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Abstract

A tissue mimicking micro-device has been developed by our microfluidics group. The device
has been designed in order to mimic complex in vivo scenarios of immune cell recruitment,

where cells sense and are directed by soluble and structural signals in confined spaces. A
maze-structured network of microchannels is connected to cell culture chambers where immune

reactions can take part. Immune reactions represent a source of chemoattractants molecules
for creating functional gradients across the network, possibly recruiting cells from other com-
partments. The device is composed of a patterned structure of polydimethylsiloxane (PDMS),

an organisilane elastomeric polymer, bonded on a glass coverslid.

In this work, our newly designed fourth generation device has been tested under several ex-
perimental conditions studies in order to determine its critical points in the study of cell
chemotaxis. First, some of the microfabrication operations necessary for the realization of the

chip have been expanded and partly translated to the biology laboratory. Good microfab-
rication procedures have been proved to be fundamental for the functionality of the device,

since a good bonding between the micropatterned PDMS and the glass is crucial to spatially
control the flow of chemoattractant molecules. Second, a preliminary characterization of dif-

fusion dynamics within the device was perfomed. The design fits the creation of gradients
across the mazed-structured network, but gradients seem to require time to be established.

Some suggestion are therefore proposed in order to accelerate this process, such as increased
dimensions of the attractor culture chambers, that are likely to help in the accumulation of

more chemokine-producing cells. In any case, some results suggest that established gradients
may be maintained during prolonged time inside the network.

The device was then employed in biological experiments showing potential recruitment of
bone marrow-derived dendritic (BMDC) cells. These cells invaded the network under certain

experimental conditions and clearly localized towards the source of chemoattractant molecules.
The long time needed for gradient formation and a degree of unpredictability of the dynamics

in antigen-presentation reactions ongoing on-chip, did not demonstrated active recruitment of
CD8+ and CD4+ T cell hybridomas. T cell hybridomas showed thought a high motility inside
the device and interactions between them and BMDC have been documented in real-time.

Moreover, the design fits the employement of several microscopy techniques that can be used
to address diverse questions regarding mechanisms regulating cells’ routes and potentially (not

present in this work) subcellular events during migration. The design was proven to organize
the space surrounding migrating cells in a manner that is easily accessible to tracking and

modeling techniques. Temporal components of migration still need to be fully elucidated and
will require further work, also by coupling established biological assays, in order to fully benefit

from device potentialities.
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Chapter 1

Introduction

It is not birth, marriage, or death, but gastrulation, which is truly the most im-

portant time in your life. Lewis Wolpert (1986)

Cell migration characterizes fundamental processes for living organisms such as ontogenesis,
wound healing and immune responses against pathogens.

The function of the immune system is to eliminate the cause of primary inflammation within
organs and tissues in order to preserve their physiological roles. Furthermore, it is also involved

in tissue repair mechanisms and homeostasis1,2. Immunity relies on both humoral and cellular
components that discriminate between self and non-self/abnormal molecules, eliciting a proper

response against potentially pathological situations, while maintaining tolerance towards self-
antigens. Immunity is further divided into innate inflammatory responses and adaptive antigen-

specific responses3.

Leukocytes are the major cells of the immune systems and are disseminated into many tissues

and organs of mammals. Leukocytes either circulate in blood and lymphatics systems or
travel across peripheral and lymphoid tissues during surveillance and effector responses4, as

illustrated in Figure 1.1. The study of leukocyte migration is therefore complex and requires
the development of platforms able to address specific questions regarding how different cells

integrate external stimuli, such as chemokine gradients, spatial organization of surrounding and
interactions with other cells, with the internal functional state of the cell. After a theoretical
introduction to leukocyte migration, some of the tools currently employed in this field of study

will be presented and compared to relatively new microtechnological developments. Finally,
the microfabricated device designed and produce by our group will be presented. The device

is major object of investigation during this work. The device is a new tool for studying cell
migration during chemotaxis with the purpose to mirrow and resolve the complex in vivo.
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Figure 1.1:
Complex routes involved in dendritic and T cells homing and circulation within the human

body: This figure summarizes the known migratory routes of T and dendritic cells in steady state and during
inflammation. Immunity is a dynamic system and leukocytes circulate continuously along cell-specific routes

during homeostatic and inflammatory migration. Adapted from5
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Chapter 2

Background theory

2.1 Leukocyte migration during homeostasis and inflammation

Leukocyte localization is regulated in a spatio-temporal manner according to cell types and
functions. Effector cells of the innate response are always available and are quickly recruited
from interstitial tissues and blood circulation upon inflammation to relevant sites. On the

other hand, T and B lymphocytes, the major cells eliciting acquired immune responses, become
effective in an antigen-specific manner. The first antigen recognition happens in specialized

secondary lymphoid tissues such as lymph nodes (LNs) and spleen6. Effector leukocytes can
be found already inside tissues or being recruited through transmigration across venular walls

in nearby blood vessels . Here, endothelial cells becomes activated through histamine and pro-
inflammatory cytokines released by interstitial mast-cells and other sentinel cells. Endothelial

cell activation leads to augmented adhesiveness of the venular walls and effector leukocytes start
to crawl on it looking for exit signals such as chemokines that, together with endothelial cells

and pericytes, guide leukocyte transmigration to the interstitium7. Leukocyte extravasation
from blood and lymphatic vessels and migration within tissue interstitium are not only mere
mechanical processes. They are instead regulated by environmental signals and interactions

with other cell types, enabling leukocytes to acquire efficient migratory profiles necessary for
quick localization to the inflammation sites and elicit the proper immune response8.

2.1.1 Chemotaxis and leukocyte migration:

Chemokine are chemotactic cytokines that, together with other bioactive molecules such as
bioactive lipids and hormones, direct cell activation, migration and recruitment9,10. Up to

now more than 50 different chemokines have been discovered and they are divided into four
families as illustrated in Figure 2.1a. Chemokines bind to seven transmembrane receptors

(7TM) coupled to (αβγ) heterotrimeric G proteins called G protein coupled receptor (GPCR).
Signaling through GPCRs cause morphological changes priming leukocytes to efficient migra-

tion. When a soluble gradient of external ligands is present, cells become polarized along ligand
gradation and migration is directed towards higher concentration of attractant molecules in a
process termed chemotaxis. Cells can also be guided by a surface-bound gradient of chemokines

or extra cellular matrix (ECM) and cellular adhesion sites, this latter process is termed hap-
totaxis. Intracellular signaling pathways triggered by chemokine and adhesion receptors lead

to morphological changes and different migratory modes are adapted by the migrating cells
according to the surrounding and the nature of the stimulus, as depicted in Figure 2.1b.
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(a) Chemokines families (b) Differential migration modes of leukocytes

Figure 2.1:
Chemokines and leukocyte chemotaxis: a) Chemokine molecules and their receptor are divided into four
families (CXC, CC, C, and CX3C) according to the position of cystein residues inside the ligands. Adapted

from11 b) Leukocytes sense a myriad of environmental cues, both soluble and surface-bound, determining (1)
Morphological changes without cell movement, (2)(3) non-directed motility (chemokinesis) or directed motility

along a gradient of soluble chemoattractant molecules (chemotaxis), (4)(5)(6) non-directed motility
(haptokinesis) or directed motility along extracellular matrix gradient or along surface-bound ligands

(haptotaxis). Adapted from12

2.1.2 Recruitment of dendritic cells and T-cells to lymph nodes and peripheral
tissues during homeostasis and immune responses:

Signaling through G protein-coupled receptors (GPCRs) and other migratory receptors (MRs),
such as selectins and integrins, determine immune cell localization in homeostatic migratory

routes and cell recruitment during immune responses. Moreover, immune cells themselves ex-
press chemokines and other chemoattractant molecules in order to coordinate and interact with
other cells. For example, in dendritic cells (DCs) chemokine receptors and secretion of chemo-

tactic signals are rigorously time-regulated. Upon detection of pathogens and stress signals via
Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs), they release and

express inflammatory cytokines and chemotactic cytokines, such as TNF-α, CCL3 and CCL5,
activating endothelial cells and recruiting other effector leukocytes such as granulocytes and

macrophages that will contribute to innate immune responses13. Immature DCs and their
progenitors do also express receptors for inflammatory chemokines like CCR1, CCR2, CCR6

and CCR5. The expression of these receptors on cell surface is lost following maturation while
expression of CCR7 and CXCR4 is upregulated14,15. CCR7 binds to CCL21 expressed by

endothelial cells of lymphatic vessels and guide maturing DCs through the gaps of the discon-
tinuous basal membrane of the vessels. The contribution of other migration receptor (MRs)
such as selectins and integrins is still unclear, also because DC cell migration into lymphatics

has been found not to be dependent upon integrin-mediated adhesion16. It is thought that
CCR7 independent signals rather contribute moderately to DCs entering in lymphatics5. In-
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side the small lymphatics, DCs sense lymph flow and crawl along the endothelium until once

they reach collecting lymphatics that through rythmical contractions pump the cells inside
the subcapsular sinus5. During the travel DCs progressively downregulate the expression of

most of the pro-inflammatory chemokines, but once arrived in secondary lymphoid organs the
expression of chemokines attracting T lymphocytes (CCL17, CCL18, CCLl9, CCL22) is upreg-

ulated and they can then present antigens to näıve T-cells in order to initiate adaptive immune
responses14,17. In secondary lymphoid organs DCs localized to T-cell zone haptotactitally and

chemotactitally guided by CCR7 ligands (CCL21 and CCL19) that are produced by fibroblast
reticular cells (FRCs), the stromal cells organizing T cell zones,5. Indeed the situation is much

more complex in vivo, since DCs are a heterogeneous population in humans and mice, and are
furthermore divided into multiple subsets according to their surface markers and functions18.
Different subsets of DCs express distinct sets of chemokine receptors and travel across diverse

anatomical sites15.

T cells migratory routes can be distinguished between näıve cells trafficking, and homing of
effector cells to peripheral tissues after antigen recognition and differentiation. Näıve lympho-

cytes continuously recirculate between blood and lymph. Näıve T cells enter LNs from high
endothelial venules (HEVs). The major MRs regulating näıve T lymphocytes extravasation
are L-selectin(CD62L), CCR7 and LFA whose ligands(PNAd, CCL21 and ICAM-1) are all

presented on HEV surface4. Once inside they are guided by CCR7 ligands produced by FRCs,
localize in T-cell zones where they receive survival factors (IL-7) regulating their homeostasis,

scan DCs and are eventually engaged in antigen-recognition reactions19,5. After antigen recog-
nition and priming in diverse, effector T cells express a variety of MRs that direct them to

different locations of peripheral tissues, as depicted in Figure 2.2. Activated lymphocytes are
first released into the circulation and then transmigrate to sites of inflammation by activated

endothelium.

Figure 2.2:
Localization of immune cells depend on their chemokine and migratory receptors: Localization of
immune cells is strictly dependent upon the combinatorial expression of receptors mediating their interactions
with the environment. Diverse DCs subsets instruct T lymphocytes with tissue-specific migratory receptors

that will guide effector cells to the correct region(for example: skin, gut or lung). Adapted from4
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2.1.3 Leukocyte migration in different environments

Recruitment of circulating leukocytes through the inflamed venular walls is the most character-
ized process involving immune cell migration. It is divided two steps: the leukocyte-adhesion

cascade and the transendothelial migration (TEM) through the venular wall. First leucocytes
adhere the activated vascular surfaces, assume a flattened morphology and crawl (rolling) look-

ing for chemotactic exit cues. Arrest occurs upon detection of a strong chemoattractant signal
activating major lymphocyte integrins such as LFA-1 and Mac-1. Then leukocytes are able
to transmigrate through the junctions of adiacent cells (paracellular TEM) or across endothe-

lial cell membrane (transcellular TEM)7. Cytoskeletal rearrangment, chemokine-stimulated
integrin-dependent adhesion and polarity induction are some of the chemokine-induced effects

needed during directional motility on, and through, vascular walls8,7. Once inside the tissue
interstitium, leukocytes present a different morphology and are then able to migrate through

a three dimensional (3D) spaces filled with extra cellular matrix (EMC), like in tissue intersti-
tium, or cells, like in secondary lymphoid organs8. Establishment of front-back polarity occurs

through cytoskeletal rearrangments and activation of polarity complexes. Generally speaking,
the relocation of key regulators of cytoskeleton such as the members of the Rho family of small

GTPases (Rac isoforms, Cdc42 and RhoA) organize a protrusive leading edge and a contract-
ing rear, termed uropod20. Rho GTPases were also found to interact with polarity complexes
such as the partioning defecting (Par) complex in T-cells21.

The morphology of migrating leukocytes in two-dimensional (2D) and three-dimesional (3D)

environments is defined ameboid, meaning that cells continuously change shape protruding and
retracting extensions during translocation22. Ameboid migration relies on three major forces
in order to generate movement: adhesion to the substrate, actomyosin contraction at cell

rear and expansion of an actin network at cell front that creates diverse protrusive structures
(lamellopodia, filipodia and pseudopodia)22. In order to promote motion, these forces needs

to be couple and transmitted to the surrounding space. Also, regarding leukocyte, coupling
mechanisms can be diverse and largely depend on environmental features. Dendritic cells are

indeed able to migrate in in non-adhesive 3D substrate. When the integrin-mediated retrograde
resistance for the actin flow at the leading edge is hindered, DCs change the actin polymer-

ization rate at the leading edge until a new equilibrium with the constant membrane tension
is reached23. As depicted in Figure 2.3, leukocytes possess multiple migratory modalities, and

are able to switch migration modes also according to attractant molecules distribution and/or
genetic/pharmacological interferences with genes and proteins involved in cell migration in a
cell-type-specific fashion12. For each leukocyte, striking differences emerge when migration on

2D surfaces is compared to migration in 3D environments. Integrin-independent 3D migra-
tion has been demostrated in vivo for activated interstitial DCs migrating towards lymphatic

vessels16.
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Figure 2.3:
Phenotypes of ameboid migration in immune cells: The balance between different forces (A= adhesion,

P= protrusion, C= contraction) plus environmental cues (e.g. substrate conformation) regulate leukocyte
migration and morphology in a cell specific manner. Adapted from22

2.2 Studying leukocyte migration

Leukocytes possess a big variety of migratory modes regulated by numerous mechanisms, both
molecular and mechanical, as it was pointed out in section 2.1. The study of leukocyte migra-
tion is therefore complex and requires the development of platforms able to address specific

questions regarding how different cells integrate external stimuli, such as chemokine gradi-
ents, spatial organization of surrounding and interactions with other cells, with the internal

functional state of the cell. Many different assays have been developed during years and new
approaches are continuously proposed. Studying cell migration can either aim to determine a

general quantitative response to a chemotactic stimulus or to resolve quantitative and qualita-
tive questions at single- and intra-cell level. Considering the huge variety of assays to choose

from, specific questions need to be addressed with proper experimental tools taking into ac-
count the advantages and the disadvantages of each of them. In this section, some assays for

studying cell migration during chemotaxis will be presented and compared.

2.2.1 Classical biological macro-scale assays

Since the 1960s, several in vitro chemotactic assays have been employed in the study of leuko-
cyte migration. Among macro-scale assays, some of the most common are the Boyden cham-
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ber, capillary chambers (Zigmond, Dunn and Insall), the under agarose gel assay and the

micropipette assays24. Some the advantages and withdrawals of these assays are recapitulated
in Figure 2.4.

Boyden Chamber or Transwell assay25 is one of the most established macro-assay for eval-
uating chemotaxis of leukocytes and other cell types. Two chambers filled of medium are

separated by a porous membrane, where pore size is determined by the size of the analyzed
cells. Cells are seeded on the upper chamber and can migrate through the porous membrane

to the lower chamber where a chemotactic or repellent stimulus is present inside medium. Mi-
grated cells on the lower part of the membrane are then fixed while cells in the upper part must

be carefully removed. Quantification can then be done after staining transmigrated cells on the
membrane, or by using a fluorescent reader after labeled cells use in the test are removed from
the membrane26. Among the advantages of the Transwell assay, there is its quick and non-

demanding technology that can be easily employed in high throughout analyses. In any case,
the test results often not reproducible, especially due to the step of manual cell removal and

staining, that can compromise quantitative aspects of the assay26. A common disadvantage
for chemotaxis macro-assays is that migration is limited on a 2D space and these assays are

cannot be used to evaluate migration in 3D environments. In a 2D ambient most cells migrate
by using protrusive and unconstrained lamellopodia, they assume apical-basal polarity, since

the adhesion with the substrate is restricted to an x-y plane, and can spread freely along the
surface. Upon comparison with 3D environment strictly differences in migratory dynamics and

emerge and hightlight why the study of cell migration is moving towards three-dimensional
environments27.

Figure 2.4:
Advantages and limitations of common assays for studying chemotaxis in vitro: Adapted from24
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2.2.2 Gel assays

In many of the biological processes explained in the previous section, cell migration occurs
either within the organized and molecularly complex extra-cellular matrix (ECM) or in cell-

filled environments such as lymph node cortex, where migratory cues guide migratory cells
by 3D interactions with their transmembrane adhesion proteins and receptors. In order to

confine migrating cells in such a 3D environment biomaterial such as cell-derived matrices
(Matrigel) and fibrillar collagen gels. Even though cell-derived matrices highly resemble in vivo
microenvironment, providing growth factors and physiological linear elasticity of fibers28, its

molecular complexity is a disadvantage for the standardization of migrational assays. Collagen
gels have a more defined composition and allow squeezing and nonproteolytic migration of

leukocytes29, some parameters such as pore sizes and physical properties of the polymer remain
uncertain12. Moreover their 3D features hinder the access to common microscopic techniques

in the event that migration of cells want to be directly visualized and require the use of
sophisticated tools to image inside the gel.

2.2.3 Intravital microscopy

In order to observe leukocyte dynamics in situ one of the first techniques utilized was organ
explant systems, where collected secondary lymphoid organs are placed and heated with oxy-

genated media. Excised organs anyway lack perfusion thorough vascularization of blood and
lymphatics and therefore important dynamics regulated by biomechanical fluid flows cannot
be studied in such a preparation30. Therefore modern approaches for in situ visualization of

immune responses involve the use of single-photon(1P-IVM) or two-photon (2P-IVM) microso-
cope for intravital microscopy. Those approaches are extremely advance and permit to observe

cellular dynamics on organs still linked to the animals, preserving most of the physiological
parameters of the tissues31,30.

In 2P-IVM studies the non-optical effect of the second harmonic generation(SHG) can resolve
structural components of the matrix, such as collagen fibers31. Structural characteristics or

the surrounding can therefore be coupled to migratory behaviours of cells in order to investi-
gate reciprocal interactions and influences. However the structure visualized is complex and

resolving migratory routes according to the structural architecture of the surrounding require
considerable technical efforts, and results are often non-univocal, as shown in Figure 2.5. Still

distance tissue imaging and visualization of regions may be disturbed by involontarian move-
ments like respiration. Plus there is poor control over the oxygen levels and administrated

substances in a particular areas12. All those fact may affect the reproducibility of observations
and therefore a considerable number of animals may be required, increasing the costs and the

time of experiments. Access and manipulation of specific cell population such as specific sub-
sets of dendritic cells, most employing in vitro generated dendritic cells injected admnistrated
to the animals, or technical demanding techniques to identify subpopulations inside tissues32.
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Figure 2.5:
Structural Limits of intravital microscopy: Migration of a yellow fluorescent protein(YFP)-expressing
DC (green) on the ear skin skin of a transgenic DsRed+/+ CD11c-YPF+/−B6.Albino. 2P-IVM is able to

resolve collagen fibers inside the tissues (SHG) and also DsRed expressing stromal cells (red) can be visualized.
It is difficult though to resolve all the interactions between moving cells and the environment. Adapted from12

2.2.4 Studying cell chemotaxis with microfluidics and confined environments

One of the newest advancements for the field of leukocyte chemotaxis is the employement of

microfabrication technology for the realization of biocompatible microfluidic devices. Recent
advancements in microfabrication techniques using biocompatible materials have let researchers

and engineers to collaborate for the realization of custom-made devices. Microtechnological
chemotaxis assays rely on two diverse features that can either be exploited alone or combined

in chemotaxis studies. First fluid microdynamics can be exploited inside channels in order
generate controlled chemotactic gradients across different compartments, and directed cell mi-

gration by soluble ligands distribution. Gradients can be generated by pump-driven convective
flows or passive molecular diffusion24. Second cells can be forced to stay and migrate in the
geometrically constrained space of microchannel systems. Migration inside a channel is 1D

directed, but if the channel has a diameter comparable with cell dimensions, migration acquire
a 3D component due to the contact between cells and channel walls33. Microchannels can

therefore be used to mimic in vivo architectures and environments encountered by cells and
study migration in geometrical defined spaces.

A common advantage for microfluidics and microchannels assay is that, being micro-assays,
less cells are required for analysis, and they could therefore fit the investigation of rare cell

population that are difficult to isolate for macro-assays and to visualize in vivo. Moreover
since it is a semi-3D space they can be adapted to any type of microscopy are easy to utilize in

life-imaging and cell-tracking techniques33,34. Anyway the technical efforts required in order
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to establish those system are variable, depending on the complexity of the system (a pump-

coupled system is more demanding than a diffusion-based design) and demand ample technical
efforts and collaboration from many scientific fields. Some examples of microfluidic applications

are depicted in Figure2.6.

Figure 2.6:
Examples of microfluidics and microchannels application for the study of leukocyte chemotaxis:

a)b) A microfluidic device for studying cell migration in a chemotactitally controlled chamber. A
diffusion-based chemotactic gradient is created inside the chamber by flushing different chemokines in the
source and the sink channels (a); Cells are seeded from the parallel and migration can be visualized and

tracked in real-time(b). Migrated cells can be recollected at different positions and be further be analyzed.
Adapted from34. c)d) A microfluidic device designed for the evaluation of cell decision-making during
migration. The microfluidic device creates a stable chemoattractant gradient across the microchannels

between the green and the yellow line(c); fluorescein, green, is used to check the stability of the system. Figure
freely adapted from13 d) A neutrophil cell, indicated by the red arrows, is moving through the asymmetrical

maze towards the greater concentration of the chemoattractant, the cell chooses the shortest path in the
microchannels. Adapted from35

2.3 Device description and microfabrication techniques

In our group we aim to build functional tissue units to understand the complexity of cellular

self organization in the immune system through soluble, surface-bound and cell-associated
molecular cues. Among our projects, there is the design of a practical chip device in order to

study in real-time cell migration in confined space and at a single-cell level towards immune
reactions. The device could potentially be used to study chemotactic cell recruitment to

relevant immunological sites such as infections in tissue interstitium and lymph node zones. We
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therefore chose to investigate how such a device can be employed in the study migration towards

infection-like reactions and lymph node areas. Our approach would rather be systemic using cell
reactions, instead of single chemoattractant molecules, in order to generate chemoattractant

gradients. We are attempting in this way to mirror the physiology of migration within living
organisms as described in the previous section, 2.1.

Generally speaking attractor cells and bacterial mixtures are isolated in a compartment of the
device, while migrating cells are loaded in a different compartment. The two compartments

are linked by a network-like structure of microchannels that allows attractive and activating
molecules, i.e. chemokines and cytokines, to freely flow from the attractor compartment,

possibly creating a increasing gradient towards it. Attractor cells and eventually bacteria
are isolated in attractor side by a narrow filter-like microchannel structure placed before the

network, while migrating cells are the only ones able to enter the network. In the device
it is always present a internal control compartment designed as the attractor compartment.

In this work of thesis a fourth generation design of the device has been employed in the
experiments. The fourth generation architecture was designed based on the results obtained

from a previous model, the third generation, that was used for testing chemotaxis and migration
in the Master thesis of Ryan Hannam, spring 2014, ”Monitoring Chemotaxis Towards Immune
Reactions in a Microcompartmentalised Device: Real-time is King”. The results obtained with

the third generation design will be summarized in section 2.3.2, and then the design of the
fourth generation will be illustrated.

2.3.1 Microfabrication and soft lithography

The micro-scaled features of the device are obtained using a technique called soft lithography.
A mixture of an elastomer, polydimethylsiloxane or PDMS, and a curing agent is poured on

on a reusable patterned silicon wafer referred as master or mould. The photomask employed
in this work was designed by by doctor Nimi Gopalakrishnan. The silicon master mould

employed in this work was created by optical lithograpy and physical and chemical etching by
doct. Jonas M. Ribe, see Figure2.7a,b. The casted polymer is cured into a solid gel by heating.

The micropatterned PDMS can be bound by physical activation, such as oxygen plasma and
corona bonding, on a glass coverslip, see Figure2.7c. The device obtained in this manner is
transparent and modern microscope techniques can be employed in order to monitor the cells

within it.
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Figure 2.7:
Soft lithography technique for the fabrication of microfluidics devices in PDMS: a)

Photolithography: a photomask is first designed with the features of the chip such as channels, network and
cell compartments. A silicon wafer is spin coated with a SU-8 photoresist. When UV light is sent through the
mask, the light crosslinks the resist according to the patterned design. The uncrosslinked resist can then be
removed and the silicon wafer is further patterned by chemical and physical etching in order to obtain the
desired feature profile (b). Then PDMS elastomer can be casted and cured in order to obtain a patterned

device that is bonded onto glass by physical methods. Adapted from36

PDMS is composed by repeated units of −O − Si(CH3)2−, surface application of oxigen

plasma and corona discharges introduce hydrophilic silanol (−OH) groups taking the place of
hydrophobic methyl groups(−CH3)

37,38. The surface can then be bonded to other activated
surfaces such as plastic, glass and PDMS39,38. The acquired hydrophilicity is beneficial for

biological application, but PDMS is likely to recover hydrophobicity in a second time39,40.
Hydrophylicity can be preserve by exposing PDMS to water and organic solvents, but PDMS

is still likely to regain hydrophobic properties later39. A possible cause for the regain of hy-
drophobicity after oxygen plasma treatment is due to the trafficking of low molecular weight

PDMS oligomers that remain uncrosslinked during the curing process, and/or the replacement
of the surface polar hydrophilic groups by unpolar methyl groups from the bulk material40.

A possible solution in order to hinder hydrophobic recovery in oxigen plasma activated sur-
faces could be thermal aging achieved with an extended curing time that should therefore

significantly reduce the number of low molecular weight PDMS chains within the bulk mate-
rial41. Alternatively, activated PDMS surface can be functionalized and coated with protein
such as collagen and fibronectin that increase the biocompatibility of the environment for cell

cultures42.

2.3.2 Third and fourth generation device designs

Four generations of the device have been designed by the group. The third generation have been

described in details in the Master thesis of Ryan Hannam, spring 2014, ”Monitoring Chemotaxis
Towards Immune Reactions in a Microcompartmentalised Device: Real-time is King” and in

the article of Gopalakrishnan et al.43. The microfluidic device is in both case constituted
by flow-free co-colture compartments linked by mazed-structured networks of microchannels

where confined cell migration can take part.
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Third generation device The third generation design is illustrated in Figure 2.8.

Figure 2.8: Third generation device design: A channel loaded with migratory cells face two 500 µM
long network structures of 6 µM x 6 µM channels. One network is connected to an attractor compartment
were infections and chemoattractant reactions reaction can be established, while the other network can be used
as intern control. A filter 2µM high allows for bacterial compartmentalization in the attractor compartment.
Adapted from43

Rapidly moving cells as MF2.2D9 cells, an I-Ab-peptide restricted T-cell hybridoma cell line,

seemed not to clearly migrate preferentially towards the attractor compartment, where differ-
ent immune reactions, such as antigen-presentation reaction by immunogenic peptide loaded
macrophages, were tested. Sometimes MF2.2D9 seemed instead to preferentially migrate to-

wards the control side. This event was hypothetically addressed to the facts that gradients
due to the attracting reactions were not generating as it was thought, and also to the eventual

pre-activation of migrating cells during cell preparation procedure that would therefore hint
the respond to an activating gradient of chemokines produced by immunological reactions.

Another cause to be mentioned is the difficulty of loading the attractor compartment with a
consistent amount of attracting cells in such a design. It was therefore suggested to increase

the dimensions of the attractor compartment and to adopt a design that facilitates such a
loading. Due to the high motility of MF2.D9 it was also suggested that cells may enter the

device before being stimulated by gradients that, according to the obtained results, seemed to
require more hours to be established. The design resulted to be well suited for in real-time
observation and the investigation of migratory behavior at a single-cell level. Decision making,

speed and memory of migrating cells could be evaluated in such a maze-structured network. A
chemotactic response was observed in later experiments, when bone marrow-derived dendritic

cells were used in a series of chemotaxis experiments towards antigen-presentation reactions,
CCL19 and Mycobacterium avium infections. In all experiments a significant migration in

the network facing the attractor compartment was observed respect to the control network,43.
Another withdrawal of third generation devices that needed to be solved was the uneven par-

tition of cells in the migratory compartment, that can potentially influence chemotaxis results,
especially if highly motile cells are used in the device. All those considerations were taken into

account during the design of the fourth generation, that aimed to correct the lacks of the third
one.
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Fourth generation design The fourth generation mask design was elaborated by Nimi

Gopalakrishnan with the collaboration of the whole group and two different types of silicon
masters were produced from the design, the properties of the two masters are described in

chapter 3, section 3.1.1. The general common features of the fourth generation design are
depicted in Figure 2.9. Compared to third generation devices the fourth generation design is

characterized by a single mazed-structured network surrounded by cell chamber compartments.
A sink compartment is introduced in the design opposite to the entrance from the migratory

cell compartment in the network, while equally attractor/control compartments are at the side
of the network connected by linear channels. Attractor/control compartments are served by

lateral channels designed to administrate in-channel bioactive molecules and bacteria.

Figure 2.9: Fourth generation design: The fourth generation design is characterized by a sole network in
front of a migratory compartment. On the other side of the network there is a sink compartment specular to
the migratory compartment. From the major network lateral straight lines end to a smaller network in front of
attractor/control compartments. The attractor/control compartment are connected with cell loading channels
through a branched structure and with a lateral feeding channel

2.3.3 Objectives

The aim of this thesis was to assess the structural progresses of our newly designed fourth

generation device. Specifically, I have explored new potential applications, such as in-channel
administration of bioactive molecules and bacteria. In addition to this, I have evaluated the

potentials of such devices in the study of immune cell chemotaxis towards relevant immuno-
logical reactions. In order to achieve these objectives, it has been necessary to perform some

microfabrication steps, i.e. the bonding of PDMS onto glass, in the biology laboratory, for not
to be strictly dependent on the Nanolab during the microfabrication operations of the device.

The steps necessary to be done have also been illustrate in this thesis.
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Chapter 3

Methods and solutions

3.1 Device Fabrication and Operation Procedures

Our group aims to create an end-user device that can be assembled and used in a simple and
inexpensive manner in biology laboratories. Therefore we attempted to transfer the microfab-
rication steps following PDMS curing down to the biology laboratory. The new procedures

tested during this work will be described in this section after elucidating some technical features
of the fourth generation device.

3.1.1 Device features and fabrication steps

Fourth generation master types: Two silicon masters differing in the height of the loading
channels and in the width of the network channel were prepared using the fourth generation

mask.

Master type Loading channels (height) Network channels (width)

Type 1 28 µm 8 µm

Type 2 9 µm 6 µm

Table 3.1:
Types of silicon master utilized in this thesis

Type 1 devices the most used during this work and a profile was taken at Nanolab with a

contact stylus profilometer (Dektak 150 ), as depicted in Figure 3.1
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(a) Profile

(b) Profile of Type 1 master

Figure 3.1:
Structural characteristics of Type 1 devices, fourth generation: (a)The highlighted line was profiled

at Nanolab.(b)Profile of fourth generation device: Attractor compartment with pillars, filter and small
network, mines (the machine hit the space between the lines), major network

PDMS casting, curing and washing steps: In order to produce PDMS devices the elas-

tomer (Sylgard 184 silicone elastomer, Dow Coming) is first mixed with a cross-linking agent
(Sylgard 184 curing agent, Dow Coming) at a ratio of 10:1. The mix is then distributed on the

silicon mould and degassed in a vacuum chamber in order to eliminate air bubbles that would
disturb the patter formation in within PDMS. Then the polymer is cured into a solid gel for

1h at 70◦ degrees Celsius or 40 min at 80◦ C.
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After PDMS curing, the device is peeled from the master, cut and all the inlets and outlets

are punched as illustrated in figure. These steps and oxygen plasma bonding were performed
in the clean room of Nanolab at NTNU.

In order to eliminate organic residues the polymer is washed with acetone, ethanol and iso-
propanol. The PDMS is now ready to be bond to a cover glass (Menzel, Gläser, Ø 50/47 mm x

150 µm (No1.5), Thermo Scientific) previously washed with acetone, ethanol and isopropanol.
Bonding is achieved by oxygen Plasma in Nanolab: the device is place in the oven (80deg) 5

min before plasma bonding, then the glass and PDMS are inserted in Plasma Cleaner Femto
(Diener Electronics) and after vacuum creation inside the machine, oxygen plasma is applied

with 50% O2-gas and 50 W power for 12 sec, the PDMS is immediately placed on the glass,
and gently pressed down. Then the device is place again in the oven for 5-10 min. Then the
device can be filled with sterile water, maintaining in this way sterilization obtain through

oxygen plasma application.
Alternatively, in order to move microfabrication steps down to the biology laboratory, Corona

(BD-20AC, Electro-Technic Products) bonding was performed outside the clean room of Nanolab,
on a unsterile bench in the biology laboratorium and also this process needed to be optimized

during this work.

Corona bonding: The initial procedure of Corona bonding (apply Corona to a clean glass
and to the washed PDMS for 1 minute each, press gently together and add water after 30 min)

provided inefficient bonding of the fourth generation devices, even though the same procedure
had granted satisfactory results with the third generation. For this reason a new procedure

was developed in order to achieve a successful bonding:

1. The washing steps of devices and of cover glasses are performed at least one day prior

bonding;

2. The clean glass and the PDMS are placed on a semi-conductive surface (Silicon plate).
Corona plasma is then applied using the one inch disc electrode for 2 min on the cover

glass and for 1 min of both PDMS and cover glass, with a maximun of ca 30 s application
on the PDMS.

3. The activated surfaces are then gently and evenly pressed together, and the device is
placed for 10 min at 70◦.

4. The device is then left undisturbed for at least 2h. In the meantime it can be mounted
to a plastic surround (MAT-B-5040, Willco Wells);

5. A rapid reactivation of channels hydrophilicity is achieved by max 30 s application of
Corona treater and the device is rapidly filled with sterile water for storage.

3.1.2 Device handling

Device storage and sterility: Devices prepared as described in section 3.1.1 are filled and
submerged with sterile water, close with a transparent plastic lid (MAT-B-5040, Willco Wells)

and stored in the fridge. Corona bonding is performed on an unsterile bench. When a mounted
and submerged device is covered with the lid, flow leakage is usually generated creating another

access point for bacterial contaminations. Several procedures are taken into account in order
to increase the sterility within the system:
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• Devices are exposed to 320 nm UV light on a UV Table(UVP) for 7minutes/2h before

being employed in biological experiments.

• Devices are washed with ethanol 70% and the device is then placed at 80◦ in order to let
the solvent evaporate.

• Antibiotic Ciprofloxacin (Cellgro) is always added to media employed in cell experiments.

Media exchange operations: PDMS needs to be primed in order to become, as much
as possible, a cell-friendly environment. Uncrosslinked PDMS oligomers could be toxic for

cells and PDMS is likely to adsorb hydrophobic components of cell medium, see section 2.3.1.
As established in the Master Thesis of Ryan Hannam, stored device are refilled with serum-

free base medium RPMI-1640(Sigma-Aldrich), see section 3.2.1, at least one day before cell
experiments and kept inside a petri dish in the cell incubator. This is likely to allow saturation

of PDMS surface with hydrophobic components. The medium is then exchanged with 2% Fetal
Calv Serum (FCS, Invitrogen) and 50µM 2-Mercaptoethanol (ME) additioned base RPMI at

least 30 min prior cell loading in order to partly remove PDMS oligomers leaching into solution.
Channels can also be rinsed from eventual fibers or PDMS fragments identified at the light

microscope.

3.2 Cell Cultures, Preparation and Loading

3.2.1 Base medium employed in cell cultures

For base medium we intend RPMI-1640 addictionated with 10 µM Ciprofloxacin, 25 mM
HEPES (Gibco, Life Technologies) and 2 mM L-glutamine( Sigma-Aldrich). Base medium

was employed in most of the cell cultures and further reagents added to it are specified for
every cell culture/experiment. The cell lines and of the primary cells employed in this work
were maintained in RPMI base medium addictionated with cell specific reagents.

3.2.2 Cell counting

According to necessity (culture passages, staining and loading on the device) cells were counted
with a Countess Automated Cell Counter (Invitrogen) by mixing them at 1:1 ratio with Trypan

Blue (Life Technologies, according to manifacturers protocol). The dye is excluded from live
cells and a rough viability count is obtained. Further calculations were based upon live cell

concentration.

3.2.3 Dendritic cells culture and preparation

Bone marrow-derived dendritic cells isolation, differentiation and culture: Bone

marrow-derived dendritic cells, BMDC, were differentiated in vitro from bone marrow cells
using the following protocol:

Differentiating medium: RPMI-1640 + 10 µM Ciprofloxacin + 25 mM HEPES + 2 mM
L-glutamine + 10% FCS + 50 µM 2-ME + 20 ng/mL GM-CSF (Biolegend).

1. Femur bones and tibiae are removed from an euthanized C57BL/6 wild type mouse and
collected in 25 mL Hanks solution in ice.
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2. The bones are then placed in a dish with 96% EtOH for few min and the bones were

cleaned from remaining meat.

3. The clean bones are rapidly washed from etOH in RPMI with antibiotics(Ciprofloxacin),
cutted at both ends and flushed down in a 50 mL Falcon tube with ca 10 mL RPMI (+
Ciprofloxacin) each until they turn white.

4. If necessary the tube it filled up to 20 mL, cells are then spin for 6 min at 460xg and

resuspended in 2-3 mL Red Blood Cell lysis buffer (eBio) for 3 min. The tube is again
filled up to 20 mL with RPMI (+ Ciprofloxacin + 10% FCS) and cells are spin down

again.

5. Bone marrow cells are resuspended in 10 mL of differentiated medium containing GM-

CSF and counted at the Countess system.

6. 1 million of cells are then plated in petri dishes containing 10 mL of differentiating

medium and incubated at 37◦ with 5% of CO

7. After 3 days 10 mL of GM-CSF containing medium are added to the petri dishes and
after 3 more days 10 mL of medium are removed and 10 mL of fresh differentiating
medium are added.

BMDC following this protocol can be matured by 24 hours stimulation with 100 ng/mL of

LPS(E. coli O111:B4, InvivoGen). BMDC were used in migratory experiments and flow cy-
tometry analyses between eight and fourteenth days after preparation.

BMDC used during experiments BMDC are very delicate and sensible to manipulation

and activation is likely to happen during common cell routines such as centrifugation and
concentration. Staining of BMDC followed by 3 washing steps with serum-free RPMI-1640

before and with 10% FCS RPMI after staining procedure was abandoned since it lead overly
to cell death. A mild staining procedure was tested using 1 wash before and after staining

with 0.8µM of CMFDA for 20 min in warm bath. Reaction was quenched with with 50% FCS.
Cells were afterward tested for LPS-induced activation, as explained in section 3.3.2.

Non adherent cells were carefully collected from culture dishes and used as unstimulated den-
dritic cells, adherent cells were usually collected after stimulation with LPS. It was found that

scraping those cells on ice, reduced cell death and it was chosen to always observe this proce-
dure. Still cell death was consistent, as a lot of debris were eventually load on the device. In a
final experiment it was chosen to use EDTA 0,02% in PBS to loose stimulated adherent cells.

Stimulated cells were washed once or twice from LPS with cold RPMI serum-free. In order to
avoid unwanted maturation of immature BMDC they were always kept and manipulated at

4 deg and spin down at 200g for 10 min. Cells were concentrated to 2x107 mL−1 in medium sup-
plied with 2% FCS and 50 µM 2-ME before loading. In antigen presentation experiments cells

were pulsed with 10 µM of Ovalbumin 323-339 peptide (ISAQAVHAAHAEINEAGR-AnaSpec)
on ice for 1h and resuspended in 2% FCS RPMI (+ Ciprofloxacin, + L-1) medium containing 10

µg/mL of the peptide and 20 ng/mL GM-CSF, since it has been reported that dendritic cells cy-
tokine and chemokine production is enhanced by constituents of the DC growth/differentiation

medium and other T-cell derived cytokines such as IL-4 and GM-CSF,44.
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3.2.4 MF2.D9 and RF33.70 staining and preparation

MF2.D9 and RF33.70 culture Non-adherent MF2.D9 and RF33.70 (Rispectively a MHC
class II-restricted Ova(323-339)-specific CD4+ T cell hybridoma and a MHC class I-restricted

SIINFEL OVa(257-264)) a gift from Dr Kenneth Rock, University of Massachusetts, Worces-
ter) were maintained in 75 cm2 flasks. Upon thawing cell growth was more contained and

require 1:60 dilution and passage every 3 days and a 1:80 dilution and passage every 4 days.
Cells growth usually augmented after 5 to 10 passages and needed to be increased up to 1:80
diluition every 3 days. Cell culture medium consisted of base RPMI-1640 medium, with ad-

diction of 10 µM of Ciprofloxacin, 25 mM HEPES, 2mM L-Q, 10% FCS and 50 µM 2-ME.
According to experimental needs between 2 and 10 million cells were stained using either Cell-

Tracker Green CMFDA(5-Chloromethylfluorescein Diacetate), CellTracker Deep Red Dye or
CellTracker Violet BMQC (Molecular Probes, Life Technologies). Celltrackers are cytoplasmic

fluorescent probes that freely pass cell membrane and react either with thiol groups (CMFDA
and Violet BMQC) or amine groups (Deep Red) inside cells and cannot exit the membrane

anymore, they are transferred to progeny but cannot be passed to adjacent cells, so they can be
employed in multiplexing imaging. CellTrackers were diluted from stock solutions (respectively

10mM, 1mM and 10 mM in DMSO) to a 2x concentration of 2 µM in serum-free RPMI-1640.
Cells in suspension were collected from flask cultures and counted at the Countess system.
Cells were centrifuged 460xg for 6 min and washed in warm serum-free medium three times

before being resuspended in serum-free RPMI. The staining volume depended on the initial
number of cells: each million of cells was stained in 1 mL of 1µM of CellTracker, i.e. 2 millions

cells were stained in 2 mL, 5 millions in 5 mL. Cells were kept in water bath at 37C during
staining for 30 min and the reaction was then quenched with 50% FCS for 3 min. Cell were

then centrifuged and washed 3 times in complete base medium and rested overnight in 75cm2

flasks, eventually splitting them according to their rapid growing nature. Before loading on the

device cells were counted and concentrated at 2x107 mL−1 in experimental medium: RPMI
base medium supplied with 2% Fetal Calv Serum (FCS, Invitrogen) and 50 µM 2-ME. Cells

were kept on ice before loading.

3.2.5 CD8+ and CD4+ T cells preparation and staining

Mouse spleens from euthanized C57BL/6 wild type were collected in Hanks solution on ice
at the animal facility. Spleen were then opened with a scalpel over a 40 µm cell strainer and

cells were squeezed through it by using a syringe plunger. Prior erithrocytes lysis the rough
number of cells isolated from one spleen was 210x106 cells, after erithrocytes with RBC lysis

buffer one spleen yelded circa 90x106 cells. Dynabeads Untouched Mouse CD8 (Invitrogen) and
Dynal Mouse CD4 Negative Isolation Kit(Invitrogen) were used to isolate CD4+ and CD8+ T

lymphocytes. Cells were usually coloured using CellTracker dye at concentration of 1µM and
a mild procedure was chosen for cells employed in chemotaxis experiments with just one wash

before and after staining. Before loading cells were counted and concentrated to 2x107 mL−1
in 2% FCS and 50 µM 2-ME. Cells were kept on ice before loading.

3.2.6 Cell loading on fourth generation device

A good cell loading strategy in the different compartments of the fourth generation was es-
tablished during initial tests of type 1 and type 2 devices. Before loading cells device dish are
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emptied from medium and let dry superficially, eventually using some sterile paper without

fibers. A good flow is usually achieved by letting cells flow from a pipette tip with 5µm of
concentrated cells and placed on the correct inlet of the feeding channel filled with a drop of

cold medium while the other wells of the compartments are left empty, as depicted in Figure3.2.
The tip needs to be lift up and put back again some times in order to let pressure and capillary

forces draw cells inside the network, upon arrival in front of the attractor chamber cells are
sucked up from the lateral small channels connecting the feeding channel to the cell chamber,

where a lower pressure was probably created by emptying the other wells. Tips should be
changed when cells get warm and start to stick to each other. In order to see when tips need

to be lift and changed a light microscope is cleaned with ethanol 70% and placed under the
sterile bench. With this strategy all compartments can be loaded at the same time. The well
developed attractor and migratory compartments are usually filled in 10-15 min, while filling

the overdeveloped control compartment increase the loading time up to 30-40 min. The device
is then submerged with warm experimental medium and the time is taken as starting point

for experiments. The results of this loading strategy are further illustrated in section 4.1.2 of
chapter 4 and in section 5.1 of chapter 5.

(a) Attractor/control chamber (b) Migratory chamber

Figure 3.2:
Filling strategy for fourth generation device attractor/control chamber: A tip with 5 µL of concen-
trated cells is placed on the correct inlet well while the other wells of the compartment are emptied.

3.2.7 Administration of bioactive molecules and bacteria in-channel

Fourth generation devices offer the chance to administer bioactive molecules and/or bacteria to
cells already loaded in attractor/control compartments. The device is designed with a lateral

channel that feeds the attractor and the control sides and will be therefore referred to as the
feeding channel, see Figure 2.9. Some experiments were performed with food dyes in order to

test the potentialities of in-channel administration, results are reported in section 4.1.3.

The strategy depicted in Figure 3.3 was used to administer CCL19(R&D systems) and TNF(R&D

systems) chemokines in experiments using CD4+ and CD8+ T cells, see Table 4.1. Chemokines
were administered to empty attractor channels for 10 min in every experiment by creating a
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lateral flow in the lateral feeding channels, while the wells of the attractor and control com-

partment were plugged with burned pipette tips. Then the device was closed and plugs were
kept inside it.

(a) Pipette tips are cut and
burned

(b) Pipette tips are place on
the attractor/control compart-
ment wells

(c) After in-channel administra-
tion, the device can be filled up
and closed

Figure 3.3: In-channel administration strategy: a) Creation of pipette plugs, plugs were then sterilized
with EtOH 70%. b) Pipette plugs are placed in the correct wells c) The device can be filled up with medium
(water is used in this example) and closed with the plugs still inside

CFP-Mycobacterium avium (Prepared at this lab, obtained from45) was administered to iDC
loaded 3-4 h before on the left attractor channels. Administration strategy was similar to the

one explained above, but plugs were not used in this case, a flow was in the feeding channel
was established by emptying the chosen outlet well and by placing a tip with bacteria on one

inlet well, the other wells were kept filled with a drop of medium. Since cells are already loaded
in the channel it was difficult to define the MOI, and different administration amounts were

tested. During the first experience bacteria were diluted first to the concentration of 1.5 x 105

cfu/µL in experimental medium and administered (1µL) for 4 min through the flow generated

in the feeding channel. Since no response was noticed, they were administrated again during
the second day at a concentration of 3 x 105 cfu/µL (2µL) for 2 min. In another experiment

bacteria were administered at a concentration of 3 x 105 cfu/µL (2µL) and the established
flow was allowed for 10 min. After every administration the wells of the attractor side were
emptied from remaining bacteria and the device was covered with medium.

For in-channel activation of dendritic cells, cells were loaded on a device Type one, all the

wells, except for the feeding channel wells, were plugged with burned pipette tips and a lateral
flow was created in the feeding channel by placing a tip with 4 µL of 200 nm mL−1 of LPS

and 10 µg/mL on the inlet, while the outlet was left open. After four hours in the incubator
the LPS tip was removed and the device was washed with medium, before carefully removing
the plugs and loading the other cells on the device.
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3.2.8 Modeling diffusion and gradient establishment within the fourth generation

device:

In order to visualize and try to model chemokine diffusion and gradient establishment within

the device in different conditions, we performed some experiments using a 3kDa large fluores-
cent dye Dextran TRIC Biotin (DTB) (InvitroGen)loaded in the left attractor compartment

from the feeding channel. Sometimes plugs were employed in order to verify their utility and
some other times the dye was left diffuse without plugs. Device were either submerged with
PBS or left uncovered. Image were taken at the confocal microscope (Zeiss LSM 510) using 11

air unit in order to measure the mean fluorescence of a thick slice.

3.3 Analysis

3.3.1 Imaging

Microscopy : Three diverse microscope were employed during this work of thesis. During
cell culture routine and passages an Olympus CKX41 inverted light microscope was used. The

microscope was also used to monitor devices and count cells that were not stained in chemotaxis
experiments. EVOS FL Auto Cell Imaging System, an automated fluorescent microscope, was

used in order to monitor Celltracker labeled cells in chemotaxis experiments and to take tapse-
lapse of the devices. The system utilizes LED light cubes combining excitation and emission

filters for determined light intervals. It is coupled to an Onstage Incubator used to maintain
cell viable conditions in long time imaging. A Zeiss LSM 510 inverted confocal microscope was

utilized visualize CFP-M.avium localization during in-channel administration procedures and
to analyzed diffusion of the fluorescent dye DTB inside the device.

Image processing : Images were processed in Fiji is just image J(v. continuous release)

in order to augment the contrast between background and signal, generate LUT, make stack
montages, track cells and optimize time-lapse quality.

Cell counting from pictures: Fourth generation devices allow many cells to enter the

network and manual counting at the bright microscope was not actual. Pictures of devices
where taken either at the Olympus camera or at the EVOS microscope with 10 or 20x objectives

and processed in order to augment the contrast between cells and background. Cells were then
counted using the Cell Counter plug-in of Fiji and subdivided in different areas as reported in

section 4.3.1.

3.3.2 Flow cytometry

Flow cytometry was used to test whether cell activation was enhanced or hindered after cell

staining with CellTracker dyes. Dendritic cells were analyzed with BD FacsCanto II flow-
cytomer and BD LSR II flowcytomer was used for T-cell hybridomas analysis using Facs

Diva(6.1,BD Biosciences). Autofluorescent control sample is gated for high forward scatter
(large particles), the alive cell population, and all events are registered until 10,000 events were

reached within the gated population. Data analysis was performed in FlowJo(V.10).

Sample preparation
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Primary dendritic cells: Bone marrow-derived dendritic cells (BMDC) were tested for CD86

expression following 5 hours administration of LPS 100ng/mL. BMDC from different batches
were routinely tested for CD11c expression. BMDC either stained, as described in section

3.2.3, or not BMDC were stimulated for 5 hours with 100 ng/mL in 6-well petri dish. Cells
were scraped on ice, collected and divided into different flow tubes always kept on ice. Samples

were centrifuged at 4deg, 200xg for 10 min and surnatant was poured. Before antibody (Ab)
staining, 0.5µL Fc block were administered to each tube. Staining with 0.5µL of each Ab, see

Table 3.2, was performed on ice, in dark for 30 min. Cells were then washed 1x with 1-2 mL of
cold washing buffer(PBS, 2% BSA) and resuspended in 500 µL of cold washing buffer. Flow

tubes were kept in dark and ice and were briefly vortexed before analysis.

T-cells RF33.70 and MF2.2D9 cell lines were stained from culture flasks. Cells were stained

with CellTracker CMFDA according to protocol described in section 3.2.4 with 1µM of CMFDA
staining solution. After staining, control cells and stained cells were divided in 6-well petri

dish plates and some of them were stimulated with Cell Stimulation Cocktail(Phorbol 12-
Myristate 13-Acetate 40.5µM), Ionomycin(670 µM),eBioscience) (4µM in 2 mL cell medium).

Stimulation lasted 18 hours. Cells were collected and divided into different flow tubes and
kept on ice. Samples were centrifuged at 4deg, 460xg for 10 min and surnatant was discard.
Staining was performed on ice, in dark for 30 min using Ab (0.5 µL) reported in table. Cells

were then washed 1x with 1-2 mL of cold washing buffer(PBS, 2% BSA) and resuspended in
500 µL of cold washing buffer. Flow tubes were kept in dark and ice and were briefly vortexed

before analysis. Cell viability was tested with 1 µL of Propidium iodide added shortly before
measurements (Channel Used PE-A).

Antigen (target) Flourochrome Ab clone Laser Line Emission Filters Source company Cat. No. Isotype Channel used

CD11c FITC HL3 488 nm 525/50 BD 553801
Armenian
Hamster IgG

FITC

CD86 PE GL1 561 nm 585/20 BD 553692
rat
IgG2a, K

PEA

Table 3.2: Antibodies used in flow cytometry analysis of bone marrow-derived dendritic cells

Antigen (target) Flourochrome Ab clone Laser Line Emission Filters Source company Cat. No. Isotype Channel used

CD4 eFluor450 GK1.5 405 nm 450/51 eBioscience 48-0041-02
rat
IgG2b, K

eFluor 450

CD8a eFluor450 53-6.7 405 nm 450/50 eBioscience 48-0081-82
rat

IgG2a, K
eFluor450

CD44 PE/Cy9 IM7 561 nm 780/60 BioLegend 103030
rat

IgG2b, K
PE/Cy9

CD86 PE GL1 561 nm 585/20 BD 553692
rat
IgG2a, K

PEA

Table 3.3: Antibodies used in flow cytometry analysis of bone marrow-derived dendritic cells
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Chapter 4

Results

4.1 Device fabrication and operation developments in fourth generation de-

vice

Several procedures were tested in order to explore and take advantages of the fourth generation
design features. In-channel administration of bioactive molecules and bacteria by the lateral

feeding channel is a new exciting possibility, but it needed to be optimize in order to obtain
efficient results. Device microfabrication and handling was sometimes troublesome, especially
when the bonding step was moved from Nanolab to the biology laboratory. Bonding resulted

to be a fundamental step in order to fully employ the device in chemotactic experiments and
it was therefore important to find the correct procedure in order to obtain reproducible results.

Good cell preparation and loading procedures within the fourth generation device needed to be
established.

4.1.1 Bonding and sterility

During experiments it was found how bonding efficiency can be evaluated in fourth generation
devices. In well-bonded devices letters and symbols close to the network grid remain empty

upon device filling with water and medium. When the bonding is inefficient, liquids leaks under
PDMS and there is no color distinction between channels and symbols close to the network.

This phenomenon is illustrated in Figure 4.1. Both oxygen plasma bonding and Oxygen plasma
bonding procedure needed to be optimized since poor bonding was observed quite often, and

it can actually be considered a probable cause for inconclusive results in cell experiments.
Oxygen plasma bonding procedure was optimized with the collaboration of Lisa and Nimi as
explained in section 3.1.1. The amended procedure for Corona bonding of PDMS on the cover

glass partly solved the problem of inefficient bonding: upon filling with sterile water bonding
seemed to be efficient. Nevertheless after some days, in some devices used in cell experiments,

it seemed that PDMS and glass lost their bonding strength, as the letters and symbols were
progressively filled with medium. Moreover the reactivation step, when Corona was applied for

30 s in order to let PDMS to regain hydrophilicyty, was found to be troublesome. Sometimes
there were created holes inside the filter of the attractor and control sides. When filter damages

occured, cells were able to squeeze through them during experiments.
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(a) Efficient bonding (b) Inefficient bonding

Figure 4.1:
How to evaluate device bonding efficiency in fourth generation devices:a) The different colours of
numbers 1 and 2 characterized a well-bonded device. b) Bad bonded device do not have colour differences,

meaning that liquid leaks under the PDMS.

Corona bonding was usually performed outside the clean room of Nanolab on a unsterile bench
leading to more infections inside the device, even though devices were handled carefully and
antibiotics were always added to cell medium. Infections were tried to reduce either by EtOH

washing followed by solvent evaporation at 80deg or by using a UV light table(details) high.
Indeed ethanol washing managed to reduce infections, but there were some concerns about

ethanol retention within the pores of PDMS. Devices were then exposed to UV light at high
intensitity (302 nm) for 7 minutes. The exposure time was probably too short, since infections

in UV exposed devices were still present. So far EtOH washing remained the most efficient
sterilization method, but increase surface hydrophobicity was notice after ethanol washing of

both corona and plasma bonded devices.

4.1.2 Device types and cell loading procedures

Type 1 and 2 masters of fourth generation device were profiled at Nanolab as shown in section

3.1.1. A block partially occluding the migration channel was found in Type 2 master. The
initial channel designed for cell loading resulted to be unsuitable because cells tended to stick

on the ramifications and cell loading required too many and long manipulations. For this
reason an efficient strategy for cell loading was established by exploiting the lateral feeding
channel, as described in 3.2.6.

With the help of a clean light microscope under bench, it was possible to correctly determine

when pipette tips needed to be adjusted or changed. Overall loading time was reduced to 30-
40 min when all the compartments (migratory, attractor and control) were filled at the same
time. A problem encountered in Type 1 master is that the features within the control side

that connect the feeding channel and the attractor compartment were overdeveloped. Since the
strategy described in section 3.2.6 depends on the access to the attractor side from the feeding

channel, often a low amount of cells was loaded on the control, especially when bone marrow-
derived dendritic cells were used. Therefore it is sometimes difficult to evaluate the control

side role in some cell recruitment experiments. In some occasions the control side was left
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empty while in some experiments a good loading was achieved. Well-developed compartments

(migratory and attractor) could actually be filled in 10-15 min.

Cell dimensions also played an important role in loading procedures, since dendritic cells are
broader and are prone to stick on the walls of loading channels. It was therefore more chal-
lenging to obtain equal filling in all compartments with this cell type, compared to MF2.2D9.

Type 2 devices, with 9µm high loading channels, were inappropriate for both MF2.2D9 and
BMDC cells, since most of the cells stuck on the channels before reaching cell compartments.

For these reasons it was decided to use type 2 devices in experiments with spleen CD4+and
CD8∗ T lymphocytes, see section, 4.3.2, which have a diameter of ca 6.5 µm (according to

Countess system).

4.1.3 Administration of bioactive molecules/bacteria in channel

The feeding lateral feeding channel was designed in order to administer bioactive molecules and

bacteria to cells already loaded in the attractor/control compartments. First it was studied
how to generate, in the simplest manner as possible, a flow only inside the the feeding channel

with the aid of food dyes and plugs, see Figure 4.2a. In order to generate a flow only in the
feeding channel, it seemed necessary to plug the other wells of the attractor compartment,

while keeping the outlet of the feeding channel open, as described in section 3.2.7. The flow
reached the side of the attractor compartment within few minutes and passively diffuse to
the loaded cells. The plugs created a positive pressure that concentrated the dye in the cell

compartment, hindered dye dilution from other wells of the compartment and and let molecules
passively diffuse from the attractor compartment to the network. This hypothesis was later

confirmed with Confocal microscopy where the diffusion of Dextran TRICT Biotin (DTB) in
plugged device confirmed this diffusion dynamic, see Figure 4.2b.
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(a) Food dye diffusion

(b) DTB diffusion

Figure 4.2: In-channel administration: diffusion dynamics in plugged devices:a) Passive diffusion of
2 µL of food dye in a device where the wells of the attractor/control sides are plugged. The image was taken at
light microscope. b) Passive diffusion of 2 µL of DTB in a device where the wells of the attractor/control sides
are plugged. The image was taken at LSM 510 Confocal microscope.

This strategy was first applied to experiments with CD8+ and CD4+ T cells explained in Table

4.1. Nevertheless experiment results and, in a second time, confocal microscopy showed that
plugging in this manner is not optimal, because tips are not fixed and they move upon device

submerging, currents are created inside the channels, as reported in section 4.3.2.
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Bacteria were therefore administrated in-channel to bone marrow-derived dendritic cells (BMDC)

without the use of plugs, by creating a later flow in the left feeding channel as described in
section 3.2.7. During a second experiment the flow was maintained for a longer time in order to

seed more bacteria. At confocal microscopy, 20 h after bacterial administration, it was clearly
observed that cells already in the channel were able to take up bacteria administrated from the

lateral feeding channel, as shown in Figure 4.3a. Nevertheless bacteria were found also in cells
of other compartments such as migratory and control sides. Cells that were found inside the

network, and that had entered 1 h after bacteria administration, had no or few bacteria and
some cells in front of the arrival compartment have not taken up bacteria at all. This indicate

that bacteria passed from the other openings of the device and not through the 2 nm filter.

(a) Bacterial uptake in the attractor compartment (b) Bacterial uptake in the migratory compartment

Figure 4.3: Bacteria administration in channel: CFP-M.avium were administered by the lateral feeding
channel to cells already loaded in the attractor compartment. Images of diverse cell chambers and network
were taken 20 h after bacterial administration using the Zeiss LSM 510 confocal microscope. a) The attractor
compartment, where CFP-M.avium(cyan) have taken up by previously loaded BMDCs. b) BMDC in the
migratory compartment where contamination from CFP-M.avium(cyan) have happened

4.1.4 Modeling diffusion and gradient establishment within in fourth generation
devices

Diffusion of DTB dye loaded from the left upper feeding was imaged at the confocal microscope.
In this way it was attempted to have a general idea regarding diffusion dynamics inside fourth
generation device. When the device was left uncovered with plugged wells, 2 µM of DTB were

inserted by creating a lateral current in the feeding channel, as described in sec sssec:adm. The
dye diffused rapidly (within 1 min) from the left attractor compartment to the left part of the

network and was mostly drained by the left sink compartment, as depicted in Figure ??. This
partly confirmed the function of the sink compartment in maintaining a differential gradient

between the left and the right side.
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When the device was covered with medium and no plugs were used, dye diffusion was slower

and it was difficult to image the diffusion inside the network. In one experiment a series
of 6 pictures were taken across a period of 25 minutes using the same settings at confocal

microscopy. The images were further analyzed and fluorescence intensities of different points
(the arrival in front of the attractor compartment, the beginning and the end of the lines) were

plotted against time. This revealed a linear increase of the gradient during time in every point.
The analyzed points are also depicted in Figure 4.4. According to the trend lines obtained,

a general doubling time of 20 min for of dye intensity (i.e. concentration of the dye) at the
end of each line was calculated. Moreover, the doubling time was different for the three points

analyzed and the lines seemed to be the slowest place for dye diffusion. This analysis was
just a general representation for diffusion dynamics inside the network, but it may imply that
gradients needs some hours to be established and that they can be maintained for long times

inside the device.

Figure 4.4:
Modeling gradient diffusion inside the device: Diffusion of DTB dye 10 min after loading in the upper

well of the lateral feeding channel of a plugged and uncovered type 1 device. A Green-Blue fire LUT was
generated in Fiji, highlighning high intesity areas in yellow/green, while low intensities area are blue. The dye
is drained by the left sink compartment and does not consistently diffuse in the right network. In the figure
the points analysed in further calculation of gradient diffusion are depicted. The Image was taken with Zeiss

LSM 510 Confocal microscope.
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4.2 Flowcytometry

4.2.1 BMDC staining and flow cytometry

Bone marrow-derived dendritic cells (BMDCs) were differentiated following the protocol de-
scribed in section 3.2.3. They were analyzed with flow cytometry for CD11c expression at

6 days (in-between the differentiation protocol) and after 11 days (completed protocol) of in
vitro differentiation. When the protocol is completed, cells are positive for CD11c expression
with a Mean Fluorescence Intensity (MFI) of 570, compared to the isotype control (MFI:120),

see Figure 4.5a).

BMDCs stained with 0.8 µM of CMFDA were tested for activation following administration
of 100 ng/mL of LPS for 5 hours in terms of CD86 expression. CMFDA Labelled BMDC
could be activated by LPS as a shift was observed in CD86 expression, as depicted in Figure

4.5d) and and e). Anyway severe cell death was observed(data not shown) and it was decided
not to dye this cell type. A consistent part of unstimulated BMDC were already expressing

CD86, depicting how much these cells are prone to activation during handling procedures, as
can be observed in Figure 4.5c). Therefore, in order to riduce handling as much as possible, it

was decided to utilize non adherent BMDC as immature dendritic cells in further experiments.
CD86 expression increase during the next 24 and 48 h following activations stimulus, as it was

observed in other flow cytometry analyses (data not shown).

4.2.2 MF2.2D9 and RF33.70 staining and flowcytometry

MF2.2D9 and RF33.70 were tested in order to see whether activation was hindered or in-

duced by staining procedures. Labeled cells and control were activated with Cell Stimulation
Cocktail, according to sectionsssec:flow. CD44 expression, a marker for T cell activation, was

analyzed with flow cytometry and also expression of CD4 and CD8 were checked for MF2.2D9
and RF33.70 respectively. From flow cytometry results it is possible to observe that CMFDA
staining does not alter MF2.2D9 activation since the expression of CD44 increased at com-

parable rates in both control and labeled MF2.2D9 cells, as depicted in Figure 4.6. Most of
MF2.2D9 expressed CD4, as can be observed in Figure 4.6b), c), e) and f). Also RF33.70

expression of CD44 increased at similar rates in control and CMFDA labeled cells, but the
complexive expression was much lower than MF2.2D9 cells, as can be observed in Figure4.7b),

c), e) and f). Moreover RF33.70 do not express much CD8 and the expression was checked
in another flow cytometry analysis revealing that the isotype control had a higher MFI than

CD8 sample: 105 vs 72 checking(data not shown).
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Figure 4.5:
Flow cytometry analysis of in vitro differentiated BMDCs a) Gated population of BMDC in the

autofluorescence control sample b) CD11c expression of BMDCs at 6 and 11 days after isolation and starting
of differentiation c) BMDC stained with CMFDA (cyan) compared to autofluorescence control (red line) d)
CD86 expression of unlabeled BMDC with control medium (cyan), with 100 ng/mL LPS for 5 h (orange),

autofluorescence control (red line) e) CD86 expression of CMFDA labeled BMDC with control medium (cyan),
with 100 ng/mL LPS for 5 h (orange), autofluorescence control (red line).
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Figure 4.6: Flow cytometry analysis of MF2.2D9 cell line: a) Gated population of MF2.2D9 in the
autofluorescence control sample b) CD44 and CD4 expressions of unlabeled MF2.2D9 cells without stimulation
c) CD44 and CD4 expressions of unlabeled MF2.2D9 cells with Cell Stimulation Cocktail 18 h d) MF2.2D9
stained with CMFDA (cyan) compared to autoflourescence control e) CD44 and CD4 expressions of CMFDA
labeled MF2.2D9 cells without stimulation f) CD44 and CD4 expressions of unlabeled MF2.2D9 cells with Cell
Stimulation Cocktail 18 h

Figure 4.7: Flow cytometry analysis of RF33.70 cell line: a) Gated population of RF33.70 in the
autofluorescence control sample b) CD44 and CD4 expressions of unlabeled RF33.70 cells without stimulation
c) CD44 and CD4 expressions of unlabeled RF33.70 cells with Cell Stimulation Cocktail 18 h d) RF33.70
stained with CMFDA (cyan) compared to autoflourescence control e) CD44 and CD4 expressions of CMFDA
labeled RF33.70 cells without stimulation f) CD44 and CD4 expressions of unlabeled RF33.70 cells with Cell
Stimulation Cocktail 18 h
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4.3 Cell recruitment and chemotaxis assays

Once loading and in-channel administration techniques were established for different cell types,
fourth generation devices were employed in chemoattractant experiments, where the number

of migrated cells towards either a chemoattractant reaction or a control was evaluated. Many
different potentially chemoattractant immune reactions were tested on the new fourth generation

device. Some of them were able to produce a significant chemoattractant gradient inside the
device resulting in cell migration pointing towards the attractor compartment. A special effort
was put in trying to understand when migration due to chemotaxis was happening and how

the phenomenon could be observed inside the device. Therefore, a strategy, explained below
was established in order to analyze cell recruitment and localization in different subareas of the

device. Possible causes for inconclusive results were also highlighted in order to improve the
use of the device in the future.

4.3.1 Established method for chemotaxis analysis

As illustrated in Figure 4.8, the device was divided into subareas in order to identify regions
of interest for studying cell localization and migration inside the device. Due to master fab-

rication, the right cell compartment of devices type 1 was always more difficult to fill with
cells and was utilized as a control side, often filled with a lower amount of cells. The left cell

compartment was used as the attractor side where attractor cells and reactions were loaded
during experiments. Cell distribution in the different subareas was analyzed at different time
points attempting to understand whether and when a chemotactic gradient was present inside

the device.

Figure 4.8:
Identified subareas for chemotaxis analysis: The device was divided into six areas: entrance, network,
lines, small networks, arrivals and sinks. Shared areas like the entrance, the major network, and the sink sink

were divided into left and right subareas, and central parts, highlighted in yellow, were excluded from the
count. Red= attractor, green= control
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4.3.2 Mouse CD4+ and CDS+ T cells chemotaxis and recruitment

In two occasions mouse CD4+ and CD8+ T cells were isolated from mouse spleen and labeled,
as described in section 3.2.5. Cells were employed in two series of experiments, as illustrated

in table 4.1. In the first experiments we aimed to test whether a gradient of chemoattractant
molecules (CCL19 and TNF) created inside the device was able to recruit primary näıve T

lymphocytes. CD4+ and CD8+ T cells were labeled rispectively with CMFDA and Deep Red
CellTracker and loaded on devices obtained from master Type 2 and attractant biomolecules
were administered for 10 minutes by a flow created in the lateral feeding channel of the attrac-

tor side. The wells of the attractor compartment had been previously plugged with burned
pipette tips that were kept inside the device. In this experiment is was found that the use of

movable plugs in order to avoid chemokine dispersion from attractor compartment wells is not
optimal. One pipette plug created a sucking pressure towards the lower well of the attractor

compartment and compromised the result in CCL19 experiment. Cells loaded on the device
containing TNF did not move during the next days.

Migratory side Attractor side Stimulation of attractor side Control side Medium

CD8+ and CD4+ T cells 1:1 CCL19 none medium 2% FCS

CD8+ and CD4+ T cells 1:1 TNF alpha none medium 2% FCS

CD4+ T cells BMDC 100 ng/mL LPS overnight unstimulated BMDC 2% FCS

CD8+ T cells BMDC 100 ng/mL LPS overnight unstimulated BMDC 2% FCS

Table 4.1: Experimental setups CD8+ and CD4+ T cells fourth generation cell experiments:
Labeled CD8+ and CD4+ T cells were loaded in devices of type 1 and 2 in order to test their response towards
attractant biomolecules or mature dendritic cells. Chemokine experiments were performed in type 2 devices
and experiments with BMDC where performed in type 1 devices.

The second time that mouse CD4+ and CD8+ T cells were employed, experiments aimed to

investigate T cell recruitment from matured BMDC. Devices type 1 were chosen, since it is
difficult to load a good quantity of BMDC cells in the Type 2 devices, as explained in section

4.1.2. Deep Red labeled CD4+ and CD8+ T cells (loaded in two different devices) didn’t move
from the place they were seeded. Moreover it was observed that a concentration of 2x107 cells

mL−1 is not optimal for loading this cell type on the device, cells are very small (6.5 µm of
diameter at Countess system) and should therefore be concentrated more.

4.3.3 BMDC chemotaxis and recruitment

Since bone marrow derived dendritic cells (BMDCs) had shown promising and directed migra-
tion inside PDMS channels of third generation devices43, it was decided to use this cell type in

order to investigate chemotactic recruitment of immature BMDCs by stimulated BMDCs within
the fourth generation device. Cells were first used alone in a series of experiments where at-

tractant cells were either stimulated with LPS before loading, and then it was attempted to
mimic recruitment upon bacterial infection using CFP-Micobacterium avium administrated in-
channel, as reported in Table 4.2. BMDCs were treated and loaded on devices type 1 following

diverse procedures in order to optimize these steps when using these delicate cells.
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Migratory side Attractor side Stimulation of attractor side Control side Medium

Unstimulated BMDC Stimulated BMDC LPS in petri dish Unstimulated BMDC 2% FCS

Unstimulated BMDC BMDC infected with M.avium M.avium administration in-channel Medium/unstimulated BMDC 2% FCS

Table 4.2: Experimental setups of chemotaxis experiments with BMDCs: Recruitment of immature
BMDC was evaluated towards two different attractor reactions. LPS was used for stimulating BMDC cells at
either 100 or 200 ng/mL for 5/7h or at 1 mg/mL for 30 minutes. CFP-Mycobacterium avium was administered
in-channel, as explained in section 3.2.7
.

BMDC stimulation with lipopolysaccharide:

During experiments involving BMDC as migrating and attractor cells, immature non-adherent

dendritic cells were carefully collected and kept on ice while the rest of BMDCs were stimulated
with LPS.

BMDCs were first stimulated for 30 min with a high dose of LPS (1 mg/mL), loaded on the
attractor chamber, while the control was filled with few iBMDC, and recruitment of iBMC
from the migratory chamber was observed during the first 18 hours. Cells started to move

towards the network after 3 h and the first cells entered during the fifth hour following loading.
Not so many cells entered between the first and the tenth hour, but a consistent migration

towards left attractor area was noticed at the 18th hour, as reported in Figure 4.9a. A time-
lapse of the left network was taken between the 20th and the 22nd hour, but just few cells were

seen advancing toward the attractor compartment. At 24 h the situation was not considerably
changed and cells were not counted.

(a) BMDC migrated during the first hours (b) BMDC migrated at 24 and 48 hours

Figure 4.9:
Chemotactic response of iBMDCs towards LPS stimulated BMDCs: (a) BMDC migrated towards
attractor (red) vs. control (blue) compartment. (b) BMDC migrated towards attractor (red) vs. control (blue)
compartment.

Cell distribution was analyzed in different subareas, identified by the method explained in
section 4.3.1. Figure 4.10a is a butterfly graph depicting differences in cell distribution between

the left and the right part of each subarea (respectively the attractor and the control sides
of each subarea), cells were counted from Figure 4.10b. As can be observed in Figure 4.10a,

most of the cells localized in the network, and most importantly, in every subarea there was
a clear trend toward the left side. Many cells were found in the lower lines, maybe depicting
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how a chemoattractant stimulus was sensed before advancing towards the higher parts of the

network.

In another experiment, BMDCs were stimulated for a longer period with less LPS (5 hours
with 100 ng mL−1 LPS in the petri dish). Stimulated cells were then loaded on the attractor
side and migration of unstimulated BMDCs was evaluated after 24 and 48 hours. Also in

this case, the control was filled with few iBMDC. A more consistent migration was noticed
inside the device at 24 h towards the attractor compartment. As shown in Figure 4.9b, LPS

seemed to trigger the production of chemotactic molecules actively recruiting cells towards the
attractor compartment mostly during the first 24 hours. Indeed the number of migrated cells

did not significantly increase in the following 24 hours. When cell distribution was analyzed
in the second experiment, it was possible to see that after 24 hours more cells were found in

every left/attractor subarea compared to the right/control, see Figure 4.10. Moreover most of
the cells were located either in the network, of both sides, or in the lines especially towards

the attractor compartment and in the arrival in front of the attractor compartment. Also in
this case, in line subareas most cells were present in the lower line, but more cells compared to

experiment of Figurefig:butterfly5feb had reached the arrival compartment. In the following
48 hours, cells inside the device continued to move and partly relocated to other subareas, with
a more homogeneous distribution in the left attractor subareas. Since more cells reached the

arrival compartment in front of the attractor side when attractor cells were stimulated for 5 h
with LPS, it was decided to use longer stimulation times in further experiments. The control

side of these first experiments had few unstimulated BMDC.
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(a) Stimulation attractor: 1 mg/mL LPS 30 min

(b) BMDCs localization inside the device

Figure 4.10:
BMDCs localization in different areas of the device 18 h after loading:: a) BMDCs distribution was
analyzed in different subareas of the network, according to strategy explained in 4.3.1 b) Contrast phase image

of BMDCs inside the network, from which BMDCs were counted using Cell Counter plug-in in Fiji.
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(a) Stimulation attractor: 100 ng/mL LPS 5h (b) Stimulation attractor: 100 ng/mL LPS 5h

Figure 4.11:
BMDCs localization in different areas of the device 24h and 48h after loading: a) BMDCs distribution
was analyzed in different subareas of the network after 24 h after loading, according to strategy explained in
4.3.1 b) BMDCs distribution was analyzed in different subareas of the network after 48 h after loading, according
to strategy explained in 4.3.1

In later experiments involving LPS stimulated dendritic cells it was difficult to observe a clear
directed migration as in the first experiments. Many reasons were proposed in order to explain

such results and they will be further discussed. Bonding problems seems to be the most prob-
able cause for undirected migration. They were evaluated in a second time for every device by

observing letters and numbers filling with medium, as explained in section 4.1.1.

In two experiments DCs were stimulated in petri dish with with 100 ng/mL LPS for 7h. In
one experiment it was decided to investigate whether adherent unstimulated BMDCs could

be used as migratory cell. It was found that migration was very reduced, as shown in Figure
4.12a, even though there was still a trend towards the attractor side. Another device,reported

in Figure 4.12b, seemed to have a bad bonding, especially in the migratory side, when it was
refilled with fresh medium during device preparation. It was therefore decided to use it upside

down, in this case non-adherent BMDCs were used as migratory cells. In both cases migration
wasn’t clearly directed towards the attractant compartment, and way more cells migrated in
the device loaded with non-adherent iBMDC. In these experiments the control side was loaded

with a larger amount of BMDCs compared to the first experiments involving BMDCs.
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(a) Stimulation attractor: LPS 100 ng/mL 7h, Mi-
gratory cells: adherent iBMDC

(b) Stimulation attractor: LPS 100 ng/mL 7h, Mi-
gratory cells: non-adherent iBMDC

Figure 4.12:
Chemotactic response of iBMDCs towards LPS stimulated BMDCs: (a) BMDC (iBMDC) migrated
towards attractor (red) vs. control (blue) compartment. (b) BMDC migrated towards attractor (red) vs. control
(blue) compartment.

In these experiments, it can be observed that BMDC continued to enter the networks also
after 20 hours, as in both experiments migrating cells relatively augmented in the following

24 hours. In the second experiment also after 72 hours more cells had entered the network.
Comparing the localization of cells in the experiment of Figure 4.12b at 16 hours and 48 hours,

it was noticed an increased migration towards the control subareas already at 20 hours (data
not shown) the same relative differences between subareas were maintained at 48 hours, see

Figure 4.13, and after 72 hours (data not shown).

(a) Stimulation attractor: 100 ng/mL LPS 7h (b) Stimulation attractor: 100 ng/mL LPS 7h

Figure 4.13:
BMDCs localization in different areas of the device 16h and 48h after loading: a)BMDCs localization
was analyzed in different subareas of the network 16 h after loading, according to strategy explained in 4.3.1,
experiment of 4.12b. b)BMDCs localization was analyzed in different subareas of the network after 48 h after
loading, according to strategy explained in 4.3.1, experiment of 4.12b.

In a final experiment cells were stimulated with an higher dose of LPS (200 ng/mL) for 5 h,
it was decided not to scrape cells from the petri dish and to instead loose them with EDTA.

In this more alive BMDCs were loaded on the attractor compartment and many cells survived
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in the compartment up to 4 days. Migration was monitored as reported in Figure 4.14, and

also in this case there was not a clear directionality towards the attractor compartment. No
significant changes were either observed 4 days after. One possible reason is the incomplete

Corona bonding of the device network noticed in a second time. Anyway it can be observed
that, respect to previous experiments, more cells entered the network already after 18 hours,

maybe reflecting a general higher concentration of chemotactic stimuli. In order to give a
complete picture of the experiment, it must be said that more cells had been loaded in both

attractor and control compartments compared to the previous experiments. Cell distribution
in different subareas did not show any particular trend, as depicted in Figure 4.14b, and it can

be assumed that a chemotactic gradient did not form inside the device.

(a) Migrated BMDC at different time points (b) Stimulation attractor: 200 ng/mL LPS 5 h

Figure 4.14:
Chemotactic response of BMDCs towards LPS stimulated BMDCs and distribution 24 h after
loading: (a) BMDC migrated towards attractor (red) vs. control (blue) compartment. (b) BMDCs localization
was analyzed in different subareas of the network after 24 h after loading, according to strategy explained in
4.3.1.

BMDC infections with Mycobacterium avium:

The devices were then in experiments were it was evaluated chemotaxis towards bacterial in-
fections. Immature BMDCs were first loaded on the attractor compartment and after 3-4 h
were infected with M.avium administrated from the lateral channel, as explained in section

3.2.7.
In the first two experiments the control compartment of one device was filled with some imma-

ture BMDC while in the other device control was filled with medium, as depicted in Table 4.2.
Cells were counted 15 h after administration and no clear response was observed. At EVOS

system bacteria seemed to be too few and not colocalized with cells. No response was observed
24 hours after infection and therefore a second bacterial administration was performed. After

other 24 hours a response direct to the migration compartment was observed by evaluating
cell distribution in different subareas: more BMDCs had entered the left attractor network

and cells localized in the attractor small network and arrival compared to the control side,
as depicted in Figure 4.15a. In this case cells were found in both lower and upper attractor
lines, while in the control lines they were just in the lowest ones. After the second baterial

administration migration was instead more or less homogeneous inside device of Figure 4.15b.
Cell load in the attractor compartment differed for the two devices, more cells were actually
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loaded in device of Figure 4.15a.

(a) BMDC migrated towards M.avium infection (b) BMDC towards migrated M.avium infection

(c) BMDC Localization at 48 h experiment of Fig. 4.15a

Figure 4.15: Chemotactic response of BMDCs at 15 h, 24 h and 48 hours towards
M.aviuminfections: Migration towards attractor (red) vs. control (blue) compartment at 15 h, 24 h, and
48 h after a second bacterial administration. Control: medium b) Migration towards attractor (red) vs. control
(blue) compartment at 15 h, 24 h, and 48 h after a second bacterial administration. Control: unstimulated
c) BMDC localization 24 hours after the second administration of M.avium, analyzed according to strategy
explained in 4.3.1 experiment reported in Figure 4.15a.

When the experiment was attempted a second time, many bacteria were detected in migratory
and control sides. Cell migration was very contained in this experiment, as shown in Figure4.16,

and the differences between attractor and control subareas were minimal:
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Figure 4.16:
Chemotactic response of BMDCs at 20 h, 48 h and 72 hours towards M.aviuminfections:

Migration towards attractor (red) vs. control (blue) compartment at 20 h, 48 h, and 72 h after a second
administration of M.avium. In this experiment bacteria were administered for a longer time and many

bacteria were found in the migratory compartment after 20 hours.

In this experiment there was a lower cell load of BMDCs within the attractor compartment

compared to the experiment reported in Figure 4.15a and this fact was also pointed out in
experiment of figure 4.15b. From these results it can be speculated that the amount of BMDC

loaded and the MOI resulting after bacteria administration in the attractor side are important
for the creation of a functional chemotactic gradient within the device.

BMDCs behavior and motility inside the device were observed across several experiments and
further considerations are reported in section 4.4.1.

4.3.4 MF2.2D9 and RF33.70 recruitment towards antigen presentation reactions

Fourth generation devices (type 1) were then employed in a series of experiments in order
to assess the chemotactic response of MF2.2D9 and RF33.70 towards antigen presentation

reactions. Compared to BMDCs these cell types showed a completely different dynamic within
the device. Cells moves fast in every part of the device and may respond quickly to strong
chemotactic gradients.

As reported in Table 4.3, different cell mixtures and stimulation conditions were tested to

investigate whether in fourth generation device it was possible to chemotactically influence
the migration of these cell types, since third generation device did not fit this purpose. Ex-
periments were performed on device type 1 that were all well bonded, according to section

sssec:bondingres.
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Migratory side Attractor side Stimulation of attractor side Control side Medium

RF33.70 and MF2.2D9
1:1

BMDC* 100 ng/mL LPS 5h and 10 uM peptide 1h Unstimulated BMDC 2% FCS

RF33.70 and MF2.2D9

1:1

BMDC and MF2.2D9**

1:2
100 ng/mL LPS 5h and 10 µM peptide 1h Unstimulated BMDC 2% FCS

MF2.2D9
BMDC and MF2.2D9**

1:2
100 ng/mL LPS overnight and 10 µM peptide 1h Medium 2% FCS

RF33.70 and MF2.2D9
1:1

BMDC and MF2.2D9**
1:3

in-channel stimulation*** Unstimulated BMDC 2% FCS

Table 4.3: Experimental setups of antigen presentation reactions and RF33.70 and MF2.2D9
chemotaxis experiments: Recruitment of OVA cells was evaluated towards differently stimulated DCs in
order to investigate cross-talk between the two cell types. *: + 20 ng/mL GM-CSF; **+ 20 ng/mL GM-CSF
+ 10 µM Ovalbumin 323-339 peptide; *** in-channel stimulation: in channel stimulation was performed with
200 ng/mL of LPS and 10 µM Ovalbumin 323-339 peptide administrated for 4 hours. For further specification
see section 3.2.7.

MF2.2D9 migration in a test device without attractor reaction:

During loading strategies studies one test device Type 1 was loaded with VIOLEt BQ labelled
MF2.2D9 cells in the migratory compartment, and unlabelled and unstimulated MF2.2D9 on

the control and attractor sides. No stimulus was present within the device and it was possible
to fill homogeneously both attractor and control side. Cells entered after 1 hour and 24 hours
later most of the cells migrated towards the sink subareas, 76 cells were in the left side and 16

in the right. There were in the other subareas were 15 cells still showing mobility. This result
may indicate that this cell line do not accumulate in network spaces, as BDMDC, but that

they migrate towards open spaces like the sink when there is more access to fresh medium.

Cell retention by interactions with BMDCs:

In the first experiments, depicted in the first and the second line of Table 4.3, Deep Red labelled
MF2.2D9 and CMFDA labeled RF33.70 and stimulated BMDC/antigen presentation reactions

were loaded on a device type 1. The control side was not completely filled with unstimulated
BMDC. Both devices were well bonded. Most of the loaded MF2.2D9 and RF33.70 cells seemed

to be dead since the beginning, and no cell entered the network during the first 2 days. On the
fifth day the devices were examined again and a surprising result was observed in the device

were MF2.2D9 and RF33.70 migration towards stimulated BMDCs.

Observing cell distribution inside the different subareas, it appear that relatively many cells

were retained in the arrival compartment, as depicted in Figure 4.17a, see Sv1. Moreover
BMDCs seemed to interact with them by stretching dendrites through the 2x2 nm filter,

see Sv2. Violet BMQC-labeling of RF33.70 was no longer detected by the EVOS system
microscope, but Deep Red dye was still detected in some MF2.2D9 cells. Anyway it was not
longer possible to determine to which cell line belonged retained cells. Some MF2.2D9 cells,

and probably also some RF33.70, seemed also to have entered the attractor and the control
compartments, as some fluorescent Deep Red dye was observed inside there (data not shown).

Moreover, by observing cell morphology it seemed that among the retained cells in the arrival
compartment there were some BMDCs, escaped from the attractor compartent. From this

experiment it was hypothesized that some degree of interaction and cross-talking between
BMDCs and T cell hybridomas was possible to happen inside the devices. Retention was not
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observed in the experiment testing antigen presentation reactions, as depicted in Figure 4.17b,

most of the cells were found in the left side of the sink, but no clear retention in other attractor
compartments was observed.

(a) Attractor: BMDCs stimulated with LPS for 5 h(b) Attractor: BMDC antingen presentation reac-
tion

Figure 4.17:
Localization of a mixture of RF33.70 and MF2.2D9 towards BMDCs or antigen presentation
reactions: (a) RF33.70 and MF2.D9 (mixture) localization was analyzed in different subareas of the network 5
days after loading, according to strategy explained in 4.3.1. (b) RF33.70 and MF2.D9 localization was analyzed
in different subareas of the network 5 days after loading, according to strategy explained in 4.3.1.

Another experiment was performed trying to evaluate the timing of chemotaxis when using

these cell lines. Chemotaxis of Deep Red labeled MF2.2D9 was evaluated towards a differently
timed antigen presentation reaction. Two devices were both filled on the attractor side with

BMDC matured one night with 100 ng/mL LPS and loaded with 10 µg/mL of peptide for one
hour on ice and inside the device. Deep Red labeled MF2.2D9 were loaded with BMDCs in the

attractor chamber at 1:2 ratio. Devices were monitored during the first 3-4 hours and at 20, 30
and 48h cells were counted in one device while in the other cells were counted at 30 and 48 h.

In the first device, cells entered one hour after loading and a fair migration was observed during
the first 4 hours, in another device, migration during the first 3-4 hours was more contained,
as can be seen in picture 4.18b. Migration differences in the two devices were maintained in

later time points, as depicted in Figure 4.18b and 4.18c. This high variability can partly be
explained in terms of amount of cells loaded into the device, but this fact regarded just the

migratory compartment that was loaded with more MF2.2D9 in the first experiment. Between
30 and 48 hours cells in sink subareas greatly augmented and this fact is responsible for a

switch in the complexive amount of cells present in left(attractor) and right(control) areas.
This fact happened in the left sink subarea of the experiment depicted in Figure 4.18b and in

the right sink subarea of experiment depicted in Figure 4.18c.
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(a) Attractor: antigen presentation reaction, after
4 hours

(b) Attractor: antigen presentation reaction, late
hours

(c) Attractor: antigen presentation reaction, late
hours

Figure 4.18:
Chemotactic response of MF2.2D9 towards antigen presentation reactions: a) Migration towards

attractor (red) vs. control (blue) compartment at 4 h . b) Migration towards attractor (red) vs. control (blue)
compartment at 20, 30 and 48 h c) Migration towards attractor (red) vs. control (blue) compartment at 30

and 48 h

When cells distribution in the different subareas was compared between the first and the
late hours, see Figure4.19, in both devices MF2.2D9 and RF33.70 localized mostly inside
the network during the first hours while in the later hours, most of the cells were found in

open spaces such as the sink subareas and the arrival compartments. Moreover the difference
of cells in attractor and control arrivals seemed to be irrelevant compared to experiment in

Figure 4.17a.
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(a) Attractor: antigen presentation reaction (b) Attractor: antigen presentation reaction

Figure 4.19:
Localization of MF2.2D9 towards antigen presentation reactions: (a)Deep Red-labeled MF2.D9 local-
ization was analyzed in different subareas of the network 4 h after loading, according to strategy explained in
4.3.1. (b) Deep Red-labeled MF2.D9 localization was analyzed in different subareas of the network 20 h after
loading, according to strategy explained in 4.3.1.

From this experiments it was thought that cell migration of MF2.2D9, and maybe also RF33.70,

needed to be evaluated during the first 24 hours. It was also hypothethized that the antigen
presentation reaction was inefficient and a new strategy was tested.

It was decided to try a last experiments were BMDCs, collected without scraping, were acti-
vated in channel using 200 ng/mL of LPS and 10 µM administrated from a lateral flow for 4

hours. CMFDA-labeled MF2.2D9 were added to stimulated BMDCs after 4 hours and then
CMFDA-labeled MF2.2D9 and Deep Red-labeled RF33.70 were loaded in the migratory at 1:1

ratio. Migration was supposed to be monitored with a Time-Lapse at EVOS system between
the h 6 and 18, but due to technical problems, only the first four hours were monitored, i. e.
until the tenth hour. Cells started to reach the arrival compartment in front of the attrac-

tor/control side during the seventh hour, but still few cells (5-7) from the network had reached
the arrival subarea in front of the attractor/control sides at the tenth hour. Cell distribution

at 18 h seems to confirm the hypothesis that MF2.2D9 and RF33.70 tend to accumulate in the
sink compartment, as depicted in Figure 4.20 Most of the cells were still migrating inside the

network/sink, with no particular overall direction, and it was thought that a chemoattractant
stimulus towards other compartments of the device was not present.
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(a) Attractor: antigen presentation reaction (b) Attractor: antigen presentation reaction

Figure 4.20:
Localization of MF2.2D9 and RF33.70 towards antigen presentation reactions: a) Deep Red-labeled
RF33.70 and CMFDA labeled MF2.2D9 was analyzed in different subareas of the network 6 h after loading,
according to strategy explained in 4.3.1 b) Deep Red-labeled RF33.70 and CMFDA labeled MF2.2D9 was
analyzed in different subareas of the network 18 h after loading, according to strategy explained in 4.3.1

At 24 hours the situation seemed not to have changed and cells were counted at the light

microscope. There were few cells inside the network (21), most of the cells were in the sink
(53) and respectively 12 and 15 cells in front of the arrival compartments. At 48 h hours

the situation seemed to have changed again: some BMDCs had exit the attractor and the
control compartment and were maybe interacting with MF2.2D9 and RF33.70 in the arrival
compartment. It was therefore decided to monitor again the device for 2 hours with the EVOS

system. As depicted in Figure4.21, many Deep Red labeled RF33.70 cells had entered in the
attractor compartment, compared to the control. Deep Red dye was found on both filter

structures and, as it can be observed in Figure 4.21, the dye intensity is much was much less
in the attractor compartment than in the control. This may suggest that a more sustained cell

proliferation of RF33.70 cells took part in the attractor compartment, triggered by cytokines
production during antigen presentation reactions. A more sustained proliferation would imply

CellTracker dilution in RF33.70 progeny. CMFDA-labeling could not be detected and it cannot
be said whether MF2.2D9 had passed or not the filter barriers. Cells were more alive and motile

in the attractor compartment, as can be observed in Sv3 and compared to Sv3.

49



(a) RF33.70 channel Deep Red attractor compart-
ment

(b) RF33.70 channel Deep Red attractor compart-
ment

Figure 4.21:
Different Deep Red CellTracker dye intensities in cells within attractor and control compartments:
Deep Red-labeled RF33.70 were able to enter the attractor(a) and the control(b) compartments of the device,
as traces of the dye are found in the structure of both filter. Images were taken at EVOS system and belong to
a scan of the whole device using the same settings, a consistent difference in dye intensities can be observed in
the two compartments. Images were equally stretched in Fiji.

4.4 Cell migration and interactions, in real-time observations in the Fourth

Generation Device

Some interesting phenomena and facts regarding cell migration and interactions inside the

device have been noticed throughout several experiments. Cell migration and decision-making
can be evaluated in Real-Time at different time-points during ongoing immune reactions inside

the device. BMDCs showed diverse ameboid migratory modes: some cells were elongated and
stretched, while some others had a more rounded and blebbing motility. Observing migrating

MF2.2D9 and RF33.70 migration in Real-Time enable the viewer to speculate upon paths and
interactions between two cell types in early and late time point of experiments.

4.4.1 BMDC behavior and migration in fourth generation device

Upon loading on attractor, control and migratory compartments BMDC had a rounded mor-
phology due to the fact that they were kept in ice before loading. Once inside the device they

start to stretch within 2-3 hours. In the attractor, migratory and control chambers, which
are 28 µm high, they were often attached to the pillars of the chamber and exhibited a 2D
migration with a broad lamellopodium, when they moved from a pillar to another, as can be

observed in video Sv5. The first cells usually enter the network 4-5 hours after loading but
most of the cells entered within 16-18 hours. As reported in section 4.3.3, in some experiments

entrance and migration were mostly concluded after 24 hours, while in other experiments cells
continued to enter in the later hours, as in the experiment of Figure 4.12b.

Cell migration during a probable chemotactic gradient was observed in Real-Time in one
occasion, i.e. the experiment reported in Figure 4.9a. The left (attractor) side of the network,
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where most of the cells localized, was imaged across a period of 2 h with pictures taken every

5 min. Inside the network cells exhibited multiple migratory morphologies, as can be observed
in video Sv6. They often showed an elongate shape and protruded extensions, especially at

the leading edge, while some of them seemed to possess a blebbing motility, like the cell on the
left part of the video Sv6. Some cells had a morphology in-between this two migratory modes

with a rounded rear and a protruding front during motion. Few completely round cells seemed
to be stuck inside the channels, as the cell close to the symbol E in video Sv7. BMDCs often

passed and squeezed along each other, remaining in touch for several minutes before separating
and continuing on their way, as it can be observed videos Sv6, Sv7 and Sv8. In all the videos,

it is easy to observe that cells did not completely occlude the channel, but they rather slided
along the walls of the channels or pushed themself against opposing walls. This means that
confinement is not complete in 8 µm wide microchannels. In video Sv8, it can be observed how

cells polarize before entering the network. In this video it also possible to notice that in 2 cells,
the cell already inside the left channel and the cell moving horizontally under the G symbol,

have a lagging rear that stick on the side of the channels stopping their movement, this is
pointed out also in video Sv9. From a qualitative point of view, the complexive translocation

of moving cells was quite reduced across the two hours of observation, since most of the cell
do not move more then 100-200 µm. Anyway few cells displayed a faster locomotion like the

first cell entering the first channel from the left in video Sv8, that traveled 422 µm inside
the network in 50 min of observation, with a mean instantant speed of 8.4 µm/min. Most

of the BMDC seemed to change direction very often moving forward and backward. This
phenomenon was noticed especially in the line compartment, as can be visualized in video Sv7.

By observing videos and pictures of attractor and control compartments loaded with dendritic
cells, a particular behaviour of dendritic cells was noticed. Some cells tended to adhere to the

2 nm large filter and stretched dendrites through the filter, as noticed in video Sv2. When
a longer time lapse, BMDC cells were indeed found able to squeeze through the filter slots.

Across an observation time of 4 hours some many squeezing and infiltrating behavior were
observed, as reported in video Sv10. Anyway only a cell with a small size completely passed
across the filter, the phenomenon will therefore need further investigations.

4.4.2 MF2.2D9 and RF33.70 cells migration and behaviour

In the network it was possible to observe migration of MF2.2D9 and RF33.70 in Real-Time.
The network provides a space where cell paths and migration can be observed and tracked, as

for example in video Sv11. This video comes from the later Time-Lapse of the last experiment
involving MF2.2D9 and RF33.70, the tracking has been done manually with the plug in Manual

tracker of Fiji. Only few MF2.2D9 were detected moving in this part of the network, their
paths seems to more determined than those that were observed in the previous time point of the

experiment (6-10 h), when some MF2.2D9 had a more undecided behavior, often stopping and
interacting with other MF2.2D9 and RF33.70 encountered in network intersections. A BMDC

escaped from the attractor (or control) compartment is tracked in green and can clearly be
recognized by its different amoeboid motion.

The speeds of the tracked MF2.2D9 was comparable with the previous work of Ryan Hannam,
speeds were almost all between 7 and 15 µm/min plus one cell with a top speed of 22 µm/min.

Automated tracking using Track Mate v.25.1 plug in was attempted in order to test whether
this procedure can be applied to Celltracker labeled migrating cells. It was difficult for the
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software to identify cells labeled with a cytoplasmic CellTracker dye as a single object and to

distinguish between two cells interacting, and further elaboration will be needed to correctly
visualize the paths. As it can be observed in Sv12, tracking inside the maze-structured net-

work resulted to be way more geometrically organized, and it would be easier to utilize for
further studies of cell behavior and migration paths than unconstrained movements inside the

migratory compartment.

It was also possible to evaluate from a qualitative point of view interactions between cells

migrating inside the network. Upon meeting in network intersections, both MF2.2D9 and
RF33.70 were sometimes passing each other through a squeezing behavior, as can be observed

in video Sv13, where a Deep Red labeled RF33.70 squeezes over a MF2.2D9, or interacting for
several minutes before changing direction, as depicted in video Sv14. Some cells, that displayed

high speeds and a kind of predetermined direction, were also seen to push away interacting
cells, like the cell tracked in yellow in video Sv11.

Across several experiments it was noticed that CellTracker dyes tend to be concentrated at
the rear of the cell, in the so-called uropod. Many cells seemed to interact upon meeting in

network intersections by remaining attached to the rear of other cells, that had accumulated
more dye respect the front. Upon those meetings, one cell seems to drag the other one from

the back of the cell, as depicted in Figure 4.22. Images can be visualized in time-lapse in the
first part of video Sv15. In the second part of the video another Deep Red labeled RF33.77,

initially squeezing over a MF2.2D9, is later redirected by another MF2.2D9, always from the
uropod. The cell is first dragged backwards to another channel and then, after releasing, it
repolarizes and exits the network. These observations may implicate a functional role for the

uropod in coordinating and directing migration and will be further discussed.

Finally, since some dendritic cells were able to invade the network, autonomously or thanks
to filter damages occurred during devices microfabrication, some interactions between them

and MF2.2D9 and RF33.70 were observed, see video Sv16. Here a dendritic cell in front of the
minor network is protruding some dendrites while it interacts with several cells, some of them
are Deep Red labeled RF33.70, some are CMFDA-labeled MF2.2D9 and some others might be

other BMDCs escaped from the network. BMDC squeezing through the filter were prevoiusly
supposed to interact with cells on the other side, as it was noticed in the experiment reported

in Figure ?? and in video Sv2. The video Sv16 is a complete picture of the phenomenon.
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Figure 4.22:
Interaction from the uropod region between two RF33.70 cells: RF33.70 cells where labelled with
Deep Red Celltracker, that mainly localize in the cell rear. During image processing a different LUT was
generated using the Green-Blue fire combination in Fiji. In this manner the areas with maximum signals

appear green and the other point are brillian blue. The white arrows are always pointing at the back of the two
cells, where also most of the dye is localized. At 0 min two RF33.70 are interacting with each other, their rear
is in contact, as pointed by the arrow. At min 3, 6 and 9 the cell on the right seems to drag the other one from
the rear. Finally the two cells exit from the network and, at min 15 they are still in contact with their back.
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Chapter 5

Discussion

The novel design of the fourth generation device provides new experimental conditions that

urged to be understood through several tests and experiments. Numerous difficulties and prob-
lems, such as sterility and bonding, needed to be solved during this work in order to fully benefit

from its potentials. Results and problems encountered in this work will now be analyzed and
discerned. A definitive solution for some problems has not been applied yet, but based on this
experience it is now possible to have a concrete approach to them.

5.1 Device fabrication and operations

PDMS-glass bonding: Corona treatment, and sometimes Oxygen plasma, resulted to be
troublesome during the bonding of fourth generation devices and needed therefore to be op-

timized during the present study. There are many possible reasons for unsuccessful bonding
when using these procedures. First, fourth generation design presents a more complex archi-
tecture with higher number and dimensions of loading chambers surrounding an elaborated

network. This fact may reduce the zones of PDMS actively taking part in bonding formation,
and therefore bonding formation along every feature needs to be facilitated since it could re-

quire more time. During Corona bonding the discharge is applied manually to the surface and
surface coverage results are therefore variable. Moreover, the two surfaces can be rearranged

within the first five minutes while after plasma treatment the bonding is initiated immedi-
ately38. Filling up the devices with water during bonding formation and stabilization time

can therefore create a too high pressure and compromise bonding formation. Another reason
identified for unsuccessful bonding while using the first Corona bonding procedure is the non-

evaporation of the organic alcohols and water from the PDMS, and in consequence, in Corona
bonding procedures, it was decided to bond the devices one day after the washing steps. The
time of PDMS treatment was maybe too long and powerful causing an excessive concentration

of surface silanols and a rearrangment of the surface chemical bonds as it has been shown for
oxygen plasma bonding procedures46. Thermal and mechanical stress cause further surface

cracking after surface activation40. For this reason, an even pressure was applied by using a
round lid covered with a clean glove to the activated surfaces. In both Corona and oxygen

plasma bonding it has been observed that keeping the device at high temperatures after bond-
ing procedure increase the strength of the bond and the devices was therefore kept at 70−80◦

C for 10 min39.

Corona bonding is both low-cost and time-saving since it does not require the use of a vacuum

chamber. However the use of Corona bonding needs to be optimize for every application
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in order to obtain satisfactory reproducible results38. The amended bonding procedure for

Corona bonding granted an apparently successful bonding of the PDMS onto the cover glass.
Later, as reported in section 4.1.1, bonding was lost in some experiments. Also filtering damage

needs to be addressed and it was maybe due to a too long exposure to the corona discharges
during channels reactivation. Considering all the problems mentioned above it is questionable

whether Corona bonding completely fits fourth generation devices and their application.

Still, as mentioned in section 2.3.1, PDMS hydrophilicity after oxygen plasma treatment de-

creases rapidly and can be improved by extending the curing time of the polymer, or by organic
solvents extracting procedures41,47. Both procedures consistently reduces the number of low

molecular weight PDMS chains in the bulk material, but they would also increase the cost and
the time necessary in device production. Since the plasma procedure determined during this

work resulted to be the most sterilizing step it may be recommanded for fourth generation
devices. Rapid filling with sterile water of the mounted device after plasma bonding should be

performed at Nanolab on a clean bench and it is likely to maintain PDMS hydrophilicity48.

Bonding problems, especially those noticed during device employement in cell experiments,

need to be taken into account while interpreting results, since incomplete bonding clearly
affected gradient formation and cell recruitment inside the device.

Sterility in fourth generation devices: Sterility is very important since cells loaded into

the device need to be alive during 24-48 hours for an optimal application of the device. Bonding
by Corona does not seem to provide the same degree of sterility of oxygen plasma bonding,

since manual application of Corona discharges does not completely cover the whole surface
exposed to it. Very good sterilization was achieved during ethanol washing, but still some

concern can be express regarding the amount of ethanol retained inside PDMS. Ethanol is
a low swelling solvent in PDMS that does not deform the polymer, and ethanol sterilization

does not change the rate of oxygen diffusion inside PDMS47,49. Anyway an increased surface
hydrophobicity was noticed after ethanol evaporation and this fact, together with ethanol

retention, can possibly reduce device feasibility for cell cultures. Exposure to 302 nm UV light
resulted to be inefficient, but adjusting the exposure time may be a good solution and further
tests should be done in this direction.

Also the steps before bonding procedures were carefully examinated. For example, the wa-

ter used after organic alcohols washing of the glas coverlid might be have been a source of
infections and it was therefore decided to eliminate this step from the washing procedure.
Also administration practices can play a role in infection establishment and it was therefore

important to optimize them.

Loading strategies in fourth generation devices and master types: One of the lim-

iting step in third generation device use was the low and uneven cell loading in different
compartments of the device. Low cell load have been solved by increasing the height of loading

chambers from 9 to 28 µm and by punching inlet and outlet holes closer to the cell storage
compartments. Nevertheless uneven distribution of cells in front of the attractor and the con-
trol networks was still an issue and the low number of cells loaded in the attractor side was

addressed as a cause of poor response to cell-produced chemokine gradients.
Also in the fourth generation design, loading compartments of 9 µm resulted to be inefficient

for proper cell loading with dendritic cells and T cell hybridomas. Devices type 2 could not be
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used in experiments with these cell types. It is therefore recommended to avoid such a design

for the future, at least when big and sticky cells such as dendritic cells are employed.
The strategies found during this work increased the amount of cells loaded in the devices and

loading was evenly distributed in front of the major network. Anyway, the initial channel
designed for cell loading in the attractor/control compartments resulted to be unsuitable. The

ramifications in the higher part of the attractor compartment, designed in order to provide
an even distribution of cells in the attractor/control compartments, constituted a block for

flowing cells that stopped and sticked to each other hindering compartment filling. Loading
in attractor/control compartment was therefore performed from the lateral feeding channel,

that was initially designed for in-channel administration of bacteria and bioactive molecules.
Loading time was adjusted to 30-40 min max when all the wells were filled at once. It should
be stressed out that 10 min is the ideal time to reduce loading procedures’ bias and make

devices more user-friendly. Indeed it is still difficult to load a satisfactory number of cells when
a light microscope is not used to constantly monitor loading procedures. Loading problems

could be solved by augmenting the height of loading channels and cell compartments, while all
the features should be well developed in order to avoid cell blocks.

Cell preparation and survival: Cytotoxicity is to a certain level tolerated in macro ex-
periments, but in this case it is deleterious, because of the relatively low number of cells that
are loaded inside the device and that are required to be more functional as possible in order

to produce strong and sustained chemokine gradients. Therefore implementation of overall
cell survival within the device is important. This could be achieved first by reducing infection

within the device, second by improving cell preparation routines. CellTracker staining pro-
cedures were tested for general cell toxicity and cell activation and did not result deleterious

for MF2.D9 cells and RF33.70, see section 4.2.2. Even though activation of primary bone
marrow-derived (BMDC) dendritic cells was not impaired during staining procedures many

cells were actually dying during long handling procedures. For this reason, it was decided not
to stain these cells. BMDC detaching and preparation resulted to be important in order to

load viable cells on the devices. Many cells died during scraping, while the employement of
non adherent BMDC or EDTA detached cells increased the number of living cells during assay.
This procedure can indeed be found in a protocol for chemotaxis assay in microchannel33.

Mutu dendritic cells (1940) were then proposed as an alternative model in order to avoid
staining procedures and reduce animal use. This cell line is a novel murine dendritic cell line

created from a transgenic mouse expressing the oncogene SV40LgT under the control of CD11c
promoter and with GFP as a reporter gene50. Mice present dendritic cells tumorogenesis, pre-

dominantly in the spleen and in the liver, affecting especially the subtype CD8α positive of
conventional dendritic cells from which the cell lines are derived50. Cells are already mature

and do not requite LPS maturation. They could therefore be employed for studying mature
dendritic cells chemotaxis.

Admnistration of bioactive molecules/bacteria in-channel Even though the use of

pipette plugs seemed to be useful during food dye simulations of diffusion dynamics inside the
device, it was later found that their use is potentially damaging in fourth generation devices,

because small displacements of the plugs create internal currents compromising experiments.
Therefore it is suggested to adopt permanent plugs that would not be moved over time.

During administration of bacteria to cells already loaded in the attractor channel, some prob-
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lems regarding spread of bacteria and loading have been observed. In order to avoid bacteria

diffusion to migratory and control wells in the device, it is suggested to permanently plug the
attractor compartment after bacterial administration. Finding the right combination between

administrated bacteria and BMDC loaded into the attractor chamber is still troublesome, since
a positive chemotactic response was observed just in one occasion, after a second administra-

tion of bacteria. Indeed bacteria and dendritic cells were loaded from the same channel, if the
later feeding channel is too full with cells delivery of the bacteria to the attractor chamber

can be hindered. The time of 2-3 h in between cell loading and bacteria administration was
evaluated Moreover it is important to have enough viable cells inside the device in order to

Gradient diffusion inside the device: Our preliminary experiments suggest a longer time

for gradient formation in fourth generation device, compared to third generation, where dye
accumulation in front of the migratory compartment started within 2 h. They also suggested

that established gradient might be maintained longer, thanks to the draining function of the
sink compartment. It has been argued that slow diffusion microdevices do not fit rapid leuko-

cytes chemotaxis Kim and Wu 24 . Therefore, when rapid moving cells such as T-cells are
employed, it would be optimal to reduce the time for gradient formation within the device.

Moreover the longer the time is, the more the device is prone to any kind of disturbance,
i.e. infections, metabolic wastes derived from cells, lost of bonding and chemokines draining

from attractor/control chamber wells. The difficulty to induce the dye to consistently diffuse
throughout the network, as it was evidenced in some experiences, may be due to excessive

draining from the other wells of the attractors. This phenomenon was noticed while adminis-
tration routes were tested with food dyes and it is another reason for proposing to permanently
plug two of the attractor side wells after cell loading procedures. Diffusion was faster when

the device was not covered by medium, and the sink is indeed able to drain dye surplus main-
taining a correct gradient across the major network. This phenomenon could be exploited by

combining a recirculating pumping mechanisms to the device and creating an hybrid system
between active convective flows and passive diffusion where cells are not directly exposed to

shear stress, as inside the device reported in51. For example the feeding channel could be
part of a circulating mechanism. This flow would not interest migrating cells, and may push

chemokine produced by attractor cells toward the major network more efficiently.

Moreover it should be considered that chemokine production by biological activity in most

cases is not likely to be a continuous flow. For example, in dendritic cells, it is rather a burst
of inflammatory chemokines released upon activation stimulus followed by linear upregulation

of constitutive chemokines in maturing cells14. Anyway our predictions comes from empirical
observations of the system that was in a state of non-equilibrium. A more detailed charac-

terization of the time and the modalities of gradient diffusion should be performed in the
future.

5.2 Chemotaxis assays and antigen presentation reactions

The potential use of the fourth generation device in chemotactic assays relies on the correct

establishment of a chemotactic gradient, depending on many factors such as bonding efficiency
of the PDMS, cell load and viability, and diffusion of chemoattractant molecules that were pre-

viously discussed. A further important factor is that attracting cells are producing significant
amounts of chemokines and that migrating cells are prone to respond to them. Flow cytom-
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etry analysis did not show any considerable change in some activators markers of of BMDC,

MF2.2D9 and RF33.70 after staining procedures. Anyway only one dye was tested, CMFDA,
and probably more tests should be done to be confirm these preliminary results.

Bone marrow-derived dendritic cells chemotaxis: In BMDC chemotaxis experiments,
stimulation of BMDCs with LPS was usually performed on petri dish inside the incubator.

Stimulation for 30 minutes or 5h-7h would be a maturation stimulus, that induce upregulation
of inflammatory chemokines, which are abundantly produced by dendritic cells during the first
hours following a strong maturation stimulus such as LPS14.

During the first experiments a clear directed response towards the attractor compartment was

observed thanks to the strategy identified in section 4.3.1, see Figures 4.10afig:butterfly31gen24.
Since the same dynamic was observed in the experiment reported in Figure 4.15c during den-
dritic cells chemotaxis towards M.avium infection, it may be suggested that whether a gradient

of chemotactic molecules is present inside the device BMDC will have similar distributions with
a neat difference between attractor and control subareas. Such a response is comparable to

the chemotactic responses obtained when BMDCs were used in third generation devices43.
Since such a neat response was not observed in other experiments, it is possible that a chemo-

tactic gradient was not present inside the devices. Regarding LPS stimulated cells, the most
significant causes for inconclusive results are inefficient bonding and unwanted activation of

control BMDCs, whose amount loaded on the devices increased during experiments. Indeed,
flow cytometry results showed that even non-adherent and carefully handled BMDC had a con-

siderable population positive for CD86. Therefore, unstimulated BMDC may not be a perfect
internal control in such experiments. Regarding in-channel infections of BMDC, non optimal
ratio between alive BMDC and bacteria loaded on the attractor compartment, and bacterial

contamination during administration routes seem be determinant causes for undirected and
reduced migration.

In most of the experiments, complexive migration of dendritic cells inside the network seemed

to be time-restricted during the first 24 h. Moreover, most of the cells did not advanced towards
sink, attractor or control compartments, and were retained in the network. This fact needs
to be further analyzed and taking into account the acquired knowledge regarding gradient

formation and cell response times. In case of positive results, it could be explained as a ligand-
induced downregulation of dendritic cells receptors for inflammatory chemokine in maturing

dendritic cells14. In later time points BMDCs may start to attract each other. Indeed a few
dendritic cells reach open spaces, whereas of the cells is retained within the network. In one

occasion, a second consistent migration was observed between 20 and 48 h after loading, see
Figure 4.12. This result is difficult to interpret, but it might mean that part of the cells sensed

a chemotactic stimulus in a second time.

Chemotaxis of T-cells: T lymphocytes isolated from mouse spleen did not show au-
tonomous migration inside the device, and may not be suitable for chemotaxis assays in such

a microchannel device.

On the contrary, both MF2.2D9 and RF33.70 T cell hybridomas showed consistent motility

and migration across all device subareas. During the first experiments most of the migrating
MF2.2D9 and RF33.70 probablt died because they had been kept on ice too long time, since

in further experiments, where cells were not kept in ice more than 1 h, the first cells enter
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the device one hour after loading. Anyway the experiments highlighted possible long term

interactions between BMDC and T cell hybridomas, whereas a significant evaluation of antigen
presentation reactions was not possible because of the late-timing of observation. The reaction

was established again, but it was chosen to fully mature dendritic cells during the night in order
to speed up antigen presentation reaction. Even though a slight localization of MF2.2D9 in

front of the attractor chamber was observed in one device, see Figure 4.18c, when considering
that the control compartment was loaded with medium (in order to avoid pure interactions with

BMDCs), it does not seem that MF2.2D9 cells are sensible to antigen presentation reactions,
in accordance to the previous results obtained by Ryan Hannam in third generation devices.

Since cytotoxic T cells have been shown in vivo to quickly respond to chemokines released by
dendritic cells involved in antigen presentation reactions with T helper cells52, it was chosen

to attempt again the antigen presentation reaction between MF2.2D9 and BMDC in an ex-
perimental setup where migration of MF2.2D9 and RF33.70 could be evaluated in Real-Time.

Due to technical problems, this experiment was not optimally monitored. Moreover filters
inside the device were damaged and allowed relocalization of attractant cells and invasion of

attractor/control chambers by migrating cells. For these reasons it is not possible to properly
evaluate the chemotactic response. The only observation that seems to suggest the occurence
of a sort of immunological reaction is the diverse dilution of Deep Red dye in RF33.70 cells

found in the attractor compartment compared to the cells in the control compartment. Cell-
tracker dilution may indicate that antigen presentation reactions have induced MF2.2D9 to

produce IL-2 and stimulated RF33.70 proliferation53.

Anyway these experiments were performed only a few times and with too many variants that

do not allow to formulate further hypotheses. Right now, it is difficult to say whether or when
chemoattractant molecules will start, and further investigations are needed. It is important to

correctly tailor the activation of BMDC and investigate whether efficient antigen presentation
reactions can be sped up inside the channel by providing the correct combination of stimuli

to BMDCs44. For example, CD40 stimulation is important to fully activate dendritic cells
and maybe expression of CD40L on activated MF2.2D9 could results in more effective antigen

presentation reactions54. The high reproduction rate of these cell lines is a further reason to
speed up the time of gradient formation inside the device, since experiments results might be

compromised by the presence of too many cells. Finally, due to the high speed of migrating
T cell hybridomas and according to the later localization of these cells in the open spaces of
the device, such as the sink and the arrival subareas, it is likely that evaluation of chemotactic

responses should especially take into account localization in front of the attractor chamber.

¡

5.3 Cell Recruitment and Migration in Real-Time

The fourth generation network design provides diverse confined environments where direction
of migration is either imposed, as in the linear channels between the major and the minor

networks, or left up to cells, as in the maze of the major network. Even though a complete
picture of all migration modes and behaviors of cells within the device cannot be delineated

right now, some migratory modes and behavior compatible with models reported in literature
were observed.
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BMDC migration: Dendritic cells are able to protrude in open spaces thanks to their

adaptability to the adhesive properties of the environment. They can indeed switch the rate
of actine polymerization and protrude their anterior network even in the absence of anterior

pulling forces23. Myosin contraction is a second important mechanism in order to retract
cell rear and generate hydrostatic forces that are probably contribuing to cell migration in

confined environments22. Moreover, dendritic cells there have non contractil phases where
the rear of the cell is motionless and is passively dragged by the protruding front. Dendritic

cells are able to move in absence of integrin-adhesion, but just in 3D environment16. Inside
the network BMDCs have shown to be able to move, but the space they encounter cannot

be defined three-dimensional because cells are often not filling the 8 µm width microchannels.
The ability to couple protrusion and contraction in order to generate effective movement along
the channels seem to be cell specific, and it might be a reason fot the multiple morphologies

observed inside the system. Often, the rear was observed lagging behind and sticking to the
wells of the channels, apparently hindering forward displacement. Indeed a mechanism for

functional dissociation of the front and the back of dendritic cells have been suggested16. In
order to increase the confinement of migrating cells channels, 6 µm width may be an efficient

improvement.

Some BMDCs were found able to protrude under intact filter and some of them were detected to

have invaded integer devices. Gaps of 3 µm between lymphatics endothelial cells are sufficient
for DCs and lymphocytes entry into lymphatic vessels6. Nuclear deformation of dendritic cells

is necessary in 2 µm broad spaces33. Some results could therefore be biased by this fact and
the event will need further investigations, even though the number of DCs migrated in intact

device is maybe negligible.

During migration in microchannels dendritic cells alternate moments of high speed with mo-

ments of low speed. This is predominant in immature dendritic cells and it has been hypo-
thetized that the underlying mechanism is calcium regulation, which is responsible also for the

directional persistance,55.

T cell hybridomas: Labelling procedures for multiplexing resulted to be sometimes ineffi-
cient for long term observations. CMFDA CellTracker and Violet BMQ labels were not well

detected by the EVOS system and further improvements needs to be established. However, the
good labelling achieved with Deep Red CellTracker allowed for cell recognition in multiplexed

experiments. Tracking of T cell hybridomas could be used in order to analyze motility and
paths of T cells, and check whether a chemoattractant stimulus is present or not inside the

device. Some qualitative differences were visible from the first hours of migration and later
hours. However, most of these behaviours need to be further and more precisely collocated

into a physiological context, depending on the correct timing and tailoring of immune reactions
inside the device. MF2.2D9 were previously reported by Ryan Hannam to have 2:1 straight

migration over paths presenting 90◦ turns in device of third generation. Fourth generation
devices present an X-shaped network were the same analysis could be performed over several
experiments. This could be used to investigate mechanisms regulating T cell migration and

directions in lymph nodes and other interstitial tissues, where diverse models such as random
migration and environmental guided migration have been proposed56,57.

The uropods of T cell hybridomas have been observed to capture other cells and redirect their
migration via adhesive mechanisms. Indeed, the role of this organelles and myosin II filled
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structure is emerging, and it seems to be involved in several communication and interacting

mechanisms among leukocytes,58. Further investigations involving fluorescent label target-
ing subcellular components of the uropod, or transfection of fluorescently localized proteins,

could be used in order to define molecularly specific functions of the uropod and subcellular
components involved the adhesive cell recruitment observed during time-lapses.

The observation of uropod dynamics and the effects upon cell migration of MF2.2D9 and
RF33.70 is a proof that the device provides a geometrically controlled environment where

interactions between cells can be resolved at an high resolution, maybe at an higher level than
intra-vital microscopy12.
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Chapter 6

Future Developments

The device is prone to be used in several application for the study of immune reactions in

Real-Time. In order to fully benefit from its potential important parameter and technical
improvements are needed. The the most important are control of immunological reaction

timing and efficiency, application of more sophisticated imaging techniques in order coupled
with efficient labelling techniques, and elaboration of mathematical models for tracking cell
paths and interactions within the device. Moreover, device design could be ameliorated in

order to speed up gradient formation and the amounts of cell loaded inside. All the features
within the master used for the production of the device by soft lithography needs to be well

developed on both sides, and increasing the height of loading channels is an important step to
be taken into account in order to ameliorate device performance. Employing fibrin/collagen

coating would moreover ameliorate the cell culture condition and migration within the device,
or alternatively, the use of other materials such as hydrogels could be investigated in order to

provide cells a more physiological microenvironment24. Once optimal experimental conditions
have been established, numerous applications of such a design are possible.

Behaviour and migration of different subsets of primary dendritic cells towards a multiple
chemoattractant stimuli, such as viral and bacterial infections, could be investigated in such

a design where a small amount of these rare cells could be loaded and monitored59. In the
same way, the migratory routes and tissue targets of locally imprintend effector lymphocytes

or memory cells could be recreated in coculture systems inside the attractor chamber of the
device4.

From a chemotaxis point of view we would like to address the mechanisms regulating näıve T
cells and mature dendritic cells recruitment and retention inside T-cell zones in lymph nodes

(LN), which are still not completely elucidated. We would like to use a systemic multicellular
approach and are currently working on the introduction of LN stromal cells inside the system,60.

Moreover, an alternative use of the device subareas could be used for studying antigen pre-
sentation reactions. Labelled and antigen loaded mature DCs could be loaded on the sink

compartment and differently labelled T cells on the migration entries. In this way, transient
and prolonged interactions between the two cell population could be evaluated, similarly to

the visualization of antigen-presentation reactions during in vivo microscopy61.

Finally, the device could be employed in high resolution in order to visualize subcellular mech-

anisms regulating migrating cells movements and chemotaxis at a single-cell level, for example
the role of diverse uropods components could be evaluated during cell-cell contacts. The device
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is prone to be used in single-cells analysis that can be further integrated in order to have a

complexive and detailed vision of migration during cell chemotaxis62.
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Chapter 7

Conclusion

This work aimed to point out possible applications of our newly designed fourth generation

device for studying cell migration and chemotactic recruitment. Several new procedures were
tested and implemented in order to employ such a device in chemotactic and in real-time

monitored studies of cell migration. The new design offer a broader network to be observed
and multiple environments can be compared, such as migration in space with an imposed
direction, lines, and a multiple choice environment were decision making of migrating cells

can be visualised in Real-Time. A chemotactic response was observed in some occasions, and
resulted to be strongly dependent on a proper microfabrication of the device, a correct way of

stimulation of cells and the amount of cell loaded in the attractor compartment. Indeed these
two latter aspect of the design need to be improved in order to augment the suitability of the

design for biological experiments. Once established routines for cell loading and stimulation,
migration of slow moving cells could be evaluated and compared using the strategies identified

during this work. Instead, for the employement of rapid migrating cells, it is important to
increase the speed of gradient establishment across the major network.

Real-time observation of cell migration during time-lapse, enlarge the range of possible ap-
plications of the device for the study of cell migration and chemotaxis at a single-cell level.

The design resolve the structural determinants of the space surrounding cells, it is therefore
possible to visualize how cells enter, move and interact in confined spaces.
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12. Tim Lämmermann and Ronald N. Germain. The multiple faces of leukocyte interstitial

migration. Seminars in Immunopathology, 36(2):227–251, 2014. ISSN 18632300. doi:
10.1007/s00281-014-0418-8.

13. Patrick Blanco, a. Karolina Palucka, Virginia Pascual, and Jacques Banchereau. Dendritic
cells and cytokines in human inflammatory and autoimmune diseases. Cytokine and Growth

Factor Reviews, 19(1):41–52, 2008. ISSN 13596101. doi: 10.1016/j.cytogfr.2007.10.004.

14. Federica Sallusto, Belinda Palermo, Danielle Lenig, Minja Miettinen, Sampsa Matikainen,

Ilkka Julkunen, Reinhold Forster, Ralf Burgstahler, Martin Lipp, and Antonio Lanza-
vecchia. Distinct patterns and kinetics of chemokine production regulate dendritic cell

function. European Journal of Immunology, 29(5):1617–1625, 1999. ISSN 00142980. doi:
10.1002/(SICI)1521-4141(199905)29:05¡1617::AID-IMMU1617¿3.0.CO;2-3.

15. Yuan Liu and Guixiu Shi. Role of G protein-coupled receptors in control of den-
dritic cell migration. BioMed Research International, 2014, 2014. ISSN 23146141. doi:

10.1155/2014/738253.
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