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Abstract

Reinforced concrete structures constitute an important fraction of the building
infrastructure. This infrastructure is aging and a large number of structures will
exceed the prescribed service period in the next decades. The aging of concrete
structures is often accompanied by correspondent deterioration mechanisms.
One of the major deterioration mechanisms is the corrosion of the reinforcing
steel, caused by chloride ions or carbon dioxide exposure.

The decisions, made in connection to possible repair or renewals of these struc-
tures, have major implications on safety and cost efficiency in a societal dimen-
sion. Public authorities, entitled to administrate the infrastructure, are in need
of schemes and methodologies that facilitate the optimal management of the al-
ready existing stock of structures, especially in regard to repair and maintenance
planning.

In this thesis a generic framework for a stochastic modeling of reinforced concrete
deterioration caused by corrosion is presented. This framework couples existing
probabilistic models for chloride and carbonation initiation with models for the
propagation and the effects of corrosion. For this purpose, a combination of
structural reliability analysis and Bayesian networks is used for the reliability
assessment of the reinforced concrete structure. This approach allows to compute
probabilities of rare events for complex structures in an efficient way to update
the model with new information from measurements, monitoring and inspection
results.

This framework enables, for the first time, a holistic view of the current service
life models, with corresponding sensitivity studies and finding optimal decisions
for treating deteriorated reinforced concrete structures. The temporal evolvement
of structures can also be represented and analyzed within this framework.

Keywords: Bayesian networks, corrosion, degradation, probabilistic modeling,
probability, reinforced concrete, structural reliability analysis;
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Zusammenfassung

Konstruktionen aus Stahlbeton bilden einen wichtigen Bestandteil im Bauwesen.
Vieler dieser Ingenieurbauwerke wurden in den letzten Jahrzehnten errichtet
und erreichen nun das Ende ihres geplanten Lebenszyklusses. Dieser Prozess der
Alterung geht oft mit einer Verschlechterung der Eigenschaften des Stahlbetons
einher. In vielen Fällen ist die Korrosion von Bewerungsstählen ein Grund dafür.
Dieser Schädigungsprozess tritt vor allem dann auf, wenn die Konstruktion
Chloriden oder Kohlendioxiden ausgesetzt ist.

Die Entscheidungen, über Reparatur oder Erneuerung dieser Bauwerke haben
großen Einfluss auf die Sicherheit und Kosten. Einrichtungen die mit diesen
Aufgaben betraut sind, benötigen ein Werkzeug, welches es auf einfache Art
und Weise ermöglicht, zukünftige aber auch bereits bestehende Bauwerke dies-
bezüglich zu beurteilen.

Diese Arbeit präsentiert einen Rahmen für eine stochastische Modellierung des
Schädigungsprozesses von Stahlbeton verursacht durch Korrosion der Stahlbe-
wehrung. Wobei hier bereits bestehende probabilistische Modelle für die durch
Chloride oder Kohlendioxid initiierte Korrosion mit Modellen für die Ausbre-
itung und die Effekte dieser, verknüpft werden. Zu diesem Zweck wird eine
Kombination aus struktureller Zuverlässigkeit und Bayesian Netzwerken für eine
Zuverlässigkeitsanalyse des Stahlbetonbauwerkes verwendet.

Dieser Ansatz erlaubt es, einerseits die Versagenswahrscheinlichkeit von kom-
plexen Bauteilen effektiv zu ermitteln und andererseits können neue Informatio-
nen, die durch Messungen, Monitoring und Inspektionen ermittelt werden, in
das Modell mit aufgenommen werden.

Ebenso ermöglicht dieses Modell zum ersten Mal eine ganzheitliche Betrachtung
des Lebenszyklusses im Kontext der strukturellen Zuverlässigkeit, basierend auf
den existierenden Modellen und erlaubt es, neben einer detaillierten Betrachtung
der Parametersensitivität, optimale Entscheidungen für die Handhabung von
Korrosion beschädigter Stahlbetonbauteile zu finden.

Schlüsselwörter: Bayesian Netzwerk, Korrosion, probabilistische Modellierung,
Schädigungsprozess, Stahlbeton, strukturellen Zuverlässigkeit;
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1 Introduction

“
,.
εν o ˜̀ιδα

,.
oτι oùδὲν o ˜̀ιδα hèn oι̂da

hóti oudèn oι̂da” (Socrates)a

aI know that I know nothing.

1.1 Context

1.1.1 Reinforced Concrete Structures

Reinforced concrete (RC) is a versatile and widely used building construction
material. In many countries RC is a dominant structural material in engineered
structures. The universal nature of RC structures is based on the wide availability
of the constitutes of concrete and reinforcing bars on the simple skills, required
on concrete construction, and on the economy of reinforced concrete, compared
with other forms of construction. Hence, plain concrete and RC are widely used
in all kinds of engineered structures. For example, in buildings of all sorts,
underground structures, water tanks, wind turbine foundations and towers,
offshore structures, dams, bridges and even ships. (Wight and MacGregor, 2012,
p.1)

In terms of structural design, RC represents a composite material, because
concrete has a high compressive strength, but a low tensile strength. Therefore,
reinforcing bars are embedded in the concrete such that the tension stress can
developed in the bars. For the RC composite material, concrete cracking is
required in order to fully engage the tensile capacity of the reinforcement and
to ensure a safe structural response of the RC structure to external influences.
(Pease, 2010, p.3)

Concrete itself is also a composite material composed of aggregates, generally
sand and gravel, chemically bound together by hydrated cement. The reinforce-
ment is typically provided by high strength steel reinforcing bars. (Wight and
MacGregor, 2012, p.43)
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1.1.2 Degradation of Concrete Structures

Under certain circumstances deterioration of a RC structure leads to a a loss of
structural functionality. One of the major deterioration mechanisms is corrosion
of the reinforcing steel. The process of corrosion caused effects such, as cracking,
spalling, or delamination of the concrete and also leads a reduction in the
reinforcement cross-section and a loss of bond strength. (Bertolini et al., 2004,
p.75). These changes are accompanied by a decrease of structural reliability, and
lead to an increase of the probability of a failure event.

To avoid such an event, maintenance and repair work are performed on exist-
ing structures, providing a certain level of structural integrity. Unfortunately,
the available economical budget is limited; nevertheless, the rate of structural
deterioration appears to be increasing. (Stewart and Rosowsky, 1998a)

For instance, BRIME (2001) estimates that for France 39 %, Germany 37 %, Nor-
way 26 % and United Kingdom 30 % of the concrete highway bridges are affected
by deterioration and thus considered to be substandard. The annual amount of
money spent for maintenance in Europe is located in a three-digit billion Euro
range.

Also the U.S. Department of Transportation declares more than 30 % of the
American highway bridges as deficient. (FHWA, 2012) To eliminate all bridge
deficiencies an amount of $ 9.4 billion annually has to be spent over a period of
20 years. (W. Liu et al., 2011)

Hence, the aim of the responsible decision makers is to maintain and manage the
portfolio of RC structures efficiently and within the economical budges available.
The decision maker has the authority over the resources being allocated, but
is also responsible for the consequences of the decision to third parties. (JCSS,
2008) However, finding the optimal decision to deal with deterioration of RC
structures is not a trivial process; especially, when the problem is related to
complex physical and chemical phenomena, which are hardly predictable and
accompanied by high financial costs.

Therefore, a huge amount of research has been done over the last decades and
is still going on. At the one hand side, physical models have been developed to
understand the process of corrosion and to provide a tool to estimate a period
of time ( service life ) during which a RC structure maintains a desired level of
safety. On the other side, the development of new and enhanced methods for
rational and efficient risk assessment and decision making has been driven.
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1.1.3 Service Life Models

The period time a desired level of functionality is achieved, called service life.
The end of the service life is defined by a limit state which is determined by the
decision maker. Frequently used limit states are for example, the initiation of
corrosion, appearance of visual corrosion, damages caused by corrosion, such as
cracking or spalling, and the failure of the RC structure.

Beside frequently used standards and codes like ACI (2011), CSA (2004) or
Eurocode 2 (2004), which are often based on simplified assumptions and do not
take the process of corrosion into account, service life models , such as DuraCrete
(2000b), LIFECON (2003), fib Bulletin 34 (2006), etc. exist, which consider those
phenomena.

The basic approach of such a service live model is based on Tuutti (1982), where
the service life is subdivided to two phases, initiation and propagation.

During the initiation phase the RC structure is exposed to environmental and
mechanical effects. Especially, chloride ions and carbon dioxide can lead to steel
corrosion, when they penetrate into the concrete and reach a critical depth
considering the embedded reinforcement. If the onset of corrosion has started,
the initial phase ends and the propagation phase starts.

During the propagation phase the process of corrosion proceeds, which leads
to a reduction in the reinforcement cross-section and realization of corrosion
products (“rust”). The reduction of the cross-section affects the capacity of the
RC structure, which may lead to structural failure. The expanded volume of
corrosion products may cause cracking and spalling of the covering concrete.
(Pease, 2010, p.7)

While the models for the initiation phase are well documented, there is a lack
of information for the propagation phase. Additionally, models for both phases
are developed separately, such that connections from the initiation phase to the
propagation phase can not be made in terms of a unified model. But in scope
of a holistic view of the service life and the findings of optimal decisions for
treating deteriorated RC structures this is unsatisfactory.

1.1.4 Risk Assessment in Engineering

In order to find an optimal decision, many parameters have to be taken into
account. Not only physical models of reinforcement corrosion or the costs of
maintenance and repair work have to be considered but also organizational

3



1 Introduction

structures, laws and regulations, expectations of the society, etc. may influence
the decision making process. To fulfill all these conditions, a systematic procedure,
as proposed in JCSS (2008), should be chosen.

A suitable manner to handle such a complex problem is to analyze the states of
the real world and describe the problem in terms of an idealized system. This
includes a justification of the parts that are not considered in the analysis. Hence,
the system representation will have consequences for the level of detail in the
risk analysis. (Faber, 2009, p.1.13)

The risk assessment of a given system is facilitated by a generic representation,
where the exposure events, the induced damages, failures and consequences are
represented.

Exposure
events

Constituent
direct
consequences

Indirect
consequences

Figure 1.1: A generic representation of the system. With exposure events, constituent failure events
and direct consequences onto follow-up or indirect consequences. Based on JCSS (2008).

The exposure of the system is represented as different exposure events acting
on the constituents of the system. The damage of the system, caused by failure
of the constituents is considered, to be associated with direct consequences. These
consequences do not consider a loss of system functionality. However, based on
the combination of events of constituent failures and the corresponding direct
consequences, indirect consequences may occur. Indirect consequences describe
any consequences associated with the loss of functionality of the system related
to the direct consequences. Besides direct consequences, indirect consequences
are very important for a risk assessments. (JCSS, 2008)

Any constituent in a system can be modeled as a system itself. For example, such
a system could be a road network. The constituents here can be the roadways,
tunnels, bridges, etc. The bridges themselves can also be considered as a system,
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where the constituents are the bridge deck, beams, arcs or columns. Furthermore,
the system beam may include the subsystem reinforcement and concrete, as
shown in Figure 1.2.

In a practical application the definition of exposures, constituents, direct and
indirect consequences are generally given by the decision problem itself. In case
of the optimal allocation of reliability concerning concrete bridges in a road
network in, regarding the event of reinforcement corrosion, the exposures would
be chloride ions and carbon dioxide and the constituents would be a single
reinforcing steel with a direct consequence of corrosion onset followed by a
reduction in the bar cross-section. This may lead to a failure of the reinforcement
bar, regarding any operational or environmental load, followed by the indirect
consequences of damage or failure of structural elements, and so on.
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System 1:
“Highway network”

- Traffic
- Axle load
- HGV traffic
- ...

indirect direct
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s

Vulnerability

Network
failure

Road
closure

System 2:
“Bridge”

- Windload
- Axle load
- Vehicle impact
- ...

indirect direct

R
ob
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s

Vulnerability

Bridge
failure

Failure of
segment

System 3:
“Beam”

- Load
- Vibration
- Settlement
- ...

indirect direct

R
ob
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tn

es
s

Vulnerability

Failure of
the beam

Failure of
the rebar

System 4:
“Reinforcement”

- Chloride
- Carbonation
- Stray current
- ...

indirect direct

R
ob

us
tn

es
s

Vulnerability

Loss of
diameter

Corrosion
onset

Figure 1.2: A generic system characterization of a road network and an infrastructure at different
scales in terms of exposure, direct and indirect consequences. The vulnerability is related
to the risk associated with the direct consequences. Additionally the lack of robustness is
related to the degree of the total risk that is increased beyond the direct consequences.
Based on JCSS (2008)
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Even if only one bridge was damaged, there would be an indirect consequence in
form of network functionalities as well as consequences due to possible budget
overruns, caused by loss of individual bridges or other surrounding assets.

The constituents for the discussed road network and bridge may include, beside
structural elements, passive and active protection and monitoring system as well,
which serves to provide the structure with a sufficient safety. (JCSS, 2008)

As shown in Figure 1.2, a system change that leads to direct consequences, is
denoted by vulnerability. They are related to risk over time in terms of expected
potential future losses, considering all possible events they may lead to such.
System changes that lead to indirect consequences are denoted by robustness
and can be understood as a structure that will not loose functionality at a rate
or extent disproportional to the cause of the change in the state variables. JCSS
(2008)

Both, vulnerability and robustness, can be expressed in mathematical term.
Therefore, a generic and indicator based risk assessment framework is used. This
framework facilitates a Bayesian approach to risk assessment and full utilization
of risk indicators.

Using such a framework, the risk associated with one particular event can be
expressed as the probability that the event occurs and the consequences are
associated with the event. Furthermore, the initial decision problem can be
mathematical treated with the so-called decision theory, which is related to the
probability theory.

1.2 Scope and Objectives

1.2.1 Objectives

This thesis is meant to develop a generic framework for stochastic modeling of
reinforced concrete deterioration caused by corrosion. Thereby, the combination
of structural reliability analysis and Bayesian networks provides a powerful tool
for a computationally efficient and robust method, computing probabilities of
rare events in complex structures, and also allows Bayesian updating of the
model with measurements, monitoring and inspection results.

Although the largest part of this project was to program such a framework, the
major part of this thesis deals with the theoretical principals and considerations
about the implementation.
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1.2.2 Research Approach

To achieve this aim, the following issues are identified and treated in this thesis:

1. Identification of the main phenomena for degradation of concrete and a
discussion of existing probabilistic modeling approaches for those. Selecting
the most appropriate models for implementation in a Bayesian network.

2. Implementation of the probabilistic models into a framework of structural
reliability analysis and Bayesian networks.

3. Restructuring the Bayesian networks to provide a coupled model, treating
both the initiation and the propagation phase.

4. Optimizing the coupled model to expand it over time.
5. Analysis of the developed framework in terms of sensitivity, initial condi-

tion and evolving over time.

1.2.3 Limitation and Assumptions

This thesis covers several different topics: Bayesian networks, decision theory,
design of concrete structures, material science, probability theory, structural
reliability analysis, etc.

For all these topics a large amount of research has been done. Countless research
papers and books have been published; nevertheless, still more research needs to
be done.

Even if more accurate and precise (probabilistic) models for the process of
concrete degradation caused by corrosion are available, this thesis is restricted
on the DuraCrete (2000b) model. Hence, the representation of exposure events is
limited, to the level of detail of this model. However, the proposed framework
itself, can be used for any probabilistic model.

The phenomenon of corrosion is associated with spatial and temporal variability.
In this thesis only the temporal effects are treated. Spatial variability of deteri-
oration can also be embedded in the probabilistic framework but is not done
yet.

Dealing with continuous random variables, in context of Bayesian networks,
leads often to the discretization of these variables. Furthermore, the size of
Bayesian networks strongly depends on the size of the used variables. Hence, a
fine discretization leads to a huge Bayesian networks. Unfortunately, the power
of computers are limited, such that the amount of intervals for discretization is
limited. This issue is treated in chapter 4.
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1.3 Outline of the Thesis

This thesis is organized in seven chapters, after an introduction about the context
of this work, the remaining chapters can be summarized as follows:

• Chapter 2 provides a brief introduction into the fields of probability theory,
structural reliability analysis and Bayesian networks. The issues discussed
in that chapter are theoretical in nature and should review, summarize and
enrich existing knowledge.
• Chapter 3 deals with degradation of concrete structures. Especially, con-

crete deterioration caused by corrosion is discussed in detail. Therefore,
probabilistic models for the initiation and propagation phases of corrosion
are introduced and quantified.
• Chapter 4 describes the modeling approaches and the implementation

of the probabilistic models into a Bayesian network framework. Beyond
that, several issues related with Bayesian networks, structural reliability
analysis, continuous random variables, time dependency, and simplification
approaches are discussed in this chapter.
• Chapter 5 focuses on the analysis of the single, coupled and dynamic

coupled models proposed in chapter 4. Beside a sensitivity analysis over
the major parameter from the probabilistic models, an analysis for the
initial model and the behavior in service is performed. This includes also
Bayesian updating of the models when new information becomes available.
• Chapter 6 discusses some specific results in detail. While chapter 5 ana-

lyzes more general properties of the models, chapter 6 is focuses on some
particular case studies.
• Chapter 7 summarizes and concludes the main work and provides recom-

mendation for future investigations.
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2 Theoretical Background

“Do not worry about our difficulties in math-
ematics, I assure you that mine are greater.”
(Albert Einstein)

To provide a consistent nomenclature in the thesis, this chapter is a review of
some standard results and definitions from probability theory, Bayes network
theory and reliability analysis. All of this material is intended to focus only on
the minimal subset of ideas, required to understand most of the discussion in
the remainder of the master’s thesis, rather than to provide a comprehensive
overview.

2.1 Fundamentals of Probability Theory

2.1.1 Definition of Probability

The word “probability” is used in everyday life to refer to a degree of confidence
that an event of an uncertain nature will occur. Probability theory deals with the
formal foundation of discussing, for example estimates and rules. (Koller and
Friedman, 2009, p.15)

There are at least two different ways to define the probability of an event.

One is called the frequentistic interpretation. In this view, probabilities represent
long run frequencies of events. (Murphy, 2012, p.27) Here P(E), the probability
of the Event E is defined as

P(E) = lim
n→∞

n(E)
n

(2.1)

where n(E) is the number of times in the first n repetitions of the experiment
that the event E occurs. It is thus the limiting frequency of E. (Ross, 2009, p.26)

The other interpretation is called the Bayesian interpretation of probability. In
this view, probability is used to quantify the uncertainty about something; hence
it is fundamentally related to information rather than repeated trails. (Jaynes,
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2003) In this interpretation the probability P(E) of the Event E is formulated as
degree of belief that E will occur.

P(E) = degree of belief that E will occur (2.2)

The degree of belief is a reflection of the state of mind of the individual person
in terms of experience, expertise and preferences. In this respect the Bayesian
interpretation of probability is subjective or more precisely person-dependent.
(Faber, 2007, p.B-3) This demonstrates the possibility that it can be used to model
uncertainty about events that do not have long term frequencies. (Murphy, 2012,
p.27)

2.1.2 Sample Space and Events

For both views on probability, which were described above, a set of all possible
outcomes of an experiment comprises a sample space of the experiment and is
denoted by S. Here the term “experiment” refers to any type of process with
uncertain outcome. For example, the throw of a dice or the failure of a bridge.

Any subset E of the sample space is known as event. There are two special types
of events. The certain event is defined by the entire sample space. The implication
of this definition is that a certain event will definitely occur. An impossible event is
defined as an outcome that cannot occur. Therefore, the subset is empty, denoted
by ∅. (Nowak and Collins, 2000, p.7)

Any two events E1 and E2 of a sample space S, define a new event E1 ∪ E2 for
instance, that all outcomes are either in E1, in E2 or in both. The event E1 ∪ E2 is
called union of the events E1 and E2.

Similar, the event E1 ∩ E2 is called intersection and comprises all outcomes which
are in E1 and in E2. A special case occurs when E1 ∩ E2 = ∅. Here the events are
disjoint, which is called mutually exclusive.

2.1.3 Axioms of Probability

To measure the degree of uncertainty of an experiment, a probability P(E) is
assigned to each event E ⊆ S. This probability must obey the following three
axioms (Jensen and Nielsen, 2007, p.2):
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Axiom 1 Any event E must have a non-negative probability between 0 and 1.

0 ≤ P(E) ≤ 1 (2.3)

Axiom 2 The probability of occurrence of an event corresponding to the entire sample
space is equal to 1.

P(S) = 1 (2.4)

Axiom 3 For any sequence of mutually exclusive events E1, E2, . . . , the probability of
the combined event is the sum of the probabilities for the individual events.

P

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

P(Ei) (2.5)

2.1.4 Conditional Probabilities

Whenever a statement about a probability P(E) of an event E is given, it is also
implicitly given conditioned on other known factors. In this way any statement
on probabilities is a statement conditioned on what else is known. These types
of probabilities are called conditional probabilities (Jensen and Nielsen, 2007, p.4)
and are generally denoted by

P(E1|E2) = p (2.6)

Which means that the obtained probability p is the conditional probability that
E1 occurs, given that E2 has occurred.

Definition 2.1 (Conditional Probability) For two events E1 and E2, with P(E2) >
0, the conditional probability for E1 given E2 is:

P(E1|E2) =
P(E1 ∩ E2)

P(E2)
(2.7)

After multiplying both sides of the Equation (2.7) by P(E2), it follows the product
rule.

Theorem 2.1 (Product Rule)

P(E1 ∩ E2) = P(E2)P(E1|E2) (2.8)
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A generalization of Equation (2.8), which provides an expression for the proba-
bility of the intersection of an arbitrary number of events is sometimes referred
to as the chain rule. (Ross, 2009, p.62)

Theorem 2.2 (Chain Rule)

P(E1 ∩ · · · ∩ Ek) = P(E1)P(E2|E1) · · · P(Ek|E1 ∩ · · · ∩ Ek−1) (2.9)

2.1.5 Bayes’ Rule

From P(E1 ∩ E2) = P(E2 ∩ E1) follows that P(E2)P(E1|E2) = P(E1 ∩ E2) =
P(E1)P(E2|E1) is according to the product rule. This yields the Bayes’ rule.

Theorem 2.3 (Bayes’ Rule)

P(E2|E1) =
P(E2|E1)P(E1)

P(E2)
(2.10)

This rule allows updating the beliefs about an event E1 given, that an information
about another event E2 can be obtained. For this reason, P(E1) is called the prior
probability of E1, whereas P(E1|E2) is called the posterior probability of E1

given E2. The probability P(E1|E2) is called the likelihood of E1 given E2. (Jensen
and Nielsen, 2007, p.5)

2.1.6 Independence and Conditional Independence

Sometimes information about one event E2 does not change the belief about the
occurrence of another event E1, in this case E1 and E2 are independent.

Definition 2.2 (Independent) An event E1 is independent of event E2 in P, denoted
P � (E1 ⊥ E2), if

P(E1|E2) = P(E1) (2.11)

The concept of independence also appears when there is conditioning on sev-
eral events. Specifically, if information about the event E2 does not change the
belief about the event E1 when event E3 is already known. Than E1 and E2 are
conditional independent given E3.(Jensen and Nielsen, 2007, p.6)
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Definition 2.3 (Conditional Independent) An event E1 is conditional independent
of event E2 given E3 in P, denoted P � (E1 ⊥ E2|E3), if

P(E1|E2 ∩ E3) = P(E1|E3) (2.12)

Furthermore, when two events are conditional independent, the probability that
both events occur can be calculated with the product rule.

P(E1 ∩ E2|E3) = P(E1|E3)P(E2|E3) (2.13)

2.1.7 Random Variables

A random variable is defined as a function that maps events onto intervals on
the axis of real numbers. Usually uppercase letters like X, Y, Z, . . . are used to
denote random variables. Lowercase letters like x, y, z, . . . denote real numbers,
which refer to a numerical value of a random variable.

Definition 2.4 (Random Variable) A random variable is a real-valued function on
the sample space S

X : S→ R (2.14)

Random variables can take different sets of values. A random variable is called
discrete if its range 1 is finite or at most countably infinite. It is called continuous
if the random variable can take infinitely many values. (Bertsekas and Tsitsiklis,

2008, p.73)

The most important way to characterize a random variable is through the proba-
bilities of the values that it can take. (Bertsekas and Tsitsiklis, 2008, p.74) In this
context a probability function can be defined.

2.1.8 Basic Probability Function

A discrete random variable X, is captured by the probability mass function (pmf)
of X, denoted pX . In particular, pX(x) is the probability that a discrete random
variable X is equal to a specific value x where x is a real number.

pX(x) = P(X = x) (2.15)

1the set of values that it can take
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The probability law for a continuous random variable X can be described in
terms of a non-negative function fX , called the probability density function (pdf)
of X, which satisfies

P(X ∈ B) =
∫

B
fX(x)dx (2.16)

for any set B of real numbers. (Ross, 2009, p.186)

The cumulative distribution function (cdf) is defined for both discrete and contin-
uous random variables. The cdf of a random variable X is denoted by FX and
provides the probability P(X ≤ x). In particular, for every x follows, (Bertsekas
and Tsitsiklis, 2008, p.148)

FX(x) = P(X ≤ x) =


∑
k≤x

pX(k) X : discrete

∫ x

−∞
fX(t)dt X : continuous

(2.17)

To illustrate the relationship between pdf (pmf) and cdf, a continuous random
variable X should be considered. The pdf and cdf functions might look like those
shown in Figure 2.1. Equation (2.17) represents the shaded area under the pdf
for the case x = xi.

xi

fX(x)

x

FX(xi)

fX(x)

(a)

xi

FX(x)

x

FX(xi)

1

FX(x)

(b)

Figure 2.1: Example of (a) probability density function and (b) cumulative distribution function.

2.1.9 Parameters of a Random Variable

Although the value of a random variable X is uncertain, there are certain pa-
rameters which help to mathematically describe the properties of the variable.
(Nowak and Collins, 2000, p.13)
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One of the most important concepts in probability theory is the one of the
expectation of a random variable. For a discrete random variable with the
probability mass function pX , the expectation (also called the expected value, mean,
or the first moment ) of X, denoted by E[X] is given by

µX = E[X] = ∑
x

xpX(x) (2.18)

For a continuous random variable with the probability density function fX , the
expected value of X is given by

µX = E[X] =
∫ ∞

−∞
x fX(x)dx (2.19)

There are many other quantities that can be associated with a random variable
and its probability function. For example, the 2nd moment of the random variable
X is defined as the expected value of the random variable X2. More generally, the
nth moment is defined as E[Xn] and the expected value of the random variable
Xn.

An other important quantity beside the mean is the variance, which is denoted
by Var(X) and defined as

Var(X) = E
[
(X−E[X])2

]
(2.20)

Thus, the variance is the expectation of the squared difference between X and its
expected value. It indicates the spread of values of X around the expected value.
(Koller and Friedman, 2009, p.33)

An alternative formulation of the variance is

Var(X) = E[X2]− (E[X])2 (2.21)

The variance of a discrete random variable is given by

σ2
X = Var[X] = ∑

x
(x− µ)2 pX(x) (2.22)

And for a continuous random variable the variance is

σ2
X = Var[X] =

∫ ∞

−∞
(x− µ)2 fX(x)dx (2.23)
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Another technique of measuring the dispersion is σX , the standard deviation of
X, which is defined as the square root of the variance

σX =
√

Var(X) (2.24)

The ratio between the standard derivation σX and the mean µX of a random
variable X is called the coefficient of variation denoted by CoV[X]

CoV[X] =
σX
µX

(2.25)

The coefficient of variation provides a useful description of the variability of a
random variable around its mean value. (Faber, 2007, p.D-7) This parameter is
always taken to be positive by convention even if the mean may be negative.
(Nowak and Collins, 2000, p.14)

2.1.10 Joint Probability Distributions

Often probability statements involve two or more random variables. All of which
are associated with the same experiment, sample space, probability law and their
values may relate to each other in some way. (Bertsekas and Tsitsiklis, 2008, p.92)
In order to deal with such probabilities, a joint probability mass function (or joint
probability density function ) and a joint cumulative probability distribution function
can be defined for any two (or more) random variables X and Y.

If X and Y are both discrete random variables, the joint pmf of X and Y is given
by

pX,Y(x, y) = P(X = x, Y = y) (2.26)

The joint pmf determines the probability of any event that can be specified in
terms of the random variables X and Y. In fact pX , the pmf of X can be obtained
from pX,Y(x, y) by (Bertsekas and Tsitsiklis, 2008, p.92)

pX(x) = P(X = x) = ∑
y

P(X = x, Y = y) = ∑
y

pX,Y(x, y) (2.27)

The formula for pY, the pmf of Y, can be verified in a similar way. The mass
functions pX and pY are sometimes referred to as the marginal mass functions of
X and Y.
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If X and Y are both continuous random variables, the joint pdf of X and Y is a
non-negative function fX,Y that satisfies

P((X, Y) ∈ B) =
∫∫

(x,y)∈B

fX,Y(x, y)dxdy (2.28)

for every subset B in a two-dimensional plane. In the same manner as previously
with the pmf, a marginal density function fX of X can be given by

fX(x) =
∫ ∞

−∞
fX,Y(x, y)dy (2.29)

2.1.11 Conditional Probability Distributions

Following the same considerations as in subsection 2.1.4, it is natural for two
discrete random variables X and Y to define the conditional probability mass
function of X given that Y = y, by

pX|Y(x|y) = P(X = x, Y = y)
P(Y = y)

=
pX,Y(x, y)

pY(y)
(2.30)

for all values of y such as pY(y) > 0. The conditional pmf is often convenient for
the calculation of the joint pmf, using the similar approach of Equation (2.8), the
product rule. (Bertsekas and Tsitsiklis, 2008, p.101)

pX,Y(x, y) = pY(y)pX|Y(x|y) (2.31)

The conditional pmf can also be used to calculate the marginal pmfs.

pX(x) = ∑
y

pX,Y(x, y) = ∑
y

pY(y)pX|Y(x|y) (2.32)

If X and Y have a joint probability density function fX,Y(x, y), then the conditional
probability density function of X given that Y = y, is defined for all values of y
such as fY(y) > 0, by (Ross, 2009, p.266)

fX|Y(x|y) = fX,Y(x, y)
fY(y)

(2.33)
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2.1.12 Covariance and Correlation

The covariance between two random variables X and Y measures the degree to
which X and Y are linearly related. (Murphy, 2012, p.44)

Definition 2.5 (Covariance) The covariance between X and Y, denoted by Cov(X, Y),
is defined by

Cov(X, Y) = E [(X−E[X])(Y−E[Y])] (2.34)

If X and Y are independent, meaning P(X, Y) = P(X)P(Y) then Cov(X, Y) = 0.
If Cov(X, Y) = 0 then X and Y are uncorrelated. However, the converse is not
true.2

If x is a d-dimensional random vector, its covariance matrix is defined to be the
following symmetric, positive definite matrix:

Cov(x) := E
[
(x−E[x])(x−E[x])T

]
(2.35)

The covariance can be between 0 and infinity. A normalized measure with a lower
bound of −1 and a upper bound of 1 is ρ(X, Y), which is called the (Perason)
correlation coefficient of two random variables X and Y

ρ(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
(2.36)

A correlation matrix has the form

R =


ρ(X1, X1) ρ(X1, X2) · · · ρ(X1, Xn)

...
...

. . .
...

ρ(Xn, X1) ρ(Xn, X2) · · · ρ(Xn, Xn)

 (2.37)

2uncorreltion does not imply independence!
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2.1 Fundamentals of Probability Theory

2.1.13 Common Random Variables

The behavior of any random variable is defined by its cumulative distribution
function FX(x) and in case of a discrete random variable X, also by its probability
mass function pX(x). The probability density function fX(x) for a continuous
random variable X is the first derivative of FX(x).

Physical phenomena or material properties in structural engineering applications
are commonly modeled by those random variables. Many different types of
probability distributions are available to model either discrete or continuous
random variables. (Malioka, 2009, p.10)

The most important random variables used in this work are as following: uniform,
normal, lognormal, gamma and beta. Each of these is briefly described in the
following sections. A larger selection of some common probability distribution is
summarized in the appendix.

Continuous Uniform Random Variable

A random variable X, where the pdf has a constant value for all possible values
of X on an interval [a, b], is called uniform or uniformly distributed. The pdf of
X ∼ U (a, b) is given by

U (x; a, b) := fX(x) =


1

b− a
if a ≤ x ≤ b

0 otherwise
(2.38)

where a and b define the lower and upper bounds of the random variable. The
mean and the variance of the uniform random variable X are

µX = E[X] =
a + b

2
(2.39)

σ2
X = Var(X) =

(b− a)2

12
(2.40)

Normal Random Variable

The normal random variable is probably one of the most important distributions
used for engineering problems. For instance, for probabilistic modeling of un-
certain phenomena which may be a result from a cumulative effect of several
uncertain contributions. (Faber, 2007, p.D-19)
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2 Theoretical Background

A random variable X is a normal random variable, or simply Gaussian or normally
distributed with mean µ and variance σ2 denoted by X ∼ N (µ, σ2), if the pdf is
given by

N (x; µ, σ2) := fX(x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

(2.41)

Here µ = E[X] and σ2 = Var(X) are two scalar parameters that characterize the
shape of the pdf. If µ = 0 and σ2 = 1, the random variable X follows a standard
normal distribution. The pdf of a standard normal random variable is customary
denoted by φ(x) and defined by

φ(x) =
1√
2π

exp
(
−1

2
(x)2

)
(2.42)

The cdf of the standard normal variable is denoted by Φ(x). Negative values of
x can be obtained from the symmetric relationship

Φ(−x) = 1−Φ(x) (2.43)

An important property of a normal random variable X is that Z a linear transfor-
mation of X is also normally distributed. This property can be used to standardize
X by defining a new random variable Z given by

Z =
X− µ

σ
(2.44)

Furthermore, Z is a standard normal random variable. This fact allows to calcu-
late the probability of any event defined in terms of X by redefining the event
in terms of Z, which makes it possible to solve the problem. (Bertsekas and
Tsitsiklis, 2008, p.156)

P(X ≤ x) = P
(

X− µ

σ
≤ x− µ

σ

)
= P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ

σ

)
(2.45)

In particular, Φ(x) can be computed in terms of the error function (erf) (Murphy,
2012, p.38)

Φ(x; µ, σ) =
1
2

[
1 + erf

(
z√
2

)]
(2.46)

where z comes from Equation (2.44) and

erf(x) :=
2√
π

∫ x

0
exp(−t2)dt (2.47)
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2.1 Fundamentals of Probability Theory

Lognormal Random Variable

A random variable X is a lognormal random variable whereas its logarithm Y is
normally distributed. The lognormally distributed random variable X = exp(Y)
is defined on the interval [0, ∞]. (Benjamin and Cornell, 1970, p.264)

In contrast to the normal distribution, the lognormal distribution is not simply
described through the mean and the standard deviation of the lognormal random
variable X, but the parameters can be expressed as function of the normal random
variable Y = ln(X).

λ = µY = µln(X) = ln(µX)−
1
2

ζ2 (2.48)

ζ2 = σ2
Y = σ2

ln(X) = ln(CoV2
X + 1) (2.49)

The pdf for a lognormal random variable X ∼ lnN (λ, ζ) is given by

lnN (x; λ, ζ) := fX(x) =
1√

2πxζ
exp

(
−1

2

(
ln(x)− λ

ζ

)2
)

(2.50)

The mean and the variance of the lognormal random variable X are

µX = E[X] = exp
(

λ +
ζ2

2

)
(2.51)

σ2
X = Var(X) = exp

(
2λ + ζ2

)
exp(ζ2)− 1 (2.52)

Gamma Distribution

A random variable X that is gamma distributed with shape parameter α > 0 and
rate parameter β > 0 is denoted by X ∼ Γ(α, β) and the pdf is given by

Γ(x; α, β) := fX(x) =
βα

Γ(α)
exp(−βx)xα−1 ∀x ≥ 0 (2.53)

Γ(α) is called the gamma function, which is defined as

Γ(α) :=
∫ ∞

0
e−yyα−1dy (2.54)
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The mean and variance of a gamma random variable X can be calculated as
followed:

µX = E[X] =
α

β
(2.55)

σ2
X = Var(X) =

α

β2 (2.56)

Beta Distribution

A random variable X is said to have a beta distribution if its pdf is given by

Beta(x; q, r, a, b) = fX(x) =
1

B(q, r)
(x− a)q−1(b− x)r−1

(b− a)q+r−1 (2.57)

In which B(q, r) is the beta function defined by

B(q, r) :=
Γ(q)Γ(r)
Γ(q + r)

(2.58)

A beta distributed random variable X ∼ Beta(q, r, a, b) with the shape parameters
q > 0 and r > 0, can model phenomena which set of possible values, is some
finite interval [a, b].

The mean and variance of a beta random variable X are

µX = E[X] = a + q
b− a
q + r

(2.59)

σ2
X = Var(X) =

b− a
q + r

√
qr

q + r + 1
(2.60)

2.2 Bayesian Networks

In this section graphical models (GMs), which are the basic graphical feature for
Bayesian networks (BNs), will be introduced. (Jensen and Nielsen, 2007, p.23) This
theory is implemented in the Python library, Python Bayesian Networks (PyBN)
by Hackl (2013a) and is an important part for the subsequent work.
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2.2 Bayesian Networks

2.2.1 Graphical Notation and Terminology

Graphical models (GMs) are tools used to visually illustrate and work with
conditional independence (CI) among variables in given problems. (Stephenson,
2000) In particular, a graph consists of a set V vertices (or nodes ) and a set E of
edges (or links ). The vertices correspond to random variables and the edges will
denote a certain relationship between two variables. (Pearl, 2000, p.12)

G := graph G = (V , E) (2.61)

Whit V = {X1, X1, . . . Xn} and E = {(Xi, X j) : i 6= j}.

A pair of nodes Xi, X j can be connected by a direct edge Xi → X j or an undirected
edge Xi − X j. A graph is called directed graph if all edges are either Xi → X j
or Xi ← X j and called undirected graph if all edges are Xi − X j. (Koller and
Friedman, 2009, p.34)

X1

X2 X3

X4 X5

(a)

X1

X2 X3

X4 X5

(b)

Figure 2.2: (a) A simple acyclic directed graph (DAG) numbered in topological order. (b) A simple
undirected graph. Based on Murphy (2012)

Two variables connected by an edge are called adjacent. A path consists of a series
of nodes, where each one is connected to the previous one by an edge. If a path in
a graph is a sequence of edges in order that each edge has a directionality going
in the same direction, then it is called directed path. For example, X1 → X2 → X4
in Figure 2.2(a). A directed graph may include direct cycles when a direct part
starts and ends at the same node, for instance X → Y → X, but this includes
no self-loops (X → X). A graph that contains no directed cycles is called acyclic,
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2 Theoretical Background

whereas a graph that is directed and acyclic is called directed acyclic graph (DAG)
(Pearl, 2000, p.12). This kind of graph is one of the central concepts which
underlies Bayesian networks. (Koller and Friedman, 2009, p.37)

To denote the relationships in a graph, the terminology of kinship is used. A
parent to child relationship in a directed graph occurs in case there is an edge
from X1 → X2. X1 is called the parent of X2 and X2 the child of X1. If X4 is a
child of X2 than X1 is its ancestor and X4 is X1 descendant. A family is the set
of vertices composed of X and the parents of X; for example, {X2, X3, X4} in
Figure 2.2(a). The term adjacent (or neighbor ) is used to describe the relationship
between two nodes connected in an undirected graph. (Stephenson, 2000)

Furthermore, the notation of a forest is used to define some properties of a
directed graph. So a forest is a DAG where each node has either one parent or
none at all. A tree is a forest where only one node, called the root, has no parent.
However, a node without any parents is called leaf. (Murphy, 2012, p.309)

2.2.2 Sturcture of Bayesian Networks

Formally BNs are DAG in which each node represents a random variable, or
uncertain quantity, which can take on two or more possible values. The edges
signify the existence of direct causal influences between linked variables. The
strengths of these influences are quantified by conditional probabilities.

In other words, each variable Xi is a stochastic function of its parents, denoted by
P(Xi|pa(Xi)). It is called conditional probability distribution (CPD), when pa(Xi) is
the parent set of a variable Xi. The conjunction of these local estimates specifies a
complete and consistent global model (joint probability distribution) on the basis
of which all probability queries can be answered. A representing joint probability
distribution for all variables is expressed by the chain rule for Bayesian networks
(Pearl, 1988, p.51)

Theorem 2.4 (Chain Rule for Bayesian Networks) Let G be a DAG over the vari-
ables V = {X1, . . . , Xn}. Then G specifies a unique joint probability distribution
P(X1, . . . , Xn) given by the product of all CPDs

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|pa(Xi)) (2.62)
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2.2 Bayesian Networks

This process is called factorization and the individual factors pa(Xi) are called
CPDs or local probabilistic models. (Koller and Friedman, 2009, p.62) This proper-
ties are used to define a Bayesian network in a formal way.

Definition 2.6 (Bayesian Network) A Bayesian Network B is a tuple B = (G, P),
where G = (V , E) is a DAG, each node Xi ∈ V corresponds to a random variable and P
is a set of CPDs associated with G’s nodes. The Bayesian Network B defines the joint
probability distribution PB(X1, . . . , Xn) according to Equation (2.62).

For example, is the joint probability distribution corresponding to the network in
Figure 2.2(a) given by

P(X1, X2, X3, X4, X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2, X3)P(X5|X3) (2.63)

This structure of a BN can be used to determine the marginal probability or likeli-
hood of each node holding on of its state. This procedure is called marginalisation.

2.2.3 Inserting Evidence

A major advantage of BNs comes by calculating new probabilities, for example,
if new information is observed. The effects of the observation are propagated
throughout the network and in every propagation step the probabilities of a
different node are updated.

New information in a BN are denoted as evidence and defined by a subset E of
random variables in the model and an instantiation e to these variables.

The task is to compute P(X|E = e), the posterior probability distribution over the
values x of X, conditioned on the fact that E = e. This expression can also be
viewed as the marginal over X in the distribution that obtains by conditioning
on e. (Koller and Friedman, 2009, p.26)

Theorem 2.5 Let B be a Bayesian network over the variables V = {X1, . . . , Xn} and
e = {e1, . . . , em} some observations. Then

P(V , e) = ∏
X∈V

P(X|pa(X)) ·
m

∏
i=1

ei (2.64)

and for X ∈ V follows

P(X|e) =
∑V\{X} P(V , e)

Pe
(2.65)
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If X1 and X2 are d-separated in a BN with evidence E = e entered, then
P(X1|X2, e) = P(X1|e), this means that X1 and X2 are conditional independent
given E, denoted P � (X1 ⊥ X2|E). (Pearl, 1988, p.117)

2.2.4 Network Models

At the core of any graphical model is a set of conditional independence assump-
tions. The aim is to understand when an independence (X1 ⊥ X2|X3) can be
guaranteed. In other words, is it possible that X1 can influence X2 given X3?
(Koller and Friedman, 2009, p.70)

Deriving these independencies for DAGs is not always easy because of the need
to respect the orientation of the directed edges. (Murphy, 2012, p.324) However,
a separability criterion, which takes the directionality of the edges in the graph
into consideration, is called d-separation 3. (Pearl, 1988, p.117)

Definition 2.7 (d-separation) If X1, X2 and X3 are three subsets of nodes in a DAG
G, then X1 and X2 are d-separated given X3, denoted d− sepG (X1; X2|X3), if there is
no path between a node X1 and a node X2 along with the following two conditions hold:

1. the connection is serial of diverging and the state of X3 is observed, or
2. the connection is converging and neither the state of X3 nor the state of any

descendant of X3 is observed.

If a path satisfies the d-separation condition above, it is said to be active, otherwise
it is said to be blocked by X3.

Networks are categorized according to their configuration. The underlying con-
cept can be illustrated by three simple graphs and thereby conditional indepen-
dencies can be implemented. (Pernkopf et al., 2013)

Serial Connection

The BN illustrated in Figure 2.3 is a so called serial connection. Here X1 has an
influence on X3, which in turn has an influence on X2. Evidence about X1 will
influence the certainty of X3, which influences the certainty of X2, and vice versa
by observing X2. However, if the state of X3 is known, then the path is blocked
and X1 and X2 become independent. Now X1 and X2 are d-separated given X3.
(Jensen and Nielsen, 2007, p.26)

3The notation d-separated stands for “directed separation”

26



2.2 Bayesian Networks

X1 X3 X2

(a)

X1 X3 X2

(b)

Figure 2.3: Serial connection. (a) When X3 is not observed the path is active, X1 and X2 are marginally
dependent. (b) When X3 is observed (node is shaded), then the path is blocked, X1 and
X2 are conditionally independent. Based on Jordan (2007)

Diverging Connection

In Figure 2.4 a so called diverging connection for a BN is illustrated. Here
influence can pass between all the children of X3, unless the state of X3 is known.
When X3 is observed, then variables X1 and X2 are conditional independent
given X3, while, when X3 is not observed they are dependent in general. (Jensen
and Nielsen, 2007, p.27)

X3

X1 X2

(a)

X3

X1 X2

(b)

Figure 2.4: Diverging connection. (a) When X3 is not observed the path is active, X1 and X2 are
marginally dependent. (b) When X3 is observed (node is shaded), then the path is blocked,
X1 and X2 are conditionally independent. Based on Jordan (2007)

Converging Connection

A converging connection, illustrated in Figure 2.5 is more sophisticated than
the two previous cases. As far nothing is known about X3 except what may be
inferred from knowledge of its parents X1 and X2, the parents are independent.
This means that an observation of one parent cannot influence the certainties
of the other. However, if anything is known about the common child X3, then
the information on one possible cause may tell something about the other cause.
(Jensen and Nielsen, 2007, p.20)
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In other words, variables which are marginally independent become conditional
dependent when a third variable is observed. (Jordan, 2007)

This important effect is known as explaining away or Berkson’s paradox. (Berkson,
1946)

X3

X1 X2

(a)

X3

X1 X2

(b)

Figure 2.5: Converging connection. (a) When X3 is not observed the path is blocked, X1 and X2 are
conditionally independent. (b) When X3 is observed (node is shaded), then the path is
active, X1 and X2 are marginally dependent. Based on Jordan (2007)

2.2.5 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) is just another way to represent stochastic
processes using a DAG. To model domains that evolve over time, the system state
represents the system at time t and is an assignment of some set of random vari-
ables V . Thereby the random variable Xi itself is instantiated at different points
in time t, represented by Xt

i and called template variable. To simplify the problem,
the timeline is discretized into a set of time slices with a predetermined time in-
terval ∆. This leads to a set of random variables in form of V0,V1, . . . ,V t, . . . ,VT

with a joint probability distribution P(V0,V1, . . . ,V t, . . . ,VT) over the time T , ab-
breviated by P(V0:T). This distribution can be reparameterized by using Equation
(2.9); the chain rule for probabilities. (Koller and Friedman, 2009, p.201)

P(V0:T) =
T−1

∏
t=0

P(V t+1|V0:t) (2.66)

This is the product of conditional distributions, for the variables in each time
slice are given by the previous ones. Assuming conditional independence, the
formulation can be simplified in the same way as discussed in section 2.2.2.

Definition 2.8 (Markov assumption) If the present is known, then the past has no
influence on the future.

(V t+1 ⊥ V0:(t+1)|V t) (2.67)
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2.3 Structural Reliability Analysis

This Markov assumption allows to define a compact representation of a DBN

P(V0, . . . ,VT) =
T−1

∏
t=0

P(V t+1|V t) (2.68)

Plate Notation

A short graphical representation of template-based models are plate models.
Additional to nodes and edges are object called plates used. Objects in the plate
share the same set of attributes. By convention the objects within the plate will
get repeated when the model is unrolled.

θ

Xi
N

(a)

θ

X1 X2

(b)

Figure 2.6: (a) Plate notation. This represents the same model as the right one, except the repeated
nodes are inside the plate. The number in the right hand corner N specifies the number
of repetitions of the node Xi . (b) It is the unrolled model of the system. Based on Murphy
(2012)

2.3 Structural Reliability Analysis

Structural reliability analysis (SRAs) is an important part to handle structural
engineering applications. This section provides a brief introduction to this topic
and is also the theoretical background for the Python library, Structural Reliability
Analysis with Python (PyRe) by Hackl (2013c).

2.3.1 Limit States

The word structural reliability refers to the meaning “how much reliable is a
structure in terms of fulfilling its purpose” (Malioka, 2009, p.7). The performance
of structures and engineering systems was based on deterministic parameters
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even for a long time, even if it was known that all stages of the system involve
uncertainties. SRA provides a method to take those uncertainties into account in
a consistent manner. In this content the term probability of failure is more common
than reliability. (Malioka, 2009, p.7)

In general, the term “ failure ” is a vague definition because it means different
things in different cases. For this purpose the concept of limit state is used to
define failure in the context of SRA. (Nowak and Collins, 2000, p.91)

Definition 2.9 (Limit State) A limit state represents a boundary between desired and
undesired performance of a structure.

This boundary is usually interpreted and formulated within a mathematical
model for the functionality and performance of a structural system, and expressed
by a limit state function. (Ditlevsen and Madsen, 2007, p.13)

Theorem 2.6 (Limit State Function) Let X describe a set of random variables {X1, . . . , Xn}
which influence the performance of a structure. Then the functionality of the structure is
called limit state function, denoted by g and given by

g(X) = g(X1, . . . , Xn) (2.69)

The boundary between desired and undesired performance would be given when
g(X) = 0. If g(X) > 0, it implies a desired performance and the structure is safe.
An undesired performance is given by g(X) ≤ 0 and it implies an unsafe structure
or failure of the system. (J. Baker, 2010)

The probability of failure p f is equal to the probability that an undesired perfor-
mance will occur. It can be mathematical expressed as

p f = P(g(X) ≤ 0) =
∫
· · ·

∫
g(X)≤0

fX(x)dx (2.70)

assuming that all random variables X are continuous. However, there are three
major issues related to the Equation (2.70), proposed by J. Baker (2010):

1. There is not always enough information to define the complete joint proba-
bility density function fX(x).

2. The limit state function g(X) may be difficult to evaluate.
3. Even if fX(x) and g(X) are known, numerical computing of high dimen-

sional integrals is difficult.
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2.3 Structural Reliability Analysis

For this reason various methods have been developed to overcome these chal-
lenges. The most common ones are the Monte Carlo simulation method and the
First Order Reliability Method (FORM).

2.3.2 The Classical Approach

Before discussing more general methods, the principles are shown on a “histori-
cal” and simplified limit state function.

g(R, S) = R− S (2.71)

Where R is a random variable for the resistance with the outcome r and S
represents a random variable for the internal strength or stress with the outcome
of s. (Lemaire et al., 2010, p.39) The probability of failure is according to Equation
(2.70):

p f = P(R− S ≤ 0) =
∫∫
r≤s

fR,S(r, s)drds (2.72)

If R and S are independent the Equation (2.72) can be rewritten as a convolution
integral, where the probability of failure p f can be (numerical)4 computed.
(Schneider, 2007, p.72)

p f = P(R− S ≤ 0) =
∫ ∞

−∞
FR(x) fS(x)dx (2.73)

xi

fS(xi)

fS(s)

fR(r)

r, s, x

FR(xi)

S

R

Figure 2.7: Classical Approach R− S. Where R and S are any random variables and xi ∈ [−∞,+∞].
An integration over the whole domain computes the probability of failure p f . Based on
Schneider (2007)

4Only simple cases can be performed analytically
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If R and S are independent and R ∼ N (µR, σR) as well as S ∼ N (µS, σS) are
normally distributed, the convolution integral (2.73) can be evaluated analyti-
cally.

M = R− S (2.74)

where M is the safety margin and also normal distributed M ∼ N (µM, σM) with
the parameters

µM = µR − µS (2.75)

σM =
√

σ2
R + σ2

S (2.76)

The probability of failure p f can be determined by the use of the standard normal
distribution function (2.45)

p f = Φ
(

0− µm

σM

)
= Φ(−β) (2.77)

Where β is the so called Cornell reliability index, named after Cornell (1969), and
is equal to the number of the standard derivation σM by which the mean values
µM of the safety margin M are zero. (Faber, 2009, p.5.14)

µR

σR

µS

σS

fS(s)

fR(r)

r, s

S

R

µM

σM

β · σM

p f

fM(m)

m

M
β · σM

Figure 2.8: Are the random variables R and S normally distributed also the safety margin M is a
normal random variable. The reliability index β provides the information how often σM
has space between the origin and µM . Based on Schneider (2007)
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2.3.3 Hasofer and Lind Reliability Index

The reliability index can be interpreted as a measure of the distance to the failure
surface, as shown in Figure 2.8. In the one dimensional case the standard deviation
of the safety margin was used as scale. To obtain a similar scale in the case of
more basic variables, Hasofer and Lind (1974) proposed a non-homogeneous
linear mapping of a set of random variables X from a physical space into a
set of normalized and uncorrelated random variables Z in a normalized space.
(Madsen et al., 2006, p.50)

Definition 2.10 (Hasofer and Lind Reliability Index) The Hasofer and Lind reli-
ability index, denoted by βHL, is the shortest distance z∗ from the origin to the failure
surface g(Z) in a normalized space.

βHL := β = αTz∗ (2.78)

The shortest distance to the failure surface z∗ is also known as design point and
α denotes the normal vector to the failure surface g(Z) and is given by

α = − ∇g(z∗)
|∇g(z∗)| (2.79)

where ∇g(z) is the gradient vector, which is assumed to exist: (Madsen et al.,
2006, p.53)

∇g(z) =
(

∂g
∂z1

(z), . . . ,
∂g
∂zn

(z)
)

(2.80)

Finding the reliability index β is therefore an optimization problem

min
x
|z| : g(z) = 0 (2.81)

The calculation of β can be undertaken in a number of different ways. In the
general case where the failure surface is non-linear, an iterative method must be
used. (Thoft-Christensen and M. Baker, 1982, p.89)

2.3.4 Probability Transformation

Due to the reliability index βHL, being only defined in a normalized space, the
basic random variables X have to be transformed into standard normal random
variables Z. Additionally, the basic random variables X can be correlated and
those relationships should also be transformed.
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2 Theoretical Background

Transformation of Dependent Random Variables using Nataf Approach

One method to handle this is using the Nataf joint distribution model, if the
marginal cdfs are known. (J. Baker, 2010)

The correlated random variables X = (X1, . . . , Xn) with the correlation matrix R
can be transformed by

yi = Φ−1 (FXi (xi)
)

i = 1, . . . , n (2.82)

into normally distributed random variables Y with zero means and unit variance,
but still correlated with R0. Nataf’s distribution for X is obtained by assuming
that Y is jointly normal. (P.-L. Liu and Der Kiureghian, 1986)

The correlation coefficients for X and Y are related by

ρXi ,Xj =

∞∫
−∞

∞∫
−∞

(
xi − µXi

σXi

)( xj − µXj

σXj

)

1

2π
√

1− ρ2
Yi ,Yj

exp

−y2
i − 2ρYi ,Yj yiyj + y2

j

2(1− ρ2
Yi ,Yj

)

 dzidzj

(2.83)

Once this is done, the transformation from the correlated normal random vari-
ables Y to uncorrelated normal random variables Z is addressed. Hence, the
transformation is

z = L−1
0 y ⇔ y = L0z (2.84)

where L is the Cholesky decomposition of the correlation matrix R of Y. The
Jacobian matrix, denoted by J, for the transformation is given by

JZX =
∂z
∂x

= L−1
0 diag

(
fXi (xi)

φ(zi)

)
(2.85)

This approach is useful when the marginal distribution for the random variables
X is known and the knowledge about the variables dependence is limited to
correlation coefficients. (J. Baker, 2010)
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2.3 Structural Reliability Analysis

Transformation of Dependent Random Variables using Rosenblatt Approach

An alternative to the Nataf approach is to consider the joint pdf of X as a product
of conditional pdfs.

fX(x) = fX1(x1) fX2|X1
(x2|x1) . . . fXn |X1,...,Xn−1

(xn|x1, . . . , xn−1) (2.86)

As a result of the sequential conditioning in the pdf, the conditional cdfs are
given for i ∈ [1, n]

FXi |X1,...,Xi−1
(xi|x1, . . . , xi−1) =

∫ xi

−∞
fXi |X1,...,Xi−1

(xi|x1, . . . , xi−1)dxi (2.87)

These conditional distributions for the random variables X can be transformed
into standard normal marginal distributions for the variables Z, using the so
called Rosenblatt transformation (Rosenblatt, 1952), suggested by Hohenbichler
and Rackwitz (1981).

z1 = Φ−1 (FX1(x1)
)

z2 = Φ−1
(

FX2|X1
(x2|x1)

)
...

zn = Φ−1
(

FXn |X1,...,Xn−1
(xn|x1, . . . , xn−1)

)
(2.88)

The Jacobian of this transformation is a lower triangular matrix having the
elements (J. Baker, 2010)

[JZX ]i,j =
∂zi
∂xj

=


1

φ(ui)

∂

∂xj
FXi |X1,...,Xi−1

(xi|x1, . . . , xi−1) i ≥ j

0 i < j
(2.89)

In some cases the Rosenblatt transformation cannot be applied, because the
required conditional pdfs cannot be provided. In this case other transformations
may be useful, for example Nataf transformation. (Faber, 2009, p.6.14)
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2 Theoretical Background

2.3.5 First Order Reliability Method

Let Z be a set of uncorrelated and standardized normally distributed random
variables (Z1, . . . , Zn) in the normalized z-space, corresponding to any set of
random variables X = (X1, . . . , Xn) in the physical x-space, then the limit state
surface in x-space is also mapped on the corresponding limit state surface in
z-space.

According to Definition 2.10, the reliability index β is the minimum distance
from the z-origin to the failure surface. This distance β can directly be mapped
to a probability of failure

p f ≈ p f 1 = Φ(−β) (2.90)

this corresponds to a linearization of the failure surface. The linearization point
is the design point z∗. This procedure is called First Order Reliability Method
(FORM) and β is the First Order Reliability Index. (Madsen et al., 2006, p.73)

Better results can be obtained by higher order approximations of the failure sur-
face. The Second Order Reliability Method (SORM) uses; for example, a quadratic
approximation of the failure surface. (J. Baker, 2010)

X2

X1

g(X) = 0

p f =
∫
· · ·

∫
g(X)≤0

fX(x)dx

(a)

Z2

Z1

g(Z) = 0

p f =
∫
· · ·

∫
g(Z)≤0

φZ(z)dz

(b)

β

α

Z2

Z1

z∗

g(Z) = 0

p f = Φ(−β)

(c)

Figure 2.9: (a) Representation of a physical space with a set X of any two random variables. The
shaded area denotes the failure domain and g(X) = 0 the failure surface. (b) After
transformation in the normalized space, the random variables Z are now uncorrelated and
standardized normally distributed, also the failure surface is transformed into g(Z) = 0.
(c) FORM corresponds to a linearization of the failure surface g(Z) = 0. Performing this
method, the design point z∗ and the reliability index β can be computed. Based on J. Baker
(2010)
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2.3 Structural Reliability Analysis

2.3.6 Simulation Methods

The preceding sections describe some methods for determining the reliability
index β for some common forms of the limit state function. However, it is
sometimes extremely difficult or impossible to find β. (Nowak and Collins, 2000,
p.138)

In this case, Equation (2.70) may also be estimated by numerical simulation
methods. A large variety of simulation techniques can be found in the literature,
indeed, the most commonly used method is the Monte Carlo method. (Faber,
2009, p.6.18)

The principle of simulation methods is to carry out random sampling in the
physical (or standardized) space. For each of the samples the limit state function
is evaluated to figure out, whether the configuration is desired or undesired. The
probability of failure p f is estimated by the number of undesired configurations,
respected to the total numbers of samples. (Lemaire et al., 2010, p.232)

For this analysis Equation (2.70) can be rewritten as

p f = P(g(X) ≤ 0) =
∫
· · ·

∫
g(X)≤0

I(g(X) ≤ 0) fX(x)dx (2.91)

where I is an indicator function that is equals to 1 if g(X) ≤ 0 and otherwise 0.
Equation (2.91) can be interpreted as expected value of the indicator function.
Therefore, the probability of failure can be estimated such as (Malioka, 2009,
p.24)

p̃ f = E [I(g(X) ≤ 0)] =
1
n

n

∑
i=1

I(g(X) ≤ 0) (2.92)

Crude Monte Carlo Simulation

The Crude Monte Carlo simulation (CMC) is the most simple form and corre-
sponds to a direct application of Equation (2.92). A large number n of samples
are simulated for the set of random variables X. All samples that lead to a failure
are counted n f and after all simulations the probability of failure p f may be
estimated by (Faber, 2009, p.6.18)

p̃ f =
n f

n
(2.93)
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2 Theoretical Background

Theoretically, an infinite number of simulations will provide an exact probability
of failure. However, time and the power of computers are limited; therefore, a
suitable amount of simulations n are required to achieve an acceptable level
of accuracy. One possibility to reach such a level is to limit the coefficient of
variation CoV for the probability of failure. (Lemaire et al., 2010, p.251)

CoV =

√
1− p f

np f
≈ 1
√np f

for p f → 0 (2.94)

For an objective CoV = 0.1 and a probability of failure p f = 10−k, are n = 10k+2

simulations required.

Importance Sampling

To decrease the number of simulations and the coefficient of variation, other
methods can be performed. One commonly applied method is the Importance
Sampling simulation method (IS). Here the prior information about the failure
surface is added to Equation (2.91)

p f = P(g(X) ≤ 0) =
∫
· · ·

∫
g(X)≤0

I(g(X) ≤ 0)
fX(x)
hX(x)

hX(x)dx (2.95)

where hX(X) is the importance sampling probability density function of X. Conse-
quently Equation (2.92) is extended to (Faber, 2009, p.6.20)

p̃ f = E

[
I(g(X) ≤ 0)

fX(x)
hX(x)

]
=

1
n

n

∑
i=1

I(g(X) ≤ 0)
fX(x)
hX(x)

(2.96)

The key to this approach is to choose hX(X) so that samples are obtained more
frequently from the failure domain. For this reason, often a FORM (or SORM)
analysis is performed to find a prior design point. (J. Baker, 2010)
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Figure 2.10: (a) Representation of a physical space with a set X of any two random variables. The
shaded area denotes the failure domain and g(X) = 0 the failure surface. (b) For the
CMC method every dot corresponds to one configuration of the random variables X.
Dots in shaded areas lead to a failure. (c) The IS simulation method uses a distribution
centered on the design point x∗, is obtained from a FORM (or SORM) analysis. More
dots in the failure domain can be observed. Based on J. Baker (2010)
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3 Probabilistic Models for Degradation of Concrete

“sapientia aedificabitur domus et prudentia
roborabitur” (Solomon, Proverb 24:3)a

aThrough wisdom is an house builded; and by
understanding it is established.

Designing new structures or accepting existing ones as adequately safe, is from
a probabilistic point of view, the result of a decision making process based
on some optimality criteria. This process links requirements and expectations
of a structure, load and actions, geometry and material properties and also
expectations of society. (JCSS, 2002)

Such decision problems are mathematical treated with the so-called decision theory.
An important aspect of the decision theory is the assessment of consequences
and probabilities, which are depict in probabilistic models. (Faber, 2009, p.1.8)

Definition 3.1 (Probabilistic Model (Benjamin and Cornell, 1970)) A probabilis-
tic model remains an abstraction until it has been related to observations of physical
phenomenon.

This requires the collection and progression of input data as well as determina-
tion of statistical distribution, corresponding statistical parameters and possible
correlations.

For the degradation of concrete structures, several models have been developed
to provide methods to estimate the length of time during which RC structures
maintain a desired level of functionality. Service life models such as DuraCrete
(1999), DuraCrete (2000a,b), LIFECON (2003), and fib Bulletin 34 (2006) provide
valuable information about the durability characteristics of concrete structures.

The proposed method of this work is not limited to any of those models. However,
in the remainder of this thesis only the DuraCrete (2000b) model is going to be
treated. This chapter provides an overview of this probabilistic model. Hence,
there are no explicit references cited for the assumptions of the DuraCrete (2000b)
model.
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3 Probabilistic Models for Degradation of Concrete

3.1 Material Properties

The description of each material property consists of a mathematical model and
random variables. Functional relationships between the variables may be part of
the material model. (JCSS, 2002)

3.1.1 Concrete

Concrete is a composite material made of aggregates and reaction products of
cement and mixing water. The reference property is the compressive strength of
standard specimens tested according to standard conditions and at a standard
age of 28 days, denoted by fc and approximated as a lognormal random variable.
(JCSS, 2002)

fc ∼ lnN (µ fc , σfc) (3.1)

The binding capacity of concrete for substances such as chlorides or carbon
dioxide will increase with a higher cement content. Also the type of cement will
affect those properties. However, the properties of concrete are also governed in
large parts by the water/cement ratio (w/c). For example, a lower w/c reduces
the porosity of the hardened concrete. (Wight and MacGregor, 2012, p.51) Conse-
quently, the volume of the capillary pores can increase with the amount of water.
Therefore, it may cause an acceleration of the corrosion process. (Malioka, 2009,
p.36)

Other influences on the concrete properties depend on the initial curing and
moisture conditions. By increasing the curing time, a reduction of the porosity
follows too. (Bertolini et al., 2004, p.7)

In addition the thickness of the concrete cover denoted by dc, is an important
parameter for the RC structure. Beside the effect to bond the reinforcement to the
concrete, the cover protects steel bars against corrosion. (Wight and MacGregor,
2012) So the time at which corrosion initiates is closely affected by this parameter,
which can be simplified and approximated as a lognormal random variable with
a CoV of 0.3.

dc ∼ lnN (µdc , σdc) (3.2)
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3.2 Environmental Actions

3.1.2 Reinforcement

Because of the low tensile strength of concrete, it is reinforced with steel bars or
wires that resist the tensile stresses. The reference property is the yield strength,
denoted by fy and approximated as normal random variable. (JCSS, 2002)

fy ∼ N (µ fy , σfy) (3.3)

The nominal bar area As,nom with the nominal diameter ds,o is also normal
distributed with CoV = 0.02.

do ∼ N (µdo , σdo ) (3.4)

3.2 Environmental Actions

The degradation process of concrete is closely related with the environment.
For example, the risk of chloride induced corrosion is higher than in coastal
environments as in the interior of the country. (Stewart and Rosowsky, 1998b)

In the model of DuraCrete (2000b) environmental parameters are used as initial
conditions for the degradation models. In this context, these parameters are more
or less represented as deterministic variables, so that the user of the model has to
decide which assumption is accurate for the present situation of the structure.

The statistical quantification of the parameters is based on a limited amount of
data that are available in the databases from various countries. (DuraCrete, 2000b,
p.45) As a result of this quantification the variables, which are representative for
specific initial condition indicators, are: exposure environment, exposure class,
temperature and humidity.

3.2.1 Exposure Environment

For corrosion due to chloride DuraCrete (1999) and DuraCrete (2000b) use two
different exposure environments:
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3 Probabilistic Models for Degradation of Concrete

Marine Environment

Areas that are influenced by the vicinity to an ocean, including coastal areas, are
said to have a marine environment. Within these, different zones depending on
the position compared to the water level, are identified as shown in Figure 3.1.

• Atmospheric zone. The temperature and humidity conditions in this zone
are normally assumed to be equal to the regional climate.
• Splash zone and tidal zone. The temperature and humidity conditions

in these zones are a mix between the conditions in the atmospheric and
submerged zone. The tidal actions are caused by the gravity of the moon
and the range of this zone can vary from about 0.5 m to as much as 15 m.
• Submerged zone. The temperature and humidity conditions in this zone are

equal to the conditions in the water.

Submerged

Tidal

Splash

Atmospheric

High sea level

Low sea level

Seawater

Figure 3.1: The marine environment can be subdivided into four different zones, depending on the
relative position with respect to the water level, wave height, tidal cycle length and so on.
Based on Bertolini et al. (2004)

Road Environment

The environment surrounding a road bridge could be divided into two principal
zones, a dry zone and a wet zone.

• The dry zone is not exposed to direct rain and therefore the concrete has a
low relative humidity.
• The wet zone is directly exposed to rain and therefore the concrete can

reach a high level of relative humidity. The wet environment is also exposed
to radiation, which could lead to extreme temperature variations in the
concrete.
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3.3 Degradation of Concrete

3.2.2 Exposure Class

For corrosion due to carbonation DuraCrete (1999) and DuraCrete (2000b) have
proposed three different exposure classes 1:

• Laboratory environment (LAB) has a constant temperature and relative hu-
midity in the air. The surface is protected against precipitation.

• Outdoor sheltered environment (OS), where the air temperature and the
relative humidity in the air changes over the year. The surface is protected
against precipitation.

• Outdoor unsheltered environment (OUS), where the air temperature and
the relative humidity in the air changes over the year. The surface is not
protected against precipitation.

3.2.3 Temperature and Humidity

The influence of temperature (T) and humidity (RH) affects the degradation of
concrete in a strong manner. For example, an increase in temperature will raise
the rate of carbonation (Bertolini et al., 2004, p.82); beside the rate of chloride
penetration and corrosion depends on the temperature. (Gjørv, 2009, p.104)

3.3 Degradation of Concrete

Concrete structures are exposed to environmental conditions, which may lead to
deterioration of the RC structure. Bertolini et al. (2004) classified these degrada-
tion processes as: mechanical, physical, structural, biological and chemical. In
practice these processes may occur simultaneously. Degradation of concrete and
corrosion of reinforcement are closely connected as shown in Figure 3.2. This
thesis is going to mention the carbonation and chloride penetration , which causes
corrosion of reinforcement, and structural degradation, too.

1Note: In the original DuraCrete (2000b) report, this parameter is also called “exposure envi-
ronment”, but for the purpose of better clearness it will be denoted by “exposure classes” in this
document.
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Figure 3.2: The degradation process of concrete can be classified as: mechanical, physical, structural,
biological and chemical, depending on the exposed environment. Chemical and electro-
chemical reactions may lead to corrosion of reinforcement. Degradation of concrete and
corrosion of reinforcement are closely connected. Based on Bertolini et al. (2004)

3.3.1 Corrosion of Reinforcement

Under normal conditions concrete protects embedded reinforcement against
corrosion. This is caused by a highly alkaline environment that is provided by the
concrete pore solution with a pH value between 13 and 14. These circumstances
cause a thin protective oxide film, also called passive film, on the surface of
the steel. (Arup, 1983) The protective action of the passive film is immune to
mechanical damage of the steel surface. However, it can be destroyed by carbon-
ation of concrete or by the presence of chloride ions. Then the reinforcement is
depassivated. (Bertolini et al., 2004, p.71)

The classical concept which was developed by Tuutti (1982), divides the service
life of RC structures in two distinct phases:

1. The fist phase is the initiation of corrosion. During which carbonation or
chloride penetration in the concrete cover takes place and may lead to
initiation of steel corrosion.

2. The second phase is propagation of corrosion. It begins when corrosion is
induced and ends when a certain level of limit state is reached.

The DuraCrete (2000b) model and the other current service life models subdivide
the propagation phase into four parts
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3.4 Carbonation Induced Corrosion

1. After the depassivation of reinforcement the initiation phase ends and the
propagation phase starts either when the carbonation front reaches the
reinforcement or when the chloride concentration at the reinforcement
reaches a critical threshold value.

2. The second event is the cracking of the concrete cover due to the expansive
forces generated by the corrosion products.

3. If corrosion is continuing after cracking it may lead to spalling of the concrete
cover.

4. Finally, the RC structure will collapse, if the load carrying capacity of the
element is reduced sufficiently due to ongoing corrosion, in form of cross
sectional loss of the concrete and steel or loss of bond.
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Figure 3.3: Two phases service life model for deterioration of a concrete structure due to steel
corrosion. The propagation phase includes four points of interest: depassivation, cracking,
spalling and collapse. The first three points may be used as limit state. Based on Tuutti
(1982)

In the current service life models, the limit state of a RC structure is defined by
one of these four points. For example, DuraCrete (2000a) recommends that depas-
sivation or cracking is related to the serviceability of the structure and spalling is
related to serviceability and ultimate failure. However, the fib Bulletin 34 (2006)
model code is even more strictly in these assumptions, here serviceability will be
classified as depassivation and ultimate failure as cracking or spalling.

3.4 Carbonation Induced Corrosion

Carbonation describes the process of neutralizing the alkalinity of concrete by
carbon dioxide (CO2). Hereby CO2 diffuses from the atmosphere into the concrete
and reacts with the hydrated cement paste. The reaction, which takes place in
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3 Probabilistic Models for Degradation of Concrete

aqueous solution, can be written schematically as: (Bertolini et al., 2004; Taylor,
1997, p.79, p.114)

CO2 + Ca(OH)2
H2O
−−→ CaCO3 + H2O (3.5)

Carbonation itself does not cause any damage to the concrete, but the conse-
quence is that the pH value of the pore solution drops from its normal level to
values approaching neutrality.

The carbonation process starts at the surface and penetrates into the concrete.
The diffusion of CO2 into concrete can be described by Fick’s first law of diffusion.
(Schiessl, 1997)

J = −D
∂C

∂xca
(3.6)

where J is the diffusion flux measuring the amount of substances that will flow
through a small area during a small time interval (kg/m2s). C is the concentration
of CO2 per unit volume, D the diffusion coefficient (m/s) and xca is the distance
from the concrete surface to the carbonation front. These coefficients can change,
as a function of position, time, variation in the pore structure, humidity or
temperature.

3.4.1 Deterioration Model for Carbonation Induced Corrosion

In order to take the above mentioned parameters into account, several models
have been developed and proposed. DuraCrete (2000b) proposed the following
model for the progress of the carbonation front:

xca =
√

2kc,cake,cakt,caCs,caR−1
ca
√

t
(

to

t

)nca

(3.7)

with
Rca =

a
Deff

(3.8)

Material Variables
Deff effective diffusion coefficient of dry carbonated concrete for CO2 at

defined compaction, curing and environmental conditions. [mm2/yr]
a binding capacity for CO2 [kgCO2/m3]
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3.4 Carbonation Induced Corrosion

Rca effective resistance of concrete to carbonation, taking binding into ac-
count, at defined compaction, curing and environmental conditions.
[kgCO2/m3/mm2/yr]

Environmental Variables
Cs,ca surface concentration of CO2 [kgCO2/m3]
ke,ca environmental parameter that considers the influence of environment.

[-]
nca age factor that considers the influence of climatic conditions. [-]

Execution and Test Variables
kc,ca execution parameter takes the influence of curing into account. [-]
kt,ca test method parameter considers the influence of test methods. [-]

In- and Output Variables
t exposure time [yr]
to reference time (1 yr) [yr]
xca depth of carbonation front at time t [mm]

3.4.2 Material Parameter for Carbonation Induced Corrosion

Effective Resistance of Concrete to Carbonation

The material parameter Rca expresses the effective resistance of concrete to car-
bonation and is strongly influenced by the concrete composition. Especially, the
w/c ratio and cement content have a strong influence on the parameter. Rca can
be approximated as normal random variable.

R−1
ca ∼ N (µR−1

ca
, σR−1

ca
) (3.9)

Table 3.1: Distributions for the effective resistance of concrete to carbonation R−1
ca in

[10−11 m2/s/kgCO2/m3] and the value of grade in [N/mm2].

Grade w/c ratio Distribution µR−1
ca

σR−1
ca

45 0.45 Normal 25 2.23

40 0.50 Normal 5 0.38

25 0.55 Normal 35 1.75

35 0.55 Normal 15 0.89

49



3 Probabilistic Models for Degradation of Concrete

3.4.3 Environmental Parameters for Carbonation Induced Corrosion

Surface Concentration of Carbon Dioxide

The DuraCrete (2000b) model assumes the surface concentration of carbon dioxide
as constant and equal to Cs,ca = 5 · 10−4 kg/m3. This means initially that this

parameter is not considered as a random variable. However, Parrott (1987)
observed that the surface concentration of carbon dioxide has a significant
influence on the rate of carbonation. Li (2004), Defaux et al. (2006) and Sudret
(2008) proposed some values for the surface concentration. In this work Cs,ca is
approximated by a normal random variable with µCs,ca = 6 · 10−4 and CoV = 0.17.
(Li, 2004)

Cs,ca ∼ N (µCs,ca , σCs,ca) (3.10)

Environmental Parameter for Carbonation

The environmental parameter represents a ratio between observations made in an
actual climate and observations made in a reference climate. The value ke,ca can
be approximated as lognormal random variable.

ke,ca ∼ lnN (λke,ca , ζke,ca) (3.11)

Table 3.2: Distributions for the environmental parameter ke,ca.

Environment Distribution λke,ca ζke,ca µke,ca σke,ca

LAB Deterministic - - 1.00 -
OS Lognormal -0.207 0.299 0.85 0.26

OUS Lognormal -0.198 0.266 0.85 0.23

Age Factor for Carbonation

The material property for carbonation is represented as Rca the effective carbon-
ation resistance, which is a combination of binding capacity a and the effective
diffusion coefficient Deff as shown in Equation (3.8). The diffusion coefficient will
increase with age, what is expressed by the age factor nca, which follows a beta
distribution.

nca ∼ Beta(qnca , rnca , anca , bnca) (3.12)
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Table 3.3: Distributions for the age factor nca. Based on Malioka (2009)

Environment Distribution qnca rnca anca bnca µnca σnca

LAB Deterministic - - - - 0.000 -
OS Beta 0.850 1.290 0.0 0.5 0.199 0.138

OUS Beta 0.554 0.491 0.0 0.5 0.265 0.175

3.4.4 Execution and Test Parameters for Carbonation Induced Corrosion

Execution Parameter for Carbonation

The execution parameter, denoted by kc,ca, takes executional influences upon
the effective diffusion coefficient into account. This parameter is determined
empirically and depends not only on the material, but also upon the surrounding
environmental conditions. The final results based on observations of concrete
elements are listed in Table 3.4

Table 3.4: Distributions for the execution parameter kc,ca. With curing period in days.

Curing Distribution qkc,ca /λkc,ca rkc,ca /ζkc,ca akc,ca bkc,ca

1 shifted Lognormal 2.52 0.84 0.46 -
3 shifted Lognormal 0.87 1.03 0.88 -
7 Deterministic 1.00 - - -

28 Beta 1.86 1.10 0.35 1.00

Test Method Parameter for Carbonation

The test method parameter, denoted by kt,ca, can only be evaluated if alternative
test methods are applicable to measure comparable material parameters and
represent a functional relationship between different test methods.

kt,ca ∼ N (µkt,ca , σkt,ca) (3.13)

The statistical quantification of the test method parameter assumes a µkt,ca = 0.983
and a σkt,ca = 0.023.
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3 Probabilistic Models for Degradation of Concrete

3.4.5 Limit State for Carbonation Induced Corrosion

For the onset of corrosion the limit state can be assumed as the probability that
the carbonation front xca reaches or is larger than the concrete cover depth dc
beyond the reinforcement.

p f = P[dc − xca(t) ≤ 0] (3.14)

3.5 Chloride Induced Corrosion

A frequent cause of reinforcement steel corrosion is contamination by chloride.
(Arup, 1983) To initiate the corrosion process, the chloride content at the surface
of the reinforcement has to reach a certain threshold value. (Bertolini et al., 2004,
p.93) However, the chloride transport in concrete is a rather complicate process,
which involves inter alia iron diffusion and convection. (Tang et al., 2012, p.8)
This complex transport mechanism can be simplified and estimated by use of
Fick’s second law of diffusion. (Collepardi et al., 1970)

∂C
∂t

= D
∂2C
∂x2

cl
(3.15)

where C is the concentration of chloride ions at distance xcl from the concrete
surface after time t of exposure to chlorides and D the chloride diffusion coefficient.
To solve Equation (3.15) boundary and initial conditions are needed.

The boundary conditions are described by the assumption that the concentration
of the diffusing ion, measured on the surface of the concrete, is constant in time
and equal to Cs,cl. Also it is assumed that the coefficient of diffusion D does not
vary in time and through the thickness of concrete. The initial condition is that
there is no chloride in the concrete at the beginning. (Bertolini et al., 2004, p.29)

C(xcl = 0, t > 0) = Cs,cl (3.16)
C(xcl > 0, t = 0) = 0 (3.17)

Thus, the obtained solution is:

C(xcl, t) = Cs,cl

(
1− erf

(
xcl

2
√

Dt

))
(3.18)
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3.5 Chloride Induced Corrosion

3.5.1 Deterioration Model for Chloride Induced Corrosion

The proposed DuraCrete (2000b) model for the chloride penetration includes
material and environmental parameters. Additionally, the change of the diffusion
coefficient is covered by a time dependent exponential function including an age
factor to reflect the decrease of the coefficient due to material and environmental
influences.2

Ccl(xcl, t) = Cs,cl

1− erf

 xcl

2
√

ke,clkt,clkc,clDo

(
to
t

)ncl
t


 (3.19)

Material Variables
Do chloride diffusion coefficient at defined compaction, curing and envi-

ronmental conditions, at a reference time to. [mm2/yr]

Environmental Variables
ke,cl environmental parameter that considers the influence of environment.

[-]

Environmental and Material Variables
Cs,cl surface concentration of chloride [%wb]
ncl age factor that considers the influence of material and environmental

conditions. [-]

Execution and Test Variables
kc,cl execution parameter takes the influence of curing into account. [-]
kt,cl test method parameter considers the influence of test methods. [-]

In- and Output Variables
t exposure time [yr]
to reference time [yr]
xcl depth of chloride penetration [mm]
Ccl chloride concentration at depth xcl after time t [%wb]

2Note: DuraCrete (2000b) uses the same variable name for carbonation and chloride induced
corrosion, but these variables refer to different phenomena!
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3 Probabilistic Models for Degradation of Concrete

3.5.2 Material Parameter for Chloride Induced Corrosion

Chloride Diffusion Coefficient

The chloride diffusion coefficient Do is strongly influenced by the concrete mix, cur-
ing and compaction. Additionally, the diffusion coefficient increases significantly
with the w/c ratio. Do can be approximated as normal random variable.

Do ∼ N (µDo , σDo ) (3.20)

Table 3.5: Distributions for the chloride diffusion coefficient Do in [mm2/yr]. Based on Malioka (2009)

w/c ratio Distribution µDo σDo

0.40 Normal 220.92 25.41

0.45 Normal 315.60 32.51

0.50 Normal 473.40 43.24

3.5.3 Environmental Parameter for Chloride Induced Corrosion

Environmental Parameter for Chloride Penetration

The environmental parameter ke,cl has been introduced in the model to make the
diffusion coefficient applicable for different environmental conditions. The quan-
tification is made in the four different exposure zones of a marine environment.
Here ke,cl is approximated as Gamma distribution.

ke,cl ∼ Γ(αke,cl
, βke,cl

) (3.21)

For the road environment a reasonable approach is the quantification of the
environmental parameters from the splash zone in a marine environment.

Table 3.6: Distributions for the environmental parameter ke,cl.

Environment Distribution αke,cl
βke,cl

µke,cl
σke,cl

Submerged Gamma 35.3038 26.6444 1.325 0.223

Tidal Gamma 35.5370 38.4599 0.924 0.155

Splash Gamma 34.6790 130.8642 0.265 0.045

Atmospheric Gamma 35.1628 52.0160 0.676 0.114
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3.5 Chloride Induced Corrosion

3.5.4 Environmental and Material Parameter for Chloride Induced Corrosion

The surface concentration Cs,cl and the age factor ncl are two parameters in the
model which are influenced by the environmental conditions but also by the
material properties.

Surface Concentration of Chloride

The surface chloride concentration, denoted by Cs,cl, is described as a function of
the w/c ratio and an error term.

Cs,cl = A · (w/c) + ε (3.22)

where A is a normally distributed regression parameter and ε a normally dis-
tributed error term.

Table 3.7: Distributions for the regression parameters A and ε for the surface concentration Cs,cl.

Environment Distribution µA σA σε

Submerged Normal 10.348 0.714 0.580

Tidal Normal 7.758 1.360 1.059

Splash Normal 7.758 1.360 1.105

Atmospheric Normal 2.565 0.356 0.405

Because of the linear Equation (3.22) and the normal distributed regression
parameters, the surface chloride concentration Cs,cl can also be assumed as a
normal random variable.

Cs,cl ∼ N (µCs,cl , σCs,cl) (3.23)

with

µCs,cl = E[Cs,cl] = E[A · (w/c) + ε] = (w/c) · µA (3.24)

σ2
Cs,cl

= Var(Cs,cl) = Var(A · (w/c) + ε) = (w/c)2 · σ2
A + σ2

ε (3.25)

For the road environment only limited data for the dry zone are available, where
Cs,cl is a lognormal random variable with λCs,cl = −1.611 and ζCs,cl = 0.606
(µCs,cl = 0.24, σCs,cl = 0.16).

55



3 Probabilistic Models for Degradation of Concrete

Age Factor for Chloride Penetration

The age factor, denoted by ncl, depends on the exposure environment and the
used binder. It takes into account that the diffusion coefficient Do decreases with
increasing age of the concrete. (LIFECON, 2003, p.78)

ncl ∼ Beta(qncl , rncl , ancl , bncl) (3.26)

Table 3.8: Distributions for the age factor ncl.

Environment Distribution pncl rncl ancl bncl µncl σncl

Submerged Beta 24.90 58.10 0.0 1.0 0.30 0.05

Tidal Beta 17.23 29.34 0.0 1.0 0.37 0.07

Splash Beta 17.23 29.34 0.0 1.0 0.37 0.07

Atmospheric Beta 29.53 15.90 0.0 1.0 0.65 0.07

3.5.5 Execution and Test Parameters for Chloride Induced Corrosion

Execution Parameter for Chloride Penetration

The execution parameter, denoted by kc,cl, takes executional influences upon
the effective diffusion coefficient into account. This parameter is determined
empirically and depends not only on the material, but also upon the surrounding
environmental condition. kc,cl can be approximated as Beta distribution.

kc,cl ∼ Beta(qkc,cl
, rkc,cl

, akc,cl
, bkc,cl

) (3.27)

Table 3.9: Distributions for the execution parameter kc,cl. With curing period in days.

Curing Distribution qkc,cl
rkc,cl

akc,cl
bkc,cl

µkc,cl
σkc,cl

1 Beta 1.667 1.905 1.0 4.0 2.4 0.7
3 Beta 2.148 10.741 1.0 4.0 1.5 0.3
7 Deterministic 1.000 - - - - -

28 Beta 4.445 2.333 0.4 1.0 0.8 0.1
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3.5 Chloride Induced Corrosion

Test Method Parameter for Chloride Penetration

The test method parameter, denoted by kt,cl, can only be evaluated if alternative
test methods are applicable to measure comparable material parameters and
represent a functional relationship between different test methods.

kt,cl ∼ N (µkt,cl
, σkt,cl

) (3.28)

The statistical quantification of the test method parameter assumes a µkt,cl
= 0.832

and a σkt,cl
= 0.024.

Critical Chloride Concentration

As mentioned before, chloride induced corrosion can only take place if a certain
threshold value is reached. This value is called critical chloride concentration
and is denoted by Ccrit. Actually, there are two definitions for these values.

The first critical chloride concentration refers to a threshold value at which a
depassivation of the steel surfaces begins. The second definition suggests that
the critical chloride concentration is reached when cracking occurs.

Ccrit is assumed to be normally distributed and influenced by the w/c ratio and
the humidity of the environment.

Ccrit ∼ N (µCcrit , σCcrit) (3.29)

Table 3.10: Distributions for the critical chloride concentration Ccrit in [%wb] for the 1st definition.

w/c ratio Distribution µCcrit σCcrit

0.30 Normal 0.48 0.15

Table 3.11: Distributions for the critical chloride concentration Ccrit in [%wb] for the 2nd definition.

w/c ratio Distribution µsaturated
Ccrit

σsaturated
Ccrit

µ
changing
Ccrit

σ
changing
Ccrit

0.30 Normal 2.30 0.20 0.90 0.15

0.40 Normal 2.10 0.20 0.80 0.10

0.50 Normal 1.60 0.20 0.50 0.10
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3 Probabilistic Models for Degradation of Concrete

3.5.6 Limit State for Chloride Induced Corrosion

For the onset of corrosion, the limit state can be assumed as the probability that
the critical chloride concentration Ccrit is reached at the reinforcement.

p f = P[Ccrit − Ccl(xcl = dc, t) ≤ 0] (3.30)

3.6 Propagation of Corrosion

After the depassivation of the reinforcement has occurred so that the passive
layer broke down, the so-called propagation phase starts and the reinforcement
steel starts to “rust,” which is nothing else as the products of corrosion.

The chemical reactions are the same whether corrosion occurs by carbonation or
by chloride attack. Furthermore, it can be described by the same electrochemical
process as the corrosion of a metal in an electrolyte. (Broomfield, 2007, p.7)

Corrosion occurs as two half-cell reactions, an anodic reaction ( oxidation ) and
a cathodic reaction ( reduction ). This mechanism is referred as the fundamental
mechanism of corrosion and schematically summarized with the following
reaction: (Küter, 2009, p.143)

iron + oxygen + water→ product of corrosion (3.31)

More specific, when steel corrodes in concrete it dissolves in the pore water and
gives up electrons. This is called the anodic reaction.

Fe −→ Fe2+ + 2 e− (3.32)

The two electrons 2 e−, that were created in this process must be consumed
elsewhere on the steel surface to preserve electrical neutrality. This means that
large amounts of electrical charge cannot build up at one place on the steel. For
this reason, an other chemical reaction consumes these electrons. This so-called
cathodic reaction consumes water, oxygen, and electrons and produces alkalinity.
(Broomfield, 2007, p.7)

2 e− + H2O + 1
2 O2 −→ 2 OH− (3.33)

These two reactions are only the fist steps in the process of creating “rust”. One
way to express such a process is when ferrous hydroxide (3.34) becomes ferric
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3.6 Propagation of Corrosion

hydroxide (3.35) and then hydrated ferric oxide or “rust” (3.36). (Broomfield,
2007, p.7)

Fe2+ + 2 OH− −→ Fe(OH)2 (3.34)
4 Fe(OH)2 + O2 + 2 H2O −→ 4 Fe(OH)3 (3.35)
2 Fe(OH)3 −→ Fe2O3 ·H2O + 2 H2O (3.36)

In this process the volume of the corrosion products increases six to ten times
in comparison to the starting material. This leads to the effects of cracking and
spalling of concrete.

Ionic current

Electronic current

Anode:
Fe −−→ Fe2+ + 2 e−

Cathode:
2 e− + H2O + 1

2 O2 −−→ 2 OH−

Concrete

Steel

Figure 3.4: After the breakdown of the passive film an anode and a cathode will be developed. Within
the metal electrons are transported away from the anodic regions where they become
available to the cathodic regions, where they are consumed. A nominal electrical current
flowing in the opposite direction. To close the circle an ionic current flows from the anode
to the cathode. This is based on the transport of ions in the pore solution. Based on
Broomfield (2007)

The electrical current flow Icorr and the generation and consumption of electrons
in the anode and cathode reactions are used to determine the corrosion rate.
(Broomfield, 2007, p.7)

The corrosion rate Vcorr is usually expressed as the penetration rate and is
measured in [mm/yr]. It can also be expressed in terms of the current density,
denoted by icorr, which represents the corrosion current Icorr related to the steel
surface area [µA/cm2]. (LIFECON, 2003, p.98)

In case of reinforcement steel the relationship between current density and
penetration rate is approximately: (Stewart, 2004)

1 µA/cm2 ≈ 11.6 µm/yr (3.37)
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3 Probabilistic Models for Degradation of Concrete

However, probabilistic modeling of the propagation phase is still a challenge.
While for the initiation phase (carbonation and chloride propagation) compatible
design models are available, there are no suitable design models existing for the
propagation phase of reinforcement corrosion. (Schießl et al., 2012) So further
development is needed to fill this gap of knowledge and provide a comparable
design model for the propagation phase.

3.6.1 Deterioration Model for Propagation of Corrosion

To stay consistent with the previous sections, a simplified propagation model
based on Nilsson and Gehlen (1998) chloride corrosion rate factor FCl and
proposed in the DuraCrete (2000b) model is used to predict the corrosion rate.

The corrosion rate Vcorr can be modeled empirically. Hereby the basic assumption
is to represent the corrosion rate as a product of local influencing factors and
two material parameters

Vcorr =
mo

ρ
FCl FGalvFO2 (3.38)

with

ρ = ρo

( tHydr

to

)nr

kt,rkc,rkT,rkRH,rkCl,r (3.39)

where ρ is the concrete resistivity and:

Unspecified Variables
mo parameter which represents a constant for corrosion rate versus resis-

tivity based on Faraday’s law. [µmΩm/yr]
FCl chloride corrosion rate factor, taking the chloride content in the concrete

in account. [-]
FGalv galvanic effect factor, considers the micro-galvanic actions in the con-

crete. [-]
FO2 oxygen availability factor is expressing the availability of oxygen to the

corrosion process. [-]

Material Variables
ρo potential concrete resistivity for a reference environment. [Ωm]
nr age factor of the concrete resistivity. [-]
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3.6 Propagation of Corrosion

Environmental Variables
kT,r temperature factor for concrete resistivity. [-]
kRH,r humidity factor for concrete resistivity. [-]
kCl,r chloride factor for concrete resistivity. [-]

Execution and Test Variables
kc,r execution parameter, takes the influence of curing into account. [-]
kt,r test method parameter, considers the influence of test methods. [-]

In- and Output Variables
tHydr time of hydration [yr]
to reference time (1 yr) [yr]
Vcorr corrosion rate [mm/yr]

3.6.2 Unspecified Parameter for Propagation of Corrosion

Corrosion Rate versus Resistivity

The model bias can be considered by including in the factor mo that relates the
resistivity with the corrosion current. Nilsson and Gehlen (1998) propose to use
a constant mo = 822 for the time being. However, if mo is quantified better, it is
simple to change this constant into a stochastic parameter.

Chloride Corrosion Rate Factor

The chloride corrosion rate factor, denoted by FCl expresses the relation between
the corrosion rate in concrete with and without chloride, for the same resis-
tivity. Nilsson and Gehlen (1998) estimated this factor as shifted lognormal
distributed

FCl ∼ s lnN (λFCl , ζFCl , aFCl ) (3.40)

Table 3.12: Distributions for the chloride corrosion rate factor FCl . With the states true or false for
chloride induced corrosion.

Chloride Distribution λFCl ζFCl aFCl

true shifted Lognormal 0.62 1.35 1.09

false Deterministic 1.00 - -
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3 Probabilistic Models for Degradation of Concrete

Galvanic Effect Factor

Further studies are needed to quantify the galvanic effect factor. If the model is
restricted to ordinary cases of carbonation with microcell corrosion, the galvanic
factor is not relevant. Consequently

FGalv = 1 (3.41)

Oxygen Availability Factor

FO2 is a factor expressing the effect of availability of oxygen to the corrosion
process. Since data is very limited, a statistical quantification cannot be made.
However, since the supply of oxygen usually not believed to be a limiting factor,
except in submerged concrete, a crude alternative could be used:

FO2 =

{
0 submerged
1 otherwise

(3.42)

3.6.3 Material Parameter for Propagation of Corrosion

Potential Concrete Resistivity

The concrete resistivity ρ a main material parameter, which influencing the
corrosion rate. This property can be measured by several methods. The output of
a standardized so-called compliance test is the potential concrete resistivity ρo,
which can be approximated as a normal random variable with a mean of 77 Ωm
and a standard deviation of 12 Ωm.

ρo ∼ N (µρo , σρo ) (3.43)

Aging Factor for Resistivity

The aging factor nr takes into account that the resistivity changes over time. This
parameter is determined as a normal random variable with a mean of 0.23 and a
standard deviation of 0.04.

nr ∼ N (µnr , σnr) (3.44)
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3.6 Propagation of Corrosion

3.6.4 Environmental Parameter for Propagation of Corrosion

Temperature Factor for Resistivity

The temperature factor kT,r can be approximated by

kT,r =
1

1 + K(T − 20)
(3.45)

in which parameter K is the temperature dependence of the conductivity and
approximated by

Table 3.13: Distributions for the parameter K. With the temperature in [◦C].

Temperature Distribution µK σK

T > 20 Normal 0.073 0.015

T = 20 Deterministic 1.000 -
T < 20 Normal 0.025 0.001

Humidity Factor for Resistivity

The humidity factor kRH,r is different for OS and OUS conditions. For an OS
environment the humidity factor depends on the RH, which can be estimated
from the annual average air humidity for the location of the structure. Due to
the limitation of data the humidity factor for an OUS environment is assumed to
be not dependent on the RH.

Table 3.14: Distributions for the humidity Factor kRH,r, with the relative humidity in [%].

Environment Humidity Distribution λkRH,r ζkRH,r akRH,r

OS 50 shifted Lognormal 6.70 1.20 3.23

OS 65 shifted Lognormal 2.11 1.14 2.41

OS 80 shifted Lognormal 1.43 0.72 1.33

OS 95 Lognormal 1.07 0.14 -
OS 100 Deterministic 1.00 - -

OUS - shifted Lognormal 0.62 0.33 0.79
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Chloride Factor for Resistivity

The chloride factor kCl,r might be expressed as a normal random variable.

kCl,r ∼ N (µkCl,r
, σkCl,r

) (3.46)

with µkCl,r
= 0.72 and σkCl,r

= 0.11.

3.6.5 Execution and Test Parameters for Propagation of Corrosion

Execution Parameter for Propagation of Corrosion

The curing factor kc,r is taken as a constant due to the lack of available data.

kc,r = 1 (3.47)

Test Method Parameter for Propagation of Corrosion

The test method factor kt,r takes into account, if another test method is used, to
determine the potential concrete resistivity ρo. Due to a lack of available data the
test method factor is assumed to be constant.

kt,r = 1 (3.48)

3.7 Effects of Corrosion

If corrosion is initiated, the consequences are a reduction in the cross section of
the reinforcement steel, increase in bar diameter resulting from the volumetric
expansion of the corrosion products, and a change in the mechanical properties
of the reinforcement and the concrete. (Cabrera, 1996) These effects do not only
involve serviceability, but may also affect its structural reliability and therefore the
safety of the structure. Correspondingly the corrosion affects the reinforcement
itself and the surrounding concrete, as shown in Figure 3.5. In the remainder of
the work only the effects of corrosion on the reinforcement steel will be treated.

As mentioned previously, a breakdown of the passive film is necessary for the
initiation of corrosion. Once this protective layer is destroyed, corrosion will
occur only if water and oxygen are present on the surface of the reinforcement,
as shown in Equation (3.33).
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Effects of
Corrosion

Reduction in
cross section

Cracking of
concrete

ElongationTensile
strength

Fatigue
strength

Increase in
corrosion

rate

Loss of
bond

strength

Concrete
disbonding

Figure 3.5: Corrosion causes two main effects for RC structures: A reduction in the cross section of
the reinforcing bar, which leads to decreasing steel properties. It also causes corrosion
cracking (and spalling) of concrete which influences the concrete properties. Based on
Bertolini et al. (2004)

Carbonation of concrete may lead to a complete depassivation of the reinforce-
ment. Instead chloride induced corrosion causes localized breakdowns, unless
chlorides are present in very large amounts. (Bertolini et al., 2004, p.73)

If corrosion takes place on the whole surface of the steel, it is called general
corrosion. In contrast, when only limited areas, so-called pits, are corroded
and surrounded by non corroded areas, then this phenomenon is called pitting
corrosion.

3.7.1 General Corrosion

General or uniform corrosion is caused by very high levels of chlorides or
carbonation of concrete. It is typically associated with “rust” over the entire
steel surface, which occupying a greater volume than the parent material. This
can lead to cracking and spalling of the concrete cover. A loss of bond strength,
caused by reinforcement slip that is initiated by corroded steel surfaces, and loss
of reinforcement cross section may be the consequences of general corrosion, too.
(Osterminski and Schießl, 2012)

65



3 Probabilistic Models for Degradation of Concrete

3.7.2 Pitting Corrosion

Local or pitting corrosion is only associated with chloride induced corrosion. The
area of the anode ( active zone ) may be relative small, but once corrosion has
been initiated the resulting electrical field attracts negative chloride ions towards
the pit. Hence, the corrosion rate can be relative high which leads to an extreme
loss of steel cross section. (LIFECON, 2003, p.114)

H2O O2Cl−

2 e−

Concrete

Steel

OH−

Fe2+

H+H2O Cl−Passive film

pit

Active zone

pH > 12.5

pH < 5

Cathode Anode Cathode

Figure 3.6: Pitting corrosion is a localized kind of corrosion. After a local breakdown of the passive
film an anodic reaction Fe −−→ Fe2+ + 2 e− begins. Here electrons (2 e−) move from the
anode to the cathode, where a cathodic reaction 2 e− + H2O + 1

2 O2 −−→ 2 OH− takes
place. Based on CEB (1992)

While general corrosion produces “rust” and leads to cracking and spalling,
which can be easily detected by inspection. On the contrary part, pitting corrosion
occurs only over small areas of reinforcement and often does not cause disruption
of the concrete cover. Therefor, it is more difficult to detect these events. (Val and
Melchers, 1997)

3.7.3 Probabilistic Model for Effects of Corrosion

The DuraCrete (2000b) model provides only a very simplified model for the
effects of pitting corrosion. For this reason, a hemispherical model of a pit,
suggested by Val and Melchers (1997) and modified by Stewart (2004, 2009, 2012),
is used in this context.

The corrosion penetration can be modeled in general with ti being the time of
corrosion initiation.

66



3.7 Effects of Corrosion

p(t) =
∫ te

ti

Vcorr(t)dt (3.49)

For general corrosion a uniform loss of steel diameter can be assumed

ds(t) = ds,o −Vcorrtcorr (3.50)

where ds,o is the initial reinforcement diameter, Vcorr the corrosion rate in [mm/yr]
and tcorr the time since corrosion has been started in [yr]. The product Vcorr · tcorr
is also called the average penetration and denoted by pav.

3.7.4 Pitting Factor

According to González et al. (1995) is the corrosion rate for pitting corrosion
four to eight times higher than the average penetration pav on the surface
of a reinforcement bar. This ratio between maximum and average corrosion
penetration is called pitting factor and denoted by Rpit = pmax/pav. The pitting
factor can be treated as a random variable modeled by a Gumbel distribution.
(Stewart, 2004)

Rpit ∼ Gumbel(µRpit , αRpit) (3.51)

where the Gumbel statistical parameters can be modified as (Sheikh et al., 1990)

µRpit = µo +
1
αo

ln
(

LU
Lo

)
(3.52)

αRpit = αo (3.53)

Table 3.15: Distributions for the Gumbel parameters of the pitting factor Rpit, with the bar diameter
and the reference length Lo in [mm]. Based on Stewart (2012)

Diameter Lo Distribution µo αo

10 100 Gumbel 5.08 1.02

16 100 Gumbel 5.56 1.16

27 100 Gumbel 6.55 1.07
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where the Gumbel parameters µo and αo are derived from statistical analysis of
pitting data for reinforcement of reference length Lo. Besides, LU is the uniform
capacity length, referring to the distance along a structural member in which
pitting corrosion will have a detrimental effect on structural capacity. (Stewart,
2009) The values of LU are varying from 100 mm to over 1000 mm. (Stewart, 2004;
Stewart and Al-Harthy, 2008)

3.7.5 Pit Configuration

For simplicity, a hemispherical form of pits is assumed. The radius of the pit,
pmax, at time t, can be estimated as

pmax(t) = VcorrtcorrRpit (3.54)

pmax

Apit

As

θ2θ1
a do

Figure 3.7: Pit Configuration. It is assumed that the pit has a hemispherical form with the radius pmax.
The dark shaded area As is the remaining steel area after t years of corrosion. Therefore,
the light shaded area Apit is the loss of area. Based on Val and Melchers (1997)

The pit configuration shown in Figure 3.7 is used to predict the cross sectional
area of the pit, denoted by Apit, which can be expressed as (Val and Melchers,
1997)

Apit(t) =



A1 + A2 pmax(t) ≤
do√

2
πd2

s,o

4
− A1 + A2

ds,o√
2
< pmax(t) ≤ ds,o

πd2
s,o

4
pmax(t) ≥ ds,o

(3.55)

where
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A1 =
1
2

(
θ1

(
ds,o

2

)2
− a

∣∣∣∣ds,o

2
− pmax(t)2

ds,o

∣∣∣∣
)

(3.56)

A2 =
1
2

(
θ2 pmax(t)2 − a

pmax(t)2

ds,o

)
(3.57)

with

a = 2pmax(t)

√
1−

(
pmax(t)

ds,o

)2

(3.58)

θ1 = 2 arcsin
(

a
ds,o

)
(3.59)

θ2 = 2 arcsin
(

a
2pmax(t)

)
(3.60)

The cross section of an uncorroded reinforcement bar is

As,nom =
πd2

s,o

4
(3.61)

so the cross section area of a reinforcing bar after t years of pitting corrosion is
denoted as As and estimated as

As(t) = As,nom − Apit(t) (3.62)

3.7.6 Reinforcement Properties Influenced by Pitting Corrosion

In addition to the decrease in cross-section, also the strength and ductility of
reinforcing steel is affected. According to Du et al. (2005), the yield strength
reduces linearly with corrosion loss so that

fy(t) = (1− αyQcorr(t)) fy,o (3.63)

where fy,o is the yield strength of an non corroded reinforcing bar, αy is an
empirical coefficient and Qcorr is the percentage corrosion loss in [%], which can
be measured in terms of reduced cross section area or weight loss.

Qcorr(t) =
Apit(t)
As,nom

· 100 (3.64)
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3 Probabilistic Models for Degradation of Concrete

The empirical coefficient αy can be expressed as a Beta distributed random
variable in the range from a = 0.0 to b = 0.017 and a mean µαy = 0.005 and
CoV = 0.2.
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“ Be honest,
be brave,
be smart.” (Maung Min-Oo)

The deterioration process of RC structures is highly complex and additionally
evolves in time, as shown in chapter 3. The modeling of those processes is
subjected to significant uncertainties that are based on a simplistic representation
of the actual physical process and limited information on material, environmental
and loading characteristics. (Straub, 2009)

On the other hand, new information about the system may change the assess-
ment of the structure and lead to new decisions and a verification of the used
probabilistic model. (Attoh-Okine and Bowers, 2006)

In this context a combination of classical structural reliability analysis (SRA) and
Bayesian networks (BNs) seems to be appropriate to model this problem.

SRA enables the accurate assessment of probabilities of failure events represented
by computationally demanding physically based models. BNs are efficient in
representing and evaluating probabilistic dependence structures. Additionally,
BNs are able to update the model when new information becomes available.
(Straub and Der Kiureghian, 2010a,b)

4.1 Modeling Approaches

The development of a consistent model, starts by the edification of the RC
structure and ends by reaching a critical limit state but evolving over time is
quite complicated, too. The modeling is broken down into several steps, which
are discussed in more detail in the following sections.
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4.1.1 Single Modeling

First, each physical model, explained in chapter 3 is transformed in a BN. Here
every parameter of the model is represented as a node in the single model
(SM) network. Also the input parameters are represented as nodes; for example,
environmental or curing parameters, but only for one defined period of time.

A major issue of BNs is the limitation by dealing with continuous random
variables. One common solution to avoid this issue is discretizing all continuous
variables. Unfortunately the structure that characterizes the variable often gets
lost by discretization of a continuous random variable. It is generally not the case
that each discrete value can be associated with an arbitrary probability. (Koller
and Friedman, 2009, p.185)

Beyond this, there is a lack of information about discretization of continuous
random variables in the context of physical models related to decision problems.
(Straub and Der Kiureghian, 2010b)

For the purpose to model and analyze the previous physical models, the contin-
uous random variables get discretizatied in the first steps. Later on the model
will be rewritten so that the discretization is limited to the smallest possible
amount.

4.1.2 Coupled Modeling

After modeling the single events, shared and dependent parameters in each BN are
singled out and connected with the other BNs. Where shared variables or shared
parameters are denoted in this work these random variable that influences
different nodes in different BNs, but it does not have any parents itself; for
example, the concrete cover dc. Compared to that, dependent variables classify
the same type of nodes but with parents; for example, the corrosion rate Vcorr.
This procedure leads to a coupled model (CM).

4.1.3 Dynamic Coupled Modeling

The last step is to expand the CM over time. Therefore, the properties of DBNs
are used, that lead to a so-called dynamic coupled model (DCM). Key of this
procedure is to model the DBN efficiently, which includes methodologies to
decrease the size of the network. The amount of nodes is decreased, but there is
also an increase in accuracy by using less discretizations.
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4.2 Bayesian Network for Carbonation Induced Corrosion

According to Equations (3.7) and (3.14) the limit state function of carbonation
induced corrosion gca(X) is given by

gca(X) = gca(xca, kc,ca, ke,ca, kt,ca, nca, Cs,ca, R−1
ca , dc, fc, tcur, ec) (4.1)

Each random variable in Equation (4.1) can be expressed as a node in a BN.
Taking into account the dependencies between the individual random variables,
a BN for carbonation induced corrosion may be represented as in Figure 4.1.

p f ,ca

xca

ke,cakc,cakt,ca nca Rca Cs,ca

fctcur ec dc

Rca

Exposure

Vulnerability

Robustness

Figure 4.1: The BN for carbonation induced corrosion according to the DuraCrete (2000b) model
consists of four input parameters, which influence the physical model. The probability
of failure, in this case the probability if carbonation induced corrosion occurs or not, is
represented in node p f ,ca.

The random variable for the event of carbonation induced corrosion p f ,ca is
represented as a binomial random variable (or Bernoulli trial ) where only two
possible outcomes can occur: “ success ” or “ failure ”.

Here the input parameters tcur, ec, fc and dc are the exposure to the SM and repre-
sent all possible endogenous and exogenous effects with potential consequences
for the considered system.
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The vulnerability of the SM is related to the direct consequences caused by
the damages that follow by the given exposure events. In this case the direct
consequences are related to xca, the depth of the carbonation front.

The robustness of the SM is related to indirect consequences that are depend not
only on the damage state but also on the exposure of the damaged system. Here
the robustness is assessed to the probability of carbonation induced corrosion as
an expected value over all possible damage states and exposure events. (Faber,
2009, p 4.11)

As mentioned previously, discretization of random variables have some disad-
vantages; for example, assuming a discretization of 100 intervals per random
variable, the node xca will have 100 · 1006 different stages, which is almost im-
possible to calculate with commercial software for BNs. An additional difficulty
here is to achieve an acceptable level of accuracy for the probability of failure if
only 100 configurations are available. This problem will be treated at the end of
this chapter.

4.3 Bayesian Network for Chloride Induced Corrosion

Based on the Equations (3.19) and (3.30) the limit state function gcl(X) for chloride
induced corrosion can be written as

gcl(X) = gcl(kc,cl, ke,cl, kt,cl, ncl, Do, Ccl, Cs,cl, Ccrit, dc, tcur, w/c, ee) (4.2)

The output of the limit state function is represented as p f ,cl a random variable
that expressed the probability of chloride induced corrosion. This variable can
have two states: “yes”, chloride induced corrosion occurs with a probability of
p f or “no” there is no chloride induced corrosion, the probability therefore is
1− p f .

The representation as a BN is shown in Figure 4.2. Here, the network is also
subdivided into exposure events, vulnerability and robustness, which follows
the same assumption as discussed previously.
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p f ,cl

Ccl Ccrit

ke,clkt,clkc,cl ncl Cs,cl Do

w/ctcur eedc

Cs,cl

Exposure

Vulnerability

Robustness

Figure 4.2: The BN for chloride induced corrosion according to the DuraCrete (2000b) model consists
of four input parameters that influences the physical model. The probability of failure,
in this case the probability if chloride induced corrosion occurs or not, is represented in
node p f ,cl.

4.4 Bayesian Network for Propagation of Corrosion

Using the DuraCrete (2000b) model for the propagation of corrosion, the corro-
sion rate Vcorr is a function of a set X random variables, which is given by

Vcorr(X) = Vcorr(mo, ρ, FCl , FGalv, FO2 , ρo, nr, kt,r, kc,r, kT,r, kRH,r, kCl,r, RH, T, p f ,cl)
(4.3)

Different from the output of the SM of carbonation or chloride induced corrosion,
the corrosion rate Vcorr may take the output of any positive real value1.

An other difference to both models discussed before is that not all variables are
random. This is based on a lack of data in the physical model, as explained in
section 3.6. So the variables mo, FGalv, FO2 , kc,r and kt,r are assumed to be constant
with only one state or outcome.

1A negative value can be excluded, because this means that the diameter is increasing.
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Nevertheless, to model a complete BN for the propagation of corrosion, these
variables are represented as uniform random variables in the range of ±10%
of the initial value. For evaluation of the BN evidences are set at the assumed
constant values.

In the SM for propagation of corrosion the first dependent random variable
occurs in form of the probability of chloride induced corrosion p f ,cl. This means
that the random variable depends on the outcome of a different BN. In the first
step to model the propagation independent, of any other models, values for p f ,cl
are assumed and later on both models get coupled on this node.

A graphical expression of the BN for propagation of corrosion is illustrated in
Figure 4.3, where the constant values are constituted as observed variables.

Vcorr

FClFGalvFO2
ρ mo

kCl,r ρo nrkRH,rkT,rkt,rkc,r

T RH p f ,cl

kt,r

Exposure

Vulnerability

Figure 4.3: The BN for propagation of corrosion according to the DuraCrete (2000b) model consists
of three input parameters, which influence the physical model. Thereby the parameter
p f ,cl depends on the BN for chloride induced corrosion. The output of this SM is no
probability of failure, instead a positive real value for the corrosion rate Vcorr can be
observed. Constant variables from the physical model are modeled as uniform distributed
nodes and set evidence at the initial value, here illustrated as shaded nodes.

As shown in Figure 4.3 no state of robustness is available in the SM. This is
caused by the fact that the propagation is the first process of corrosion, which is
followed by the effects of corrosion. Therefore, the SM includes no indirect con-
sequences, the output variable Vcorr, denotes a physical variable with unknown
distribution.
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4.5 Bayesian Network for the Effects of Corrosion

4.5.1 Bayesian Network for General Corrosion

Under the assumption that general corrosion occurs if carbonation induced
corrosion occurs and the amount on general corrosion, related to high levels of
chloride is negligible, then the loss of bar area As is given as a function of

As(X) = As(ds, ds,o, Vcorr) (4.4)

Since a SM represents only one defined period of time, the time tcorr from
Equation (3.50) is implied in the BN, which is shown in Figure 4.4(a).

As

ds

Vcorrds,o p f ,ca
Exposure

Vulnerability

Robustness

(a)

As,%

ds

Vcorrds,o p f ,ca

(b)

Figure 4.4: (a) The BN for general corrosion include of five nodes. The corrosion rate Vcorr and the
probability of carbonation induced corrosion p f ,ca are depending on other BNs. (b) A
modified BN for general corrosion is where As,% is the percentual loss of bar area.

If As is also influenced by the information of ds,o, it is possible to express the loss
of bar area denoted by As,%, as a ratio between current bar area As and nominal
bar area As,nom. This modification brings the advantage that the bar area can be
expressed by a random variable on the interval from 0 to 1, instead of an interval
for any positive number limited by the initial diameter. This property becomes
very useful by discretized continuous random variables.
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4.5.2 Bayesian Network for Pitting Corrosion

Also the model of Val and Melchers (1997) for pitting corrosion can be expressed
as a BN, shown in Figure 4.5. Here, in addition to the loss of bar area As, also a
decrease of yield strength fy occurs. Both are represented in the same BN and
can be expressed as a function of

As(X) = As(Apit, As,nom, pmax, Rpit, LU , ds,o, Vcorr) (4.5)

and
fy(X) = fy(Qcorr, Apit, As,nom, pmax, Rpit, LU , αy, ds,o, Vcorr, fy,o) (4.6)

As fy

Qcorr ApitAnom αy

pmaxRpitLU

ds,o Vcorr fy,o
Exposure

Vulnerability

Robustness

Figure 4.5: The BN for pitting corrosion according to the model of Val and Melchers (1997) and
Stewart (2004, 2009, 2012). The model consists of three input parameters, which influencing
the physical model. Thereby the parameter Vcorr depends on the BN for propagation of
corrosion. The constant parameter LU , from the physical model, is modeled as uniform
distributed node and sets the evidence at the initial value, here illustrated as shaded
nodes. The output of this SM is As and fy at a defined period of time.

This model contains a constant parameter for the uniform capacity length LU ,
which is modeled as a uniform random variable in the range form 100 mm to
1000 mm. (Stewart, 2009)

The output of the SM for pitting corrosion is the bar area As and the yield
strength fy after a defined period of time exposed to corrosion. In the same
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manner as previously shown, these variables can be modified to As,% and fy,%,
which describing the loss of area or yield strength according to the initial values
in the range from 0 to 1.

4.6 Coupled Bayesian Network

To get a model over the whole physical process, the SMs have to be connected.
Therefore, shared and dependent random variables from the different BNs must
be singled out and replaced with the corresponding nodes or BNs. In certain
circumstances some additional nodes must be added to the CM.

4.6.1 Shared Parameters

Shared parameters are denoted parameters that occur in multiple places across
one or more networks. Where the notation parameter describes a node in which
the values are not determined by others.

In general, it can be distinguished between general and local parameters. Global
structures occur when the same CPD is used across multiple variables in the
network. This type of sharing arises naturally from the plate model and is used
in the previous BNs. A Local structure is finer grained and allows parameters to
be shared even within a single CPD. (Koller and Friedman, 2009, p.754). Later
on, parameter estimation for a BN can be performed on this basis. In this work
only general parameters are used.

The parameters for the corrosion problem are already defined in section 3.1 and
section 3.2. In a condensed form, there are:

• Material parameters are the following: compressive strength fc, water ce-
ment ration w/c, curing period tcur, concrete cover depth dc, yield strength
fy and bar diameter ds.

• Environmental parameters are the following: exposure environment ee,
exposure class ec, temperature T and relative humidity RH.

These shared parameters occur in the different SMs as discussed previously. Not
only within a BN the parameters are shared but also with other networks. For
example, the concrete cover depth dc or the nominal bar diameter ds,o occur in
different BNs and influence different nodes.

An additional property of the shared parameter is the time dependency. Some
parameters do not change over time; for example, the initial bar diameter ds,o,
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these parameters are called initial parameters. Other parameters, such as temper-
ature T, vary over time and are denoted as template parameters or time dependent
parameters.

4.6.2 Dependent Parameters

Dependent parameters act in the same way as shared parameters for a SM, but
with the difference that the parameter itself depends on an other BN. In a CM
these parameters are part of the coupled BN and link the different models to an
entire consistent physical model, starting by the edification of the RC structure
and ending by reaching a critical limit state.

Definition 4.1 (Dependent Parameter) Let Bi and B j be Bayesian networks over the
variables V i and V j. Then θ specifies a dependent parameter if

θ ∈ Vi ∩ Vj (4.7)

In other words, dependent parameters transmit information from one SM to an
other. Hence, the quality of the information is an important value, which gets a
very strongly influence by discretization of the node. A major goal is to optimize
these links, so that no or only limited loss of information occurs.

Are there no dependent parameters, then the models are not able to get linked,
which also means there no physical (or logical) relationship between the different
SMs exist. In this case other models have to be chosen.

However, in the case of concrete degradation, caused by corrosion of reinforcing
steel, such a “path” of dependent parameters is available. The BNs of carbonation
and chloride induced corrosion are connected by the probability of failure for
the onset of corrosion with the BN for propagation of corrosion. This network is
linked to the BN for effects of corrosion by the shared parameter Vcorr.

4.6.3 Additional Nodes

In some cases it is beneficial to add extra nodes to the existing BNs, to extract
some extra information from the network and on the other hand to simplify the
existent model.

One example for getting additional information is to add a node corrosion to
the network, as it is schematically shown in Figure 4.6(a). Like the probability of

80



4.6 Coupled Bayesian Network

carbonation induced corrosion p f ,ca or chloride induced corrosion p f ,cl contains
the node corrosion pcorr to states of outcome: “yes” if corrosion occurs or “no” if
there is no corrosion. However, this time it takes the carbonation and chloride
penetration into account.

pcorr

p f ,ca p f ,cl

(a)

ds

Vcorrds,o p f ,ca tcorr

(b)

Figure 4.6: (a) The event of corrosion pcorr is an additional node with the parents p f ,ca and p f ,cl and
provides new information about the state of corrosion. (b) A simplification of the BN for
general corrosion is adding the time tcorr. This allows to couple and expand different BNs
over time.

An additional node to simplify the CM is shown in Figure 4.6(b). Here the time
tcorr, which describes the time where the reinforcement is exposed to corrosion,
is added to the BN. In the SM discussed in section 4.5, it was not necessary to
add this node, because the time is implied in the BN itself. However, in the CM
two different types of time occurs: the service time t of the structure and the time
tcorr where corrosion propagates. Only one of them can be represented in a plate
model.

Because of the fact tcorr ≤ t it is appropriate to express t in a plate model and
tcorr as random variable. Since tcorr is represented as a random variable, this
value of time is not longer a discrete value, it rather represents the probability of
corrosion for a defined time period.

4.6.4 Coupled Bayesian Network for Concrete Degradation Caused by
Corrosion

Using previous assumed properties, the SMs can be coupled to one consistent
CM, which is shown in Figure 4.7. This model represents the degradation of
concrete, caused by corrosion for one defined period of time and one element2 of
the RC structure.

2According to Stewart (2004) is the process of pitting corrosion highly related with spatial and
temporal variables. However, in this work only the temporal effects are treated.
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Figure 4.7: The BN for a CM. Additional indicated are the resistance and the strength for the
determination of the probability of failure. Where the nodes “. . . ” represent additional
nodes that are necessary to compute the structural reliability.
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4 Modeling Bayesian Networks

As shown in Figure 4.7 it is quite complex to represent such a CM as a graphical
network. To shrink the size and make the representation more clearly, a schemat-
ically notation of a BN is used. Here the nodes do not represent mainly random
variables, but more the physical meaning beyond.

Reduction
in cross
section

Loss of
tensile

strength

Time of
corrosion

General
corrosion

Pitting
corrosion

Corrosion
Carbonation

induced
corrosion

Chloride
induced

corrosion

Figure 4.8: A simplified representation of the CM for degradation of concrete caused by corrosion.
Here the nodes represent the based physical model. Chloride induced corrosion can also
caused general corrosion as indicated by the dashed arrow. This effect is not considered
in the treated model.

4.7 Dynamic Coupled Bayesian Network

The last step to provide a sophisticated model for the deterioration process
of RC structures evolving in time is to unroll the previous discussed CM over
the service life of the structure. Unfortunately, this process is not so easy to
implement, especially with discretized nodes where the loss of information
grows by each time step.

4.7.1 Simplification of the Model

The goal of the final model is to describe the structural reliability of a RC
structure; therefore, it is not necessary to represent every random variable in the
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4.7 Dynamic Coupled Bayesian Network

model as explicit as a node in the BN. Instead parts of the BN can be reduced to
a single random variable, containing the information of the other ones.

Simplification of the Bayesian Network for Carbonation Induced Corrosion

In case of the BN for carbonation induced corrosion, the random variable of
interest is the probability of corrosion p f ,ca. All other random variables are not
explicitly necessary to describe the structural reliability. So the information of the
material, environmental execution, and test variables are collected and treated in
node for the probability of failure. Only the input parameters have to be modeled
beside p f ,ca.

p f ,ca

ec fctcur dc

Figure 4.9: The simplified BN for carbonation induced corrosion includes only the input parameters
and the output parameter p f ,ca. The other values of the models are included in the
probability of failure.

The disadvantages of this simplification is that information of the model values,
such as the age factor nca, are no longer available. On the other hand, the
huge advantage is that those values need no longer to be modeled and so a
discretization of those continuous random variables is omitted. Beyond this, SRA
can be used to calculate the probability of failure, which leads to more accurate
values for the node p f ,ca as any discretization of the unsimplified BN would be
able to. Also the property that the node p f ,ca only can reach two states, allows
to transmit those outcome values without any loss of information to an other
model (or node).

The only variables that must be discretized are the input variables. Here it is the
grade fc and the cover depth dc. These discretizations depend on the decision
making process and may be different for each RC structure.
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Simplification of the Bayesian Network for Chloride Induced Corrosion

The same principal as discussed previously can be used to simplify the BN for
chloride induced corrosion. The simplification is shown in Figure 4.10.

p f ,cl

ee dc w/ctcur

Figure 4.10: The simplified BN for chloride induced corrosion includes only the input parameters and
the output parameter p f ,cl. The other values of the models are included in the probability
of failure.

Simplification of the Bayesian Network for Propagation of Corrosion

Also the BN for propagation of corrosion can be simplified this way. However,
here is the output value Vcorr a random variable where the distribution is not
defined.

Vcorr

RHT p f ,cl

Figure 4.11: The simplified BN for propagation of corrosion includes only the input parameters and
the output parameter Vcorr. The other values of the models are included in the output
node.

To use this variable for subsequent calculations, the discretized values of Vcorr
must be fitted to a distribution of a random variable. For this fitting a Kol-
mogorov–Smirnov test, maximum likelihood estimator or some other estimators can
be used.3

3In this work the two mentioned methods are used.
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An other option is to use a different model; for example, Stewart (2004) or
Osterminski and Schießl (2012), in which the corrosion rate can be defined as a
random variable.

Simplification of the Bayesian Network for the Effects of Corrosion

The BN for general corrosion is all ready in a very simple form and the BN for
pitting corrosion can be simplified as the models before.

As fy

Vcorrds,o tcorr fy,o

Figure 4.12: The simplified BN for pitting corrosion includes only the input parameters and the
output parameters As and fy. The other values of the models are included in the output
nodes.

Here the same problem as in the simplified model for propagation of corrosion
occurs. The output variables As and fy can take any positive value or any value
in the range of 0 to 1 after modification of the BN.

Simplification of the Bayesian Network for the Propagation and the Effects
of Corrosion

However, Vcorr, As and fy are also only intermediate results for the structural
reliability. Using the idea of simplification as before, these values can be included
in R, the random variable for the resistance of a RC structure or even included
in p f , the probability of failure of the structure. This leads to a two-phase model,
where the first phase is the failure of corrosion and the second phase the failure
of the system according to Tuutti (1982), but now coupled through a probabilistic
model based on a BN.

4.7.2 Plate Model

After the simplification of the CM and the subdivision of the shared parameters
into initial and temporal values, the BN can be expanded over time. Therefor,
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plate notation from subsection 2.2.5 is used. So the model for degradation of
concrete, caused by corrosion, can be expressed as a DBN, which is shown in
Figure 4.13.

p f

tcorr

pcorrp f ,ca p f ,cl

ec

dcfc
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tcur w/c

T RH

ds,ofy,o . . .

T

Figure 4.13: The DBN for degradation of concrete caused by corrosion is expressed as a plate model.
Nodes inside the plate are evolving over time, outside are the initial parameters. The
node “. . . ” denotes other random variables that are necessary to compute the probability
of failure; for example, geometric or load parameters.

To provide a very general model, the focus of this DCM is on the effects of
corrosion. Geometric and load properties are included in the probability of
failure4, which makes it possible to use the model for any kind of RC structure
and load situation.

4A more detailed explanation can be found in section 4.8.
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4.7 Dynamic Coupled Bayesian Network

4.7.3 Dynamic Coupled Model for Degradation of Corrosion Caused by
Chloride Induced Corrosion

Chloride induced corrosion is one of the most common causes for structural
deterioration, related to corrosion and the models are quite often discussed in
literature. Hence, the remainder of the work will focus on this event and neglect
the event of carbonation induced corrosion. However, the theory and all results
later on can also be achieved by using the DCM represented in Figure 4.13, but
to make the model simpler and comparable with other results of the literature
the DCM shown in Figure 4.14 is used from now on.
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Figure 4.14: (a) The DBN for degradation of concrete caused by corrosion is expressed as a plate
model. Nodes inside the plate are evolving over time, outside are the initial parameters.
(b) Is an unrolled part of the model in the range of t− 1 to t. The initial parameter occurs
only once and their connections are indicated here with the dashed arcs.
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4.8 Modeling Structural Reliability

The principals of SRA are discussed previously in section 2.3. However, to provide
a computationally model for degradation of concrete caused by corrosion, these
ideas have to be implemented in the CM and DCM.

Principally, structural reliability can be expressed as a set R of random variables,
describing the resistance of the structure, and a set S to describe the internal
stress. This principle be used for any kind of structure and design situation.
Hence, it is difficult to make general statements for RC structures, because of
their different geometries and load situations.

One way to take these properties into account, is to normalize the random
variables with respect to their nominal values. This makes the model applicable
to a wide range of design situations.

X =
X

Xnom
Xnom (4.8)

The random variable for the resistance can be taken as the strength of the
RC structure. Likewise, can the random variable for the internal strength or
stress be taken as the load effect (moment, shear, etc.), which is considered as
dimensionally consistent with the resistance. Both of them can be used directly
to formulate the limit state function. (Ellingwood et al., 1980, p.36)

4.8.1 Model of Resistance

The load carrying capacity R of a RC structure depends on the resistance of
their components and connections; for example, material strength, section ge-
ometry and dimensions. This resistance R can be considered as a product of the
nominal resistance Rnom and a random variable Xm, which describes the model
uncertainties. (Nowak and Collins, 2000, p.182)

R = RnomXm (4.9)

In the reminder of this work the structural configuration is assumed to be a
simple supported RC beam as shown in Figure 4.15. Therefore, the ultimate
flexural capacity Mu and the ultimate shear capacity Vu of the RC beam can
be used to describe the resistance R of the structure. An other simplification is
made by neglecting shear failure for the structural reliability estimation. This
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assumption leads to the result that the resistance R can be expressed in terms of
ultimate flexural capacity Mu for a simple supported RC beam.

R = Mu = As fy

(
d−

As fy

1.7 fcb

)
Xm (4.10)

where As is the cross-sectional area of the reinforcement, fy the yield strength, d
the effective depth, fc the compressive strength of concrete, b the beam with and
Xm describes the model uncertainties.

d

bL

Figure 4.15: Simple supported RC for the evaluation of the structural reliability. Where L is the clear
span, d the effective length and b the beam width.

Since pitting corrosion only affects As and fy, a near linear relationship exists
between the ultimate flexural capacity and these variables. (Stewart, 2009)

This makes it possible to analyze different design situations by normalizing the
flexural capacity in terms of an un-corroded RC beam, denoted by Mnom, and
comparing it with the changes caused by corrosion.

According to Ellingwood et al. (1980), the ultimate-to-flexural resistance Mu/Mnom
can be described by a normal random variable with a mean of µ = 1.05 and
a coefficient of variation of CoV = 0.11. These statistics include the random
variability of the variables in Equation (4.10).

4.8.2 Structural Load Model

To design any RC structure, different types and magnitudes of the loads that
are expected to act on the structure during its lifetime have to be considered. In
the scope of this work, a relative simple model is used to describe the random
variable S.

The random variable G describes the permanent or dead load and is assumed to
be normal distributed with a mean µG = 1.0 and a CoVG = 0.1. (Nowak and
Collins, 2000, p.148)

G ∼ N (µG, σG) (4.11)

91



4 Modeling Bayesian Networks

The variable or live load, denoted by Q, describes a random variable that considers
a load varying over time. Q is assumed to follow a Gumbel distribution with
µQ = 1.0 and a CoVQ = 0.4. (Köhler et al., 2012)

Q ∼ Gumbel(µq, αQ) (4.12)

Hence, the random variable S for the internal strength or stress can be described
as the load effect.

S = G + Q (4.13)

4.8.3 Model of the Limit State Function

The probability of failure p f can be expressed according to Equation (2.71) in
combination with Equation (4.13) as

p f = P[g(R, G, Q) ≤ 0] (4.14)

where
g(R, G, Q) = R− G−Q = 0 (4.15)

After solving Equation (4.14) returns the probability of failure p f that can be
related to a reliability index β as discussed in section 2.3. However, this reliability
index β should reach a target value βt, which represents the general requirement
to the safety of the RC structure.

For design purpose, each random variable in the limit state function corresponds
to a nominal design value specified by a structural design code, in case of a RC
structure; for example, the ACI, CSA or Eurocode 2.

Therefore partial safety factors, denoted by γ, are used. Those factors are nothing
else than scaling factors that allow the designer to convert a nominal design
value xnom of a variable to a value x∗, needed to satisfy Equation (4.13) for the
target βt. (Nowak and Collins, 2000, p.229)

γi =
x∗i

xi,nom
(4.16)

In this case, Equation (4.15) can be transformed into a so-called load and resistance
factor design (LRFD). (Köhler et al., 2012)

zi
Rnom

γm
− αiγGGnom − (1− αi)γQQnom = 0 (4.17)
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Where γm, γG and γQ are the corresponding partial safety factors for the resis-
tance and for the load. zi is the design variable that is defined by the chosen
dimension of the structural component. In additional αi describes the ratio be-
tween permanent and variable load and is defined in the range from 0 to 1.
Within the Eurocode5 the nominal values are so-called characteristic values and
correspond to fractile values of the random variables. (Köhler et al., 2012)

According to Eurocode 0 (2012) a target β of βt = 4.7 (p f ≈ 10−6) after 1 year and
βt = 3.8 (p f ≈ 10−4) after 50 years should be reached, assuming no deterioration
of the RC structure. This can be ensured by using a suitable set of partial safety
factors (γm = 1.4, γG = 1.35, γQ = 1.5) and a permanent to variable load ratio of
α = 0.5.

5In case of concrete structures published under Eurocode 2 (2004).
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“If we knew what it was we were doing,
it would not be called research, would it?”
(Albert Einstein)

To work with the previous proposed DCM for the degradation of concrete, caused
by chloride induced corrosion, it must be implemented in a computational model.
Therefore, the high-level programming languages Python and C++ are used.

5.1 Computational Model

Performing BNs and SRA requires a complex mathematical algorithm as shown
in chapter 2 that has to be implemented in an appropriate programming language.
For both BNs and SRA different software packages are available; for example,
HUGIN, GeNIe and SMILE, STRUREL or FERUM. However, none of these
are capable to handle BNs and SRA at once. Furthermore, the majority of the
software packages are proprietary, hence the source code is not available.

Under these aspects new software packages, in form of Python libraries, are
developed within the scope of this work. The code and the documentation is
published under the GNU General Public Licence1 and is online available. A
detailed description is beyond this work, so only an overview will be provided.

5.1.1 Reinforced Concrete Structural Reliability - CoRe

Main part of the library is the module Concrete Reliability (CoRe)(Hackl, 2013b).
Here the physical model from chapter 3 is implemented. Beside the exposure to
carbonation or chloride penetration, the propagation and effects of corrosion, also
the geometric and load properties can be defined. CoRe includes also methods
for summarizing output and plotting.

1More information about GNU General Public Licence is available under http://www.gnu.org/
licenses/
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5.1.2 Structural Reliability Analysis with Python - PyRe

PyRe ( Python Reliability ) is a Python module for structural reliability analysis.
Its flexibility and extensibility make it applicable to a large suite of problems.
Along with core reliability analysis functionality, PyRe is also used to define
different random variables, which are used in CoRe.

PyRe provides the functionalities, which are described in section 2.3; for example,
FORM, SORM, CM and IS analysis. In addition, the correlations between the
random variables can be modeled. (Hackl, 2013c)

5.1.3 Simple Bayesian Network with Python - PyBN

To handle BNs, the module PyBN ( Python Bayesian Networks ) is developed. The
theoretical background, which is covered in the program code, is explained in
section 2.2. However, the field of Bayesian networks and decision graphs contain
a lot more as provided in PyBN, here only the major features are implemented.
To use analysis tools, graphical representation or other advantage functions,
PyBN is capable to export data to GeNIe and SMILE. (Hackl, 2013a)

5.1.4 Discretization of a Continuous Random Variables

In order to provide a computational model, continuous random variables have to
be discretized. For the SM all nodes which occur in the BN, have to be expressed
as discrete variables. Due to the limited power of computers, a discretization
with only seven intervals for the random variables of chloride induced corrosion
is possible.

Performing some simplifications as explained in chapter 4, the amount of con-
tinuous random variables can be decreased to two. Based on the boundary
conditions of the DuraCrete (2000b) model, only the concrete cover depth dc
and the temperature T have to be discretized. Beneficially, these two random
variables are shared parameters and subjects of the decision making process.
Therefore, the accuracy and the size of the discretization interval is part of the
decision problem.

For instance, if the cover depth dc is known from construction plans, the input
variable can be eliminated to a constant variable. Furthermore, the variation of
the initial depth is taken into account. In the reminder of this work the cover
depth is discretized into eight values from 15 mm to 85 mm with a step size of
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10 mm. This approximation covers the majority of the values that are suggest in
the current design codes.

The discretization of the temperature T is more complicated, because an infinite
variety of values is possible, which is related with the location of the RC structure.
If distributions for the temperature are available, then the temperature can be
included in the probability of failure just as the other random variable. Is no
information available, an useful level of discretization has to be chosen. Here is
the temperature assumed in the interval from −5 ◦C to 30 ◦C with a step size of
5 ◦C.

5.2 Sensitivity Analysis

After modeling the previously discussed BNs in CoRe, different analysis methods
can be performed on the SMs and the CM.

To investigate the robustness of the output probabilities of a BN, a sensitivity
analysis can be performed. Therefore, Castillo et al. (1997) and Kjaerulff and
Gaag (2000) proposed a method for sensitivity analysis that are implemented in
GeNIe.

In a general mathematical context, sensitivity analysis is the computation of
the effects when changing the input parameters or assumptions on the output
values. (Morgan and Small, 1992, p.39) For BNs this means, more specifically,
how sensitive CPDs of a target node are to small changes in the parameters and
evidences values. (Castillo et al., 1997)

Briefly explained, each entry of a CPD has its own sensitivity, defined as the
value of derivative at x of a function y = P(x), where y is the posterior of the
target node and x the value of the specific parameter in the CPD. Since targets
can have more than two states and more than one target can be enabled for
sensitivity calculation, each CPD entry may have multiple values for each pair of
target and target outcome.

The maximum sensitivity value per node can be divided by the maximum
sensitivity value per network, so that a normalized value can be determined
over the network. Since sensitivity depends on a set of evident nodes, every
modification changes the sensitivity.
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5.2.1 Sensitivity Analysis for Carbonation Induced Corrosion

A sensitivity analysis on the BN for carbonation induced corrosion, shown in
section 4.2, should provide information about how the state of each model
parameter impacts on the target node, in this case the probability of carbonation
induced corrosion p f ,ca. Due to an evaluation prediction of importance and
influence of each variable can be made. This information may influence future
interpretations of the model or may show critical variables for the decision
making process.
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Figure 5.1: Sensitivity analysis for the BN of carbonation induced corrosion after 50 yr with the target
node p f ,ca. (a) No evidence is observed. (b) A low concrete cover depth dc is observed. (c)
A high concrete cover depth dc is observed. (d) Evaluation after 10 yr with no evidence.
(e) Evaluation after 100 yr with no evidence.

As shown in Figure 5.1(a), with no observation and an exposure time of 50 yr,
the concrete cover depth dc has a huge impact on the SM. This correlates with
the major fact, that the cover is a important parameter to protect the steel bars
against corrosion.

With measurements, information from construction plans, or other methods the
concrete cover dc can be estimated (or observed). Is a (b) low concrete cover
observed, the impact of the age factor nca and the grade fc increases. In contrast,
a (c) high concrete cover can be obtained, then the impact of the execution
parameter ke,ca is leading. However, the value of the sensitivity index rapidly
decreases caused by the fact that the probability of carbonation induced corrosion
from a high concrete cover is quite small (p f ,ca ≈ 6.86 · 10−6 or β = 4.3 with
dc ≈ 85 mm).
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Evolving over time represented in Figure 5.1(a), (d) and (e), the impact of most
parameters increases. Beside the concrete cover dc, the age factor nca becomes
the second most important parameter.

As it can easily be noticed, that there is a huge variety of different possible
settings which can be analyzed. For the development of a physical model for
carbonation induced corrosion, it may be interesting how individual model
parameters influence the model. However, from the perspective of a decision
maker, the scatter of the input parameters become more important. Therefore,
the simplified model, shown in Figure 4.9 can be used. Here only the shared
parameters and the probability of carbonation induced corrosion are represented
as nodes for the BN.

In the same manner, as shown previously, a sensitivity analysis can be performed.
GeNIe offers also the possibility to show the results of a sensitivity analysis in
form of a Tornado Diagram. The uncertainty in the parameter associated with the
largest bar, the one at the top of the chart, has the maximum impact on the result,
with each successive lower bar having a lesser impact. This arrangement is why
the result is called a Tornado Diagram. In Figure 5.2 the sensitivity Tornado for
the probability of failure, caused by carbonation after 50 yr, is represented.
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Sensitivity for Probability of Failure (Corrosion Observed)

Figure 5.2: Sensitivity Tornado for the simplified BN of carbonation induced corrosion after 50 yr
with the target node p f ,ca and a parameter spread of 10 % of the current value. The bar at
the top of the chart has the maximum impact on the probability of failure. Only the top
five settings are represented.

As shown in Figure 5.2, it is not surprising that the case where the concrete cover
is observed as 15 mm has the largest impact on the SM. But on the second and
third place are the influences of the concrete grade. Not only individual observed
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parameters have a huge impact on the model, but also combinations of different
observations can have influence, as it is shown in the fifth setting of the Tornado
Diagram.

5.2.2 Sensitivity Analysis for Chloride Induced Corrosion

Performing a sensitivity analysis for the parameters of chloride induced corrosion
based on the BN represented in Figure 4.2, leads to the selected results shown in
Figure 5.3.
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Figure 5.3: Sensitivity analysis for the BN of chloride induced corrosion after 50 yr with the target
node p f ,cl. (a) No evidence is observed. (b) A submerged zone is observed. (c) A atmo-
spheric zone is observed. (d) Evaluation after 10 yr with no evidence. (e) Evaluation after
100 yr with no evidence.

Without an evidence (a) not the concrete cover dc but the environmental exposure
ee has the highest impact on the probability of chloride induced corrosion. After
observing, for example, a submerged zone (b), the impact of the children of node
ee increases. Especially, the impact of the age factor ncl and the environmental
parameter ke,cl; moreover, the effects of the concrete cover dc decreases. By observ-
ing an atmospheric zone (c), the sensitivity index of the age factor ncl increases
again. However, now also the influence of the chloride surface concentration Cs,cl,
the concrete cover dc and the critical chloride concentration Ccrit grows.

Considering an evolvement over time, represented in Figure 5.3(a), (d) and (e),
it can be observed that the impact of the environmental exposure ee increases,
while the importance of the concrete cover dc decreases.
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In the Tornado representation of the simplified BN, shown in Figure 4.10, becomes
the fact apparent that the environmental exposure ee is the leading parameter for
chloride induced corrosion for the DuraCrete (2000b) proposed model. Only on
place five comes the effect of a low concrete cover, as shown in Figure 5.4.
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Figure 5.4: Sensitivity Tornado for the simplified BN of chloride induced corrosion after 50 yr with
the target node p f ,cl and a parameter spread of 10 % of the current value. The bar at the
top of the chart has the maximum impact on the probability of failure. Only the top five
settings are represented.

This leads to the conclusion that for a decision making process the information
of the current environmental exposure ee is more valuable than any information
of the other parameters. While a precise description of the concrete cover dc, the
w/c ratio and the curing period can be made, the definition of the environmental
exposure ee; for example, the different zones of the marine environment is quite
difficult to make, as explained in section 3.2. Also a variation of the environmental
exposure over time is not excluded. In order to develop a more accurate model of
chloride induced corrosion, these effects should be taken into account. Therefore,
see section 5.3 and section 5.4.

5.2.3 Sensitivity Analysis for Propagation of Corrosion

Analyzing the behavior of the propagation of corrosion based on the model from
Nilsson and Gehlen (1998), the present of chlorides is an important fact as shown
in Figure 5.5. There are also model parameters, which are defined as constant
values. To evaluate the impact of these variables on the physical models, values
in the range of ±10 % are assumed.

101



5 Implementation and Analysis
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Figure 5.5: Sensitivity analysis for the BN of propagation of corrosion after 50 yr of chloride pen-
etration with the target node Vcorr. (a) No evidence is observed. (b) Chloride induced
corrosion p f ,cl occurs. (c) No chloride induced corrosion p f ,cl is observed.

Apart from the probability of chloride induced corrosion p f ,cl, the chloride
corrosion rate factor FCl and the temperature parameter T have a great impact on
the SM. Since the value p f ,cl evolves over time, this value should be, for further
analyzes, either (b) “yes”, meaning that chloride induced corrosion occurs or (c)
“no”, meaning chloride corrosions.

If (b) chloride induced corrosion occurs, the impact of the chloride corrosion
rate factor FCl and the temperature parameter T increase rapidly. Humidity
RH and the humidity factor kRH,r only play a minor role. Can no chloride
induced corrosion be observed, then also the chloride factor kCl,r and the chloride
corrosion rate factor FCl are evident. In general, the impact of all variables on the
physical model decreases and the influence of the constant variables mo, FO2 and
FGalv are determining the state of Vcorr.

Also an evaluation of the simplified BN from Figure 4.11 results in the fact that
the parameters p f ,cl and T have the major impact on the model. Therefore, the
effect of Humidity RH can be neglected.

5.2.4 Sensitivity Analysis for Pitting Corrosion

The sensitivity analysis for pitting corrosion per se is quite complicated, because
the corrosion rate Vcorr and the time, since the structure is exposed to corrosion
tcorr, are depending on various other assumptions. If it is assumed that these
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values are observed; for example, a low corrosion rate over a fix period of time,
then the nominal bar diameter ds,o is almost the only impact on the physical
model. If also the bar diameter is known, then the pitting factor Rpit and the
uniform capacity length LU gain more influence.

5.2.5 Sensitivity Analysis for Concrete Degradation Caused by Corrosion

Considering a sensitivity analysis for the CM as shown in Figure 4.7, (a) in the
case of no evidence the nominal bar diameter ds,o and the yield strength fy,o are
the most dominant parameters for the probability of failure p f . This is a plausible
result according to the fact that only the consequences caused by corrosion are
considered to have influence on the structural reliability, allowing to neglected
geometrical and load properties.

Assuming that the bar diameter and the yield strength are observed (b), here
for example, a medium diameter of ds,o = 16 mm and a yield strength of fy,o =
500 N/mm2, then the results of the sensitivity analysis change completely as
shown in Figure 5.6. The concrete cover dc, the environmental exposure ee and
the chloride corrosion rate factor FCl become the major impact factors, as already
obtained previously in the SM.

ds,o fy,o dc ee w/c tcur Cs,cl Ccrit FCl

0

0.2

0.4

0.6

Random Variables of the Bayesian Network

Se
ns

it
iv

it
y

(a)
(b)

Figure 5.6: Sensitivity analysis for the BN of concrete degradation caused by corrosion after a service
life of 50 yr. (a) No evidence is observed. (b) A medium bar diameter of ds,o = 16 mm and
a yield strength of fy,o = 500 N/mm2 is observed.
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5.2.6 Comments to the Sensitivity Analysis

However, the proposed results in Figure 5.6 should be treated qualitatively and
not quantitatively, because of the fact that the BN is rather huge and the software
GeNIe is limited by the size of the CPDs. So only a discretization of five to seven
intervals for the model parameters are possible in order to perform a sensitivity
analysis.

Comparing the sensitivity analysis from the SMs with the simplified models, the
same trend can be observed. It also follows the analysis of the CM trend of the
SM.

Already mentioned several times, the appropriated discretization is the problem
of. Beside the limitation on the amount of intervals, it is also the question of
the optimal interval size; especially, by dealing with different kinds of random
variables.

For example, the corrosion rate Vcorr changes from a likely normal distributed
random variable with a mean of approximately 0.004 mm/yr and a CoV = 0.2, to
a likely lognormal distributed random variable with a mean around 0.011 mm/yr

(CoV = 0.2), if chloride induced corrosion is observed. Increasing the amount of
intervals is limited on the one hand side by the size of input parameters ρ, mo,FCl ,
FO2 and FGalv, which are itself limited by the size of their parents. On the other
side they are limited by the size of the other input parameters that influence the
child pmax of Vcorr. To represent different random variables in this node, with
the limitation of the intervals, an optimal interval size must be found, which is a
complicated process considering the complex relationships in the BN.

This problem occurs several times in the BN, which leads, beyond a poor approx-
imation of the random variable, to an error propagation over the total BN. To
circumvent this problem simplifications of the BN are performed as explained
in section 4.7. However, to keep a “complete” BN further researches have to be
done on discretization of continuous random variables in the context of physical
models and reliability analysis.

5.3 Initial Condition Analysis

The probabilistic models for the case of corrosion initiation and propagation,
caused by carbonation or chloride penetration, are functions of a number of
random variables, discussed in chapter 3. The simplified models in chapter 4

have reduced the amount of random variables to a set of shared parameters.
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These parameters can also be called initial condition indicators and are used
in the probabilistic model as prior estimations for the probability that the RC
structure is in a condition state at some defined time period during its service
life. (Malioka, 2009, p.75)

Initial condition indicators, mainly based on design specifications, are used
for the decision making process, as mentioned previously. Current service life
models like DuraCrete (2000b), LIFECON (2003), fib Bulletin 34 (2006) and others
use such parameters for their probabilistic model.

In the DuraCrete (2000b) model for degradation of concrete, caused by chloride
induced corrosion, these conditions are the following: concrete cover dc, w/c
ratio, curing time tcur, environmental exposure ee, nominal bar diameter ds,o,
relative humidity RH, temperature T and the time since when the RC structure
is exposed to corrosion tcorr. A graphical representation of these structures is
given in Figure 4.14.

However, current models and research papers assume that these initial condition
indicators can be exactly specified for the purpose of analyzing the corrosion
process. For example, Malioka (2009) assumed a curing time tcur of 7 days,
Osterminski and Schießl (2012) used a w/c ratio of 0.50 and an environment
exposed to splash water and Stewart (2012) used an uniform capacity length of
reinforcement bar LU of 500 mm, beside some other assumptions, for evaluating
their models.

The question is if it is right to make such strong assumptions on the input
parameters of a probabilistic model? Especially, in the context that those models
are used to evaluate already existing RC structures. Uncertainties, lack of infor-
mation or evolving in time, are not considered here. For example, the behavior
of the whole model changes if a w/c ratio is 0.40 instead of 0.50 or a tidal zone
changes to a splash zone event.

To make existing service life models more accurate and realistic, the framework
of BNs can be added to the classical SRA, as shown in chapter 4. This allows, on
the one hand, to deal with uncertainties by the input parameter of the model
and on the other hand to consider dependency in time.

5.3.1 Assumptions for the Initial Condition Analysis

To use a BN the initial condition indicators have to be discretized. The values and
the amount of discretization is explained for each parameter in the according
section. Thereby a uniform distribution for the values is assumed, which can be
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interpreted as if there is no information about the parameter. If exact information
is available or a prediction can be made, then the probabilities for the single
values can be adapted. For example, according to current standards the concrete
cover is around a mean value dc ≈ 10 mm.

Analyzing one specific parameter, it is assumed that all other input variables are
unknown, such that there is no evidence in the BN. Furthermore, the analysis
extends over a period T of 50 yr with a step size t of 1 yr.

The DCM for degradation of corrosion caused by chloride induced corrosion,
which is discussed in section 4.7.3 is used for the analysis. Here the results are
subdivided into two parts, according to the basic model proposed by Tuutti
(1982). The first one covers the probability of chloride induced corrosion p f ,cl
and is related to the initiation phase. The second one deals with the probability
of failure of the RC structure, which corresponds to the propagation phase.

The following sections provide a brief overview over the major input parameters.
A discussion over the relevance in context of structural reliability, code calibration
or optimal maintenance strategies, can be found in chapter 6.

5.3.2 Concrete Cover

The importance of the concrete cover dc has been discussed previously and the
sensitivity analysis confirms this assumption. As an initial condition indicator
the concrete cover dc can be used to provide a prior estimate of the structural
performance.

Normally, the value of this variable is defined in the design process as the
nominal concrete cover depth and represented by a single value. (Malioka, 2009,
p.76) However, an analysis with BNs allows to define a set of these parameters
and assigns a probability of occurrence to each value. This property may be
useful if there is no evidence of the real nominal concrete cover. As it will be
described later, concrete cover depth measurements can be performed during the
service life or the RC structure. When such new information becomes available
this prior probability estimation can be updated.

For the following analysis a set of eight input values, in the range between 15 mm
and 85 mm with a step size of 10 mm, is chosen. The effects of the concrete cover
dc on the probability of chloride induced corrosion p f ,cl and on the probability
of failure p f are shown in figure Figure 5.7.
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Figure 5.7: Analyzing the influence of the concrete cover dc on the: (a) probability of chloride induced
corrosion (b) probability of failure.
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Figure 5.8: Analyzing the influence of the w/c ratio on the: (a) probability of chloride induced
corrosion (b) probability of failure.

5.3.3 Water-Cement Ratio

The w/c ratio affects the rate of ingress of harmful substances into the concrete.
The ratio can be defined based on the design specifications for the RC structure.
However, using the proposed data from the (DuraCrete, 2000b) model, only a
limited set of two w/c ratios are available, which restricts the significance of the
model enormously. However, using a BN with the opportunity to choose any
probability for occurrence of one value increases the possibilities immeasurably.
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5.3.4 Curing Period

The curing time parameter tcur affects the execution variable kc,cl in the probabilis-
tic model for chloride induced corrosion. A limited set of data is provided in the
DuraCrete (2000b) model, in which 1, 3, 7 or 28 days can be chosen. Furthermore,
experimental data shows that tcur > 28 can be represented by tcur = 28.

The exact estimation of the curing period tcur for an existent RC structure is not
always possible. Hence, using a BN framework allows to take those uncertainties
into account.
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Figure 5.9: Analyzing the influence of the curing period tcur on the: (a) probability of chloride induced
corrosion (b) probability of failure.
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Figure 5.10: Analyzing the influence of the exposure environment ee on the: (a) probability of chloride
induced corrosion (b) probability of failure.
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5.3.5 Exposure Environment

As pointed out in the sensitivity analysis, has the environmental exposure ee a
major impact on the physical model, both the SM and the CM. The exposure
environment is required as an input parameter for the surface concentration of
chloride Cs,cl, the environmental parameter ke,cl and the age factor ncl.

Even if the exposure environment ee is a major parameter for the probabilistic
model of chloride induced corrosion, the definition is not very obvious. For
example, the marine environment is subdivided in four different zones, each of
which is depending on the sea level, as explained in section 3.2.1.

It is hard to evaluate where the borders between atmospheric, splash, tidal and
submerged zones are. In the context of future spatial evaluations, it is not realistic
to assume that the zone changes abruptly between two different elements. As
well it is likely that the zone can changes during the service life of the RC
structure by natural events or human intervention.

5.3.6 Bar Diameter

Given a RC structure, then the bar diameter ds is, beside the compressive strength
of concrete fc and the yield strength fy, a major component. Considering degra-
dation of the RC structure caused by chloride induced corrosion, the bar diameter
becomes the most important parameter. This is shown in previous section and is
caused by the fact that pitting corrosion decreases the steel area of the reinforce-
ment.

A limited set of data allows only to evaluate three kinds of bar diameter ex-
actly (Stewart and Al-Harthy, 2008). BN reduces this limitation as explained
previously.

5.3.7 Relative Humidity and Temperature

Relative humidity RH and temperature T are supposed to influence the corrosion
rate Vcorr, which in turn influences the bar diameter. The determination of these
parameters is easier and exacter than all the other ones. However, the high
degree of time dependency makes it difficult to include the humidity and the
temperature in a standard model.

A DBN allows to model those evolvings in time as shown in Figure 5.12. A
limitation is done by the size of the CPD, which will be necessary by discretization
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of a continuous variable such as the temperature T. Here the temperature is
modeled from −5 ◦C to 30 ◦C with a step size of 5 ◦C. The relative humidity is
limited by the DuraCrete (2000b) model to five values.
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Figure 5.11: Analyzing the influence of the bar diameter ds,o on the probability of failure.
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Figure 5.12: (a) Analyzing the influence of the relative humidity RH on the probability of failure. (b)
Analyzing the influence of the temperature T on the probability of failure.

5.4 In-Service Condition Analysis

As the name initial condition analysis indicates, those parameters represent
initial conditions for the probabilistic model of concrete degradation caused by
chloride induced corrosion. The knowledge provided by them can be seen as
prior information. During service life several parameters may change and/or the
RC structure evolves differently in time as expected.
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5.4 In-Service Condition Analysis

Hence, the information about the condition of the RC structure can be collected
during the service life. One way is to use monitoring for the RC structure and
collecting continuously data about the condition states. An other option is to do
selective inspections of the condition of interest during the service life.

To collect information about the current condition of the RC structure, several
different methods have been developed. A brief overview for some of the available
techniques is proposed by Broomfield (2007).

However, typical non-destructive methods that can be performed for degradation
of concrete caused by chloride induced corrosion, are: (Faber, Straub, et al.,
2006)

• visual inspection
• cover depth measurement
• half-cell potential measurement

Based on the concept proposed by Faber and Sorensen (2002), the parameters for
the physical model, which represents prior information, can be updated if new
information based on inspections or monitoring becomes available. This can be
modeled by the following two probabilities:

P(Xi|Yj) = pk (5.1)

Where pk represents the probability that the inspected component is in any
condition state Xi given the indication Y j.

P(Xi|Ȳj) = pl (5.2)

Where pl represents the probability that the inspected component is in any
condition state Xi given non-indication Ȳ j.

5.4.1 Visual Inspection

The visual inspection (VI) is the first step in any investigation. It should give a
first indication of the condition of the RC structure. The accuracy of a visual
inspection is inbetween the range from a simple general impression of the RC
structure, to an identification of every defect that can be seen on the concrete
surface. (Bertolini et al., 2004, p.273)

Visual inspections are relative simple to perform and can provide accurate
information about the visible condition states, which are related to corrosion. For
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5 Implementation and Analysis

example, “rust” stains, cracking and spalling are some possible results of what
can be observed.

However, visual inspection is limited by several tasks. For instance, the surfaces
of the structural components have to be accessible, but the main limitation is
the skill of the inspector. Some defects can be mistaken for others; for example,
different types of cracking can be attributed to different causes. (Broomfield,
2007, p.37)

Based on these assumptions, Faber, Straub, et al. (2006) proposed that whether
the probability of corrosion given by visual inspection, is observed or not, is
stated:

P(p f ,cl,y|Ivi) = 1 (5.3)

P(p f ,cl,y| Īvi) = 0 (5.4)

Where p f ,cl,y is the conditional state of “yes”, chloride induced corrosion occurs
and Ivi denotes indication of visible corrosion detected by visual inspection.

This approximation assumes that visual inspection is perfect. (Faber, Straub,
et al., 2006) This statement might be right for Equation (5.3) where it says that
if corrosion can be observed during an inspection, then corrosion occurs. But
the statement of (5.4), stating that if no corrosion can be observed, no corrosion
occurred so far, should be treated with caution. Especially, in the case of pitting
corrosion, which often does not cause disruptions of the concrete cover, as
discussed in section 3.7.

5.4.2 Cover Depth Measurement

As discussed in section 5.2 and shown in Figure 5.7, sensitivity analysis the con-
crete cover depth dc has huge impact on the probabilistic model for degradation
of concrete caused by corrosion.

In simple terms, low cover will favor the inset of corrosion because carbonation
and chloride reach the reinforcement more rapidly. (Bertolini et al., 2004, p.274)
A determination of the concrete cover may help to explain why the RC structure
is corroding and shows which areas are most susceptible to corrosion due to low
cover. (Broomfield, 2007, p.42)

Measurements of concrete cover can be easily combined with visual inspections.
The treatment of the new information is already discussed in section 5.3.2.

112



5.4 In-Service Condition Analysis

0 10 20 30 40 50
0

0.5

1

Time in Service

Pr
ob

ab
ili

ty
of

C
hl

or
id

e

pos
neg

ic
vc

(a)

0 10 20 30 40 50

0

0.02

0.04

0.06

Time in Service

Pr
ob

ab
ili

ty
of

Fa
ilu

re

pos
neg

no vi

(b)

Figure 5.13: Influence of visual inspection on the RC structure. The inspection is performed after
10 yr. The light shaded area denotes a positive indication and the dark shaded area a
negative indication of corrosion. (a) Probability of visible chloride induced corrosion
(vc) and initiated corrosion (ic). (b) Probability of failure caused by chloride induced
corrosion by a positive or negative indication or no visual inspection (no vi).

5.4.3 Half-Cell Potential Measurement

A widely recognized and standardized non-destructive method for assessing
the corrosion state of the reinforcement in RC structure is the half-cell potential
measurement (HCPM).

Because corroding and passive reinforcement bars show a different electrical
potential, as explained in section 3.6, showing current flows between these two
areas. The electrical field, coupled with the corrosion current Icorr between cor-
roding and passive area of the reinforcing steel, can be measured experimentally
with a suitable reference electrode (half-cell) placed on the concrete surface. The
result is a potential field that allows to estimate the location of corroding rein-
forcement. Thereby areas with the most negative values are more likely related
with corrosion. (Bertolini et al., 2004, p.277) Typically indicate more negative
values than −350 mV the probability of corrosion with a value of 90 %. (Johnsen
et al., 2003)

The quality of the HCPM is affected by different factors. For example, the
moisture of the concrete surface, cracks of the concrete surface, stray currents, or
electrochemical treatments, such as cathodic protection, electrochemical chloride
extraction and electrochemical re-alkalization, can influence the results of a
HCPM. (Broomfield, 2007, p.54)

Hence, the interpretation of a HCPM should be combined with other measure-
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ments and information. The quality of HCPM can be modeled in a general case
according to Faber, Straub, et al. (2006) as:

P(Ihc|p f ,cl,y) = pi,hc (5.5)

P(Ihc| p̄ f ,cl,y) = pj,hc (5.6)

Where the inspection is expressed through the probability of an indication of
corrosion initiation Ihc, given that corrosion occurs p f ,cl,y, or given that corrosion
does not occur p̄ f ,cl,y.

Lentz et al. (2002) and Johnsen et al. (2003) have proposed some representative
value for the probabilities pi and pj by using HCPMs. The values are related to
different structural components as shown in Table 5.1.

Table 5.1: Quality of the HCPM for different types of structural components. Where Ulim is the
corresponding limit potential in [mV] and pi and pj the obtained probabilities in [%]. Based
on Lentz et al. (2002).

Components Ulim pi,hc pj,hc

Joint data -207 90 24.0
Bridge arcs -238 90 1.3
Bridge decks -259 90 18.1
Columns next to retreets -193 90 33.1
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Figure 5.14: Influence of HCPM on the RC structure. The measurement is performed after 10 yr. The
light shaded area denotes a positive indication and the dark shaded area a negative
indication of corrosion. (a) Probability of chloride induced corrosion. (b) Probability of
failure caused by chloride induced corrosion by a positive or negative indication or no
HCPM (no hc).
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6 Case Studies

“Science is nothing but perception.” (Plato)

In the previous chapter 5 some analysis methods are discussed and results are
shown. However, these results only give a rough overview over the capability of
a DCM. For example, it is assumed that only one parameter is observed or that
values do not change over time. The model can be used for code calibration or
finding optimal maintenance strategies, too.

6.1 Comparison of Service Life Models

Several service life models have been developed to estimate the service life of
RC structures where a desired level of structural reliability is assured. Service
life models such as DuraCrete (2000b), LIFECON (2003), fib Bulletin 34 (2006),
or Life-365 (2013) are based on the approach proposed by Tuutti (1982). This
approach subdivides the service life of a RC structure into the following two
phases: the initiation and propagation phase, as discussed in section 3.3, which
are discussed in Figure 3.2.

Hence, different models are developed to describe the different phases of the ser-
vice life. However, these models are developed separately without taking models
for the other phase into account, as for example the herein treated DuraCrete
(2000b) model shows. Furthermore, the limit state for such service life models is
defined as the occurrence of a special event; for example, depassivation, cracking
or spalling. The “real” structural collapse, in terms of structural reliability, is not
treated.

Coupling those different models allows an analysis for the whole process of
corrosion. In other words the initiation process, the propagation process and the
mechanical performance of a RC structure are dependent on each other. This
leads to the result that the qualitative service life model proposed by Tuutti (1982)
actually can be represented as quantitative model.

In the DCM, a conventional initial phase is no longer outlined, which describes
the period during the depassivation of reinforcement, because of the fact that even
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Figure 6.1: (a) Qualitative two phases service life model for deterioration of a concrete structure due
to steel corrosion, based on Tuutti (1982). (b) Quantitative dynamic coupled model, in
case of no evidence.

in the first weeks the probability of corrosion onset is considered. This assumption
has been confirmed under experimental conditions and field conditions. (Pease
et al., 2011)

Instead, the initiation phase in the DCM describes the period of time where no
significant loss of structural performance can be expected, here denoted by tsp.
This criteria is related to the general requirements concerning the safety of the
RC structure, in terms of a reliability index β as shown in Figure 6.2(b).
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Figure 6.2: (a) Probability of failure p f caused by chloride induced corrosion (b) Reliability index β
over the service life.

The period of time tsp depends not only on the models for carbonation and
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chloride induced corrosion but rather on the whole DCM, which includes also
the propagation and the effects of corrosion.

6.2 Structural Codes and Concrete Cover

Since corrosion of reinforcing bars leads to a decrease of the structural per-
formance, this issue is treated in structural codes for the design of concrete
structures. Therefore, the concrete cover is a variable that takes the protection of
the reinforcement against corrosion into account.

However, most structural codes assume a minimum concrete cover depending on
the exposure conditions in terms of chemical and physical conditions, to which
the RC structure is exposed in addition to the mechanical actions. (Eurocode 2,
2004)

The range of this minimum cover varies from the range of 50 mm to 75 mm,
depending on the code. An overview for some structural codes is given in
Table 6.1. Additionally, the specification, performance and other properties of
concrete are recommended in specific codes. In case of concrete degradation
caused by corrosion using the DuraCrete (2000b) proposed approaches like the
w/c ratio and the cement content are therefore parameters of interest. Here the
upper limits of the w/c ratio should be in the range of 0.4 to 0.5, according to
the different codes.

Table 6.1: Durability requirements of some structural codes for corrosion of reinforcing bars. With
the maximum w/c ratio in [-] and the minimum concrete cover dc is in [mm].

Code w/c ratio cover

ACI (2011) 0.4 50

Eurocode 2 (2004),EN 206-1 (2000) 0.4 55

CSA (2004) 0.4 60

FIP (1973) 0.4 75

Where ACI, CSA and Eurocode 2 describe rather the durability requirements for
land based RC structures, the proposed values from FIP initial are recommended
for offshore concrete structures.

In comparison with the results from the DCM none of these codes fulfill the
requirements of a βt = 3.8 after 50 years, if nothing else is known then the
concrete cover dc and the w/c ratio as shown in Figure 6.3. Even if a lower value
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of βt is assumed (3.3), according to JCSS (2002) or (3.51) Stewart (2009), none of
the codes will reach them, except the FIP code, under the assumption that the
required service life is only 25 to 30 years for offshore concrete structures. (Gjørv,
2009, p.86)

Additional, if it is assumed that the values in Table 6.1 are for a splash zone of
an marine environment according to Gjørv (2009, p.91), then the FIP code will
fulfill all requirements.
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Figure 6.3: Influence of the concrete cover dc related to the structural codes. In case (i) the concrete
cover dc and the w/c ratio are observed. In case (j) also a splash zone is given. (a)
Probability of chloride induced corrosion p f ,cl dependent on the cover depth after 10, 30
and 50 yr. (b) Probability of failure p f . (c) Reliability index β over a period of 50 yr for a
concrete cover dc of 15 and 85 mm. (d) Reliability index β dependent on the cover depth
after 50 yr.
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7 Conclusion

“Nichts ist getan, wenn noch etwas zu
tun übrig ist” (Carl Friedrich Gauß)a

aNothing is done, if there is still some-
thing left to do.

7.1 Overview

The purpose of this work was to develop a generic framework for stochastic
modeling of reinforced concrete deterioration caused by corrosion. Thereby, the
ideas of structural reliability analysis and Bayesian networks were combined.

7.1.1 Dynamic Coupled Model Framework

The concrete deterioration caused by corrosion is a complex physical, chemical
and mechanical process. The modeling of this process is subjected to significant
uncertainties, which are based on a simplistic representation of the actual phys-
ical process and limited information on material, environmental and loading
characteristics.

During the last decades several service life models have been developed to
estimate the length of time during which RC structures maintain a desired level
of functionality. All of those probabilistic models are based on the classical
concept developed by Tuutti (1982). Where the service life is divided in two
distinct phases: the initiation and the propagation of corrosion.

However, for each phase several (independent) models are developed. Hence,
the probabilistic models for the initiation phase (carbonation and chloride propa-
gation) can not be combined with the models for the propagation phase (propa-
gation and effects of corrosion) in terms of a unified model, which is necessary
to provide a consistent model, starting by the edification of the RC structure and
ending by reaching a critical limit state but also evolving over time.
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7 Conclusion

The present work proposes a DCM framework, based on SRA and BNs, which
allows to couple the probabilistic models for the initiation and propagation
of corrosion. Thereby uncertainties by model parameters, but also additional
information, provided by measurements, monitoring and inspection results, can
be considered.

Using the presented simplification and optimization of the SMs, the critical part of
discretizing a continuous random variable for BNs can be reduced to a minimum
amount or even eliminated. This allows to expanding the CM over a period of
time and updating the model when new information becomes available.

The treated DCM framework can be used for any kind of probabilistic model
that, describing the phenomena of corrosion. This allows to use different models
even for the same physical process and if new enhanced models are available,
they also can be simply embedded in this framework.

7.1.2 Analysis

This thesis shows that not only a coupling of different probabilistic models is
feasible, but performing different analyzes to a previously unknown scale are
also possible.

Current service life models assume that the limit state of a RC structure is
defined as the occurrence of a special event; for example, depassivation, cracking
or spalling, but the structural safety in terms of structural reliability is not
treated.

The proposed framework allows, beside the sensitivity analysis of each parameter
over all used probabilistic models, also the estimation of the structural safety in
terms of reliability index and probability of failure.

Suggestions from design codes and information from the design process can be
implemented in the model and used for the analysis of future or existing RC
structures. The framework is also capable to consider new information in any
point of time by the analysis.

This allows, beyond a standard analysis, also the analysis of measurements,
monitoring and inspection results and their influence on the RC structure.
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7.2 Outlook

In this thesis several different topics are covered. The range reaches from mathe-
matical over physical and chemical to engineering problems. During the research
process, open questions and new ideas have arisen.

7.2.1 Probabilistic Models

As mentioned previously the DuraCrete (2000b) model is implemented in the
framework and represents only a limited set of data. Other enhanced probabilistic
models can be added to the DCM. This allows apart from dealing with more
specific input parameter also a comparison of different models which describing
the same physical phenomena.

Because the proposed framework is not limited in terms of probabilistic models,
such that it can be used for other physical problems; for example, corrosion of
steal structures or pipelines, but maybe also the deterioration process of timber,
caused by fungal infestation.

7.2.2 Bayesian Framework

The BNs themselves offer huge opportunities that are not treated in this thesis so
far. Beside Bayesian updating of the model with new information, a BN can also
be used for learning on real data or estimating parameters.

As discussed in chapter 3 the provided data sets often have missing observations,
usually due to some logistical problem during the data collection process. The
easiest way of dealing with observations that contain missing values is simply to
exclude them from the analysis. However, this results in loss a of information if
an excluded observation contains valid values for other quantities, accordingly
it can bias results. An alternative is to impute the missing values, based on
information in the rest of the model. In a Bayesian modeling framework missing
data are accommodated simply by treating them as unknown model parameters.
This allows to estimate missing data and increases the scope and the validity of
future calculations.

Discretization of continuous random variables in the context of SRA is still a
problem. If BNs should be applied on a wide range of structural problems, than a
reasonable approach for discretization of continuous random variables is needed
for further research.
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7.2.3 Spatial Analysis

Keeping it feasable for the beginning, this work only considers one element
of a RC structure that is exposed to the process of corrosion. However, the
deterioration of concrete caused by corrosion is strongly related to spatial and
temporal variability. This property can be modeled by different approaches and
will be necessary for a holistic contemplation of the system.

7.2.4 Using Sensitivity Analysis

Beside the information how individual parameter influence the results of a
model, sensitivity analysis can be used in a wider framework. For example,
performing laboratory experiments to evaluate existing or new physical models.
The informative value can be increased while the costs can be decreased by using
sensitivity analysis to find the parameter of interest.

7.2.5 Optimal Maintenance Strategies

Schematically indicated in chapter 5 and chapter 6, information from measure-
ments, monitoring and inspection results can be included in the DCM. This
allows to develop optimal maintenance strategies in context of a given level of
structural safety, especially by adding decision and utility nodes to the BNs. In
combination with costs of maintenance, repair and expectations of the society, a
support tool for decision makers may be created.
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González, J.A., C. Andrade, C. Alonso, and S. Feliu (1995). “Comparison of
rates of general corrosion and maximum pitting penetration on concrete
embedded steel reinforcement”. In: Cement and Concrete Research Vol 25.No 2,
pp. 257–264. issn: 0008-8846.

Hackl, Jürgen (2013a). Python Bayesian Networks - PyBN (Version 1.0.1) [Software].
url: https://github.com/hackl/pybn.

Hackl, Jürgen (2013b). Reinforced Concrete Structural Reliability - CoRe (Version
1.0.1) [Software]. url: https://github.com/hackl/core.

Hackl, Jürgen (2013c). Structural Reliability Analysis with Python - PyRe (Version
5.0.1) [Software]. url: https://github.com/hackl/pyre.

Hasofer, Abraham M. and Niels C. Lind (1974). “Exact and Invariant Second-
Moment Code Format”. In: Journal of the Engineering Mechanics Division Vol
100.No 1, pp. 111–121.

Hohenbichler, Michael and Rudiger Rackwitz (1981). “Non-Normal Dependent
Vectors in Structural Safety”. In: Journal of the Engineering Mechanics Division
Vol 107.No 6, pp. 1227–1238.

HUGIN (2013). Hugin Expert (Version 7.7) [Software]. Hugin Expert A/S, Denmark.
url: http://www.hugin.com/.

Jaynes, Edwin T. (2003). Probability Theory: The Logic of Science. first edition. Cam-
bridge, Massachusetts: Cambridge University Press. isbn: 9780521592710.

JCSS (2002). Probabilistic Model Code. The Joint Committee on Structural Safety.

JCSS (2008). Risk Assessment in Engineering: Principles, System Representation and
Risk Criteria. The Joint Committee on Structural Safety.

Jensen, Finn V. and Thomas D. Nielsen (2007). Bayesian Networks and Decision
Graphs. second edition. Information Science and Statistic. Springer Publishing
Company, Incorporated. isbn: 9780387682815.

Johnsen, Tina H., Mette R. Geiker, and Michael H. Faber (2003). “Quantifying
Condition Indicators for Concrete Structures”. In: Concrete International Vol
25.No 12, pp. 47–54.

Jordan, Michael I. (2007). An Introduction to Graphical Models. In preperation.

126

https://github.com/hackl/pybn
https://github.com/hackl/core
https://github.com/hackl/pyre
http://www.hugin.com/


Bibliography

Kjaerulff, Uffe and Linda C. van der Gaag (2000). “Making sensitivity analysis
computationally efficient”. In: Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 317–325.
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