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. Abstract

The purpose of the present study is to describe and characterize the anisotropic flow and 

fracture behaviour of a high-strength aluminium alloy. To this end, 20 mm  thick plates of 
AA7075-T651 aluminium alloy have been tested. Different specimen geometries were used to 
investigate various stress states. Each specimen was machined in different directions of the 
plate to enlighten the anisotropy of the material. For all tests, the plastic flow exhibited a slight 
anisotropy while the failure strain and failure modes showed a very important dependence to 
the loading direction. 

A microstructure analysis of the virgin material was performed by scanning electron 
microscope (SEM) and electron back-scatter diffraction to identify its texture, grain shape and 
particle distribution. A transmission electronic microscope analysis gave information of the 
precipitate free zones and their composition. 

Tensile tests were performed on smooth axisymmetric specimens under uniaxial 
tension. Tensile tests were also conducted on notched axisymmetric specimens of notch radii 

2.0 mmR  and 0.8 mmR  to obtain higher stress triaxiality states. Shear tests were 
performed on butterfly specimens and compression tests were performed on cylindrical 
specimens. Fracture surface analyses were carried out by SEM to identify the failure modes, 
supported by the microstructure analysis. 

Based on the plastic anisotropy observed experimentally, the Yld2004-18p anisotropic 
yield function proposed by Barlat et al. (2005) was chosen to model the elasto-plastic 
behaviour of the AA7075-T651 alloy. The plastic parameters were calibrated using seven in-
plane uniaxial tensile tests, a compression test in the normal direction of the plate and a shear 
test in the rolling direction. Numerical simulations of all the experimental tests were performed 
using the anisotropic elasto-plastic model. Predicted stress-strain curves were in very good 
agreement with the experimental curves for all tests including the tensile tests on notched 
specimens, which were not used in the calibration of the model. The overestimation of 
predicted stress level, generally observed (e.g. by Wilson, 2002) with notched specimens and 
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isotropic pressure independent yield function, was significantly decreased when taking into 
account anisotropy. The stress and strain states on elements where failure is experimentally 
observed were evaluated. The establishment of a failure locus (relation between failure strain 
and stress triaxiality) was also discussed. 

Analytical approaches were used to gain some insight of the failure process. First, the 
void growth approach proposed by Rice and Tracey (1969) was extended to an anisotropic 
matrix. Then, the usual localization criterion (Rice, 1976) was developed with various 
constitutive characteristics to account for the shape of the yield function, non-associative 
plastic flow, large deformations and thermo-mechanical couplings. 

For industrial applications, a phenomenological failure criterion based on “plastic 
work”, called the anisotropic extended Cockcroft-Latham (AECL), was proposed. The criterion 
was calibrated using the seven uniaxial in-plane tensile tests and the shear test performed in the 
rolling direction. Numerical simulations of all tests were, once again, performed accounting for 
plastic anisotropy. A parameter study was carried out to enlighten the influence of parameters 
such as the plastic anisotropy and the failure anisotropy. The predicted failure strain and failure 
modes were not accurate enough to give predictive capability to this failure criterion in all 
material tests. 

Finally, this anisotropic failure criterion was also used in numerical simulations of some 
impact tests on AA7075-T651 plates with ogival and blunt projectiles. A thermoelasto-
thermoviscoplastic model with anisotropic yielding was used and as for the material tests, a 
parameter study was performed. Ballistic limits were predicted and compared with the 
experimental results obtained by Børvik et al. (2010). It was found that the anisotropy of 
plastic flow and failure had almost no influence at very high impact velocities, while it had a 
substantial effect at impact velocities close to the ballistic limit. The introduced anisotropy was 
not found to improve the ballistic limit prediction for all cases, and also other parameters (e.g. 
yield shape, temperature coefficients and contact algorithms) have a prominent influence on 
the predicted ballistic limit. However, supported by experimental observations of non-
axisymmetric failure modes (Pedersen et al., 2011), both the plastic anisotropy and the failure 
anisotropy are believed to be important ingredient of the constitutive model. 
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. Résumé

L’objectif de l’étude est d’analyser les effets de l’anisotropie sur le comportement et la 
rupture d’alliages d’aluminium haute-performance. Pour ce faire, le cas d’étude choisi 
est l’alliage AA7075-T651 fourni en tôles de 20 mm  d’épaisseur obtenues par 
laminage. Des éprouvettes de géométries différentes sont utilisées pour soumettre le 
matériau à divers états de contraintes. Chaque type d’éprouvette est usiné dans 
différentes directions de la tôle afin de révéler l’anisotropie du matériau. La faible 
texture cristallographique de l’alliage engendre une légère anisotropie de l’écoulement 
plastique. L’anisotropie de la rupture en traction uniaxiale (déformation à rupture et 
mode de rupture) est, quant à elle, très prononcée. 

Une analyse de la microstructure du matériau vierge est effectuée à des échelles 
différentes. La morphologie des grains et la répartition des particules de l’alliage sont 
obtenue par microscopie optique. Des observations au microscope électronique à 
balayage (MEB) et par EBSD permettent d’identifier l’orientation des grains et d’en 
déduire la texture du matériau. Enfin, une analyse par microscope électronique à 
transmission offre des images le long des joints de grains, montrant l’absence de 
précipités (PFZ) et permettant d’évaluer leur composition. 

Des éprouvettes axisymétriques cylindriques sont utilisées pour soumettre le 
matériau à de la traction uniaxiale. Ces éprouvettes sont usinées dans sept directions du 
plan de la tôle de 0° à 90° ainsi que dans l’épaisseur de la tôle (éprouvettes miniatures). 

Des éprouvettes axisymétriques avec rayon d’entailles 2.0 mmR  et 0.8 mmR  sont 
usinées dans le plan de la tôle à 0°, 45° et 90° et utilisées pour atteindre des triaxialités 
plus élevées. Des essais de cisaillement sont réalisés à l’aide d’éprouvettes papillon 
usinées dans le plan de la tôle à 0°, 45° et 90°. Pour finir, des essais de compression 
uniaxiale sont effectués sur des éprouvettes cylindriques usinées dans le plan de la tôle à 
0°, 45° et 90° et dans son épaisseur. Le temps, la force et le déplacement de la machine 
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sont enregistrés afin de tracer les courbes de contrainte-déformation. Certains essais tels 
que les essais de cisaillement sont réalisés munis d’une caméra. La corrélation d’image 
est alors utilisée pour identifier les champs de déplacement et en déduire les 
déformations locales, qui sont des données importantes lors d’essais inhomogènes. Tous 
les faciès de ruptures sont observés au MEB et l’étude de microstructure réalisée en 
amont permet d’identifier les modes de rupture. 

Pour représenter l’anisotropie de la plasticité observée expérimentalement, la 
surface de charge anisotrope proposée par Barlat et al. (2005) pour modéliser le 
comportement elasto-plastique de l’alliage AA7075-T651 a été utilisé. Les paramètres 
du modèle sont calibrés à partir des sept essais de traction uniaxiale effectués dans le 
plan de la tôle, du test de compression effectué dans l’épaisseur de la tôle et du test de 
cisaillement effectué dans la direction de laminage. Les simulations numériques de tous 
les essais expérimentaux sont réalisées avec le modèle elasto-plastique ainsi calibré. Les 
courbes de contraintes-déformations simulées sont en accord avec les courbes 
expérimentales pour tous les essais, y compris les essais sur éprouvettes entaillées 
n’ayant pas été utilisés pour calibrer le modèle. On s’aperçoit notamment que la 
surestimation du niveau de contrainte, généralement observée pour ces derniers tests, est 
atténuée par la prise en compte de l’anisotropie de la plasticité. Les états locaux de 
contrainte et déformation des éléments situés aux lieux de rupture obtenue 
expérimentalement sont extraits et permettent d’expliquer les observations précédentes. 
Ces états locaux pouvant être particulièrement inhomogènes amènent  à se poser la 
question de la pertinence d’une unique relation entre déformation à rupture et triaxialité 
de contrainte. 

Plusieurs approches analytiques sont ensuite évaluées dans l’espoir de modéliser 
la rupture de notre alliage. L’analyse de croissance de cavité proposée par Rice et 
Tracey (1969) est ici développée pour un modèle de plasticité anisotrope. Cette analyse 
révèle que le principal effet du modèle anisotrope se limite à la définition anisotrope du 
taux de déformation plastique et de la triaxialité. Ensuite, la théorie de la localisation 
(Rice, 1976) est développée pour différents modèles constitutifs établis dans un cadre 
thermodynamique. L’influence de la forme de la surface de charge, celle de la non-
associativité de l’écoulement plastique, celle de la prise en compte des larges 
déformations ainsi que celle de conditions de chargement adiabatiques sont évaluées. 
Ces développement analytiques ne mènent pas à un critère de rupture directement 
utilisable pour le cas d’étude qu’est l’alliage AA7075-T651, mais apporte une vue 
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d’ensemble sur les théories existantes, leurs qualités prédictives et les limites de leur 
champs d’application. 

Pour les applications industrielles, un critère de rupture phénoménologique 
dénommé AECL (Cockcroft-Latham enrichi et anisotrope) a été développé pour rendre 
compte de l’anisotropie. Ce critère, basé sur une variable d’endommagement liée au 
travail plastique, non-couplée pour cette étude, est calibré à partir des sept essais de 
traction uniaxiale effectués dans le plan de la tôle et du test de cisaillement effectué 
dans la direction de laminage. À nouveau, les simulations numériques de tous les essais 
expérimentaux sont réalisées avec le modèle elasto-plastique anisotrope et le critère de 
rupture anisotrope ainsi calibré. Une étude est réalisée pour mettre en lumière les 
influences respectives de l’anisotropie de la plasticité et celle de l’endommagement. Les 
déformations à rupture et modes de ruptures obtenus numériquement ne sont pas assez 
précis pour qualifier le critère AECL de prédictif. Cependant, les résultats obtenus pour 
les tests ayant servis à calibrer le modèle sont corrects en termes de déformation à 
rupture, et une extension du domaine de calibration est envisageable. Dans tous les cas, 
ce critère de rupture AECL associé à une technique d’érosion des éléments n’est pas 
capable de prédire les modes de rupture. Il est d’ailleurs objecté qu’un raffinement du 
maillage est une condition sine qua none de prédiction des modes de rupture.  

Finalement, ce critère de rupture AECL est utilisé pour les simulations d’impact 
de tôle par des projectiles à extremité ogive et tronquée. Un modèle thermoelasto-
thermovisocoplastique avec surface de charge anisotrope est utilisé et la même étude 
paramétrique que pour les tests sur éprouvettes simples est réalisée. Les limites 
balistique sont évaluées et comparées aux limites obtenues expérimentalement par 
Børvik et al. (2010). L’anisotropie de l’écoulement plastique et du critère de rupture 
n’ont qu’une très faible d’influence pour les vitesses d’impact élevées. Par contre, pour 
les vitesses d’impact proche de la limite balistique, l’anisotropie peut modifier la 
prédiction numérique de façon non-négligeable. Les résultats obtenus ne sont pas 
systématiquement améliorés avec l’anisotropie. Néanmoins, l’anisotropie est un 
ingrédient important du modèle puisqu’il est le seul capable de reproduire les modes de 
ruptures non-axisymétrique observés par Pedersen et al. (2011). L’anisotropie mérite 
donc, au même titre que d’autres paramètres influents (forme de la surface de charge, 
coefficients thermiques ou algorithme de contact), d’être prise en compte lors du choix 
de modèle constitutif. 

Les conclusions de cette étude sont enrichies d’une étude préliminaire réalisée 
dans le cadre d’un projet plus large de modélisation des PFZs. Un modèle numérique de 
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grain et de joint de grain avec une couche unique d’éléments 3D est simulé. Les 
modeles de plasticité attribués à l’intérieur des grains et aux PFZs diffèrent afin de 
reproduire qualitativement la localisation des déformations aux joints de grains. 
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. Notations

The notations used in the manuscript are summed up in the table below. The variables with no 
denomination and the notations used in the Appendix are not reported for the sake of lightness. 
 

x  scalar 
, ix x  1st order tensor (vector) and components 1,2,3i  
, ,ij kx xx  2nd order tensor, components , 1,2,3i j  and principal values , ,k I II III  
, ijklXX  4th order tensor and components , , , 1,2,3i j k l  

, : ,  Simple, double contracted and dyadic product between tensors 
diag  diagonal matrix 
tr  trace of a matrix 
RD rolling direction of the plate (also denoted 0° direction) 
TD transverse direction of the plate (also denoted 90° direction) 
ND normal direction of the plate (also denoted thickness direction) 
LS, TS longitudinal and transverse direction of the specimen 
EBSD electron back-scatter diffraction 
SEM scanning electron microscope 
TEM transmission electron microscope 
EDS energy dispersive spectroscopy 
PFZ precipitate free zone 
GB grain boundary 
HAGB high angle grain boundary 
LAGB low angle grain boundary 

G nl , PFZl  average length of a grain in the n  direction and of a PFZ 
GT generalized tension 
GS generalized shear 
GC generalized compression 
CT uniaxial compression test 
ST shear test 
UT uniaxial tensile test 
NT2.0 tensile test on notched specimen of notch radius 2.0 mmR   
NT0.8 tensile test on notched specimen of notch radius 0.8 mmR   

 stress tensor 
s  deviatoric stress tensor 
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I  2nd order identity tensor 
1I  first invariant of the stress tensor 
2J  second invariant of the deviatoric stress tensor 
3J  third invariant of the deviatoric stress tensor 
H  hydrostatic stress 
eq  von Mises equivalent stress 
 normalized third stress invariant 

L  Lode angle 
L  Lode parameter 
*  stress triaxiality ratio 
 Cauchy stress obtained experimentally 

 logarithmic longitudinal strain obtained experimentally 
 strain tensor 
e  elastic strain tensor 

E  Young’s modulus 
E  apparent Young’s modulus 

 Poisson ratio 
 shear modulus 

K  bulk modulus 
 density 
tE  elasto-plastic tangent modulus 
,a R  geometrical parameters of the notched specimens 
0 0,h D  initial height and diameter of the cylindrical specimens 

F  reaction force measured by the machine 
0 0 0 0, , ,L D A V  initial length, diameter, area, and volume of a specimen 
, , ,nL D A V  current length, diameter in the n  direction, area and volume of a specimen 

DIC digital image correlation 
eff  effective strain obtained experimentally 
f  effective strain at failure obtained experimentally 
 in-plane direction of a specimen 

R  strain ratio in the  direction 
p
n  current plastic strain rate in the n  direction 

r  flow stress ratio in the  direction 
biaxR  strain ratio for compression tests in the ND 

biaxr  flow stress ratio for compression tests in the ND 
C  yield stress under uniaxial compression in the ND 

ˆ ˆ,  corotational stress tensor and corotational rate-of-stress tensor 
, ,R F U  rotation, deformation gradient and right stretch 2nd order tensors 

d  rate-of-deformation tensor (symmetric part of the velocity gradiant) 
d̂  corotational rate-of-deformation tensor 
ˆ ˆ,e pd d  elastic and plastic part of d̂  
ˆ

elC  4th order elastic tensor 
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f  yield function 
 equivalent stress defined by a chosen yield function 
 plastic multiplier 

p  equivalent plastic strain rate (conjugate of ) 
p accumulated plastic strain associated to p  

fp  accumulated plastic strain at failure 
Yld2004-18p anisotropic non-quadratic yield function from Barlat et al. (2005) 

 Yld2004-18p potential 
m  yield shape parameter 
ˆ ˆ, , ,ij ijc cC C  4th order tensors and components from the Yld2004-18p function , 1..6i j  
T  deviatoric transformation 4th order tensor 

 plastic hardening law 
0  yield stress under uniaxial tension in RD 
,Q C  Voce hardening law coefficients 

0PFZ  yield stress inside the PFZ 
,PFZ PFZQ C  Voce hardening law coefficients for the PFZ 

ˆ , ,T T T
el EC  thermo-visco versions of ˆ , ,el EC  

f  friction coefficient between a AA7075-T651 specimen and steel platens 
eh  mesh size 

RT Rice and Tracey 
0 0,R R  initial void radius and average void growth rate 
e , e , eR  spherical coordinate system associated to the spherical coordinates , ,R  

d  solid angle 
, ,S E  value of , ,s  tensors at infinity 

,e iQ Q  external and internal power 
, ,m vV V V  total, matrix and void volume 
, vS S  surface of matrix at infinity and surface of the void 

, ,D Eu u u  total, radial and non-radial velocity field 
,D E  amplitude of radial and non-radial velocity fields 
,H eq  hydrostatic and equivalent stress at infinity 

,p P  equivalent plastic strain rate (conjugate of eq ) and value at infinity 

RRE  radial component of the tensor E  
RT  third invariant of the strain rate tensor 

M Hill matrix composed of , , , , ,F G H L M N  parameters 
, hh x  Hill parameter in RT and Hill version of any variable x  

LC localization condition 
, ,i a Jx x x  isothermal, adiabatic and Jaumann formulation versions of any variable x  
, ,L E H  4th order tangant modulus, elastic modulus and elasto-plastic modulus 
 thermo-mechanical potential 

F  plastic flow potential 
s  entropy 
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T  temperature 
th  thermal dilatation coefficient 

thc  specific heat 
,i i  inelastic internal variables and associated driving forces 
 spin tensor: anti-symmetric part of the velocity gradient 

h hardening modulus 
n  normal vector to the band 
g  intensity of the discontinuity vector 

,k ijh h  hardening modulus solutions of the LC , , 1,2,3i j k  

ch  critical hardening modulus 
mT , rT  melting and reference temperature 

CL Cockcroft-Latham failure criterion 
IT integral Tresca failure criterion 
(A)ECL (anisotropic) extended Cockcroft-Latham failure criterion 

, CD D  damage variable and critical damage 
0 0,S s  damage evolution parameters 
 weighing parameter of the damage evolution 
, iPP  anisotropy diagonal matrix for the damage evolution and components 1..6i  
,A As s  anisotropy coefficients of the damage evolution 

CW  critical plastic work 
0CW , CshearW  CW  under uniaxial tension and shear in RD 

iv , rv  impact and residual velocity of a projectile 

blv  ballistic limit of a target 
,a p  Recht-Ipson law coefficients 
th  Taylor-Quinney coefficient 

RVE representative volume element 
GL , PFZL  length of a grain and PFZ in the numerical model 
G PFZA  numerical ratio between grain and PFZ length 
G PFZa  experimental ratio between grain and PFZ length 

 

 

The Voigt notation used to transform the stress and strain tensors into vectors (LSTC, 2007) is 

 ,
2
2
2

xx xx

yy yy
xx xy zx xx xy zx

zz zz
yy yz yy yz

xy xy
zz zz

yz yz

zx zx

sym sym
 (1) 

Also, a linear transformation applied to this 1st order tensor in Voigt notation is a 6 6  matrix 
and corresponds to a 4th order tensor applied to a symmetric 2nd order tensor with usual 
notations. 



 

 
 

Chapter 1. Introduction

1.1 Background

Context

For the last decades, components made of high-strength aluminium alloys have been 
increasingly used by the industry. For such alloys, the modelling of fracture has become 
important as the strength is obtained at the expense of ductility. These components are obtained 
after various manufacturing operations, e.g. extrusion and rolling processes, which impose 
extremely large deformations to the material. These operations may lead to strongly anisotropic 
properties, which cannot always be neglected if one wishes to correctly represent the 
mechanical behaviour of the processed material. On the one hand, the yielding is often 
anisotropic when texture exists, i.e. there is a preferential crystallographic orientation of the 
grains. This anisotropic yielding can have an influence on the plastic flow and therefore on the 
stress state. On the other hand, the failure process, resulting in a failure mode and a strain at 
failure, can also be anisotropic. The plastic anisotropy is believed to have an influence on the 
failure through the resulting stress state and through the deformation incompatibilities between 
grains. Also, the anisotropic distribution of microstructural features (such as particles and grain 
boundaries for instance) is believed to play a role in the failure process. For industrial 
applications, a quantification of the influence of these multiple anisotropies is helpful to ensure 
relevant and efficient modelling. Depending on the purpose, different modelling scales or 
approaches might be necessary to exhibit correctly these anisotropies. 

AA7075 T651 aluminium alloy

This thesis focuses on the high-strength aluminium alloy AA7075-T651 in the form of 20 mm 

thick plates. This alloy was developed by the Japanese company Sumitomo metal, in 1936. In 
the later 40’s the Imperial Japanese Navy started to use this alloy in the Mitsubishi A6M Zero 
fighter’s air frame. Then, the AA7075 was sold under various trade names such as Zircal, Ergal 
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and Fortal Constructal (www.wikipedia.com). Due to its high strength-to-density ratio, this 
alloy is often used in transport applications such as automotive or aviation industries, but also 
in civil and military protection systems (Pedersen et al., 2011). However, the AA7075-T651 
alloy has low resistance to corrosion, which limit the applications to non-corrosive 
environments. Depending on the application, the loading conditions seen by the alloy are from 

quasi-static ( 3 110 s ) to impact loading ( 6 110 s ), and the stress triaxiality state varies from 

negative (compressive) to highly positive (multiaxial tension). These various loadings will be 
investigated in the following of the thesis. Chapter 2 presents the microstructural study 
performed by scanning electron microscope and transmission electron microscope on the 
AA7075-T651 in order to identify its texture, grain morphology and grain boundary 
characteristics. 

1.2 Plastic anisotropy towards failure

Plastic anisotropy

Since metallic materials are often provided as extruded or rolled plates, the deformation-
induced plastic anisotropy is an important aspect of their material behaviour. Due to their 
crystallographic texture, the yielding behaviour of such materials depends on the loading 
direction. The plastic behaviour of a metallic material is usually described through a yield 
surface in stress space, the associative flow rule and an isotropic hardening law. Since the 
pioneering work of Hill (1948), a tremendous effort has been made during the last two decades 
to improve the modelling of anisotropy in macroscopic models (Hill, 1987, 1990; Van Houtte 
et al., 1989; Arminjon and Bacroix, 1991; Barlat and Chung, 1993; Karafillis and Boyce, 1993; 
Arminjon et al., 1994; Barlat et al., 2003; Bron and Besson, 2004; Van Houtte and Van Bael, 
2004; Choi et al., 2006; Leacock, 2006; Aretz et al., 2007; Hu, 2007; Kim et al., 2007; 
Monchiet et al., 2008; Soare and Barlat, 2010). The modelling of plastic anisotropy is still a 
difficult task for macroscopic models and particularly for complex multiaxial paths. The use of 
crystal plasticity theories can help in this direction, but their use is restricted by computational 
limitations and the observation that they do not predict the flow stress and the plastic flow 
simultaneously, as shown for instance in Darrieulat and Montheillet (2003) and Lopes et al. 
(2003). 

Hydrostatic stress influence

Most theories of plasticity assume that the hydrostatic pressure has no or very limited effect on 
the strain hardening of metals and metallic alloys. Another common assumption in these 
theories is plastic incompressibility. Since the beginning of the eighties, Richmond and Spitzig 
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(1980), Brownrigg et al. (1983), Spitzig and Richmond (1984) and Brünig (1999) reported 
pressure dependence of the flow stress for metals such as steel and aluminium. The effect of 
this observation is an increase in flow stress of metals with hydrostatic pressure. In these 
studies (despite the claimed dependence of the flow stress on the hydrostatic pressure), the 
plastic dilatancy is considered negligible and not related to the normality rule. Even though the 
effect of hydrostatic pressure was not directly studied, Freed and Sandor (1985) observed 
plastic volume change in uniaxial tension of the aluminium alloy AA7075-T651. They found 
elastic and plastic volume changes of similar magnitude and suggested plastic anisotropy to be 
the prime cause of this plastic compressibility. 

Modelling of the AA7075 T651 plastic anisotropy

The objective of Chapter 3 and Chapter 4 of this thesis is to analyse in detail the effects of 
anisotropy on the mechanical behaviour and constrained plastic flow for the high-strength 
aluminium alloy AA7075-T651. In these chapters, only its effects on the yielding behaviour of 
the alloy are considered. Though some works (see e.g. Stoughton and Yoon, 2009; Rousselier, 
2010) have studied the effect of anisotropy on strain hardening of aluminium alloys, elastic 
behaviour and strain hardening are here assumed isotropic. The hardening parameters are 
identified from tensile tests in the rolling direction of the plate. The yield surface is represented 
by the linear transformation-based yield function Yld2004-18p proposed by Barlat et al. 
(2005), and a corotational formulation (Belytschko et al., 2000) is adopted to simplify the 
formulation of plastic anisotropy. The stress measure is defined with respect to the un-rotated 
configuration and expressed in the rectangular Cartesian coordinate system corresponding to 
the principal axes of anisotropy of the material. This formulation was successfully used by e.g. 
Grytten et al. (2008) to model the plastic behaviour of the aluminium alloy AA5083-H116. The 
defined yield function together with the associative flow rule presumes pressure insensitivity. 
In this thesis, the yield criterion is identified through tension tests on smooth tensile specimens 
with longitudinal axes aligned at different directions with respect to the rolling direction of the 
plate and compression test in the thickness direction of the plate. Both the directional yield 
stresses and the ratios of transverse to thickness plastic strain increments are measured and 
used to identify the coefficients of the yield function. The shear test performed in the rolling 
direction is also used to enhance the calibration by using a trial and error method. The model is 
then applied in non-linear finite element simulations to reproduce the plastic behaviour of 
different type of specimens (notched axisymmetric specimens, butterfly shear specimens and 
cylindrical specimens for compression tests) cut from different material directions. It will be 
shown that the effects of anisotropy must be taken into account for a good representation of the 
mechanical behaviour of the alloy at various stress states. 
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Plasticity towards failure

In addition to anisotropic yielding (Hill, 1948; Barlat et al., 2005; Rousselier et al., 2012), 
some alloys also show anisotropic failure (e.g. Chen et al., 2009; Holmen et al., 2013). The 
stress triaxiality and the strain intensity are usually considered the most important factors that 
control the initiation of fracture. Therefore, the deformation and loading histories are important 
to correctly predict failure. In that context, using an appropriate anisotropic model for 
aluminium alloys is an essential step to enable a proper description of the damage leading to 
anisotropic fracture. In Chapter 5, based on the experimental and numerical work presented in 
Chapter 3 and Chapter 4, the effect of the anisotropy on the effective strain to failure is 
evaluated taking into account the stress triaxiality and the direction of loading. These effects 
are then discussed. 

1.3 Failure mechanisms

The variety of fracture mechanisms for aluminium alloys have been investigated for more than 
four decades, and fracture maps were presented by Teirlinck et al. (1988). In this part, only the 
mechanisms observed in the failure of the aluminium alloy AA7075-T651 are introduced. 

Void growth at high stress triaxialities

At high stress triaxiality, voids can nucleate around particles or materials defects, then grow 
and coalesce to lead to final ductile failure. The growth mechanism was first described 
analytically for an infinite perfectly plastic isotropic medium containing either a cylindrical 
void by McClintock (1968) or a spherical void by Rice and Tracey (1969). These studies 
revealed that the growth of a void is controlled by the stress triaxiality factor and the plastic 
strain intensity. Later, Gurson (1977) derived an expression for the yield locus of an isotropic 
medium containing a spherical void. Since these pioneering works, the description of the void 
growth mechanism has been enriched in many different ways, as outlined in a recent review by 
Lecarme et al. (2011). Criteria describing nucleation and coalescence of voids were included in 
the Gurson model by Chu and Needleman (1980) and Tvergaard and Needleman (1984), 
leading to the well-known GTN model. Hahn and Rosenfield (1975) pointed out that two 
populations of particles of different magnitude are involved in the fracture process at different 
levels. Void growth occurs around large constituent particles, while localization leading to 
coalescence is facilitated by void growth around smaller dispersoids. The void shape effect was 
further introduced in the Gurson model by Gologanu et al. (1993–1994a). In parallel, the 
distribution of spherical voids in an isotropic matrix has been numerically investigated by 
Gologanu et al. (1994b), showing that an anisotropic distribution could influence the 
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coalescence process. More recently, Pardoen and Hutchinson (2000) proposed to couple this 
model with the Thomason criterion (Thomason, 1990) for void coalescence. Yerra et al. (2010) 
numerically described the fracture inside a grain using a crystal plasticity material model 
around a spherical void. Inclusion of the anisotropy in the Gurson approach was studied by 
Benzerga and Besson (2001), while Monchiet et al. (2008) analysed the role of anisotropy both 
on the yield behaviour and the growth of voids. The first part of Chapter 6 presents the 
analytical solution of Rice and Tracey (1969) and quantifies the influence of an anisotropic 
plastic model on the rate of void growth. In addition, these developments point out the 
assumptions necessary to obtain the well-known exponential triaxiality dependence of the void 
growth, in particular the influence of the third invariant, often omitted for its assumed small 
effect. However, despite extensive developments, the theory only considers the void growth 
mechanism, which is not the only one occurring in metallic materials. 

Modelling of failure at lower stress triaxialities

At lower and negative stress triaxiality states or shear dominated loadings, fracture often occurs 
by shear localization. Efforts have been made to reproduce experimental observations under 
such conditions. These models are often empirical, since the physics of the underlying fracture 
process is not clearly identified. For instance, Khan and Liu (2012) proposed a new empirical 
failure criterion based on the relationship between the hydrostatic pressure and the magnitude 
of the stress vector and obtained better results than with other well-established criteria, such as 

the maximum shear stress criterion (Stoughton and Yoon, 2011), the von Mises criterion ( 2J -

based) and the Xue-Wierzbicki criterion (Wierzbicki et al., 2005). Based on experimental tests 
at low stress triaxialities, Bao and Wierzbicki (2004) observed that the strain to failure drops at 
stress triaxialities close to zero. They proposed to distinguish between void growth, which is 
predominant at high stress triaxialities, and shear fracture, which dominates at low stress 
triaxialities. Barsoum and Faleskog (2007) have shown experimentally the influence of the 
third invariant of the deviatoric stress tensor on ductile failure, while Nahshon and Hutchinson 
(2008) introduced the third invariant in the Gurson model to reproduce the shear dominated 
failure mode observed at low stress triaxiality states. To introduce the influence of the third 
invariant, Bai and Wierzbicki (2010) proposed a modified Mohr-Coulomb fracture criterion 
formulated in the space of stress triaxiality, Lode angle and equivalent plastic strain. Dunand 
and Mohr (2011) showed the capabilities of such models to predict fracture of an aluminium 
alloy over a large range of stress triaxialities and values of the Lode parameter. Gruben et al. 
(2012) proposed an extension of the Cockcroft-Latham (ECL) failure criterion and analysed the 
influence of the third invariant captured by this criterion. In a similar way as done for 
anisotropic yielding, Luo et al. (2012) proposed an anisotropic damage evolution based on a 
linear transformation of the plastic strain-rate tensor. The six parameters can be calibrated 
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using the same tests as those for calibration of the anisotropic yield function. Chapter 7 
presents the combination of this anisotropic linear transformation with the uncoupled ECL 
failure criterion called the anisotropic extended Cockcroft-Latham criterion (AECL). This 
criterion is then calibrated for the AA7075-T651 alloy and its predictive capability is evaluated 
using the tests presented in Chapter 3. 

Localization analysis

A phenomenological model was developed by Benallal et al. (2008) to predict the localization 
of strains along an inclined band and its propagation for the aluminium alloy AA5083 
exhibiting the Portevin-Le Chatelier effect. A usual approach to model localization of strains is 
to envisage a bifurcation in the material model. When a ductile metal is deformed into the 
plastic range, a localized zone of deformation sometimes appears in the form of a narrow band 
in highly stressed regions, not only at low stress triaxiality states. A typical example is the 
tensile failure of a sheet material by the so-called process of localized necking. The non-
uniform deformation within the band generally leads to ductile fracture by various 
mechanisms. In the context of ductile fracture, the mechanisms of growth and coalescence of 
voids presented earlier are often advocated (see e.g. Rice and Tracey, 1969). However, it is not 
always clear whether the localization occurs because of the progressive softening of the 
material due to void growth (see e.g. Gurson, 1977) or because some other instability of the 
plastic flow process first occurs (see e.g. Rice, 1976). Rudnicki and Rice (1975) and Rice 
(1976) formulated the analytical condition for the localization of strains along a band in a 
previously homogeneous solid. Chapter 6 presents, in addition to the Rice and Tracey 
analysis, the condition of localization for various elasto-plastic material models (following a 
thermodynamic framework) and evaluates its capability to predict physical observations. 

1.4 Structural simulations

Ballistic application

For a material such as the AA7075-T651 aluminium alloy, exhibiting various failure modes 
and significant anisotropy, one must keep in mind the computational cost/efficiency constraint 
imposed by the industrial context. Indeed, plastic anisotropy modelling brings an additional 
experimental cost compared with isotropy, and physically-based failure criteria are 
computationally demanding. Due to a large number of elements necessary for structural 
simulations, such as ballistic impact, the CPU time can increase dramatically even with simple 
material models (Børvik et al., 2010). Therefore, the contribution of the previously presented 
models to the validity of numerical prediction must be evaluated. Chapter 8 presents the 
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numerical simulations of ballistic impact against the AA7075-T651 plate with blunt and ogival 
projectiles. Both the anisotropic plasticity model (presented in Chapter 4) and the anisotropic 
failure criterion (presented in Chapter 7) are used. The predictive capability of the anisotropic 
model is evaluated and the influence of anisotropy is quantified. 

Microstructure modelling

Experimental observations tend to show that microstructural features (not only voids) can play 
an important role in the failure process. None of the previous failure modelling approaches is 
capable of taking this information into account. Based on tensile tests performed in the three 
orthotropic directions of a rolled AA7075-T651 aluminium plate and fracture surface 
observations, Jordon et al. (2009) quantified the influence of two different size-order particle 
populations (constituent and dispersoids) on the damage process and their anisotropic 
characteristics. They proposed a continuum-based damage model enriched by internal variables 
related to the two populations of particles. Hahn and Rosenfield (1975) observed that under 
certain loading conditions, failure can be partly intergranular. Børvik et al. (2010) and Pedersen 
et al. (2011) also observed a competition between intragranular and intergranular fracture due 
to the existence of precipitate free zones (PFZs) along the grain boundaries. This was modelled 
numerically by Pardoen et al. (2003). Based on microscopic observations of the failure surface 
presented in Chapter 3 for the AA7075-T651 alloy, it seems that the grain morphology and 
inclusions (seen to be very anisotropic in Chapter 2) may also play a role in the anisotropy of 
failure. A numerical model of the microstructure coupled with damage models enabled 
Steglich et al. (2008) to represent the anisotropic ductile fracture of an aluminium alloy. 
Together with the conclusions, Chapter 9 presents some preliminary results of the modelling 
of anisotropic grains and grain boundaries, in order to capture the localization of strains inside 
the PFZ. 
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1.5 Objectives and scope

The main objective of the study is to understand and model the anisotropy of flow and failure 
exhibited by high-strength aluminium alloys obtained by rolling or extrusion processes. To this 
end, the aluminium alloy AA7075-T651 is exclusively studied and different steps were 
followed: 

 Experimental campaign under quasi-static loading conditions: several specimens were 
loaded until fracture to exhibit the influence of stress triaxiality on the failure strain and failure 
modes. Several directions were also investigated to determine the anisotropic behaviour. 
Microscopic observations of failed specimens enabled to identify the physical features of the 
failure process. 

 Anisotropic plasticity: an anisotropic yield function was calibrated using uniaxial 
tension and shear tests, and numerical simulations of all tests were performed to capture the 
local stresses and strains at fracture. 

 Anisotropic fracture: several theories were investigated and their capability to predict 
the experimental observations was evaluated. A phenomenological failure criterion was 
proposed, calibrated and evaluated through numerical simulations of quasi-static tests and 
ballistic impact experiments. 

The study was limited to the AA7075-T651 alloy. All material tests were performed under 
quasi-static loading conditions even though ballistic numerical simulations were performed. It 
is believed that a good understanding of the failure mechanisms under quasi-static loading 
conditions is the starting point of further investigations at higher velocities (Børvik et al., 2010; 
Pedersen et al., 2011). Temperature effects were not studied in this thesis, but thermal 
parameters (used in the localization analysis and in the ballistic impact simulations) were taken 
from previous studies. The coupling between temperature and strain-rate effects is obviously 
an issue to be pursued. 
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1.6 Invariants of the stress tensor

Some variables and notations that are extensively used in this thesis are defined in the 
following. The stress invariants are given as 
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where 1I  is the first invariant of the stress tensor , while 2J  and 3J  are the second and third 

invariants of the deviatoric stress tensor Hs I , with I  the 2nd order identity tensor. H  

is the hydrostatic stress, while eq  is the von Mises equivalent stress. Also,  is the normalized 

third stress invariant and L  is the Lode angle. In addition, the Lode parameter L  is 

introduced as the normalized location of the second principal ordered deviatoric stress IIs  with 

respect to the first and third principal ordered deviatoric stresses Is  and IIIs , i.e. 
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Figure 1.1 illustrates the definitions of the Lode parameter L  and the Lode angle L , while 

Table 1.1 gives values of , L  and L  for some particular loading conditions. 

 

(a) (b) (c) 
Figure 1.1. Lode angle domain (a) in a trigonometric circle and (b) in the principal deviatoric 
stress plane. (c) Lode parameter in the Mohr circle representation of the deviatoric stresses. 
Specific loadings such as generalized tension, shear and compression are specified as (GT), 
(GS) and (GC), respectively. 
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Table 1.1. Normalized third invariant, Lode angle and Lode parameter for specific loadings 
Stress state , ,I II IIIs s s   L  L  

Generalized tension (GT) I II IIIs s s  1 6  -1 
Generalized shear (GS) 2 II I IIIs s s  0 0 0 

Generalized compression (GC) I II IIIs s s  -1 6  1 
 

A particular and convenient property of the Lode angle is that the deviatoric stress 
tensor s  can be written with principal ordered values in the principal frame, i.e. 
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Thus, a yield function expressed in terms of principal deviatoric stresses can be easily 
transformed to a function of the equivalent stress eq  and the Lode angle L . 

 



 

 
 

Chapter 2. The AA7075 T651 aluminium alloy

2.1 Introduction

In this chapter, the microstructure of the AA7075-T651 aluminium alloy is studied at different 
scales. First, an optical microscope is used to disclose the grain morphology and the 
distribution of large particles. Second, a scanning electron microscope (SEM) and electron 
back-scatter diffraction (EBSD) technique are used to determine the texture of the alloy. Third, 
a transmission electron microscope (TEM) is used to analyse the grain boundaries at the 
nanometre scale. 

2.2 Optical microscope analysis

The studied material is the AA7075 aluminium alloy in temper T651. The nominal chemical 
composition is given in Table 2.1. This high-strength aluminium alloy has nominal yield and 

tensile strengths in the rolling direction of 505MPa  and 570 MPa , respectively (based on data 

from the supplier). All material specimens presented in this study were manufactured from a 
20 mm thick rolled plate. Temper T651 implies that the alloy is slightly stretched and aged to 

peak strength. The grain structure of the as-received AA7075-T651 plate is shown in Figure 
2.1 (a) as tri-planar optical micrographs along the three orthogonal directions of the rolled 
plate, i.e. the rolling direction (RD), the transverse direction (TD) and the normal direction 
(ND). 

The bulk of the AA7075-T651 alloy has a complex microstructure with different 

classes of particles. Coherent precipitates containing Mg and Zn, the so-called -phase, 

appear during the artificial age hardening of temper T6. The element Cu can also enter in the 

-phase composition (see Marioara et al., 2013). These precipitates are at the nanoscopic 

scale and densely distributed inside the grains. They contribute to the hardening of the material 
by preventing the dislocation movements (Park and Ardell, 1988). According to Andreatta et 
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al. (2003a, 2003b), 7xxx alloys also contain dispersoids of different size ( 0.05 0.15 m ) and 

composition (Al3Ti, Al6Mn, Al3Zr, Al12Mg2Cr, Al20Cu2Mn3), acting as barriers that limit the 
recrystallization during tempering. This explains the non-recrystallized grain structure of the 
AA7075-T651 alloy with flat and elongated grains in the rolling plane of the plate. Large iron-
based intermetallic inclusions (at micrometre scale), such as Al6(Fe,Mn), Al3Fe, Al(Fe,Mn,Si) 
and Al7Cu2Fe (or silicon-based such as Mg2Si) are preferentially distributed along the rolling 
direction (RD), as quantified by Jordon et al. (2009) and illustrated in Figure 2.1 (b). This is 
made possible since they are formed before the rolling operations. The distribution of 
inclusions is of interest since they can play a major role in the fracture process. 

Table 2.1. Nominal chemical composition (in wt%) of the AA7075-T651 aluminium alloy. 
Al Zn Mg Cu Cr Fe Ti Si Mn Others 

Balance 5.7 2.4 1.3 0.19 0.19 0.08 0.06 0.04 0.15 
 

(a) (b) 
Figure 2.1. Tri-planar optical micrographs showing (a) the grain structure and (b) the 
distribution of inclusions for the AA7075-T651 aluminium alloy (Børvik et al., 2010). 

2.3 Scanning electronmicroscope (SEM) analysis

The rolling process implies a crystallographic texture and leads to anisotropic characteristics 
(Børvik et al., 2010). The texture of the plates of AA7075-T651 was determined using the 
electron back-scatter diffraction (EBSD) technique in a scanning electron microscope (SEM). 
The scans presented in Figure 2.2 exhibit the crystallographic orientations of the alloy in the 
three different orthotropic planes. The black spots correspond to inclusions and no orientation 
is associated to them. These scans were also used to determine the average grain size in the 
principal directions of the plate ( 138 mG RDl  along RD, 62 mG TDl  along TD and 

11 mG NDl  along ND). In average, the grains are more than 10 times longer than thick, so 

the grain boundaries and inclusions are 10 times more densely distributed in the normal 
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direction (ND) than along the rolling direction (RD) of the plate. The pole figures of the 
AA7075-T651 alloy presented in Figure 2.3 show that the texture is rather weak (maximum 
intensity of 2.596). The anisotropy of the shape of the grains and distribution of inclusions is 
then more important than the crystallographic texture. These are important observations in 
order to understand the effect of the anisotropy of the plastic flow and fracture in this particular 
aluminium alloy. 
 

 

 
Figure 2.2. Scans giving grains and orientations in the orthotropic planes of the AA7075-T651 
plates. 
 

 
Figure 2.3. Pole figures of the AA7075-T651 plates. 
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2.4 Transmission electron microscope (TEM) analysis

Another very important microstructural characteristic of the 7xxx (and 6xxx) series of 
aluminium alloys is the presence of precipitate free zones (PFZs) at nanometre scale created 
during the quenching operation of the heat treatment and generally located around the grain 
boundaries (GBs). These zones are generally softer than the matrix hardened by precipitates. 
Experiments indicate that plastic strain can be highly localized inside these zones and can 
therefore lead to premature failure of such materials (Dumont et al., 2003). The PFZs are 
engendered by two closely related phenomena: 

 the local depletion of vacancies which inhibits the formation of fine dispersion of 
precipitates 

 the local solute depletion initiated by heterogeneous precipitation of phases at the GBs 

These two phenomena require atom mobility and occur therefore during the thermal treatment 
of the alloy. The cooling rate of the quenching operation influences the width of the PFZs 
(Deschamps et al., 2009). For instance, a fast cooling inhibits the migration of vacancy and 
solute toward the GBs and therefore prevents the PFZs from growing. 

A transmission electron microscope (TEM) study was performed by Calin Marioara 
(SINTEF Materials and Technology) on the AA7075-T651 alloy to reveal some of the features 
of the microstructure. Figure 2.4 (a) is taken in the plane of the plate and shows that grains are 
elongated and dispersoids are aligned in the rolling direction (RD). Figure 2.4 (b)–(d) shows 
the hardening precipitates inside the grains and the presence of PFZs along the GBs. In 
average, these PFZs are wider in the case of high angle grain boundaries HAGB (

40 nmPFZ Hl ) than for low angle grain boundaries LAGB ( 20 nmPFZ Ll ). The GBs are 

defined as LAGB (HAGB) when the disorientation between the two neighbouring grains is 
10 ( 15 ) (see Verhoeven, 1975). A fortiori, sub-grains within the same grain are separated 

by a LAGB since they have nearly the same orientation (within a few degrees). The misfit in 
the orientation of two grains is accommodated by perturbations in the atomic packing. In the 
case of HAGBs, these perturbations become severely disordered and promote the vacancy and 
solute migration more than the LAGBs. The PFZ formation is then facilitated around the 
HAGBs. It is also observed that the LAGBs contains a higher amount of GB precipitates. In 
the case of 7xxx alloys, the precipitates that form at the GBs (Mg-Zn(-Cu)) need a certain 
degree of coherency with the matrix in order to form and grow. This cannot be achieved if the 
adjacent grains have large misorientations. The orientations <110> and <112> stipulated on the 
TEM pictures correspond to the zone axis (orientation) of the respective grains along the 
viewing direction. 
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(a) (b) 

(c) (d) 
Figure 2.4. TEM pictures of the AA7075-T651 alloy (bright field CM30 operated at 150 kV). 

 
An energy dispersive X-ray spectroscopy (EDS) analysis was performed in parallel to 

the TEM analysis and gave information about the chemical composition of the microstructural 
features. Figure 2.5 gives the maps of several alloying elements on a given scanned area. The 
upper-left picture in Figure 2.5 presents the scanned area and depicts a PFZ along a GB, fine 
precipitates in the adjacent grains, two large precipitates formed at the GB (3-4) and a large 
precipitate in the bulk (1) that was formed on a dispersoid (2). The five other maps given in 
Figure 2.5 are the spatial distribution of different alloying elements (Zn, Mg, Cu, Cr, Fe) 
within the area. 
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The following observations can be drawn from the maps 

 The fine precipitates contain Zn and Mg, as expected. Based on Marlaud et al. (2010), 
Cu may enter the composition of the precipitates as well, but to a level below the 
detection limit. 

 The large precipitates (1), (3) and (4) also have a Zn-Mg(-Cu) composition. 
 Cr is present in the dispersoid (2) on which particle (1) is nucleated, and in another 

dispersoid on which particle (3) is nucleated. The alloying element Cr does not play a 
role in the grain/GB composition. 

 Mg, Cu and to a lower extent Zn are present along the GB as thin continuous films. 
Figure 2.4 (b) exhibits a black GB due to layered precipitates, in contrast to the grey 
aluminium grain. 

 Cu is also spread in solid solution inside the rest of the matrix. 
 Fe has no preferential location, indicating that this element is not associated with 

precipitation and mostly left in solid solution. This is also the case for the elements Mn, 
Ti and Si, which maps are not presented here. 

 

Figure 2.5. TEM image and x-ray maps for five different elements (Zn, Mg, Cu, Cr, Fe) of the 
AA7075-T651 alloy (Annular Dark Field Scanning TEM mode using a Jeol 2010F microscope 
operated at 200kV). 
 

Figure 2.6 gives a more accurate description of the alloying content across the whole 
scanned area (i.e. the whole picture), inside the grain (bulk) (5) and inside the PFZ (6). These 
data confirm the observations made in Figure 2.5 and give the following additional 
information:  



Chapter 2 - The AA7075-T651 aluminium alloy 

17 
 

 Zn and Mg have slightly lower values in the bulk than in the alloy composition. This 
confirms the presence of a low volume fraction of large MgZn(Cu) precipitates (like (1) 
and (3) in Figure 2.5 nucleated on dispersoids), in addition to a much higher volume 
fraction of small MgZn(Cu) hardening precipitates. 

 Zn, Mg and possibly Cu are depleted in the PFZ area, most probably due to the 
formation of MgZn(Cu) GB precipitates that use this solute. 

 Compared with the bulk (5), the Zn content in the PFZ (6) is lower by a factor of 5, 
whereas the Mg and Cu content is only lower by a factor of 2 or less. This suggests that 
the PFZs contain alloying elements (except Zn) in solid solution even though it is free 
from precipitates. 

 Cr is strongly depleted in the bulk (5) and PFZ (6), indicating that most of it is absorbed 
into dispersoids. However, its (low) value is similar in bulk and PFZ. This observation 
and the next one indicate that the formation of PFZs is a vacancy driven process. 
Consequently, the composition of a certain element in the PFZs should be equal to its 
composition in the nearby bulk. The exceptions are Zn, Mg and perhaps Cu, as 
mentioned above, because GB precipitates contain these elements and therefore they 
become depleted in the neighbouring PFZ. 

 Fe, Mn, Ti and Si have similar values in all areas and close to their respective nominal 
compositions, indicating that these elements do not have a strong association with 
precipitation and therefore most of them are left in solid solution. 

 Cu has unrealistically high values in all areas. This might be an artefact due to the 
presence of an oxide layer on the sample's surface, as a consequence of the sample 
preparation. 

Element Nominal Picture  5:bulk 6: FZ  
Zn  5.70  4.56  4.79  1.16  
Mg  2.40  2.05  1.97  0.99  
Cu  1.30  2.98  3.09  2.11  
Fe  0.19  0.28  0.26  0.23  
Cr  0.19  0.23  0.04  0.07  
Ti  0.08  0.10  0.06  0.07  
Si  0.06  0.12  0.11  0.08  
Mn  0.04  0.04  0.02  0.04  

Figure 2.6. STEM image and alloying content (in wt%) in different areas for the picture. 
 

This analysis suggests that the PFZs, although often considered as pure aluminium 
zones inside a stronger matrix, contain non-negligible amount of alloying elements in solid 
solution. The behaviour of the PFZs could then differ from pure aluminium, in terms of plastic 
hardening for instance. These observations are both important and helpful for the modelling of 
the microstructure. 





 

 
 

Chapter 3. Experimental study

3.1 Introduction

In this chapter, the various material tests performed during the project are presented. The 
effects of both stress triaxiality and loading direction on the plastic and fracture behaviour of 
the AA7075-T651 alloy are investigated. The stress triaxiality is defined as the ratio 

 * 1

23 3
H

eq

I
J

 (5) 

where 1I  is the first invariant of the stress tensor , 2J  is the second invariant of the deviatoric 

stress tensor s , H  is the hydrostatic stress and eq  is the von Mises equivalent stress. All 

these variables are defined in Chapter 1.6. Different specimen geometries were chosen to 
define a wide range of stress triaxiality states. The different geometries displayed in Figure 3.1 

are designed to give initial stress triaxiality states according to Eq.(5) of 1 3  for the pure 

compression tests on cylindrical specimens, 0 for the shear tests on butterfly specimens, 1 3  for 

the tensile tests on smooth axisymmetric specimens and higher than 1 3 for the tensile tests on 

notched axisymmetric specimens (of notch root radius 2mmR  and 0.8mmR ). Bridgman 

(1952) gave a theoretical expression for the maximum stress triaxiality in the centre of an 
axisymmetric tensile specimen after necking as 

 1 ln 1
3 2

a
R

 (6) 

where a  is the radius of the specimen at minimum cross section and R  is the curvature radius 
of the neck. When the radius R , i.e. the specimen is smooth, the stress triaxiality takes the 

value of 1 3 . It should be kept in mind that this expression is based on several 

assumptions, such as isotropy, the von Mises yield function, homogeneous strains over the 
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cross section of the neck and a circular cross section throughout the test (Dieter, 1988), which 
are not fulfilled in our study. Even so, Eq.(6) will be used here to give an estimate of the initial 
stress triaxiality in the notched specimens. The notched specimens are usually used to 
investigate the influence of the stress state on the fracture strain, whereas the butterfly 
specimens allow for an approximate shear stress field. In addition, specimens were sampled in 
several orientations of the plate to evaluate the anisotropic properties of the material. Figure 3.1 
presents the specimen geometries for the tensile tests (smooth specimens in (a)-(b) and notched 
specimens in (c)), the compression tests on cylinders of aspect ratio unity in (d) and the shear 
tests on butterfly specimen in (e). 

 

 
(a) (b) (c) 

 
 

(d) (e) 
Figure 3.1. Specimen geometries for the material tests: smooth axisymmetric specimen for 
tensile tests (a) in-plane of the plate and (b) in ND, (c) notched axisymmetric specimen for 
tensile tests, (d) cylinders with 0 0 1h D  for compression tests and (e) butterfly specimens for 
shear tests. 
 

The tests were performed using various universal testing machines at room temperature 

and nominal strain-rates at the order of 3 110 s  (i.e. quasi-static loading conditions). Time, 
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force and displacement were continuously measured during all tests until fracture of the 
specimens. Table 3.1 sums up the number of duplicate tests performed on the AA7075-T651 
alloy in each direction and for each specimen. For each type of test the following is presented: 

 the experimental procedure and specimen geometry 
 the post treatment of force and displacement measured from the machines 
 the failure strain for all directions 
 the failure mode for all directions (and in some cases micrographs) 

Table 3.1. Experimental campaign with number of tests performed on the AA7075-T651 alloy. 

Specimen Initial stress state  
Direction of loading (°) 

0 15 30 45 60 75 90 ND
Smooth axisymmetric Uniaxial tension 1/3 5 2 2 3 2 2 3 6 
Notched axisymmetric 

2.0 mmR  Multiaxial tension 0.89 2 - - 2 - - 2 - 

Notched axisymmetric 
0.8 mmR  Multiaxial tension 1.39 2 - - 2 - - 2 - 

Cylinder / 1h D  Uniaxial compression -1/3 5 - - 5 - - 5 3 
Cylinder / 1.5h D  Uniaxial compression -1/3 2 - - 2 - - 2 - 

Butterfly Shear 0 6 - - 7 - - 6 - 

3.2 Tensile tests on smooth axisymmetric specimens (uniaxial tension)

Tensile tests were carried on axisymmetric smooth tensile specimens with a cross-section 

diameter of 6mm and a gauge length of about 30mm  (Figure 3.1 (a)) to study uniaxial 

tension stress triaxiality states. The tensile axis was oriented at 0°, 15°, 30°, 45°, 60°, 75° and 
90° with respect to the rolling direction (RD) of the plate. Additional tests were performed in 
the normal direction (ND) of the plate on miniature smooth specimens especially designed for 

plates of 20mm  thickness (Figure 3.1 (b)). During testing, the diameter at minimum cross 

section of the specimen was continuously measured until fracture. This was made possible 
using a purpose-built measuring rig with two perpendicular lasers that accurately measured the 
specimen diameter. The lasers were installed on a mobile frame to ensure that the diameters 
always were measured at the minimum cross section. Each laser projected a beam with 

dimension 213 0.1mm  towards the detector on the opposite side of the specimen. Thus, the two 

orthogonal lasers created a box of laser light of 313 13 0.1mm  around the minimum cross 

section of the sample. As the specimen was deformed, the continuous change in diameters was 
observed by the detectors. This dual-axis micrometre was made up of a high-speed, contact-

less AEROEL XLS13XY laser gauge with 1 m  resolution. During elongation, the sample 

was scanned at a frequency of 1200Hz  and the measured data was transferred by the built-in 
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electronics to the remote computer via fast Ethernet. The diameters were measured in the 
normal direction (ND) of the plate and in the transverse direction of the specimen (TS), 
denoted NDD  and TSD , respectively. For the specimens loaded in the normal direction (ND), 

the diameters were measured in the rolling direction (RD) and in the transverse direction (TD) 

of the plate, denoted RDD  and TDD , respectively. 

The stress-strain curves for the duplicate tensile tests on smooth axisymmetric 
specimens are presented in Figure 3.2 in terms of Cauchy stress versus logarithmic axial strain 
averaged over the minimum cross section of the specimen. The Cauchy stress is directly 
computed from the measurements as 

 4

ND TS

F F
A D D

 (7) 

where F  is the force measured by the load cell in the machine and 4 ND TSA D D  is the current 

elliptical area of the specimen. The logarithmic longitudinal strain is computed from the 
diameter measurements, assuming plastic incompressibility. The elastic volumetric dilatation is 

 2
0 0 0

1 2tr 1 where tre eND TSLD DV
V L D E

 (8) 

where e  is the elastic strain tensor, E  and  are the elastic parameters, 0V , 0L  and 0D  are the 

initial volume, length and diameter of the specimen, and V  and L  are the current volume and 
length of the specimen. The logarithmic longitudinal strain is then defined as 

 
2
0

0

1 2ln ln 1
ND TS

DL
L D D E

 (9) 

By neglecting the elastic contribution, the total strain reduces to 

 
2

0 0

0

ln ln ln
ND TS

A DL
L A D D

 (10) 

In our case, since plastic deformations are large, neglecting the elastic contribution seems 
reasonable. However, it should be noted that this assumption makes the “apparent stiffness” 

differ from the nominal Young’s modulus of aluminium ( 70 GPaE ): on the Cauchy stress 

versus logarithmic strain curve calculated with Eq.(7) and Eq.(10), the apparent elastic 

modulus is 2 117 GPaE E , where 0.3  is the nominal Poisson ratio. 
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(a) 

 
(b) 

 
(c) 

Figure 3.2. Cauchy stress versus logarithmic strain for tensile tests on smooth specimens in the 
(a) 0°, 45° and 90°, (b) 15°, 30°, 60° and 75° in-plane directions and (c) in ND. 
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The yield limit and the strain hardening show good repeatability in each direction, but a 
significant anisotropy on the flow stress is exhibited. Figure 3.2 (a) and (b) reveal that the 
strength level is almost identical and highest at 0° and 90°, while it is lowest at 45° and 60°. It 
is further similar at 15°, 30° and 75° and lies between the two above-mentioned limits. The 
stress-strain curves for the tests in the normal direction (ND), presented in Figure 3.2 (c), and 
in the rolling direction (RD) are found to be similar; except around the yielding point, where 
the yielding is more gradual for the specimens loaded in ND. A more remarkable difference is 
the large scatter in the strain to failure observed for the uniaxial tension tests in ND. An 
explanation for this scatter, based on the microstructure of the material, is presented later in 
this chapter. 

Since the elastic part of the strain is negligible compared with the total strain, this study 

will consider that the plastic strain at failure p
f  is approximately equal to the total strain at 

failure given in Eq.(10) and will be denoted f . Figure 3.3 illustrates the anisotropy of fracture 

by showing the average failure strain (and the associated range of values) versus the direction 

of loading for the tensile tests (in the in-plane directions 0 ;90  and in the normal 

direction (ND) of the plate). For tensile loading in the normal direction (ND), the failure strain 
is low and the scatter is considerable. 

Figure 3.3. Average experimental failure strain versus specimen orientation for tensile tests on 
smooth and notched specimens. The error bars represent the range of failure strains between 
duplicate tests. 
 

The different fracture modes obtained during the uniaxial tensile tests are presented in 
Figure 3.4. For the tests showing the lowest failure strains (i.e. those performed in the 0° and 
90° in-plane directions), fracture occurred along a shear band oriented at approximately 45° 
with respect to the loading direction. The resulting surface is flat, smooth and crosses the 
whole specimen width. On the contrary, for tests showing the largest failure strains (tests 
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performed in the 45° and 60° directions), the fracture surface tends to a cup-and-cone shape. 
For the loading directions showing intermediate failure strains (15°, 30° and 75°), fracture 

occurred along disrupted shear bands. Thus, for the same initial stress triaxiality state (1 3), the 

fracture modes differ significantly with the direction of loading. 
 

Figure 3.4. Failure modes observed with the smooth specimens in different directions. The 
label at the top and bottom give the orientation and the average fracture strain, respectively. 
 

(a) (b) 

(c) (d) 
Figure 3.5. Micrographs of the fracture surface of a tensile test on a smooth specimen in ND: 
(a)-(c) views at different magnifications and (d) mid-section at the fracture location. 
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In addition, most fracture surfaces obtained from the tensile tests in the normal 
direction (ND) were orthogonal to the specimen axis, and revealed intergranular fracture. 
Figure 3.5 presents SEM micrographs of the fracture surface of the specimen loaded in the 
normal direction (ND) which exhibited the lowest failure strain (see also Figure 3.2 (c)). As 
visible on Figure 3.5 (b), plastic deformation and void growth around constituent particles 
seem involved in the failure process. However, a zoom on what seems like a flat area (Figure 
3.5 (c)) reveals that fracture occurred along a large grain boundary. The high-magnification 
micrograph of the longitudinal mid-section presented in Figure 3.5 (d) confirms this statement. 
These observations indicate delamination of the material along grain boundaries at low plastic 
strains, as already suggested by Pedersen et al.(2011). Since the cross section of these 
specimens is only 3mm in diameter, it contains just a few grains, which explains the scatter in 

failure strain observed between duplicate tests in this direction. 

3.3 Tensile tests on notched axisymmetric specimens (multiaxial tension)

Notched axisymmetric specimens, used to obtain initial stress triaxialities higher than with 
smooth specimens, were sampled in the 0°, 45° and 90° directions with respect to RD (Figure 

3.1 (c)). Two different notch root radii were studied, 2.0 mmR  and 0.8 mmR , giving 

initial stress triaxialities of 0.89  and 1.39 , respectively, according to Eq.(6). The same 
experimental set-up and data analysis as for the tensile tests on smooth specimen were used. 

Figure 3.6 (a) and Figure 3.6 (b) show Cauchy stress versus logarithmic strain curves 
for the notched axisymmetric specimens loaded in the 0°, 45° and 90° in-plane directions, and 

for two different notch root radii 2.0 mmR  and 0.8 mmR , respectively. The Cauchy 

stress (averaged over the cross section) and the logarithmic strain are computed following 
Eq.(7) and Eq.(10) for all duplicate tests. The introduction of a notch in the tensile test 
specimen increases the stress level and significantly reduces the ductility compared to the 
behaviour under uniaxial tensile stress states. This is due to the positive hydrostatic stress 
induced by the notch, which facilitates the growth of voids. Also, following Eq.(6), the stress 
triaxiality increases with decreasing radius and so does the stress level. Regarding the 
anisotropy, the introduction of a notch reduces the difference between the stress levels in 
different directions (Fourmeau et al., 2011). The strain to failure is also less sensitive to the 
direction of loading than for the smooth specimens. The effect of anisotropy is thus reduced by 
increasing the multiaxiality of the stress state. This is illustrated in Figure 3.6 (c), where 
representative true stress-strain curves are presented for all tensile geometries in three different 
directions. The curves are stopped at the average failure strain found between duplicate tests. 
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(a) 

 
(b) 

 
(c) 

Figure 3.6. Cauchy stress versus logarithmic strain for the tensile tests on notched specimens 
with (a) 2.0 mmR  and (b) 0.8 mmR  in the 0°, 45° and 90° in-plane directions. (c) 
Representative curves for all specimens in the 0°, 45° and 90° in-plane directions plotted up to 
the average failure strains. 
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The experimental failure strains for tensile tests on notched specimens are computed in 
the same manner as for uniaxial tensile tests and are depicted in Figure 3.3. The strain to failure 
is also found less sensitive to the direction of loading than for the smooth specimens. The 
failure modes are illustrated in Figure 3.7. As pointed out by Børvik et al. (2010), the notched 
specimens exhibit a cup-and-cone fracture mode and, in addition, the increased stress triaxiality 
caused by the notch leads to secondary cracks in the plane of the plate. The secondary cracks 
follow the boundaries of the flat and elongated grains, and are observed in the specimens with 
the smallest notch radius in Figure 3.7 (a) where the stress triaxiality is highest. It should be 
noted that in contrast to smooth specimens exhibiting various failure modes, the failure mode 
for notched specimens is constrained by the notch geometry and remains rather similar for all 
loading directions. 
 

 
(a) (b) 

Figure 3.7. Failure modes observed for the tensile tests on notched specimens with (a) 
2.0 mmR  and (b) 0.8 mmR  in the rolling direction (RD) (Børvik et al., 2010). 

3.4 Compression tests on cylindrical specimens (uniaxial compression)

For negative stress triaxialities, compression tests were performed on cylindrical specimens 

with diameter 0 10 mmD  and height 0 10 mmh  (see Figure 3.1 (d)) and 0 15mmh . The 

specimen axes were oriented at 0°, 45° and 90° with respect to RD. In addition, compression 
tests on specimens with loading axes along the normal direction (ND) of the plate were 
conducted with 0 10 mmh  only. The specimens were compressed between two hardened steel 

platens, and a graphite paste was used to lubricate the surfaces to minimize the effect of 
friction (Børvik et al., 2010). Five tests were performed on specimens from each of the in-plane 
directions, while three tests were performed on specimens sampled in the normal direction 
(ND). The two first tests using the in-plane specimens and all tests in the short transverse 
direction were carried out using an extensometer attached to the platens to measure the overall 
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deformation of the specimen. A fine grained speckle pattern was spray painted on the 
remaining specimens in the in-plane directions, and a Prosilica GC2450 digital camera 

equipped with a 28 105mm  Nikon lens was used to record images during loading at a 

framing rate of 10Hz. The image series were post-processed using an in-house 2D digital 

image correlation (DIC) code (Fagerholt et al., 2010), providing displacement and strain fields 
of the observed specimen surface. The image series were then analysed to give the 
displacement of the platen on top of the specimen. This measure is more accurate than the 
displacement measured by the machine, and comparable to the displacement obtained with an 
extensometer. Additional tests were carried out on cubic specimens of size 0 10 mmh . These 

specimens were designed to get straight-forward DIC analysis of the strain fields. 
Unfortunately, the corner effect associated with friction engendered more scatter in the force 
level and the displacement to failure. It was therefore chosen not to present these results. 

The Cauchy stress versus logarithmic strain curves from the compression tests in the 0°, 
45° and 90° in-plane directions and in the normal direction (ND) of the plate are presented in 
Figure 3.8. The global values of the Cauchy stress and logarithmic strain for these specimens 
are 

 
0 0 0

, lnFL L
A L L

 (11) 

where F  is the force measured by the load cell of the testing machine, and 0L  and 0A  are the 

initial length and cross-section area of the specimen, respectively. The current length of the 
specimen L is determined from the displacement measurements. Since the repeatability of the 
tests was very good, only one representative curve is depicted in Figure 3.8 for each direction. 
The curves are terminated at the average failure strain obtained between duplicate tests. 

For the three in-plane directions (0°, 45° and 90°), the curves obtained with 0 0 1h D  

and 0 0 1.5h D  specimens are similar until a logarithmic strain of 0.2 . Then, for the 

specimen with 0 0 1.5h D , the buckling observed experimentally leads to a decrease in stress 

level as seen from the stress-strain curves in Figure 3.8 (a). Due to this instability, only the 
tests performed on the specimen with 0 0 1h D  will be analysed further. The flow stress in the 

45° loading direction is found lower than in the 0° and 90° directions, in a similar way as in the 
uniaxial tensile tests. However, in contrast to what is observed for uniaxial tension conditions, 
the flow stress in the 90° direction is found slightly higher than in the 0° direction. The strain 
hardening is also found to be higher in the normal direction (ND) than in the in-plane 
directions, while the strain to failure is significantly reduced. Also, as depicted in Figure 3.8 (b) 
the yielding in the different in-plane directions of loading is somewhat different compared with 
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the uniaxial tensile tests. In the study of Pedersen et al. (2011), it was found that the stress-
strain curves from the uniaxial tension test in the 0° direction coincided with that from the 
compression test through the normal direction (ND) of the plate. This is in some conflict with 
the results found here, where the stress level is higher in the normal direction (ND) 
compression test. It should be kept in mind that friction can play an important role in the 
material response since uniaxial compression loading conditions may not be fulfilled when the 
plastic deformation becomes large. 
 

(a) (b) 
Figure 3.8. (a) Representative Cauchy stress-logarithmic strain curves for the compression 
tests on cylindrical specimens in the 0°, 45° and 90° in-plane directions and in ND. (b) 
Comparison between Cauchy stress-logarithmic plastic strain curves from tension and 
compression tests in the 0° and 45° directions plotted for small plastic strains. 
 

As shown in Figure 3.9, the specimens fail along 45° planes under compressive loading. 
The fracture surfaces were flat but not always observable, since the specimens did not always 
split in two. The repeatability in terms of failure was compromised by friction and barrelling 
effects, so the specimens were arranged into different classes depending on the fracture mode. 
Some specimens failed abruptly across their whole height and the force dropped 
instantaneously to zero. In other experiments, the strain localization occurred on the edge of the 
specimen, and only small force drops were observed in the measured data. Finally, some 
specimens did not show any drop in the stress-strain curve, although they showed multiple 
fracture bands spread around the rim of the sample. Such fracture modes were the case for 
three out of five tests in the 45° direction, and for one out of six tests in the 90° direction. For 
this latter class of specimens it was not possible to identify the strain to failure, and 
consequently they are not used in the computation of the average failure strain. 

Even though excluded from the study, it should be noted that the cylindrical specimens 
with 0 0 1.5h D  and the cubic specimens also exhibited failure along 45° bands. The fracture 
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surface of a specimen with 0 0 1.5h D  is presented in Figure 3.10, where vertical white lines 

are traces due to the sliding of the two broken parts along each other. Due to this sliding, the 
observation of damage mechanism leading to failure is difficult. Moreover, only few specimens 
broke into two separate pieces. 
 

(a) (b) (c) (d) 
Figure 3.9. Failure modes observed for the compression tests in the (a) 0°, (b) 45°, (c) 90° in-
plane directions and (d) in ND. The lines depicted on the top of the specimen (a), (b) and (c) 
represent ND. 
 

 
Figure 3.10. SEM picture of the fracture surface from a compression test with 0 0 1.5h D  in 
the 45° in-plane direction. 
 

For the specimens with 0 0 1h D , the average values of the strains to failure f  are 

presented in Figure 3.11 as a function of the loading direction. The error bars represent the 
range of values obtained from duplicate tests and are seen to be quite significant. Given the 
scatter between duplicate tests and the exclusion of several of the tests, no precise conclusion 
can be drawn on the anisotropy of the strain to failure for compression tests in the in-plane 
directions. However, the strain to failure is found significantly lower for the tests preformed in 
the normal direction (ND), compared to the in-plane directions. 
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Figure 3.11. Average experimental failure strain versus specimen orientation for compression 
and shear tests. The error bars represent the range of failure strains from duplicate tests. The 
shear tests without DIC measurements and the compression tests not showing clear fracture 
are excluded. 

3.5 Shear tests on butterfly specimens

To obtain a stress triaxiality close to zero, shear specimens of 2 mm  thickness with geometry 
as shown in Figure 3.1 (e) were used (Gruben et al., 2011). The longitudinal axes of the spark-
eroded specimens were oriented at 0°, 45° and 90° with respect to the rolling direction (RD). 
The specimens were bolted to the gripping system of the testing machine to allow for possible 
in-plane rotations of the specimen. The force in the load cell and the displacement of the cross-
head of the testing machine were continuously recorded. Owing to the scatter in results, about 
6–7 duplicate tests were performed for each direction, out of which 2–3 were instrumented 
using optical measurements. The same camera and digital image correlation (DIC) analysis as 
for the compression tests were used, providing displacement and strain fields of the observed 
specimen surface. This technique is particularly relevant in these tests, since the strains were 
found to be inhomogeneous over the gauge sections of the specimens and eventually strain 
localization occurred. One additional test was performed in the 0° direction using a high-speed 

camera running at a frame rate of 10 000Hz  to observe the final stage of the test. This was 

done in an attempt to capture the localization of the strains leading to final failure in more 
detail. 
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(a) 

 
(b) 

 
(c) 

Figure 3.12. Force versus displacement for the shear tests on butterfly specimens in the (a) 0°, 
(b) 45° and (c) 90° in-plane directions. 
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Figure 3.13. Representative force-displacement curves for the shear tests on butterfly 
specimens in the 0°, 45° and 90° in-plane directions. 

 
Force versus displacement curves for duplicate shear tests in the 0°, 45° and 90° 

directions are shown in Figure 3.12, while representative force-displacement curves from the 
tests in the three directions are compared in Figure 3.13. Large scatter is observed in these tests 
(as also observed by Erice and Galvez, 2014). The force-displacement curves were corrected to 
account for the machine flexibility, but the remaining scatter in terms of load level is 
significant and reaches 18% of the maximum force level for the 45° loading direction. Several 
sources of error can be identified. A misalignment in the mounting of the specimen might lead 
to a scatter in the plastic behaviour. The tests were performed in two different laboratories 
(SIMLab and LMT-Cachan), and some sensitivity to the different gripping systems was 
observed (either bolted or clamped). The literature also proposes some microstructural reasons 
for the scatter. Rauch (1998) pointed out that shear tests in the +45° and –45° directions may 
show different behaviour. Since orthotropic behaviour of the material was assumed when 
machining the specimens, this possible effect was not considered. Nonetheless, Figure 3.13, 
which presents the representative force-displacement curves for each direction, indicates that 
the ductility is somewhat lower in the 45° direction than in the 0° and 90° directions. However, 
the rest of the study will only account for the shear tests performed in the 0° direction and no 
anisotropy will be considered for plasticity and failure under shear loading conditions. 

For the shear tests, the strain field at the surface of the specimen was determined by use 
of DIC. The von Mises effective strain is adopted here for the shear tests 
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where 1  and 2  are the principal logarithmic strains in the rolling plane of the plate. The 

maximum strains are found along a band slightly inclined from the axis of loading, as shown in 
Figure 3.14. The DIC analysis indicats that fracture occurs almost instantaneously along this 

band, since the propagation of the crack was not even captured at a frame rate of 10 000Hz . 

The strain at failure f  is therefore defined as the average effective strain in the elements 

located along this shear band. The width of the band used for averaging was chosen equal to 
0.6mm and is represented by the white line on Figure 3.14. Figure 3.11 presents the average 

strain to failure as a function of the loading direction, and the error bars indicate the range of 
values from duplicate tests. Only the results from duplicate tests instrumented with DIC are 
included in Figure 3.11. As for the force-displacement curves, there is a large scatter in 
measured strain to failure between duplicate tests. In this respect, it should also be kept in mind 
that the results depend on the width of the zone chosen for averaging the failure strain. The 

choice of 0.6mm was made to be able to take several elements into account while focusing on 

the area of strain localization. 
 

 
Figure 3.14. Effective strain field obtained by DIC for a shear test on butterfly specimen in the 
45° in-plane direction (last image before failure). 

 
Figure 3.15 presents micrographs of the failure surface obtained from a shear test 

performed in the 0° direction. For all directions, fracture occured along a band inclined at 
approximately 10° with respect to the symmetry axis of the initial geometry (see Figure 3.15 
(a)). However, since the specimens rotated somewhat during these tests, the orientation of the 
surface is aligned with the direction of the loading when fracture occured. It can be seen from 
Figure 3.15 (a) that the fracture surface is slightly outside from the minimum cross section of 
the specimen. The flat and smooth surfaces (shown for the 0° loading direction in Figure 3.15 
(b)) were similar in all directions of loading. However, dimples revealing ductile damage are 
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present in certain areas (see Figure 3.15 (c)) and grain boundaries are also visible (see Figure 
3.15 (d)), suggesting intergranular failure. 
 

(a) (b) 

(c) (d) 
Figure 3.15. Fracture surface observed for a shear test on butterfly specimen in the 0° in-plane 
direction: (a) picture and (b)-(d) SEM micrographs. 

3.6 Fracture surfaces and strain ratios

For both uniaxial tensile and compression tests in which shear failure occurred, the fracture 
surfaces were oriented at approximately 45° with respect to the loading direction, but not in a 
random manner. If one considers that the cross section of the specimen has an elliptic shape, 
Figure 3.16 shows two possible orientations (among infinitely many) of the 45° fracture 
surface with respect to the loading axis. In Figure 3.16 (a), the fracture surface is oriented at 
45° to the loading direction and contains the semi-major axis of the ellipse, whereas in Figure 
3.16 (b) it is also oriented at 45° to the loading direction but contains the semi-minor axis. 
Observations of the various fracture surfaces revealed that the latter case occurred consistently 
in uniaxial tension and preferentially in compression. A reasonable conclusion is that fracture 
surfaces are aligned with the orthotropic directions of the plate. 
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(a) (b)
Figure 3.16. Schematic representation of two possible orientations of a 45° fracture surface on 
an elliptical cylinder. The surface contains (a) the semi-major and (b) the semi-minor axis of 
the ellipse. 
 

The observation that the fracture surface orientation depends on the elliptical axis of the 

cylinder suggests that the localization process is related to the strain ratio R , defined for the 

loading direction  as 

 
p

TS
p
ND

R  (13) 

where p
TS  and p

ND  are the logarithmic plastic strain rates in the transverse direction of the 

specimen (TS) and in the normal direction (ND) of the plate, respectively. For the tests in the 

normal direction (ND), the strain ratio NDR  is defined as the ratio between p
RD  and p

TD , i.e. the 

logarithmic plastic strain rates in the rolling direction (RD) and in the transverse direction (TD) 
of the plate. Figure 3.17 presents the average experimental strain ratios and failure strains for 

the uniaxial tensile tests performed in the seven in-plane directions of the plate ( 0 ;90 ) 

and in the normal direction (ND) of the plate. The value of R  for each test was determined by 

averaging over the plastic regime, while the error bars represent the range of values from 
duplicate tests. It should, however, be noted that in the normal direction (ND), the strain ratio 
varied substantially within each test, and for this direction the average value was calculated 

after stabilization, which occurred around a plastic strain 0.05p . The strain ratios for the 
uniaxial compression tests are not presented since no continuous measurement of the diameter 
was performed during these tests. However, the elliptical fractured specimens for compression 
tests suggest that the strain ratios are similar in uniaxial tension and compression. 
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The directional variation of the fracture strain obtained from uniaxial tension tests on 
smooth specimens in the plane of the plate is found to be correlated to the directional variation 

of the strain ratio R . Figure 3.17 shows that a relatively low strain ratio implies a relatively 

low ductility and vice versa. Low values of the strain ratio imply a greater tendency of thinning 
of the plate than higher values. The fracture surface is oriented in such a way as to minimize its 
area, which also relates to the strain ratio. 
 

 
Figure 3.17. Experimental failure strain and strain ratio versus specimen orientation for 
tensile tests on smooth specimens. The error bars represent the range of failure strains from 
duplicate tests. 

 
For tension tests in the 0° direction the strain ratio 0R  is less than unity. The semi-

minor axis of the ellipse is then parallel to the normal direction (ND), and the observed fracture 
surface, oriented at 45° to the loading direction, contains this axis, as shown in Figure 3.16 (b). 
In contrast, for the compression test in the same direction, the semi-minor axis of the ellipse is 
now parallel to the transverse direction of the specimen (TS) and, as depicted on Figure 3.9 (a), 
the fracture surface is oriented at 45° to the loading direction and contains this axis. 

For the 45° loading direction, shear failure occurred only in compression. Then, as the 
strain ratio 45R  is greater than unity and contrary to the 0° direction, the fracture surfaces, still 

oriented at 45° with the loading, contains the normal direction ND (see Figure 3.9 (b)). 
The strain ratio 90R  obtained for the tensile test in the 90° direction is very close to 

unity, and in this case fracture occurs on planes randomly located around the loading axis (see 
Figure 3.9 (c) for the compression test in the 90° direction). For the intermediate directions 
showing shear failure (15°, 30° and 70° with respect to the RD), the fracture surfaces are more 
disrupted but are also globally oriented at 45° with respect to the loading direction and contain 
the semi-minor axis of the ellipse. 
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The tests performed in the normal direction (ND) of the plate show a lower strain to 
failure, but also a larger scatter than for the tests performed in the in-plane directions. The 
fracture surfaces, mainly orthogonal to the loading direction, show inter-granular failure. Here, 
grains with size of the same order as the width of the specimen can lead to premature failure. 
Also, the PFZs are preferentially oriented perpendicular to this loading direction, which may 
facilitate growth and coalescence of voids along planes orthogonal to the loading direction. 
These observations finally enable to assume that failure is facilitated when the PFZ 
concentration is high in the load-carrying plane (i.e. where the largest strains occur). 



Chapter 4 - Anisotropic plasticity 

40 
 

Chapter 4. Anisotropic plasticity model

4.1 Introduction

In this chapter, the constitutive model used to describe the elasto-plastic behaviour of the 
AA7075-T651 alloy is presented, followed by the calibration of the corresponding material 
parameters. Finally, the numerical models used to simulate the material tests performed in 
Chapter 3 are presented. 

4.2 Constitutive model

A hypoelasto-plastic constitutive model based on the yield surface representation Yld2004-18p 
proposed by Barlat et al. (2005) is used to describe the anisotropic behaviour of the AA7075-
T651 aluminium alloy. This yield surface was shown to be very efficient to describe the 
anisotropy of aluminium plates (Grytten et al., 2008) and due to the numerous experimental 
data available, the calibration of the anisotropy parameters is possible. The model accounts for 
isotropic elasticity, anisotropic yielding, associated plastic flow and isotropic strain hardening. 
The elastic strains are assumed small while the plastic strains may be finite. A corotational 
formulation is adopted to simplify the formulation of plastic anisotropy. The stress measure is 
realized in the unrotated configuration and expressed in a Cartesian coordinate system aligned 
with the principal directions of the orthotropic anisotropy. These axes are assumed to remain 
orthogonal during deformation. 

The corotational Cauchy stress and corotational rate-of-deformation tensors are defined 
by (e.g. Belytschko et al., 2000) 

 ˆˆ ,T T= R R d = R d R  (14) 

where  is the Cauchy stress tensor, d  is the rate-of-deformation tensor and R  is the rotation 
tensor defined through the polar decomposition of the deformation gradient ( F = R U , where 
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U  is the right stretch tensor). The corotational rate-of-deformation tensor is decomposed into 
elastic and plastic parts 

 ˆ ˆ ˆe pd d d  (15) 

The linear hypoelastic formulation gives the relation between the rate of the corotational 
Cauchy stress and the elastic part of the corotational rate-of-deformation 

 ˆ ˆˆ : e
elC d  (16) 

where ˆ
elC  is the 4th order tensor of elastic moduli. As elastic isotropy is assumed,  is 

uniquely defined by Young’s modulus E   and Poisson’s ratio  (a detailed expression is given 
in Appendix A).  

The yield function is assumed convex and is written as 

 ˆ ˆ,f p p  (17) 

where  is the equivalent stress,  is the flow stress in uniaxial tension in the rolling direction 
and p is the accumulated plastic strain. To model the anisotropy of the material, the equivalent 

stress defined by Barlat et al. (2005) is used 

 
11( )

4
m  (18) 

where 

 
1 1 1 2 1 3 2 1 2 2

2 3 3 1 3 2 3 3

( , )
m m m m m

m m m m

S S S S S S S S S S

S S S S S S S S

S S
 (19) 

The exponent m  is used to determine the shape of the yield surface. In Eq.(19), S and S  are 

collections of the principal values iS  and jS  of the tensors s  and s . These two last tensors 

are defined by linear transformations of the corotational Cauchy stress 

 ˆ ˆˆ ˆ: : : , : : :s = C s C T s = C s C T  (20) 

where the 4th order tensor T transforms the corotational Cauchy stress ˆ  into its deviatoric part 

ŝ . The 4th order tensors C  and C  contain the anisotropy weighting coefficients. For 
orthotropic symmetries, only 9 of these constants are non-trivial so that the tensors C  and C  
in Voigt notation read 

ˆ
elC
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C C  (21) 

and T reads 

 

2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 01

0 0 0 3 0 03
0 0 0 0 3 0
0 0 0 0 0 3

T  (22) 

To obtain an isotropic version of this material model, all the coefficients of C  and C  are set 
to unity. For more details on Yld2004-18p the reader is referred to Barlat et al. (2005). The 
evolution of the flow stress is defined by assuming isotropic hardening, using a Voce 
hardening rule 

 0 1 expp Q Cp  (23) 

where 0 , Q  and C  are material parameters. The evolution of the plastic part of the 

corotational rate-of-deformation tensor ˆ pd  and the equivalent plastic strain-rate p  are defined 

by the normality of the yield surface 

 ˆ ,
ˆ

p f fpd  (24) 

where  is the plastic multiplier satisfying the usual loading-unloading conditions, written in 
Kuhn-Tucker form as 

 0, 0, 0f f  (25) 

This material model involves two elastic parameters E  and , and 22 parameters for plasticity, 

namely 0 , Q , C , m , ijc  and ijc . 
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4.3 Identification of the Yld2004 18p material constants

The three parameters of the isotropic hardening law 0 , Q  and C  are calibrated based on the 

tensile test in the rolling direction (RD) and the two elastic parameters E  and  are chosen 
equal to nominal values for aluminium (see Table 4.1). The plastic anisotropy of the material is 
taken into account with the 18 parameters in C  and C  calibrated using the experimental 
results presented in Chapter 3. 

4.3.1 The shape parameter m

The m  parameter is not calibrated as the other parameters. Hosford (1972) and Hill (1979) 

showed that 8m  is reasonable for f.c.c. crystal structures. Since aluminium is studied here, 

8m  was used in a first approach. Then, since the parameter m  controles the shape of the 
yield surface, it was of interest to investigate its influence on the predicted behaviour of the 
different tests. Indeed, and as suggested by Barlat et al. (1991), the crystallographic texture and 
grain morphology of rolled aluminium plates could increase the exponent of the yield function 
compared to an isotropic microstructure, by changing the active slip systems during the plastic 
process. Then, a new set of anisotropic parameters was determined with 12m . The two 
identifications led to about the same residual in the least squares approach used in the 
calibration. 

4.3.2 The anisotropy parameters

From a tension test on a smooth specimen in a given in-plane direction , the yield stress and 
the strain in the transverse and normal directions are obtained. The flow stress ratio is defined 
as 

 
0

r  (26) 

Thus,  is the flow stress in the direction  and 0  is the corresponding flow stress in the 

rolling direction (RD). The flow stress ratios were determined by use of the 0.2% proof stresses 
in the different directions before being adjusted by inverse identification using trial and error. 
By definition, the flow stress ratio represents a point on the yield surface and is equal to unity 
in the rolling direction (RD). Then, the strain ratio R  defined in Eq.(13) is the ratio between 

p
TS  and p

ND , the logarithmic plastic strain rates in the transverse direction of the specimen 

(TS) and the normal direction (ND) of the plate. As plastic flow normal to the yield surface is 
assumed, the strain ratio determines the normal to the yield surface at a given stress state. 



Chapter 4 - Anisotropic plasticity 

44 
 

Figure 4.1 shows p
TS  versus p

ND  for tensile tests on smooth and notched tensile specimens in 

the 0°, 45° and 90° in-plane directions. The strain ratios are the slopes of the curves presented 
in Figure 4.1 (a) and are obtained by a least square fit of these curves to a linear function. Both 
the stress and the strain ratios provide relations between the parameters of the yield surface. 
Consequently, the seven in-plane tension tests on smooth specimen bring 14 constraints to the 
calibration of the anisotropic parameters. 

(a)

(b) (c)
Figure 4.1. Experimental and predicted logarithmic strain in the transverse direction of the 
specimen (TS) versus logarithmic strain in the normal direction (ND) of the plate for (a) 
smooth specimens, (b) notched specimens with 2.0mmR  and (c) notched specimens with 

0.8mmR , with the anisotropic model ( 8m ) calibrated for the AA7075-T651alloy. 
 
For the compression tests in the normal direction (ND), the strain and stress ratios are defined 

 
0

,
p

CTD
Biax Biaxp

RD

R r  (27) 

where p
RD  and p

TD  are the measured final strains in the rolling direction (RD) and transverse 

direction (TD) of the plate, respectively, and C  is the yield strength in compression (along the 
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normal direction (ND)). The compression tests performed in the normal direction (ND) give 
two additional constraints to the set of anisotropic parameters. It should be noted that due to the 
pressure insensitivity of the model, the yield function is symmetric in tension and compression. 
Consequently, the uniaxial compression in the normal direction (ND) is equivalent to 
equibiaxial tension in the plane of the plate. In the optimization, the compression data is used 
as a biaxial data point to find the anisotropic yield surface. 

The calibration of the set of 18 anisotropic parameters was made in two steps. A first 
calibration was obtained by using the 16 experimental constraints (14 constraints from the 
uniaxial tension tests and two from uniaxial compression, as presented earlier). Then, 
numerical simulations of the different tests were run using the obtained values. The stress-
strain curves of the tensile tests on smooth specimens in the seven different directions were 
found to be in good agreement with the experimental curves. In contrast, the shear tests on 
butterfly specimens aligned with the 0° direction of the plate showed a discrepancy of 23% on 
the force. The scatter observed between duplicate shear tests in Chapter 3 leads to conclude 
that the anisotropy of yielding in shear is not quantified in a reliable way. Consequently, the 
shear tests aligned with the 0° direction of the plate (showing the smallest scatter) will be 
considered for the calibration of the anisotropic yield surface. This choice implies that no 
anisotropy of yielding is expected in the numerical study of shear tests. The yield limits for the 
shear tests in the 0° and 90° directions were corrected and set as two new constraints. A second 
calibration of the set of 18 parameters is obtained combining seven tensile tests in the plane of 
the plate and one compression test in the short transverse direction (16 constraints), and two 
shear tests in the plane of the plate (two constraints). The resulting parameters obtained with 

8m  and 12m  are presented in Table 4.1. Figure 4.2 compares the predicted and 

experimental flow stress ratios (a) and strain ratios (b). Those are found similar for 8m  and 

12m , except for the 60° direction which exhibits a difference of 12% in the strain ratio. 
Then, the yield surfaces are illustrated in Figure 4.3. Several contours of each yield function 
are given in two different planes in stress space. As expected, the yield surface with 12m  is 

sharper than with 8m . An isotropic calibration of the parameters ( 1ij ijc c ) is also plotted 

in Figure 4.3 to show the influence of anisotropy. 
Note that the uniaxial tensile test performed in the normal direction (ND) of the plate 

was not used for the calibration. The first reason is that these tests were performed much later 
than all the other tests and the calibration published in Fourmeau et al. (2011) was already 
satisfactory. The second reason is that these tests did not bring much improvement. Indeed, 
with the pressure independency of the yield function, uniaxial tension and uniaxial 
compression in the normal direction (ND) are assumed to be equivalent, yet their yield limits 
and strain ratios are similar. 
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(a) (b) 
Figure 4.2. (a) Flow stress ratio and (b) strain ratio given by the Yld2004-18p model 
calibrated with 8m  and 12m  for the AA7075-T651 alloy. 
 

(a) (c) 

(b) (d) 
Figure 4.3. Illustration of yield surface given by the Yld2004-18p model calibrated with (a-b) 

8m  and (c-d) 12m  for the AA7075-T651 alloy. The isotropic yield functions ( 1ij ijc c ) 
are plotted in dashed lines for comparison. The x  axis is aligned with RD, the y  axis with TD 
and the z  axis with ND. 
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Table 4.1. Material data for the model Yld2004-18p calibrated for the AA7075-T651 alloy. 
 E (GPa)  (g/cm3) 0 (MPa) Q (MPa) C  K (GPa) (GPa) m  
 70 0.3 2.7 538.8 177.24 12.58 58.334 26.924 8 
 12c  13c  21c  23c  31c  32c  44c  55c  66c

8m  0.157 0.696 -0.446 0.198 1.169 0.436 0.895 1 1 
12m  -0.066 0.101 -0.624 0.504 0.988 0.563 0.881 1 1 

 12c  13c  21c  23c  31c  32c  44c  55c  66c
8m  0.485 1.009 1.232 1.408 0.181 1.534 1.329 1 1 

12m  0.690 1.128 1.218 1.356 -0.055 1.495 1.290 1 1 

4.4 Numerical procedures and finite element models

The constitutive relations described above were implemented as a user-defined material 
subroutine (see Grytten et al., 2008) in the non-linear finite element code LS-DYNA (LSTC, 
2007). All tests presented in Chapter 3 were simulated using the explicit solver of LS-DYNA 
with 8-node fully integrated solid elements. To reduce the computational time, affected both by 
the element size and the number of elements, the mesh was only refined in the area exposed to 
large deformations and mass-scaling was applied. As boundary conditions, a function was 
applied to smoothly reach a constant velocity. The finite element geometries of the different 
specimens are shown in Figure 4.4, while the numbers and minimum size of the elements eh  

are given in Table 4.2. Compression tests were performed with 0 0h D {1,1.5} but only the 

results for 0 0 1h D  will be presented for the reasons explained in Chapter 3. A friction 

coefficient 0.02f  was used between the lubricated platens and the cylindrical specimen 

loaded in compression. This value was found by trial and error: the friction coefficient was not 
found to influence yielding but only the behaviour at very large strains. 

To characterize the local stress and strain fields in the test specimens up to incipient 

failure, the spatial distribution of the accumulated plastic strain p and the stress triaxiality  

were determined from the simulations. It should be noted that since the tests are carried out for 
axisymmetric specimens of different shapes as well as shear specimens, the deviatoric stress 
state will differ significantly from one specimen to the other. However, to limit the 
investigation, the stress triaxiality was selected to represent the stress state. The accumulated 
plastic strain is defined by 

 
0 0

ˆˆ : d d
t tp

p t td  (28) 
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where  is the equivalent stress defined by the Yld2004-18p yield function, and ˆ  and ˆ pd  are 
the corotational Cauchy stress and plastic rate-of-deformation tensors, respectively (see 
Fourmeau et al. (2011) for details). The numerical fracture point is then defined at the instant 
of loading where fracture occurs experimentally. It is important to note that the accumulated 
plastic strain p  computed from the numerical simulations is different from the strain measured 

experimentally and these two strain measures should not be directly compared. Also, the 
choice to work with the accumulated plastic strain p  is supported by the analysis presented in 

Chapter 6. The stress triaxiality is here defined as 

 1

3
I  (29) 

where 1 ˆtrI  is the first invariant of the stress tensor ˆ  and plastic anisotropy is included 

by using the equivalent stress  defined by the Yld2004-18p yield function. Note that in this 

definition of the stress triaxiality , the equivalent stress  defined by the Yld2004-18p 
yield function have replaced the von Mises equivalent stress eq  used in Chapter 3. A more 

detailed presentation of the numerical results is given in Chapter 5. 

(a) (b) (c) (d) (e) 
Figure 4.4. Finite element meshes of the specimens for the numerical simulations: (a) cylinder 
with 0 0 1h D  for compression tests, (b) butterfly specimen for shear, (c) smooth 
axisymmetric specimen, (d) notched specimen with 2.0mmR  and (e) notched specimen with 

0.8mmR  for tensile tests. 
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Table 4.2. Number and initial size of elements for each discretized specimen geometry. 

 Compression Butterfly Smooth 
Notch 

2.0mmR  
Notch 

0.8mmR  
Number of elements 30050 18628 36000 43136 57000 

eh  (mm) 0.15 0.15 0.4 0.3 0.2 
 





 

 
 

Chapter 5. Numerical analysis

5.1 Introduction

In this chapter, all the results obtained from the numerical simulations presented in the Chapter 
4 are presented. Firstly, the numerical stress-strain curves are given and compared with the 
experimental curves. Then, the local stresses and the strain states in the elements where 
fracture occurred experimentally are analysed. Figure 5.1 shows these elements for each 
geometry of specimen. 
 

(a) (b) (c) (d)
Figure 5.1. Part of the various discretized specimens shown in Figure 4.4 with black elements 
where fracture is experimentally observed (the two cases given in (c) correspond to two failure 
modes). 

5.2 Macroscopic stress strain curves

Numerical stress-strain curves from the various tests described in Chapter 4 are presented in 
Figure 5.2 to Figure 5.5 and compared with the experimental results. The stress and strain are 
computed in the same manner as for the experiments. Diameter reduction is used for tensile 
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tests, total elongation is used for compression tests and displacement of the upper bolt is used 
for the shear tests. Both the isotropic and anisotropic ( 8m  and 12m ) calibrations of the 
material model are used. The simulated stress-strain curves were found to be in good 
agreement with the experimental results for all the tests, validating the calibrated material 
model from a macroscopic point of view. The errors between experimental and numerical 
results are presented in Table 5.1. Note that only the shear test in the rolling direction is 
studied, following the discussions in Chapter 3 and Chapter 4. 

5.2.1 Isotropic version of Yld2004 18p

The numerical simulations were first run without including anisotropy. Thus, all the anisotropy 
parameters ijc  and ijc  were set equal to unity and the coefficient m  was chosen equal to 8 and 

12. In those cases, only the tests in the rolling direction are studied. 
As the isotropic material model was calibrated using uniaxial tensile tests in the rolling 

direction, the simulation of this particular test is in good agreement with the experiment (see 
Figure 5.2 (a)). However, for both the tensile tests on notched specimens (Figure 5.2 (a)) and 
the shear tests (Figure 5.3), the numerical stress-strain curves (force-displacement curve for 
shear) clearly overestimate the experimental curves in the 0° direction. This behaviour has 
already been reported in several studies, see e.g. Wilson (2002) and Bai and Wierzbicki (2008), 
and has been explained by the effect of hydrostatic pressure. However, it may also be due to 
anisotropic effects which were not considered in those studies. Indeed, and as underlined in the 
introduction, effects of pressure sensitivity on the flow stress have been claimed for many 
materials among which aluminium alloys (see e.g. Spitzig and Richmond, 1984, Wilson, 2002, 
Bai and Wierzbicki, 2008). These former studies included pressure-dependence into the yield 
function, as determined by inverse identification, and obtained correct stress-strain curves for 
tensile test on both smooth and notched specimens. In our case, the calibration was done in the 
rolling direction, and this choice has a direct influence on the numerical results for the notched-
specimen tests. In the following part, results are presented for simulations taking the anisotropy 
of the material into account. 

Table 5.1. Error (in %) between experimental and numerical tests at 2% strain or 0.6mm  
displacement for the shear tests on butterfly specimens. 

Shape parameter 8m  12m  
Direction of loading Isotropic 0° 45° 90° ND Isotropic 0° 45° 90° 
Notch 2.0mmR  6.28 2.15 1.20 0.20 - 6.28 1.61 0.56 0.83 
Notch 0.8mmR  10.54 5.11 3.51 2.58 - 10.54 1.59 0.99 0.85 

Cylinder 0 0 1h D 2.81 2.81 9.21 7.56 7.42 - - - - 
Butterfly 10.85 0.10 - 5.98 - - - - - 
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(a) 

 

(b) 

 

(c) 
Figure 5.2. Experimental and predicted Cauchy stress-logarithmic strain curves for tensile 
tests on smooth and notched specimen in the (a) 0°, (b) 45° and (c) 90° in-plane directions, 
with the anisotropic model ( 8m  and 12m ). Figure (a) also shows the prediction with the 
isotropic model. 
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Figure 5.3. Experimental and predicted force-displacement curves for the shear test on a 
butterfly specimen in the 0° in-plane direction with the isotropic and anisotropic models (

8m ). 

5.2.2 Anisotropic version of Yld2004 18p

Numerical simulations of the various material tests were run with the anisotropic version of the 
model with 8m  and 12m , and their associated parameters obtained in the calibration 
presented in Chapter 4. Results are presented for both values when differences were observed. 
Otherwise, only the calibration with 8m  is used. Note that the uniaxial tension, shear and 
compression tests are not affected by the value of m , while the results for tensile tests on 
notched specimens are affected. For tensile tests on notched specimens, the strain ratios were 
not affected by the value of m , but the stress-strain curves with 12m  are in general more 
accurate than those obtained with 8m  (the maximum error in stress level decreases from 5% 
to 2%, see Table 5.1). This illustrates that the notch-strengthening effect is sensitive to the 
shape of the anisotropic yield surface. 

As this model was calibrated using uniaxial tensile tests and shear tests, the simulations 
are in good agreement with these experimental results. Stress-strain curves for the tensile tests 
in seven different directions on smooth specimens are presented in Figure 5.4 (c), where they 
can be compared to the experimental data in Figure 5.4 (a). The error between experimental 
and numerical yield stresses is directly linked to the inaccuracy in the calibration of the 
material model (see Figure 4.2 (a)). The simulation error is small for all directions with a 
maximum of 3.5%. The simulated force-displacement curve for the shear tests is presented in 
Figure 5.3 for the 0° direction. As expected since the shear tests in the rolling direction was 
used to calibrate the anisotropic material model, the agreement between prediction and 
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experiments is better with the anisotropic than with the isotropic material model (see also Table 
5.1). The stress-strain curves for tests on notched specimens in different directions and for the 
two notch root radii are presented in Figure 5.2. The overestimation observed with the isotropic 
model is considerably reduced with the anisotropic model (maximum values of the error are 
5% of logarithmic strain with 8m , see Table 5.1). One remarkable result is that the reduced 
effect of anisotropy on the stress-strain curves observed experimentally is reproduced with the 
anisotropic material model. 

Concerning the strain ratios, numerical results are in good agreement with experiments 
for tensile tests on smooth specimens in the seven different directions. The logarithmic strain in 
the transverse direction of the specimen (TS) versus the logarithmic strain in the normal 
direction (ND) of the plate is presented in Figure 4.1 (a) for the 0°, 45° and 90° in-plane 
directions. For the tensile tests on notched specimens, the predicted strain ratios show more 
deviation (see Figure 4.1 (b) and (d)). 
 

(a) (c) 

(b) (d) 
Figure 5.4. Representative experimental Cauchy stress-logarithmic strain curves for tensile 
tests on (a) smooth specimens and (b) notched specimens taken in different in-plane directions 
and (c)-(d) corresponding numerical predictions with the anisotropic model ( 8m ). 
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Compression tests have also been simulated for the 0°, 45°, 90° in-plane directions and 
normal direction (ND) of the plate (Figure 5.5 (b)) and compared with experimental results in 
Figure 5.5 (a). Some deviations are seen between these simulations and the experimental 
results (see Table 5.1). One possible reason for this is believed to be the friction between the 
specimen and the rigid platens. Another possible reason is that the yield surface is insensitive 
to the pressure and is thus symmetric in uniaxial tension and uniaxial compression. Then, the 
experimental yield stress in uniaxial compression, not similar to the yield stress in uniaxial 
tension, cannot be predicted correctly with the chosen yield function. In addition, the deviation 
between predicted and experimental stress-strain curves is increasing with plastic strains and 
can reach 12% at a strain 0.6  in the 0° direction for instance. This is due to the saturating 
plastic hardening law which was calibrated under uniaxial tension up to 16% strain (the failure 
strain in the 0° direction) and validated on the uniaxial tension test in the 45° direction up to 
strains of 45%. The use of a non-saturating hardening law or the calibration on compression 
tests could have enhanced the numerical predictions. 
 

(a) (b) 
Figure 5.5. (a) Representative experimental Cauchy stress-logarithmic strain curves for 
compression tests on cylindrical specimens ( 0 0 1h D ) in different directions of the plate and 
(b) corresponding numerical predictions with the anisotropic model ( 8m ). 
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the longitudinal (LS) and transverse (TS) directions of the specimen and the normal direction 
(ND) of the palte can be considered as the principal axes of the stress tensor. Three steps of 
the loading must be distinguished. First, the loading is totally elastic and the behaviour of the 
material is isotropic. Second, plasticity starts at the root of the notch and propagates to the 
central part of the section. Third, the whole minimum section is plastified and the plastic flow 
continues until fracture. These three steps explain the better predictions of the notch-
strengthening effect in the anisotropic simulations of the notched tensile tests: 

 1st step: Figure 5.6 (a) shows the hydrostatic stress, deviatoric stress and stress 
triaxiality along the transverse axis of the specimen (TS) during elastic loading. The stresses 
are found to be heterogeneous in the minimum cross section. The boundary conditions at the 
root of the notch induce a stress state close to uniaxial tension in the loading direction (LS). In 
the central part, the notched geometry induces a multiaxial stress state. The major principal 
stress is along the direction of loading direction (LS) while the intermediate and minor 
principal stresses are the components orthogonal to the loading direction (TS and ND). The 
major and intermediate stresses are shown in Figure 5.6 (b) for the central element at the 
minimum cross section. The corresponding stress state decreases the value of the deviatoric 
stresses (which drive the plastic process) compared to the behaviour at the root of the notch. 
 2nd step starts when the material at the root of the notch reaches the yield limit. This is 

represented by a cross in Figure 5.6 (b). With an anisotropic material model, the plastification 
does not occur simultaneously in the transverse direction of the specimen (TS) and the normal 
direction (ND) of the plate. This asymmetric plastic behaviour induces a non-equibiaxial stress 
state inside the remaining elastic central part of the minimum cross section. The stress path of 
the central element will differ from the isotropic case. Consequently, the yield surface will be 
reached in this element at a different location in stress space in the simulations with isotropic 
and anisotropic material models. This is represented by the points in Figure 5.6 (b), which also 
reveals that the stress values at yielding are lower for the anisotropic case. One explanation is 
that the deviatoric stresses increase slightly faster in the anisotropic case (see Figure 5.7 (a)). 
Consequently, yielding in the centre of the minimum cross section (and plasticity overall the 
cross section) is reached at an earlier stage of the loading in the anisotropic case. 
 3rd step starts once the minimum cross section is totally plastified. As the yielding stress 

states are different for the isotropic and anisotropic cases, the plastic flow will also differ for 
the two cases. This is illustrated by Figure 5.7 (b), which shows that the hydrostatic stress 
increases at a lower rate in the anisotropic case. 
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(a) (b) 
Figure 5.6. Predicted data from the tensile test on notched specimen ( 2.0mmR ) in the 0° 
direction using the anisotropic model ( 8m ): (a) equivalent stress, hydrostatic stress and 
stress triaxiality in the minimum cross section along the transverse direction of the specimen 
(TS) in the elastic domain and (b) yield loci with 0 0.46TS  and stress paths of the central 
element of the minimum cross section of the specimen. ND  denotes the normal stress in ND, 

LS  in LS and TS  in TS. 
 

(a) (b) 
Figure 5.7. Predicted stresses in the centre of the minimum cross section of the notched 
specimen ( 2.0mmR ) for the tensile test in the 0° direction using the isotropic and 
anisotropic models ( 8m ): evolution until fracture of (a) the deviatoric stresses in LD and TD 
and (b) the hydrostatic stress. 
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5.3 Local stress and strain along fracture surface

To evaluate the stress and strain fields in the specimens, we consider the trajectories of 

accumulated plastic strain p versus stress triaxiality  from incipient plastic deformation to 

fracture for the finite elements defining the experimentally observed failure surface (cf. Figure 
5.1). The envelopes of all trajectories and/or some selected trajectories are presented for the 
different tests (see Figure 5.8, Figure 5.10 and Figure 5.11). It is important to repeat here that 
the accumulated plastic strain p  computed from the numerical simulations is different from 

the strains measured experimentally and these different strain measures should not be directly 
compared. However, the difference between these measures has no influence on the discussion 
regarding the heterogeneity of the stress and strain fields and the impact of plastic anisotropy 
on the establishment of a failure criterion. 

The results for the uniaxial tensile tests in the 0°, 45° and 90° directions are shown in 
Figure 5.8 (a). The trajectories of one of the surface elements and the element at the centre of 
the specimen correspond to the left and right parts of the envelope. Note that the elements 
considered to build the envelope depend on the loading direction and the corresponding failure 
mode. Thus, the elements marked in Figure 5.1 (c) left are used for the 0° and 90° directions, 
while the elements indicated in Figure 5.1 (c) right are used for the 45° direction. The upper 
part of the envelope is defined by the experimentally observed diameter reduction at fracture, 
i.e. fracture in the simulations is defined by the instant in the loading process where the 
predicted diameter reduction is equal to the measured diameter reduction at fracture in the 
experiments. The trajectories displayed in Figure 5.8 (a) show that the stress triaxiality 
increases from the initial value at the centre of the specimen, while it slightly decreases close to 
the surface. This change in stress triaxiality is due to necking of the specimens and is distinct at 
45° while more limited for the two other directions. The envelopes for the different directions 
are similar for low plastic strains, especially at 0° and 90°, although the failure strain itself is 
quite different for these two directions. For the 45° direction the stress triaxiality at the centre 
of the specimen increases significantly with the accumulated plastic strain, since the large 
ductility in this direction allows for marked necking before fracture. The accumulated plastic 
strain at failure, fp , in the elements located in the critical cross section of the specimen is 

homogeneous when failure occurs at small plastic strains ( 0.156;0.164fp  for the tensile 

test in the 0° direction), whereas a substantial variation is seen when the failure strain increases 

( 0.336;  0.406fp  for the tensile test in the 45° direction). The maximum values of fp  and 

 at failure are reached at the centre of the specimens in all directions. 
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(a) 

 

(b) 

 

(c) 
Figure 5.8. Envelopes of the trajectories of accumulated plastic strain versus stress triaxiality 
for elements depicted in black in Figure 5.1 for tensile tests in the 0°, 45° and 90° in-plane 
directions on (a) smooth specimens, (b) notched specimens ( 2.0mmR ) and (c) all tensile 
tests performed in the 0° direction. All trajectories are terminated at the loading 
corresponding to failure in the experiment. 
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The influence of anisotropy on the stress triaxiality is studied in Figure 5.8 (b), which 

presents the envelopes for the notched specimens with 2.0 mmR  loaded in different 

directions. Figure 5.8 (b) further presents the results obtained with the smooth and notched 
specimens with the two radii 2.0 mmR  and 0.8 mmR , loaded in the 0° direction, for 

comparison. The trajectories for the surface element, giving the minimum stress triaxiality, and 
the element in the centre of the specimen, not always giving the highest stress triaxiality, are 
shown. All other trajectories are comprised between these two lines. As explained by 
Fourmeau et al. (2011), the plastic flow initiates at the root of the notch and influences the 
stress state in the whole minimum cross section. Since this plastic flow is anisotropic, the stress 
state becomes non-axisymmetric and the stress triaxiality at the centre of the minimum cross 
section (at the initiation of plastic deformation) can be affected. In a similar way as for tests on 
smooth specimens, the stress triaxiality at the centre of the minimum cross section increases 
more for the 45° loading direction than for the other directions. Indeed, both the stress 
triaxiality and the accumulated plastic strain at failure are found to be highest for the 45° 
loading direction in the centre of the specimen. The accumulated plastic strains at failure are 
very different at the root of the notch and the centre of the minimum cross section, giving a 
considerably larger strain range than under uniaxial loading conditions (e.g. in the 0° direction, 

0.068;  0.127fp  for 2.0 mmR  and 0.004;  0.013fp  for 0.8 mmR , see Figure 5.8 

(c)). Fracture occurs after a very small plastic straining at the centre of the minimum cross 

section (0.068 and 0.004 for notched specimens loaded in the 0° direction with 2.0 mmR  

and 0.8 mmR , respectively), while the strain at the surface of the specimen is much larger. 

In some cases, the centre was not the point of maximum stress triaxiality in the minimum cross 
section. This was the situation for the notched specimen with 0.8 mmR , where the trajectory 

of the central element was actually inside the envelope (see Figure 5.8 (c)). The envelope is in 
this case limited by the trajectory of an element located between the centre of the specimen and 
the root of the notch. 

Another way to visualize the heterogeneities in the strain and stress fields is presented 
in Figure 5.9. Here the spatial distributions of the accumulated plastic strain and the stress 
triaxiality over the minimum cross section are depicted for the 0° direction at the global 
displacement corresponding to experimental failure. For the tensile test on smooth specimens 

(Figure 5.9 (a)) p  and are found rather homogeneous across the section. For the tensile 

tests on notched specimens (Figure 5.9 (b) and (c)) p  is the highest at the root of the notch, 

where  is the lowest. Further, Figure 5.9 shows that the stress and strain fields are not 

axisymmetric due to anisotropy, and for the notched specimen with 0.8 mmR ,  is 
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maximum at the centre of the specimen. The latter observation was also made by El-Magd et 
al. (1997) and Børvik et al. (2003a) for steels. 
 

Accumulated plastic strain Stress triaxiality 

 

(a) 

 

(b) 

 

(c) 
Figure 5.9. The distributions of accumulated plastic strain and stress triaxiality over the 
minimum cross section at the point of failure for tensile tests in the 0° in-plane direction on (a) 
smooth specimen, (b) notched specimen with 2.0 mmR  and (c) notch specimen with 

0.8 mmR . 
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0.394; 0.789fp  in the 0° direction) makes the strains obtained from measurements of the 

global change in length of the specimen inaccurate and not representative for the real strains 
inside the specimen. Concerning the stress triaxiality, a highly compressive state of stress is 
found at the interface with the platen (point S2 in Figure 5.1 (c) and Figure 5.10), where 
friction effects are important, while a uniaxial compression stress state is only ensured at mid 
height on the surface of the cylinder (point S1). This reveals the importance of the barrelling 
effect. The inclined fracture surface contains the points with the maximum stress triaxiality. 
This suggests that under these negative stress triaxiality states, fracture preferentially occurs 
where the stress triaxiality is the highest. Note that the initial stress triaxiality is not even equal 

to the theoretical value of 1 3  in the entire specimen due to friction occurring also in the 

elastic regime. 

 

Figure 5.10. Trajectories of accumulated plastic strain versus stress triaxiality for elements 
depicted in black in Figure 5.1 (a) for the compression tests on cylinders with 0 0 1h D  in the 
0° in-plane direction. All trajectories are terminated at the displacement corresponding to 
failure in the experiment. 
 

Figure 5.11 shows the results for the shear test in the 0° direction, revealing that the 
specimen experiences a complex loading history that deviates significantly from shear loading 
in some locations. Fracture was assumed when the central surface element C reached the 
experimentally obtained strain to failure. The rim element S and the element I1 (see Figure 5.1 
(d) and Figure 5.11) experience stress triaxiality states deviating considerably from the 
theoretical value of zero. However, the elements located at the middle height of the shear band 
named I2, I3 and C experience a loading close to shear. The element at point M, which 
corresponds to the maximum strain location, is also shown. This point is subjected to large 
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plastic strains, but is not located on the fracture surface and is consequently not critical. The 
distribution of stress triaxiality and accumulated plastic strain in the shear specimen 
demonstrates that the minimum cross section is not subjected to a homogeneous shear stress. 
The influence of the direction of loading on the stress triaxiality field was found to be small. 
 

 

Figure 5.11. Trajectories of accumulated plastic strain versus stress triaxiality for elements 
depicted in black in Figure 5.1 (b) for the shear test in the 0° direction. All trajectories are 
terminated when the strain in the central surface element C corresponds to the failure strain 
determined in the DIC analysis. 

5.4 Conclusions

It was found that Yld2004-18p provided an adequate description of the plastic anisotropy of 
the AA7075-T651 plate. Moreover, it was shown that plastic anisotropy is pivotal for an 
accurate prediction of the notch-strengthening effect. In particular it was shown that an 
isotropic yield function overestimates the stress level in the notched specimens. The shape of 
the anisotropic yield surface was revealed to significantly affect the prediction of the notched-
specimen behaviour. These findings are important since notched specimens often are used to 
determine the fracture locus of materials, and in this context an accurate description of the 
stress state within the notch is essential. Also, the scatter in the results further enforces us to 
take the fracture strains at low stress triaxiality into account in a rather qualitative way. 

A fracture locus giving the failure strain as a function of the stress triaxiality is a widely 
used way of representing the ductility of an isotropic material. It is usually constructed from 
experimentally obtained (global) failure strains and theoretical initial stress triaxiality values 
available for given specimen geometries. Figure 5.12 gives the experimental failure strains 
obtained in Chapter 3 for the different tests in the different loading directions performed on 
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specimens taken from the AA7075-T651 plate. It was assumed more prudent not to attribute a 
unique stress triaxiality value to each test. However, tests are ordered by increasing initial 
theoretical stress triaxiality. Figure 5.12 clearly shows that the usual representation of a 
“unique” fracture locus in terms of accumulated plastic strain versus stress triaxiality is not 
sufficient to describe the fracture behaviour for the AA7075-T651 alloy. This is expected since 
this kind of representation was first proposed for isotropic materials (e.g. McClintock, 1968; 
Rice and Tracey, 1969). To improve this representation, plastic anisotropy should be included. 
A possible route towards this aim is to include plastic anisotropy in Rice and Tracey’s analysis 
as done for instance by Benzerga et al. (2001) and in the Gurson model by Monchiet et al. 
(2008). In the analysis of Benzerga et al. (2001) both the accumulated plastic strain and the 
equivalent stress are simply replaced by the accumulated plastic strain and the equivalent stress 
associated to the anisotropic yield criterion used in the analysis. Recently, the effect of loading 
path on the fracture locus was examined theoretically by means of an axisymmetric void cell 
model by Benzerga et al. (2012). They found that the fracture loci under radial and non-radial 
loadings are quite distinct from each other. Under radial loadings, a unique fracture locus may 
be constructed for given initial values of microstructural variables. Under non-radial loadings, 
however, an infinite number of fracture loci in terms of failure strain versus average stress 
triaxiality and Lode parameter can be constructed. Thus, they claimed that the notion of a 
fracture locus is a “misnomer”. Moreover, as suggested by several researchers (e.g. Zhang et 
al., 2001; Nahshon and Hutchinson, 2008; Bai and Wierzbicki, 2008; Barsoum and Faleskog, 
2011), the Lode parameter (as a function of the third invariant of the deviatoric stress tensor) 
seems to play an important role in the ductile fracture process. 

 

Figure 5.12. Average experimental strain to failure for the compression tests (CT), shear tests 
(ST), uniaxial tension tests (UT), notched tension tests with 2.0mmR  (NT2.0) and with 

0.8mmR  (NT0.8). The error bars represent the range of failure strains from duplicate tests. 
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Based on the stress and strain field analysis, the presented study points out another 
difficulty in establishing a failure locus: the presence of several failure modes in addition to 
anisotropic plastic behaviour (see also Luo et al., 2012). For instance, for the uniaxial tension 
tests on smooth specimens, very different failure processes are observed (see Figure 3.4). 
Existing macroscopic failure models are not believed capable of capturing both the failure 
mode transition and the influence of the direction of loading. With respect to those 
observations, it might become necessary to include a description of the microstructure of the 
material and especially the distribution of the inclusions and the precipitate free zones (PFZs). 
The PFZs are the weakest zones in the material and are potential locations for strain 
localization and fracture initiation. As far as the AA7075-T651 aluminium alloy is concerned, 
the location of PFZs (related to the grain morphology) and the distribution of inclusions are 
both anisotropic. 
 



 

 
 

Chapter 6. Analytical considerations

6.1 Introduction

In this chapter, two issues regarding failure are considered. First, the effect of anisotropic 
matrix behaviour is studied in the light of the analysis for void growth developed by Rice and 
Tracey (1969). Second, the usual localization criterion, given by Rice (1976), is analyzed with 
various constitutive characteristics among which shape of the yield surface, non-associativity 
and thermo-mechanical couplings. 

6.2 Void growth approach for anisotropic materials

As discussed in Chapter 1, the void growth approach has for half a century been extensively 
used to describe the damage occurring in metals at the microstructural level, while subjected to 
plastic deformations. Nowadays, several stages of damage are usually distinguished: the 
nucleation of voids, their growth, and finally their coalescence leading to macroscopic failure. 
The earlier works concerned the growth of a single cylindrical void (McClintock, 1968) or a 
single spherical void (Rice and Tracey, 1969) inside an infinite rigid perfectly plastic medium. 
Later, Gurson (1977) studied a spherical void inside a finite rigid perfectly plastic spherical 
medium. Gurson’s analysis was successively enriched by accounting for nucleation and 
coalescence of voids (Tvergaard and Needleman, 1984), but also by strain hardening (Gurson, 
1977; Leblond, 1995), two populations of voids (Marini, 1985), void shape and distribution 
(Gologanu et al. 1993, 1994a), third invariant (Nahshon and Hutchinson, 2008) and plastic 
anisotropy (Monchiet et al., 2008). Gurson’s analysis leads to an expression for the yield 
function resulting from a finite matrix containing a void. This development introduces the 
porosity since the matrix is of finite size. On the contrary, the Rice and Tracey analysis is 
performed inside an infinite medium and results only in the expression of the void growth rate. 
This expression does not give any influence of the void on the material behaviour and can be 
used as an uncoupled damage criterion. Regarding the present study of the AA7075-T651 
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alloy, no significant void growth was observed before failure for the tests performed in Chapter 
3. Therefore, the influence of a void on the material behaviour can be neglected and for this 
reason, the Rice and Tracey (RT) analysis is relevant and will be further extended to an 
anisotropic material in the following. Inclusion of the anisotropy in the Gurson approach was 
studied by Benzerga and Besson (2001), while Monchiet et al. (2008) analysed the role of 
anisotropy both on the yield behaviour and the growth of voids. 

6.2.1 Rice and Tracey analysis

Geometry and boundary conditions

As depicted in Figure 6.1, in the Rice and Tracey (RT) analysis, a spherical cavity of initial 
radius 0R  in an infinite medium is subjected to a multi-axial stress field , obtained by 

imposing a strain rate field E at the boundary of the body (i.e. at infinity). The fields inside the 
medium are denoted with small letters ( , ,s ) while their values at infinity are denoted with 

capital letters ( , ,S E ). 

 

Figure 6.1. Geometry of a spherical void inside an infinite medium and coordinate system used 
by Rice and Tracey (1969). 
 

The spherical coordinate system associated to this geometry is defined as 

 

1 2 3 1 2 3 1 2 3, , , , , ,

sin cos sin cos cos
e sin sin , e cos , e cos sin

cos 0 sin
R

x x x x x x x x x

 (30) 

Constitutive behaviour

The material of the medium is considered to be rigid perfectly plastic (i.e. no elastic strain and 
no plastic hardening) and the plastic flow is associated to a von Mises yield function defined as 
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 0
30 with :
2eq eqf s s  (31) 

where s  is the deviatoric stress, defined by Hs I  with the hydrostatic stress 

tr 3H . Consequently, the deviatoric stress s  is directly linked to the strain rate  

according to 

 02
3 p

s  (32) 

where 2
3 :p is the energy conjugate equivalent strain rate. 

Equilibrium

In the RT analysis, the weak form of the equilibrium equations is established from the internal 

work iQ  and external work eQ  

 
:

m

i
V

e
S

Q u dV

Q u n u dS

s

 (33) 

where s  and  are the deviatoric stress and strain rate fields inside the body and S  and  

correspond to the deviatoric and total stress fields at infinity. mV  is the volume of the medium 

and fulfils m vV V V ; V  is the total volume and vV  is the volume of the void. S  is the 

external surface of the medium located at infinity, n  is the normal vector to that surface, u  is 

the velocity field and  is the associated strain rate field. The divergence theorem can be used 
to transform the two integrals presented in Eq.(33) and the weak form of the equilibrium 
equations is obtained through the minimization of the function 

 :
v

i e
V S

Q u Q u Q u dV n u dSs S  (34) 

where vS  is the surface of the void. 

Field(s)

Rice and Tracey selected a specific velocity field u  as 

 D Eu x Du EuE  (35) 
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where the factors D  and E  refer to the spherical and deviatoric expansion, respectively, E is 
the strain rate field applied at infinity and eRx R  is the current coordinate. Rice and Tracey 

showed that the shape changing velocity field Eu  has no significant effect on the void growth 

rate at high stress triaxiality and is therefore neglected. The hydrostatic velocity field Du  is 

radial and vanishes at infinity to respect the boundary condition. Thus, E is the only quantity of 
Eq.(35) remaining at infinity. A convergence analysis additionally constrains the velocity field 
to fall off as 2R , where R is the radius, see Figure 6.1. The selected velocity field and the 
corresponding strain rate field are 

 

3
0

3
0

2 :
3

with

with 3e e

D

D D D
R R

P
Ru x D u x DP x x DP x
R R

R

DP

E E
E E E

E E e e I

 (36) 

where P  is the equivalent plastic strain rate at infinity. Note that the remote strain rate field E 
is necessarily deviatoric since any hydrostatic component applied at infinity would bring an 
infinite change of volume. Also, this field induces a change of shape of the cavity. 

Insertion of the chosen fields and constitutive behaviour into the equilibrium
equation

Assuming that the remote deviatoric stress does not carry out any work on the surface 

involving the radial velocity field Du  (i.e. RT split the deviatoric and hydrostatic contributions 

of the work), the minimization given in Eq.(34) reduces to 

 :
v

D
H

V S

D dV n u dSs S  (37) 

where H  is the hydrostatic stress at infinity. The solution of this equation will give an 

expression for D , which is the unknown of the problem. Inserting the field given in Eq.(36) 
and the constitutive behaviour given in Eq.(32) into the equilibrium given in Eq.(37) gives 
(details are skipped) leads to 

 

2

21 1
2 2

0

1 log 4 4 1 2 log 1
6

log 4 4 1

RT RT RT

H
RT RT RT

D D D

D D D d
 (38) 
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where RT RRE P  (with e eRR R RE E ) is related to the third invariant of the strain tensor 

(see Rice and Tracey, 1969) and sind d d  denotes the solid angle. At this stage of the 

development RT assumed that D  is large ( 1D ) to get an analytical solution. Thus, the 
terms of order 1 / D  can be neglected and the terms involving D  can be integrated over the 
unit sphere, giving 

 
0

3exp
2

HD C  (39) 

where 1 1exp 1 log 1
4 4 RT RTC d . Note that C  is a function of RT  but is almost 

constant and can be approximated to its value for uniaxial tension loading conditions 
0.283C . 

Averaged rate of growth

The average void growth rate 0R  can be deduced from Eq.(39) taken at the void interface 

0R R . Only the radial expansion is accounted for, so the rate of displacement can be projected 

on eR  and integrated over d  

 0 0 0RRR E R d DPR d  (40) 

The integration of RRE  over the unit sphere is equal to zero (E is necessarily deviatoric), and D  

and 0R  do not depend on the angular variables, so the rate of void growth is found as 

 0

0 0

30.283 exp
2

HR P
R

 (41) 

It should be recalled that this expression is obtained following several assumptions: 

 No elasticity and no plastic hardening 
 1D  (i.e. large stress triaxiality states) 
 Influence of deviatoric stress field neglected 
 Expansion of the void averaged as spherical 

Otherwise, it should be noted that the macroscopic (and necessarily deviatoric) plastic strain 
rate is driving the radial expansion process, while the influence of the hydrostatic part of the 
loading appears in an additional exponential term. 
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6.2.2 Extension of the Rice and Tracey analysis for anisotropic matrix behaviour

The Rice and Tracey analysis is reconsidered here with an anisotropic yield function. The yield 
function expressed in Eq.(31) is now defined as a Hill yield function (1948) 

 0 0 with : :f s M s  (42) 

where  is the Hill equivalent stress replacing the von Mises equivalent stress eq  given in 

Eq.(31) and M is the anisotropic matrix expressed as a diagonal matrix in a modified version 
of the Voigt notation as 

 

11

22

33

23

31

12

2 2 2 2 2 2diag , , , , , , 29 9 9
2

2

s
s
sF H G F H G F H G N M L s

s

s

M s  (43) 

where the six components , , , , ,F G H L M N  need to be calibrated and in case of purely isotropic 

behaviour, 1 2F G H  and 3L M N . With associative plasticity, the relation between 

stress and strain rate expressed in Eq.(32) becomes 

 10 :
p

s M  (44) 

where 1M  is the inverse of the anisotropic diagonal matrix M. The equivalent plastic strain 
rate, denoted p , is energy conjugate to the Hill equivalent stress . The fields are the same as 

in the original RT analysis (Eq.(36)) but the definition of equivalent plastic strain rate is 
different, viz. 

 

1
3

0 3
0

: :
with

with 3e e

D

D D D
R R

P
Ru x Du x DP x x DP x RR

R

DP

E M E
E E E

E E e e I

 (45) 

The equilibrium equation to solve, given in Eq.(37) for isotropic material, remains unchanged 
for the anisotropic material. Nevertheless, the development of this equilibrium equation is 
altered by anisotropy in the following way 
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2

21 1
2 2

0

1 log 4 4 1 2 log 1
6

log 4 4 1

h h h
RT RT RT

h h h H
RT RT RT

h Dh Dh Dh

Dh Dh Dh d
 (46) 

where 11
2 : :D Dh e M e  and 11

2
: :h D

RT hP
e M E . The parameter h is a function of the 

anisotropy parameters, but also of the spherical coordinates and cannot be taken out of the 
integral. By assuming again that D  is large, the previous equation can be simplified to 

 
0

3exp
2

h H

av
D C

h
 (47) 

where 1
4

1exp 1 log 1 1 log
4

h h h h
RT RT RT

av

C h h d
h

 and 1
4avh hd  is the 

normalized parameter h  averaged over the unit sphere. As in Rice and Tracey (1969), the 
average void growth rate can be expressed as 

 0

0 0

3exp
2

h H

av

R C P
R h

 (48) 

The calibration of the anisotropic parameters of M was done for the AA7075-T651 alloy and 
gave the values 0.515F H , 0.485G , 2.764N  and 3L M . For these specific values,

1.0066avh . A consequence is that the function hC  is not much affected by the anisotropy, 

which allows to express the average growth rate of a void as 

 0

0 0

30.283 exp
2

HR P
R

 (49) 

where the only remaining difference with the original Rice and Tracey analysis (given in 

Eq.(41)) is the anisotropic definition of P . With the yield stress now equal to 

0 : :S M S , the triaxiality *
H  also contains the plastic anisotropy. 

6.2.3 Conclusions

This development enables to evaluate the influence of the plastic anisotropy on the expression 
of the void growth rate as obtained by Rice and Tracey (1969). In this study, this influence is 
found to be limited and with reasonable approximation, the solution of Rice and Tracey (1969) 
is still valid but with a different definition of the equivalent plastic strain rate and triaxiality 
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ratio. This analysis suggests that the failure locus, usually expressed for isotropic materials in 
the  ( *2 3

23 : , :p p
ff H s s ) space, should be represented in the “anisotropic space” 

when the material is anisotropic: ( 1 *: : , : :p p
ff HM s M s ). This is consistent 

with the definitions of the accumulated plastic strain and stress triaxiality used in the 
anisotropic plasticity model used in Chapter 5. 

6.3 Localization criteria

Examples have been provided in Chapter 3 showing inclined fracture modes under uniaxial 
tension. In this chapter the conditions for localization are considered. We adopt a general set of 
rate-independent constitutive relations, and derive conditions for strain localization to occur. 
Rudnicki and Rice (1975) adopted the viewpoint that the macroscopic constitutive relations 
may permit homogeneous deformation of an initially uniform material to give way to an 
incipient non-uniform deformation field, concentrated within a localized band but uniform 
outside it. This approach will be developed in the following with the associated conditions 
solved. But before this, the constitutive framework we have in mind will be presented in the 
fully thermo-mechanical context, as thermal effects may play an important role in the 
localization process. 

6.3.1 General constitutive framework

It is now well established that features of the behaviour of materials that may lead to 
localization are mostly mechanisms linked with softening: this may be strain softening 
(plasticity, damage and other phenomena), thermal softening, geometrical softening (as in 
single crystals for instance) and even strain-rate softening (dynamic strain ageing and 
consecutive negative strain-rate sensitivity observed through the Portevin-Le Châtelier 
phenomenon). Another source of localization is non-symmetry of the inelastic behaviour as 
observed in non-associative behaviour (non-Schmidt effects, friction and dilatancy effects), but 
also in the inclusion of thermo-mechanical couplings. Some of these effects will be underlined 
in the following of this work. The coming section introduces indeed the set of constitutive 
equations that incorporate these effects. 

Thermodynamic framework

The thermodynamic framework with infinitesimal strains is presented with more details in 
Appendix B for thermo-inelastic behaviour of various materials. The main ingredients of the 
framework are summed up below 
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 Internal variables : , ,

 Associated driving forces : , ,

 Potential : , ,

 Yield function : , ,

 Plastic flow potential : , ,

 Evolution laws : 

 State laws : ,
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,

 Heat equation : :  

     with     

i
i

th e th
i i

th i
i i

s
T

c T r k T T A
T

A T
T  (50) 

where  is the density and thc  is the heat capacity. In the case of elasto-plastic behaviour with 

hardening and thermal softening, the adequate internal variables are chosen as 

 , and ,p
i ip  (51) 

and the potentials are defined by 

 
1, , , : : ,
2

, , , ,

p i p th p th a

a a

p T T p T

f f T F F T

E
 (52) 

where ( )i TE , given in detail in Appendix A, is the 4th order elastic tensor, 0( )th th T T I  is 

the thermal strain, ( )th T  is the thermal expansion coefficient and ( , )a p T  represents the 

plastic hardening. The state and evolution laws are 

 
: :

,

i p th i e p

ai i
a

a

F

Z
p T Fp

p p

E E
 (53) 

Isothermal tangent modulus iH

The isothermal tangent modulus relates the stress rate to the strain rate under isothermal 

conditions 0T . The constitutive behaviour obtained from the framework under these 
circumstances is given as 
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 (54) 

Note that under isothermal conditions and for the sake of clarity, the variables { , , ,i i i ihE } 

will be nominated { , , ,hE } and no dependency on the temperature will be accounted for. 

Adiabatic tangent modulus aH

The adiabatic modulus relates the strain rate to the stress rate under adiabatic conditions. Under 
adiabatic conditions, one assumes the absence of external heat sources and conduction (no heat 
fluxes, 0r k ) so that the evolution of the temperature (through the heat equation) becomes 

 :   with     , ,p

a
th th th th th a

i i i pc T T A A A T T
T T T

A  (55) 

Under adiabatic conditions, it is therefore possible to compute the rate of temperature. For the 
sake of simplicity, we neglect here the variations of thermo-elastic coefficients with respect to 
temperature. If needed, these variations can be incorporated. With this assumption we get 

 : : 3
i th

th i th K
T T

E E I I  (56) 

Further, the plastic multiplier is obtained using the consistency condition enriched with the 
evolution laws (see Appendix B), and the following rate constitutive behaviour is established 
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Note that the product a a  is not symmetric when the thermal coefficients are non-zero, 

even with associated plastic flow. Some additional details about the adiabatic 4th order elastic 
tensor aE  are given in Appendix A. The only remaining unknown in the expressions for 

tensors a  and a  is the yield function f , which will be particularized later. 

Finite strains

When taking finite strains into account, some changes must be brought to the above 
presentation. For the sake of simplicity, this will be carried out here only under isothermal 
conditions. The rate-of-deformation tensor d  is decomposed into elastic and plastic parts 

 e pd d d  (58) 

where the elastic strains are assumed to be small and a linear hypoelastic formulation is 
adopted, i.e. 

 
if 0 or 0 and 0,

: ,
if 0 and 0,

J J J J J
J

J

f f f

f f
H

E
L d L

H E
 (59) 

where JH and E are the 4th order tangent and elastic modulus tensors, respectively, f  is the 

yield function and J  is the Jaumann stress rate defined by 

 J  (60) 

with  the spin, i.e. anti-symmetric part of the velocity gradient, while d  is its symmetric part. 
A particular property of the Jaumann stress rate is that for a first order positive homogeneous 
yield function f  we have 

 : : Jf f  (61) 

Consequently, the rate constitutive relations considered in Eq.(54) give the expression of the 
hardening modulus h  through 

 1: , : and   : :J J J J Jf F H h HE E E  (62) 
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6.3.2 Localization analysis for a homogeneous material

Localization Condition (LC) for infinitesimal strains

The usual viewpoint for addressing the localization phenomenon (see Rudnicki and Rice, 
1976) considers that the macroscopic constitutive relations may permit the homogeneous 
deformation of an initially uniform material to give way to an incipient non-uniform 
deformation field, concentrated within a localized band but uniform outside it. A bifurcation 
approach is thus used to exhibit the conditions which allow this transition for an infinite block, 
from its initially uniform state to the non-uniform one containing a planar band as sketched in 
Figure 6.2. The rate constitutive laws given for the material are those developed earlier and we 
start with the isothermal situation. 

Let’s consider a homogenous medium M , in which strain localization could occur 
along a planar band B  of normal n , as depicted in Figure 6.2. If this localization is to happen, a 

jump in velocity gradient should appear at the interface between the rest of the block and the 
incipient band, even though the velocity is assumed to remain continuous. This compatibility 
requirement imposes  

 v v v g n
x x xM B

 (63) 

where v  is the velocity vector, x  is the current position, n  is the normal vector to the band and 

g  defines the intensity of the discontinuity. The strain rate discontinuity is consequently 

 1
2

g n n gM B  (64) 

Assuming Eq.(54) to be valid in the homogeneous medium and inside the band it follows that 

 :
:

:
= L

L
= L

M M

B B

 (65) 

The other requirement is continuous equilibrium which corresponds to n nM B  and 

consequently to 

 1 1: 0
2 2

n g n n g n n n gL L  (66) 
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For localization to happen, Eq.(66) should have a non-zero solution g , which corresponds to 

det 0n nL . The elastic tensor E  satisfies det 0n nE  (details in Appendix A), so the 

condition of localization (LC) reads 

 det 0n nH  (67) 

and corresponds to the loss of ellipticity condition. The equality sign is changed into < 0 if one 
considers plastic loading inside the band and elastic unloading outside it (Benallal and Comi, 
1993). 

 
Figure 6.2. Schematic representation of a loaded homogeneous medium and localization along 
a planar band. 
 

The acoustic tensor n nH  can be transformed into (details in Appendix A) 

 1, 1

e

e
e

n n
n n

n n
H

A E
H A B

B I A
 (68) 

The multiplicative property of the determinant transforms the LC into det det 0eA B  and 

since det eA  is strictly positive (see Appendix A), the study reduces to solving det 0B . The 
tensor B  has two eigenvectors orthogonal to n  and n  with corresponding eigenvalues 

1 2 1B B  (Benallal and Comi, 1993) so 
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The localization condition (LC) given in Eq.(67) then becomes 

 
1

det 0 eH n nB A  (70) 

This last equation is the general LC with isotropic elasticity, without any assumption on the 
yield function and plastic flow, in a small strains framework. The geometrical method 
presented in Benallal and Comi (1993), also developed in Appendix C, is used here to get the 
six solutions for Eq.(70) which are kH  and ijH  with , , 1, 2,3i j k . The six associated 

solutions for the hardening modulus h ( kh  and ijh ) can be computed using Eq.(54). From these 

six solutions the critical hardening modulus ch , which is the maximum of the six last solutions, 

can be deduced. 

Effects of thermo mechanical couplings

The inclusion of thermal effects and thermo-mechanical couplings in the above analysis can be 
found in Benallal and Bigoni (2004). The localization condition reduces, with the notations 
adopted above, to the singularity of either the isothermal or the adiabatic tangent moduli. As 
these moduli have the general form adopted in the solution technique described above, it can 
also be applied to the thermo-mechanical case. It is not repeated here. 

Effects of geometrical nonlinearities and finite strains

With the same requirements as in Eq.(64), we have 

 1
2

g n n g  (71) 

and continuum equilibrium across the band (given in Eq.(66) for small strains) leads now to 

 1: 0
2

n g n n g nL  (72) 

It follows after some manipulations that 

 

1 1
2 2

1 1
2 2

n g n n g n n n g

n g n n g n n n n n gI
 (73) 

The condition for localization (given in Eq.(67) for small strains formulation) becomes with 
the Jaumann formulation (details in Appendix D) 
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det 0
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2

J

J
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n n n n n n

H A

A I
 (74) 

where it is recalled that tangent modulus tensor H  is unchanged compared to the previous 

formulation. As in the infinitesimal case, six solutions for the hardening modulus h  ( kh  and ijh

) can be associated to the six solutions for H  ( kH  and ijH ). The critical hardening modulus ch  

is again defined as the maximum of these six solutions. Note that the stress tensor  is now 
directly involved in the localization condition. 

6.3.3 Some applications

We consider here the non-quadratic and pressure-independent yield function (Hershey, 1954) 

 
1

1 2 2 3 3 1 0
1
2

mm mmf s s s s s s  (75) 

where 1 2 3, ,s s s  are the principal deviatoric stresses and the coefficient m   is an even number 

that may give a non-quadratic yield function. Note that when 2m , f  corresponds to the von 

Mises yield function 2 03f J . Several constitutive models are built based on the 

Hershey yield function and listed in Table 6.1, where 0  and 0  are the pressure sensitivity 

terms related to the yield function and plastic flow potential, respectively, defined in Appendix 
F. 

Table 6.1. Different cases studies for yield function, plastic flow and formulation. 
 Associativity 

Yield function f Plastic flow F  Formulation 
 shape pressure shape pressure strains thermal 

CASE 1 yes m  0 0  m  0 0  small isothermal
CASE 2 yes m  0 0  m  0 0  small isothermal
CASE 2 no m  0 0  m  0 0  small isothermal
CASE 3 no m  0 0  n m 0 0  small isothermal
CASE 4 yes m  0 0  m  0 0  Jaumann isothermal
CASE 5 no m  0 0  m  0 0  Jaumann isothermal
CASE 6 yes m  0 0  m  0 0  small adiabatic 

 
In some cases, the stress tensor intervenes in the result so the plastic behaviour is of 

importance. For the study of AA7075-T651 aluminium alloy, the Voce hardening law was 



Chapter 6 - Analytical considerations 

82 
 

calibrated in Chapter 4. The yield condition was written ( )eqf p  and the Voce 

hardening law was given as 

 0 1 expp Q Cp  (76) 

with the values of 0 , Q  and C  calibrated for the AA7075-T651 alloy presented in Table 4.1. 

CASE 1: Hershey yield function associative plastic flow

With the Hershey yield function and associative plastic flow, the six solutions of hardening 

moduli ( kh  and ijh ) normalized with the shear modulus , are presented in Figure 6.3 (a) for 

16m , and the critical hardening modulus ch  is the maximum of the six values. Note that the 

curves obtained are symmetric with respect to the Lode parameter 0L , corresponding to 

shear conditions, and that 13max ;c k ijh h h h  (details in Appendix F). Figure 6.3 (b) 

presents the critical normalized hardening modulus ch , with different values of the shape 

parameter m . 

With associated and pressure-independent flow rule, the critical hardening moduli ch  is 

always negative, whatever the Lode parameter L  and shape parameter m  are. This means 

that with a strictly increasing hardening law and without any softening mechanism, the 
material will not localize. However, it is noted here that a larger shape parameter m  promotes 
localization by increasing the value of ch  for all Lode parameters different than the particular 

values 1;0;1L . Also, the critical hardening modulus depends here on the Lode 

parameter, not on the stress triaxiality. 

(a) (b) 
Figure 6.3. Normalized hardening moduli with a Hershey yield function and associative plastic 
flow:   (a) six moduli ijh  and kh  for 16m  and (b) critical ch  for 2; 8;16m . 
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CASE 2: Hershey yield function with pressure dependency associative plastic flow

The Hershey yield function is now enriched with a pressure dependency term 0f  in the 

following way 

 
1

1 2 2 3 3 1 0 0
1, ,
2

mm mm
L H Hf s s s s s s f  (77) 

so that the gradient of f  is not deviatoric anymore and its trace is proportional to 0f . A 

realistic pressure sensitive term 0 0.015f  is obtained by assuming a different of 1% between 

the yield stress under uniaxial tension and compression (more details are given in Appendix F). 
Figure 6.4 shows the critical normalized hardening modulus with 2m  and 16m  for this 

realistic pressure dependency and compare it with pressure independent yielding ( 0 0f ). It is 

observed that the pressure dependency decreases the value of the critical hardening modulus in 
the range 0.5,0.5L . Also, the curve is slightly shifted towards the positive Lode 

parameters and is not symmetric with respect to 0L . The shift occurs towards negative 

Lode parameters for negative value of 0f . 

The LC is modified with a linear pressure dependency of the yield surface, but is still 
independent of the stress triaxiality state. With a non-linear dependence of the function f  to 

H  (as e.g. in the Gurson’s yield function), the stress triaxiality ratio would intervene in the 

expression of ch  and the condition for localization would explicitly appear as a function of the 

Lode parameter and the stress triaxiality. This would be in agreement with the studies on the 
Lode and triaxiality influence on failure mentioned in the Chapter 1, and needs to be 
investigated further. 

 
Figure 6.4. Normalized critical hardening moduli with associative plastic flow, pressure 
dependent term 0 0,0.015f  and 2,16m . 
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CASE 3: Pressure dependent Hershey yield function non associative Hershey plastic
flow

As described in the introduction, non-associative plastic flow is, besides softening, a way to 
promote localization. Non-associativity can be obtained by using a plastic flow potential 
slightly different from the yield function. The assumption of pressure-independent yielding and 
plastic flow is relevant for metallic materials. However, as discussed in Chapter 5, an isotropic 
model solely based on deviatoric stresses is not always perfectly predictive for high stress 
triaxiality states. Thus, in our case, a pressure dependent yield function is a reasonable 
alternative. The same realistic term 0 0.015f  as in CASE 2 is used to obtain the curves 

presented in Figure 6.5, where the associative and pressure independent model (CASE 1) is 
given for the sake of comparison. Note that in both cases the plastic flow is isochoric. Figure 
6.5 exhibits that with non-associative plastic flow, the critical hardening modulus can be 

positive for some values of the Lode parameter. With the positive term 0 0.015f , the range of 

positive ch  is shifted towards 1L . The curve obtained with a negative values 0f  (not 

presented here) is the symmetric of the curve for 0f  with respect to the axes 0L . Again, a 

shaper yield surface is observed to promote localization for a wider range of Lode parameter. 

The maximum value of the critical hardening modulus with 16m , reached at 0.34L , is 

1.25 MPach . This value is low and shows that the influence of reasonable non associativity is 

quantitatively small but offers a possible localization of strains with a strictly increasing 
hardening like the Voce hardening law. However, for 1L  corresponding to uniaxial 

tension, the effect of the non-associativity is negligible and the critical hardening modulus 
remains negative. 

 
Figure 6.5. Normalized critical hardening moduli with non-associated plastic flow (pressure-
dependent yield function) for 0 0,0.015f  and 2,16m . 
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CASE 4: Hersey yield function non associative Hershey plastic flow (different shape
parameter)

The plastic flow potential is now based on the Hersey yield function and only its shape 

parameter is changed from m  to n . Then, the tensors  and  are still pressure-insensitive and 

 corresponds to the tensor  with parameter m  replaced by n . Indeed, this attempt of non-

associativity only gives an “average” of the curves obtained with associativity for different 
values of m . 

CASE 5: Hershey yield function associative plastic flow – Jaumann formulation

The CASE 1 is now presented with large strain formulation in Figure 6.6, at the yield stress 
level ( 0 538.8 MPaeq ) and exhibits that the critical hardening modulus is positive for a 

range of the Lode parameter symmetric around 0L . This range is again larger for a higher 

shape parameter m . Also, the maximum value of the critical hardening modulus with 16m , 

reached for 0L , is 2.32 MPach . This value is of the same order as the value obtained with 

non-associative plastic flow. 

 
Figure 6.6. Normalized critical hardening modulus with Jaumann formulation for associated 
plastic flow with 2,16m . 
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0 538.8 MPaeq . A linear dependency of the temperature T  is chosen for the elasto-plastic 

parameters such as the plastic hardening  and the isothermal elastic tensor iE , i.e. 

 
,

i m

m r

m

m r

T T
T T

T Tp T p
T T

E E
 (78) 

where rT  is the reference temperature and mT  the melting temperature. The value of the 

material parameters related to thermal behaviour are 32810 kg m , 903 KmT , 
6 123.1 10 Kth  and 1 1897 J kg Kthc . The normalized critical hardening modulus is 

presented for the adiabatic formulation in Figure 6.7, using the small strain formulation. At the 
reference temperature rT , the curve for ch  is almost similar to the curve under isothermal 

conditions. This indicates that the adiabatic influence is negligible compared to the influence of 
non-associativity or Jaumann formulation. However, the temperature T  has an effect and tend 

to increase ch  significantly for the extreme values of the Lode parameters 1;1L . Even 

though the critical hardening modulus ch  remains negative, localization may occur owing to 

the thermal softening. 

 
Figure 6.7. Normalized critical hardening modulus with adiabatic formulation and 

293,593KT  for associative plastic flow and 16m . 
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6.3.4 Conclusions

This analysis has led to the expressions of the critical hardening modulus ch  as defined by the 

condition for localization of strains, for several constitutive characteristics. The main 
conclusions from this study are given below 

 The critical hardening modulus was always expressed as a function of the Lode 
parameter and no dependence to the other stress invariants (i.e. stress triaxiality ratio) 
was obtained. However, by introducing a non-linear dependency of the yield function 
to the hydrostatic stress, ch  becomes a function of both the Lode parameter and the 

stress triaxiality.  

 For the small strain formulation with associative plastic flow, ch  is negative for all 

Lode parameters L . The maximum value ( 0ch ) is reached for 0L  and the 

minima are reached for 1;1L . 

 The shape parameter of the yield function m  modifies the shape of the curves for ch  

between the values 1;0;1L . The localization condition is ensured at higher ch  

with a sharper yield surface. 
 The non-associative plastic flow and the large strain formulation increase the value of 

ch  in a similar manner, so ch  becomes positive for a certain range of the Lode 

parameter around the value 0L . This range increases as the shape parameter m  

increases. 
 The thermo-mechanical couplings only have an influence if the material parameters 

depend on the temperature and may increase ch  around the extreme values 1;1L . 

However, with no dependence to T  (yet adiabatic conditions), the critical hardening 
modulus is unchanged. 

 Whatever the constitutive equations, ch  is always negative under uniaxial tension 

loading condition ( 1L ). 

These analytical developments indicate that the localization theory with enriched formulations 

(non-associativity or large strains) can increase the critical hardening modulus ch  but a more 

extensive study (with anisotropy or small perturbation, see Chapter 9 for further outlooks) is 
necessary to obtain results corresponding to experimental observations (positive hardening 
modulus when localization occurs under uniaxial tension for instance). 
 





 

 
 

Chapter 7. Anisotropic failure criterion

7.1 Introduction

This chapter presents the formulation and calibration of an anisotropic version (AECL) of the 
phenomenological extended Cockcroft-Latham (ECL) failure criterion originally presented by 
Gruben et al. (2012). Numerical simulations of the material tests performed experimentally 
(presented in Chapter 3 and already simulated with anisotropic plasticity in Chapter 4) are 
carried out using the uncoupled AECL criterion to evaluate its predictive capability. 

7.2 Extended Cockcroft–Latham (ECL) criterion

Various failure criteria are used to model the failure of ductile metallic material. A very simple 
approach is to impose a critical plastic strain. Somewhat more elaborated criteria are based on 
the plastic work. For instance, the Cockcroft-Latham (CL) criterion (Cockcroft and Latham, 
1968) is based on the “plastic work” computed from the positive part of the maximum 
principal stress. Another possibility is to compute the “plastic work” from the maximum shear 
stress, when shear is believed to be the dominating failure mechanism (integral-based Tresca, 
IT). An extended version of the Cockcroft-Latham criterion, denoted the ECL criterion, 
presented by Gruben et al. (2012), takes into account contributions from both the maximum 
principal stress and the maximum shear stress in computing the damage evolution. A slightly 
modified version of the ECL criterion will be studied here. 

Formulation

In the modified version of the ECL criterion, the evolution of the damage variable D  is 
defined by 

 
0

0

ˆ ˆ ˆ1
s

I I IIID p
S

 (79) 
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where max ,0x x , ˆ ˆ ˆI II III  are the ordered principal values of the corotational 

Cauchy stress tensor ˆ , and 0 0S , 0 0s  and 0 1 are constants identified from available 

experimental data. Failure occurs when the variable D  reaches a critical value 1CD , i.e. 

damage is not coupled to the constitutive relation in this study. The ECL criterion represents a 
weighting of two failure criteria, obtained by using specific values of the parameters; 

 When 0 1s  and 1, the ECL criterion transforms into the Cockcroft-Latham (CL) 

criterion, as a “plastic work”-based criterion 

 
0 0 0

ˆ 1 ˆ
fp

I
C ID p D dp

S S
 (80) 

where fp  is the accumulated plastic strain at fracture. This criterion is often calibrated 
through the Cockcroft-Latham parameter 0C CW D S , which is the critical “plastic work”. 

 When 0 1s  and 0 , the ECL criterion transforms into an Integral-based Tresca (IT) 

criterion and involves the maximum shear stress through 

 
0 0 0

ˆ ˆ 1 ˆ ˆ
fp

I III
C I IIID p D dp

S S
 (81) 

Coupled versus uncoupled damage

Naturally, the question of coupling appeared as soon as a damage variable was introduced. For 
the AA7075-T651 alloy, the observation of fracture surfaces (see Chapter 3) does not exhibit 
evidence of large plastic damage (such as large void growth for instance), and the stress-strain 
curves do not exhibit any softening. The inter-granular failure reveals that a damage process is 
occurring at the PFZs along grain boundaries, but the volume fraction concerned (i.e. the 
volume fraction of PFZs) is so low that no macroscopic softening is observed.  Thus, the 
damage does not influence substantially the material behaviour. In terms of modeling, this 
means that the damage may not need to be coupled to the constitutive behaviour of the 
material. For that reason and in a first attempt, an uncoupled damage modeling approach was 
chosen. Then, the damage variable formulation should not be misinterpreted: the aim of the 
study is only to show the capability of a failure criterion (e.g. predictive capability for other 
stress states than those used in the calibration). Another consequence of the uncoupled 
approach is that the critical damage is not a material parameter and was chosen equal to unity (

1CD ). 
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7.3 Anisotropic extended Cockcroft–Latham (AECL) criterion

Formulation

The anisotropy of failure for the AA7075-T651 alloy is exhibited in Figure 7.1, which presents 

the experimental critical “plastic work”, 
0

ˆfp

C IW dp , as a function of the loading direction 

for the uniaxial tensile tests. This anisotropy can be taken into account in the ECL criterion 

through a factor depending on the direction of the loading. The equivalent plastic strain rate p 

is modified following the work presented by Dunand and Mohr (2011). A new equivalent 
plastic strain rate is defined as 

 A Ap s p  (82) 

where 

 
ˆ

: : ,
ˆ

f f f
A

fs
f

n P n n  (83) 

in which :x x x  and the unit tensor fn  gives the direction of the plastic flow. The 4th 

order tensor P is defined in Voigt form as 

 1 2 3 4 5 6diag , , , , ,P P P P P PP  (84) 

The parameters of P are non-negative and describe the anisotropy of the material with respect 
to failure. This anisotropy is embedded into Ap  through the factor As . It is noted that p 

through its definition already accounts for the plastic anisotropy of the material. Then, the 
damage evolution transforms into 

 
0

0

ˆ ˆ ˆ1
s

I I III
AD s p

S
 (85) 

This criterion is denoted the AECL criterion for short. Another version of the AECL could be 
stress-based by defining the damage and the scaling factor in the following way 

 
0

0

ˆ ˆ ˆ1 ˆ ˆ: :,
ˆ ˆ:

s
I I III

A AD s p s
S

P  (86) 

This stress-based AECL criterion will be evaluated and compared with the strain-based AECL 
criterion in the following section. 
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Figure 7.1. Critical “plastic work” versus loading direction for tensile tests on smooth 
specimens for the AA7075-T651 alloy. 

Calibration of the AECL criterion

Firstly, the parameters of the ECL criterion are calibrated using different tests in the 0° 
direction. Then, the anisotropy parameters of the AECL criterion are calibrated using the 
uniaxial tests in different loading directions. The calibration of the parameters of the ECL 
criterion is not straight forward, since no usual test enables to isolate 0S , 0s  and . The tests 

selected to do the calibration are the uniaxial tensile test and the shear test performed in the 0° 
direction. The tensile tests performed on notched specimens are not used for the calibration, 
since the stress state they provide is inhomogeneous. Then, to simplify the identification 
procedure, a choice is made to set the parameter 0 1s . The following method is used to 

calibrate the parameters 0S  and  (given in Table 7.1). 

 The uniaxial tensile tests performed in the 0° direction enable to calibrate the parameter 0S  

since ˆ ˆ 0II III  we get 
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 (87) 

Thus, a representative experimental Cauchy stress-plastic strain curve from the tensile tests on 
smooth specimen in the 0° direction is used to compute 0CW  and deduce the value of 0S . 
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 The shear tests performed in the 0° direction enable to calibrate the parameter , assuming 

12ˆ ˆ ˆ ˆ, 0I III II , we get 

 
12 12

0 0

0

2
ˆ ˆ ˆ ˆ ˆ1 2 1

2

fshear

Cshear

p

I I III C
C

W

C
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D dp
W

W
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 (88) 

For the shear tests performed on the AA7075-T651 alloy, the only experimental data available 
are the force, the displacement and the strain field at the surface of the specimen, based on DIC 
measurements. The plastic strains and the principal stresses necessary to compute the “plastic 
work” are not accessible. Consequently, the “plastic work” is extracted from the numerical 
simulation at the central element of the butterfly specimen, where a stress state of shear is 
ensured. The value of the critical “plastic work” CshearW  is obtained from the numerical 

simulation at the point where the predicted displacement reaches the displacement at failure 
obtained experimentally. Note that depending on the element chosen to extract the “plastic 
work”, the parameter  may vary significantly. In the following, it should be kept in mind that 

this parameter might need to be readjusted if necessary. Note also that since the parameter 

0;1 , Eq.(88) implies the inequality 0 2Cshear C CshearW W W . This is inherent to the 

formulation of the damage variable D  when 0 1s  and is fullfilled by the AA7075-T651 

alloy. It remains to investigate if this inequality also applies to other materials. 

For the AECL criterion, the calibration of the six anisotropy parameters iP  ( 1,2,...,6i

) is done using experimental data from the uniaxial tensile tests in different directions. The 
parameters 1P , 2P  and 4P  can be calibrated from uniaxial tensile tests performed in the plane 

of the plate (seven in-plane directions from 0° to 90°), while the test in the normal direction 
(ND) of the plate enables to calibrate the parameter 3P . The parameters 5P  and 6P  are left 

equal to unity in this study since no tests are available to calibrate them in a trivial manner. The 
calibration is performed using a least squares method based on experimental data averaged 
between duplicate tensile tests. For a uniaxial tension test performed in the direction , the 
stress state is assumed to be perfectly uniaxial ( ˆ ˆ 0II III ) and the plastic strain rate 

components are computed from the experimental strain ratio to deduce the constant coefficient 

A As s . The failure condition reads 

 0 1
0

0 0

ˆ1
fp

sA
C C A C

sD dp W s W
S

 (89) 
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The calibrated values are presented in Table 7.1 and the analytical predictions of the critical 
plastic work are plotted in Figure 7.1, where they also are compared to the experimental values. 
It is seen that the “plastic work” at failure obtained with the analytical calibration is in good 
agreement with the experimental values. The anisotropy parameters of the stress-based version 
of the AECL were calibrated in the same manner through As , but the residual from the least 

square method was found twice as large as the residual obtained with the strain-based 
formulation. Consequently, the strain-based formulation was kept as the better candidate for 
this material. 

Table 7.1. Parameters of the AECL criterion calibrated for the AA7075-T651 alloy. 

0 0CS W [MPa] CshearW [MPa]  1P  2P  3P  4P  5P  6P  
102.64 84.23 0.781 0.759 0.134 0.902 0 1 1 

7.4 Quasi static tests at different stress triaxialities

Numerical simulations of all the tests were performed using the AECL criterion calibrated in 
Chapter 7.3 and the anisotropic plasticity relation (Yld2004-18p) calibrated in Chapter 4. Then, 
a parametric study was performed for all tests (except for the tensile tests on smooth 
specimens), to capture the influence of anisotropy on the failure strain and failure modes. To 
facilitate the description of the analysis, we will use the following denominations for the 
various combination of models (with 0.781 and 12m ): 

 A A  : plastic anisotropy (Yld2004-18p) and anisotropic failure criterion (AECL) 
 I A : plastic isotropy ( 1ij ijc c ) and anisotropic failure criterion (AECL) 

 A I  : plastic anisotropy (Yld2004-18p) and isotropic failure criterion (ECL) 
 I I  : plastic isotropy ( 1ij ijc c ) and isotropic failure criterion (ECL) 

Also, the influence of the parameter  is studied by using 0  and 1 with the A A 

model. Elements are eroded when the damage variable D  reaches the critical value 1CD . 

The first eroded element initiates a crack, which propagates towards final failure (i.e. specimen 
broken in two separate pieces) within several computation steps. The instant of failure (and 
strain at failure) is defined when the first element is eroded. 
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7.4.1 Numerical aspects

Mesh sensitivity for tensile tests on notched specimens

The influence of the minimum mesh size eh  was studied using three different element sizes: 

0.375 mmeh , 0.25 mmeh  and 0.125 mmeh  (see Figure 7.2 for 2.0mmR ). The 

simulations were performed with the I I model. For the notch with 0.8mmR , as presented in 

Table 7.2, the largest mesh size 0.375 mmeh  gives a different result than the two other finer 

meshes (7% of difference). The localization of strains in the minimum cross section is better 
captured with smaller elements. On the contrary, due to a smoother geometry and less localized 
strains, the strain to failure was almost not mesh size dependent with 2.0mmR . Also, no 

substantial influence of the mesh was observed on the failure modes. The rest of the study was 
therefore performed with the intermediate mesh size 0.25 mmeh  to save computational time. 

Table 7.2. Predicted failure strains for tensile tests on notched specimens (I I model). 
Geometry Direction Experiment 0.375 mmeh  0.25 mmeh  0.125 mmeh  

2.0mmR  0° 0.110 0.120 0.120 0.121 
0.8mmR  0° 0.061 0.057 0.048 0.048 

 

 
(a) 0.375 mmeh  (b) 0.25 mmeh  (c) 0.125 mmeh  

Figure 7.2. Meshes for notched specimens ( 2.0mmR ) with different mesh sizes eh . 

Friction coefficient f for compression tests

In compression, the predicted stress softening, due to localization at large strains, and the 
failure strain are sensitive to the friction coefficient f  between the cylindrical specimen and 

the platens. The coefficient was optimized to make the predicted stress-strain curves fit the 
experimental curves. Table 7.3 shows that the predicted failure strain obtained with the A A 
model in the 0° direction decreases as the values of f  (and thus the barrelling effect) 

increases. A friction coefficient 0.02f , found to be the most predictive for the 0° direction, 

was chosen for the rest of the study. 

Table 7.3. Predicted failure strain for compression tests on cylinder 0 0 1h D  (A A model). 

Geometry Direction Experiment 0f 0.005f 0.01f 0.02f  0.05f

0 0 1h D  0° 0.597 0.757 0.710 0.667 0.610 0.525 
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7.4.2 Analysis of results

(a) 

 
(b) 

(c) 

(d) 
Figure 7.3. Failure strains obtained experimentally and in numerical simulations using the A
A model for (a) tensile tests on smooth specimens, (b) tensile tests on notched specimens, (c) 
compression tests on cylinder specimen with 0 0 1h D  and (d) shear tests on butterfly 
specimens. 
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Failure strains

The predicted failure strains obtained with the A A model are given in Figure 7.3 for all tests. 
The results obtained with the smooth specimen (used in the calibration of the AECL criterion) 
given in Figure 7.3 (a) are in good agreement with the experimental data, whereas the 
predictions for the notched specimens given in Figure 7.3 (b) are less accurate (especially for 

the notched specimens with 2.0mmR ). For the compression tests, the results given in Figure 

7.3 (c) are far from quantitatively correct, except in the 0° direction, which was used in the 
calibration of the friction coefficient f . In addition, the anisotropy is not correctly predicted 

(i.e. lowest in-plane ductility in the 45° direction and a very low ductility in the normal 
direction ND). For the shear tests, the strains at failure given in Figure 7.3 (d) were extracted 
from the area used in the digital image correlation analysis. The failure strain in the 0° 
direction is 25% lower than the experimental value, but the anisotropy is qualitatively predicted 
(i.e. that the material is less ductile in the 45° direction). 

Failure modes

The predicted failure modes obtained with the A A model are shown for all tests from Figure 
7.4 to Figure 7.7, exhibiting the spatial distribution of the damage variable on the various 
specimens. 

For tensile tests on smooth specimens (see Figure 7.4), fracture occurs orthogonal to the 
specimen axis and is flat for all directions of loading except 45°. The 45° fracture surface 
observed experimentally (see Chapter 3) is not predicted. However, as depicted in Figure 7.4 
(b), an inclination of the elements in the necking area and of the failure surface is observed for 
the 45° direction. 

 

 
(a) 

 

(b) 
Figure 7.4. Spatial distributions of the damage variable obtained with the A A model for 
smooth specimens loaded in the (a) 0° and (b) 45° in-plane directions before and after failure. 
The minimum cross section is shown just before failure. 
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For notched specimens with 2.0 mmR  (similar results were obtained for 0.8 mmR  

and are therefore not presented) loaded in the 0° and 90° directions, failure occurs along a flat 
surface at the minimum cross section of the specimen (see Figure 7.5). On the contrary, for the 
45° direction, the failure surface is disrupted and not located along the minimum cross section. 
Indeed, the first eroded elements are located outside the minimum cross section and the crack 
propagates along an inclined surface. To conclude, the predicted failure modes are not 
generally representative of the experimental observations. However, with a higher damage in 
the centre of the minimum cross section than at the borders observed for all tensile tests (see 
Figure 7.4 (b) right), one could expect to reproduce a cup-cone failure with a finer mesh 
(Gruben et al., 2013). 

Before failure After complete failure 

 
(a) 

(b) 

 
(c) 

Figure 7.5. Spatial distributions of the damage variable obtained with the A A model for 
notched specimens with 2.0 mmR  loaded in the (a) 0°, (b) 45° and (c) 90° in-plane 
directions. 
 

For the compression tests (see Figure 7.6), bands of localized damage are located within 
the orthotropic planes, as observed experimentally in Chapter 3.4. Note that for the 45° and 90° 
directions, the specimens are plotted at a deformation much before failure, since the elements 
were too distorted at failure. For the 0° direction, the maximum damaged elements are located 
at the surface and mid-height of the cylinder, on the face aligned with the direction along 
which transverse strains are the largest (Figure 7.6 (a)). This is due to a strain ratio very 
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different from unity 0( 0.645)R  which enhances the barrelling and promotes tensile stresses 

at mid-height of the specimen. Due to buckling in the 45° direction, the location of the 
maximum damage is displaced toward the contact surface but an inclined band of damage is 
still visible inside the specimen (Figure 7.6 (b)). With strain ratio close to unity, the 90° and the 
normal directions see a more limited barrelling. Then, the maximum damaged elements are 
located at mid-height, inside the specimens. 
 

 
(a) (b) 

(c) (d) 
Figure 7.6. Spatial distributions of the damage variable obtained with the A A model for 
cylindrical specimens with 0 0 1h D  loaded in the (a) 0°, (b) 45°, (c) 90° in-plane directions 
and (d) in ND. 
 

  
(a) 

  
(b) 

  
(c) 

Figure 7.7. Spatial distribution of the damage variable obtained with the A A model for 
butterfly specimens loaded in the (a) 0°, (b) 45° and (c) 90° in-plane directions. 
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For the three in-plane shear tests, the failure starts at the notch of the shear zone (see 
Figure 7.7 ). The resulting failure surface is flat for the 0° direction. On the contrary, the band 
where the damage is maximum is wider for the 45° direction and the resulting failure surface is 
more disrupted. Such disrupted failure surface was not observed experimentally. 

Influence of anisotropy

Except for tensile tests on smooth specimen, numerical simulations were performed with the 
four different combinations of models presented in the beginning of Chapter 7.4 (A A, I A, A I 
and I I) to exhibit the influence of the anisotropy. The predicted failure strains are presented in 
Table 7.4. 

Table 7.4. Predicted failure strain obtained for some of the tests with different models and 
parameters. 

Geometry Direction Experiment
0.781 0  1  

A A I A A I I I A A A A 
2.0mmR  0° 0.110 0.121 0.143 0.106 0.120 0.127 0.120 
2.0mmR  90° 0.085 0.191 0.172 0.114 0.120 - - 
0.8mmR  0° 0.061 0.047 0.054 0.042 0.048 0.052 0.047

0 0 1h D  0° 0.597 0.610 0.821 0.565 0.684 0.193 1.162
Butterfly 0° 0.405 0.330 0.362 0.187 0.170 0.278 0.330 

 
For the notched specimens loaded in the 0° direction, plastic isotropy increases the 

failure strain while isotropic failure decreases it. These opposite effects make the result with 

the A A and I I models very similar (difference of 1% for 2.0mmR  and 2% for 0.8mmR

). This observation is valid for the two notch radii and for all directions except one case: in the 

90° direction with 2.0mmR , the plastic isotropy gives a lower failure strain with the 

anisotropic failure criterion (I A model). This exception will be enlightened below. In general, 
the A A model is not observed to be the most predictive model in terms of failure strain. For 
the four material models, failure always occurs in a flat manner for the 0° direction. On the 
contrary, for the 90° direction, an inclined failure surface is obtained with the I A model, as 
previously observed for the 45° direction (Figure 7.5 (c)). Again, an unphysical response is 
responsible for the inclined surface and premature failure strain and helps understanding why 
the I A model decreases the failure strain, contrary to what was expected and observed for the 
0° direction. 

For compression, the plastic isotropy increases the failure strain, while the isotropy of 
failure decreases it, as for the notched specimens. The difference between failure strains 
obtained with the A A and I I models is however larger (11%). This is due to a fundamental 
changes of the structural behaviour shown in Figure 7.8. With isotropic plasticity (I A and I I 
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models), the cylinder deforms in an axisymmetric manner and barrelling is limited. Then, as 
observed for 90° and normal directions with the A A model, the maximum damage is located 
inside the specimen and no preferential plane exists. On the contrary, observations with the A I
model are not very different from results obtained with the A Amodel (see Figure 7.6 (a)). 
 

(a) (b)

(c)
Figure 7.8. Spatial distributions of the damage variable for cylinder specimens with 0 0 1h D  
loaded in the 0° in-plane direction with the (a) I A model, (b) A I model and (c) I I model. 
 

(a) 

(b) 

(c) 
Figure 7.9. Spatial distributions of the damage variable for butterfly specimen loaded in the 0° 
in-plane direction with the (a) I A model, (b) A I model and (c) I I model. 
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For shear, contrary to all other tests, the plastic anisotropy has only a small influence 
and makes the failure strain vary less than 10%. This is due to the calibration of the Yld2004-
18p yield function performed with the shear tests in the 0° in-plane direction only, under the 
assumption of negligible anisotropy in shear (see Chapter 4). On the contrary, the anisotropy of 
the failure criterion has a strong influence, since the failure strain with the ECL criterion is 
approximately half that with the AECL criterion. This is a possible consequence of a large 
difference between failure strain under uniaxial tension in the 0° and 45° direction, handled by 
the AECL parameters iP . As also shown in Figure 7.9, the failure mode (or band) obtained 

with the AECL criterion (A A and I A models) are more localized than with the ECL criterion 
(A I and I I models). This is a realistic effect of the AECL criterion. 

Influence of the weighting parameter

Table 7.4 also give the failure strains obtained in the 0° direction with the A A model for 

different  parameters. For higher stress triaxiality states (notched specimens), the CL criterion 

( 1) gives an earlier failure than the IT criterion ( 0 ). The principal stresses inside the 

notch are strictly positive so ˆ ˆ ˆI III I . An increasing  (i.e. giving more weight to the CL 

criterion) increases the damage evolution. With the A A model, the difference in the failure 

strain between the two extreme values of  is 5% for 2.0 mmR  and 10% for 0.8 mmR . 

The failure modes are not significantly modified by the variation of the parameter . 

On the contrary, for lower stress triaxiality states (shear and compression tests), the IT 
criterion ( 0 ) promotes failure compared with the CL criterion ( 1). This observation is 

inherent to the criterion and can be explained using the definition of the damage evolution. For 

shear loading conditions, the damage variable evolution is proportional to 12ˆ2 , so the 

larger the parameter , the slower the damage evolves. Also, the damage evolution is 

generated by the positive contributions of the maximum principal and shear stresses. Under 

uniaxial compression, which ideally implies ˆ ˆ 0I II  and ˆ 0III , the damage will be 

similar to uniaxial tension 0 , while no damage evolution is envisaged for 1. Thus, the 

predicted failure strain is increased by a factor of 5 by the CL criterion in the numerical 
simulations. The large overestimation of failure strains for all directions of loading (except 0° 
direction) suggests that, based on the available experimental and numerical data, the  

parameter might be overestimated. 
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Discussions and conclusions

An anisotropic yield function (Yld2004-18p) and an anisotropic failure criterion (AECL) were 
calibrated for the AA7075-T651 aluminium alloy, using uniaxial tensile tests, one shear test 
and one compression test. The calibrations of the isotropic versions of the yield function and 
the failure criterion (ECL) were performed on tests in the 0° direction. The 0° direction 
exhibits the highest yield limit and the lowest critical plastic work for all in-plane directions. 
Consequently, the plastic anisotropy decreases the predicted strength and the anisotropy of the 
failure criterion increases the predicted critical plastic work, compared with isotropic models. 

The plastic anisotropy modifies the equivalent plastic strain rate. In addition, a side-
effect of the plastic anisotropy is the loss of axisymmetry in stresses and strains in the tensile 
and compression tests, which eventually leads to a higher maximum shear stress ˆ ˆI III  

(contrary to the maximum principal stress ˆI  which is assumed to decrease). Thus, depending 

on the value of the weighting parameter  of the failure criterion (controlling the relative 

importance of ˆI  and ˆ ˆI III  in the damage evolution), the plastic anisotropy can either 

increase or decrease the failure strain. For tensile tests on notched specimens, it is generally 
observed that the plastic anisotropy decreases the failure strain. For shear tests, the plastic 
anisotropy (i.e. the variation between directions) is weak, due to the calibration of the yield 
function. However, as observed in the predicted force-displacement curves obtained in Chapter 
4, the plastic anisotropy modifies the stresses and accumulated plastic strains and the failure 
strain predicted with anisotropic plasticity and isotropic plasticity differs. 

The AECL criterion is not physically based and leads to quantitative discrepancies with 
experiments, observed for the notched tensile tests in our study. The maximum damage can 
sometimes be located outside the minimum cross section of the specimen, where fracture is 
expected and experimentally observed. This eventually leads to premature failure and disrupted 
failure surfaces. Another aspect of the AECL (and ECL) failure criterion is that the damage 
evolution is generated by the positive contributions of the maximum principal and shear 
stresses. This enlightens the importance of an accurate calibration of the weighting parameter 

, particularly for the lower stress triaxiality states. In this study, the shear tests in the 0° 

direction, used in the calibration of , have shown high scatter between duplicate tests. This 

experimental uncertainty for the shear tests irradiates on the global predictive capability of the 
AECL criterion. 

Another issue here is the mesh size. Since the strain localization is often a precursor to 
fracture, a finer mesh capable of better describing the localization, could have changed some of 
the conclusions drawn here. One should also remember that these conclusions are drawn based 
on the anisotropy of the AA7075-T651 alloy. Other materials and calibration procedures might 



Chapter 7 - Anisotropic failure criterion 

104 
 

change the influence of both plastic and fracture anisotropy. However, it is believed that the 
analyses presented here are valid and would only need adjustments. Finally, it should be 
noticed that this failure criterion is simple to calibrate, especially as it is based on tests already 
carried out for the calibration of the anisotropic yield surface. 



 

 
 

Chapter 8. Structural impact of AA7075 T651
plates

8.1 Introduction

The aluminium alloy AA7075 is considered as one of the most important engineering 
aluminium alloys on the market today due to its high strength-to-density ratio (Hatch, 1984). 
Owing to this, the alloy is used in various industrial applications, such as aircraft bodies, 
automotive components or light-weight protective structures (e.g. Forrestal et al., 1992; Vlot, 
1996; Gooch et al., 2007; Demir et al., 2008). 

Børvik et al. (2010) carried out an experimental and numerical study to reveal the 
ballistic properties of the AA7075-T651 during impact generated loading conditions. They also 
investigated if simple isotropic constitutive relations and fracture criteria could be used in finite 
element simulations of high-strength aluminium components with a complex, non-
recrystallized micro-structure subjected to structural impact. Here, the work by Børvik et al. 
(2010) is continued by introducing anisotropic plastic flow and anisotropic fracture in the 
numerical models. The main idea is to investigate to which extent an anisotropic material 
description will affect the ballistic properties, and to check if such an approach will improve 
the description of the fracture and fragmentation process in the numerical simulations. For 
completeness, some of the main experimental and numerical findings from Børvik et al. (2010) 
will first be repeated. Then anisotropic numerical models for the impact problem are 
introduced. Numerical simulations are finally carried out using both anisotropic and isotropic 
models, and the results are compared and discussed with regards to the experimental data. 

8.2 Experimental and numerical results from Børvik et al. (2010)

Component tests using hardened steel projectiles ( 20 mm  diameter, 197 g  mass, 52 HRC) 

with blunt and ogival nose shapes (see Figure 8.1) were carried out in a compressed gas-gun 



Chapter 8 - Structural impact of AA7075-T651 plates 

106 
 

facility. The projectiles were mounted in a serrated sabot and launched at impact velocities just 
below and well above the ballistic limit velocity, i.e. the critical impact velocity, of the target. 
The sabot pieces were stopped by a sabot trap prior to impact. Target plates with dimension 

2600 600 mm  and nominal thickness of 20 mm  were clamped in a 500 mm  diameter circular 
frame and tightened with 16 bolts. The penetration event was captured by a Photron Ultima 
APX-RS digital high-speed video camera operating at a constant framing rate of 50000 Hz . 

Initial and final velocities were measured using different laser-based optical devices (shown to 
be accurate to within 1-2 %), as well as by the high-speed camera system. Both initial and final 
target deformations were measured in-situ before and after each test. More details regarding the 
experimental set-up and the instrumentation used during testing can be found in Børvik et al. 
(2003b; 2010). 

 
Figure 8.1. Geometry and dimensions (in mm) for blunt and ogival projectiles (Børvik et al., 
2010). 
 

Six impact tests with blunt and six impact tests with ogival projectiles were conducted 
for the 20 mm  thick AA7075-T651 plates using the experimental equipment described above. 
All parameters were kept constant within each test series except for the impact velocity that 
varied between 180 m/s  and 350 m/s . Initial ( iv ) and residual ( rv ) velocities of the projectile 

were measured in each test, and the results are plotted in Figure 8.2. Based on these 
measurements, the initial versus residual velocity curves were constructed. The ballistic limit 
velocities ( blv ) were taken as the lowest impact velocity within each test series, since they 

were found to be very close to the respective ballistic limits. The lines through the data points 
were determined based on a generalization of an analytical model originally proposed by Recht 
and Ipson (1963) 

 
1 pp p

r i blv a v v  (90) 

Where a  and p may be considered as empirical constants and blv  is the obtained ballistic limit. 

Both a  and p were in this study fitted to the test data using the method of least squares. Figure 

8.2 also gives experimentally obtained initial versus residual velocity curves for each projectile 
nose shape, together with the values of a  and p. Even though some spread is seen in these 

plots, the agreement between the experimental data points and the Recht-Ipson model is in 
general good. 
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(a) (b) 
Figure 8.2. Initial versus residual velocity curves for 20 mm  thick AA7075-T651 plates 
impacted by (a) blunt and (b) ogival projectiles (Børvik et al., 2010). 
 

Figure 8.3. Perforation of the 20 mm  thick AA7075-T651 target plate by a 20 mm  diameter, 
197 gram mass blunt nose projectile ( 199.8 m/s, 60.8 m/si rv v ). The given times (in s ) 
refer to the first image taken by the high-speed camera system (Børvik et al., 2010). 
 

Figure 8.4. Perforation of the 20 mm  thick AA7075-T651 target plate by a 20 mm  diameter, 
197 gram mass ogival nose projectile ( 277.7 m/s, 186.2 m/si rv v ). The given times (in s ) 
refer to the first image taken by the high-speed camera system (Børvik et al., 2010). 
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Figure 8.3 and Figure 8.4 show typical high-speed camera images of the perforation 
process for blunt and ogival projectiles, respectively. The perforation process is mainly due to 
plugging for blunt projectiles, and a plug with height approximately equal to the plate thickness 
is ejected from the target. In addition, fragmentation from the rear side of the target is seen due 
to the rather low ductility of the material. No fragments from the front side of the target are 
observed. For ogival projectile, the perforation process starts as ductile hole growth, which is 
the dominating fracture mode for pointed-nose projectiles impacting ductile materials. 
However, the perforation process quickly changes into fragmentation, and a large number of 
fragments are ejected from both sides of the target plate. The perforation process is found to be 
much more brittle than normally seen during perforation of ductile steel or aluminium alloys 
(see e.g. Børvik et al., 2004). The reason for this can be related to the complex microstructure 
of the AA7075-T651 alloy (see Chapter 2). This results in local variation in properties and 
strain localization to soft areas (PFZs), which may lead to inter-crystalline cracking, 
delamination and fragmentation during impact (Pedersen et al., 2011). It should finally be 
noticed that more energy is required to push material aside by ductile hole growth than 
shearing through the plate by localized plugging, which means that the ballistic limit velocity is 
higher for ogival than for blunt projectiles (see Figure 8.2). This has also been observed in 
similar tests on ductile steel plates by e.g. Børvik et al. (2002). 

Numerical simulations of the impact tests were also performed by Børvik et al. (2010) 
in an attempt to predict the correct residual velocity and ballistic limit. All impact tests were 
analysed using the explicit solver of the non-linear finite element code LS-DYNA, and both 2D 
axisymmetric and 3D solid elements where used in the simulations. For 3D conditions, 8-node 
constant-stress solid elements with one integration point and stiffness-based hourglass control 
were applied. Contact was modelled using an eroding surface-to-surface algorithm available 
for SMP/MPP simulations. Independent of the projectile nose shape, a fixed element mesh was 
used. To save computational time, the 3D model was coarsened towards the fully clamped 
boundary using tetrahedral elements in a transition zone. The element size in the impact region 

was equal to 30.5 0.5 0.8 mm , giving 25 elements through the thickness, while only 7 
elements were used over the target thickness in the global part of the plate. This resulted in 
about 330 000 elements and 850 000 nodes in the numerical model. An example of a solid 
element mesh used in 3D simulations is shown in Figure 8.5. 

A thermoelastic-thermoviscoplastic constitutive model (the modified Johnson-Cook 
model) and a ductile fracture criterion (the Cockcroft-Latham criterion) were chosen by Børvik 
et al. (2010) in an attempt to model the target response. Thus, the constitutive behaviour and 
the fracture process of the material were assumed to be isotropic. To check the possible effect 
of anisotropy on the predictions, Børvik et al. used two different sets of material constants for 
the constitutive relation and fracture criterion in the simulations. The first set (Set 1) was 
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entirely based on uniaxial tensile tests in the rolling direction, while the second set (Set 2) was 
based on the uniaxial tension tests in the 45° direction. It is referred to Børvik et al. (2010) for 
more details regarding the various material tests, material models and the calibration of the 
different material parameter sets. 

Figure 8.5. Mesh used in simulation of blunt and ogival projectile impact (Børvik et al., 2010). 
 

Based on a number of simulations using these finite element models and the two 
different sets of material parameters, the initial versus residual velocity curves in Figure 8.6 
were constructed. This figure shows that when the target is impacted by blunt projectiles, some 
spread in the initial versus residual velocity curves is obtained when the material constants are 
varied. For Set 1 an almost perfect fit to the experimental data was obtained, while for Set 2 the 
ballistic limit velocity was overestimated by 5%. For ogival projectiles the numerical results 
are less accurate. Set 1 gave an overestimation of the ballistic limit by about 30%, while the 
ballistic limit was slightly higher for Set 2 owing to the increased ductility of the material in 
the 45° direction. 
 

(a) (b) 
Figure 8.6. Predicted initial versus residual velocity curves for 20 mm  thick AA7075-T651 
plates by (a) blunt and (b) ogival projectiles using 3D constant-stress solid elements. The lines 
through the data points are best fits to the numerical results (Børvik et al., 2010). 
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Figure 8.7 shows some typical plots of the perforation process when 20 mm  thick 
AA7075-T651 plates are perforated by blunt and ogival projectiles using material parameters 
obtained from the tension tests in the 0° direction (Set 1). The quasi-brittle behaviour seen 
experimentally (see Figure 8.3 and Figure 8.4) is partly captured in the simulation. Thus, the 
qualitative agreement between experimental tests and 3D simulations is good, even though 
there are some quantitative deviations. The reason for this seems to be that the FE models are 
not able to fully capture the quasi-brittle fracture behaviour of the alloy (i.e. the fragmentation 
and delamination process), especially during impact by ogival projectiles, and the predictions 
tend to overestimate the ballistic capacity of the target plates. In the following, the numerical 
simulations by Børvik et al. (2010) will be repeated using an anisotropic description of the 
material behaviour. 

 
(a) 300 m/s, 221 m/si rv v  

 
(b) 300 m/s, 127 m/si rv v   

Figure 8.7. Perforation of 20 mm  thick AA7075-T651 plates by (a) blunt and (b) ogival 
projectiles from simulations using 3D constant-stress solid elements and material parameters 
from Set 1. Plotted as fringe levels of accumulated plastic strain in the range 0 (light grey) to 
0.5 (dark grey). The 3D model has been sliced through the centre to better show the 
perforation process (Børvik et al., 2010). 

8.3 Anisotropic thermoelastic thermoviscoplastic constitutive relations

Since the impact process described above implies high strain-rates and possibly induces 
adiabatic conditions, an anisotropic thermoelastic-thermoviscoplastic constitutive relation is 
required for the AA7075-T651 plate. The corotational Cauchy stress tensor and the 
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corotational rate-of-deformation tensor are given in Eq.(14) and Eq.(15) of Chapter 4.1, 
respectively. Their relation is given by 

 1ˆ ˆˆ ˆ: 3
T

T e th
el T

ET K T
E T

C d I  (91) 

where ˆ T
elC  is a 4th order isotropic tensor of thermo-elastic moduli and is defined by Poisson’s 

ratio  and Young’s modulus ( )T TE E T  depending of the temperature T , given by 

 T m

m r

T TE T E
T T

 (92) 

where E  is Young’s modulus at the reference temperature rT  and mT  is the melting 

temperature. A linear dependence of the temperature is chosen here. The dynamic yield 
function is defined as 

 ˆ ˆ, , , , ,Tf p p T p p T  (93) 

where the equivalent stress  is defined by the Yld2004-18p of Barlat et al. (2005) given by 
Eq.(18) to Eq.(22). The behaviour is elastic if 0f , while plastic deformations occur for 

0f . Further, T  is the flow stress in uniaxial tension in the reference direction, now 

affected by the temperature and the strain rate, viz. 
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The temperature rise caused by adiabatic heating is calculated as 

 ˆˆ :
th

p
thT

c
d  (95) 

where th  is the Taylor-Quinney coefficient, defining the fraction of the plastic work 

converted into heat,  is the density and thc  is the specific heat of the material. Thermo-

elastic coupling is neglected and thc  is assumed independent of the temperature. The 
calibration of the anisotropic yield function, the plastic hardening and the anisotropic fracture 
is the same as for the numerical simulations of the material tests presented in Chapter 4 and 
Chapter 6, and the parameters are given in Table 4.1 and Table 7.1. The thermal coefficients 
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and strain rate sensitivity parameters for the AA7075-T651 alloy are taken from Børvik et al. 
(2010), and these are given in Table 8.1. An elasto-plastic material model with linear hardening 
is used for the hardened steel projectiles (Børvik et al., 2001), and the material parameters are 
given in Table 8.2. 

Table 8.1. Thermal and strain-rate parameters for the material model of the AA7075-T651 

0p [/s] 0C  rT  [K] mT  [K] th [/K] thc [J/kg/K] th  

0.0005 0.001 293 893 623.1 10  897 0.9 
 

Table 8.2. Material data for the hardened steel projectile 
E [GPa]  [g/cm3] 0 [MPa] tE [GPa] 

204 0.33 7.85 1900 15 
 

As for the material tests presented in Chapter 7, the damage is not coupled to the 
constitutive behaviour in this study. This involves that the elements are eroded when the 
damage variable D  reaches the critical value 1CD . Note that the fracture criterion only 

depends on the temperature and strain rate through the stress tensor. 

8.4 Numerical results and discussion

To reveal the effects of an anisotropic material description on the ballistic properties of the 
AA7075-T651 alloy, numerical simulations with blunt and ogival projectiles were first 
performed using anisotropic plasticity (Yld2004-18p) and anisotropic fracture (AECL) 
(defined as the A A model in Chapter 7). Except for the constitutive relation and the fracture 
criterion, the numerical models were identical to those used by Børvik et al. (2010). However, 
these differences make difficult a direct comparison between the results presented here and 
those by Børvik et al. (2010). A number of simulations were carried out for each nose shape, 
where the only variable was the initial impact velocity, and the residual velocity of the 
projectile was registered. The Recht-Ipson model in Eq.(90) was then fitted to the numerical 
data to obtain the ballistic limit curves and velocities. 

Next, the four possible combinations of constitutive relation (anisotropic versus 
isotropic) and failure criterion (AECL versus ECL) were used in FE simulations of the ballistic 
impact problem. These models were defined as A A, I A, A I and I I in Chapter 7. The ballistic 
limit curves and velocities were not sought in this part of the study. Instead, simulations were 
run with constant impact velocity (one close to and one well above the ballistic limit) to see the 
direct influence of the different model combinations on the residual projectile velocity. 
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Note that all simulations discussed so far were run with 0.781 and 12m . 

Therefore, two rather limited sensitivity studies were carried out at the end to investigate the 

effect of the weighting parameter  in the AECL criterion and the effect of the shape of the 

yield surface controlled by m  on the ballistic predictions. 

8.4.1 Ballistic limit curves and velocities

Figure 8.8 shows predicted ballistic limit curves and velocities as obtained using the A A 
model compared with the experimental results. The numerical predictions for blunt projectiles 
overestimate the residual velocities (giving conservative results), while for ogival projectiles 
they underestimate the residual velocities (giving non-conservative results). Compared to the 
experimental data, the ballistic limit velocity is underestimated by -7% for blunt projectiles, 
while it is overestimated by 23% for ogival projectiles (see also Figure 8.2). The predicted 
ballistic limits are somewhat lower, but still rather close, to those predicted by Børvik et al. 
(2010) using 2J  flow theory and an isotropic Cockcroft-Latham fracture criterion (see Figure 

8.6). The deviation is -7% for the blunt projectile and -4% for the ogival projectile. However, 
at higher impact velocities, the ballistic limit curves seem to coincide with the experimental 
results (as also seen in a number of similar numerical studies). This clearly indicates that in 
order to study the effects of constitutive relation and fracture criterion in structural impact, the 
impact velocity should be close to the ballistic limit of the target material. 

 
Figure 8.8. Experimental fits and predicted initial versus residual velocity curves and ballistic 
limits using the A A model for 20 mm  thick AA7075-T651 plates impacted by blunt and ogival 
projectiles. 
 

Plots of the perforation process for blunt and ogival projectiles using the A A model are 
given in Figure 8.9. If compared to the plots in Figure 8.7 from Børvik et al. (2010), the 

Initial velocity (m/s)
150 200 250 300 350 400

R
es

id
ua

l v
el

oc
ity

 (m
/s

)

0

50

100

150

200

250

300

350
Experimental fit
Numerical prediction
Numerical fit

Blunt Ogival

257 m/s, 0.99,  2.09blv a p

173 m/s, 0.82,  2.83blv a p



Chapter 8 - Structural impact of AA7075-T651 plates 

114 
 

perforation and fragmentation process are quite similar. However, the plug obtained with the 
A A model and the blunt projectile is less damaged than the plug obtained by Børvik et al. 
(2010), and this seem more physical. Nevertheless, the main conclusion from this preliminary 
study is that the introduction of full anisotropic material properties in finite element 
simulations of structural impact does not significantly alter the ballistic properties for high-
strength aluminium targets with a complex microstructure. 

 

(a) 185 m/s, 85 m/si rv v   

 
(b) 275 m/s, 101 m/si rv v   

Figure 8.9. Perforation of the 20 mm  thick AA7075-T651 plates by (a) blunt and (b) ogival 
projectiles from simulations using 3D constant-stress solid elements (A A model). Fringe levels 
of the damage variable in the range 0 (dark blue) to 1 (red), sliced through the centre. 

8.4.2 Anisotropy versus isotropy

Here, the four possible combinations of constitutive relation (A A, I A, A I and I I models) are 
used. Only two different impact velocities iv  were applied: one slightly higher than and one 

well above the ballistic limit for blunt and ogival projectiles, respectively. Interpreting the 
effect of anisotropy is a challenging task since the loadings during impact are very complex. 
For tensile tests on notched specimens, the influence of anisotropy was analysed using loading 
paths and yield loci (see Figure 5.6 (b)) but impact tests lead to much more heterogeneous 
stresses and strains than tensile tests on notched specimens. Thus, only general trends from 
these numerical results will be discussed. Predicted residual velocities rv  are presented in 

Table 8.3, while typical plots of the perforation process for blunt projectiles using the A A, I A, 
A I and I I models are shown in Figure 8.10. 
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Residual velocity

 At high impact velocities: for impact velocities well above the ballistic limits (300 m/s  
for blunt projectiles and 375 m/s  for ogival projectiles), the predicted residual velocities are 
similar for all configurations. Thus, fully anisotropic and fully isotropic models give almost 
identical results (having a difference in residual velocity of only about 1% for both projectile 
types). However, as the impact velocities get closer to the ballistic limit (185 m/s  for blunt 
projectiles and 275 m/s  for ogival projectiles), the influence of anisotropy becomes more 
important and can vary with the impact velocity. Indeed, due to the strain-rate sensitivity and 
the temperature effect, the elements in the impacted area are subjected to stress states which 
may vary with iv . Consequently, no systematic trend for the effect of anisotropic plasticity or 

anisotropic failure can be enlightened. 
 At impact velocities close to the ballistic limit: for both projectiles, the plastic 

anisotropy decreases rv , i.e. makes the target stronger. In contrast, the influence of the failure 

anisotropy is not so clear, since rv  is decreased for blunt projectiles and slightly increased for 

ogival projectiles when using the AECL criterion. The overall trend is that, at impact velocities 
close to the ballistic limit, the residual velocity is considerably reduced when introducing 
anisotropy both in the plastic flow and fracture (giving reduction of 20% for blunt projectiles 
and 13% for ogival projectiles between the I I and the A A models). A reduction in residual 
velocity gives an increase in ballistic limit. Thus, the perforation resistance of the target seems 
to increase by introducting anisotropic effects. 

Table 8.3. Predicted residual velocity (in m/s) for impact of AA7075-T651 plates obtained with 
different constitutive relation and fracture criterion. 

Geometry 
Initial velocity 

iv  [m/s] 
Fitted experimental 

residual velocity 
0.781 0  1  

A A I A A I I I A A A A
Blunt 300 218 227 226 232 230 233 219 
Blunt 185 28 85 93 88 107 123 49 

Ogival 375 295 276 271 282 279 345 271 
Ogival 275 182 101 122 88 116 240 85 

Failure modes

It is seen in Figure 8.10 that the fracture and fragmentation process is influenced by the 
anisotropy. By including anisotropy in the plastic flow and/or failure criterion (i.e. the A A, I A 
and A I models), the failure process is not axisymmetric anymore (see Figure 8.10 (a)). This 
may lead to deviations of the plug and projectile during perforation. Also, with anisotropy in 
the fracture criterion (A A and I A models), the plug does not crack as it does for an isotropic 
criterion. 
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(a) (b) (c) (d) 

Figure 8.10. Plots of the perforation of 20 mm  thick AA7075-T651 plates by blunt projectiles 
with 175 m/siv  using the (a) A A, (b) I A, (c) A I and (d) I I models. 

8.4.3 Sensitivity study

Influence of the weighting parameter

So far, all simulations have been carried out using a constant weighting parameter  in the 

fracture criterion. To investigate the effect of  on the ballistic properties of the aluminium 

alloy, the simulations in Table 8.3 with the A A model were rerun with two extreme values of 

 (i.e. 0  and 1). Keep in mind that when 0 , the AECL fracture criterion 

transforms into an anisotropic version of the integral-based Tresca criterion, while for 1 it 

turns into an anisotropic version of the Cockcroft-Latham criterion (see Chapter 6). The results 
from these simulations are given in Table 8.3. 

A distinct increase in residual velocity is observed when 0 , especially at impact 

velocities close to the ballistic limits. The obvious reason for this is that the integral-based 
Tresca criterion is much less sensitive to varying stress-states than the Cockcroft-Latham 
criterion (see Gruben et al., 2012). Thus, the influence of the  parameter becomes very strong 

at shear-dominated stress-states. At higher impact velocities, the difference is only 6% between 

the two extreme values of  for blunt projectiles, while for ogival projectiles the difference is 

26%. This is somewhat counter-intuitive since blunt projectiles induce localised shear plugging 
of the plate in contrast to ductile hole enlargement for ogival projectiles. Indeed, the failure 
mode observed for blunt projectile starts with tensile damage at the bottom of the plate 
followed by shear bands in front of the projectile. However, the elements in contact with the 
nose of the ogival projectile are exposed to very large plastic deformations involving shear 
strains, and this causes a softening effect of the plate. Figure 8.11 shows some plots of the 
perforation process by blunt and ogival projectiles from typical simulations using the A A 

model with 0  and 1. It is seen that the failure processes obtained with 0  are not 

realistic since all elements are eroded and almost no material is left in the plug or fragments 
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after perforation. On the contrary, with 1, the elements subjected to tensile stresses 

intervenes more in the failure process, and a more realistic failure process is observed. Partial 

fragmentation as seen in is also detected when 1. This is lacking when 0 . 

 
(a) 0, 185 m/s, 123 m/si rv v  

(b) 1, 185 m/s, 49 m/si rv v   

 
(c) 0, 275 m/s, 240 m/si rv v  

 
(d) 1, 275 m/s, 85 m/si rv v   

Figure 8.11. Plots of the perforation process by (a)-(b) blunt and (c)-(d) ogival projectiles 
from typical simulations using the A A model where 0  for (a)-(c) and 1  (b)-(d). 
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In conclusion, when 1 the results are rather similar to those for 0.781 and close 

to the experimental value for blunt projectiles, while for ogival projectiles the ballistic limit is 

slightly overpredicted, giving non-conservative results. For 0  the results are unphysical 

due to the low prediction of the shear capacity of the material during impact. 

Influence of the shape parameter m

The predicted results seem to differ somewhat from the results obtained by Børvik et al. (2010) 
using a thermoelastic-thermoviscoplastic constitutive model (the modified Johnson-Cook 
model and 2J  flow theory) and an isotropic fracture criterion (the Cockcroft-Latham model), 

also when applying the fully isotropic I I model. One possible reason is that all simulations 
have been run with a high exponent ( 12m ), while for 2J  flow theory 2m . This exponent 

is used to determine the shape of the yield surface (see Chapter 4). 
 

Figure 8.12. Predicted residual velocity curves for 20 mm  thick AA7075-T651 plates impacted 
by blunt projectiles with initial velocity 175 m/siv  with different shape parameter m . 

 
In order to investigate the effect of the shape of the yield surface on the perforation 

resistance of the material, a number of simulations using the I I model and the A A model were 
run using m as the only variable. The results from these simulations are plotted in Figure 8.12. 
For the I I model, a rather steady increase in residual velocity is obtained with increasing m . 
Thus, the ballistic limit velocity of the target plate is reduced as the yield surface is sharpened. 
The reason is that a high exponent of the yield surface promotes strain localization. For the A
A model the results are more random. However, the general trend is that the residual velocity is 
reduced, i.e. making the ballistic limit increase, with increasing m . This suggests that the 
influence of anisotropy can be opposite and of the same order of magnitude as the influence of 
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the shape parameter. It is also interesting to note that for 12m  the residual velocity using the 
I I model reaches a local maximum and the A A model a local minimum, maximizing the 
difference between the I I and A A models at this value of m . From Figure 8.12 it is in any 
case rather clear that the shape of the yield surface has an equally large (if not larger) effect on 
the predicted results as the introduction of anisotropy in the plastic flow and fracture. This 
somehow illustrates the complexity in the problem.  

8.5 Conclusions

An anisotropic failure criterion based on the extended Cockcroft-Latham criterion has been 
proposed and used in numerical simulations of ballistic impacts against 20 mm  thick plates of 
AA7075-T651. The criterion was calibrated based on uniaxial tensile and shear tests in the 0° 
direction, and evaluated through a number of simulations of various material tests in a similar 
way as for the anisotropic yield surface. In the numerical simulations of the ballistic impact 
problem, both blunt and ogival projectiles were applied, and the results were assessed against 
available experimental data. 

The influence of anisotropy in the constitutive relation and fracture criterion is most 
important at impact velocity close to the ballistic limit velocity. Plastic anisotropy seems to 
decrease the perforation resistance of the plate, while the anisotropic failure criterion (AECL) 
affects the capacity of the plate in a different manner for blunt and ogival projectiles. This 
enlightens that the stress state, which is different for the two projectiles, plays a significant role 
in the perforation process. However, the overall observation from this study is that the residual 
velocity is considerably reduced when introducing anisotropy both in the plastic flow and 
fracture at impact velocities close to the ballistic limit. Also the fracture process itself is to 
some extent influenced by anisotropy. A reduction in residual velocity indicates an increase in 
ballistic limit. Thus, the plate gets stronger by introducing anisotropy. However, these 
conclusions may depend on how the isotropic criterion is calibrated. In this study, the isotropic 
criterion is calibrated based on tensile tests in the 0° direction, i.e. the material direction 
showing the lowest plastic work to failure. 

The weighting parameter , giving the relative importance of the CL criterion (based 

on the first principal stress) and the IT criterion (based on the maximum shear stress), was 
found to have a significant influence on the predicted results. For impact velocities close to the 
ballistic limits of the target, the residual velocity could vary by as much as 60% for the extreme 
values of this parameter (i.e. 0  and 1). This means that the validity of the model 

strongly depends on the calibration of the weighting parameter  and thus, on the quality of 

the shear test used in the calibration. Also the shape factor of the yield function m  influences 



Chapter 8 - Structural impact of AA7075-T651 plates 

120 
 

the ballistic properties, and the general trend is that with the A A model, the residual velocity is 
reduced with increasing m . 

Several other factors may have a strong influence on the results in numerical 
simulations of ballistic impact (see e.g. Johnsen et al, 2013). Such factors may be the mesh 
size, the contact algorithm, the effect of friction, the coupled effect of temperature and strain 
rate on the flow stress, etc. The influence of anisotropy was admittedly not negligible, 
especially at impact velocities close to the ballistic limit, but it was not found larger than the 
influence of other factors. Taking anisotropy of plasticity and failure into account should be 
done in a wider optimization process of all parameters. 

Finally, even though taking the anisotropy of plastic flow and failure into account was 
not found to significantly improve the numerical predictions, one should remember that the 
chosen anisotropic failure criterion has limitations. It was shown in Chapter 7 that the accuracy 
of this criterion was limited for shear dominated stress states and negative stress triaxialities. 
Even so, the main idea of this study was to investigate to what extent a simple anisotropic 
failure criterion could be used in a very complex problem like the impact and perforation of a 
high-strength aluminium alloy. 
 



 

 
 

Chapter 9. Conclusions and further work

9.1 Conclusions

In this thesis, the anisotropic behaviour of the AA7075-T651 aluminium alloy in the form of 
20 mm thick plates has been studied. Experiments were performed on several specimen 

geometries to quantify the anisotropy of plasticity and failure. In addition to micoroscopic 
observations of the virgin material, the failure surfaces were observed to identify the failure 
modes. An anisotropic yield function and an anisotropic failure criterion were calibrated and 
evaluated. Two analytical approaches for damage were examined with respect to the failure 
modes observed experimentally. Numerical simulations of impact on the AA7075-T651 plates 
were carried out and compared with experimental results obtained by Børvik et al. (2010). 
Finally, a first attempt of microstructural modeling of this alloy was proposed as further work 
with some preliminary results. 

Experimental investigations

The AA7075-T651 aluminium alloy plates were observed with SEM and TEM, and were 
found to have some particular microstructural features: 

 Pancake-shaped grains and a weak texture 
 Inclusions distributed along the rolling direction of the plate 
 Precipitate free zones (PFZs) of nanometer width 

The PFZs, often considered as a pure aluminium zones inside a stronger matrix, were found to 
contain non-negligible amount of alloying elements in solid solution. This may have an 
influence on the plastic behaviour of these zones. 

Material tests were carried out on the AA7075-T651 alloy at room temperature, under 
quasi-static conditions and until complete failure. Specimens were designed to expose the 
material to various stress states (e.g. initial stress triaxiality) and were machined in different 
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directions of the plate. Two classes of tests can be distinguished by their Lode parameter (third 
stress invariant). The axisymmetric geometries used for tensile tests on smooth and notched 
specimen and compression tests on cylindrical specimens give a Lode parameter 1L , 

while the shear tests performed on in-plane butterfly specimens give a Lode parameter 0L . 

The failure surfaces were observed in a SEM when possible. The experimental results are 
summed up below. 

 Tensile tests on smooth axisymmetric specimens were performed in seven different in-
plane directions and in the normal direction (ND) of the plate (giving an initial stress 
triaxiality * 1 3 ). A marked anisotropy in yielding and plastic flow, and a large 

anisotropy in failure strain were observed. In in-plane uniaxial tension, the strain to 
failure varied strongly with the loading direction, in a similar way as the strain ratio. 
The ductility was low for low values of the strain ratio and vice versa. Failure occured 
in a cup-and-cone mode in the directions with the highest ductility and in a shear mode 
in the directions with lowest ductility. An exception was found for the tests in the 
normal direction (ND), which failure strain was the lowest (with a large scatter between 
duplicate tests). These sepcimens exhibited a more disrupted failure surface with a 
tendency to flat areas following grain boundaries, orthogonal to the loading direction. 

 Tensile tests on notched axisymmetric specimens of radius 2.0mmR  and 0.8mmR  

were performed in the 0°, 45° and 90° in-plane directions of the plate. The strain to 
failure for the notched specimens wass markedly reduced compared with the smooth 
specimens due to the increased levels of stress triaxiality. The fracture occured in a cup-
and-cone mode in all orientations and secondary cracks in the rolling plane were 
observed. The directional variation of the strain to failure was moderate. 

 Shear tests were performed on butterfly specimens in the 0°, 45° and 90° in-plane 
directions of the plate to reach stress triaxiality states close to zero. The failure surface 
was flat and aligned with the direction of loading, and the DIC analysis indicated that 
fracture occurs almost instantaneously along the entire gauge length. The direction 
dependency of the strain to failure was moderate, but the results were compromised by 
the large scatter between duplicate tests. However, contrary to uniaxial tension, the 
ductility was observed lower in the 45° direction than in 0° and 90° directions. The 
finite element simulations demonstrated that only the middle part of the gauge section 
was subjected to pre-dominant shear loading, while close to the edges, complex, non-
radial loadings were observed. 

 Compression tests were performed on cylinder specimens in the 0°, 45° and 90° in-
plane directions and in the normal direction (ND) of the plate, to reach negative stress 
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triaxialities. The variation in strain to failure with direction was moderate, but due to 
the lower stress triaxiality, strain to failure was consistently higher than in the 
corresponding uniaxial tension test. Also, as observed for tensile tests on smooth 
specimens, the ductility was found markedly lower in the normal direction of the plate. 
Despite the scatter in failure strain, systematic failure modes (localized along inclined 
bands) were observed. 

 The tensile and compression tests in the nomal direction (ND) of the plate exhibited 
low ductility, and the average strain to failure was similar, even if the overall  stress 
triaxiality was very different. In the tension tests, the failure occured in the rolling plane 
along the flat and elongated grain boundaries where precipitate free zones are located. 
The scatter was large, probably due to the small dimensions of the specimen compared 
to the grain size. In compression, failure occured in a shear mode with a fracture 
surface inclined 45° to the loading axis. 

 Owing to the plastic anisotropy, the cross section of the uniaxial tension and 
compression specimens deformed into an elliptic shape. In the cases where failure 
occurred in a shear mode, the orientation of the fracture surface was approximately 45° 
with the loading axis and contained either the semi-major axis or the semi-minor axis of 
the ellipse. 

These experiments offer a large data base to build a representative constitutive model. 
However, although performed with care, the shear test results are difficult to include in the 
calibration of the model due to the large scatter between duplicate tests. It is believed that the 
geometry might be partly responsible for the scatter and other specimen should be envisaged. 
The behaviour under shear loading conditions (i.e. yielding and failure) was shown to be 
crucial for an accurate description of the material. Compression tests were initially performed 
on cylinders with 0 0 1.5h D , but buckling implied large scatter in the failure strain. The use of 

cylinders with 0 0 1h D  enabled to avoid the buckling effect, but the scatter in failure strain 

was not completely avoided. Specimens designed to limit the friction, responsible for 
barrelling of the specimens, can be used (Bai and Wierzbicki, 2004; Forrestal et al., 2013). 
Also, microscopic observations of the failure surfaces helped to identify the failure modes, 
while observations of interrupted tests could capture the physical mechanisms leading to final 
failure. 

Modelling of plastic anisotropy

An elastic-plastic model including the Yld2004-18p anisotropic yield criterion proposed by 
Barlat et al. (2005), the associated flow rule and isotropic hardening was determined for the 
material, and numerical simulations were performed of all the material tests. It was found that 
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Yld2004-18p provided an adequate description of the plastic anisotropy of the AA7075-T651 
material. Moreover, it was shown that plastic anisotropy is pivotal for an accurate prediction of 
the notch-strengthening effect. In particular it was shown that an isotropic yield function 
overestimated the stress level in the notched specimens, as also found by Wilson (2002). The 
shape of the anisotropic yield surface was revealed to significantly affect the prediction of the 
notched-specimen behaviour. These findings are important since notched specimens are often 
used to determine the fracture locus of materials, and in this context an accurate description of 
the stress state within the notch is essential. 

Modelling of anisotropic failure

Void growth analysis

The Rice and Tracey (RT) analysis was developed with an anisotropic yield function. The 
analysis exhibited that the only non-negligible influence of anisotropy on the void growth lied 
on the equivalent plastic strain rate p  and in the stress triaxiality (defined from the anisotropic 

equivalent stress). This supports the idea that the plastic anisotropy is an important aspect of 
the behaviour to take into account when modeling failure. The failure locus for proportional 
loading situations should then be expressed in the space formed by the anisotropic equivalent 
strain at failure and stress triaxiality. 

However, the void growth analyzed under the assumptions of RT (spherical void and 
growth) is not believed to be the most important failure mechanisms for the AA7075-T651. To 
overcome this issue, the analysis of void growth submitted to large shear deformations inside 
the PFZs can be envisaged. However, in that case, analytical solutions might be impossible to 
find and use of numerical tools may be required. 

Localization analysis

The localization condition was solved to express the critical hardening modulus ch  for several 

constitutive relations. All softening mechanisms (sharper yield surface, non-associativity, finite 
strain formulation and thermal dependence of the parameters) tended to increase ch , but no 

formulation was found to lead to a positive ch  for the Lode parameter 1L  (i.e. generalized 

tension). Other softening mechanisms could be more extensively investigated to obtain better 
results. These applications have shown that this material seems to be very resistant to the 
localization in the case of axisymmetric extension or compression, but also under other stress 
states. To overcome these difficulties, Rice (1976), inspired by the Marciniak and Kuczynski 
approach in localized necking of sheets (Marciniak and Kuczynski, 1967), proposed a rigorous 
and three-dimensional analysis involving initial imperfections. As summarized in Yamamoto 
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(1978), the idea can be explained in the sense that a part of a material may have slightly 
different properties from the remaining portion and that continuing concentrated deformation 
within this inhomogeneity (imperfection) leads to failure at a strain smaller, than a value 
required for a perfectly homogeneous body. Both the localization band and the imperfection 
bands are taken in the form of planar bands. Also, in this approach, the material in the band is 
assumed to have slightly weaker properties within the imperfection than outside it. This 
imperfection may appear within the material by any process during plastic deformation (Rice, 
1976), but is assumed to be present from the beginning (initial imperfection). For the AA7075-
T651 alloy, the PFZs along grain boundaries can be interpreted as initial imperfections so this 
last formulation is a promising outlook and will be developed in further work. 

Also, the localization condition obtained with a Hershey-type yield function (pressure-
independent) was dependent on only one stress invariant, the Lode parameter. Yield surfaces 
with non-linear dependency to the hydrostatic stress, such as the Gurson’s limit analysis for 
porous material, would offer the localization condition a dependency to the stress triaxiality 
ratio. It is believed that the resolution of the localization condition with an anisotropic 
constitutive behaviour could improve the results. However, efforts must be put into the 
formalism of the representative variables since only three stress invariants cannot represent the 
loading conditions anymore. To avoid this complexity, one outlook for the accomplishment of 
the localization analysis in the anisotropic context is the resolution of the localization condition 
implemented in a finite element code (Barsoum and Faleskog, 2011). This would allow solving 
the localisation condition with any constitutive behaviour without additional effort. Moreover, 
this would extend the resolution to non-homogeneous structures. 

Anisotropic Extended Cockcroft Latham criterion and ballistic application

An anisotropic version of the plastic work-based extended Cockcroft-Latham criterion (Gruben 
et al, 2012) was calibrated and evaluated for various loading conditions. Obtained failure strain 
and failure modes were compared to experimental observations. The predicted failure strains 
for tensile tests on smooth specimen (used in the calibration) were in good agreement with the 
experimental values for all directions. However, the failure modes were not predicted correctly. 
For tensile tests on notched specimens, the results were qualitatively correct, but the anisotropy 
was not correctly predicted and the results were only slightly enhanced compared with an 
isotropic model. Numerical simulations of the tests at low stress triaxiality (shear and 
compression tests) exhibited more realistic location for maximum damage than with an 
isotropic model, but the results in terms of failure strain were still inaccurate. Numerical 
simulations of the perforation of 20 mm thick AA7075-T651 plates by ogival and blunt 

projectiles were also performed. The effect of anisotropy was larger close to the ballistic limit 
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than for high impact velocities. The results were not qualitatively enhanced by the anisotropic 
model, but more realistic description of the failure was observed (such as the cracking along a 
preferential direction). Also, the influence of the anisotropy is not larger than the influence of 
other parameters such as the hardening law, the mesh size and the yield surface shape 
parameter m . 

The weighting parameter , controlling the contribution of the Cockcroft-Latham 

(maximal principal stress) and Tresca-based (maximum shear stress) criterions, have an 
important influence on the predicted failure strain and thus on the residual velocity, particularly 
for shear dominated stress states. In our study, this parameter was calibrated on the shear test 
performed in the 0° direction of the plate. Unfortunately, the scatter obtained between duplicate 
shear tests gives an uncertainty in the value of the parameter . As also suggested in the 

outlooks for the experimental part, the repeatability of the shear tests could be enhanced by 
designing a more appropriate shear specimen. 

Failure is predicted numerically by eroding elements, which is a rudimentary method 
since parts of the material mass are irreversibly lost. Recent hybrid numerical techniques were 
developed to replace element erosion with node splitting (www.impetus.com). This may lead 
to more realistic results in terms of failure modes. 

9.2 Further work

One main conclusion from this study is that we have to go down in scale in order to fully 
understand and model the underlying mechanisms for the behaviour and fracture of complex 
alloys like the AA7075-T651. The anisotropy in the failure strains and the failure modes 
observed experimentally, under uniaxial tension for instance, is also found to be very important 
(see Chapter 3). Without being exhaustive, it is believed that what causes the anisotropic 
failure are the plastic anisotropy, the anisotropic grain morphology (and the PFZ distribution) 
and the anisotropic distribution of inclusions. It is believed that all microstructural ingredients 
are needed to predict this failure anisotropy. On the one hand, this implies the modelling of the 
precipitate free zones (PFZs) of nanometre size. On the other hand, if one wants to predict the 
macroscopic failure modes, a representative number of pancake-shaped grains should be 
modelled (at a millimetre scale). It is numerically challenging to cover six orders of magnitude 
with the finite element method, especially regarding the computational efficiency. 

First attempt of microstructure modelling

A first approach was to model hexagonal grains and PFZs with one layer of solid elements in 
order to qualitatively observe the localization of strains. Hexagonal grains in 2D and grain 
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boundaries associated to each grain are represented. The grain and PFZ sizes are defined as GL  

and PFZL , respectively, and each grain contains 882 elements. The number of elements through 

the thickness of the PFZ was found to have no significant influence and was fixed to two for 
the rest of the study. The ratio between the grain size and the PFZ size is then defined as 

G PFZ G PFZA L L . In Chapter 2, the experimental ratio, defined as G PFZ G PFZa l l , was found 

to lie within the range 275;6900G PFZa . This physical ratio is very large and challenging to 

reproduce numerically. Consequently, numerical simulations were performed with 

G PFZ G PFZA a , but a parametrical study enabled to evaluate the sensitivity of the results to this 

ratio. Due to the poor aspect ratio of the elements inside the PFZs, fully-integrated elements 
with second-order accuracy (LSDYNA, 2007) were used to avoid shear locking. The thickness 
of the model (i.e. the thickness of all elements) was chosen of the same order as the in-plane 
dimensions of the elements. Also, due to the continuity between the mesh of the PFZs and the 
mesh of the grains, (which is a limitation imposed by the in-house grain generation tool used 
for this analysis), the number of element inside the grain is necessarily large. Consequently, 
only 16 grains were modelled in order to keep the computation time reasonable. The 
dimensions of the grains and PFZs are illustrated in Figure 9.1 (a). 
 

(a) (b) 
Figure 9.1. (a) Mesh for grain modelling with a length ratio 20G PFZ G PFZA L L  and (b) 
boundary conditions applied to the model. 
 
The boundary conditions applied for uniaxial tension illustrated in Figure 9.1 (b) are 

 displacement imposed in one direction to the node set (3), while no displacement along 
that direction is imposed to the opposite node set (1) 

 planar constraint (parallelism) for the node sets (2) and (4), and (5) and (6), to allow 
displacements but avoid large normal distortions 

1

2

3

4
5
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The planar constraint was preferred to periodic boundary conditions because with only 1 
element in the thickness of the model, the out-of plane displacements were unrealistically 
large. On the contrary, plain strain conditions lead to unrealistically high stress triaxiality. 
Grains are modelled with Yld2004-18p calibrated for the AA7075-T651 alloy (see Chapter 4) 
with same hardening law. The PFZs are assumed to have the same crystallographic orientation 
as the grains they belong to. Consequently, the yield function assigned to the half-thickness of 
a PFZ is the same as its neighbouring grain. However, as exhibited in Chapter 2, the PFZs 
present in the AA7075-T651 alloy are depleted of hardening precipitates and are composed of 
an aluminium matrix containing alloying elements in solid solution. This suggests that the 
behaviour of the PFZs is different from the inside of the grains. Typical yield stresses for low-
strength aluminium alloys lie between 100 300 MPa , so the yielding stress of the PFZ ( 0PFZ ) 

is also chosen lower than the yielding stress of the AA7075-T651 alloy ( 0 538.81 MPa ). 

On the contrary, lower-strength aluminium alloys usually show higher values of hardening than 
high-strength aluminium, so the saturation stress of the PFZ is also chosen higher than for the 
AA7075-T651 alloy ( 177.24 MPaQ ). Moreover, the model of grains being regular (contrary 

to the real material), the localization of the plastic strains inside the PFZs is continuous through 
the model without obstacles, in an unrealistic manner. Then, if one wants a global yielding of 
the grains, the stress level in the PFZs should reach the yield stress of the grains. This could be 
accommodated by the fact that the strains inside the PFZs are highly constrained. 
Consequently, the gradient effects, stress triaxiality and a high concentration of dislocations 
may possibly harden the PFZs. The chosen material parameters for the PFZs are given in Table 
9.1, while those of the grains are given in Table 4.1. 

Table 9.1. Flow and hardening parameters of the material model Yld2004-18p for the PFZ. 

0PFZ [MPa] PFZQ [MPa] PFZC  
100 616 1.81 

Some results

The overall Cauchy stress and the overall logarithmic strain of the models can be computed 
from the displacement imposed and the total reaction force. Figure 9.2 (a) shows the stress-
strain curves obtained from the model loaded in the 0° direction with ratio 20,133G PFZA . 

Figure 9.2 (b) gives the maximum plastic strain at the instant when experimental failure strain 
is reached ( 0 0.159f  for the 0° direction and 45 0.427f  for the 45° direction). The plastic 

strain distributions presented in Figure 9.3 are obtained at these same failure instants. These 
plots show that with the chosen material parameters, the maximum plastic strains are located 
inside the PFZs for small strains and moves towards the grains for larger strains. Also, when 
this maximum is located inside the PFZs, the maximum strain seems to converge with 
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decreasing size of the PFZs. On the contrary, when located outside of the PFZs, the maximum 
strain is not markedly influenced by the PFZ size. 
 

Figure 9.2. (a) Cauchy stress-true strain curves from microstructure simulations in the 0° 
direction with two different ratios G PFZA  (dashed line is the experimental curve) and (b) 
maximum plastic strain for different ratios G PFZA  for the 0° direction stopped at 0 0.159f  

(black) and for the 45° direction stopped at 45 0.427f  (pink) (dashed lines give the 
macroscopic plastic strain for comparison). 
 

 
(a) (b) 

Figure 9.3. Plots of deformed grains modelled with 20G PFZ G PFZA L L  loaded in (a) the 0° 
direction and stopped at 0 0.159f  and (b) the 45° direction and stopped at 45 0.427f . 

 
Taking into account the different orientations of the grains could enable to reproduce the 
incompatibility of the deformation between grains and introduce an additional source of 
heterogeneity. To that aim, crystal plasticity could be envisaged but this approach is 
computationally heavy. Another approach could be to use the yield functions Yld2004-18p 
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calibrated for the generic textures of rolled aluminium as shown by Saai et al. (2010) and to 
attribute them to a representative volume element (RVE) of grains. The PFZs being 
determinant for failure, a realistic representation of the pancake-shaped grains with sub-grains 
in a 3D model would enable obtaining different behaviour in the different directions. This is an 
affordable effort which is planned in the near future. In addition, choosing adapted failure 
criterions for the grain and for the PFZ would hopefully help to predict the correct macroscopic 
failure modes, but a larger amount of grains than presented here will be needed to be 
representative. 
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. Appendix

A. Elastic 4th order tensor and related

Isothermal conditions

At room temperature, some elastic parameters are defined for convenience of the writing 

 
3 23 2 3, ,

3 2 2 2
KK E  (A-96) 

where ,  are the Lame coefficients, K  is the bulk modulus, E  is the Young’s modulus 

and  the Poisson ratio. The Hooke tensor is defined by 42i SE E I I , where 
4 2S

ik jl il jkI  is the symmetric part of the 4th order identity tensor. This gives with 

Voigt notations 

 

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

E  (A-97) 

The inverse of this tensor is 1 41 2 6S KE I I , i.e. 

 1

2 2 0 0 0
2 2 0 0 0
2 2 0 0 01

0 0 0 3 0 03
0 0 0 0 3 0
0 0 0 0 0 3

KK
K

K

E  (A-98) 
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Two tensors of interest for the localiation analysis are 
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2

1
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e S

e

n n n n

n n

n n

A E I I
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A I

 (A-99) 

The determinant respect the following property 

 det deta b b aA A A  (A-100) 

where 1detA A A  is the transposed of the cofactor matrix of A . This leads to 

 2

2

1

2

det det

det

det

2
1 1det

det 2

e

e
e

n n

n n

n n

A I

I I

I I

A
A

 (A-101) 

Then, the term n nH , containing the 4th order tangent tensor H , can transform into 
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n n n n n n n n
H H

n n
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n n
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A E
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 (A-102) 

Adiabatic conditions

The 4th order elastic tensor under adiabatic conditions is 

 
2 2

4
9 9

2 with
th th

a i S a a
K T K T
c c

E E I I I I  (A-103) 

where i TE  is called the isothermal 4th order elastic tensor. The newly define Lame 

coefficient a  contains the influence of adiabatic conditions on the elastic behaviour. Note 
that consequently, the Young modulus aE  under adiabatic conditions is smaller than the 

isothermal iE . Also, the following terms are of interest 
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 (A-104) 

B. Thermodynamic framework

We consider hereafter constitutive behaviour describing the thermo-inelastic behaviour of 
various materials. For small strains, this behaviour is defined by the free-energy potential per 
unit mass 

 , ,i T e Ts  (A-105) 

where e  is the internal energy, s  is the specific entropy and T  the temperature.  is the total 

strain while i  denotes a collection of internal variables (scalar, vector or second order tensor) 

describing all mechanisms governing inelastic deformation. The total strain  is usually split 

into three components including the mechanical elastic strain e , the inelastic strain p  and the 

thermal strain th . A yield function , , 0if Z T  defines the range of reversibility (elastic 

process) and is defined by 

 
, , 0 reversible behaviour

, , 0 irreversibility (inelastic process)
i

i

f Z T

f Z T
 (A-106) 

During yielding and inelastic flow, the Prager’s consistency holds, i.e. 

 0 0i
i

f f ff Z T
Z T

 (A-107) 

We note that f  can, when necessary, be a function of the internal variables i  instead or 

besides the driving forces iZ . An inelastic potential , ,iF F Z T  may be introduced to 

define the evolution of the inelastic flow through normality rule as 

 i
i

F  (A-108) 

where 0, called the plastic multiplier, must satisfy the Kuhn-Tucker condition 0f . In 

the case of f F , the plastic flow is said to be associative. Note that the Prager’s consistency 
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condition given in Eq.(A-107) gives a mean to obtain this plastic multiplier. The first law of 
thermodynamic states the local balance of energy and can be expressed through the rate of 
specific internal energy of a system as 

 

grad  is the heat flux 
: div where 

 is the external heat sources

: where the laplacien operator =div(grad)

q k T
e r q

r

e r k T
 (A-109) 

where  is the mass density. The second law of thermodynamics expresses the irreversibility 

of the thermodynamic process and states that the intrinsic dissipation is never negative. This 
dissipation is not detailed here but leads to the state laws, giving the relations between the 
internal variables and their associated driving forces, the stress and the strain, and the entropy 
and the temperature, i.e. 

 , ,i
i

s
T

 (A-110) 

The relation between internal and free energy given in Eq.(A-105) can be developed to give 
another expression for the rate of specific internal energy of a system 

 

2 2 2
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th thi
i i i
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T T T T

Ts T
T

e T T c T c T
T T T

 (A-111) 

Combining the specific internal energy given in Eq.(A-109) and Eq.(A-111) leads to a new 
version of the balance equation and to the so-called heat equation giving the evolution of 
temperature as 
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C. Localization condition with infinitesimal strains solutions

The localization condition (LC) is presented in the Chapter 6.3.2. Here, we aim at finding the 
critical hardening modulus which enables the localization and the orientation of the localization 
band given by the vector n . The LC given in Eq.(69) and the expression of the hardening 

modulus h  given in Eq.(54) can be combined to obtain the solution to localization in terms of 
h  

 

1
2

1 : tr tr
2 3

H n n n n n n

h H
K

 (A-113) 

The geometrical method used to solve the LC is detailed in the following. 

Geometrical method

In the LC, the deviatoric part of the stress state s  is involved only through the variables 

 
n n

T n n
s

s s
 (A-114) 

 is the normal component of the stress vector in the direction n  and T  is its magnitude. The 

vector n  being a unit vector ( 2 2 2
1 2 3 1n n n ), for a given stress s  (defined by its three 

principal values 1 2 3, ,s s s ), the variables  and T  allow to compute the components of n  as  

 2 i j k
i

i j i k

T s s s
n

s s s s
 (A-115) 

where , , 1,2,3i j k  are distinct values. Figure A-0.1 exhibits the admissible stress domain 

S  in the ,T  space, defined by a triangle corresponding to the three conditions 0 1kn , 

1, 2,3k . This domain is just another representation (convenient for the calculations) of the 

Mohr diagram usually defined in the , S  space, where 2S T  is the tangent 

component of s . When 1, 0k i jn n n , the values of  and T  are uniquely defined and 

correspond to the vertex kP , extremity of the domain S . When 0kn , Eq.(A-115) can be 

interpreted as a straight line ijL  between the points iP  and jP , border of the domain S . To solve 

the problem of localization, the LC must be satisfied by the stress state s . This corresponds to 
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inserting the Eq.(A-115) S  into the LC given in Eq.(A-113) and brings a “stress-state-
admissible” LC solution for H  

 

2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
1 1 2 2 3 3 1 1 2 2 3 3

1

2

H n n n

n n n n n n
 (A-116) 

where k  and k  with 1,2,3k are the principal values of the tensors  and . This 

equation is a second order polynomial function in  and T  (through the expressions of kn ) 

and can be interpreted as a hyperbola curve C  in the ,T  plane. 

Figure A-0.1. Schematic geometrical interpretation of the localization condition in the ,T  
plane. 

 
The resolution of the problem simplifies when the three principal deviatoric stresses are not 
distinct so three cases will be solved separately. The following presents the case with three 
distinct principal deviatoric stresses, the case with only two distinct principal deviatoric 
stresses and finally, the case with all principal stresses equal. 

T

(0,0)

L 13

L 12L 23

P 1

P 2

P 3

C

s3 s2 s1
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 The three principal values of s  are first considered distinct so that 0jk i j i kS s s s s  

and kn  is defined for every 1,2,3k . The solution for H  given in Eq.(A-116) comes from 

two configurations: 
 kH : C  reaches S  at one of its three vertices kP  

 ijH : C  is tangent to S  (i.e. to one of the sides ijL ) and reaches S  

The first case ( kH ) is solved directly using 1, 0k i jn n n . The three points kP  are defined 

in the ,T  plane by 

 
2

0
:

1
ki j

k
k k

sn n

n T s
P  (A-117) 

After several manipulations, the three corresponding values for kH  are found as 

 
2

k k
kH  (A-118) 

For the second case ( ijH ), the following methodology must be followed (details i Appendix C) 

Step 1- Obtain explicitly the localization condition LC. 
Step 2- Write the tangency condition between S  and C . 
Step 3- Write the belonging to S  through a contact condition CC and obtain. 
Step 4- Insure contact and tangency to define a unique solution . 
Step 5- Insert the last solution  into LC to obtain the solution ijH . 

Step 6- Insure that the solution  belongs to S  (i.e. lies between iP  and jP  ) 

Step 1 of the methodology gives 
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Step 1 finally gives a polynomial of second order 
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 (A-120) 

Step 2, corresponding to the tangency between C  and the line ijL , gives 
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 (A-121) 

Step 3 gives the contact between the curve C  and the line ijL  through 0kn  

 k i jT s s s  (A-122) 

Step 4 gives 
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 (A-123) 

Step 4 finally gives the solution for  

 
22 i j i j i j i i j j

i j j i i j i j j i i j

s s

s s s s
 (A-124) 
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Step 5 leads to an explicit expression of LC 
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 (A-125) 

Combining Eq.(A-123) and Eq.(A-125) gives 
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 (A-126) 

Step 6 imposes that the variable  lies between is  and js , j is s , which after several 

manipulations gives 

 1 21 1 with
2

k i j i j k
ij ij

i j i j

B B  (A-127) 

Admissible domains imposed by step 6 are given for the case studies in Appendix F. Then, the 
normal to the localization band associated to the solutions kH  and ijH  are given by 
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2 2 2
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i i j j j j
ij
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n
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 (A-128) 

 The case 0jkS  corresponds to a stress state with only two distinct principal values 

 1 2 323

1 2 312

(GC)0
(GT)0

s s sS
s s sS

 (A-129) 

These situations can be graphically interpreted as the triangle of Figure A-0.1 reducing to two 
superimposed lines. The three points kP  reduce to the two distinct points 1P  and 3P  (with 2 1P P  
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for GC and 2 3P P  for GT). Then, the first set of three solutions kH  reduces to two solutions 

1H  and 3H  still defined by Eq.(A-118) (with 2 1H H  for GC and 2 3H H  for GT). Also, the 

three lines ijL  reduce to 13L  only ( 23 13L L  for GC and 12 13L L  for GT). This solution is still 

defined by Eq.(A-126). Finally, three solutions for hardening modulus h  ( 1h , 3h  and 13h ) can 

be associated to the three solutions for H  ( 1H , 3H  and 13H ). 

 The case 0jk ikS S  corresponds to 1 2 3 0s s s  and therefore to hydrostatic state of 

stresses and can be easily handled on its own. 

D. Localization condition with finite strains – formulation and solutions

Formulation

The function det Jn nH A  must be expressed. The term Jn nH A  can be transformed 

with the methodology used in Appendix A 
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 (A-130) 

Then, the determinant is 

 det det detJ e J Jn nH A A A B  (A-131) 

Since JA  is small compared to 
1eA , one can assume that det 0e JA A . Therefore, as 

presented in Chapter 6.3.2, the second determinant of the right hand side of this last equation is 
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 (A-132) 

with 

 
1 11 1 1 1e J e e J e J eA A A I A A I A A A  (A-133) 
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Since 
1e JA A  is small compared to I , one can use the approximation given by Rice 

(1976):
1 ...I M I M M M  when M  is small. A first order approximation gives 

 
1 1 1 1e J e e J eA A A A A A  (A-134) 

The explicit expression of the second right-hand term is 
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The 4th order tensor given in Eq.(A-133) becomes 
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 (A-136) 

The LC becomes then 
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1 1 1
2 2
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2 2
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 (A-137) 

Analogically to Eq.(A-113), the LC becomes 

 
2

21
2 2

2

JH H n n n n n n n n n n

n n n n n n n n n n
 (A-138) 

where H  is the critical value found in Eq.(A-113). Note that with the large deformations 
formulation, the value of the critical modulus is a function of the stress state . The 
methodology to solve the LC previously and detailed in Appendix C is again followed but the 
situation is now more complex and we assume that the stress is coaxial with the constitutive 

tensors n  and n . 
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Geometrical method

The LC can be expressed in the ,T  space with the vector n  still defined by Eq.(A-115). 

The LC given in Eq.(A-116), now of third order since 
32

in  is involved, becomes 

 3 2 2 3 2 2 0
3 2 2 3 2 2J J J J J J J J J J J

T TT T T T T
H h h T h T h T h h T h T h h T h

 (A-139) 

 With three distinct principal deviatoric stresses, the two sets of three solutions coming from 
contact with kP  and tangency with ijL  must be considered again. The first set of three solutions 

kH  ( 1kn ) reads now 
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For the second set of solutions ijH  coming from the tangency with ijL , some useful expressions 

are given here 
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Step 1 finally gives a polynomial of third order 
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Steps 2 and 3 give the same tangency condition and contact condition as given in Appendix C. 
However, the derivatives of LC involved in TC are changed owing to the Jaumann 
formulation. 
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Step 4 is solution of a second order polynomial 
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Step 5 becomes 
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The expression of J
ijH  as a function of k  and k  is not given for sake of simplicity, and was 

only computed numerically. 

E. Localization condition with adiabatic conditions formulation

As a recall from Chapter 6.3.1, the rate constitutive behaviour under adiabatic conditions is 
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Formulation

The localization condition det 0an nH  can be transformed into 

 1, 1
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 (A-147) 

The multiplicative property of the determinant transforms the localization condition (LC) into 

 det det 0ae aA B  (A-148) 

It is shown in Appendix A that det aeA  is strictly positive since the temperature T  (and 

consequently a ) is positive. Therefore, as presented in Chapter 6.3.2, the second determinant 
of the left hand side of this last equation is 
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Analogically to Eq.(A-113), the LC becomes 
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F. Particular yield functions

Hershey yield function

The chosen Hershey yield function f  can be expressed in the following way 
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with cosL Lc  and sinL Ls . Its derivative is then 
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In particular, 
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with 3 cos 3L Lc  and 3 sin 3L Ls . The normalized deviatoric stress tensor eqN s  is 

defined 
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where 2
3 LN s  is a picture of the Lode parameter in a similar way as in Benallal and Comi 

(1993), i.e. 
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Using 2 2
2 9eqN S N N I  and gathering the four terms given in Eq.(A-153), the derivative 

of f  is 
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with 3 tan 3L Lt . The second order tensors N , 2N  (and consequently s , S  and the 

derivative of f ) are defined by the variable N , which is a picture of the Lode angle L . The 

term  becomes then 
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The tensor  is deviatoric, pressure-independent and independent of the equivalent stress eq . 

For the CASE 1, described in Chapter 6.3.2 (associative plastic flow), the localization 
condition LC is, as the tensor , a function of the Lode angle L  only (i.e. L  and N ). By 

combining the two sets of solutions (Eq.(A-118) and Eq.(A-126)) with the Eq.(A-113), the six 
hardening moduli kh  and ijh  are found for an associated model with pressure independent yield 

function 
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Hershey yield function with pressure dependency

The previous yield function is now enriched by a pressure-dependence term 0f  so 
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The derivative of this yield function becomes 
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Then the term  becomes 
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where 0  is directly related to the pressure-dependence term 0f . 

Contrary to the CASE 1, the CASE 3 applies the non-associative plastic flow so f F , 

 and the expression of  and  are now stated 
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With a Hershey-shaped pressure-independent plastic flow (non-associative), the solutions for 
hardening modulus h  become 
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A value of 0f  can be computed for the AA7075-T651 
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where TCd , the percentage of difference between YC  and YT , is taken equal to 1% for a 

realistic (though imaginary) case. 
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Admissibility domains of ijH for Hersey yield function

For the associated case (CASE 1), the admissibility of the solutions ijh  given in Appendix C 

simplifies, and intervals of admissibility are given by 
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For non-associated case with a pressure-dependant flow stress for instance (CASE 3), the 
admissibility of the solutions ijh  becomes 
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The three functions ijB  are given in Figure A-0.2 for a Lode parameter 1;1L , with the 

Hershey yield function with 2;16m  and for associated plastic flow (CASE 1: 0 0 ) and 

non-associated plastic flow (CASE 3: 0 0 ) 
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Figure A-0.2. Graphs for 12B (red), 23B (green) and 31B  (yellow) as functions of the Lode 
parameter and admissible domains. 
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