
1+ 5

4
D
H

)
Rocking 8GR3

3(1−ν)

(
1+ 1

6
R
H

)(
1+2 D

R

)(
1+0.7 D

H

)
Coupled hori-
zontal rocking

0.40KhD

Torsion 16
3 GR3

(
1+2.67 D

R

)

nesses for different types of loading for a rigid foundation embedded into a homogenous soil. It

is assumed that the foundation walls and the contacting soil remain in full contact during cyclic

loadings. The formulas are developed for the geometry shown in table 8.1.

In reality no tensile stresses can be sustained in the soil and the shear tractions cannot violate

Coulumb’s friction law. Hence, seperation and sliding are likely to occur between sidewalls and

backfill, depending primarily on the mode of vibration and the nature and method of placement

of the soil [9]. The formulas represents thus an upper limit to the static stiffness values.

From the formulas it is evident that an increase in relative embedment D
R is more beneficial to

the rocking stiffness (a factor of 2) compared to the horizontal stiffness (a factor of 2
3 ).

Rigid

Deformable

Rigid

Rigid

=1

=1

F=1

F=1

Analytical rigid

embedded foundation

Numerical partly elastic

bucket foundation

a) b) c) d)

Figure 8.2: Comparison of the horizontal and rocking deformation between the analyt-
ical rigid embedded foundation and the partly deformable bucket foundation.
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The skirted foundation deviates in geometry and elasticity from the foundation type given in

table 8.1. The following points explains the sources of errors related to the use of the formulas

for the skirted foundation:

1. Elasticity in foundation: The formulas are for a completely rigid foundation, whereas the

skirt is deformable and hence reduces the stiffnesses.

2. Foundation geometry: The deviation in foundation geometry changes the deformation

profile of the soil when subjected to external displacement. The skirted foundation gives

an additional soil volume inside the skirt as illustrated in figure 8.2. The two zones where

forces developes are 1) the skirt wall and 2) the bottum lid or top lid.

(a) Horizontal loading: The cylindrical wall compresses and tensions the outer surround-

ing soil for both foundation types as shown in figure b) and d). The inner soil volume

in the bucket translates mainly as a rigid body and gives no additional resistance.

Shear forces develop at the bottum lid for the rigid embedded foundation. The main

part of the shear resistance of the skirted foundation developes in the horizontal soil

plane at the skirt tip.

(b) Moment loading: For D
R > 2 the largest displacements occurs at the free skirt tip at

the surface for the rigid embedded foundation type seen in figure a). It is easier to

deform the soil localized close to the surface since this area provides lower resistance.

For the skirted foundation in figure c) the largest displacements occur at the skirt tip

where the stiffness of the soil is higher than at the surface. Hence, a larger force is

needed to deform the soil in this area.

Despite these differences a comparison between the formulas and the numerical stiffnesses for

the bucket foundation is conducted for the case D = R = 6m, such that D
R = 1. The analysis is

conducted for several homogenous soils with elasticities E = 200MPa, E = 100MPa and E =
50MPa. The results is shown in figure 8.3 and given in table 8.2.

It is seen in that the deviation between formulas and numerical results decreases with decreas-

ing soil elasticity. This observation is explained with respect to the elasticity ratio of the bucket

and soil. The formulas assume a rigid foundation, whereas the model has a deformable skirt
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Figure 8.3: Variation of static stiffnesses in a homogenous soil.

with E = 200GPa. As the soil gets weaker the skirted foundation gets a relative larger stiffness,

and hence the soil experiences the skirt as rigid.

The formulas give an error of only -1.2% and 4.5% for the horizontal stiffness kH H and the rock-

ing stiffness kM M respectively for a soil with E = 50MPa, which is a satisfactory result. For soil

elasticities above E = 100MPa the formulas deviate more than 10% and 15% for kH H and kM M

respectively. The formulas should be carefully applied to others foundation geometries, but it is

demonstrated for the particular case D = R = 6m that the formulas provide satisfactory results

for soil elasticities below E ∼ 100MPa.
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8.1.2 Different Soil/Skirt Interface Conditions

Lower elasticity properties are assigned to a thin inner soil layer (as illustrated in figure 8.4a) to

study the effect of a weaker soil/skirt interface to the soil/foundation stiffnesses. The weaker

zone has a width of total 60cm and has a very fine mesh as shown in figure 8.4b.

Thin inner

soil layer

Outer

soil layer

t=60cm

(a) Sketch (b) Mesh

Figure 8.4: Inner soil layer modeling the soil/skirt interface conditions.

The results for different interface conditions are shown in figure 8.5 and given in table 8.3 to-

gether with the percentual decrease wrt. the homogeneous soil condition with E = 200MPa. A

quadratic decrease in all stiffnesses are obtained as the inner soil gets weaker.

These results can provide valueable information in combination with the seismic response of

the wind turbine tower. A reduction of -1.9% and -3.6% in the horizontal and rocking stiffnesses

for a 25% weaker inner soil may appear small, but can still have a considerable impact on the

seismic response.

Table 8.2: Static stiffnesses of bucket foundation compared to formulas for varying soil
elasticity in a homogenous soil stratum-over-bedrock.

Soil Horizontal Rocking Cross-term
E kH H 109[ N

m ] kM M 1011[ N m
r ad ] kH M /kM H 109[ N

r ad / N m
m ]

[MPa] Num. Form. Error Num. Form. Error Num. Form. Error

200 3.33 4.20 26.3% 1.83 2.41 31.6% 7.74 10.08 30.3%
100 1.91 2.10 10.2% 1.04 1.20 15.5% 5.31 5.04 -5.0%

50 1.06 1.05 -1.2% 0.58 0.60 4.5% 3.32 2.52 -24.0%
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Figure 8.5: Static stiffnesses for varying soil/bucket interface conditions. Outer soil has
elasticity E = 200MPa and VS = 200 m

s

Table 8.3: Static stiffnesses of bucket foundation for varying interface conditions. The
outer soil layer has an elasticity of E = 200MPa.

Inner soil Horizontal Rocking Cross-term
E kH H kM M kH M /kM H

[MPa] 109[ N
m ] Reduction 1011[ N m

r ad ] Reduction 109[ N
r ad / N m

m ] Reduction

2001) 3.33 Referance 1.83 Referance 7.74 Referance
150 3.26 -1.9 % 1.77 -3.6% 7.63 -1.5%
100 3.16 -4.9 % 1.66 -9.2% 7.48 -3.4%

50 2.95 -11.3 % 1.45 -20.8% 7.21 -6.9%
20 2.59 -22.3 % 1.12 -38.9% 6.70 -13.4%

1) Homogeneous soil condition. The reduction in stiffness is referred to this state.
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Damping

The frequency-independent damping coefficient c for swaying and rocking is approximated by

the following formulas for the foundation type in table 8.1 [9]

cH H ' π(2−ν)

8
· 1+1.3(D/R)[1+ (3.6/π(1−ν))]

1+ 2
3 (D/R)

(8.3)

cHR = 0 (8.4)

The result for a range of embedment ratios D
R is given in table 8.4. Note that the damping only

depend on the ratio. In other words, a small and a large foundation will have the same damping

as long as the embedment ratio is the same for both cases.

Table 8.4: Frequency-independent damping coefficients of rigid embedded cylindrical
foundation welded into a homogenous soil stratum-over-bedrock

Ratio Damping coefficient
D
R [-] cH

[
N

m/s

]
0 0.60

0.5 0.92
1.0 1.11
1.5 1.24
2.0 1.33

8.2 Kinematic Interaction of the Skirted Foundation

The kinematic step in the three-step method is only made half kinematic to seperate the tower

from the foundation in the simplified model. An equivalent alternative would be to have a mass-

less foundation as originally proposed in the derivation in section 3.6 and later include the foun-

dation (with mass) in the spring and dashpot model.

The kinematic base input in the spring model is collected at the reference point at the rigid foun-

dation top lid. Figure 8.6 shows the kinematic response from the Nahanni earthquake together
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with the free-field response. Note that the presence of the foundation in the soil generates both

displacements and rotations and that the kinematic displacements are almost identical to the

free-field response. This demonstrates that the skirted foundation conforms to the free-field

motions and has little influence on the seismic waves. In addition, the rotations are of very low

magnitude indicating that these can be neglected in the seismic simulations.
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Figure 8.6: Kinematic base input in the spring and dashpot model for the Nahani earth-
quake

8.3 Spring & Dashpot Model

This section focuses on the last step in the three-step-method; i.e the inertial interaction illus-

trated in figure 8.7. The spring model consists of ten beam elements, two springs and one dash-

pot as shown in part 3 of figure 8.8 which illustrates the numerical procedure used to establish

the spring models.
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Figure 8.7: The three-step method for the skirted foundation and wind turbine.
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The spring model approach has two main benefits compared to a fully integrated soil and struc-

ture model; a) the simulation time is considerable lower compared to a fully integrated model

if the kinematic base translations and rotations can be estimated from formulas and b) the

response of different soil/foundation systems can easily be computed by changing the spring

properties. The latter becomes even faster if the same kinematic inputs can be used for several

geometries.

The spring and dashpot model is faster with respect to modeling and computational time and

requires considerable less restorage space compared to a fully integrated soil/wind turbine sys-

tem. In addition, a simple beam model is highly appreciated by FE-analysts because it makes it

practical feasible to run parametric studies in a short amount of time.

The spring and dashpot model contains several simplifications and estimations as explained by

the following points:

1. Frequency independent springs and dashpots: The stiffness and damping of a dynamic sys-

tem depend on the excitation frequency of the load. The spring model has only frequency

independent properties.

2. Independent spring definitions: The model excludes the off-diagonal terms in the stiffness

matrix. Hence, the magnitude of the rotations occuring from displacements in the spring

is determined by the pure rotational stiffness kM M and vice versa.

3. Damping: When the structure is added in the inertial step, the skirted foundation vibrates

against the surrounding soil, which creates waves in the soil. The value of this radiation

damping is highly uncertain.

An eigenmode analysis of the shell model and two beam models provide satisfactory results for

the shell model and the two beam models on different base shown in figure 8.9. It is seen that

the eigenfrequencies for the beam on flexible base is reduced as expected.
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(a) f1 = 0.325 Hz, f2 = 2.643 Hz
Shell model at fixed base.

(b) f1 = 0.332 Hz, f2 = 2.846 Hz
Beam model at fixed base

(c) f1 = 0.331 Hz, f2 = 2.803 Hz
Beam model at springs

Figure 8.9: The two first fore-aft eigenfrequencies of the Vestas wind turbine.



Chapter 9

Results

This chapter present the seismic response of the Vestas wind turbine for the established spring

model and the fully integrated model. The results are divided into two parts:

Part A: Three-Step Method demonstrates the accuracy of the established spring model in terms

of time history responses along the tower compared to the fully integrated model. The in-

fluence of different soil materials to the response is investigated for a) a homogeneous

stiff soil and b) a three-layered soil with a relatively weak upper layer. Responses from

flexible-base and fixed-base conditions are compared and the importance of kinematic

interaction is investigated for the skirted foundation.

Part B: Parametric Study investigates changes in maximal responses along the tower for vari-

ations in a) the geometry of the skirted foundation with respect to radius and depth and

b) the tower height.

All simulations are restricted to the linearly elastic range for both the soil and the wind tur-

bine. Further, only static stiffnesses are applied to the springs and constant radiation damping

is assumed in all simulations. The soil is bounded to the skirted foundation which prevent the

occurence of gaps and sliding at the soil/foundation interface.
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9.1 Part A: Three-Step Method

Figure 9.1 shows the two models of interest in this comparative study. Model a) is referred to

as the full model (1-step in the graphs) which assembles the soil, foundation and wind turbine.

This model is the reference when studying the accuracy of the simplified models. Model b)

is referred to as the spring model which separates the kinematic and inertial responses. The

seismic response are compared in terms of displacement, acceleration, moment and shear time

history plots for the four points along the tower previously shown.

Fully integrated model Spring model

Ukin

kin

c

kH

kM

=1 u=1

Numerical

static stiffnesses

Figure 9.1: The model setups for the comparisons.

Table 9.1 gives the material properties for the two soil profiles shown in figure 9.2. Soil profile a)

is a homogeneous soil and is referred to as the stiff soil due to its relatively high shear wave veloc-

ity. Soil b) is a three-layered soil with a weak upper layer. A comparison of the seismic response

from the two soil profiles is carried out to demonstrate the effect of different site conditions, but

is not given further focus throughout this thesis.

The accuracy of the spring approach is measured in terms of the translation and rotation at the

bottum beam node relative to the bottum node at the full model. The seismic response of the

higher nodes are to a larger extent influenced by the properties of the applied numerical beam

elements. Nevertheless, a comparison of responses between several points along the tower pro-

vides useful information about the numerical algorithm defined.
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Table 9.1: Soil material properties

Soil type Shear wave velocity Mass density Youngs Modulus Poisson’s ratio
VS[m/s] ρ[kg /m3] E [MPa] ν

Stiff soil 200 1700 200 0.47
Soft soil 50/150/250 1700 13/110/310 0.47

VS=200m/s

Free-field

node

Spring input

node

VS=250m/s

VS=150m/s

VS=50m/s

a) Stiff homogeneous soil b) Soft three-layered soil

Seismic excitation Seismic excitation

10 m

10 m

40 m

Free-field

node

Spring input

node

Figure 9.2: A homogenous and a layered soil stratum used in the comparison between
the shell model and the three-step-method.

The seismic behaviour along the tower for the spring and shell model is given in figure 9.3, 9.4,

9.5 and 9.6 for the stiff soil profile. The axes are of equal magnitude to make it easier to observe

differences in response along the tower. Almost identical displacements are obtained for the

bottum nodes, whereas increasing deviations between the models occur for higher points. It is

mainly differences in the amplitudes, whereas the dynamic is correctly represented by the spring

model as it displays the same oscillation tendency. The largest deviation occour in the top node

where the peak displacement is overestimated by 39%. This deviation can be a consequence of

the different nacelle representations, where the shell model has a distributed mass, whereas the

spring model has a lumped point mass.

Larger deviations were expected for the accelerations since this quantity is highly sensitive to

the displacement history. The largest accelerations occur in the middle section due to the dom-

inating higher modes oscillations illustrated in figure 9.8a. This property is also demonstrated

by the spring model, but underestimates the peak acceleration with 45% in the upper node.

The maximum moments and shear forces shown in figure 9.5 and 9.6 occur in the base of the

wind turbine, but also the middle section experiences large loads of 5MNm and 200kN respec-
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tively. It is recommended that also the middle section is carefully considered in the seismic

design of heigh wind turbines and similar tall and slender structures. Again, the spring model

underestimates important design responses.

This is a disadvantageous property of the spring model and must be corrected to provide conser-

vative results. This property can be due to the applied Timoshenko shear flexible beam. Futher

work may suggest to use the Euler-Bernoulli beam element which are better suited for dynamic

vibration with distributed inertia forces [1].

Figure 9.7 shows the accuracy of the displacements and rotations of the bottum node compared

to the reference model for the stiff soil. The displacements are satisfactory represented, whereas

the spring model underestimates the rotation during the earthquake and overestimates it in

the free-vibration phase. The reason for the large rotational deviations is assumed to be the

freqency independent springs. Also the missing representation of the cross-term in the stiffness

matrix and the beam properties are sources of errors. Even though large differences is observed

in the rotational term, the rotations are very small (scale 1 · 105) compared to the dominating

translational excitation. A simulation with and without the rotational term showed that the

rotational term was insignifiicant to the overall response. The result can be found in figure D.9

and D.10 in the appendix.

Figure 9.8 shows typical deformation profiles for the soil and tower for the stiff and soft soil

profile, while figure 9.9 gives a closer view of the foundation rotations. It is evident that the softer

soil undergoes larger rotations than the stiff soil. Further, figure 9.8b shows how the weaker

upper layer elongates the period of the seismic waves. The presence of weaker materials does

also elongate the systems natural equivalent period expressed as

T 2
eq = T 2

0 +T 2
h +T 2

r (9.1)

Th = 2π

√
mtower

kH H
(9.2)

Tr = 2π

√
Ir

kM M
(9.3)



CHAPTER 9. RESULTS 81

0 5 10 15 20 25 30 35 40 45
−50

0

50

[m
m

]

Horizontal displacement

 

 

Top node

1−step
Spring

0 5 10 15 20 25 30 35 40 45
−50

0

50

[m
m

]

Upper node

0 5 10 15 20 25 30 35 40 45
−50

0

50

[m
m

]

Lower node

0 5 10 15 20 25 30 35 40 45
−50

0

50

[m
m

]

Bottum node

Time [s]

Figure 9.3: Horizontal time history displacement for the fully integrated model the a
spring model for the stiff soil condition.
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where T0 is the period of the fixed-base wind turbine, Th is the swaying period, Tr is the rock-

ing period of the skirted foundation and Ir is the mass inertia of the tower. Wind turbines have

large foundamental periods compared to the foundation/soil system. The wind turbine has

a fixed base period of T0 = 1
0.325H z = 3.1s, while the skirted foundation has periods of TH =

2π
√

267·103kg
3.33·109N /m

= 0.06s and TR = 2π
√

3.81·109

1.83·1011 = 0.91s for the stiff soil profile.

Since the wind turbine tower is very soft compared to the soil/foundation system, changes in

the soil materials will not influence the equivalent period significantly. The period elongation

brings the foundamental mode of the wind turbine further away from the frequency content at

the soil surface for an typical earthquake. For a wind turbine of this size, it is seen that higher

modes dominate the seismic response along the tower. In general, attention should be given

to systems where the natural periods of the soil and the equivalent system are close. For such

cases, amplification of the input motion at the base can be severe.

Figure 9.10 shows the inertial disturbance for the stiff and soft soil. The inertial disturbance

is measured as changes in the spring input due to inertia forces at the bottum. It is seen that

the translational spring input is insignificantly influenced by the inertial interaction for the stiff

soil, whereas the rotational input is influenced due to the large base moments. On the other

hand, it is seen that inertial effects influence both swaying and rocking for the soft soil. For

cases where the inertial contribution is expected to be of importance for the total response, the
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(a) Stiff soil (b) Soft soil

Figure 9.8: Deformation profiles during seismic excitation for the two soil deposits.

(a) Stiff soil (b) Soft soil

Figure 9.9: Close up of the skirted foundation during seismic excitation for the two soil
deposits.

spring properties shold also be carefully determined.

The seismic response along the tower for the two soil profiles is given in figure 9.11, 9.12, 9.13

and 9.14. The same excitation is applied at the bedrock to illustrate how different soil properties

influence the seismic response along the tower. It is seen that the response is highly dependent

on the underlaying soil properties. This observation emphasizes the importance of correct site

response analyses.

In addition, a comparison between the seismic response for the full model and the spring model

is given in figure D.3, D.4, D.5 and D.6 in the appendix for the soft soil profile. In this case the

displacements and accelerations deviates more, whereas accurate shear forces and moments

are obtained. The reason for the better match regarding the loads for the soft soil compared to

the stiff soil is unknown.
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Figure 9.10: Comparison of the spring input translation and rotation against the bot-
tum beam node. The graphs shows the inertial interaction for the two soil profiles.

Figure 9.15, 9.16, 9.17 and 9.18 show the flexible-base response and the fixed-base response for

the stiff soil profile where the models are provided wih the same base input. In the fixed-base

configuration the seismic excitation at the surface is applied directly at the bottum node. It is

seen that the inertial effects on the bottum node reduces the moments and the shear forces

in the tower, whereas the displacements are expected to increase due to the flexible base. The

latter is not very visible at the graph, but is expected to increase with softer soil.
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Figure 9.11: Displacements for a stiff and a soft soil; (1) a homogeneous soil with VS =
200 m

s and (2) a three-layered soil with VS = 50 m
s for the weakest upper layer.
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Figure 9.12: Accelerations for a stiff and a soft soil; (1) a homogeneous soil with VS =
200 m

s and (2) a three-layered soil with VS = 50 m
s for the weakest upper layer.
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Figure 9.13: Moments for a stiff and a soft soil; (1) a homogeneous soil with VS = 200 m
s

and (2) a three-layered soil with VS = 50 m
s for the weakest upper layer.
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Figure 9.14: Shear forces for a stiff and a soft soil; (1) a homogeneous soil with VS = 200 m
s

and (2) a three-layered soil with VS = 50 m
s for the weakest upper layer.
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Figure 9.15: Displacements for (a) a fixed base and (b) a flexible base for the stiff soil
condition.
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Figure 9.16: Accelerations for (a) a fixed base and (b) a flexible base for the stiff soil
condition.



CHAPTER 9. RESULTS 89

0 5 10 15 20 25 30 35 40 45
−1

0

1
x 10

7

[N
m

]

Moment

 

 

Top node

Fixed base
SSI

0 5 10 15 20 25 30 35 40 45
−1

0

1
x 10

7

[N
m

]

Upper node

0 5 10 15 20 25 30 35 40 45
−1

0

1
x 10

7

[N
m

]

Lower node

0 5 10 15 20 25 30 35 40 45
−1

0

1
x 10

7

[N
m

]

Time [s]

Bottum node

Figure 9.17: Moments for (a) a fixed base and (b) a flexible base for the stiff soil condi-
tion.
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Figure 9.18: Shear forces for (a) a fixed base and (b) a flexible base for the stiff soil con-
dition.
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9.2 Part B: Parametric Study

Part B focuses on the inertial interaction between the soil/foundation and the wind turbine,

whereas part A investigated the accuracy of the spring model and carried out a site response

analysis for two soil profiles. Now, the same base excitation is applied in all simulations. The

aim of the parametric study is to examine how changes in the foundation geometry influence

the distribution of peak displacement, accelerations, moments and shear forces along the tower.

In addition, the tower’s height is varied to study changes in base demand.

The kinematic spring excitation corresponds to the stiff soil profile in part A and is used in all

simulations. Only the horizontal part is included. The soil has material properties E = 50MPa

and Vs = 100 m
s which is within the range the theoretical stiffness formulas can be accurately

applied. This give a first natural period of T1 = 2.4s for a soil depth of H = 60m.

9.2.1 Geometry of the skirted foundation

It is important to investigate the distribution of maximal responses along the tower such that

sufficient seismic design can be provided for all tower sections. The tower’s dynamic behaviour

depends on the spring properties applied to the base since these influence the seismic defor-

mation pattern along the tower. The stiffnesses can be varied in two ways; either by changing

the foundation radius or depth. This parametric study consider both possibilities.

Both the foundation radius and depth is varied in the range D,R ∈ [4m,8m] with D = R = 6m be-

ing the reference geometry represented by the coincident points in figure 9.19. The figure shows

the swaying and rocking stiffnesses as a function of radius (depth is kept constant) and depth

(radius is kept constant). It is seen that changes in radius influence the foundation stiffnesses

more than the depth. The static spring stiffnesses applied in the parametric study are given in

table D.1 and table D.2 in the appendix.

Figure 9.20 and 9.21 show the peak displacements, accelerations, shear forces and moments

distribution along the tower for different foundation geometries. Each point corresponds to a

seismic simulation where maximum responses are collected. The fixed-base solution is given
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Figure 9.19: Swaying and rocking static stiffnesses for different bucket depths and ra-
dius.

by the solid line and reflects the configuration where the seismic excitation is applied directly

at the rigid tower base. It is seen that the responses converge toward the fixed base solution

for large geometries. A general observation is that all responses increase as the foundation gets

smaller. In other words, a softer system gives larger responses for this slender wind turbine.

It is seen that changes in radius influence the peak responses to a larger extent than the depth.

This observation is consistent with the expected results, since the radius is more important to

the rocking stiffness.

The displacement and accceleration in the bottum node for the flexible base configurations are

not influenced by changes in radius nor depth. The reason why the fixed-base configuration

shows a different acceleration in the bottum node is due to the lacking dashpot. The inertia

forces are not large enough to create significant deviations in the swaying motion for the differ-

ent geometries.

On the other hand, the dominating rocking mode of the tower creates different rotations at the

base for all of the foundation geometries. This is seen by the increasing deviation between the

different foundation geometries.

Different base conditions influence the excitated mode shapes in the tower. By visual observa-

tion of the seismic behaviour for each case in ABAQUS, it is seen that the base conditions influ-
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ence the deformation pattern and the accelerations along the tower. Of course, this will further

influence the distribution and magnitude of the inertia forces. This is why a softer system still

can achieve larger moments and shear forces as seen in figure 9.20.

The relative distribution of peak responses along the tower is maintained in all cases, expect

for R = 4m. For this geometry, a very low rocking stiffness is obtained which in turn creates

significant rotations at the base. This is why the maximum displacement occurs in the middle

section for this case, whereas the base has the highest displacements for the other cases.

It is seen from the acceleration plots that higher modes are excitated for all geometries for the

80m heigh wind turbine. As a consequence, the acceleration in the nacelle does not get am-

plified, but stands rather still. For smaller wind turbines, as Nordtank in chapter 6, the seismic

response was dominated by the first bending mode. This demonstrates that higher modes are

of upper importance for the seismic response for tall wind turbines.

The largest moments and shear forces occur at the base for all geometries, but it is seen that also

the middle sections experience severe forces and moments. This results may suggest that also

the middle section of a wind turbine should be carefully design for seismic demand.

A comparison between figure 9.20 and 9.21 shows that lower amplitudes are obtained in the

latter. Note that an decrease in foundation depth from D = 6m to D = 4m does not cause the

displacement to change localization along the tower as is the case for the radius. The graphs

concludes that the dynamic behaviour of the tower is indeed more sensitive to changes in the

foundation radius than depth.

Since the base experiences the highest moments and shear forces, these results are normalized

in figure 9.22 with respect to the results obtained for the reference geometry. Since the nacelle

contains sensitive equipment, displacements and acceleration are given for the top node. The

horizontal foundation stiffness is taken as the x-axis with kH H ,r e f being the reference stiffness.

It is seen that a 20% decrease in horizontal stiffness gives 120% increase in nacelle acceleration,

80% increase in base moment and 110% increase in base shear if the radius is changed. If the

depth is changed, the tower will experience approximatly 25% increase in nacelle acceleration,

20% increase in base moment and 30% increase in base shear.
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Figure 9.20: Changes in peak response quantities along the tower as a function of foun-
dation radius R. The same spring input motion is applied in all cases.
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Figure 9.21: Changes in peak response quantities along the tower as a function of foun-
dation depth D. The same spring input motion is applied in all cases.
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The foundation are assumed bounded to the soil in the numerical models. In reality, gaps and

weaker soil materials will be present at the interface which in turn will reduce the stiffnesses.

The result from section 8.1.2 can be used with figure 9.22 to estimate changes in peak responses

due to weaker soil materials in the foundation/soil contact zone.
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Figure 9.22: Change in peak responses as a function of a geometric foundation changes
relative to the reference geometry (D = R = 6m). The variables D and R are indepen-
dently varied.

9.2.2 Response for different tower heights

A larger amount of masses is subjected to seismic excitation when the tower’s height increases.

It is intuitive to think that an increase in tower mass in combination with a larger force arm
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creates larger base moments during seismic excitation, which is demonstrated to not be true. In

this sections it is investigated how changes in tower heights influence the seismic response.

The tower heights considered are H = 75m,80m,85m and 100m. All heights are assigned a ho-

mogenous cross section with diameter D = 3.67m for simplicity and attached to the reference

foundation. The diameter corresponds to the mean diameter in the reference wind turbine.

Further, the reference foundation geometry is used in all simulations.

Figure 9.23 shows the peak responses as a function of changes in tower height. A general ob-

servation for all quantities is that they tend to increase or decrease up to certain heights, and

thereafter the tendency turns. The time history plots for each point is provided in figure D.23,

D.24, D.25 and D.26 in the appendix. It is seen that each height has its own oscillation charac-

teristic.

For the height H = 85m, the combination of the seismic load frequencies and the tower’s eigen-

modes is demonstrated to be very disadvantageous since it results in a significant increase in

peak responses along the tower. As much as 760% increase in nacelle acceleration, 150% in-

crease in base moment and 265% increase in base shear is obtained for this particular combi-

nation of foundation geometry, load frequencies and tower height. Figure 9.23 further demon-

strates that the peak responses will decrease for a certain (but unknown) height after H = 85m.

9.2.3 Period elongation

In addition, a period elongation analysis is carried out to study the change in natural frequency

between a flexibe base configuration and its corresponding fixed base configuration. The period

elongation is measured as the ratio between the tower’s flexible base natural frequency and its

corresponding fixed base frequency. Figure 9.24 shows the period elongation for a) changes in

foundation geometry (or equivalent stiffness) and b) changes in the tower height. The period

elongation is plotted as a function of tower/foundation-stiffness ratio.

It is seen that an increase in tower stiffness compared to the foundation results in a softer system

and that the deviation between the fixed-base configuration and flexible-base configuration in-

creases with decreasing foundation stiffness. Although period elongation is not very important
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to the tall and slender wind turbines due to their already high periods, it can influence the seis-

mic response of smaller and more compact structures as it can bring the structures foundamen-

tal freqency closer to the load frequencies. In a typical wind turbine, the excitation frequencies

and the foundamental frequency are already well separated.
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Figure 9.23: Maximum responses for varying tower height.
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Conclusions & Further Work

This thesis focused on the global seismic response of a parked wind turbine installed at a skirted

foundation. The fully integrated model and the simplified spring model demonstrated to be ca-

pable of simulating the seismic behaviour of a wind turbine tower accounting for SSI-effects;

even with the relatively simple modeling techniques used. The models are restricted to the lin-

early elastic range and assume that the foundation is fully bounded to the soil during seismic

excitation. The latter implies that the computed stiffnesses represent a upper limit since gaps

and sliding occur in real-life structures.

Several simulations were performed on the fully integrated model and the spring model to an-

swer the stated problem definitions. The following conclusions were made:

1. The simple spring model underestimates important design parametres along the tower,

such as emerging shear forces and moments. Improvements must be made to make the

spring approach more reliable regarding simulation of real-life structures.

2. The free-field translation can replace the kinematic translation without significant changes

in the response arises. Due to the relatively small foundation geometry compared to the

propagating wave lengths, the foundation can easily adjust to the free-field motion and

hence the effect of kinematic interaction can be neglected.

3. Higher order mode shapes were shown to contribute significant to the seismic response
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for wind turbine heights in the range comsidered. This result shows the importance of

preventive seismic design for all tower sections.

4. Tall and slender structures cannot uncritically be simplified as rigid-base structures since

the inertial effects can be tremendous to the seismic response. Effects of SSI are shown to

be both advantegeous and disadvantegeous and must hence be investigated for each case

of interest.

5. For the stiff and soft soil profile it was shown that SSI reduced the shear forces and mo-

ments along the tower compared to the flexible-base solution. The soft soil deviated the

most from the fixed-base solutions and showed a reduction of 53% and 63% for the peak

shear and moment at the base when SSI was included. In other words, SSI can have a

beneficial effect on the structural response.

6. A contrary conclusion was mase for the parametric study which investigated changes in

peak responses for different foundation geometries. It was shown that flexible bases is

disadvantegeous to the seismic response in terms of increasing shear forces, moments,

displacements and accelerations for the particular foundation geometries and soil prop-

erties studied.

The inertial forces along the tower creates significant bending moments around the tower

base. The flexible base causes the tower base to rotate, which further influence the defor-

mation pattern and acceleration in the tower. It is demonstrated that the inertial contribu-

tion can be of strongest importance in the seismic response. In addition, it was shown that

the base was subjected to the highest shear forces and moments in alle the investigated

cases.

7. The foundation radius is the most important design parameter regarding rocking stiffness.

This fact in combination with the dominating rocking mode of the wind turbine makes

the seismic response more dependent on the foundation radius than on the foundation

depth.

8. Lastly, it was shown that particular combinations of tower heights, excitation frequency

and foundation stiffnesses could lead to large amplification of the responses along the
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tower. Careful consideration must be taken when the natural frequencies of the soil are

close to the natural frequencies of the combined structure and foundation.

Further Work

The models established in this thesis involve several assumptions and simlifications. An exten-

sion into the non-linear range for both soil and structure would add an extra dimension to the

results. Constant radiation damping for all foundation geometries and frequency independent

springs represent both considerable simplifications and could be modified for future work.

The following suggestions for future work are proposed:

1. Establish a more complex spring model which accounts for non-linearities as well as fre-

quency dependent spring properties.

2. Repeat the parametric study for a different soil material because the choice of soil material

influences the excitation at the soil surface.

3. Study the recommendations given in current design guidelines regarding seismic response

of structures and compare it to the numerical results.



Appendix A

MatLAB Scripts

A.1 Theoretical Amplification Function

The following script produces the amplification function between the surface and the bedrock

for a homogeneous soil.

% DESCRIPTION: This script calculates and plots the theoretical transform

% function H(w) soil subjected to harmonic basemotion.

%

% SYMBOLS:

% H= height of soil−layer [m]

% Vs= shear wave velocity [m/s]

% xi= damping coefficients [−]
% f= frequency [Hz]

% z= vertical axis [m]

% n= number of computed eigenfrequencies and eigenmodes

%

% INPUT:

% [Vs,H,xi,w]

%

% OUTPUT:

% Mode shapes and analytic solution of the displacement amplification
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% factor for a soil layer

%

% Written by Jeanett Rorvig, January 2014

% Master Thesis on Wind Turbines

close all

clear all

clc

Vs=[300 500 700];

H=50;

xi=[0.02 0.05 0.10];

w=linspace(0,94,300);

f=linspace(0,15,300);

z=linspace(0,40,200);

%% Mode shapes for Vs=300

Rd_nodmp=abs(1./(cos(w*H/Vs(1))));

n=4; % number of wanted modeshapes

wn=zeros(1,n);

phi_nodmp=zeros(length(z),n);

g=figure(1);

for i=1:n

wn(i)=(2*i−1)/2*(pi*Vs(1)/H);
phi(:,i)=sin(wn(i).*z/Vs(1));

subplot(1,n,i)

plot(phi(:,i),z)

xlim([−1,1]);
ylabel('Soil depth z (m)')

PrettyPlotgca

end

%% Theoretical solution for three different damping coefficient
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% Note that this solution has the same damping coefficient to all

% eigenfrequencies. If Rayleigh damping is used, the damping coefficient

% will vary over the frequency range.

Rd_dmp300=zeros(length(w),length(xi));

Rd_dmp500=zeros(length(w),length(xi));

Rd_dmp700=zeros(length(w),length(xi));

% Vs=300

Rd_dmp300(:,1)=1./(sqrt(cos(w*H/Vs(1)).^2 + (xi(1)*w*H/Vs(1)).^2));

Rd_dmp300(:,2)=1./(sqrt(cos(w*H/Vs(1)).^2 + (xi(2)*w*H/Vs(1)).^2));

Rd_dmp300(:,3)=1./(sqrt(cos(w*H/Vs(1)).^2 + (xi(3)*w*H/Vs(1)).^2));

%Vs=500

Rd_dmp500(:,1)=1./(sqrt(cos(w*H/Vs(2)).^2 + (xi(1)*w*H/Vs(2)).^2));

Rd_dmp500(:,2)=1./(sqrt(cos(w*H/Vs(2)).^2 + (xi(2)*w*H/Vs(2)).^2));

Rd_dmp500(:,3)=1./(sqrt(cos(w*H/Vs(2)).^2 + (xi(3)*w*H/Vs(2)).^2));

%Vs=700

Rd_dmp700(:,1)=1./(sqrt(cos(w*H/Vs(3)).^2 + (xi(1)*w*H/Vs(3)).^2));

Rd_dmp700(:,2)=1./(sqrt(cos(w*H/Vs(3)).^2 + (xi(2)*w*H/Vs(3)).^2));

Rd_dmp700(:,3)=1./(sqrt(cos(w*H/Vs(3)).^2 + (xi(3)*w*H/Vs(3)).^2));

% END

A.2 Fourier Amplitude Spectra

An earthquake time series or any response time series fulfilling certain criterias can be expressed

as an infinite sum of sinusoid

üg (t ) ≈ c0 +
∞∑

n=1
cn sin(ωn t +φn) (A.1)

where c0 is the average value of the input signal, cn is the amplitude, ωn is the frequency and
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φn is the phase of the n-th sinusoidal. A normal simplification for earthquakes is to put c0 = 0

since they oscillate evenly about the x-axis. The amplitude of the different Fourier coefficients

are given as

cn =
√

a2
n +b2

n (A.2a)

an = 2

tend

∫ tend

0
üg (t )cos(ωn t )d t (A.2b)

bn = 2

tend

∫ tend

0
üg (t )sin(ωn t )d t (A.2c)

% DESCRIPTION:

% This script calculates and plots the Fourier Amplitude

% Spectra of a given earthquake ground acceleration record.

%

% INPUT:

% A= Data to perform a FFT on

%

% OUTPUT:

% FFT= the Fourier transformed vector

% f= vector containing the range of frequencies

%

% OTHER SYMBOLS:

% t= time [s]

% signal= ground acceleration [g]

% dt= time interval between each sampling

% v= ground velocity

% d= grouond displacement

% nyqf= Nyquist frequency

% fs= samples pr. unit time

% aVf= the flucturating part of the grund acceleration

% ak= a vector containg values of the first Fourier coeffisient

% bk= a vector containg values of the second Fourier coeffisient
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%

% Written by JEANETT RORVIG, January 2014

% Exercise 1 on earthquake

function [f,FFT]=Fourier_Amp_Spectra(signal,t)

close all

dt=t(2)−t(1);

fs=1/dt;

nyqf=fs/2;

n=length(signal);

f=linspace(0,nyqf,round(n/2));

aVf=signal−mean(signal);
fftaVf=2*(fft(aVf))/round(n);

ak=(imag(fftaVf(1:round(n/2))));

bk=(real(fftaVf(1:round(n/2))));

ck=sqrt(ak.^2+bk.^2);

FFT=ck;

g=figure(2);

plot(f,FFT);

axis([0 10 0 1.05*max(ck)]);

xlabel('Frequency [Hz]')

ylabel('Amplitude c_k [g]')

%END

A.3 Pseudo-Acceleration Response Spectra

The following script produces the pseudo-acceleration and displacement spectra of a given

earthquake input üg . The script uses Newmarks’ numerical integration method assuming lin-
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early varying acceleration between each time step.

% DESCRIPTION: This script calculates and plots the pseudo−acceleration
% response spectra of a given earthquake ground acceleration record. The

% equation of motion for a SDOF−system is solved numerically by Newmarks

% integration method.

%

%

% INPUT:

% acc = ground acceleration data [m/s^2]

% dt = homogenous time increment [s]

% Tend = maximal natural frequency of interest [s]

% xi = damping in the SDOF−system [−]
%

% OUTPUT:

% Sd= vector containing values of the Response Displacement Spectra

% Sa= vector containing values of the Response Acceleration Spectra

% T= vector containing natural periods

%

% OTHER SYMBOLS:

% a = structure acceleration

% v = ground velocity

% d = ground displacement

%

% Written by JEANETT RORVIG, March 2014

% Exercise 1 on earthquake

function [T,Sd,Sa]=Response_Spectrum(t,acc,xi)

close all

clc

gamma=1/2; % Newmarks constants

beta=1/6;

Tend=3;
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dt=t(2)−t(1);
n=length(t);

u=zeros(n,1); % Time−history responses

v=zeros(n,1);

a=zeros(n,1);

T=zeros(200,1);

dT=Tend/length(T); % frequency increments

for i=1:length(T);

m=1;

w(i)=2*3.14/T(i);

k=w(i)^2*m;

c=2*xi*w(i)*m;

a1=(1/(beta*dt^2))*m+gamma*c/(beta*dt);

a2=(1/(beta*dt))*m+(gamma/beta−1)*c;
a3=(1/(2*beta)−1)*m+dt*(gamma/(2*beta)−1)*c;
keff=k+a1;

for j=1:n−1
peff(j+1)=−m*acc(j+1)+a1*u(j)+a2*v(j)+a3*a(j);
u(j+1)=peff(j+1)/keff;

v(j+1)=gamma/(beta*dt)*(u(j+1)−u(j))+(1−gamma/beta)*v(j)+dt*(1−gamma/(2*beta))*a(j);
end

Sd(i)=max(abs(u));

Sa(i)=Sd(i)*w(i)^2;

T(i+1)=T(i)+dT;

end

T(end)=[]; % Need to delete last cell in T to make it the same length as Sa

a=figure(1);

plot(T,Sa)

hold on

PrettyPlotgca

xlabel('Natural period T [s]')

ylabel('S_A')
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title('Pseudo−acceleration response spectra')

%% EC8 design response spectra

% S_d = design pseudo−acceleration
% T_i = the i−th period defined in EC8

% a_g = design ground acceleration on type A soil.

% a_gR = reference peak ground acceleration on type A soil

% a_g40Hz =

% imp = important class

q=1;

N=500;

s=1;

a_g=0.8*1*1.51; % a_g=imp*a_gR=imp*0.8*a_g40Hz

T_B=0.01;

T_C=0.25;

T_D=1.5;

T_EC=linspace(0,Tend,N);

S_d=zeros(1,N);

for i=1:N

if T_EC(i)<=T_B;

S_d(i)=a_g*s*(2/3 + T_EC(i)/T_B*(2.5/q − 2/3));

end

if T_EC(i)> T_B && T_EC(i)<=T_C

S_d(i)=a_g*s*2.5/q;

end

if T_EC(i) > T_C && T_EC(i) <= T_D;

S_d(i)=a_g*s*2.5/q*T_C/T_EC(i);

end

if T_EC(i)> T_D;

S_d(i)=a_g*s*2.5/q*(T_C*T_D/(T_EC(i))^2);

end
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end

% END



Appendix B

Additional Theory

B.1 Direct Numerical Integration

Direct integration refers to the calculation of response history using step-by-step integration

in time, without changing the form of the dynamic equilibrium equations as is done in modal

methods. The time period T of interest is divided into time increments ∆t = T /N and response

is calculated at each time instance ∆t ,2∆t ,3∆t , · · · ,n∆t , and so on. A general expression of the

equation of motion suitable for non-linear problems at the nth time step is

M{D̈}n +C{Ḋ}n + {Rint}n = {Rext}n (B.1)

Numerical integration methods can be classified as explicit or implicit.
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Newmark’s method

Newmark’s method is an unconditionally stable single-step implicit numerical integration algo-

rithm based on the following equations:

u̇i+1 = u̇i + [(1−γ)∆t ]üi + (γ∆t )üi+1 (B.2a)

ui+1 = ui + (∆t )u̇i + [(0.5−β)(∆t )2]üi + [β(∆t )2]üi+1 (B.2b)

The parametres γ and β define the variation of the acceleration over a time step and determine

the stability and accuracy of the solution. The values γ= 1
2 and β= 1

6 correspond to the assump-

tion of a linear variation of acceleration over each time step ∆t as shown in figure B.1.

t

t

ui+1

ui

ti ti+1

u

τ

Figure B.1: Linear acceleration in Newmark’s method

From equation (B.2b), üi+1 can be expressed in terms of the unknown variable ui+1 as

üi+1 = 1

β(∆t )2
(ui+1 −ui )− 1

β∆t
u̇i −

(
1

2β
−1

)
üi (B.3)

Substituting this into equation (B.2a) gives u̇i+1 in terms of ui+1
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u̇i+1 = γ

β∆t
(ui+1 −ui )+

(
1− γ

β

)
u̇i +∆t

(
1− γ

2β

)
üi (B.4)

The equation of motion for a linear system at time i +1 is

müi+1 + cu̇i+1 +kui+1 = pu+1 (B.5)

When the expressions for üi+1 and u̇i+1 are subsituted into the equation of motion for linear

systems the following expressions for the response ui+1 is obtained

k̂ui+1 = p̂i+1 (B.6)

where

k̂ = k + γ

β∆t
c + 1

β(∆t )2
m (B.7)

and

p̂i+1 = pi+1 +
[

1

β(∆t )2
m + γ

β∆t
c

]
︸ ︷︷ ︸

a1

ui +
 1

β∆t
m +

(
γ

β
−1

)
c


︸ ︷︷ ︸

a2

u̇i

+
(

1

2β
−1

)
m +∆t

(
γ

2β
−1

)
c


︸ ︷︷ ︸

a3

üi

(B.8)
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B.2 Derivation of the solution to the harmonic equation of mo-

tion mü + cu̇ +ku = P0 cos(ωt )

The equation of motion for a system with a harmonic cosine load and viscous damping reads

mü + cu̇ +ku = p0 cos(ωt ) (B.9)

The particular solution to this inhomogenous partial differential equation is proportional to the

loading, but generally out of phase through a complex amplitude A(ω). A particular solution is

generally written on the form

up = Ae iωt (B.10)

which gives for the response derivaties

u̇p = Aiωe iωt (B.11a)

üp =−ω2 Ae iωt (B.11b)

Insert this into the equation of motion to obtain

Ae iωt
[
−mω2 + iωc +k

]
= p0e iωt

Insert c = 2ξmωn and k =ω2
nm

to obtain

A
[

1−β2 +2iξβ
]
= p0

k

where β= ω

ωn
. Hence

A = p0

k

1(
1−β2

)+ i 2ξβ

(B.12)

This expression for the complex response amplitude A is easier drawn in a diagram if the imagi-

nary part can be isolated. Multiplying the fraction by the complex conjugate
(
1−β2 − i 2ξβ

)
the

following complex expression is obtained
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A = p0

k

1(
1−β2

)2 + (
2ξβ

)2

(
1−β2 − i 2ξβ

)
(B.13)

The particular solution is then

up (t ) = Re
[

Ae iωt
]
= Re

p0

k

1(
1−β2

)2 + (
2ξβ

)2

(
1−β2 − i 2ξβ

)
e iωt


= p0

k

1(
1−β2

)2 + (
2ξβ

)2

[(
1−β2

)
cosωt +2ξβsinωt

] (B.14)

From this it is obvious that the response is lagging behind by the representation of the sinusoidal

term. An alternative representation of the response is found by rewriting the complex amplitude

with modulus and an phase angle. The phase angle used defines the time lag of the resultant

response relative to the amplitude of the loading. Hence

A(ω) = p0

k

1√(
1−β2

)2 + (
2ξβ

)2︸ ︷︷ ︸
ρ

e−iθ = ρe−iθ (B.15)

where ρ is the length of the complex number and θ is the phase angle defined as

θ = arctan

(
2ξβ

1−β2

)
(B.16)

Finally, the solution is found as

up (t ) = Re
[

Ae iωt
]
= Re

[
ρe−iθe iωt

]
= ρRe

[
e i (ωt−θ)

]
(B.17)

Figure B.2 shows the configuration for the harmonic load p0 cosωt = Re
[

p0e iωt
]

and the re-

sponse up = ρRe
[

e i (ωt−θ)
]

for the time t = 0. It is clear that the response lag behing with an

angle θ defined by the dashed lines (note: the values of the dashed lines do not represent the

length of the complex amplitude ρ).
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1- 2

2

Real

Imaginary

p0

Figure B.2: The response up = ρe i (ωt−θ) drawn in an Argand diagram.

B.3 Derivation of the Dynamic Impedance Function for a Sin-

gle Oscillator

Roesset [26] gives a instructive analogy between the dynamic response of the simple oscillator

and of a three-dimensional massless foundation-soil system. For an external harmonic load

p(t ) = p0e iωt the displacement is given on the form u(t ) = u0e iωt .

u(t ) = u0e iωt u̇(t ) = iωu(t ) ü(t ) =−ω2u(t ) (B.18)

Insert this into the equation of motion mü + cu̇ +ku = p(t ) gives

(
k −mω2

)
+ i cω= p(t )

u(t )
(B.19)
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and by comparison with equation (3.59)

K1 = k −mω2 (B.20a)

K2 = cω (B.20b)

Rewrite equation (B.19) to express the dynamic impedance as a product of the static stiffness

and a dynamic part.

K? = k


(

1− ω2

ω2
n

)
︸ ︷︷ ︸

k

+i 2ξ
ω

ωn︸ ︷︷ ︸
cs

 (B.21)

The dynamic stiffness and damping coefficients of a SDOF-oscillator is shown in figure B.3. In

general, k and cs in a foundation-soil system have a complex distribution, depending primary

on the mode of vibration, the geometry, rigidity and embedment of the foundation and the soil

properties.

The frequency dependent part of the dynamic stiffness is suggested by Harte [13] to by impor-

tant in soft soil conditions.

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

k

 ω / ω 
n
 

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

c s

 ω / ω 
n
 

Figure B.3: Dynamic stiffness and damping coefficients of a 1-DOF oscillator.



Appendix C

Additional Information

C.1 Influence of damping on seismic response

Figure C.1 shows how the response of a structure subjected to different earthquakes varies with

the assigned modal damping ratios ξ. The figure shows the the response for ξ= 0.5% and ξ= 5%

for the first mode.

C.2 EC8 Concepts

For the horizontal components of the seismic action the design spectrum Sd (T ) shall be defined

by the following expressions

0 ≤ T ≤ TB : Sd (T ) = ag s

2

3
+ T

Tb

(
2.5

q
− 2

3

) (C.1a)

TB ≤ T ≤ TC : Sd (T ) = ag s
2.5

q
(C.1b)

TC ≤ T ≤ TD : Sd (T ) = ag s
2.5

q

TC

T
(C.1c)

TD ≤ T : Sd (T ) = ag s
2.5

q

Tc TD

T 2
(C.1d)
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and

ag = γ1ag R = γ10.8ag 40H z (C.2)

where ag is the design ground acceleration for type A soil, s is the soil factor which represent the

amplification of the input acceleration, q is the ductility coefficient (q = 1 for elastic response

spectra), γ1 is the seismic important coefficient and ag 40H z is the peak ground acceleration with

a return period of 475 years for Norway. From the seismic map in EC8 a value of ag 40H z = 0.55 m
s2

is used.
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Figure C.1: Influence of damping on seismic response for different earthquake records.
A critical modal damping ratio of 5% and 0.5% of the first modes are used.
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Figure C.2: Classification of ground types according to EC8 [22].



Appendix D

Additional Results

D.1 Validation of the Soil

Figure D.1 shows the transfer function of the homogeneous soil profile using quadratic tetrahe-

dron elements.
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Figure D.1: Amplification of homogeneous soil with harmonic base excitation, 5 %
Rayeigh damping, Vs = 300 m/s and quadratic tetrahedron elements.
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D.2 Validation of Nordtank Wind Turbine Model

Time history responses

Figure D.2 shows the displacement time history for model 1 and model 2 subjected to the hori-

zontal Landers earthquake component.
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Figure D.2: Displacement time response of the shell model for a) model 1 which has a
lumped mass representation of the nacelle and blades and b) model 2 which explicitly
represent the nacelle and blades
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D.3 Time history seismic response of the spring model

Part A: Three-Step-Method for the Soft Soil Profile

The time history comparison between the spring model and the full model for the soft soil pro-

file is given in figure D.3, D.4, D.5 and D.6.

Part A: Kinematic Interaction vs. Free-field

It is shown in figure D.7 and D.8 that the kinematic interaction in the skirted foundation is neg-

ligible.

Part A: Importance of Rotational Term

It is shown in figure D.9 and D.10 that the rotational term is insignificant to the overall seismic

response along the tower.

Part A: Fixed-base vs. Flexible-base for Soft Soil

Figure D.11, D.12, D.13 and D.14 show that difference in response for a fixed-base configuration

and a flexible-base configuration for the soft soil profile.
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Figure D.3: Displacements along the tower for the full model and the spring model for
the soft soil condition.
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Figure D.4: Accelerations along the tower for the full model and the spring model for the
soft soil condition.
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Figure D.5: Moments along the tower for the full model and the spring model for the soft
soil condition.
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Figure D.6: Shear forces along the tower for the full model and the spring model for the
soft soil condition.
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Figure D.7: Time history displacement along the tower for 1) kinematic spring input
and 2) free-field input.
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Figure D.8: Time history acceleration along the tower for 1) kinematic spring input and
2) free-field input.
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Figure D.9: Time history displacements along the tower for 1) translational and rota-
tional spring input (U+UR) and 2) only translational spring input (U).
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Figure D.10: Time history acceleration along the tower for 1) translational and rota-
tional spring input (U+UR) and 2) only translational spring input (U).
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Figure D.11: Time history displacement along the tower for 1) a fixed-base configration
and 2) a flexible base configuration.
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Figure D.12: Time history accelerations along the tower for 1) a fixed-base configration
and 2) a flexible base configuration.
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Figure D.13: Time history moments along the tower for 1) a fixed-base configration and
2) a flexible base configuration.
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Figure D.14: Time history shear forces along the tower for 1) a fixed-base configration
and 2) a flexible base configuration.
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Part B: Varying bucket radius

The time history responses in terms of the nacelle displacement and acceleration in addition to

base moment and shear for different skirt radius are given in figure D.15, D.16, D.17 and D.18.

Part B: Varying bucket depths

The time history responses in terms of the nacelle displacement and acceleration in addition to

base moment and shearfor different skirt depths are given in figure D.19, D.20, D.21 and D.22.

Part B: Varying tower heights

The time history responses in terms of the nacelle displacement and acceleration in addition to

base shear and moment for different tower heights are given in figure D.23, D.24, D.26 and D.25.
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Figure D.15: Nacelle displacements for different bucket radius.
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Figure D.16: Nacelle accelerations for different bucket radius.
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Figure D.17: Base moment for different skirt radius.
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Figure D.18: Base shear for different skirt radius.
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Figure D.19: Nacelle displacements for different bucket depths.
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Figure D.20: Nacelle accelerations for different bucket depths.
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Figure D.21: Base moments for different skirt depths.
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Figure D.22: Base shear for different skirt depths.



APPENDIX D. ADDITIONAL RESULTS 140

0 5 10 15 20 25 30 35 40 45
−0.04
−0.02

0
0.02
0.04

[m
]

Horizontal displacement

 

 
H=75m

0 5 10 15 20 25 30 35 40 45
−0.04
−0.02

0
0.02
0.04

[m
]

 

 
H=80m

0 5 10 15 20 25 30 35 40 45
−0.04
−0.02

0
0.02
0.04

[m
]

 

 
H=85m

0 5 10 15 20 25 30 35 40 45
−0.04
−0.02

0
0.02
0.04

[m
]

 

 
H=100m

Figure D.23: Nacelle time history acceleration for different tower heights.
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Figure D.24: Nacelle time history acceleration for different tower heights.
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Figure D.25: Base moment (time history) for different tower heights.
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Figure D.26: Base shear (time history) for different tower heights.
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D.4 Stiffnesses of the Skirted Foundation with varying geome-

try

Table D.1 and D.2 give the applied static stiffnesses for different foundation radius’ and depths

in the parametric study.

Table D.1: Static stiffnesses of the bucket foundation for different skirt radius and con-
stant bucket depth of D=6m. E = 50MPa and VS = 100 m

s .

Radius Ratio Horizontal Rocking Profile
R D

R kH H kM M

[m] [−] 109[ N
m ] 1010[ N m

r ad ]

4 1.5 0.83 2.37

H

D

RRigid

Bedrock

Range of validity:

D/R  2

D/H   0.5 

5 1.2 0.94 3.94
6 1 1.05 6.03
7 0.86 1.16 8.69
8 0.75 1.28 11.98

Table D.2: Static stiffnesses of the bucket foundation for different skirt depths and con-
stant bucket radius of R=6m. E = 50MPa and VS = 100 m

s .

Depth Ratio Horizontal Rocking Profile
D D

R kH H kM M

[m] [−] 109[ N
m ] 1010[ N m

r ad ]

4 0.67 0.88 4.59

H

D

RRigid

Bedrock

Range of validity:

D/R  2

D/H   0.5 

5 0.83 0.96 5.30
6 1 1.05 6.03
7 1.17 1.14 6.78
8 1.33 1.23 7.53



Bibliography

[1] ABAQUS/CAE User’s Manual for version 6.12.

[2] Vestas V90 3.0 MW.

[3] Anil K. Chopra. Dynamics of Structures - Theory and Applications to Earthquake Engineer-

ing. Pearson Prentice Hall, 4 edition, 2012.

[4] GWEC Global Wind Energy Council. Global statistics, May 2014.

[5] Ricardo Dobry. Simplified methods in soil dynamics. Soil Dynamics and Earthquake Engi-

neering, 61:246–268, 2014.

[6] Ricardo Dobry and George Gazetas. Dynamic response of arbitrarily shaped foundations.

Journal of geotechnical engineering, 112(2):109–135, 1986.

[7] Ricardo Dobry, George Gazetas, and Kenneth H Stokoe. Dynamic response of arbitrar-

ily shaped foundations: Experimental verification. Journal of Geotechnical Engineering,

112(2):136–154, 1986.

[8] PEER Pacific earthquake enginnering research center. Peer ground motion database,

February 2014.

[9] George Gazetas. Analysis of machine foundation vibrations: state of the art. International

Journal of Soil Dynamics and Earthquake Engineering, 2(1):2–42, 1983.

[10] George Gazetas. Formulas and charts for impedances of surface and embedded founda-

tions. Journal of Geotechnical Engineering, 117(9):1363–1381, 1991.

143



BIBLIOGRAPHY 144

[11] George Gazetas and Kenneth H Stokoe. Free vibration of embedded foundations: theory

versus experiment. Journal of geotechnical engineering, 117(9):1382–1401, 1991.

[12] GeoMotions. Shake2000, June 2014.

[13] M Harte and B Basu. Foundation impedance and tower transfer functions for offshore

wind turbines. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of

Multi-body Dynamics, 227(2):150–161, 2013.

[14] Guy T Houlsby, Lars Bo Ibsen, and Byron W Byrne. Suction caissons for wind turbines. In

International Symposium on Frontiers in Offshore Geotechnics, volume 75, page 94, 2005.

[15] Lars Bo Ibsen and Morten Liingaard. Prototype bucket foundation for wind turbines-

natural frequency estimation. 2006.

[16] Lars Bo Ibsen, S Liingaard, and Søren A Nielsen. Bucket foundation, a status. Proceedings

of the Copenhagen Offshore Wind, 2005.

[17] T Ishihara and MW Sarwar. Numerical and theoretical study on seismic response of wind

turbines. In European Wind Energy Conference and Exhibition, pages 1–5, 2008.

[18] Eduardo Kausel, Robert V Whitman, Joseph P Morray, and Farid Elsabee. The spring

method for embedded foundations. Nuclear Engineering and Design, 48(2):377–392, 1978.

[19] RS KOURKOULIS, PC LEKKAKIS, FM GELAGOTI, and AM KAYNIA. Suction caisson foun-

dations for offshore wind turbines subjected to wave and earthquake loading: effect of

soil–foundation interface. 2014.

[20] Steven L. Kramer. Geotechnical Earthquake Engineering. Pearson Prentice Hall, 1 edition,

1996.

[21] Søren Madsen, Lars Vabbersgaard Andersen, and Lars Bo Ibsen. Numerical buckling anal-

ysis of large suction caissons for wind turbines on deep water. Engineering Structures,

57:443–452, 2013.

[22] Standard Norge. Eurokode 8: Prosjektering av konstruksjoner for seismiske påvirkning. del

1: Allmenne regler, seismiske laster og regler for bygninger. NS-EN, 1:2004, 1998.



BIBLIOGRAPHY 145

[23] Ian Prowell. An experimental and numerical study of wind turbine seismic behavior. 2011.

[24] Ian Prowell, Ahmed Elgamal, Chia-Ming Uang, J Enrique Luco, Harold Romanowitz, and

Edward Duggan. Shake table testing and numerical simulation of a utility-scale wind tur-

bine including operational effects. Wind Energy, 2013.

[25] Ian Prowell, Chia-Ming Uang, Ahmed Elgamal, J Enrique Luco, and Lanhui Guo. Shake

table testing of a utility-scale wind turbine. Journal of Engineering Mechanics, 138(7):900–

909, 2011.

[26] Jose M Roesset. Stiffness and damping coefficients of foundations. In Dynamic Response

of Structures@ sExperimentation, Observation, Prediction and Control, pages 1–30. ASCE,

1980.

[27] Hooman Torabi and Mohammad T Rayhani. Three dimensional finite element modeling

of seismic soil–structure interaction in soft soil. Computers and Geotechnics, 60:9–19, 2014.

[28] Edward L Wilson. Three-dimensional static and dynamic analysis of structures. Computers

and Structures, Inc., Berkeley, CA, 1996.


	Sammendrag
	Summary
	Contents
	List of Figures
	List of Tables
	List of Symbols & Abbreviations
	Acknowledgment

	Introduction
	Background
	Problem Formulation & Objectives
	Limitations
	Approach
	Structure of the Thesis

	Concepts of Wind Turbines, Skirted Foundations & Earthquakes
	Wind Turbines
	Skirted Foundations
	Earthquakes

	Theory
	Seismic Response: Equation of Motion for Linear Systems
	Seismic Response: Solving the Equation of Motion
	Time history methods
	Response Spectrum Methods

	Damping
	Rayleigh damping

	Transfer function of linear elastic soil with harmonic ground excitation
	Uniform Soil without damping
	Uniform Soil with damping

	Soil-Structure Interaction
	Equivalent System Frequency

	Three-Step-Method
	The superposition theorem
	Method
	Dynamic Impedances


	State of the Art
	Wind Turbines, Skirted Foundations and SSI
	Full-scale Shake Table Test of a Nordtank Wind Turbine

	Numerical Model of Soil
	Model Description
	Results


	Validation of a Nordtank Wind Turbine Model
	Experimental Results
	Model Description
	Model Simplifications & Sources of Errors
	Results & Discussion
	Parametric Study

	Model of a Vestas 3.0-MW Wind Turbine with a Skirted Foundation
	Model Description
	Model simplifications
	Seismic Load & Eigenmodes

	Simplified FE-models
	Static Stiffnesses & Damping of the Bucket Foundation
	Analytical Formulas
	Different Soil/Skirt Interface Conditions

	Kinematic Interaction of the Skirted Foundation
	Spring & Dashpot Model

	Results
	Part A: Three-Step Method
	Part B: Parametric Study
	Geometry of the skirted foundation
	Response for different tower heights
	Period elongation


	Conclusions & Further Work
	MatLAB Scripts
	Theoretical Amplification Function
	Fourier Amplitude Spectra
	Pseudo-Acceleration Response Spectra

	Additional Theory
	Direct Numerical Integration
	Derivation of the solution to the harmonic equation of motion m+c + ku=P0cos(t)
	Derivation of the Dynamic Impedance Function for a Single Oscillator

	Additional Information
	Influence of damping on seismic response
	EC8 Concepts

	Additional Results
	Validation of the Soil
	Validation of Nordtank Wind Turbine Model
	Time history seismic response of the spring model
	Stiffnesses of the Skirted Foundation with varying geometry

	Bibliography
	Bibliography

