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Abstract 

This thesis aims to evaluate the accuracy, efficiency and robustness of a ‘Through 
Process Modelling’ concept tailored for analysis of the structural behaviour of welded 
aluminium structures. In short, the modelling concept relies upon the coupling of a 
welding simulation tool (WELDSIM), a microstructure model (NaMo) and a non-linear 
mechanical model (LS-DYNA). 

An experimental database addressing the capacity and ductility of simple welded joints
of 6xxx and 7xxx alloys have been established. The experimental database includes 
results from studies on butt-welded specimens of aluminium alloy AA6005, AA6060, 
AA6061, AA7046 and AA7108. Two tempers; T4 and T6 prior to welding were 
investigated and the subsequent effects of natural ageing (NA) and post weld heat 
treatment (PWHT) were assessed. Cross-weld tensile tests were carried out with digital 
image correlation (DIC) to record the inhomogeneous strain field in these specimens.
Variations of the mechanical properties of the material in the vicinity of the weld were 
further studied by hardness measurements. Uniaxial tensile tests were carried out to 
document and compare properties of unwelded and welded test specimens in the various 
conditions. Numerical investigations are carried out based on WELDSIM, NaMo and 
LS-DYNA for the AA6005, AA6060 and AA6061 alloys. The results are compared 
with the experimental data to identify present capability and limitations of the 
modelling approach.   
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Not
 

D rate-of-deformation tensor 
R orthogonal rotation tensor 
ˆ  co-rotational stress tensor 

 Cauchy stress tensor 
C fourth-order tensor of elastic constants 
E Young’s Modulus 
v Poisson’s ratio 
f̂  yield criterion 
q̂  scalar internal variables 

 effective plastic strain 
y  yield stress 
 effective stress 
 effective plastic strain rate 
 plastic multiplier 

1  major principal stress 

crW  fracture parameter 

ƒ  flow stress 

d  net contribution from dislocation hardening 

i  intrinsic yield strength of pure aluminium 

p  strength contribution from hardening precipitates 

F  mean interaction force between dislocations and particles 
l mean planar particle spacing along the bending dislocation 
M Taylor factor 
b magnitude of the Burgers vector 

ss  strength contribution from atoms in solid solution 

jC  concentration of a specific alloying element in solid solution 

jk  corresponding scaling factor of jC  
 numerical constant 

G  shear modulus 
1k  constant in the evolution equation for statistically storing of 

 dislocations 
2k   constant in the evolution equation for statistically storing of 

dislocations 
3k  parameter related to the solute dependence of k2 

,g o  geometric slip distance of non-shearable particles 

,
ref
g s  density of geometrically necessary dislocations (reference alloy) 
*  local plastic strain 
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c  critical macroscopic strain 
p  macroscopic plastic strain 

ˆ
MgC  equivalent Mg concentration 

of  volume fraction of non-shearable particles 
V voltage 
AA aluminium alloy 
HAZ heat affected zone 
PWHT post weld heat treatment 
NA naturally aged 
T4 solution heat treated and naturally aged  
T6 solution heat treated and artificially aged 
T7 solution heat treated and overaged or stabilized 
KTL heat treatment used by car manufacturers (German abbreviation) 
s0.2 yield stress at 0.2% permanent strain 
sult ultimate engineering tensile strength 
DIC digital image correlation 
udic deformation from DIC technique 
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uch deformation from crosshead 
s nominal stress 
A  cross section area 

0A  initial cross section area 
F  force 
D deformation capacity 

0.2P  conventional strength at 0.2% permanent strain 

uP  ultimate strength in uniaxial tensile test 
u  deformation corresponding to uP  
0.2  deformation corresponding to 0.2P  

eu engineering strain at diffuse necking or maximum load 
HV  Vickers hardness   
L radius of local thinning 
NL radius of non-local thinning 
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1 Introduction 

1.1  Background 

Welded components made of age-hardening aluminium alloys are to an increasing 

extent used within the transport and automotive industries due to their high strength, 

good formability, low density, and good resistance to general corrosion. However, in 

certain cases, the application of such alloys is restricted by a low strength in the heat 

affected zone (HAZ) due to softening reactions occurring during welding, which tend to 

reduce the overall load-bearing capacity of the component. In order to utilise the 

properties of aluminium alloys fully, a better understanding of the strength and ductility 

of welded joints is needed. In particular, it is imperative to be able to account for the 

effects of this manufacturing process on the structural crashworthiness. Proper 

modelling tools and concepts are required to meet the industrial need for rapid 

development and low cost of new products. 

 

Figure 1.1 (a) and (b) show possible process routes for the manufacturing of a 

welded automotive sub-structure, where a number of different processing conditions 

and alloy combinations are feasible. Aluminium alloys have a strong memory of the 

previous processes, and thus a modelling procedure able to follow the process route and 

thereby, to properly predict the structural response is required. Such a procedure, which 

is illustrated by Figure 1.1 (c), is often denoted ‘Through Process Modelling (TPM)’. 

The evaluation of a particular TPM concept for applications within the automotive 

industry is the topic of the present investigation. 

1
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The present study is focused on a limited number of ‘downstream’ thermal 

process steps, as indicated by the orange frame in Figure 1.1 (a), while addressing a 

number of initial conditions, alloys and Post-Weld Heat Treatment (PWHT) procedures, 

see Figure 1.1 (b).
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Figure 1.1: (a) A typical processing route for manufacturing of welded 
automotive components [20], (b) possible process and material combinations 

and (c) schematic temperature history for a specific material point in the 
structure as a basis for Through Process Modelling (TPM).
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1.2  Review of previous works 

Attempts of predicting the deformation behaviour, strength and ductility of welded 

components have been done by many researchers.  

 

Matusiak [18] provided experimental data for planar butt and fillet welded 

connections and for the structural behaviour of welded beam-to-column joints in 

aluminium alloy 6082-T6. The joints consist of an unstiffened I-section subjected to a 

transverse tensile force by means of a plate fillet welded to the flange. His modelling 

efforts showed that the behaviour could be reproduced numerically, provided the 

mechanical properties of the material in the weld zone were correctly represented. 

However, it was beyond the scope of his work to properly predict the ultimate failure of 

the structure. 

 

Nègre et al. [36] used the Gurson-Tvergaard-Needleman fracture model (GTN) 

for the simulation of crack extension due to ductile tearing of laser welded aluminium 

sheets. Good agreement was obtained between experiments and simulations. 

 

Hildrum [12] studied the behaviour of butt-welded stiffened panels made of 

aluminium extrusions subjected to impact by a dropped object. The weld and HAZ were 

modelled with reduced strength, and the Lemaitre damage model was used to predict the 

response until failure. The numerical simulations predicted reasonably well the plastic 

instability (strain localization) and fracture process observed in the experiments. 
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Zheng et al. [15] studied the fracture of butt welds, using local strain gauge 

measurements and a single-parameter, mesh-dependent fracture model to fit the 

experimental data. The method has been extended in several papers, predicting fracture 

initiation and growth for structures under crash and impact loading.  

 

Wang et al. [41] used shell elements to model the welded beam-to-column joints 

previously studied by Matusiak. The textured alloy was modelled using an anisotropic 

plasticity model, and the inhomogeneous work-hardening properties of the HAZ were 

accounted for in the material modelling. It was found that the numerical results were 

strongly mesh dependent. To obtain reliable results for both strength and ductility, the 

concept of non-local plastic thinning was used in the HAZ. This procedure reduces the 

mesh dependence of the strain localization at the cost of introducing one additional 

parameter, namely the radius of the non-local domain. The non-local approach was 

originally proposed by Bazant and Pijaudier-Gabot in 1988 [44]. 

 

Based on fundamental metallurgical principles, Myhr et al. [29] did process 

modelling for 6082-T6 aluminium weldments. They discussed how the hardness 

distribution in the HAZ depended on the interplay between two competing processes; 

dissolution and reprecipitation. Their microstructure model was based on elements from 

thermodynamics and kinetic theory that allowed predicting the hardness distribution 

after reheating and subsequent natural ageing, with a minimum of unknown calibration 

constants. 

 

5
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Myhr et al. [26, 28] combined precipitation, yield strength, work-hardening and 

mechanical models with the aim to optimize the performance of welded automotive 

components made of age hardening Al-Mg-Si alloys. They concluded that the main 

parameters that influence the structural performance in addition to the geometry and 

boundary condition are the; alloy composition, initial base plate temper condition, 

applied heat input during welding and subsequent post weld heat treatment. This model 

concept is the motivation of the present study as these parameters are accounted for in 

the numerical simulation. 

 

Dørum et al. [5] investigate two methods for estimating the ductility in large-

scale analyses of welded aluminium connections. The first approach was to link the 

element size to the length scale of failure mechanism and the second approach was to 

'lump' the weakest zone of the HAZ into rows of cohesive elements and the 

corresponding traction-separation law. The local necking and fracture in the HAZ were 

modelled in an efficient way by these approaches. This study was a purely numerical 

one, i.e. it lacked validation against experimental data. Their study provides valuable 

comparisons between approaches based on brick, shell and cohesive elements, of strong 

relevance to the present study. 

 

It can be concluded that, in order to obtain realistic simulation of the material 

response of age hardening aluminium alloys, due consideration must be given to 

welding and physically based yield strength and work hardening modelling. Thus, this 

thesis will build upon the work of Myhr et al. [26, 28] and aim to evaluate its accuracy, 

6
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efficiency and robustness when applied to different alloys, initial conditions and PWHT 

schemes.  

 

1.3  Objective 

Primary objective: 

The overall objective of the present study is to evaluate the accuracy, efficiency and 

robustness of the ‘Through Process Modelling’ concept previously developed, discussed 

and evaluated by Myhr et al. [24, 25, 26, 28] and Dørum et al. [5]. The evaluation will 

cover various heat-treatable aluminium alloys in the 6xxx and 7xxx series, in different 

initial temper conditions and relevant PWHT schemes.  

 

Secondary objectives: 

1) To establish an experimental database addressing the capacity and ductility of 

simple welded joints made of heat-treatable aluminium structures suited for the 

overall objective.  

2) To perform numerical investigations based on the TPM concept.  

3) The numerical study shall document present capabilities and limitations of the 

present sub-model versions and identify needs for further research. 

 

 

7



Through Process Modelling of Welded Aluminium Structures 

 

1.4 Scope 

To meet with the objectives, it was decided to set up an experimental campaign on 

generic welded 'structures' in the form of simple butt welded test specimens that were 

subjected to cross-weld tensile testing. The campaign investigates effects of the main 

steps in the manufacturing of the joints; initial ageing and condition of the material, 

welding and PWHT. Five different alloys (AA6005, AA6060, AA6061, AA7046 and 

AA7108), two initial tempers (T4 and T6) and four different PWHT schemes were 

selected. In addition to cross-weld tensile testing of the generic joints, the experimental 

programme covers uniaxial tensile and hardness tests. The study is limited to testing 

under quasi-static conditions. 

 

 In the numerical investigation, the scheme presented by Myhr et al. [28] is to be 

followed. A thermo-mechanical analysis [23], of the welding process is carried out by 

means of WELDSIM [21, 22, 23, 31, 33] to determine the temperature field in the weld, 

HAZ and surrounding base material. This field of thermal histories is used as an input to 

the microstructure model NaMo [25, 26, 27, 30] which determines the spatial 

distribution of the mechanical properties in the HAZ. These results are then transferred 

to LS-DYNA [16] for the structural response analysis. This work is carried out for the 

three 6xxx alloys, only, since further development of the NaMo model is found to be 

needed for 7xxx alloys. The experimental and numerical data are used to document 

present capabilities and limitations of the modelling concept.  
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1.5 Organisation of the report 

The theoretical background for the work is outlined in Chapter 2. In Chapter 3, 

experimental results are reported, i.e. results from uniaxial tensile tests, hardness tests, 

and cross-weld tensile tests. In Chapter 4, comparisons between numerical simulations 

and experiments are presented and discussed. Chapter 5 draws the overall conclusions 

and gives recommendations for further work. 
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2 Theoretical background 
______________________________________________________________________ 

2.1 Introduction 

The main properties that make aluminium a valuable structural material are its low 

weight, high strength, recyclability, corrosion resistance, durability, ductility and 

formability. Due to this unique combination of properties, the variety of applications of 

aluminium continues to increase. Aluminium is weak in its pure form, and is normally 

only used in thin foils. However, alloying elements are added to aluminium to increase 

its strength or improve its other properties. The yield strength of pure aluminium is 

about 10 MPa, whereas the yield strength for commercial aluminium alloys ranges from 

about 50 MPa to 500 MPa. The strength increase is due to alloying elements that are 

dissolved in the aluminium matrix and finely distributed small particles that obstruct 

dislocation movements, and thus prevent plastic slip, which is the normal deformation 

mechanism in aluminium alloys at room temperature. Another way of strengthening 

aluminium alloys is by work hardening, e.g. through cold deformation, which leads to 

an increase in the dislocation density and a corresponding increase in obstacles for 

plastic slip. 

 

The 6xxx series contains both soft and medium strength alloys that can be 

strengthened by heat treatment (precipitation hardening), due to the presence of the 

alloying elements silicon and magnesium. These alloys are generally weaker than the 

2xxx and 7xxx series, but have good formability and are weldable. They also have 

excellent corrosion resistance. Precipitation hardening of the alloys is possible when 
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silicon is combined with magnesium; forming (typically and among other) Mg5Si6 

precipitates [4]. 

 

 7xxx series are also heat treatable alloys that can be strengthened through 

precipitation hardening based on the combination of zinc and magnesium. However, 

these alloys are prone to stress corrosion. The 7xxx series may also contain Cu to 

increase the age-hardening potential and Zirconium (Zr) to refine the grain structure by 

inhibiting recrystallization. Here, the precipitating phases contain Mg and Zn in 

different combinations, while the stable equilibrium phase is MgZn2. These series are 

known as high strength alloys [13]. 

  

 The mechanical properties of a welded aluminium structure depend in general on 

the welding process and its parameters, in particular on the reduced strength of the 

HAZ. Previous research has led to the conclusion that a proper modelling must 

encompass realistic welding simulations and physically based work hardening models, 

allowing alloy, welding process and even PWHT to be accounted for [45]. Motivated by 

this conclusion, the current investigation is novel in a way that the mechanical input 

data for the FEM simulations are obtained by means of process simulation, and not by 

means of material tests.   

 

2.2 Heat-treatable alloys  

The precipitate structure is the prime factor that regulates the yield strength and work-

hardening behaviour of heat-treatable aluminium alloys. The precipitate structure is 
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rewegoverned by the chemical composition of the alloy and the thermal history of the 

material element. In order to predict the structural response of a welded aluminium 

component or parts, it is utmost important to understand the evolution of the precipitate 

structure during thermo-mechanical processing and its relation to the mechanical 

properties of the material. The present section provides a brief description of 

precipitates in Al-Mg-Si and Al-Mg-Zn alloys, and their dependency to thermal 

processing. A model that quantifies the precipitate structure, and the associated strength 

and work hardening of the material as function of thermal history is presented in 

Section 2.3.2. 

 

Al-Mg-Si (6xxx) alloys 

For Al-Mg-Si alloys, the precipitation sequence following quenching from a high 

temperature (i.e. the solid solution temperature) is generally accepted as [4, 19]: 

 

     SSSS  (Mg2Si)    

 

Here, SSSS means supersaturated solid solution, which means that the 

concentrations of Mg and Si atoms in the aluminium matrix are higher than the 

equilibrium concentration of these elements, leading to the formation of Si and Mg rich 

clusters during ageing. Then, different metastable phases form according to the 

sequence above, i.e. Guinier-Preston zones (GP zones)  and  and finally the stable 

 (Mg2Si) phase.  
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This highly idealised precipitation sequence is rarely seen for typical industrial 

processes involving non-isothermal heat treatments like welding, where certain phases, 

may form directly from the supersaturated solid solution during 

cooling. The complex series of reactions taking place in the heat affected zone during 

welding of Al-Mg-Si alloys is described by Myhr et al. [25] and can be summarized as 

follows: During artificial ageing (AA), a high density of fine, needle-

form uniformly in the matrix, as shown in Figure 2.1 (a). However, since these 

precipitates are thermodynamically unstable in a welding situation (W), the smallest 

ones will start to dissolve in the parts of the HAZ where the peak temperature has been 

above 250°C, while the larger ones will continue to grow. At the same time, coarse rod-

250 and 480°C, as indicated in  Figure 2.1 (b). If welding is followed by a post weld 

the high peak temperature regions of the HAZ, as shown in Figure 2.1 (c). This occurs 

to an extent, which depends both on the matrix vacancy concentration and the level of 

Mg and Si in solid solution. Accordingly, the reprecipitation would be expected to be 

most extensive in the fully reverted region close to the weld fusion line owing to the 

combined effect of a high solute content and a high concentration of quenched-in 

where the peak temperature is lower because the aluminium matrix in these regions will 

be depleted with respect to vacancies and solute. This eventually leads to the 

development of a permanent soft region within the weld HAZ after PWHT [25]. 
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Figure 2.1: Evolution of the precipitate structure in the HAZ during heat treatment and 
welding of Al-Mg-Si (6xxx)-alloys. AA: artificial ageing, W: welding, PWHT: post 

weld heat treatment. The outer boundary of the HAZ is the curved lines [31] 

 

Al-Mg-Zn (7xxx) alloys 

For Al-Mg-Zn alloys, the precipitation sequence is generally accepted to be as follows: 

 

SSSS 2)     [3] 

 

hardening of the alloys in the underaged and peak-

during overaging [11]. Aging of the alloys in the temperature range of 100–120°C 

usually leads to the formation of GP zones [9], while a subsequent aging in the 

(a) 

(b) 

(c) 
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temperature range of 140–170°

on the extent of aging [40]. In welding it is the reversed processes in the sequence above 

that are of main concern i.e. dissolution of strengthening precipitates that become 

unstable during heating, and the associated coarsening of precipitates that survive the 

thermal cycle. These reactions occur, to an extent depending on the peak temperatures 

and retention times experienced by the different regions of the HAZ. Full or partial 

dissolution of the strengthening precipitates occurs within the peak temperature range 

from about 200 to 340oC [22]. During the cooling stage of the welding, the cooling rates 

are usually high enough to suppress any reprecipitation. Hence, immediately after 

welding the HAZ yield stress or hardness will be low close to the weld fusion line. Most 

of the lost strength in this zone can be recovered by natural ageing due to extensive GP-

zone formation after a period of 3-5 months [22]. PWHT causing reprecipitation of the 

hardening metastable phases is an even more efficient way to recover the strength loss 

in the HAZ [22].     

 

Thermal cycles and temper conditions 

The properties of a given material point in a heat-treatable alloy depend upon its 

precipitate structure and are governed by the alloy and the thermal history of the 

material element. The thermal process cycle for material elements in a welded 

aluminium structure is illustrated in Figure 2.2. 
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Figure 2.2: A schematic diagram illustrating the different processes and heat treatment 
schedules applied in the present study for preparation of welded plates for subsequent 

testing.  

 

 The second and third process steps are called Precipitation Hardening or Age 

Hardening and involves [13]: ‘Solution Heat Treatment’ (SHT) followed by quenching 

to create a supersaturated solid solution (SSSS) and ‘Aging’ to facilitate the formation 

of small finely dispersed precipitates which strengthen the alloy by acting as obstacles 

for dislocations during plastic deformation. The SHT is done by keeping the alloy in the 

so-called one-phase region of the equilibrium phase diagram, where a solid solution of 

the elements represents the thermodynamic stable phase, which means that precipitates 

such as Mg2Si in the 6xxx series are dissolved. At the same time, high concentrations of 

vacancies are obtained. Water quenching is done in order to “freeze” the structure, i.e. 

both alloying elements in solid solution as a basis for precipitation, as well as vacancies 

which are necessary in order to achieve a rapid “transportation” of the elements by 

diffusion. The final ageing heat treatment can be achieved in two ways, i.e. by natural 

ageing (NA) or artificial ageing (AA). Natural ageing means prolonged storing at room 

temperature, where clusters start to form immediately. The formation of GP zones is 
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slow due to a low diffusion rate at room temperature, which means that the 

corresponding increase in yield stress and hardness is also sluggish. Artificial ageing 

involves reheating to a temperature below the dissolution (solvus) temperature resulting 

in a more efficient formation of precipitates.  

 

The different temper conditions for age-hardening aluminium alloys are defined 

in [13]. Three conditions are particularly relevant for the current investigation: 

 T4: Solution heat treated and naturally aged to a substantially stable condition 

 T6: Solution heat treated and artificially aged to peak hardness 

 T7: Solution heat treated and artificially aged (overaged) 

 

2.3 Constitutive and fracture modelling  

The material response is in general characterized by constitutive equations which give 

the stresses as a function of the deformation history and certain internal state variables.  

An elastic-plastic constitutive model is used to describe the material behaviour of the 

aluminium alloys. In the elastic region, the material is assumed to be linear (Hooke’s 

law) and to be isotropic. For modelling the plastic behaviour, the von Mises yield 

criterion, the associated plastic flow rule and isotropic hardening are here assumed.  

 

 In an elasto-plastic response analysis, the stress-strain curve has to be known for 

each integration (material) point in the structure. Each of these points may have 

undergone different thermal history during the welding, post weld heat treatment and 
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aging, and will thus have a unique curve. Except in certain special cases an 

experimental determination of each of these curves is not feasible. 

 

 In the present investigation the yield (flow) stress and hardening at each point 

are determined by means of the micro-structure model NaMo [25, 26, 27, 28, 30] that 

tracks the evolution of precipitates and solid solution levels as a function of the thermal 

histories, as described in Section 2.4. By performing an incremental thermo-elastic 

analysis, spanning both the - welding and ageing process, by means of the WELDSIM 

program [21, 22, 23, 31, 33] the spatial distribution of the temperature as a function of 

time is determined throughout the structure. At each point and time instance, the 

precipitation model determines the particle size distribution (PSD), which provides the 

input, to a yield strength and work hardening model. By combining the results from the 

yield strength and work hardening models, the complete stress-strain curves can be 

estimated. Finally, the commercial FE-code LS-DYNA [16] is used to simulate the 

structural response of welded components. This was done by transferring the predicted 

stress-strain curves to the mechanical model. 

 

2.3.1 Theory of plasticity 

The constitutive model used in the subsequent finite element analysis is based on the 

theory of plasticity, using the von Mises yield criterion, associated flow rule, and 

isotropic hardening rule. The finite-strain formulation is used in the presentation, and 

large rotations are accounted for by use of a co-rotational formulation [39]. Small elastic 

strains are assumed. Hypoelastic-plastic models are typically used when elastic strains 
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are small compared to plastic strains [39]. In addition, the concept of non local thinning 

for plane stress analyses, as proposed by Wang et al. [41] and the Cockroft Latham 

fracture criterion [17] are used respectively to reduce mesh dependence of strain 

localisation and to predict ductile fracture. In the formulation, a superposed “hat” 

denotes the co-rotational formulation and a superposed dot specifies material time 

differentiation.  

 

The co-rotational rate-of-deformation tensor is decomposed into elastic and 

plastic parts: 

   e pˆ ˆ ˆ= +D D D ,   Tˆ =D R D R     (2.1) 

Where indices e and p denote elastic and plastic parts, respectively, D is the rate-of-

deformation tensor and R is the orthogonal rotation tensor [39]. 

           

The hypoelastic stress-strain relation between the rate of co-rotational stress 

tensor and the elastic co-rotational rate-of-deformation tensor is defined as: 

  e pˆ ˆˆ : :( - ) , Tˆ =     (2.2) 

Where ˆ  is the co-rotational stress tensor,  is the Cauchy stress tensor and C is the 

fourth-order tensor of elastic constants. Assuming elastic isotropy, C depends on 

Young’s Modulus E and Poisson’s ratio v. 

 

Yield function 

The yield function defines the boundary between fully elastic and elastic-plastic 

behaviour, and evolves with material hardening. In this study, von Mises criterion is 

employed since it is the most widely used yield criterion for metallic materials which 
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exhibit plastic incompressibility and from the modelling done proven to be acceptable. 

The criterion assumes isotropy, and plane stress is assumed in the analyses. The yield 

function f defines the elastic domain in stress space and expressed as: 

    ˆ ˆˆ( , ) 0f       (2.3) 

Where f̂ is the yield criterion and q̂  is a collection of scalar internal variables. The 

material behaves elastic when f̂ < 0, and plastic when the yield condition ˆ 0f   is 

satisfied during deformation. When q̂ includes the effective plastic strain  only; the 

yield criterion is defined as: 

   ˆ ˆ ˆ( , ) ( ) ( )yf      (2.4) 

Where ( )y is the flow stress in uniaxial tension and  is the effective stress. The 

history of plastic deformation in metal plasticity is often characterized by the effective 

plastic strain,  which is given by [39]: 

    dt       (2.5) 

 is the effective plastic strain rate and can be defined from the specific plastic work 

rate as follows. The effective stress and strain rate and the Cauchy stress and the plastic 

rate-of-deformation are pairs of energy conjugate measures: 

    p pˆˆ :W      (2.6) 

  

Flow rule 

The flow rule describes the direction of the plastic strain increment. For metals, the rule 

of normality is commonly employed, where the plastic strain increment is directed 

along the outward normal of a flow potential. For the associated flow rule, the yield 
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surface is taken as the flow potential of the plastic strain-rate tensor. Thus, the plastic 

rate-of-deformation and the equivalent plastic strain rate are given as [39]: 

   p
ˆ

ˆ
ˆ
fD         (2.7) 

  
p

ˆ
ˆ : ˆˆ ˆˆ : ˆ :

ˆ

f
f      (2.8) 

Where, 

  
ˆ

ˆ :
ˆ
f ,   thus:      (2.9) 

The loading and unloading conditions are written in the Kuhn-Tucker form: 

    0 , ˆ 0f , ˆ 0f      (2.10) 

 

These equations are used to define plastic loading and elastic unloading, while 

the consistency condition 0f  determines the plastic multiplier,  during a plastic 

process. When the yield condition ˆ 0f  is met; only plastic deformation will occur. 

During plastic loading ( 0 ) the stress must remain on the yield surface, so 

that 0f . For elastic unloading 0 , i.e., there is no plastic flow.  

  

Hardening rule  

The hardening rule describes the evolution of the yield surface with progressive 

yielding. Isotropic hardening is employed in this study, i.e. the yield surface expands 

uniformly in stress space as a function of the equivalent plastic strain, i.e. through 

equation ( )y . In the present study, the function is represented by the NaMo model 

concept as described in following section. 
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2.3.2 Microstructure model - NaMo  

The microstructure model - NaMo (Nano Structure Model) [28] contains a precipitation 

model that calculates the time evolution of the Particle Size Distribution (PSD), which 

can be used to quantify the characteristics of the precipitate structure. The following 

presentation is based on ref [5, 25, 26, 27, 28, 30, 33]. Figure 2.3 shows the parameters 

extracted from the PSD, which are subsequently transferred to the yield stress and 

work-hardening models, respectively. 
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Figure 2.3: Parameters extracted from the Particle Size Distribution (PSD) and  

transferred to the yield stress and work hardening model [5] 
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The stress-strain curve can be determined from the effective plastic strain  and 

the flow stress ƒ  given by:  

   y d= +ƒ        (2.11) 

Here, y  and d  are the yield stress and the net contribution from dislocation 

hardening respectively, both predicted from the precipitation model. By combining the 

results from the yield strength and the work-hardening models, the complete stress-

strain curves at any position of the HAZ can be estimated and then transferred to LS-

DYNA for the resulting mechanical response analysis.  

  

Precipitation model  

The precipitation model by Myhr and Grong [25, 26, 27, 30] is the key component in 

both the yield strength and the work hardening models. The model consists of the 

following three components: 

 (1) A nucleation law, which predicts the number of stable nuclei that form at  

      each time step. 

 (2) A rate law, which calculates either the dissolution or the growth rate of each  

      discrete particle size class. 

(3) A continuity equation, which keeps a record of the amount of solute being 

     tied up in the precipitates.  

 

Yield strength model 

The yield strength model converts the relevant output parameters from the precipitation 

model into an equivalent room temperature yield stress through dislocation mechanics. 
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The individual contributions to the overall macroscopic yield strength y  are given as 

follows: 

   sspiy         (2.12) 

Where i  is the intrinsic yield strength of pure aluminium and p  is the precipitation 

hardening contribution, given by: 

    bl
FM

p
       (2.13) 

The mean interaction force F  between dislocations and particles and the mean 

planar particle spacing l along the bending dislocation are both extracted from the PSD. 

M is the Taylor factor and b is the magnitude of the Burgers vector. ss  is the solid 

solution hardening potential of the alloy, which is calculated from the solid solution 

concentrations, and can be estimated from the following expression [30]: 

   
2

3
ss j j

j
k C       (2.14) 

Here, jC is the concentration of a specific alloying element in solid solution and jk is 

the corresponding scaling factor. 

 

Work hardening model  

The work hardening model predicts the individual evolution of statistically stored and 

geometrically necessary dislocations, respectively, based on well established evolution 

laws. The work-hardening model includes the precipitate structure through the fully 

integrated NaMo model. Thus, any changes in the particle size distribution due to heat 

treatment or welding will be reflected by a corresponding change in the work-hardening 
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response, as represented by the net contribution from dislocation hardening d  

expressed by the response equation: 

 

22 *
,01 2

,
2 ,0

1 exp
2

refp
gref

d g s ref
g c

k kMGb
k

   (2.15) 

Here,  is a numerical constant and G  is the shear modulus, 1k  is a model parameter, 

expressing the rate of generation of statistically stored dislocations during plastic 

straining. The alloy dependent parameter 2k  expresses the rate of dynamic recovery of 

statistically stored dislocations during plastic deformation. ,g o  and ,
ref
g o  are the 

geometric slip distances, based on non-shearable particles, of an alloy and of the 

reference system, respectively. *  and ref
c  are the local plastic strain and the critical 

macroscopic strain for the reference system. ,
ref
g s  is the density of geometrically 

necessary dislocations. The parameters y , 2k , ,0g  and c  are field variables that 

depend on the thermal history. The remaining parameters in Eq. (2.15) are independent 

of the thermal history. The index ref means a chosen reference alloy.  

 

 It is more convenient to introduce the parameters MGb  and 

3 , ,0
ref ref ref
g s g ck in Eq. (2.15) after which Eq. (2.11) reads:  

  

22

1 2
3

2 ,0

( ) 1 exp
2

p
p

f y
g

k k k
k

  (2.16) 

 

Hart [9] gives the relationship between the macroscopic plastic strain p  and local 

plastic strain *  by the differential equation: 
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1

n

p
c

d
d       (2.17) 

From Eq. (2.17) it follows that the local strain *  is equal to the macroscopic plastic 

strain p  at small deformations, but approaches c  at large deformations for all relevant 

n values. Thus, in the limiting case, when n , the strain may be written as: 

   

when
when

p p
c

p
c c      (2.18) 

 

 The other parameters in Eq. (2.15), i.e. 2k  and c , depend on the equivalent Mg 

concentration, ˆ
MgC , and the volume fraction of non-shearable particles, of , respectively,  

through the relationship: 

  

min max min
2 2 2 2

ˆ
exp ˆ

Mg
ref
Mg

C
k k k k

C      (2.19) 

 

   

ref
refo

c c
o

f
f        (2.20) 

 

In Eq. (2.19),  min
2k and max

2k are material dependent constants, and ref
MgĈ is the equivalent 

Mg concentration for the reference alloy, and in Eq. (2.10) ref
c corresponds to the 

critical plastic strain for the reference material. A summary of the input data used in this 

NaMo model is listed in Table 2.1.  
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Table 2.1: Summary of input data used in the NaMo model [5]  
Parameter Value Comments 

 0.30 Numerical constant 
M 3.1 Taylor factor 
G (N/m2) 2.7x1010 Shear modulus 
b (m) 2.86x10-10 Burgers vector 

1k (m-1) 4x108 
Material dependent constant related to the 
storing rate of statistically stored dislocations 

3k (m-1) 4x108 
Parameter related to the solute dependence of 
k2 

,
ref
g o (m) 4.06x10-7 Calculated from PSD  
ref

of  0.0109 Calculated from PSD 
ref
c  0.05 Critical strain for a chosen reference material 

,
ref
g s (m-2) 4.93x1013 

Density of geometrically necessary 
dislocations for a chosen reference material 

min
2k  10 Estimated minimum constant in Eq. (2.19) 
max
2k  70 Estimated maximum constant in Eq. (2.19) 
ˆ ref

MgC (wt%) 0.35 Equivalent Mg concentration 

i  (MPa) 10 Intrinsic yield stress of pure aluminium 

 

2.4 Through-process modelling 

The modelling strategy in the present study is to couple the thermal model 

(WELDSIM), the microstructure model (NaMo) and the mechanical model (LS-

DYNA), as illustrated in Figure 2.4. NaMo is a stand-alone programme, with physical 

and mathematical background as described above. The FE tools, WELDSIM and LS-

DYNA are presented in brief below, along with a description on how the information is 

transferred between, and used within, the different codes. 
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Figure 2.4: Through-process modelling - coupling of models [20]  
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Thermal model – WELDSIM 

WELDSIM [21, 22, 23, 31, 33] is a special-purpose FE code for analysis of welding 

processes. The code is built upon three different modules, i.e. a thermal, a 

microstructure and a mechanical module, as presented in Figure 2.5. The program 

predicts the thermal field caused by welding processes, and estimates distortions and 

stresses due to welding. The microstructure module in the code is a basic variant of the 

NaMo subroutine used in the present work. WELDSIM has been demonstrated to be a 

powerful and accurate modelling tool, and it has for instance been used to optimize 

residual stresses and to minimize distortions [22, 23] as well as to optimize dimensions 

of welded components made of age-hardening aluminium alloys [33]. Figure 2.6 shows 

the main input and output of WELDSIM. The present work relies upon the thermal 

module of WELDSIM to predict the temperature field resulting from the welding 

process.  
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Figure 2.5: Basic structure of WELDSIM [21]  
 

 
Figure 2.6: Main input and output from WELDSIM [33] 
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Mechanical model – LS-DYNA  

LS-DYNA [16] is a general-purpose, nonlinear FE code for analyzing large deformation 

response of inelastic solids and structures, with both implicit and explicit solution 

capabilities. LS-DYNA can simulate and analyse highly nonlinear physical 

phenomenons occurred in real world problems. Usually such phenomenons are 

associated with large deformations within short time duration, e.g. crashworthiness 

simulations. Moreover, LS-DYNA provides many features making it a very powerful 

tool to solve a broad spectrum of applications. 

 

The constitutive and fracture modelling concept presented in Section 2.3 has 

been implemented as a user-defined material model in the work of Myhr et al. [28], and 

is used in this study. Thus, the constitutive model assumes the von Mises yield criterion, 

associated flow rule, while the isotropic strength and strain hardening are identified 

from a microstructure model concept. The parameters y , 2k , ,0g  and c  of the work-

hardening model are provided by NaMo based on the alloy composition and thermal 

history obtained from WELDSIM. 
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2.5 Summary of the modelling strategy

The coupling of the three models in the present study is used to investigate the resulting 

cross-weld tensile properties of welded aluminium plates. This concept is also 

applicable for the analyses of real components e.g. in optimising the load bearing 

capacity of welded crash boxes of bumper systems made of age-hardening Al-Mg-Si 

alloys as illustrated in Figure 2.7. 
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Figure 2.7: Summary of modelling strategy [24]  
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3 Experiments 

3.1 Materials 

Five alloys, each in two initial temper conditions, are investigated. The alloys are 

AA6005, AA6060, AA6061, AA7046 and AA7108 with chemical composition 

provided in Table 3.1. Flat profiles with quadratic cross section (200 mm by 3 mm) 

were extruded from each alloy. The extrusions were cut in lengths of 400 mm and given 

heat treatments corresponding to tempers T4 and T6. The alloys were selected by the 

former Hydro Aluminium Structures, Raufoss, Norway (now Benteler Aluminium 

Systems - BAS), which is a key industry in this project. All alloys are used in various 

industrial automotive components and assemblies. 

 

Table 3.1: Chemical composition (in weight %) 

Alloy 
Composition 

Fe Si Cu Mg Cr Mn Zn Zr Ti 

7108 0.19 0.09 0.01 1.23 0.003 0.01 5.69 0.17 0 

7046 0.19 0.09 0.01 1.22 0.003 0.009 6.59 0.16 0 

6061 0.20 0.62 0.19 0.79 0.01 0.06 0.01 0.002 0.008 

6060 0.21 0.53 0.001 0.41 0.001 0.02 0.01 0.001 0.01 

6005 0.21 0.63 0.01 0.44 0.005 0.14 0.03 0.004 0.01 

3.2 Welding 

The plates were butt-welded along the extrusion direction to form a plate with nominal 

width and length of 400 mm, with the weld along its centre line. The plates were pulsed 
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MIG-welded using single sided welding and stainless steel backing. The aluminium-

based filler material used was AlMg4.5Mn.  

 

 The butt welded plates were consecutively numbered after welding. A total of 27 

welded plates were produced, but only 10 of these have been investigated in the present 

test programme. An overview of the alloys, tempers and plate identifiers are given in 

Table 3.2. The tempering conditions T4 and T6 is presented in more detail in Section 

3.3. The plate identifiers refer to the numbering obtained from Hydro Aluminium 

Structures, and are stated here for future reference. No further reference to the plate 

identifiers is given in this report.  

 

Table 3.2: Alloys, temper conditions and plate numbers 
Alloy 

identifiers 

Type of alloy  

 

Butt welded plates in 

T4 condition marked as 

Butt welded plates in 

T6 condition marked as 

A 6005 23 7 

B 6060 26 6 

C 6061 22 1 

D 7046 19 15 

E 7108 21 12 

 

 The welding parameters are shown in Table 3.3 while the welding of the plates 

is illustrated in Figure 3.1. Ideally, both the weld metal and the HAZ should have 

strength comparable to, or higher than the parent metal. Heat-treatable aluminium alloys 

are, however, highly affected by the thermal history imposed to the material by the 

welding (see Section 2.2). The extent and magnitude of the property change in the HAZ 
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depends primarily on the base metal composition, the geometry of the welded structure, 

the heat input provided by the welding process and the welding speed [25, 33].  

 

Table 3.3: Welding parameters 
Current 

[A] 

Voltage 

[V] 

Welding speed 

[mm/s] 

Arc efficiency 

(assumed) 

Predicted deposit area 

[mm2] 

145.0 15.8 16.0 0.8 10.0 

 

   

   (a)     (b) 

Figure 3.1: MIG welding of aluminium (a) butt-welded plates and  
(b) the Heat Affected Zones (HAZ) [20] 

 

3.3 Post-Weld Heat treatment schemes 

Four different schemes for PWHT have been investigated. The schemes are motivated 

by thermal cycles which are commonly imposed to the material in an industrial process 

chain, and they can be summarised as follows: 

 NA:  Naturally aged at room temperature for more than 1 week. 

 PWHT-T6: Motivated by peak-aging T6 thermal cycle conditions. 

 PWHT-T7: Motivated by over-ageing T7 thermal cycle conditions. 

 PWHT-KTL: Heat treated to 195°C for 30 minutes. 
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 The latter scheme is motivated by the typical thermal cycle resulting from paint 

baking of automotive structures, while the other schemes simulate – experimentally – 

conditions that could result from the production of for example bumper beam systems. 

PWHT was performed on blanks and specimens as discussed in the following.  

3.4 Test programme and specimens preparation 

The test programme shall produce an experimental database that addresses the capacity 

and ductility of simplistic welded joints of the five heat-treatable aluminium alloys in 

question. Generic welded joints are obtained by production of cross-weld tensile test 

specimens. In addition, hardness profiles and uniaxial stress-strain curves are to be 

obtained for the various alloys and PWHT schemes. In total the experimental 

programme comprises: 

 80 cross-weld tensile tests 

 80 uniaxial tensile test  

 40 hardness tests  

All test specimens are oriented 90° to the extrusion direction. 

 

From the welded plates, eight 40 mm wide blanks were cut perpendicular to the 

weld line and designated I, II, III, IV, V, VI, VII and VIII, see Figure 3.2. The blanks 

were next machined to provide the specimen geometry shown in Figure 3.3. Figure 3.2 

also shows the location of specimens for hardness measurements. The uniaxial tensile 

tests of the base material were machined from different plates but having the same alloy 

and initial temper condition. All machining was done at Department of Structural 

Engineering, NTNU.  
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Figure 3.2: Butt-welded plate, blanks for cross-weld tensile tests, and positions of 
hardness profile measurements 

 

 

 

 

 

 

Figure 3.3: (a) Welded test specimens, (b) CAD drawing of actual specimen  

I II III IV V VI VIII VII 

Cross-weld 
tensile test 
specimen 

Hardness 
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Butt-weld 

Unit:mm 

400 

40 

Weld metal 

HAZ 

(a) 

(b) 
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The cross-weld tensile test specimens were identified by a designation X-T-Z-Y, where: 

X = alloy (identifiers stated in Table 3.2) 

 T = initial temper condition (T4, T6) 

 Z = welded plate number (1-27) 

 Y = specimen number (I-VIII) 

An example of a specimen designation is A-T4-23-VII. 

 

 The following pairs of cross-weld tensile specimens were subject to the different 

PHWT schemes (stated in parentheses): I&III (NA), II&IV (T6), V&VII (T7) and 

VI&VIII (KTL). Four hardness test specimens were taken from each welded plate and 

designated as M1A, M1B, M2A and M2B (also illustrated in  

Figure 3.2).   

 

 The artificial PWHT ageing were performed in a furnace at the laboratory of 

Department of Materials Science and Engineering, NTNU. The blanks for the cross-

weld tensile test, the uniaxial test coupons and the specimens for hardness 

measurements were aged in single batches for the individual alloys. The ageing schemes 

are summarised Table 3.4. The naturally aged specimens were stored at room 

temperature for more than one week, independent of alloy. The KTL PWHT is 

motivated by the thermal paint-baking process used in the automotive industry and was 

also the same for all alloys. The 'T6' and 'T7' PWHT schemes follows different schemes 

for the 6xxx and 7xxx alloys, and are deduced by detailed insight in the precipitation 

sequences, briefly discussed in Section 2.2. 
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Table 3.4: PWHT schemes 
AA NA T6 T7 KTL 

7108 RT > 1 week 5h/100+6h/150°C 5h/100+6h/180°C 30min/195°C 

7046 " " " " 

6061 " 7h/185°C 7h/215°C " 

6060 " " " " 

6005 " " " " 

*Note: Initial T6 for AA6xxx:175°C/10h and AA7xxx:100°C/5h+150°C/6h 

 

In what follows, results from the uniaxial tensile tests, hardness tests and cross-

weld tensile tests are presented in Sections 3.5, 3.6 and 3.7, respectively. 

3.5 Uniaxial tensile tests - base material 

The uniaxial tensile test is the most common test to determine the strength and work 

hardening of materials. Key information, often reported in tables, are the yield strength 

(s0.2), the (engineering) ultimate tensile strength (su) and some ductility measurement(s), 

most often the engineering strain (eu) corresponding to the ultimate tensile strength. 

 

In the present work these tests provides the means to evaluate the NaMo concept 

with respect to its description of the base material strength and work hardening. Strain-

rate effects are outside the scope of the present investigation. Thus, all tests were 

performed at a quasi-static strain-rate.  

 For safety reason most structures are required to behave in a ductile manner, i.e. 

they shall have the ability to sustain large plastic deformation prior to failure. This 
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requires that also the materials are ductile. Non-ductile structures are denoted brittle, 

and may fail without warning in the form of extensive deformations. There is no unique 

definition of structural ductility, and in the present investigation a definition proposed 

by Mazzolani and Piluso 1995 [8] is used: 

    0.2

0.2

uD       (3.1) 

Here, D is the structural ductility, u is the deformation at ultimate load Pu, and 

0.2  is the deformation that corresponds to the load P0.2 giving 0.2% permanent 

elongation. The ratio Pu/P0.2 gives information on the work hardening. These additional 

measures, D and Pu/P0.2, are also presented in the consecutive tables. 

3.5.1 Test procedure 

Five alloys in two initial conditions, and each subject to four PWHT schemes leads to 

40 distinct materials/conditions. For each condition, 2 duplicate tests were performed, 

which results in a total of 80 uniaxial test specimens. The geometry of all specimens 

was carefully measured before testing. The tensile tests were done in an Instron machine 

with a 20 kN load cell. The tests were performed at room temperature under 

displacement control and with a crosshead displacement rate of 2 mm/min. An 

extensometer with a 20 mm gauge length was used to measure the strains in the centre 

gauge section. The geometry of the specimens is provided in Figure 3.4 while the test 

set up is shown in Figure 3.5. All data were recorded with Instron Bluehill Software 

version 2.12. 
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Figure 3.4: Uniaxial tensile test specimen dimensions [42] 

 

 
Figure 3.5: Uniaxial tensile test set up 

 

3.5.2 Test results 

In the following, test results in the form of engineering stress vs. engineering strain 

curves are presented for all alloys and processing conditions. The curves are labelled 

according to the PWHT scheme imposed to the materials; NA, T6, T7 or KTL. In other 

words, the curves labelled NA (natural ageing) refer to specimens that have been 

naturally aged (room temperature) until the same age as the other specimens. The NA 

curves thus represent the response of the as-delivered ('virgin materials'). 

 

NOTE: Since an extensometer, only, was used to measure the specimen elongation, the 

curves are plotted up to the onset of necking (ultimate force). Beyond this point the 
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extensometer elongation measurement is dependent upon the position of the neck in the 

gauge section and invalid.  

 

 The following formulae were employed to calculate the engineering stress s and 

engineering strain e: 

    
o

Fs
A

       (3.2) 

    - o

o

L Le
L

      (3.3) 

Here F is the measured force, Ao is the initial cross-sectional area of the specimen, L is 

the extensometer length and Lo is the initial extensometer gauge length. Based on these 

measures, the stress at 0.2% plastic strain s0.2, the ultimate engineering stress su and the 

corresponding engineering strain eu were tabulated for each material (alloy, initial 

condition and PWHT). 

 

AA6060 

Figure 3.6 and Table 3.5 present the results from the uniaxial tensile tests on the 

AA6060 alloy. It is evident (and expected) that the initial temper greatly affects the 

tensile properties of the material. In the as-delivered conditions (i.e. the NA curves in a) 

and b)); the s0.2 is significantly lower in T4 than in the peak-aged T6 condition. The 

work hardening is, however, considerably larger for the former condition. In agreement 

with Considers’ classical criterion [2] for the onset of diffuse necking, this leads to a 

more ductile specimen response for the T4 compared with the T6 condition.  
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From a theoretical point of view the T6 condition is, per definition, the peak 

aged condition of the material. Consequently, further thermal processing should reduce 

the material strength, due to precipitate coarsening. For initial condition T4, the 

precipitate structure is not in peak-aged size and distribution. Thus, the PWHT schemes 

represent an artificial ageing sequence that shall increase the strength of the material. 

The strength increase occurs on the cost of a reduced work hardening, i.e. causing a 

reduction of the specimen ductility towards the levels seen for the material in the as-

delivered T6 condition. Principally, the experimental results are in accordance with 

theory, except that the T6 PWHT scheme causes a slight strength increase also for the 

material in as-delivered T6 condition. This is to be expected if the received T6 material 

was slightly underaged rather than aged to peak strength. Then prolonged heating at the 

ageing temperature corresponding to PWHT-T6 would lead to a strength increase 

similar to one observed in Figure 3.6(b).  It is not uncommon for industrially produced 

materials that the T6 condition does not correspond to the real peak strength that can be 

obtained for the alloy due to a non-optimised ageing practice. 
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(a) Initial T4             (b) Initial T6
Figure 3.6: Uniaxial tensile test results of AA6060, label indicates PWHT scheme
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Table 3.5: Effect of PWHT schemes on AA6060 – characteristic measures
Condition PWHT 

and label
s0.2

[MPa]
sult

[MPa]
eu

[mm/mm] D
0.2

uP
P

T4

NA 84 175 0.221 64.7 2.1
T6 212 234 0.080 13.4 1.1
T7 167 193 0.064 12.2 1.2

KTL 84 166 0.206 62.0 2.0

T6

NA 199 223 0.075 14.6 1.1
T6 209 224 0.068 14.3 1.1
T7 169 196 0.069 15.3 1.2

KTL 201 223 0.077 16.0 1.1

AA6061

This alloy differs from AA6060 by its Mg, Si and Mn contents and is thereby able to 

attain higher strength. This is due to the fact that the amount of Mg and Si are essential 

in order to form - Mg5Si6 particles during the ageing process, or 

alternatively, GP zones during room temperature storing [10]. 

The experimental results are presented in Figure 3.7 and Table 3.6. The results 

are in accordance with what is observed and discussed for the AA6060 material.
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(a) Initial T4             (b) Initial T6
Figure 3.7: Uniaxial tensile test results of AA6061, label indicates PWHT scheme
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Table 3.6: Effect of PWHT schemes on AA6061 – characteristic measures
Condition PWHT 

and label
s0.2

[MPa]
su

[MPa]
eu

[mm/mm] D
0.2

uP
P

T4

NA 97 200 0.191 57.0 2.1
T6 225 255 0.071 12.5 1.1
T7 195 228 0.068 13.5 1.2

KTL 107 199 0.169 44.6 1.9

T6

NA 206 243 0.072 13.9 1.2
T6 211 243 0.073 15.5 1.2
T7 189 223 0.076 15.3 1.2

KTL 204 241 0.078 17.3 1.2

AA6005

This alloy differs from the AA6060 alloys only in Cu and Mn contents, but the Mg and 

Si contents that play a vital role in 6xxx series are more or less the same.  Thus, the 

behaviour and results are expected to be comparable to what has been discussed for the 

AA6060 (and AA6061) alloy. The results of the planned test programme of uniaxial 

tensile tests are compiled in Figure 3.8 a) and b) for initial condition T4 and T6, 

respectively, while Table 3.7 presents the characteristic strength and ductility measures.

For the T4 condition, the effect of PWHT is comparable to the other alloys, but 

the results for the T6 condition came out as a surprise. As seen, this material responds 

strongly to both KTL and T6 heat treatment, and has also strength much lower to what 

is obtained by T6 PWHT scheme on the T4 conditioned material. Hence, it was 

suspected that something had gone wrong during the production of the plate material 

and caused a low yield stress of the as-delivered T6 (169 MPa). To conclude on this it 

was decided to carry out additional tensile tests on the remaining of the plate material, 

with objective to identify the actual T6 strength of the material. To this means, two 
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(solution heat treatment at 520 °C for 30 minutes, rapidly cooled by water quenching, 

and left at room temperature for at least 4 hours and artificially aged at 175 °C for 10h). 

The results of one of these tests are presented along with the original results in Figure 

3.8 (c). As seen the actual T6 strength is much higher than the as-delivered 'T6' 

material. It is concluded that the original plates had a too low yield stress probably due 

to slow cooling (air cooling) after solution heat treatment. These data must be used with 

care in further validation studies since the actual thermal processing of the as-delivered 

material is uncertain.  
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(c) Initial T6 – Verifying test 

 
Figure 3.8: Uniaxial tensile test results of AA6005, label indicates PWHT scheme 
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Table 3.7: Effect of PWHT schemes on AA6005 – characteristic measures 
Condition PWHT 

and label 
s0.2 

[MPa] 
su 

[MPa] 
eu 

[mm/mm] D 
0.2

uP
P

 

T4 

NA  88 184 0.172 59.0 2.1 
T6  215 246 0.067 11.9 1.1 
T7 170 206 0.054 11.4 1.2 

KTL 89 176 0.158 44.0 2.0 

T6 

NA  172 212 0.060 9.0 1.2 
T6 189 224 0.057 11.5 1.2 
T7  155 197 0.060 13.3 1.3 

KTL 180 221 0.064 13.9 1.2 

 

AA7046 

Figure 3.9 present the results from the uniaxial tensile tests on the AA7046 alloy, while 

Table 3.8 summarises the characteristic strength and ductility measures. Note that in 

initial condition T4, the NA PWHT scheme gives strong work hardening and results in 

the highest ultimate strength. The failure of this specimen seems not to be due to diffuse 

necking, but an abrupt though-thickness shear failure. The observations are further in 

line with precipitation theory, i.e. the T6 PWHT scheme leads to higher yield strength 

and reduced work hardening for the material in initial condition T4, whereas over-

ageing (T7) lowers the strength. For initial condition T6, the as-delivered material 

shows the highest strength, i.e. all the PWHT schemes cause a reduction in strength. 

Note the much stronger effect of the KTL PWHT scheme as compared to what was 

observed for the AA6xxx alloys presented above. 

 

49



Through Process Modelling of Welded Aluminium Structures 

 

0 0.04 0.08 0.12 0.16 0.2
e

0

100

200

300

400

500

s 
[M

P
a]

NA
T6
T7
KTL

0 0.04 0.08 0.12 0.16 0.2
e

0

100

200

300

400

500

s 
[M

P
a]

NA
T6
T7
KTL

 

  (a) Initial T4                        (b) Initial T6 
Figure 3.9: Uniaxial tensile test results of AA7046, label indicates PWHT scheme 

 

Table 3.8: Effect of PWHT schemes on AA7046 – characteristic measures 
Condition PWHT 

and label 
s0.2 

[MPa] 
sult 

[MPa] 
eu 

[mm/mm] D 
0.2

uP
P

 

T4 

NA  351 479 0.085 13.3 1.4 
T6  424 460 0.081 12.2 1.1 
T7 321 361 0.070 10.5 1.1 

KTL 345 390 0.087 12.2 1.1 

T6 

NA  420 453 0.081 9.1 1.1 
T6 413 442 0.102 12.1 1.1 
T7  311 353 0.072 10.4 1.1 

KTL 359 400 0.085 12.1 1.1 

 

AA7108 

The response curves for both initial tempers and all PWHTs are depicted in Figure 3.10, 

while characteristic strength and ductility measures are given in Table 3.9. The general 

trends are comparable to what was observed for AA7046. The failure of the 'NA' 

specimen for the as-delivered T4 material is again due to a shear fracture, but for this 

material this failure mechanism was also observed for some specimens in as-delivered 

T6 condition ('NA' and 'T7' PWHT schemes). The modelling of this mechanism is 

beyond the scope of the present work, but it is emphasized that the ductility of the 
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different material tests are limited by two different phenomena (instability and localised 

necking), and that proper models for the ductility of AA7xxx materials must also invoke 

attention to the phenomenon of through-thickness shear fracture. For this reason the 

experimental data related to the ductility must be used with care in further validation 

studies. 
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  (a) Initial T4                        (b) Initial T6 
Figure 3.10: Uniaxial tensile test results of AA7108, label indicates PWHT scheme 

 

Table 3.9: Effect of PWHT schemes on AA7108 – characteristic measures 
Condition PWHT 

and label 
s0.2 

[MPa] 
sult 

[MPa] 
eu 

[mm/mm] D 
0.2

uP
P

 

T4 

NA  319 471 0.145 22.2 1.5 
T6  397 437 0.094 10.8 1.1 
T7 304 350 0.070 12.1 1.2 

KTL 306 361 0.089 14.9 1.2 

T6 

NA  392 419 0.037 4.7 1.1 
T6 397 431 0.076 10.7 1.1 
T7  299 340 0.049 7.1 1.1 

KTL 349 394 0.089 13.8 1.1 
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3.6 Hardness tests – HAZ extent and properties 

The combination of WELDSIM and NaMo model provides information about the yield 

stress and hardening at any point in a welded structure. However, the accuracy of this 

model concept must be verified by experimental data. As there are no practical methods 

for direct experimental determination of the yield stress close to the weld, this was done 

implicitly by means of hardness measurement and correlation formulas. 

 

Hardness is a measure of a metal’s resistance to localized plastic deformation. 

In hardness testing, a small indenter is forced into the surface of the material under 

controlled conditions of load and rate of indentation. The depth or size of the resulting 

indent is measured, which in turn is related to a hardness number; the softer the 

material, the larger and deeper the indent, and the lower the hardness index number. It 

should be noted that the hardness may be measured by various test methods, and it is 

not an intrinsic material property. Thus, every test result has a label identifying the test 

method used. In this programme, the standard Vickers Hardness (HV) test method was 

used [37].  

3.6.1 Test procedure 

A total of 40 hardness test were carried out. Four specimens with different PWHT from 

each alloy and initial condition were cast in epoxy in the same mould. The mould with 

the four specimens and the polished specimens ready to be tested are shown in Figure 

3.11 (a) and (b) respectively. The locations of the test points are shown in Figure 3.12. 

The specimens were 25 mm long, 10 mm wide and 3 mm thick. It can be seen that the 
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specimens extended about 25 mm from the weld centre line. After 8 hours of hardening 

in the mould, the specimens were grinded, washed and polished, using sand papers with 

grain size 800, 1200 and 2400. A LEICA VMHT MOT test machine and 1 kg load was 

used for the indentation. 

                         

   (a)      (b) 
Figure 3.11:  (a) Hardness specimens in mould and (b) Polished specimens in mould 

 

                                        
               Figure 3.12: Location of test points 

 

Anodizing 

Anodizing was carried out to identify the boundary of weld metal and base material 

(fusion line), and the location of the indentation points relative to this boundary. Figure 

3.13 and Figure 3.14 illustrate some of the results. Based on this information, 

indentation data from the weld were disregarded since these are dependent upon among 

Weld centre line 

HV indentation 

0 1 2 3 4 

C

25 mm 
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other parameters the choice of filler material. In what follows, the hardness profiles are 

based on indentation data starting from the fusion line. 

 

     
(a) 1st indent data and 2nd indent     (b) top edge of specimen 

Figure 3.13: Anodizing of hardness specimens AA6060, initial T4 following PWHT-T7 

 

    
(a) 1st indent data and 2nd indent        (b) top edge of specimen 

Figure 3.14: Anodizing of hardness specimens AA6060, initial T4 following NA 

 

3.6.2 Test results 

AA6060 

Figure 3.15 a) and b) shows the hardness profiles determined for the AA6060 

weldments in initial condition T4 and T6, respectively where the abscissa represents the 

distance from the fusion line. 
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For initial temper T4, the hardness seems to be almost constant for each of the 

four PWHT schemes. In other words, the hardness measurements indicates that there are 

only limited traces of the welding process with almost no weakening of the HAZ for 

this initial condition.  

 

From the hardness profiles for the materials welded in initial T6 condition, a 

clearly weakened HAZ with an extent of approximately 8 mm is seen for the NA and 

KTL PWHT schemes. For the T6 PWHT scheme the hardness of the HAZ seems to be 

fully recovered, but then again a slightly weakened HAZ appears to be present for the 

T7 PWHT scheme.  
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(a)    Initial T4                           (b) Initial T6 
Figure 3.15: Hardness test results of AA6060, after NA and PWHT 

 

AA6061 

Figure 3.16 depicts the hardness profiles for AA6061. For initial temper T4, shown in 

part a) of the figure, all PWHTs actually increase the hardness in the HAZ. All artificial 

PWHT schemes give higher hardness than NA.  
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For initial temper T6, the T6 PWHT scheme gives peak hardness next to the 

weld. The hardness decreases gradually from the fusion line and reaches a minimum for 

x = 4 mm – 6 mm. The results for the three other PWHTs show an approximately 8 mm 

wide zone with reduced hardness.  
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(a)    Initial T4                           (b) Initial T6 
Figure 3.16: Hardness test results of AA6061, after NA and PWHT 

 

AA6005 

Figure 3.17 a) and b) show the hardness profiles for initial tempers T4 and T6, 

respectively. For initial condition T4, the profiles are similar in shape, except for a 

narrow zone of 3-4 mm width next to the weld showing higher hardness as compared to 

the rest of the measured region.  

 

 In initial T6 temper, the NA and KTL PWHT schemes, a HAZ extending about 

10 mm from the fusion line is observed. The T6 and T7 PWHT schemes are able to 

recover the hardness close to the fusion line, but shows some variation, with a local 

minimum at about 5 mm distance from the fusion line. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.17: Hardness test results of AA6005, after NA and PWHT 

 

AA7046 

The measured HAZ hardness profiles for alloy AA7046 are shown in Figure 3.18. In 

general, the 7xxx series have higher strength and hardness compared to the 6xxx series, 

which is recognised in generally higher hardness.  

 

 For initial condition T4, the hardness in the HAZ seems to be comparable to, or 

higher, than the hardness outside the HAZ. For initial condition T6, a weakly softened 

HAZ seems present for the NA and KTL PWHT schemes, with minimum hardness at 

about 10 mm away from the fusion line. The softening is much less prominent as 

compared to what was observed for the AA6xxx alloys.  
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(a)    Initial T4                           (b) Initial T6 
Figure 3.18: Hardness test results of AA7046, after NA and PWHT 

 

AA7108 

As seen in Figure 3.19, the hardness profiles for AA7108 shows an almost uniform 

hardness reduction when moving away from the weld for initial condition T4. This 

falling tendency is broken by distinct dips at a distance of about 10 mm for NA and 

PWHT-T6. Considering the uniformity of the remaining measurements this could have 

been attributed to experimental errors. However, as will be discussed later, the failure 

positions of the cross-weld tensile tests (in Figure 3.33) support the hardness 

measurements in the sense that the corresponding tests failed in this position.  

 

For initial condition T6, the hardness is rather uniform, but a weakened HAZ 

extending up to 14 mm is recognised for NA, KTL and T6 PWHT schemes. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.19: Hardness test results of AA7108, after NA and PWHT 

 

3.7 Cross-weld tensile tests – generic joints 

3.7.1 Test procedure 

The cross-weld tensile test programme covers the same numbers of materials/conditions 

as the uniaxial tensile test programme, also with 2 duplicate tests, i.e. ending up with 80 

cross-weld tensile tests, also.  

 

The tests were carried out at room temperature in a hydraulic Instron test 

machine with a 250 kN load cell. The geometry of these specimens is provided in 

Figure 3.20, where the weld is positioned perpendicular to the longitudinal axis of the 

specimen in the middle of the gauge section. The specimens were clamped by hydraulic 

grips i.e., not using clevis arrangements. The tests were performed under displacement 

control with crosshead displacement rate of 5 mm/min. The deformation in the centre 

region of the specimen was measured using an extensometer with 50 mm gauge length 
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and a Canon EOS 1D camera was used for strain field determination using Digital 

Image Correlation (DIC; see Figure 3.21 a). 

 

 

Figure 3.20: Tensile test specimen dimensions [14]  

 

 The DIC technique provides displacement and strain fields during the test. The 

lens of the camera was positioned at the same vertical position as the centre of the 

specimen, at a distance of 300 mm from the specimen surface, Figure 3.21 b). A pattern 

on the specimen surface is required to determine the displacement and strain fields from 

images using the DIC technique. The pattern was created before testing by paint sprays. 

The specimen surface was first sprayed with black paint followed with white paint in 

order to create random speckles on the surface. A specimen to be tested with single-

camera DIC must be flat. Thus irregularities like welds must be grinded down. As the 

name suggests, DIC involves comparing successive digital images to determine the 

relative displacement of surface features between ‘undeformed’ and ‘deformed’ images. 

The DIC is superior to the traditional extensometer because it measures the surface 

strain field instead of the average strain over a gauge length. Thus, it is useful when 
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dealing with heterogeneous strain distributions as well as to determine the local strains 

in necked regions.  

 

The principle of this technique is further illustrated in Figure 3.22, which is 

adopted from reference [43]. Note that this reference gives detail of the technique. The 

figure shows that the material points are compared between a reference image and a 

deformed image, and from which a computer program is used to calculate the 

deformation of the sample. Figure 3.23 shows an example of the measured deformation 

in a cross-weld tensile test (AA6060-T6, T7 PWHT scheme) as obtained with DIC.  

 

                 
 a) b) 

Figure 3.21: Test set up including a) extensometer and b) camera for image acquisition  
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Figure 3.22: Principles of Digital Image Correlation (DIC) Technique [43]

     

          (a)   (b)        (c) 

(d)

Figure 3.23: Deformations measured using DIC, (a) initial grids on image, (b) final 
grids on image and (c) and (d,) displacement and strain along longitudinal axis of 

specimen, respectively.  
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3.7.2 Test results 

The test results are presented in the same format as the uniaxial tensile tests data, i.e. in 

the form of engineering stress vs. engineering strain curves ( )s e , plotted up to the 

maximum force. For the present tests, the curves must be considered as normalised 

force vs. displacement curves since they represent the response of an inhomogeneous 

test specimen. The engineering strain is calculated from the DIC measurements using a 

gauge length of 50 mm. Engineering stress vs. crosshead displacements curves are 

placed in Appendix 1 – 5 for further reference. Also provided in Appendix 6 – 15 are 

comparisons between ( )s e  curves obtained using the DIC technique and by the 

extensometer measurements. There are only small deviations between the two, showing 

that DIC is a valid method. Note further that the experimental results are compiled in 

Figure 3.35 through Figure 3.39 for the five investigated materials. Some of the effects 

discussed in the following are most easily observed in the latter figures. 

 

AA6060 

Figure 3.24, a) and b) show engineering stress-strain curves from the cross-weld tensile 

tests of alloy AA6060, welded in initial condition T4 and T6, respectively. The results 

for the material welded in initial condition T4 is comparable to the base material 

response as discussed in Section 3.5.2 (most easily seen in Figure 3.35). However, the 

elongation of the welded coupons is generally somewhat lower than what was observed 

for the base materials. This is in accordance with the hardness measurements and shows 

that the welding and PWHT schemes result in rather homogeneous properties in the test 

coupons, i.e. with weak effects of the weldment and HAZs. 
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For the material in initial condition T6 the welding is detrimental to the strength 

of the cross-weld tensile tests as compared with the base material properties. This is due 

to dissolution of the strengthening precipitates in the HAZ as discussed in Section 2.2. 

The ultimate capacity of these tests is expected to be governed by weakest section of the 

HAZ. As expected it is seen to correlates well with the hardness measurements as 

presented in Figure 3.15 b). The T6 and T7 PWHT scheme brings properties (strength 

and elongation) comparable to the ones of the base material test coupons, while the 

KTL scheme is insufficient to regain the strength capacity. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.24: Cross-weld tensile test results of AA6060, after NA and PWHT 

 
Table 3.10: Compilation and comparison of results from cross-weld tensile tests 

(CWTT) and uniaxial tensile tests (UTT) of AA6060 
Condition PWHT 

and 
label 

sult 
[MPa] 

eu 
[mm/mm] D 

0.2

uP
P

 

CWTT UTT CWTT UTT CWTT UTT CWTT UTT 

T4 

NA  165 175 0.158 0.221 39.9 64.7 1.9 2.1 
T6  226 234 0.045 0.080 7.3 13.4 1.1 1.1 
T7 185 193 0.049 0.064 10.8 12.2 1.2 1.2 

KTL 166 166 0.126 0.206 39.4 62.0 1.8 2.0 

T6 

NA  122 223 0.064 0.075 11.5 14.6 1.7 1.1 
T6 218 224 0.052 0.068 10.2 14.3 1.2 1.1 
T7  186 196 0.057 0.069 11.0 15.3 1.3 1.2 

KTL 172 223 0.063 0.077 10.3 16.0 1.7 1.1 
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 The ductility of the different specimens is discussed in view of Figure 3.25 

showing the failure mode of all specimens and Table 3.10. The failure modes can also 

be understood and correlated to the hardness profiles presented above. For initial temper 

T4 the hardness shows a slightly falling tendency away from the fusion line without any 

distinct minimum for all PWHTs. For this reason, plasticity is not localized in the HAZ, 

and the ultimate failure occurs in the base material. For initial temper T6 a clearly 

weakened HAZ was observed for the NA and KTL PWHT schemes, and these 

specimens fail in the HAZ. For the T6 and T7 PWHT schemes the hardness profile 

showed no clear minimum, and failure occurs in the form of a localised neck, in 

principle, positioned outside the HAZ.  

 

   
  (a) initial T4     (b) initial T6  

Figure 3.25: Failure pattern of tensile test results AA6060, after NA and PWHT 
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AA6061 

Figure 3.26 and Table 3.11 show that s0.2 and sult for AA6061 are larger than the 

corresponding values for the previous 6xxx alloy, both with respect to tempers and 

PWHTs. This is due to the higher magnesium content in AA6061. Welding causes a 

reduction in the sult for both T4 and T6 for all PWHTs, except for T7 PWHT scheme. It 

may also be noted that for KTL PWHT scheme the strain at ultimate stress is smaller 

than NA in T4. As for the previous alloy, the ultimate strain is significantly reduced for 

T6. And it is observed that welding has little influence on the work hardening, except 

for NA and KTL PWHT scheme in initial temper T6. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
e

0

50

100

150

200

250

300

s 
[M

P
a]

NA
T6
T7
KTL

0 0.05 0.1 0.15 0.2 0.25 0.3
e

0

50

100

150

200

250

300

s 
[M

P
a]

NA
T6
T7
KTL

 

(a)    Initial T4                           (b) Initial T6 
Figure 3.26: Cross-weld tensile test results of AA6061, after NA and PWHT 
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Table 3.11: Compilation and comparison of results from cross-weld tensile tests 
(CWTT) and uniaxial tensile tests (UTT) of AA6061 

Condition PWHT 
and 

label 

sult 
[MPa] 

eu 
[mm/mm] D 

0.2

uP
P

 

CWTT UTT CWTT UTT CWTT UTT CWTT UTT 

T4 

NA  179 200 0.130 0.191 44.9 57.0 1.9 2.1 
T6  238 255 0.050 0.071 11.3 12.5 1.2 1.1 
T7 207 228 0.045 0.068 10.5 13.5 1.2 1.2 

KTL 183 199 0.082 0.169 30.3 44.6 1.7 1.9 

T6 

NA  199 243 0.053 0.072 14.8 13.9 1.7 1.2 
T6 240 243 0.052 0.073 9.5 15.5 1.1 1.2 
T7  221 223 0.061 0.076 12.1 15.3 1.2 1.2 

KTL 202 241 0.047 0.078 11.7 17.3 1.6 1.2 

 

 The changes in the ductility can be explained by the failure locations, as given 

by the photos in Figure 3.27 and by the hardness profiles presented in Figure 3.16. 

Except for a narrow zone with high hardness in narrow zone next to the fusion line, the 

hardness is almost constant for all PWHTs in temper T4. Failure may therefore be 

initiated at any point in the base material, which is also what happened. For T6 all 

profiles have a distinct minimum about 5 mm from the fusion line, and as shown in 

Figure 3.27 all failures, with one exception, occurred in the HAZ. 

 

67



Through Process Modelling of Welded Aluminium Structures 

 

   
  (a) initial T4     (b) initial T6  

Figure 3.27: Failure pattern of tensile test results AA6061, after NA and PWHT 

 

AA6005 

Figure 3.18 (a) and (b) show engineering stress-strain curves from the cross-weld tensile 

tests of alloy AA6005, welded in initial condition T4 and T6, respectively. The 

following observations are made for the NA and KTL PWHT schemes, which results in 

very similar response curves for both initial conditions: 1) The sult is slightly larger 

when welding is done in T6 condition, and 2) the specimen elongation is larger when 

welding is done in T4 condition. 

 

The T6 and T7 PWHT schemes result in enhanced strength for both initial 

conditions. For the tests based on initial condition T6, also the specimen ductility is 

increased by these PWHT schemes. In other words, the effects are entirely positive with 

respect to the mechanical properties of the component (specimen). For the tests in initial 
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condition T4, these PWHT schemes reduce the specimen elongation, similarly to what 

is experienced for the base material. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.28: Cross-weld tensile test results of AA6005, after NA and PWHT 

 

 Table 3.12 summarizes the mechanical parameters for the cross-weld tensile 

tests and the uniaxial tensile tests presented in Section 3.5.2. For T4 welding causes a 

reduction in the sult for all PWHTs, with the maximum reduction for NA. For T6 

reductions are observed for NA and KTL PWHT scheme, while there are no strength 

reductions for the other PWHTs. From the ratio Pu/P0.2 it is seen that welding does not 

affect the work hardening in initial T4, but it causes a reduction for NA and PWHT-

KTL in initial T6. 
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Table 3.12: Compilation and comparison of results from cross-weld tensile tests 
(CWTT) and uniaxial tensile tests (UTT) of AA6005  

Condition PWHT 
and 

label 

sult 
[MPa] 

eu 
[mm/mm] D 

0.2

uP
P

 

CWTT UTT CWTT UTT CWTT UTT CWTT UTT 

T4 

NA  167 184 0.102 0.172 21.0 59.0 2.0 2.1 
T6  232 246 0.044 0.067 5.7 11.9 1.2 1.1 
T7 197 206 0.039 0.054 7.0 11.4 1.2 1.2 

KTL 169 176 0.091 0.158 18.2 44.0 1.8 2.0 

T6 

NA  167 212 0.040 0.060 7.0 9.0 1.7 1.2 
T6 224 224 0.049 0.057 5.1 11.5 1.2 1.2 
T7  199 197 0.045 0.060 6.1 13.3 1.4 1.3 

KTL 175 221 0.039 0.064 5.1 13.9 1.8 1.2 

 

 Figure 3.29 shows pictures of the failed specimens for the two different initial 

conditions. For initial temper T4 the specimens failed outside the HAZ for all PWHTs. 

This could be expected as it is known that welding in temper T4 gives little reduction of 

the yield stress in HAZ. This is substantiated by the hardness measurements given in 

Section 3.7. As will be seen, the hardness measurements reveal that a 3-4 mm wide 

zone next to the weld has higher hardness than the rest of the specimen, which 

demonstrate a uniform hardness profile. Naturally, failure initiates at a point within the 

weaker region.  

 

 Welding in T6 is known to strongly reduce the strength in the HAZ. The NA and 

KTL PWHT schemes do not remedy this strength drop. Thus, failure occurs in the HAZ 

for these PWHT schemes. For the T6 and T7 PWHT schemes, hardness profiles 

demonstrate that the loss of strength in the HAZ is regained by the heat treatment. In 

other words, the specimens have almost constant hardness (strength) along the gauge 

section. This caused the failure to occur in the base material, except for specimen VII 
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that failed in the HAZ. Note: for T7 PWHT, the response curve, results from specimen 

V that failed outside of the HAZ. 

 

   
  (a) initial T4     (b) initial T6  

Figure 3.29: Failure pattern of tensile test results AA6005, after NA and PWHT 

 

AA7046 

Figure 3.30 and Table 3.13 present the results for alloy AA7046. Again, the initial 

temper has little effect on the tensile strength and the amount of strain hardening. The 

T7 PWHT scheme clearly reduces the strength, while NA gives higher strength than 

observed for 6xxx alloys. Note that for both initial tempers the sult for NA is reached 

while the response curves still have a positive gradient, which is caused by rapid growth 

of GP zones at room temperature. Welding causes in general an approximate 5% 

reductions in sult, except for NA where the reduction is 14%. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.30: Cross-weld tensile test results of AA7046, after NA and PWHT 

 

Table 3.13: Compilation and comparison of results from cross-weld tensile tests 
(CWTT) and uniaxial tensile tests (UTT) of AA7046 

Condition PWHT 
and 

label 

sult 
[MPa] 

eu 
[mm/mm] D 

0.2

uP
P

 

CWTT UTT CWTT UTT CWTT UTT CWTT UTT 

T4 

NA  414 479 0.056 0.085 7.6 13.3 1.4 1.4 
T6  428 460 0.054 0.081 6.3 12.2 1.2 1.1 
T7 341 361 0.055 0.070 8.8 10.5 1.2 1.1 

KTL 380 390 0.049 0.087 6.5 12.2 1.2 1.1 

T6 

NA  425 453 0.062 0.081 9.6 9.1 1.5 1.1 
T6 420 442 0.039 0.102 4.7 12.1 1.1 1.1 
T7  334 353 0.057 0.072 7.3 10.4 1.2 1.1 

KTL 368 400 0.040 0.085 5.2 12.1 1.2 1.1 

 

Figure 3.31 shows that for T4 the failure occurred at a distance of about 10 mm 

from the fusion line for NA and T6 PWHT schemes and at a distance of about 20 mm 

for T7 and KTL PWHT schemes. This is in agreement with the location of the 

minimum hardness as seen from the profiles in Figure 3.18. For T6 the location was 

inconsistent and occurred at either 10 mm or 20 mm for each PWHT. The hardness 

profiles do not indicate preference for either location. 
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  (a) initial T4     (b) initial T6  

Figure 3.31: Failure pattern of tensile test results AA7046, after NA and PWHT 

 

AA7108 

The response data for AA7108 are presented in Figure 3.32 and Table 3.14, and as seen 

the results differ little from those of AA7046. The welding causes a reduction in sult of 

about 5%, independent of the initial temper, and again the highest value is obtained for 

NA. Also here the T7 PWHT scheme gives the lowest strength. Due to the experimental 

problems no data are available for KTL PWHT scheme in T4. The ductility D for NA 

and T7 PWHT schemes in T6 are anomalous, as welding appears to improve the 

ductility significantly. 
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(a)    Initial T4                           (b) Initial T6 
Figure 3.32: Cross-weld tensile test results of AA7108, after NA and PWHT 

 

Table 3.14: Compilation and comparison of results from cross-weld tensile tests 
(CWTT) and uniaxial tensile tests (UTT) of AA7108 

Condition PWHT 
and 

label 

sult 
[MPa] 

eu 
[mm/mm] D 

0.2

uP
P

 

CWTT UTT CWTT UTT CWTT UTT CWTT UTT 

T4 

NA  427 471 0.086 0.145 14.6 22.2 1.5 1.5 
T6  414 437 0.055 0.094 6.6 10.8 1.2 1.1 
T7 327 350 0.058 0.070 8.3 12.1 1.2 1.2 

KTL - 361 - 0.089 - 14.9 - 1.2 

T6 

NA  402 419 0.068 0.037 12.6 4.7 1.4 1.1 
T6 406 431 0.051 0.076 7.0 10.7 1.1 1.1 
T7  322 340 0.062 0.049 9.2 7.1 1.2 1.1 

KTL 366 394 0.054 0.089 7.3 13.8 1.2 1.1 

 

 As seen from Figure 3.33, failure for T4 occurs at the same locations as for 

AA7046, while there is less variation in the location for T6. Considering the hardness 

profiles in Figure 3.19, it is seen that the hardness decreases with increasing distance 

from the fusion line, except for distinct local dips for NA and T6 PWHT schemes for 

initial T4 at a distance of 10 mm. Initially this was thought to be due to a measurement 

error, but Figure 3.33 shows that this is where the failure actually occurred. For T6 the 
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minimum hardness occurs at a distance of about 12 mm for all PWHTs, which is also 

where the specimens failed.  

 

  
  (a) initial T4     (b) initial T6  

Figure 3.33: Failure pattern of tensile test results AA7108, after NA and PWHT 

 

3.8 Discussion and concluding remarks 

In the previous sub-sections of this chapter, the tests on the individual materials have 

been presented and discussed. Figure 3.35 to Figure 3.39 have been prepared to provide 

overview of all experimental results. The three tests methods, namely Uniaxial tensile 

tests, Cross-weld tensile tests and Hardness tests provide complimentary information 

about the material and how it is affected by temperature. The collected illustrations 

provide the means to explore the consistency of the results, and to analyse the 

systematic effects of alloy, initial condition, welding and PWHT on the strength and 
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ductility of base materials and the generic welded joints. In addition, a column graph 

that summarizes the Yield stress (YS) and Ultimate Tensile Stress (UTS) of all alloys is 

further provided in Figure 3.40. 

 

Uniaxial tensile test  

The initial temper affects the tensile properties of the material significantly. For the as-

delivered conditions (i.e. the NA), the yield stress is much lower in T4 than in the peak-

aged T6 condition. The work hardening is, however, much larger and this leads to a 

more ductile specimen response.  

 

For the AA6xxx alloys in the as-delivered T4 condition, the PWHT schemes generally 

increase the strength of the material at the cost of a reduced work hardening and 

reduced ductility. For 7xxx series in the as-delivered T4 condition, the strength 

increases only for the T6 PWHT scheme. Both KTL PWHT and over-ageing (T7 

PWHT) lowers the strength. Here, NA gives the highest work hardening and ultimate 

strength. 

 

For the materials delivered in initial condition T6, the PWHT schemes generally cause a 

reduction in strength for AA6xxx, except for AA6005-T6, due to improper temperature 

control during manufacturing. The deviating response of AA6005-T6 is seen by 

comparing Figure 3.37 (d) with the corresponding results for AA6060-T6 and AA6061-

T6 (Figure 3.35 (d) and Figure 3.36 (d), respectively). The strength reduction is small 

for T6 PWHT and T7 PWHT for the (remaining) AA6xxx (-T6) alloys and AA7xxx (-

T6) alloys. Only KTL PWHT scheme increases in strength for AA7xxx (-T6) alloys. 
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Hardness tests 

The hardness profiles are much affected by the base metal chemistry and initial temper 

of the materials. A pronounced hardness reduction in the HAZ was observed for the 

AA6xxx alloys in temper T6. A less pronounced, but notable, hardness reduction is seen 

for the AA7xxx-T6 materials. In T4 conditions, no clear trends are observed. The 

PWHT schemes may effectively recover the strength loss in the HAZ for the 

investigated materials, but some variations in hardness prevail after welding and 

PWHT. The inhomogeneous properties may affect how and where strain localisation 

takes place in the cross-weld tensile tests. 

 

From the hardness measurements it is possible to predict an approximate value of the 

yield stress using simple regression formulas reported in the literature. For Al-Mg-Si 

and Al-Zn-Mg extruded profiles, the following equations have been shown to give fair 

estimates of the yield stress [7, 46]. 

Al-Mg-Si:  0.2( ) 3.0 48.1y MPa HV        (3.4)                                 

Al-Zn-Mg:  0.2( ) 3.7 100.0y MPa HV              (3.5)                                 

 

The yield stress obtained from cross-weld tensile tests should be expected to give 

almost the same yield stress as estimated from the measured minimum HAZ hardness, 

which is confirmed by the good correlation shown in Figure 3.34. The small 

discrepancy observed, is probably due to the fact that the yield stress values from cross-

weld tensile tests represent mean values over the specimen cross-sectional area, whereas 
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the yield stress values from hardness measurement values are referring to a point within 

this area. It might be expected that the narrower the specimen tested, the better the 

correlation [18]. 
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Figure 3.34: Correlation between minimum HAZ yield stress converted from hardness 
measurements, and measured yield stress in tensile testing of the HAZ normal to the 

welding direction for AA6060 and AA7046 [1]. 

 

 

Cross-weld tensile tests: 

It is known that the strength of AA6xxx alloys in initial temper T4, which is not 

artificial aged, is relatively unaffected by welding. However, alloys in temper T6 have 

achieved their increased strength by artificial ageing, and subsequent welding will thus 

negate these beneficial effects.  

 

This is confirmed by the response curves for the cross-weld tensile tests for initial 

temper T4. As seen, both fy and fu remain practically unchanged, while a reduction in 
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the ductility is observed primarily for NA and KTL. For the other PWHTs the reduction 

is insignificant. These conclusions are substantiated by the hardness profiles which do 

not display a hardness drop that can be associated with a HAZ.   

 

For alloys in initial temper T6 the hardness profiles show a significant drop in hardness 

in a region next to the weld for NA and KTL, indicating the presence of a HAZ. For the 

other PWHTs no such reduction is observed. These observations are substantiated by 

the response curves, which show a significant reduction in the ultimate limit strength for 

the NA and KTL-PWHT. On the other hand the ductility is relatively unaffected by the 

welds. 

 

The hardness profiles for AA7046 and AA7108 show no drops in the vicinity of the 

weld, indicating that there are no HAZs, neither for initial T4 nor T6. Also for these 

alloys the welding has caused a small reduction in ductility (except of NA in initial T6). 
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4 Simulations 
______________________________________________________________________ 

4.1  Introduction 

This chapter presents results from the models and modelling procedures, both based on the 

NaMo model and the through-process simulations, in comparison with the experimental 

results.  

 The NaMo model is presently not fully developed for all the alloys and initial tempers 

included in the test program. Further, in Chapter 3 (Section 3.5.2), it was found that the 

original as-delivered plates of AA6005 in (the planned) T6 condition had too low yield stress, 

probably due to improper heat treatment. Thus, these experimental data are not explored in 

the present validation studies and, hence, only predictions and simulations for AA6060 and 

AA6061 in initial temper T6 are covered. The study investigates and documents each of the 

four PWHT schemes for these two materials. The experimental results for AA6xxx initial 

temper T4 and AA7xxx in both tempers are currently used for further development of the 

NaMo model in concurrent research performed by Hydro Aluminium. 

 As described in Chapter 2, the NaMo model consists of three parts: a precipitation 

model, a yield strength model and a work hardening model. The data from the precipitation 

model constitute the input data for the two latter models. The results of the NaMo model are 

presented in terms of stress-strain curves relating the flow stress f  to the plastic strain 
p
, 

and in terms of hardness profiles. 

 For the structural response simulations using LS-DYNA, a parametric study was 

carried out to explore and document effects of element type, mesh size and effects of non-

local regularisation. 
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4.2  Uniaxial tensile test simulations 

The prime input to the NaMo simulations is the temperature histories, derived from 

WELDSIM, at a number of reference points in the structure. In addition, the material 

constants given in Chapter 2 (Table 2.1) are used. The predicted flow stress f  (as a function 

of the plastic strain 
p
 and as resulting from NaMo and Equation 2.17) is plotted in Figures 

4.1 to 4.3 for the three alloys and four PWHT procedures considered. In the same figures, the 

experimental results from the coupon test are given. 

 

AA6060 

The measured and predicted work hardening curves for AA6060 are given in Figure 4.1.  As 

seen, there is very good agreement between the curves, thus indicating that the NaMo model 

is able to predict the precipitation mechanisms and precipitate strengthening effects of this 

alloy. 
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Figure 4.1: Measured and predicted flow stress vs. logarithmic plastic strain, AA6060 
coupons, initial T6 
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AA6061 

Figure 4.2 depicts the measured and predicted work hardening curves for the AA6061 alloy. 

For this material, the base version of the NaMo model predicts much too high strength for the 

NA, KTL and T6 PWHT schemes, while the agreement is quite good for T7 PWHT scheme. 

This signalises that the base version of the NaMo model needs modifications. The probable 

cause for the deviation is the model calculates too much precipitates. And since only yield 

strength model is affected, the principal amendment to the model, relates to the parameters 

extracted from PSD (precipitation model) which are then transferred to the yield strength 

model.   
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Figure 4.2: Measured and predicted flow stress vs. logarithmic plastic strain, 
AA6061coupons, initial T6 

 

4.3  Hardness profile predictions 

The Through-process Modelling scheme explored in the present study allows to estimate the 

spatial distribution of the yield stress and work hardening as a function of the distance x (in 

mm) from the weld fusion line. Uniaxial tensile tests are intractable for experimental 
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validation due to the large spatial gradients in the property variation. Instead, an indirect 

comparison is carried out, where the yield stress predicted by NaMo is converted to hardness 

VH (in VPN) by means of Equation 3.4 - 3.5 and compared with the corresponding 

experimental results already presented and discussed in Section 3.6.2.  

 

AA6060 

Figure 4.3 shows the measured and predicted hardness profiles for alloy AA6060. Overall, the 

agreement is very good for the base material, i.e. outside the HAZ, which is in agreement with 

the results found in the preceding section. The predicted extent of the HAZ is somewhat 

smaller (2 - 3 mm) than what is shown by the associated experimental data. In more detail, for 

the NA PWHT scheme NaMo underestimates the minimum hardness in the HAZ by 

approximately 16%, while for KTL PWHT scheme, the minimum HAZ strength is 

overestimated by about 18%. For the T6 and T7 PWHT schemes, NaMo predicts almost 

constant hardness over the entire HAZ. This is, however, not in full accord with the 

experimental data; the hardness is significantly underestimated near the fusion line (from 0-7 

mm) for both PWHT schemes.  
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Figure 4.3: Experimental and simulated hardness profiles AA6060, initial T6 
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AA6061  

The measured and predicted hardness profiles for alloy AA6061 in initial condition T6 are 

shown in Figure 4.4. For this material the deviations are large. For the NA and KTL PWHT 

schemes, the predicted width of the HAZ is smaller than the measured ones, and the hardness 

exceeds the measured one both close to the fusion line and in the base material. Still, the 

predicted minimum values are rather similar to the experimental values. The discrepancies are 

significant also for T6 and T7 PWHT schemes.  
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Figure 4.4: Experimental and simulated hardness AA6061, initial T6 
 

4.4  Cross-weld tensile test simulations 

The present section presents the results of the through-process simulations of the cross-weld 

tensile tests specimens, in comparison with experimental data. The first section summarises 

the methods and assumptions for the analyses. In the consecutive sections results from three 

different finite element models are presented: 1) shell analysis excluding non-local thinning, 

2) shell analysis including non-local thinning and 3) brick element analysis. The latter Section 
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includes comparisons between results obtained with the three methods. All simulations were 

carried out using the explicit solver of LS-DYNA.  

Figure 4.5 illustrates results from an experiment (AA6060-T6, PWHT-NA) and a 

corresponding numerical simulation. Part (a) shows a picture taken after failure, which 

occurred by strain localisation and sub-sequent material fracture in the HAZ. Note the 

position of the weld indicated by the black lines above and under the specimen. Part (b) of the 

Figure presents the deformations field as measured by DIC. Note the strain localisation in the 

HAZ at about 12 mm distance from the weld. The result from a numerical analysis performed 

in LS-DYNA is depicted in part (c) of the figure. It can be noted that the necking initially 

occurred on both sides of the weld, followed by subsequent intensified localisation and 

fracture on one of the two sides. 

 

      
(a) Physical cross-weld tensile specimen (b) Deformation near the weld by DIC 

  

 
(c) Strain localization in the HAZ given by FEM 

 
Figure 4.5: Physical and virtual cross-weld tensile specimen from FE simulation 

 

4.4.1  Methods and assumptions  

Material models and loading 

The actual weld part was represented by a separate past and a standard model elastic-plastic 

material model (*MAT_PIECEWISE_LINEAR_PLASTICITY) of LS-DYNA. The 

remaining of the specimen, i.e. the HAZ and base metal, was modelled by using a user-
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defined material mode (*MAT_USER_DEFINED_MATERIALS), in which the yield stress 

and the work hardening are modelled by means of NaMo, as presented previously.  

Loading was applied at one end of the clamped specimen ends, while the other 

clamped end was constrained. Total displacement of 20 mm was imposed over 15 ms raise 

time. The raise time is shorter than the duration of the experimental test. Nevertheless, in all 

simulations the kinetic energy was only a small fraction of the internal energy of the system to 

ensure that quasi-static response is achieved. The choice of the chosen total displacement was 

based on the ductility of the welded joint itself. 

 

 

Shell elements and non-local thinning 

The response of thin-walled structures, where the dimension in the thickness direction is 

much smaller than the other two directions, is most efficiently investigated by shell theory or 

FE analyses using shell elements, in particular when using explicit solution methods. The gain 

in efficiency stems from a lowered number of degrees of freedom and a higher critical time 

step needed to perform the analyses. 

When shell elements are used to study failure due to strain localisation and material 

fracture, however, the solution is prone to convergence problems, as the strain tends to 

localize randomly with mesh refinements, leading to solutions that can change significantly 

from one mesh to another. Even if a sufficiently dense mesh may appear to represent the 

position of the strain localization well, the evolution of the plastic thinning may be incorrect. 

The absence of through-the-thickness stress in the shell causes a highly concentrated plastic 

thinning that in reality would takes place over a larger region. This problem does not appear 

when using brick elements.  

 
As discussed by Wang et al. [41], the non-local approach was originally proposed by 

Bazant and Pijaudier-Gabot [44] in order to solve the mesh dependence problem in softening 

materials. In damage mechanics it is generally experienced and reported that non-local 

damage evolution greatly reduces the mesh sensitivity of fracture predictions, leading to 

results that converge to a unique solution as the mesh is refined. Similarly, Wang et al. [41] 

suggested remedying the shell element issues discussed above with the concept of non-local 



Through Process Modelling of Welded Aluminium Structures 
 

 

plastic thinning for better response prediction regardless of element sizes applied. The non 

local approach, introduced by Lademo et al [34] was adopted, where the plastic thickness 

strain ratio 
p

t  is the variable subjected to the nonlocal equation. Dørum et al [5] also applied 

this method so that the resistance of the shell elements towards thinning will be enhanced 

(depends on the radius of non-local domain).Thus, increasing ductility as the predicted strain 

localization will occur later. Another feature of non-local approach that allows the definition 

of separate work hardening curves for various pre-strain levels within one material ID can be 

referred to Lademo et al. [35]. Apart from the non-local thinning approach studied here, there 

are other non-local regularisations or regularisation by including rate dependence in the 

constitutive model by Belytschko et al. [38] to solve the mesh dependency matters.  

In the approach of Wang et al. [41], the incremental plastic thickness strain in a given 

element is calculated as a weighted average of the incremental plastic thickness strains of 

elements within a non-local domain defined by a radius L from the centre of the considered 

element, illustrated in Figure 4.6. The radius L is typically in the order of the thickness of the 

material. Note that only integration points lying in the same plane within the radius are 

considered in the averaging procedure. By this approach, the resistance of the shell elements 

towards thinning will be enhanced, depending on the size of the non-local domain. As a 

result, the structural ductility increases. The *MAT_NONLOCAL option in LS-DYNA is 

used to invoke non-local averaging of a given history variable. Reference is made to Wang 

[41] for a more detailed presentation of the approach. 

 

 
Figure 4.6: Radius of non-local approach that span for a few elements [18] 
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4.4.2  Base model(s): Shell elements without non-local thinning 

This section presents results obtained with a set of base models using shell elements without 

regularisation by non-local thinning, in comparison with the experimental data. Seven 

different meshes, with minimum element size ranging from 0.6 mm to 3.0 mm, were used to 

evaluate the mesh sensitivity. The minimum size was used in the parts of the cross-weld 

tensile test specimen that were prone to experience strain localisation and fracture, i.e. the 

weak HAZ and weld region. The default shell element in LS-DYNA was used, namely the 

Belytschko-Tsay shell element with one-point Gauss quadrature and two integration points 

through the thickness. Hourglass control was activated to control zero-energy modes in the 

under-integrated shell elements. The number of elements for the various models is: 16722 (0.6 

mm), 12246 (0.74 mm), 9580 (0.9 mm), 8292 (1.0 mm), 6448 (1.2 mm), 1814 (2.3 mm) and 

1031 (3.0 mm).  

 

AA6060 

The response curves for AA6060 (initial condition T6) are shown in Figure 4.7 (a), (b), (c), 

and (d) for the NA, KTL, T6 and T7 PWHT schemes, respectively. The various element sizes 

have, at least for this material, little effect on the force-deformation characteristics. Some 

mesh dependency is, however, seen on the tail of the force-deformation curves, i.e. a steeper 

slope and reduced ductility is predicted with decreasing element size. A convergent solution is 

reached with element size 0.9 mm for all PWHT schemes. Except for the KTL PWHT scheme 

there is good agreement between the experimental and simulated results. For the KTL PWHT 

the discrepancy is large. Here, the onset of yielding in the experiment takes place at a 

significantly lower stress than for the simulation. Further, the ultimate strength is obtained at a 

deformation of about 7 mm (not shown in figure), which is much higher than the elongation 

observed in the experimental tests.  

The large deviation observed for the KTL PWHT is understandable from the 

associated deviation in experimental and predicted hardness profiles (See Figure 4.3). The 

strength of the specimen is governed by the minimum strength in the HAZ and, as seen from 

the mentioned figure, NaMo over predicts the strength considerably for this PWHT scheme. 

The same effect reduces the strength difference, i.e. inhomogeneity in the specimen, which 

again increases the predicted elongation of the specimen. 
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Figure 4.7: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and simulations with various mesh sizes for AA6060 

 

AA6061 

The simulated response curves for AA6061 deviate significantly from the experimental ones 

for all PWHTs see Figure 4.8.  This deviation is most obvious for the elongation at ultimate 

stress, with values only a fraction of the experimental values. The predicted ultimate stress 

agrees reasonably well with the experiments for the NA and KTL PWHT schemes but differs 

significantly for the T6 and T7 PWHT schemes.  

Again the deviations are reasonable given the discrepancies between the experimental 

and predicted hardness profiles (See Figure 4.5). In other words; rather accurate predictions of 

the minimum strength (NA and KTL PWHT) results in rather accurate predictions of the 

ultimate capacity of the specimens. Further, the generally low ductility of the cross-weld 

tensile specimens correlates well with the trend that NaMo predicts too narrow and sharp 

HAZ softening. Again, it can be concluded that for this alloy, the present NaMo model is not 

sufficiently developed.  
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For this material the mesh dependency is more pronounced, but a rather good 

convergence is obtained for an element size of 0.9 mm. 

 

 

0 1 2 3 4 5 6
udic [mm]

0

50

100

150

200

250

s 
[M

Pa
]

Experiment
0.6 mm
0.74 mm
0.9 mm
1.0 mm
1.2 mm
2.3 mm
3.0 mm

 

 

0 1 2 3 4 5 6
udic [mm]

0

50

100

150

200

250

s 
[M

Pa
]

Experiment
0.6 mm
0.74 mm
0.9 mm
1.0 mm
1.2 mm
2.3 mm
3.0 mm

 
  (a) NA      (b) KTL PWHT  

0 1 2 3 4 5 6
udic [mm]

0

50

100

150

200

250

s 
[M

P
a]

Experiment
0.6 mm
0.74 mm
0.9 mm
1.0 mm
1.2 mm
2.3 mm
3.0 mm

 

 

0 1 2 3 4 5 6
udic [mm]

0

50

100

150

200

250

s 
[M

Pa
]

Experiment
0.6 mm
0.74 mm
0.9 mm
1.0 mm
1.2 mm
2.3 mm
3.0 mm

 
  (c) T6 PWHT     (d) T7 PWHT  
 

Figure 4.8: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and simulations with various mesh sizes for AA6061 

 

4.4.3  Shell elements with non-local thinning 

This section presents results obtained with shell elements and the regularisation technique of 

non-local (NL) thinning in comparison with experimental data and results obtained shell 

elements without regularisation. The analyses are carried out for element sizes 0.6 mm, 0.7 

mm and 0.9 mm and the radius of non-local thinning was taken as 2.0 mm, 3.0 mm and 4.0 

mm. The chosen radius was due to the observation that the width of the strain localization in 

physical experiments is often the same order as the sheet thickness.  
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AA6060 

Figure 4.9, Figure 4.10 and Figure 4.11 compare experimental and numerical results (without 

and with NL thinning), for the AA6060-T6 material, of the NA, T6 and T7 PWHT schemes, 

respectively. For all of these analyses the non-local radius of influence was set to 2.0 mm. As 

seen, the introduction of the NL thinning significantly increases the predicted specimen 

ductility. The general trend is that the analyses without NL thinning are in better accordance 

with the experiments, than the ones with NL thinning.  
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Figure 4.9: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and numerical simulations for AA6060 after NA 
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Figure 4.10: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and numerical simulations for AA6060 after PWHT-T6  
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Figure 4.11: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and numerical simulations for AA6060 after PWHT-T7  

 

 

AA6061 

Figure 4.12, Figure 4.13 and Figure 4.14 compare results obtained with and without NL 

thinning, for the AA6061-T6 material, of the NA, T6 and T7 PWHT schemes, respectively. 

The response curves for KTL PWHT scheme showed the same tendency as for NA PWHT 

and are not presented. The figures include results with various radius of influence as specified 

by the caption of each figure. The deviations between the experimental and predicted results 

are rather large for this alloy, and it has already been concluded that this is due to weaknesses 

in the (present version of the) NaMo model for this alloy. The results contained herein are 

thus serving more to document experience with mesh convergence and non-local 

regularisation for the problem at hand than the purpose of model validation. 

The use of the concept of non-local thinning in the analyses results in a significant 

increase in the predicted ultimate stress and specimen elongation. As should be expected, the 

larger radius of influence the larger becomes the predicted specimen ductility. For NA (and 

KTL) PWHT the elongation is underestimated without non-local thinning. With non-local 

thinning the elongation may artificially be made to correspond to the experimental results. 

The results for a radius of influence of 2.0 mm and 3.0 mm are almost indistinguishable. For 

T6 and T7 PWHT schemes, the simulated elongation is grossly underestimated even for large 

values of the radius of influence. This is considered to be caused by the much larger 

inhomogeneity in properties exhibited by the model than the experiments, as documented by 
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the experimental and predicted hardness profiles. The results are relatively independent of the 

mesh chosen.  
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Figure 4.12: Engineering stress vs. deformation of cross weld tensile test – a comparison 

between experiment and numerical simulations for AA6061 after NA 
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Figure 4.13: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and numerical simulations for AA6061 after PWHT-T6 
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Figure 4.14: Engineering stress vs. deformation of cross weld tensile test – a comparison 
between experiment and numerical simulations for AA6061 after PWHT-T7  
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4.4.4  Shell vs. brick elements 

In this sub-study, a comparison is made between results obtained for shell and brick models. 

The brick model was built using the default constant-stress brick element in LS-DYNA 

having one node at each corner and using three elements through the thickness of the 

specimen. In both models, the element size was taken as 0.9 mm.  

The response curves for AA6060-T6 and AA6061-T6 are given in Figure 4.15 and 

Figure 4.16, respectively.  For NA and KTL PWHT, all analyses overestimate the ultimate 

stress, with the brick model giving the highest value. While T6 PWHT is well predicted for 

both alloys, T7 PWHT is underestimated for AA6061. Nevertheless, in accordance with the 

findings of Dørum et al., the brick analyses compares better with the shell element analysis 

using non-local regularisation than to the ones without this remedy.  
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Figure 4.15: Comparison of engineering stress vs. deformation curve, using shell and brick 
elements for AA6060 
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Figure 4.16: Comparison of engineering stress vs. deformation curve, using shell and brick 
elements for AA6061 

  

4.5 Discussion and concluding remarks 

Simulations of uniaxial tensile test  

The NaMo model gives good predictions for AA6060 alloy subjected to NA and all PWHT 

schemes. The same results would be expected for AA6005 as the chemical composition only 

deviates in terms of Mn and Cu. The NaMo model greatly over-predicts the yield stress for 

NA, KTL and T6 PWHT scheme of AA6061, while the agreement is quite good for T7 

PWHT scheme. Anyhow, this indicates that the NaMo model needs modifications for alloys 

of this, or similar composition. 

 

Simulations of hardness tests 

For AA6060 subjected to NA, NaMo underestimates slightly the minimum hardness in the 

HAZ but overestimates it for KTL PWHT. For both cases, the agreement is very good in the 

base material outside the HAZ. NaMo predicts an almost constant hardness over the entire 

profile both for T6 and T7 PWHT schemes, but it underestimates the hardness significantly 
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near the fusion line for both cases. For AA6061, the predicted hardness profile is too 

inaccurate. 

 

Simulations of cross-weld tensile tests 

The NaMo model gives good results for AA6060-T6 except for PWHT-KTL. The results are 

inaccurate for AA6061-T6.  

 

A fine mesh is necessary both for shell and brick elements to get accurate predictions 

for the ductility of the welded aluminium connections in question. Dørum et al. [5] found that 

shell element simulations using a non-local radius of influence equal to the thickness of the 

specimen gave results comparable to those of brick element simulations. Wang et al. [41] 

found that a radius of influence equal to half of the specimen thickness improved the shell 

element simulations. In the present investigation, a non-local radius of influence equal to 2/3 

of the thickness gave best results. The correlation is, however, highly dependent upon the 

predictions of the NaMo model. An actual experimental validation and the development of a 

modelling guideline require further improvements of the NaMo model, in particular for the 

alloy AA6061 and alloys of similar composition. Based on the needs documented by the 

present study, concurrent work has been undertaken by Hydro Aluminium to improve the 

NaMo model. Model revisions now exist that will be evaluated towards the experimental 

database documented herein in forthcoming studies.   
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5 Conclusions 
 
______________________________________________________________________ 
 
This thesis evaluates the accuracy, efficiency and robustness of the ‘Through Process 

Modelling’ concept previously developed, discussed and evaluated by Myhr et al. [24, 25, 26, 

28] and Dørum et al. [5]. Through experiments and numerical analysis, the evaluation covered 

various heat-treatable aluminium alloys of 6xxx and 7xxx series, in different initial temper 

conditions and relevant PWHT schemes. The secondary objectives stated in the introduction 

are 

1. To establish an experimental database addressing the capacity and ductility of simple 

welded joints made of heat-treatable aluminium structures suited for the overall 

objective.  

2. To perform numerical investigations based on the TPM concept.  

3. The numerical study shall document present capabilities and limitations of the present 

sub-model versions and identify needs for further research. 

 

An experimental database has been established. The experimental study investigates 

effects of the main steps in the manufacturing of the joints; initial ageing and condition of the 

material, welding and PWHT. Five different alloys (AA6005, AA6060, AA6061, AA7046 

and AA7108), two initial tempers (T4 and T6) and four different PWHT schemes were 

selected. Due to improper manufacturing control, it is concluded that the original plates of 

AA6005-T6 had a too low yield stress probably due to slow cooling (air cooling) after 

solution heat treatment. These data must be used with care in further validation studies since 

the actual thermal processing of the as-delivered material is uncertain. The remaining dataset 

is thought to meet with the stated objective. 

 

A numerical study has been carried out to explore and document present capabilities 

and limitations of the TPM concept and associated sub-model versions. The NaMo model is 

presently not fully developed for all the alloys and initial tempers included in the test 

program. The NaMo version underlying the study is developed for AA6xxx alloys in stable 

conditions, i.e. for the materials in initial condition T6 but not for T4. For reasons stated 
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above, the data for AA6005-T6 are excluded. In other words, numerical studies have only 

been carried out for AA6060 and AA6061 in initial temper T6.  

 

The NaMo model shows promising results for alloy AA6060, but is inaccurate for 

AA6061. Based on the needs documented by the present study, concurrent work has been 

undertaken by Hydro Aluminium to remedy the observed deficiency of the NaMo version 

explored in the present study. This also includes work for AA7xxx alloys and other unstable 

conditions. 

 

For the structural response simulations using LS-DYNA, a parametric study was 

carried out to explore and document effects of element type, mesh size and non-local 

regularisation. For the element type, shell elements were found to be convenient and efficient. 

The force vs. deformation curves presented clearly shows that the predicted response is mesh-

dependent and a convergent solution was not achieved. This is due to the fact that strain tends 

to localize randomly with mesh refinement. Thus, results can change significantly from mesh 

to mesh. Convergent solution is then obtained with 0.9 mm mesh size in this study. Mesh 

density was found to have little influence on the prediction of strength. As for structural 

ductility, relatively accurate predictions of elongation were obtained by the refined mesh. 

Finer mesh was seen to represent the position of strain localisation very well, however not the 

evolution of the plastic thinning. Hence, non-local thinning is a potential remedy to regularise 

the situation and obtaining mesh convergence. The chosen non-local radius is often the same 

order as the sheet thickness, but for this study, two third of sheet thickness works better. For 

the same study, without non-local thinning, the numerical simulations generally predicted the 

structural strength and ductility reasonably well for AA6060, except KTL PWHT. However, 

the ductility was underestimated for AA6061. Whereas, with non-local thinning applied, good 

agreement between the experimental and numerical results was achieved for AA6060, but the 

elongation was over-estimated. Again, the ductility was underestimated for AA6061. 

Nevertheless, it can be seen that the prediction of ductility was improved by the nonlocal 

approach. It is also noted that it depends very much on the assumed criterion and parameters 

in the model. An actual experimental validation and the development of a modelling guideline 

require further improvements of the NaMo model, in particular for the alloys of similar 

composition to AA6061.  
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5.1 Recommendations for further work 
This thesis brings contributions to the development of ‘Through Process Modelling’ concept 

for welded aluminium structures. A number of topics remain unsolved and wait for further 

works. 

 

First, NaMo has been developed for 6xxx alloys and for stable conditions. The version 

explored herein, is inaccurate for the alloys AA6061. Work should be done to improve NaMo 

and to establish analogue models for unstable conditions and for 7xxx alloys. Note that such 

work has been undertaken in parallel to the present PhD study in concurrent activity at Hydro 

Aluminium. The revised NaMo model should be used in validation studies on the basis of the 

experimental database contained herein, and ultimately lead to a modelling guideline. 

 

In this study, the response of the weld metal is not modelled. For 7xxx alloys, the weld 

metal is often weaker than the minimum HAZ strength and should be considered.  

 

Validation studies on industrial systems should be performed. This work has partly 

been undertaken in concurrent studies at Benteler Aluminium Systems in parallel with the 

study documented herein. 

 

Large-scale industrial exploitation of the methods demands for ease of use and 

numerical efficiency. Cohesive zone modelling should be explored further with the 

established methodology. 
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Appendix: Cross-wel  tensil  test  
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Appendix 1: Cross-weld tensile test results for AA6005, after NA and PWHT – Engineering 
stress vs. Crosshead deformation 

 
 

0 10 20 30 40 50
uch [mm]

0

50

100

150

200

250

300

s 
[M

Pa
]

NA
T6
T7
KTL

 
0 10 20 30 40 50

uch [mm]

0

50

100

150

200

250

300

s 
[M

Pa
]

NA
T6
T7
KTL

 
(a)    Initial T4                           (b) Initial T6 

Appendix 2: Cross-weld tensile test results for AA6060, after NA and PWHT – Engineering 
stress vs. Crosshead deformation 
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Appendix 3: Cross-weld tensile test results for AA6061, after NA and PWHT – Engineering 
stress vs. Crosshead deformation 
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Appendix 4: Cross-weld tensile test results for AA7046, after NA and PWHT – Engineering 
stress vs. Crosshead deformation 
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Appendix 5: Cross-weld tensile test results for AA7108, after NA and PWHT – Engineering 
stress vs. Crosshead deformation 
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Appendix 6: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6005, initial T4 
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Appendix 7: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6005, initial T6 
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Appendix 8: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6060, initial T4 
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Appendix 9: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6060, initial T6 
 
 



Through Process Modelling of Welded Aluminium Structures 
 

118 
 

0 1 2 3 4 5 6 7 8 9 10
u50 [mm]

0

50

100

150

200

250

300
s 

[M
Pa

]

NA
T6
T7
KTL

  
0 1 2 3 4 5 6 7 8 9 10

udic [mm]

0

50

100

150

200

250

300

s 
[M

Pa
]

NA
T6
T7
KTL

 
Appendix 10: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6061, initial T4 
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Appendix 11: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA6061, initial T6 
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Appendix 12: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA7046, initial T4 
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Appendix 13: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA7046, initial T6 
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Appendix 14: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA7108, initial T4 
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Appendix 15: Stress-deformation curves of cross-weld tensile tests between machine 

extensometer (u50) and digital extensometer (udic) for AA7108, initial T6 
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