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Abstract - English

The purpose of this study is to examine the behavior of a submerged floating tunnel

(SFT) anchored by tension legs and subjected to seismic excitation. A proposal of

a tunnel crossing the Høgsfjord in Norway is used as a case for the finite element

model. The tunnel was proposed as 1345m long with a cross section diameter of

11.3m. Furthermore, the tunnel should lie 25m under the sea surface to enable

regular sea traffic.

A seismic analysis of the SFT is performed using a pseudo-excitation method

(PEM), which is based within the framework of random vibration methods. The

coherency between different supports is studied, in particular the incoherence and

wave passage effects. A simple constant incoherence model is introduced, for

coherency between inter-components of motion. Three cases of the incoherence

are then examined: (i) fully coherent, (ii) incoherent and, (iii) non-coherent. The

seismic analysis is carried out for different velocities and angles of the propagating

earthquake waves.

The structure is modeled in Abaqus, by using beam elements for both the tunnel

and the tension legs. The fluid/structure interaction is modeled and its effects on

the structure are discussed. The SFT is modeled with both vertical and inclined

tension legs and the behavior of the models are investigated, with regard to seismic

events. The seismic analysis is performed in Matlab, by developing m-scripts based

on the system matrices generated in Abaqus.

The results from the analysis confirm the importance of accounting for the stochas-

tic nature of seismic waves. Furthermore, the results suggest that submerged float-

ing tunnels with tension leg anchoring are reliable when subjected to earthquake

excitation. It is unlikely that earthquake action will be taken as the design load

case for Norwegian conditions.
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Abstrakt - Norsk

Formålet med denne forskningsoppgaven er å studere jordskjelvindusert respons av

forankrede og neddykkede rørbruer. Forslaget til en rørbru over Høgsfjorden blir

modellert og undersøkt. Dette foreslaget inneholder en 1345m lang rørbru med

tversnitts diameter D = 11, 3m. Dessuten må brua ligge 25m under havflaten,

slik å skipstrafikken ikke skal hindres.

Responsanalysen bygger p̊a teorien om stokastiske svingninger hvor de seismiske

bølgene blir modellert som stokastisk felt. I modelleringen blir det tatt hensyn

til bølgeforplantnings-hastigheten samt bølgenes koherensstruktur. En modifisert

koherens-modell er introdusert hvor det tas hensyn til kryss-komponent koherens

i tillegg til auto-komponent koherensen. Generelt avtar koherensen med økende

avstand mellom konstruksjonens støtte- og forankringspunkter samt med økende

frekvens. Tre tilfeller er studert nærmere: (i) full koherent bølgefelt, (ii) delvis ko-

herent bølgefelt som antas å være den mest eksakte beskrivelse, og (iii) fullstendig

random (inkoherent) bølgefelt.

Konstruksjonen er modellert i Abaqus ved å bruke bjelkeelementer b̊ade for rørbrua

og forankringssystemet. Det tas hensyn til fluid-struktur interaksjon i modellerin-

gen og de effekter som den fører med seg diskuteres. To forskjellig forankringssys-

temer blir undersøkt: (i) skr̊a forspente forankringslinjer og (ii) vertikale forspente

forankringslinjer. Den stokastiske responsanalyse blir utført i Matlab basert p̊a

m-skripter som ble utviklet for denne oppgaven, og er basert p̊a systemmatrisene

fra Abaqus.

De essensielle resultatene fra denne undersøkelsen understreker nødvendigheten av

å ta hensyn til jordskjelvsbølgenes stokastiske natur. Videre antyder resultatene

at neddykkede rørbruer med vertikale forankringslinjer er seismisk robuste kon-

struksjoner. Det vurderes som lite sannsynlig at jordskjelvsindusert respons vil

utgjøre et dimensjonsgivende lasttilfelle under Norske forhold.
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ṙ - Structural response vector (Velocity)

r̈ - Structural response vector (Acceleration)

Q(t) - Environmental load vector

Qs - Seismic action

Qh - Hydrodynamic action

r0 - Structural vibration amplitude

M̃ - Mass matrix of the hydrodynamic system

C̃ - Damping matrix of the hydrodynamic system

K̃ - Stiffness matrix of the hydrodynamic system

dF - Transverse force from the hydroelastic system

CD - Coefficient of drag

CM - Coefficient of added mass

D - Diameter of the tunnel

N - Shape function

F(t) - hydrodynamic load vector

Q̃M - Inertia term of the consistent load vector

Q̃C - Damping term of the consistent load vector

H(ω) - Frequency response transfer function

m(t) - Mass of the hydroelastic system in time domain

c(t) - Damping of the hydroelastic system in time domain

k(t) - Stiffness of the hydroelastic system in time domain

(t) - Impulse response function

Sxx - Auto power spectral density

Sxy - Cross spectral density

Rxx - Autocorrelation function

Rxy - Cross-correlation function

p -peak factor

n+ - Number of upcrossings

13



Td - Period of the strong earthquake load portion
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1 Introduction

In the modern society, the demand of direct and efficient transportation is con-

tinuously increasing. Long span bridges and tunnels are being constructed all

around the world and there are more to come. In Norway there is particularly

much interest in improving transportation. Due to the difficult landscapes these

improvements can often be technically challenging. However, there are plans of

connecting the coastal highway route from Trondheim to Kristiansand (NPRA,

2012), which would mean constructing links over fjords that are so wide and deep

that they could require groundbreaking technology. The concept of a submerged

floating tunnel (SFT) could be a solution for these crossings.

A submerged floating tunnel is, like bridges and tunnels, a direct connection be-

tween two locations separated by water. However, the SFT is a tube which floats

submerged in water, deep enough so it doesn’t effect ship traffic but not so deep

that water pressure becomes an issue. A 25-30m clearance from the water surface

is commonly suggested. While bridges are somewhat limited in length due to grav-

ity, the buoyancy of the SFT counterparts gravity and enables longer crossings.

However, SFTs are subjected to many kinds of environmental actions, generated

by phenomena such as traffic, currents, waves, earthquakes, corrosion and marine

growth. The impact these actions make on SFTs need to be carefully researched

before such a structure can be realized. In this study special attention is given

to earthquake actions, which could turn out to be problematic for such struc-

tures.

1.1 Submerged floating tunnel concepts

Floating submerged in water over long distances, the SFTs are generally vulnerable

to environmental loads. Therefore, some kind of anchoring is essential to ensure re-

quired stiffness of the structure. Three main components of such structures can be

acknowledged (FEHRL, 1996): The tube, anchoring, and shore connections.

The tube accommodates the traffic and needs to be held waterproof. The anchoring

is responsible for preventing to much transverse movement, which could pose much

uncomfort to passengers travelling through the tunnel. Two anchoring methods are

commonly proposed, pontoons that connect the tunnel straight to the sea surface
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Figure 1: The submerged floating tunnel concept (NPRA, 2012)

and tension legs that anchor the tunnel straight to the seabed. Both methods are

effective of ensuring sufficient vertical stiffness, while leaving the tunnel vulnerable

to horizontal movement. It is possible to address this issue partly by curving the

tunnel or more efficiently by inclining the tension legs. This study examines a SFT

anchored by tension legs, both vertical and inclined.

1.2 Literature survey

The concept of a submerged floating tunnel has been discussed for over a century.

Sir Edward James Reed (1886) wrote a paper on his invention and gave rather

detailed explanation of the concept. Andrew (1951) proposed a SFT crossing the

Puget sound near Seattle, USA, which received much critique from scientists over-

seas. In the late 1960’s increased interest was shown in the subject. A committee

of recognized engineers was formed in Norway, which explored the possibility for

SFT as a crossing method for Norwegian fjords (Brandtzæg et al. , 1971). The

committee came to the conclusion that SFTs can be a suitable method for crossing

many wide and deep fjords, which otherwise could hardly be crossed. Despite do-

ing extensive work on the study, they suggested that further study was advisable.

They recommended finding a location as a potential construction site for such tun-

nels. In 1971 a British proposal of a SFT, lead by Alan Grant, won first price in

a competition of methods for crossing the Messina strait, Italy. To this day many

studies have used this strait proposal as a case for their SFT analysis (Di Pilato

et al. , 2008; Martire et al. , 2010, 2012; Fogazzi & Perotti, 2000). These studies

examine the influence of seismic excitation, due to the high seismicity in the area.

Furthermore, in the 1980’s a project of crossing the Høgsfjord was started and
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extensive research was carried out by four of the largest Norwegian contractors

(Jakobsen, 2010). Which led the approval of SFTs as an feasible crossing method

by the Norwegian Public Road Administration (Larssen & Jakobsen, 2010).

Remseth et al. (1999) performed stochastic dynamic response analysis of a SFT

subjected to wave loading, where various methods are presented. They reached

the conclusion that modeling the correct structural and hydrodynamic damping

is crucial, as well as choosing the optimal buoyancy. Mazzolani et al. (2008) in-

troduced a proposed 100 m prototype of a SFT in Qiandao lake (PR of China),

he illustrated the type of actions generally subjected to such structures and per-

formed a numerical analysis of the prototype’s model. Martinelli et al. (2011)

performed a seismic analysis of a SFT anchored by cables by addressing the spa-

tial variability with a single coherency function. Martire et al. (2012) carried

out a finite element analyses of SFTs differing in length and anchoring systems.

Di Pilato et al. (2008) performed a dynamic analysis of a tension leg anchored

SFT, subjected to hydrodynamic and seismic action. Where he used extreme

cases of both hydrodynamic and seismic loading. Chen & Huang (2010) studied

the wave passage effect on SFTs for low velocities of the seismic waves. They

concluded that response was larger for multi-support excitation than uniform ex-

citation of the seismic load. Xiao & Huang (2010) performed a seismic analysis of

SFTs where they investigated effects of various shore connections to the seismic

response. Their results suggest that the response for fixed shore connections is

by far the largest. Furthermore, Zhang et al. (2009) used a psuedo-excitation

method (PEM) to compute structural response for a suspension bridge, where he

considered the effects of spatial variability of ground motions.

Numerous feasibility studies have been proposed (Kanie, 2010; Jakobsen, 2010;

Larssen & Jakobsen, 2010; Skorpa, 2010; Tveit, 2010; Østlid, 2010), where various

topics about SFTs are evaluated. These include anchoring alternatives, design

challenges, safety considerations etc. Most of these studies came to the conclusion

that SFT is a concept worth pursuing and many cited it as a suitable method

for crossing the Norwegian fjords. A risk analysis study has also been performed

regarding the SFT concept (Xiang et al. , 2010). The results of the study suggest

that design, cost and management risk is of most concern, while the environmental

risk is of less concern.
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1.3 Selection of study case - The Høgsfjord tunnel pro-

posal

In the 1980’s a concept of crossing the 1400 m long Høgsfjord was brought to

existence by politicians in Rogaland, Norway. The idea was to connect the districts

of Ryfylke and Nord-Jæren for car traffic and thereby, replace the ferries operating

on the site. The proposed crossing site was between Oanes and Lauvvik.

During the period of 1987-1999 the submerged floating tunnel concept was the

preferred crossing method over the Høgsfjord. Tens of millions Norwegian kroner

were put into research of the concept by the Norwegian authorities. Approval had

been given to regard SFTs as a feasible crossing method by the Norwegian Public

Road Administration. However, in the year of 2000 the Rogaland county dropped

the idea and postponed all plans of crossing the fjord. The decision was to start

over and investigate more alternatives for improvements of transportation in the

area (Jøssang, 2005).

Although, the Høgsfjord tunnel has not yet been realized, there are still plenty of

crossings all over the world where SFTs are a viable option. The deep and wide

Sognefjord, often regarded as the ultimate Norwegian challenge, has generated

discussions of a SFT being the possible solution (NPRA, 2011). The Messina strait

in Italy has also been mentioned and even a transatlantic tunnel between Europe

and America (Giotta, 2003), which would operate a train in vacuum traveling

across the Atlantic ocean in the matter of hours.

While a transatlantic tunnel is an interesting concept, this study will focus on

more realistic projects such as the Høgsfjord tunnel. A project of such manage-

able magnitude needs to be realized and tested before futuristic projects, like the

transatlantic tunnel, can be further evaluated.

1.4 Objectives and research questions

This study examines the seismic response of the Høgsfjord tunnel by using the

pseudo-excitation method and incorporating incoherence and wave passage effects

in the seismic analysis. Three cases of incoherence are considered: (i) Fully co-

herent, (ii) incoherent and (iii) non-coherent. The incoherence effect is extended
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to account for the incoherence between components of motion, at each given sup-

port. This effect is called the inter-component coherency which has up to now

mostly been neglected in similar studies. In this study, a simple constant model is

proposed using records from the 2008 earthquake in Ölfus, Iceland (Sigbjörnsson

et al. , 2013).

The response of the model subjected to earthquake excitation is investigated for

inclined versus vertical tension legs. The importance of structural and hydrody-

namic damping is examined and the influence of added mass is discussed. The

displacement, velocity and acceleration response are evaluated and the impact on

both structural and public safety is discussed.

1.5 Limitations and organisation of the thesis

This study focuses on the behavior of SFTs undergoing seismic excitation. Other

kinds of environmental actions are neglected. Including sea currents and waves,

which could impact the structural behavior greatly. Furthermore, the performance

of structural parts are not investigated. That includes the bending moment and

axial force along the tunnel. Only one acceleration spectral density curve was

created and excited to all supports, which could be regarded as a weakness in the

modeling.

In the following chapters the theoretical background is presented, both regard-

ing the fluid/structure interaction and the seismic action. Furthermore, detailed

description of the modeling is provided. Where the program Abaqus (SIMULIA,

2011) was utilized for the geometric modeling and further evaluation was performed

in Matlab (MATLAB, 2010). Finally, the results are presented and discussed and

some further studies suggested.
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2 Modelling of the fluid-structure system

Structural properties of a submerged floating tunnel have to be carefully modeled

in order to correctly describe the behavior of the structure. The interaction be-

tween fluid and structure is an important factor in the modeling, as the water will

generate forces proportional to the acceleration and velocity, against all motions

of the structure. This chapter describes the representation of such effects, as well

as some solution methods.

2.1 FE model of the submerged tunnel

The equation of motion within the framework of finite element modelling (Wilson,

2002) of the SFT can be described as follows:

Mr̈ + Cṙ + Kr = Q(t) (2.1)

where M, C and K are the structural system matrices, r is the structural response

and Q is the environmental interaction vector, which includes seismic action Qs

and hydrodynamic action Qh:

Q(t) = Qs(t) + Qh(t) (2.2)

As discussed in the following, these interaction forces are depending on the struc-

tural response, i.e. the structural velocity and acceleration.

2.2 Hydrodynamic and hydroelastic action

The behavior of a structure changes significantly when it is submerged in water,

due to the fluid-structure interaction. Since this study examines the dynamics of

a fully submerged tunnel, this issue needs to be considered. The following expres-

sions describe a method used to account for the hydrodynamic action (Wilson,

2003; Naess & Moan, 2013).
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It is possible to express the fluid-structure interaction Qh(t), induced by a ”monochro-

matic” small amplitude harmonic vibration, as proportional to exp(iωt) by the

following linear equation:

Qh(t) =
{
−ω2 M(h)(ω) + iωC(h)(ω) + K(h)(ω)

}
r0exp(iωt) (2.3)

where ω is the frequency of the harmonic vibration; M(h) is commonly denoted the

hydrodynamic mass or added mass; C(h) is the hydrodynamic damping originating

from refracted waves; K(h) is the restoring force and r0 is the structural vibration

amplitude. It is noted that the added mass and hydrodynamic damping is in

general frequency dependent (Faltinsen, 1990). Substituting Eq.2.3 into Eq. 2.1

and rearranging the terms gives:

[M−M(h)(ω)]r̈ + [C−C(h)(ω)]ṙ + [K−K(h)(ω)]r = Qsexp(iωt) (2.4)

Hence, the hydroelastic system can be modelled in terms of the classical dynamic

equation (Eq. 2.1), by introducing M̃ = [M−M(h)(ω)] as the system mass matrix;

C̃ = [C−C(h)(ω)] as the system damping matrix; K̃ = [K−K(h)(ω)] as the system

stiffness matrix; and r = r0exp(iωt) is the system response. The complexity of this

equation compared with Eq. 2.1 is apparently primarily related to the frequency

dependence of the system matrices. However, within the framework of linear

systems subjected to single harmonic excitation this does not pose any difficulties

in the response analysis.

2.2.1 Morison’s equation

The components of the hydrodynamic force vector (see Eq. 2.3), specifically the

added mass and the hydrodynamic damping, have to be determined in order to

solve the system equations of the submerged system. The most common way to

do so is by using the Morison’s equation (Morison et al. , 1950; Faltinsen, 1990).

The transverse force dF on the strip dx of a cylindrical element, can be calculated

using the modified Morison’s equation:

dF =
1

2
CDDdx(u̇− ṙ)|u̇− ṙ|+ π

4
ρCMD

2dxü− π

4
ρ(CM − 1)D2 dx r̈ (2.5)
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where ρ is the density of the fluid, D is the diameter of the tunnel, ṙ and r̈ are

the motions of the tunnel, u̇ and ü are the motions of the surrounding water, CM
and CD are the coefficients of inertia and drag. Since, no external water motions

are assumed in this study, Equation 2.5 can be rewritten as:

dF = −1

2
CDDdx ṙ|ṙ| − π

4
ρ(CM − 1)D2 dx r̈ (2.6)

where fluid induced damping and inertia properties are expressed in the two dis-

tinct parts of Eq. 2.6. The latter part of describes added mass Mh(ω) while the

former describes the hydrodynamic damping Ch(ω). It is noted that the damp-

ing part of Eq. 2.6 is nonlinear, which creates a problem carrying out the analysis.

Therefore, it is convenient to linearize this property. Langen & Sigbjörnsson (1979)

describe a stochastic linearization of the damping component, which leads to the

following representation of the Morison’s equation ( 2.5):

dF = − 8

3π
ωCDDr0 dx ṙ −

π

4
ρ(CM − 1)D2 dx r̈ (2.7)

in which r0 is the response amplitude. By means of Eq. 2.7 the force component

dF can be integrated along the length of the structure to obtain the consistent

load vector, which includes the added mass M(ω) and the hydrodynamic damping

C(ω) (Liu & Quek, 2003):

Q̃(t) =

∫
L

NTF(t)dx (2.8)

where the force vector F(t) is:

F(t) = {dFx dFy dFy dFθx dFθy dFθz}T (2.9)

Here, dFi, (i = x, y, z) are the force components, and N is the shape function. The

fluid-structure interaction for motions along, and rotations around, the axis of the

tunnel are neglected, i.e. dFx = 0 and dFθx = 0.

The response of the structure, as expressed in the Morison’s equation (Eqs. 2.5-2.7),

can be written as ṙ(x) = N(x)ṙ and r̈(x) = N(x)r̈, (Liu & Quek, 2003). Including
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this in Eq. 2.8 gives a full description of the consistent load vectors Q̃M(t) and

Q̃C(t):

Q̃M(t) = CA(ω)

∫
L

NTN(t)dx r̈ = M(h)(ω)r̈ (2.10)

Q̃C(t) = CB(ω)

∫
L

NTN(t)dx ṙ = C(h)(ω)ṙ (2.11)

Here, CA(ω) = −πρCMD2/4 and CB(ω) = −8ωCDD/3π are coefficients for inertia

and damping properties. Since K(h)(ω) is the restoring force, or in this particular

case simply the buoyancy force of the tunnel, all terms in Eq. 2.4 have been intro-

duced and a solution of the system can be obtained. Note, that the restoring force

is written as frequency dependent. However, for this particular system it can be

accurately expressed as frequency independent.

2.2.2 Random behavior

Up to now the motion has been treated as monochromatic single component har-

monic motion. However, in real situation, random response characteristics must

be modelled for all responding frequencies of the structure. Since the hydrody-

namically modified system matrices are frequency dependent (see Eq. 2.4), the

principle of superposition can be utilized in order to obtain structural response for

the system. Utilizing this method is a common practice in dynamic analysis and

it describes linear systems with excellent accuracy.

2.3 Damping properties

To represent damping in the structural model, Rayleigh damping can be consid-

ered. At a global level it is a linear combination of the mass and the stiffness

matrix (Chopra, 2012; Cook et al. , 2002).

C = αM + βK (2.12)
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The coefficients α is mass proportional and β is stiffness proportional. The two

coefficients can be determined by introducing two natural frequencies ωi and ap-

propriate critical damping ratios ζi.

α =
2ω1ω2(ζ2ω1 − ζ1ω2)

ω2
1 − ω2

2

(2.13)

β =
2(ζ1ω1 − ζ2ω2)

ω2
1 − ω2

2

(2.14)

Figure 2: Rayleigh damping presented graphically (Clough & Penzien, 2010)

Alternative methods for modeling the structural damping exist. One of these is the

Caughey damping and another is Wilson-Penzien damping, which uses superposi-

tion of modal damping matrices (Caughey, 1960; Wilson & Penzien, 1972).

2.4 Solution procedures

For a particular solution of the system, Eq. 2.4 needs to be solved. Solution proce-

dures are generally represented either in the time domain or the frequency domain.

These representations are expressed in the following sections.
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2.4.1 Frequency domain solution

The easiest procedure is solving Eq. 2.4 in the frequency domain. This procedure

is widely used. It describes the response as a harmonic function r = r0(ω)exp(iωt),

which by substitution into Eq. 2.4 gives the following equation:

[K̃(ω)− ω2M̃(ω) + iωC̃(ω)]r0(ω) = Qs (2.15)

Note that the response amplitude r0(ω) is a complex quantity to preserve the phase

information of the response.

Furthermore, the matrices K̃, M̃ and C̃ are the hydrodynamically modified sys-

tem matrices introduced with Eq. 2.4. The particular solution of the response is

obtained by solving:

r0(ω) = H(ω)Qs (2.16)

where the frequency response function H(ω) is:

H(ω) = [K̃(ω)− ω2M̃(ω) + iωC̃(ω)]−1 (2.17)

It should be noted, that the above presentation is a linear solution method and

only valid for the monochromatic harmonic waves. However, the environmental

action is not described accurately by these harmonic waves, that includes the

seismic action which is a non-stationary random process. However, it is possible to

generalize the excitation into finite number of linear systems, using the principle

of superposition, which represents the excitation as a sum of finite number of

harmonic components.

This study will focus on solving the system equation in the frequency domain as it

is associated with the pseudo-excitation method which is utilized to induce seismic

action on the structure.

2.4.2 Time domain solution
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While the frequency domain solution is practical and easy to use, it doesn’t always

give the most accurate results for nonlinear systems. For these problems a solution

method in the time domain can be feasible. A short description of the time domain

alternative is given in the following.

A general time domain representation can be expressed by taking the inverse

Fourier transform of Equation 2.16 which leads to the integro-differential equa-

tion (Langen & Sigbjörnsson, 1980):

∫ ∞
−∞

m(t− τ)r̈(τ)dτ +

∫ ∞
−∞

c(t− τ)ṙ(τ)dτ +

∫ ∞
−∞

k(t− τ)r(τ)dτ = q(t) (2.18)

where q(t) is the time dependent load vector. Furthermore, the mass, damping

and stiffness of the hydroelastic system, in the time domain, can be described

as:

m(t) =
1

2π

∫ ∞
−∞

[
M−M(h)(ω)

]
exp(iωt)dω (2.19)

c(t) =
1

2π

∫ ∞
−∞

[
C−C(h)(ω)

]
exp(iωt)dω (2.20)

k(t) =
1

2π

∫ ∞
−∞

[
K−K(h)(ω)

]
exp(iωt)dω (2.21)

This leads to the particular solution of the system, which can be expressed as:

r(t) =

∫ ∞
−∞

h(t− τ)q(τ)dτ (2.22)

where the function h(t) is the impulse response function, which can be written as

follows, in terms of the frequency dependent transfer function H(ω) expressed in

Eq. 2.17

h(t) =
1

2π

∫ ∞
−∞

H(ω)exp(iωt)dω (2.23)
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Time domain solution can be seismic analysis. However, it is more computationally

expansive than the frequency domain solution and does not necessarily give better

results.
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3 Seismic action

In areas of high seismic activity, the earthquake action can be critical for the design

of a structure. Nevertheless, earthquakes of high magnitude will potentially cause

great damage to a structure, even though the probability of such events occurring

within the structures lifetime is minimal. Therefore, most structural design codes

require only to prevent damage for medium sized earthquake during its lifetime.

The seismic design of a structure accounts for the two following criteria (Clough

& Penzien, 2010):

1. A moderate sized earthquake, expected to occur once during a lifetime of a

structure, is taken to be the basis of design. The structure should survive

the occurrence of such event without significant damages.

2. To measure the structural safety, the largest potential earthquake at the site

is used as a benchmark. Due to the low probability of the incident, the

structure is allowed to endure significant damages, while preventing injuries

of people and total collapse.

The guidelines mentioned above are widely used in the world and are meant to

account for both the low probability of a severe earthquake and the injuries of

people. Furthermore, preventing severe damage for earthquakes of the second type,

for expensive structures with long lifetimes, has become desirable in recent years.

In order to prevent costly restorations and repairs. The design of a submerged

floating tunnel could be characterized as a structure of such importance. Therefore,

seismic analyses for SFTs are of high importance, even for areas of relatively low

seismicity such as Norway.

3.1 Modeling of strong ground motions

Modeling of the strong ground motion is an important step in seismic analysis.

In order to measure the response in a structure, a suitable representation of the

ground acceleration needs to be implemented. This could either be by generating

time series for the ground acceleration, if a solution method in the time domain

is utilized, or by generating a power spectral density (PSD) curves for solutions

in the frequency domain. This study focuses primarily on the latter. In the
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following expressions the spectral density functions are presented and discussed

briefly (Zerva, 2009; Vanmarcke, 2010; Lin & Zhang, 2007). The auto-PSD Sxx(ω)

and the autocorrelation function Rxx(ω), of a stationary random process x(t), are

commonly written as a Fourier transform pair:

Sxx(ω) =
1

2π

∫ ∞
−∞

Rxx(τ)exp[−iωτ ]dτ (3.1)

Rxx(ω) =
1

2π

∫ T

−∞
Sxx(ω)exp[−iωτ ]dω (3.2)

where Rxx(τ) is the smoothed auto-correlation function and ω is the frequency

(in rad/s). Similarly the cross spectral density, of the ergodic stationary random

processes x(t) and y(t) can be written as:

Sxy(ω) =
1

2π

∫ ∞
−∞

Rxy(τ)exp[−iωτ ]dτ (3.3)

where Rxy(τ) is the smoothed cross-correlation function, ω is the frequency (in

rad/s) and τ is the time lag between the processes x(t) and y(t) respectively.

3.1.1 Probabilistic modeling

When inducing structures with environmental action, which can be characterized

by a stochastic process, the statistical properties of the process are useful. These

properties can be easily obtained for an Gaussian ergodic and stationary random

process, which is described in more detail in (Lin & Zhang, 2007). The variance

of a zero mean stationary random process x(t) can be expressed as:

σ2
x =

∫ ∞
−∞

Sxxdω (3.4)

where Sxx is the auto-PSD introduced in Eq. 3.1. The peak factor is given as

follows (Cartwright & Longuet-Higgins, 1956):

p =
√

2 ln(2n+Td) +
0.5772√

2 ln(2n+Td)
(3.5)
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Where Td is the period of the earthquake load portion and n+ is number of zero

up-crossings:

n+ =
1

2π
σẋ/σx (3.6)

Earthquake records are, strictly speaking, a non-stationary random process, i.e.

their statistical properties vary with time. Even so, in most cases these records

can be assumed to be both ergodic and stationary random processes, as most

structures have fundamental periods that are much shorter than the duration of

the earthquake. However, that is not necessarily the case for long span structures,

such as the proposed SFT, which can have important periods in the time range

of the earthquakes duration. For these structures, the seismic excitation, shows

clear signs of a non-stationary random process. For these situations, the seismic

response can be calculated efficiently by using PEM (Lin & Zhang, 2007), which

includes both the wave-passage and the incoherence effect of the multi-support

structure.

3.1.2 Evolutionary processes

Some non-stationary random processes, where statistical properties vary with time,

can be approximated as an evolutionary processes (Priestley, 1965). An evolu-

tionary process can be modeled by operating on stationary random processes,

and is commonly expressed in terms of the Riemann-Steiljes integral (Langen &

Sigbjörnsson, 1979):

üg(t) =

∫
g(ω, t)exp(iωt)dZüg(ω) ∼= g(t)a(t) (3.7)

To avoid computational complexities, the evolutionary process is often handled

by a uniform modulation function g(t), instead of the nonuniform frequency and

time varying modulation process g(ω, t). Such modulation process is explained in

Figure 3. This study will be focused on the uniform modulation assumption.

In Eq. 3.7, üg(t) and Züg(ω) are non-stationary random processes that describe the

ground motion of a typical earthquake event; g(ω, t) is deterministic modulating
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Figure 3: Uniformly modulated ground acceleration time series üg(t) (Lin & Zhang,

2007)

function varying with both time and frequency; and a(t) is commonly described

as follows:

a(t) =

∫
exp(iωt)dZüg(ω) (3.8)

This process turns stationary and homogeneous if the increments of Züg(ω) have

zero mean and are orthogonal, which implies:

E[dZüg(ω)] = 0 (3.9)

E[dZüg(ωj)dZ
T∗
üg (ωk)] = Sjk(ω)δjkdω (3.10)
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Here, Sjk(ω) is the PSD function between the supports j and k, further described

in Eq. 3.19 and δjk is the Kronecker delta function. The PSD function of the

ground motion üg(t) is given by:

Süg(ω, t) = |g(t)|2Sjk(ω) (3.11)

The velocity spectra is obtained by dividing by ω2:

Su̇g(ω, t) =
1

ω2
Süg(ω, t) (3.12)

and the cross spectra Sügu̇g and Su̇güg of the velocity and acceleration is:

Sügu̇g(ω, t) = i
1

ω2
Süg(ω, t) (3.13)

Su̇güg(ω, t) = −i 1

ω2
Süg(ω, t) (3.14)

The the variance of the auto-PSD functions is expressed as:

σ2
üg(t) =

∫ ∞
−∞

Sügdω =

∫ ∞
−∞
|g(t)|2Sjk(ω) (3.15)

σ2
u̇g(t) =

∫ ∞
−∞

1

ω2
Sügdω =

∫ ∞
−∞

1

ω2
|g(t)|2Sjk(ω) (3.16)

Statistical response for the seismic analysis can be computed using the variance

functions expressed in Eqs. 3.15-3.16. The expected peak value can be obtained by

utilizing the product of the peak factor (see Eq. 3.5) and the standard deviation

derived from the variance functions.

3.2 Description of the spatial variability of ground mo-

tion

The seismic ground motion is assumed to be locally stationary and homogeneous

random process. The ground acceleration of a structure with N supports can be

written as:
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ã(t) = [~a1(t) ~a2(t) . . . ~aN(t)]T (3.17)

where ~ai(t)(i = 1, 2, ..., N) is the ground acceleration at each support and T denotes

transpose. ~ai(t) can be written as:

~ai(t) = [a
(x)
i (t) a

(y)
i (t) a

(z)
i (t)]T (3.18)

where x, y and z are the coordinate axis directions. Let’s consider supports j and

k of the structure. The spatial variability of ground motion, between these two

supports, can be characterized by the cross-spectral density function Eq. 3.3.

By the inclusion of all supports and components, Sjk takes the form of a complex

spectral density matrix:

S(ω, ξ) = [Sjk] =


S1(ω, ξ) S12(ω, ξ) · · · S1N(ω, ξ)

S21(ω, ξ) S2(ω, ξ) S2N(ω, ξ)
...

. . .
...

SN1(ω, ξ) SN2(ω, ξ) · · · SN(ω, ξ)

 (3.19)

where ξ is the distance between supports, the off-diagonal terms are Hermitian

symmetric, i.e. Sjk = S∗Tkj and describe the coherency between supports j and k.

The matrix S(ω, ξ) is formed by 3×3 sub-matrices, which can be written as:

Sjk(ω) = [Smn] =

 Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 (3.20)

Each element of the sub-matrix describes the coherency of the ground motion

between supports j and k in directions m and n. The spectral density functions

contain effects due to wave passage and incoherence. These effects are discussed

in the following sections.
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3.3 Coherency

The complex coherency of the ground motions between the supports j and k is

traditionally expressed as (Zerva, 2009):

γjk(ω, ξ) =
Sjk(ω, ξ)√
Sjj(ω)Skk(ω)

(3.21)

where Sjk(ω, ξ), Sjj(ω) and Skk(ω) is the smoothed cross-spectrum between sup-

ports j and k and its corresponding auto-spectra. γjk(ω) is a complex func-

tion.

The absolute value of the coherency:

|γjk(ω, ξ)| =
|Sjk(ω, ξ)|√
Sjj(ω)Skk(ω)

(3.22)

commonly referred to as the lagged coherency is a real function with values in the

range 0 ≤ |γjk(ω)| ≤ 1 according to definition. The coherency can be expressed in

terms of the lagged coherency (Zerva & Zervas, 2002):

γjk(ω, ξ) = |γjk(ω, ξ)|exp[iθjk(ω, ξ)] (3.23)

where θjk(ω, ξ) is the phase spectrum and the complex term describes the wave

passage effects.

3.3.1 Wave passage

The wave passage effect is the delay in arrival times of waves at different supports

of the structure (Zerva, 2009).

γjk(ω, ξjk) = exp

[
−iω ξjk

c

]
(3.24)

where c is the apparent velocity of the seismic waves along a line between the two

supports. The time lag between these two supports can by written as ∆tjk = ξjk/c,

which leads to the following description of the wave passage:
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γjk(ω, tjk) = exp[−i(∆tjk)] (3.25)

It should be noted that observations from the SMART-1 array in Taiwan show ran-

dom fluctuations around the wave passage delay (Zerva, 2009). These fluctuations

will be neglected in this study.

3.3.2 Site effects

The soil conditions are often not uniform at the construction site of a long span

structure. For sites containing more than one soil condition, a so called site re-

sponse effect should be considered. This could include a structure that has different

soil profile at support j and k. These different soil types are not likely to have

the same filtering effects on the ground motion. Which implies that even though

the ground motion is the same underneath these two layers, the same does not

necessarily apply on top of these layers. However, a study suggests that the effects

of site response are minimal for long span structures, while the contribution of

wave passage is more significant (Der Kiureghian, 1996).

While it is important to discuss the site effects, this study estimates uniform soil

layers and disregards the site response effects. The SFT is also considered a long

span structure, so the soil effects are not likely to be a deciding factor.

3.4 Structural seismic analysis methods

The equation of motion for the structure, which is subjected to ground acceleration

excitation üg(t), is commonly presented as follows (Lin & Zhang, 2007):

Mr̈ + Cṙ + Kr = Q(t) (3.26)

where the load vector of the system can be written as:

Q(t) = Aaüg(t) + Avu̇g(t) (3.27)
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in which Aa and Av are transformation matrices described in further detail in

Section 3.4.2; M, C and K are the system matrices; and üg(t) and u̇g(t) are a sta-

tionary random processes, introduced in Eq. 3.7, with known auto-PSD functions

Süg(ω) and Su̇g(ω). The auto-PSD represents acceleration excitation applied to a

support of the SFT.

3.4.1 Equation of motion for multi-support excitation

Earthquake motion is generally induced to the supports of a structure. Further-

more, the action is induced on foundations which are assumed to sustain no dis-

placement. To assess the motions of a multi-support structure, a method described

by (Clough & Penzien, 2010; Lin & Zhang, 2007; Langen & Sigbjörnsson, 1979) is

followed.

The structural degrees of freedom can be grouped as follows

r = [ri re]
T (3.28)

where re represents the degrees of freedom (DOF) of the supports and ri describes

the DOFs of the rest of the structure.

Total displacements r(t) of the structure can be expressed as the sum of the two

vectors:

r(t) = r(s) + r (3.29)

here, r(s) is the pseudo-static displacement of the structure which is generated by

the support motion re and r is the relative displacement, which characterizes the

dynamic effects of the structure. Merging the two previous equations, Eq. 3.28

and Eq. 3.29 gives

[
r
(t)
i

re

]
=

[
r
(s)
i

re

]
+

[
ri
0

]
(3.30)

Inserting the total response (see Eq. 3.30) into the equation of motion (see Eq.

2.1), the following expression can be obtained
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Figure 4: A simple frame, subjected to time dependent displacement on its sup-

ports (Langen & Sigbjörnsson, 1979)

[
Mii Mie

Mei Mee

]{
r̈
(t)
i

re

}
+

[
Cii Cie

Cei Cee

]{
ṙ
(t)
i

re

}
+

[
Kii Kie

Kei Kee

]{
r
(t)
i

re

}
=

{
0

Qe

}
(3.31)

Since the support motion is assumed, the first line of Eq. 3.31 can be separated

from the equation and rewritten as follows:

Miir̈
(t)
i + Ciiṙ

(t)
i + Kiir

(t)
i = −Mier̈e −Cieṙe −Kiere (3.32)

This can also be described in terms of the relative motions with the introduction

of Eq. 3.30:

Miir̈i + Ciiṙi + Kiiri = Qi (3.33)

where

Qi = −(Miir̈
(s)
i + Mier̈e)− (Ciiṙ

(s)
i + Cieṙe)− (Kiir

(s)
i + Kiere) (3.34)

To calculate the displacement r
(s)
i the following equilibrium condition obtained

from Eq. 3.32 is used
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Kiir
(s)
i + Kiere = 0 (3.35)

which gives

r
(s)
i = −K−1ii Kiere (3.36)

Then, substituting r
(s)
i into Eq. 3.33 and Eq. 3.34 and introducing B = −K−1ii Kie

(Langen & Sigbjörnsson, 1979) gives

Miir̈i + Ciiṙi + Kiiri = −(MiiB + Mie)r̈e − (CiiB + Cie)ṙe (3.37)

where, the right hand side of Eq. 3.32 describes the load vector of the system. Since

the structure is fully submerged in water, both the inertia and damping parts of

the load vector can be assumed to make significant contribution.

Now, the equation of motion has been described for ground motions in the sys-

tem coordinates, i.e. r̈e, but when the earthquake waves arrive at an angle β,

modifications need to be made. Hence, the ground motions are expressed as:

r̈e = EmN üg (3.38)

where üg is the ground acceleration that propagates with an angle β to the SFT.

The matrix EmN is a block-diagonal matrix that can be expressed as:

EmN = diag[eβ eβ . . . eβ]m×N (3.39)

in which the sub-matrix eβ is [cos β 0 sin β]T ; [0 0 1]T and [− sin β 0 cos β]T ,

N is the number of supports and m = 3n. Note that only three translations are

considered, as the rotational excitation is assumed to be zero.

Substituting Eq. 3.38 into Eq. 3.37 yields:

Miir̈i + Ciiṙi + Kiiri = −(MiiB + Mie)EmN üg − (CiiB + Cie)EmN u̇g (3.40)
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Equation 3.40 can be regarded as the final version of the equation of motion (Eq.

2.1), which needs to be solved for the whole system, using a solution method

described in the following section.

3.4.2 Power spectral density solution

Considering the right hand side of Eq. 3.40 as the seismic load vector Qs, the

spectral density of the seismic load can be computed as such (derived in Ap-

pendix B):

SQ(ω) = AaSüg(ω)AT
a + AvSu̇g(ω)AT

v + AaSügu̇g(ω)AT
v + AvSu̇güg(ω)AT

a (3.41)

where Aa = −(MiiB + Mie)EmN and Av = −(CiiB + Cie)EmN are matrices that

transform the ground acceleration and velocity spectral density matrices Süg(ω)

and Su̇g(ω) into the load spectral density matrix SQ(ω). The response spectral

density matrix Sr(ω) can then be obtained by multiplying the frequency response

function H(ω), in Eq. 2.17, with SQ(ω):

Sr(ω) = H(ω)SQ(ω)HT∗(ω) (3.42)

The response spectral density matrix Sr(ω) contains both the auto-PSD of the

response at each support, as well as the cross spectral density of the response

between all supports.

3.4.3 Response Statistics

The spectral density matrix, Sr(ω), obtained in the preceding section (Eq. 3.42)

contains all the information about the response of the structure. The variance

of the response is found by integrating the auto-PSD at each point being ob-

served:

σ2
r =

∫ ∞
−∞

Sr(ω)dω (3.43)
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σ2
ṙ =

∫ ∞
−∞

ω2Sr(ω)dω (3.44)

σ2
r̈ =

∫ ∞
−∞

ω4Sr(ω)dω (3.45)

Here, the variance describes the displacement, velocity and acceleration response

of the structure. Furthermore, the co-variance of the response between two points

can be expressed as:

σrjrk =

∫ ∞
−∞

Srjrk(ω)dω (3.46)

The standard deviation is attained by taking the square root of the variance. As

demonstrated in Eqs. 3.44-3.45 the variance for the velocity and acceleration is

found by multiplying the response spectra with ω2 and ω4, and then integrate it

over all frequencies. Furthermore, the expected maximum value of the response is

then calculated by using the peak factor, introduced in Eq. 3.5, as written in the

following expression:

E[zmax] = p× σr (3.47)

The expected maximum of the velocity and acceleration is obtained with the same

procedure but by multiplying the peak factor with σṙ or σr̈.
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4 Case studies

The submerged floating tunnel over the Høgsfjord in Norway is used as a applica-

tion for the methods described in preceding chapters. The supports of the model

are excited with earthquake action and the wave passage and incoherence effects

are studied. Three different scenarios, of the incoherence, are examined: Fully

coherent (γ = 1), incoherent (see Section 3.3) and non-coherent (γ = 0). Fur-

thermore, the influence of inter-component coherency is investigated with a simple

coherency model (see Table 5). In addition, the wave passage effect is examined

for apparent wave velocity ranging from c = 400− 1000m/s, which are estimated

values for soft soil conditions.

Two different versions of the structure are modeled. One where the tension legs

anchoring the system are inclined, at an 30◦ angle. While the other case has

vertical tension legs, which changes the behavior of the structure quite a lot, i.e.

the natural frequencies and the natural modes. Most results are based on the

former model, while the latter is used for comparison.

The response statistics of all motions in the tunnel are examined, i.e. the displace-

ment, velocity and acceleration. The potential effects of the motions are discussed

concerning structural and public safety.

4.1 Definition of the case - the Høgsfjord tunnel

The SFT concept was proposed to cross the approximately 1400 m wide and 160m

deep Høgsfjord, in Norway. The bottom of the Høgsfjord is quite irregular in

shape, as seen in Figure 5 with the deepest part close to the left end of the tunnel.

Firm soil conditions are assumed at the shore connections. However, the The

Norwegian fjords are usually filled with a deep layer of soft sediments. These

sediments effect the velocity of the propagating wave, soft soil means generally

low wave velocity. Hence, it would be inaccurate to assume firm soil conditions for

the whole structure. However, for simplicity, the same filter was used to describe

the soil structure interaction of all supports (see Section 4.3.1). The filter has

relatively low frequency content which is typical for soft soil conditions. Although

not performed in this study, it would be interesting to compare the response spectra

of the structure with response spectra from Eurocode. This could lead to more
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accurate description of the soil conditions. Assuming that the sediments in the

Høgsfjord are of a particularly soft nature, the analyses is carried out for wave

velocity of c = 500m/s2 as the basis of the study. Nevertheless, the the effects of

varying wave velocity is also studied.

The proposal suggested using concrete as the building material, with inclined

tension legs of steel. The tunnel is designed with a slight vertical curvature which

gives even more vertical stiffness, apart from what is obtained from the tension legs.

The main goal of the study is to observe and understand the behavior of submerged

floating tunnel under seismic events. Thus, some parts are not modeled exactly as

proposed.

Figure 5: The Høgsfjord tunnel

The irregularity of the bottom shape, at the site, means that the anchoring will be

much shorter on the right side, close to Oanes (Figure 5). Shorter cables should

imply more stiffness, they also do not reduce the buoyancy force of the tunnel as

they weigh less. This results in higher pretension and more stiffness for the shorter

cables. At mid span the tunnel lies 25m under the sea surface, which enables even

the most deep cut sea traffic.
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4.2 FE modeling of the study structure

The finite element model of the SFT is modeled based on a report from SINTEF

(Holmås & Fergestad, 1988). It is modeled in two parts (the tunnel and the tension

legs), using 3D Euler-Bernoulli beam elements. The crossing length of the tunnel

is taken to be 1345 m between rigid ends, as drawings from the SINTEF report

suggest. All supports are considered fixed. The model consists of 65 nodes, 64

elements and 390 degrees of freedom (DOFs), which can be decoupled into 60

foundation- and 330 inner DOFs. This controllable number of elements is chosen

to avoid unnecessary computing time.

X

Y

Z

Figure 6: 3D picture of the Abaqus model

The finite element model is assembled in Abaqus, where all material properties and

static loads are applied. Since, Abaqus is primarily a powerful tool for solutions

in the time domain, the system matrices are extracted out of the program and

further evaluated in Matlab. However, when extracting, the program generated

128 extra DOFs, in which the author has no explanation. In order to continue the

study, these elements were simply removed. It was then observed that the removal

did not effect the natural frequencies significantly (see Table 1), nor did it impact

the natural modes. Therefore, it was decided to continue without them.

As observable in Tables 1 and 2 the natural frequencies are closely spaced, it can

also be noticed that the ”wet” natural frequencies are significantly lower than their

”dry” counterparts. This can be explained by the added mass of the hydrodynamic

system, while the stiffness stays unchanged.
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Table 1: First 15 natural frequencies of the SFT model anchored with inclined

tension legs and their corresponding mode shapes. Where H denotes horizontal,

V vertical and C cable mode shapes.

Mode number 1 2 3 4 5

Mode shape H H V H V

Dry natural frequency Abaqus [Hz] 0.255 0.269 0.289 0.295 0.328

Dry natural frequency (reduced) [Hz] 0.263 0.276 0.290 0.305 0.331

Deviation (%) 3.4% 2.6% 0.5% 3.3% 1.2%

Wet natural frequency [Hz] 0.207 0.217 0.230 0.239 0.264

Mode number 6 7 8 9 10

Mode shape H V H VC C

Dry natural frequency Abaqus [Hz] 0.348 0.371 0.381 0.388 0.434

Dry natural frequency (reduced) [Hz] 0.353 0.378 0.391 0.392 0.434

Deviation (%) 1.3% 1.8% 2.8% 0.8% 0.0%

Wet natural frequency [Hz] 0.283 0.303 0.305 0.332 0.360

Mode number 11 12 13 14 15

Mode shape C V C C HC

Dry natural frequency Abaqus [Hz] 0.435 0.448 0.480 0.481 0.483

Dry natural frequency (reduced) [Hz] 0.435 0.456 0.480 0.481 0.488

Deviation (%) 0.0% 1.6% 0.0% 0.0% 0.9%

Wet natural frequency [Hz] 0.434 0.434 0.436 0.451 0.480
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Table 2: First 15 natural frequencies of the SFT model anchored with vertical

tension legs and their mode shapes.

Mode number 1 2 3 4 5

Mode shape H H H H V

Dry natural frequency [Hz] 0.028 0.066 0.127 0.208 0.292

Wet natural frequency [Hz] 0.022 0.051 0.099 0.163 0.232

Mode number 6 7 8 9 10

Mode shape H V V H C

Dry natural frequency [Hz] 0.310 0.344 0.412 0.433 0.459

Wet natural frequency [Hz] 0.246 0.273 0.325 0.348 0.374

Mode number 11 12 13 14 15

Mode shape C C C V V

Dry natural frequency [Hz] 0.459 0.459 0.460 0.476 0.494

Wet natural frequency [Hz] 0.387 0.455 0.456 0.459 0.459

4.2.1 Modeling of structural parts

The cross section of the tunnel (Figure 7) has a outer radius of rc = 5.65m and

thickness of t = 0.9m. For simplicity, the cross section was considered to be a

perfect circle. However, in a real situation the section would likely have a ballast

to stabilize the tunnel and control the weight. The tension legs were connected

to the outside of the tunnel, pointing straight to the shear center of the cross

section.

The tension legs were designed with a circular cross section and a radius of rs =

0.2m, which gives cross sectional area As = 0.126m2. It should be noted that

by using tension legs with a cross sectional area of As = 0.4m2, as proposed by

Holmås & Fergestad (1988), increased mass of the tension legs had significant

effects on the buoyancy of the tunnel.

4.2.2 Material properties and structural damping

Concrete is used as the main building material. However, the material density is

taken as ρc = 3, 179 kg/m3, to control the net buoyancy of the tunnel. The elastic

properties of concrete are used for the material in the tunnel, i.e. Young’s modulus
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Figure 7: Cross section of the Høgsfjord tunnel, with inclined tension legs.

of Ec = 33GPa and Poisson ratio of νc = 0.2. For the tension legs the material

density was taken as ρs = 7, 850 kg/m3, the Young’s modulus Es = 33GPa and

Poisson ratio νs = 0.3.

The structural damping is represented by mass and stiffness proportional Rayleigh

damping (see Section 2.3). The damping coefficients, α and β are obtained by using

Eqs. 2.13−2.14, selecting the frequencies and damping ratios as ω1 = 1.3, ω2 = 2.3,

ζ1 = 0.9 and ζ2 = 1. Solving Eqs. 2.13 − 2.14 gives α = 0.0064 and β = 0.0031.

The effects of increased damping was also studied, by increasing the damping ratio

to about ζ = 2%.

4.2.3 Loads and pretension in tension legs

The tunnel is considered to lie submerged in still water, i.e. with no streams and

no waves. The restoring force is expressed by gravity and the buoyancy of the

tunnel. Which is expressed in the following:

by = g × ρwAw − ρcAc
ρcAc

= 0.1 g (4.1)
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Table 3: Pretension in tension legs

σc1[MPa] σc2[MPa] σc3[MPa] σc4[MPa]

90 92 95 120

Here, Aw = 100.3m2 denotes the area of water repelled by the structure; ρw =

1, 025 kg/m3 is the density of salt water; Ac = 29.4m2 is the cross sectional area

of the tunnel; and ρc is the density of concrete, described in the preceding sec-

tion.

When applied, the buoyancy force results in small vertical displacement of the

structure. To ensure that the tunnel keeps in place, the tension legs must be

subjected to pretension. Table 3 describes the pretension assigned to the tension

legs, which are supporting each connection (C1− C4) shown in Figure 5.

The only environmental action covered in this study is the seismic ground acceler-

ation, which is induced to all ten supports. Response in the structure is calculated

for each given frequency. The modeling of the seismic excitation is described in

detail in Section 4.3. However, when the SFT is put in motion by the seismic

action, a hydrodynamic action is generated, which can be calculated using the

Morison’s equation (Eq. 2.7). The coefficients of drag and added mass are chosen

as CD = 1 and CM = 2. These values are commonly recommended for offshore

structures (Wilson, 2003; Naess & Moan, 2013). Even so, the coefficient of added

mass is presumably a little smaller than the recommended value, which has been

confirmed by experiments on large diameter cylinders (Kunisu, 2010). However,

assuming the tunnel will eventually be covered with marine growth, the coefficient

of added mass CM is expected to approach the recommended value. On the other

hand, the experiments show scattering results of the drag coefficient CD. Even

so, the study suggests that the force generated by added mass dominates the drag

force for cylinders with large diameters. It could also be argued that if the re-

sponse velocity of the SFT is assumed to be relatively small. Then, the drag part

of Equation 2.7 will have small effects on the structure, and could therefore easily

be neglected.
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4.2.4 Solution strategies

Response in the structure was calculated for each given frequency. The total re-

sponse was then established using the principle of superposition. Angular frequen-

cies on the interval ωε[0, 15] rad/s were utilized in the analysis, with ∆ω = 0.05.

Observing the response spectra at each node along the tunnel unveils that the first

ten mode shapes, i.e. in the frequency range of [1.30, 2.30] rad/s contribute the

most to the structural response (see Figures 12-13.

4.3 Modelling of earthquake excitation at the site of the

structure

Although Norway is a area of relatively low seismicity, earthquakes with the mag-

nitude of Ms = 5 can occur (Bungum et al. , 2010). The earthquake excitation is

created with a moderately sized earthquake in mind. Peak ground acceleration of

0.2 g is used as a benchmark for the study and the period of the strong earthquake

portion is taken as Td = 10 s. Earthquake size is expected to be an important

parameter in determining the seismic response. However, the frequency content of

earthquake is also of high importance.

4.3.1 Spectral density of the ground acceleration

The ground acceleration spectrum was obtained using a modified Kanai-Tajimi

spectral density function (Clough & Penzien, 2010):

Süg(ω) = S0

1 + 4ξ2gk(ω/ωgk)
2

[1− (ω/ωgk)2]2 + 4ξ2gk(ω/ωgk)
2
× (ω/ωfk)

4

[1− (ω/ωfk)2]2 + 4ξ2fk(ω/ωfk)
2

(4.2)

where ωgk and ξgk is the resonant frequency and the damping ratio of the first filter;

ωfk and ξfk are those of the second filter and S0 is the amplitude of white noise

acceleration in the bedrock. The parameters chosen in this study are presented in

Table 4.
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Table 4: Filter parameters for the Kanai-Tajimi spectral density function

Parameters Values

S0 0.05

ωgk 15.6

ξgk 0.7

ωfk 4

ξfk 0.5

Implementing the aforementioned parameters into Equation 4.2 gives the spec-

tral density function used for this study (Figure 8). It should be noted that the

same acceleration spectral density was used for all the supports, which may be

regarded as a weakness in the modeling. The spectrum in Figure 8 describes an

medium sized earthquake event with an estimated PGA of 0.2 g. The PGA was

estimated by calculating the standard deviation of the PSD curve (see Eq. 3.4) and

multiplying it with the peak factor expressed in the following (Vanmarcke & Lai,

1980):

p ∼=
√

2 ln(2.8Tdf0/2π) (4.3)

where Td is the duration of earthquake and f0 is the natural frequency of the

system.

4.3.2 Coherency Model

Finding a model that characterizes the coherency of seismic ground motion be-

tween two locations has been the objective of earthquake engineers for over three

decades. Various models have been proposed and fall into one of the tree cat-

egories: empirical, semi-empirical or analytical. In Appendix A, a few of these

models are presented. Therein, a clear difference between the models can be no-

ticed. It can in fact be assumed that the coherency can vary significantly with

different events, since the majority of proposed models have utilized acceleration

records from the SMART-1 array in Taiwan (Figure 9).

One of these is an empirical model proposed by Oliveira et al. (1991), which will be

utilized for all coherency calculations in this study (see Section 3.2). The strength
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Figure 8: Acceleration spectral density curve

Figure 9: The SMART-1 array. The figure shows the arrangement of 37 force

balanced triaxial accelerometers (Zerva, 2009).

of the model, is that it is based on the entire records of each component of the

motion. Furthermore, it accounts for the direction of the propagating wave and

considers that the ground motions are anisotropic. The model can be expressed

as:
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|γjk(ξljk, ξtjk, ω)| = exp(−β1ξljk − β2ξtjk)exp[(α1

√
ξljk − α2

√
ξtjk)(ω/2π)2] (4.4)

where αi = 2πa/ω+bω/2π+c, (i = 1, 2), ξljk and ξtjk are the separation distances in

the longitudinal and tangential direction of the propagating wave. The constants

βi, ai, bi and ci, (i = 1, 2) are obtained from least square fitting of 17 recorded

SMART-1 array events (Oliveira et al. , 1991). It is noted that the coherency of

the model is quite high, for both high and low frequencies, in comparison with

other models. This, however is not far from what is observed from the coherency

records of the ICEARRAY, for the 2008 Ölfus earthquake in Iceland (Sigbjörnsson

et al. , 2013).

Figure 10: The lagged coherency from the ICEARRAY (Sigbjörnsson et al. , 2013)

As an addition to the coherency model, the inter-component coherency is studied.

Where the coherency between each component at the same support is considered.

Results from the ICEARRAY (Figure 10), where used to generate a simple model

between components. Note that the light blue color from Figure 10 is prominent,
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Table 5: Inter-component coherency model

Components Lagged coherency

γxy 0.3537

γxz 0.3506

γyz 0.3295

which are values in the range of 0.3 − 0.4. Therefore, utilizing a constant model

is deemed sufficient, which led to using the mean value of the ICEARRAY lagged

coherency records as the inter-component model Table 5.

4.4 Limitations in the modeling

The overall finite element modeling of the structure is considered a success. How-

ever, few limitations in the modeling can be mentioned and are presented in the

following:

A little uncertainty surrounds the structural damping in the model, as different

methods for determining damping, were not studied sufficiently and the damping

ratio was simply assumed to be ζ = 1% and up to ζ = 2%. However, these

ratios are commonly used in finite element modeling and the structural damping

is not far from what was utilized in earlier studies regarding the Høgsfjord tunnel

(Remseth et al. , 1999).

As mentioned before the ground acceleration spectral density function is exactly

the same for all supports. That effects the analysis of the spatial variability of

ground motions. The model could be easily improved by generating unique func-

tions for the ground acceleration for each component at each support. Also, the

soil-structure interaction model needs to be investigated further, to match the soil

conditions on the side. Introducing non-linearity in the modeling could be useful

for that matter.

Ultimately, although it did not effect the study greatly, the system matrices re-

trieved from Abaqus were not understood thoroughly. The author recommends

using Matlab for generating the system matrices, in order to fully understand

the finite element model. Especially for random vibration analysis of a stochastic

system in the frequency domain.
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5 Numerical results and discussion

In the following chapter the results from the analyses are presented and discussed.

The relevance of all the different parameters in the study is evaluated and the

behavior of the structure is discussed in terms of the response.

5.1 Response statistics

The response statistics are obtained using Eqs. 3.43−3.47. In the following sections

peak displacement, velocity and acceleration for the model is presented, concerning

both vertical and horizontal motions. The incoherence and wave passage effects

are evaluated and the inter-component coherency is studied. Furthermore, the

response of the inclined and vertical tension leg models are compared and the

seismic wave velocity is studied. Ultimately, the influence of increased structural

damping is investigated.

5.1.1 Peak structural response

The peak structural response is examined to get insight into structural and pub-

lic safety. The displacement will give information about the structural safety,

while the velocity and acceleration will effect the traffic inside the tunnel, and

thus potentially have effects on public safety. The main focus is on the horizontal

response, as it is significantly greater than the vertical response. The peak ver-

tical displacement is about 1m, which implies that the expected peak horizontal

displacement is about 50% greater (Figure 12). However, different results are ob-

tained when the tension leg anchoring is vertical, then the vertical displacement is

greater (Figures 20− 21).

A peak displacement in the range of 1 − 2m (Eq. 11) is not considered large for

a 1400m long tunnel. Therefore, it is safe to assume that structural safety is

unlikely to be at risk during medium sized seismic events. However, it is of more

importance to identify which frequencies the displacement is associated with, as

the higher the frequency the larger the acceleration.

The frequencies can be identified from the response spectra of the analysis (Eqs.
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Figure 11: Peak horizontal displacement, with seismic waves arriving at 0◦ angle.

Velocity of seismic waves is 500m/s.

12 − 13). It is observed that most of the frequencies generating response lie be-

tween 0.2 − 0.4Hz. By looking at the acceleration spectral density curve (Eq.

8), it is noticeable that the spectral density starts to increase rapidly around the

frequencies in question.

To further evaluate the seismic hazard, in particular to traffic safety, velocity and

acceleration response are presented (Figures 14-15). The acceleration is observably

high, close to 1g, which is something that could effect traffic dramatically. It is

fair to assume that the tunnel will accommodate traffic at all times, which implies

strong probability for traffic inside when the earthquake strikes.

Comparing the peak acceleration (Figure 14) to the peak velocity and displace-

ment implies that the duration of the high acceleration is short, which means that

the acceleration could be felt like a series of impacts, during the period of the

earthquake. It is safe to assume that accelerations in the range of 1 g will only
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Figure 12: Response spectral density over the length of the tunnel for vertical

displacement, with seismic waves arriving at a 90◦ angle.

occur during a small time period, which implies smaller acceleration for the most

part during the earthquake.
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Figure 13: Response spectral density over the length of the tunnel for horizontal

displacement, with seismic waves arriving at a 90◦ angle.

5.1.2 Incoherence and wave passage

The incoherence was studied by looking at three examples. The first example uti-

lizes both the (Oliveira et al. , 1991) coherency model and the inter-component

coherency (see Section 4.3.2) in addition to the wave-passage model, the second

only utilizes the wave passage model and is termed fully coherent, the third ex-

ample is assuming zero coherency, which eliminates the wave passage effects. Two

scenarios are observed, differing in direction of the propagating wave, i.e. parallel

and perpendicular to the tunnel.

For the case presented in Figure 16 the seismic waves travel in the direction per-

pendicular to the tunnel. It is visible that the fully coherent model gives the largest

response. It is also noticeable that the behavior seems to change significantly for

the three different coherency examples, as the fully coherent model does not re-

sult in highest displacement all along the tunnel. This implies that the coherency

effects, including wave passage and incoherence are complex in nature. Moreover,
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Figure 14: Peak horizontal velocity, with seismic waves arriving at 0◦ angle. Ve-

locity of seismic waves is 500m/s.

in Figure 17, where the waves travel along the tunnel, the incoherent model gives

the largest response. For this scenario, both the incoherence and the wave passage

are effected by the increased distances between support, which yields to different

effects from the coherency model, compared to the results from the other scenario.

This underlines the complexity of the subject.

It is evident that the incoherence and wave passage effects change the behavior

of the structure. However, it is not obvious whether it increases or decreases the

response of the tunnel, depending on at what angle the waves arrive, the distance

between the supports and the velocity of the seismic waves.
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Velocity of seismic waves is 500m/s.

5.1.3 Inter-component coherency

To estimate the importance of coherency between components, the analysis is

performed with the inter-component and inter-support coherency model. The

outcome is then compared with results from only the inter-support model and the

fully coherent model analyses. This will give a good sense on the importance of

the inter-component model.

In Figure 18 it is visible how much influence the inter-component coherency has on

the structural response, while the inter-support incoherence does hardly effect the

response at all. It should be noted that all the examples include the wave passage,

but since the wave passage is dependant on the distance between supports, it

has no influence on the inter-component incoherence for the diagonal blocks, i.e.

the incoherence between components in an individual support. Therefore, it can
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Figure 16: Expected maximum vertical displacement of the tunnel for three in-

coherence examples, with seismic waves arriving at a 90◦ angle. The velocity of

seismic waves is 500m/s.

be safely assumed that the wave passage effect is the dominating factor for the

inter-support incoherence, while the the inter-component incoherence should not

be neglected like it has in many previous studies.

5.1.4 Seismic wave velocity

The seismic analysis is carried out for varying wave velocity. The purpose is

to examine the effects of wave passage in the analyses. Different scenarios are

evaluated and they are all presented in Appendix D. However, one example is

selected and presented in Figure 19

As can be seen in Appendix D, the vertical response is more effected by both the

direction of the incoming wave and the variation in wave velocity. The horizontal
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Figure 17: Expected maximum vertical displacement of the tunnel for three in-

coherence examples, with seismic waves arriving at a 0◦ angle. The velocity of

seismic waves is 500m/s.

response for different angles of the incoming wave is almost exactly the same, but

some differences can be noticed for the vertical displacement. When the model

is non-coherent, Figures 38 − 41 shows neither variations in response from differ-

ent angles nor variations from different wave velocities, since the non-coherence

eliminates the wave passage and incoherence effects.

It is apparent that the variation in seismic wave velocities has complex relationship

with the structural response. For two different wave velocities, the response can

vary significantly in shape and magnitude. In order to carry out accurate seismic

analysis, the apparent wave velocity needs to be carefully selected for the site of

the structure.
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Figure 18: Expected maximum vertical displacement of the tunnel for three inter-

component incoherence examples, with seismic waves arriving at a 0◦ angle. Veloc-

ity of seismic waves is 500m/s and the incoherence between supports are estimated

by the Oliveira et al. (1991) coherency model (see Eq. 4.4.

5.1.5 Tension leg anchoring and damping

Choosing the best possible anchoring method is essential for a structure of this

caliber and many variables are relevant in the design. Sea states and currents

could be the controlling factor. However, this study investigates two methods of

tension leg anchoring for a SFT subjected to seismic excitation.

From Figure 20 it is evident that the anchoring method does not effect the vertical

response heavily. There are small changes, but similar response can be assumed

for both inclined and vertical tension legs. However, the horizontal response (Fig-

ure 21) shows dramatic differences. It is apparent that the horizontal response

is much smaller for the vertical tension leg system. This is due to the fact that
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Figure 19: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving at a 0◦ angle and the incoherence

estimated by the Oliveira et al. (1991) coherency model(see Eq. 4.4.

the decreased stiffness puts the most important horizontal natural frequencies out

of range of the ground acceleration frequency content (Figure 8), as the natural

frequencies are close to zero (see Table 2).

Increasing the structural damping in the system, decreases the response in the

tunnel (Figure 22). However, the differences still hold almost proportional to what

was observed in Figure 21, apart from the highest peaks seem to have started to

damp out just a little. It is still apparent that vertical tension legs result in much

smaller horizontal response, and therefore much smaller total response.
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Figure 20: Expected peak value of the vertical response for vertical and inclined

tension legs. Seismic waves arrive at 90◦ angle.

5.2 Further discussion

This section, discusses a few matters that have yet to be addressed.

The seismic load vector plays in important role in the modeling. This study uses

acceleration and velocity spectra to generate the load vector (see Eq. 3.41), includ-

ing their cross spectra. However, the inertia term generated by the acceleration

spectra, in Eq. 3.41, contributes the most to the load vector. In fact, it it could be

reasoned that they are negligible.

The effects of the fluid/structure interaction seems to help the performance of the

tunnel during seismic events. It decreases the natural frequencies, which might

bring them farther from the main frequency content of the earthquake. Also, the

effects of hydrodynamical damping is small in comparison with the effects of added

mass, which could be explained by the small motions in the structure. However,
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Figure 21: Expected peak value of the horizontal response for vertical and inclined

tension legs. With ζ = 1% damping ratio and seismic waves arrive at 90◦ angle.

including a steady current in the surrounding water could increase the hydrody-

namical damping, since the damping increases non-linearly with the velocity of

the surrounding water.

The results suggest that by inclining the tension legs the overall stiffness of the

structure increases, which puts the structure into the frequency range of the struc-

ture. One can only suggest that by increasing the number of tension legs could

increase the stiffness even further and result in larger response from seismic events.

This is important to consider in the design of a SFT.

Ultimately, due the complexity of the incoherence and wave passage effect. All

parameters and assumptions need to be carefully reasoned, in order to model the

structural behavior accurately. Since the response is significantly influenced by the

incoherence effects between supports, it would be interesting to implement different

excitations for each component at each support of the structure. This would
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Figure 22: Expected peak value of the horizontal response for vertical and inclined

tension legs. With ζ = 2% damping ratio and seismic waves arrive at 90◦ angle.

probably increase the complexity of the structural behavior even further.
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6 Conclusion

Submerged floating tunnels induced with seismic excitation are not likely to impose

any major structural damages, as the response is small relative to the length

of the structure. However, the traffic inside the tunnel could be subjected to

strong accelerations. A structure of that importance should tolerate a seismic

event without any risk of injuries to people. Therefore, acceleration effects on car

traffic, needs to be studied and evaluated before any conclusions can be made.

The coherency between supports does have influence on the structural behavior.

The wave passage effect seems to have more influence than the incoherence effect,

the inter-component coherency also seems to matter. These effects seem increase

the complexity of the structural behavior, as there are many parameters of rel-

evance. The wave passage effect depends strongly on the seismic wave velocity,

and as it varies it has often quite complex relationships with the response in the

tunnel (Appendix D). For long span structure of such importance, it is essential

to examine the coherency, as its effects on the structural behavior is not easily

predictable.

For the seismic analysis, vertical tension legs are better suited to withstand large

responses. Though they might not be particularly efficient in resisting the various

sea loads. To avoid potential accidents as a cause of an earthquake, the structure

should be designed with natural frequencies that do not match the frequency con-

tent of common seismic events. It should be mentioned that increased structural

damping is also quite efficient in reducing the seismic response.

Ultimately, SFT can be regarded as earthquake resilient structures and earth-

quake load is probably not going to be the design load case for Norwegian require-

ments.
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7 Further studies

Even though the analysis are termed successful and have given good insight in the

behavior of SFTs subjected to seismic loading, it is important to identify areas

where the modeling can be improved. In this chapter a few suggestions regarding

further studies are mentioned and presented as follows:

� Introducing non-linearity to the finite element model and investigating the

non-linear and inelastic effects to the structural stiffness and damping; espe-

cially due to soil properties, which is crucial in the soil-structure interaction.

This could give better insight in the behavior of the structure.

� Utilizing different ground acceleration spectral density functions for each

component at each support of the structure, which would give better de-

scription of the incoherence and the wave passage effects.

� Introducing site response effect, if the site of the structure has significant

variations in soil conditions. This would add another dimension to the co-

herency model.

� Generating a improved inter-component coherency model. Possibly by con-

sidering more earthquake records than the ones considered in this study.

� Studying the structural and hydrodynamic damping. As the damping is an

important factor in controlling the response of SFTs due to various environ-

mental loads.

The current study has focused on the Norwegian seismic environments. It would

be worthwhile to extent the study to more intensive earthquake prone areas to test

the resilience of this type of structure.
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A Coherency Models

A few coherency models are presented in the following section, with lagged co-

herency figures from some of the models.

A.1 Hindy-Novak model

The first to coherency model was introduced by Hindy & Novak (1980) and was

based on wind engineering:

|γjk(ξ, ω)| = exp

[
−κ
(
ω ξ

Vs

)ν]
(A.1)

where κ and ν are constants and Vs is shear wave velocity.

A.2 Harichandran-Vanmarcke model

Harichandran & Vanmarcke (1986) introduced a model based on 4 recorded events

from the SMART-1 array. They noted that isotropy could be assumed for these

records. The model took the form of the following expression:

|γjk(ξjk, ω)| = Aexp

[
− 2ξjk
αθ(ω)

(1− A+ αA)

]
+(1−A)exp

[
− 2ξjk
αθ(ω)

(1− A+ αA)

]
(A.2)

where θ(ω) = k[1+(ω/ω0)
b]−1/2 and A, α, k, f0, b are the model parameters which

were estimated by a weighted least-square procedures and are listed in Table 6 for

event 20.

Table 6: Proposed parameters for event 20 from the SMART-1 array (Harichan-

dran & Vanmarcke, 1986).

A α k[m] f0[Hz] b

Event 20 0.736 0.147 5210 1.09 2.78
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A.3 Loh-Yeh model

The method is based on 40 recordings of the SMART-1 array and takes the fol-

lowing form Loh & Yeh (1988):

|γjk(ξjk, ω)| = exp

[
−α ω ξjk

2πvapp

]
(A.3)

in which vapp is the apparent velocity of the seismic waves and α is the wave-number

of the seismic waves.

A.4 Oliveira-Hao-Penzien model

|γjk(ξljk, ξtjk, ω)| = exp(−β1ξljk − β2ξtjk)exp[(α1

√
ξljk − α2

√
ξtjk)(ω/2π)2] (A.4)

where αi = 2πa/ω+bω/2π+c, (i = 1, 2), ξljk and ξtjk are the separation distances in

the longitudinal and tangential direction of the propagating wave. The constants

βi, ai, bi and ci, (i = 1, 2) are obtained from least square fitting of 17 recorded

SMART-1 array events (Oliveira et al. , 1991).

A.5 Luco-Wong model

|γjk(ξjk, ω)| = exp

[
−
(
vωξjk
Vs

)2
]

(A.5)

in which v = µ(R/r0)
1/2, Vs is the shear velocity of the seismic wave, R is the

distance traveled by the wave in random medium, r0 is the scale length of random

inhomogeneities along the path and µ is a measure of the relative variation of the

elastic properties.

A.6 Der Kiureghian model

Der Kiureghian (1996) introduced a semi-empirical model that describes the inco-

herent effect of the coherency in a probabilistic sense using the theory of random
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processes. He assumed that the time histories at two locations j and k where were

stationary and expressed as:

aj(t)
d =

n∑
i=1

Ai cos(ωit+ φi) (A.6)

ak(t)
d =

n∑
i=1

(pjkAi + qjkBi) cos(ωit+ φi + εjk,i) (A.7)

Equation A.6 is the discrete Fourier series of the acceleration time history at sup-

port j. Eq. A.7 introduces variables that describe the incoherence between sup-

ports j and k. Bi are zero-mean, uncorrelated random variables with mean square

values σ2 describing the incoherent part of the amplitudes, εjk,i are independent

random phase differences with zero mean and variance α2
jk,i. pjk and qjk are deter-

ministic coefficients with values assumed on the interval (0,1) with pjk + qjk = 1.

The subscript jk, i denotes that the parameters are dependant on the separation

distance ξjk and the frequency ωi. The lagged coherency was then expressed as

(Der Kiureghian, 1996):

|γjk(ξjk, ω)| = cos[β(ξjk, ω)]exp

[
−1

2
α2(ξjk, ω)

]
(A.8)

where β(ξjk, ω) = tan−1(qjk/pjk)) and α2(ξjk, ω) is introduced above. Since then,

Yang & Chen (2000) has provided functional forms for the functions β(ξjk, ω) and

α2(ξjk, ω) which gives the lagged coherency the following form:

|γjk(ξjk, ω)| =

[
1 + a1ξjk + a2

(
ξjkω

2π

)1/2
]−1/2

exp

[
−1

2

(
a3ξ

a4
jkω

a5

2π

)]
(A.9)

The parameters in Eq.A.9 were obtained by utilizing records from the SMART-1

array. The parameters are listed in Table 7
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Table 7: Parameters introduced by Yang & Chen (2000) for the coherency model

developed by Der Kiureghian (1996).

a1 a2 a3 a4 a5

0.1151 −0.2249× 10−2 0.0762 0.3784 0.2206
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Figure 23: Lagged coherency as a function of distance and frequency. A coherency

model developed by Harichandran & Vanmarcke (1986).
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Figure 24: Surface plot of Loh & Yeh (1988) coherency model.
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Figure 25: Variation of the lagged coherency (Oliveira et al. , 1991), when sepa-

ration distance normal to the propagation of the wave equals zero ξtjk = 0.
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Figure 26: Variation of the lagged coherency. A model developed by Luco & Wong

(1986).
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Figure 27: Variation of the lagged coherency. A model developed by Der Ki-

ureghian (1996)
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B PSD of the seismic load vector

The consistent load vector for the system described in Eq. 3.40 is written in two

parts, i.e. for the acceleration and the velocity of the ground motion. The load

vector can be written as:

Q(t) = Aaüg(t) + Avu̇g(t) (B.1)

where Aa and Av are transformation matrices of the load system introduced in

Section 3.4.2. The auto-correlation function of the load vector can be expressed

as:

RQ(τ) = E[Q(t)QT (t+ τ)] (B.2)

Substituting Eq. B.1 into Eq. B.2 gives:

RQ(τ) = AaRüg(τ)AT
a + AaRügu̇gA

T
v + +AvRu̇gügA

T
a + AvRu̇g(τ)AT

v (B.3)

where Rüg and Ru̇g are the auto-correlation functions; whereas Rügu̇g and Ru̇güg

are is the cross correlation function of the ground acceleration and velocity.

Since, the auto-correlation function RQ(τ) and the auto-PSD function SQ(ω) are a

Fourier transform pair, as described in Eqs. 3.1-3.2, the auto-PSD function of the

load vector can be written as:

SQ(ω) = AaSüg(ω)AT
a + AvSu̇g(ω)AT

v + AaSügu̇g(ω)AT
v + AvSu̇güg(ω)AT

a (B.4)

which is then used in the analysis (see Section 3.4.2).
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C Mode shapes

In this section the natural mode shapes from Abaqus are presented

Figure 28: First five ”dry” horizontal mode shapes for both the inclined (left) and

the vertical (right) tension legs.
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Figure 29: First five ”dry” vertical mode shapes for both the inclined (left) and

the vertical (right) tension legs.
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D Response for varying seismic wave velocity

This section demonstrates plots of a the displacement response for varying velocity

of the seismic waves:
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Figure 30: Expected maximum vertical displacement of the tunnel, with seismic

waves arriving with 90◦ angle and incoherence modeled by Oliveira et al. (1991).
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Figure 31: Expected maximum horizontal displacement of the tunnel for differ-

ent wave velocities, with seismic waves arriving with 90◦ angle and incoherence

modeled by Oliveira et al. (1991)
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Figure 32: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving with 0◦ angle and incoherence modeled

by Oliveira et al. (1991)
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Figure 33: Expected maximum horizontal displacement of the tunnel for different

wave velocities, with seismic waves arriving with 0◦ angle and incoherence modeled

by Oliveira et al. (1991)
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Figure 34: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving with 90◦ angle for a fully coherent

excitation (γ = 1).
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Figure 35: Expected maximum horizontal displacement of the tunnel for different

wave velocities, with seismic waves arriving with 90◦ angle for a fully coherent

excitation (γ = 1).
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Figure 36: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving with 0◦ angle for a fully coherent

excitation (γ = 1).
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Figure 37: Expected maximum horizontal displacement of the tunnel for different

wave velocities, with seismic waves arriving with 0◦ angle for a fully coherent

excitation (γ = 1).
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Figure 38: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving with 90◦ angle for a non-coherent

excitation (γ = 0).

77



500

1000
1345

400
500

600
700

800
900

1000
0

0.25

0.5

0.75

1

1.25

1.5

Length of the tunnel [m]
Wave velocity [m/s]

D
is

p
la

c
e

m
e

n
t 

[m
]

Figure 39: Expected maximum horizontal displacement of the tunnel for different

wave velocities, with seismic waves arriving with 90◦ angle for a non-coherent

excitation (γ = 0).
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Figure 40: Expected maximum vertical displacement of the tunnel for different

wave velocities, with seismic waves arriving with 0◦ angle for a non-coherent exci-

tation (γ = 0).
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Figure 41: Expected maximum horizontal displacement of the tunnel for differ-

ent wave velocities, with seismic waves arriving with 0◦ angle for a non-coherent

excitation (γ = 0).
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E Matlab codes

In this section the Matlab codes for the analysis are presented:

E.1 Main file

1 % m−file: Mainfile.m

2 %

3 % Purpose: Seismic analysis for SFT

4 %

5 % Note:

6 % Written by: Birgir Indridason, Spring 2013

7 %

8

9

10 MassData=load('bla MASS2.mtx');

11 StifData=load('bla STIF2.mtx');

12

13 NatFreqAba=load('NatFreqAbaqus.txt');

14

15 %Damping Properties

16 a=0.0230; %Alfa coefficient for rayleigh damping

17 B=0.0087; %Beta coefficient for rayleigh damping

18 eta=0.012; %Damping coefficient for stiffness damping

19

20

21 %Generating system matrices for the system

22

23 [Mii,Cii,Kii,Mie,Kie,Cie]=MatrixGenerate2...

24 (MassData,StifData,a,B,eta);

25

26

27

28 Cm = 2; %Coefficient of Mass (inertia)

29

30 p=1025; %Density of the fluid

31 Cd = 1; %Coefficient of Drag

32 D = 5.65*2; %Diameter of cylinder

33 d = 0.1*2; %Diameter of the tension leg
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34

35 [Mh Ch]=hydrodynamics(p,Cd,Cm,D,d);

36

37

38 M=Mii−Mh; %Applying hydrodynamics to the element

39 C=Cii−Ch; %matrices

40 K=Kii;

41

42

43 beta=pi/2; %angle of the incoming wave to the ...

tunnel

44

45 [fw,Two,f,Vw,Dw]=eigfreq(M,K,Mii,Kii); %Calculating "wet" and ...

"dry"

46 %and wet frequencies

47

48

49 v=[400:100:1000]; %Wave propagation speed [km/s]

50 %v=500;

51 Td=10; %Period of the strong earthquake portion

52

53

54 for i=1:length(v)

55

56 V1=v(i);

57

58

59

60 [sigmaR,maxDispl,Sr,Srv,Sra,maxvel,maxacc,sigmaRV,sigmaRa]...

61 =analysis1(K,Kie,M,Mie,C,Cie,beta,V1,Td);

62

63 Sr mat(:,:,i)=Sr; %Generating matrices for different ...

wave velocities

64 sigma r(i,:)=sigmaR;

65 MaxD(i,:)=maxDispl;

66

67 Srv mat(:,:,i)=Srv;

68 sigma rv(i,:)=sigmaRV;

69 MaxV(i,:)=maxvel;

70

71 Sra mat(:,:,i)=Sra;

72 sigma ra(i,:)=sigmaRa;
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73 MaxA(i,:)=maxacc;

74

75 end
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E.2 Matrix generation

1

2 function [Mii,Cii,Kii,Mie,Kie,Cie]...

3 =MatrixGenerate2(MassData,StifData,a,B)

4

5 %Importing mass matrix from data

6

7 for i=1:length(MassData)

8

9 j=MassData(i,1);

10 k=MassData(i,2);

11 Mii(j,k)=MassData(i,3);

12

13 end

14

15 %Importing Stiffness matrix from data

16

17 for i=1:length(StifData)

18

19 j=StifData(i,1);

20 k=StifData(i,2);

21 Kii(j,k)=StifData(i,3);

22

23 end

24

25 %Degrees of freedom which contain the foundations of the structure

26

27 y=[139:144 175:180 331:378];

28

29 %Rotational DOFs of the Kei and Mei matrices (will be eliminted)

30

31 z=[4:6 10:12 16:18 22:24 28:30 34:36 40:42 46:48 52:54 58:60];

32

33

34 Cii=a*Kii+B*Mii; %Generating damping matrix

35

36

37 Kei1(1:length(y),1:length(Kii))=Kii(y,:);

38 Mei1(1:length(y),1:length(Mii))=Mii(y,:);

39 Cei1(1:length(y),1:length(Cii))=Cii(y,:);
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40

41 Kii(y,:)=[]; %Subtracting the DOFs of the supports

42 Mii(y,:)=[];

43 Cii(y,:)=[];

44 Kii(:,y)=[];

45 Mii(:,y)=[];

46 Cii(:,y)=[];

47 Kei1(:,y)=[];

48 Mei1(:,y)=[];

49 Cei1(:,y)=[];

50 Kei1(z,:)=[];

51 Mei1(z,:)=[];

52 Cei1(z,:)=[];

53

54 %Subtracting into regular DOF matrices

55 Kii=Kii(121:end,121:end);

56 Mii=Mii(121:end,121:end);

57 Cii=Cii(121:end,121:end);

58

59 Kei1=Kei1(:,121:end);

60 Mei1=Mei1(:,121:end);

61 Cei1=Cei1(:,121:end);

62

63 %Transforming the matrices

64 Kie=Kei1';

65 Mie=Mei1';

66 Cie=Cei1';

67

68 end
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E.3 Natural frequencies

1

2 function [fw,Tw,fd,Vw]=eigfreq(M,K,Mii,Kii)

3

4 [Vw,Dw]=eig(K,M); %Wet natural frequencies and vectors

5

6 [Vd,Dd]=eig(Kii,Mii); %Dry natural frequencies and vectors

7

8 ww=sqrt(diag(Dw)); %Wet angular natural frequencies

9

10 wd=sqrt(diag(Dd)); %Dry angular natural frequencies

11

12 fw=ww./(2*pi); %Wet natural frequencies

13

14 fd=wd./(2*pi); %Dry natural frequencies

15 end

86



E.4 Anlysis

1

2 function [sigmaR,maxDispl,Sr,maxvel,maxacc,sigmaRV,sigmaRa]...

3 =analysis1(K,Kie,M,Mie,C,Cie,beta,V1,Td)

4

5 %Kanai−Tajimi filter parameters

6 wg=15.6;

7 wh=4;

8 Lg=0.7;

9 Lh=0.5;

10 S0=0.05; %Period of the strong earthquake portion

11

12

13 e1=[cos(beta);0;sin(beta)]; %orientation vectors

14 e2=[0; 1; 0];

15 e3=[−sin(beta);0;cos(beta)];
16 e=[e1 e2 e3];

17

18 EmN=zeros(30); %Orientation matrix

19

20 for n=1:10

21

22 EmN(n*3−2:n*3,n*3−2:n*3)=e;
23 end

24

25 B=−(K\Kie); %Transformation matrices

26 B1=−(M*B+Mie)*EmN;
27 B2=−(C*B+Cie)*EmN;
28

29 dw=0.05;

30 w=[0.05:dw:15]; %Frequency interval for the response ...

calculations

31

32 %Oliveira coherency model parameters

33 B3=[1.109e−4 6.730e−5];
34 a=[3.853e−3 5.163e−3];
35 b=[−18.11e−6 −7.583e−6];
36 c=[11.77e−5 −1.905e−4];
37

38 %Nodes along thes tunnel
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39 hp=[30 31 32 33 8 28 29 7 27 6 23 24 25 26 5 21 22 4 20 1 15 ...

16 17 ...

40 18 19]*6−3;
41

42 for m=1:length(hp)

43 for n=1:length(w)

44

45 w1=w(n);

46 %Generation of acceleration spectra

47 [Sa, Sv, Sav, Sva]=AccelSpectra(w1,wg,wh,Lg,Lh,S0);

48

49 %Coherency model (Oliveira)

50 [Sc]=Oliveira(B3,a,b,c,w1,beta,V1);

51

52 Sa=Sc*Sa; %auto spectral density of acceleration and

53 Sv=Sc*Sv; %velocity with coherency

54 Sav=Sc*Sav; %Cross spectral density

55 Sva=Sc*Sva;

56

57

58 %Spectral density function of the load vector

59 Sq=B1*Sa*B1'+B2*Sv*B2'+B1*Sav*B2'+B2*Sva*B1';

60

61 %Transformation matrix

62 H=(K−(w1ˆ2)*M+(1i*w1*C))ˆ(−1);
63 HT=conj(H);

64

65 %Response spectra

66 Sr(m,n)=H(hp(m),:)*Sq*HT(:,hp(m));

67 Srv(m,n)=(w1ˆ2)*(H(hp(m),:)*Sq*HT(:,hp(m)))/(2*pi);

68 Sra(m,n)=((w1ˆ4)*(H(hp(m),:)*Sq*HT(:,hp(m))))/(2*pi)ˆ3;

69 end

70

71 %variance of response spectra

72 var(m)=sum(real(Sr(m,:)))*dw;

73 varv(m)=sum(real(Srv(m,:)))*dw;

74 vara(m)=sum(real(Sra(m,:)))*dw;

75

76 %Standard deviation of response spectra

77 sigmaR(m)=sqrt(var(m));

78 sigmaRV(m)=sqrt(varv(m));

79 sigmaRa(m)=sqrt(vara(m));
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80

81 %Peak factor

82 wplus=sigmaRV/sigmaR;

83 N=wplus*Td/(2*pi); %Number of upcrossings

84 gt=sqrt(2*log(2*N*Td))+0.5772/(sqrt(2*log(2*N*Td)));

85

86 %Expected maximum motions

87 maxDispl=gt*sigmaR; %Displacement

88 maxvel=gt*sigmaRV; %Velocity

89 maxacc=gt*sigmaRa; %Acceleration

90

91 end
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E.5 Coherency model

1 function [Sc]=Oliveira(B3,a,b,c,w1,beta,V1)

2

3 f=w1/(2*pi); %Frequency in [Hz]

4

5 x=zeros(10);

6

7 %Distance between supports (in matrix form)

8 x(1,:)=[0 sqrt(265ˆ2+75ˆ2) sqrt(265ˆ2+75ˆ2) ...

sqrt((265+264)ˆ2+69ˆ2) ...

9 sqrt((265+264)ˆ2+69ˆ2) sqrt((265+264+264)ˆ2+58ˆ2) ...

10 sqrt((265+264+264)ˆ2+58ˆ2) sqrt((265+264+264+264)ˆ2+35ˆ2) ...

11 sqrt((265+264+264+264)ˆ2+35ˆ2) 1345];

12

13 x(2,:)=[sqrt(265ˆ2+75ˆ2) 0 312 sqrt(264ˆ2+(75−69)ˆ2) ...

14 sqrt(264ˆ2+(75+69)ˆ2) sqrt((264+264)ˆ2+(75−58)ˆ2) ...

15 sqrt((264+264)ˆ2+(75+58)ˆ2) ...

sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

16 sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

sqrt((264+264+264+268)ˆ2+(75)ˆ2)];

17

18 x(3,:)=[sqrt(265ˆ2+75ˆ2) 312 0 sqrt(264ˆ2+(75+69)ˆ2) ...

19 sqrt(264ˆ2+(75−69)ˆ2) sqrt((264+264)ˆ2+(75+58)ˆ2) ...

20 sqrt((264+264)ˆ2+(75−58)ˆ2) ...

sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

21 sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

sqrt((264+264+264+268)ˆ2+(75)ˆ2)];

22

23 x(4,:)=[sqrt((265+264)ˆ2+69ˆ2) sqrt(264ˆ2+(75−69)ˆ2) ...

24 sqrt(264ˆ2+(75+69)ˆ2) 0 302 sqrt(264ˆ2+(69−58)ˆ2) ...

25 sqrt(264ˆ2+(69+58)ˆ2) sqrt((264+264)ˆ2+(69−35)ˆ2) ...

26 sqrt((264+264)ˆ2+(69+35)ˆ2) sqrt((264+264+288)ˆ2+(69)ˆ2)];

27

28 x(5,:)=[sqrt((265+264)ˆ2+69ˆ2) sqrt(264ˆ2+(75+69)ˆ2) ...

29 sqrt(264ˆ2+(75−69)ˆ2) 302 0 sqrt(264ˆ2+(69+58)ˆ2) ...

30 sqrt(264ˆ2+(69−58)ˆ2) sqrt((264+264)ˆ2+(69+35)ˆ2) ...

31 sqrt((264+264)ˆ2+(69−35)ˆ2) sqrt((264+264+288)ˆ2+(69)ˆ2)];

32

33 x(6,:)=[sqrt((265+264+264)ˆ2+58ˆ2) sqrt((264+264)ˆ2+(75−58)ˆ2) ...

34 sqrt((264+264)ˆ2+(75+58)ˆ2) sqrt(264ˆ2+(69−58)ˆ2) ...
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35 sqrt(264ˆ2+(69+58)ˆ2) 0 262 sqrt(264ˆ2+(58−35)ˆ2) ...

36 sqrt(264ˆ2+(58+35)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2)];

37

38 x(7,:)=[sqrt((265+264+264)ˆ2+58ˆ2) sqrt((264+264)ˆ2+(75+58)ˆ2) ...

39 sqrt((264+264)ˆ2+(75−58)ˆ2) sqrt(264ˆ2+(69+58)ˆ2) ...

40 sqrt(264ˆ2+(69−58)ˆ2) 262 0 sqrt(264ˆ2+(58+35)ˆ2) ...

41 sqrt(264ˆ2+(58−35)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2)];

42

43 x(8,:)=[sqrt((265+264+264+264)ˆ2+35ˆ2) ...

sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

44 sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

sqrt((264+264)ˆ2+(69−35)ˆ2) ...

45 sqrt((264+264)ˆ2+(69+35)ˆ2) sqrt(264ˆ2+(58−35)ˆ2) ...

46 sqrt(264ˆ2+(58+35)ˆ2) 0 178 sqrt(288ˆ2+(35)ˆ2)];

47

48 x(9,:)=[sqrt((265+264+264+264)ˆ2+35ˆ2) ...

sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

49 sqrt((264+264+264)ˆ2+(75−35)ˆ2) sqrt((264+264)ˆ2+(69+35)ˆ2)...

50 sqrt((264+264)ˆ2+(69−35)ˆ2) sqrt(264ˆ2+(58+35)ˆ2) ...

51 sqrt(264ˆ2+(58−35)ˆ2) 178 0 sqrt(288ˆ2+(35)ˆ2)];

52

53 x(10,:)=[1345 sqrt((264+264+264+268)ˆ2+(75)ˆ2) ...

54 sqrt((264+264+264+268)ˆ2+(75)ˆ2) ...

sqrt((264+264+288)ˆ2+(69)ˆ2) ...

55 sqrt((264+264+288)ˆ2+(69)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2) ...

56 sqrt((264+288)ˆ2+(58)ˆ2) sqrt(288ˆ2+(35)ˆ2) ...

sqrt(288ˆ2+(35)ˆ2) 0];

57

58 %Angle (in matrix form)

59 alfa=zeros(10);

60

61 alfa(1,:) = [0 atan(75/265) −atan(75/265) atan(69/(265+264)) ...

62 −atan(69/(265+264)) atan(58/(265+264+264)) ...

63 −atan(58/(265+264+264)) atan(35/(265+264+264+264)) ...

64 −atan(35/(265+264+264+264)) 0];

65

66 alfa(2,:) = [atan(75/265) 0 −(pi/2) −atan((75−69)/264) ...

67 −atan((75+69)/264) −atan((75−58)/(264*2)) ...

68 −atan((75+58)/(264*2)) −atan((75−35)/(264*3)), ...

69 −atan((75+35)/(264*3)) −atan((75)/(264*3+288))];
70

71 alfa(3,:) = [atan(75/265) (pi/2) 0 atan((75+69)/264), ...
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72 atan(5/264), atan((75+58)/(264*2)) atan((75−58)/(264*2)), ...

73 atan((75+35)/(264*3)) atan((75−35)/(264*3)) ...

74 atan((75)/(264*3+288))];

75

76 alfa(4,:) = [atan(69/(265+264)), atan((75−69)/264), ...

77 atan((75+69)/264), 0, −pi/2, −atan(69−58/264), ...

78 −atan((69+58)/264), −atan((69−35)/(264*2)), ...

79 −atan((69+35)/(264*2)) −atan(69/(2*264+288))];
80

81 alfa(5,:) = [atan(69/(265+264)), atan((75+69)/264), ...

82 atan(5/264), pi/2, 0, atan((69+58)/264), atan(69−58/264), ...

83 atan((69+35)/(264*2)), atan((69−35)/(264*2)), ...

84 atan(69/(2*264+288))];

85

86 alfa(6,:) = [atan(58/(265+264+264)), atan((75−58)/(264*2)), ...

87 atan((75+58)/(264*2)), atan((69−58)/264), ...

88 atan((69+58)/264), 0, −pi/2, −atan((58−35)/264), ...

89 −atan((58+35)/264), −atan(58/(264+288))];
90

91 alfa(7,:) = [atan(58/(265+264+264)), atan((75+58)/(264*2)), ...

92 atan((75−58)/(264*2)), atan((69+58)/264), ...

93 atan((69−58)/264), pi/2, 0, atan((58+35)/264), ...

94 atan((58−35)/264), atan(58/(264+288))];

95

96 alfa(8,:) = [atan(35/(265+264+264+264)), ...

atan((75−35)/(264*3)), ...

97 atan((75+35)/(264*3)), atan((69−35)/(264*2)), ...

98 atan((69+35)/(264*2)), atan((58−35)/264), ...

99 atan((58+35)/264), 0, −pi/2, −atan(35/288)];
100

101 alfa(9,:) = [atan(35/(265+264+264+264)), ...

atan((75+35)/(264*3)), ...

102 atan((75−35)/(264*3)), atan((69+35)/(264*2)), ...

103 atan((69−35)/(264*2)), atan((58+35)/264), ...

104 atan((58−35)/264), pi/2, 0, atan(35/288)];

105

106 alfa(10,:) = [pi, atan((75)/(264*3+288)), ...

107 atan((75)/(264*3+288)), atan(69/(2*264+288)), ...

108 atan(69/(2*264+288)), atan(58/(264+288)), ...

109 atan(58/(264+288)), atan(35/288), atan(35/288), 0];

110

111 alfa = abs(alfa);
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112

113 %Generating longitudinal and tangential distance

114 for n=1:length(x)

115 for m=1:length(x)

116 El(n,m)=abs(x(n,m)*cos(beta−alfa(n,m)));
117 Et(n,m)=abs(x(n,m)*sin(beta−alfa(n,m)));
118 end

119 end

120

121 %Oliveira coherency model

122 for i=1:2

123 alpha(i)=a(i)./f+b(i).*f+c(i);

124 end

125

126 for n=1:length(El)

127 for m=1:length(El)

128

129 Coh(n,m) = ...

exp(−B3(1).*El(n,m)−B3(2).*Et(n,m)).*exp(−(alpha(1).*...
130 El(n,m).ˆ(1/2)−alpha(2).*Et(n,m).ˆ(1/2)).*(w1/(2*pi)).ˆ2);
131 if Coh(n,m)>1

132 Coh(n,m)=1;

133 end

134

135 end

136 end

137

138 %Inter−component coherency

139 coh xy=0.3537;

140 coh xz=0.3506;

141 coh yz=0.3295;

142

143 %Non−Coherent
144 % Coh=eye(10);

145 % coh xy=0;

146 % coh xz=0;

147 % coh yz=0;

148

149

150 %Fully coherent

151 % Coh=ones(10);

152 % coh xy=1;
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153 % coh xz=1;

154 % coh yz=1;

155

156

157 WP=exp(−(1i*w1*x/V1)); %Wave passage effect

158 CohWP=Coh.*WP; %Wave passage + incoherence

159

160 %Generating the coherency matrix

161 Sc=zeros(30);

162 for n=1:10

163 for m=1:10

164 Sc(n*3−2:n*3,m*3−2:m*3)=[CohWP(n,m) coh xy*CohWP(n,m) ...

165 coh xz*CohWP(n,m); coh xy*CohWP(n,m) CohWP(n,m) ...

166 coh yz*CohWP(n,m); coh xz*CohWP(n,m) ...

coh yz*CohWP(n,m) ...

167 CohWP(n,m)];

168 end

169 end

170

171 end
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E.6 Ground acceleration spectral density

1 function [Sc]=Oliveira(B3,a,b,c,w1,beta,V1)

2

3 f=w1/(2*pi); %Frequency in [Hz]

4

5 x=zeros(10);

6

7 %Distance between supports (in matrix form)

8 x(1,:)=[0 sqrt(265ˆ2+75ˆ2) sqrt(265ˆ2+75ˆ2) ...

sqrt((265+264)ˆ2+69ˆ2) ...

9 sqrt((265+264)ˆ2+69ˆ2) sqrt((265+264+264)ˆ2+58ˆ2) ...

10 sqrt((265+264+264)ˆ2+58ˆ2) sqrt((265+264+264+264)ˆ2+35ˆ2) ...

11 sqrt((265+264+264+264)ˆ2+35ˆ2) 1345];

12

13 x(2,:)=[sqrt(265ˆ2+75ˆ2) 0 312 sqrt(264ˆ2+(75−69)ˆ2) ...

14 sqrt(264ˆ2+(75+69)ˆ2) sqrt((264+264)ˆ2+(75−58)ˆ2) ...

15 sqrt((264+264)ˆ2+(75+58)ˆ2) ...

sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

16 sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

sqrt((264+264+264+268)ˆ2+(75)ˆ2)];

17

18 x(3,:)=[sqrt(265ˆ2+75ˆ2) 312 0 sqrt(264ˆ2+(75+69)ˆ2) ...

19 sqrt(264ˆ2+(75−69)ˆ2) sqrt((264+264)ˆ2+(75+58)ˆ2) ...

20 sqrt((264+264)ˆ2+(75−58)ˆ2) ...

sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

21 sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

sqrt((264+264+264+268)ˆ2+(75)ˆ2)];

22

23 x(4,:)=[sqrt((265+264)ˆ2+69ˆ2) sqrt(264ˆ2+(75−69)ˆ2) ...

24 sqrt(264ˆ2+(75+69)ˆ2) 0 302 sqrt(264ˆ2+(69−58)ˆ2) ...

25 sqrt(264ˆ2+(69+58)ˆ2) sqrt((264+264)ˆ2+(69−35)ˆ2) ...

26 sqrt((264+264)ˆ2+(69+35)ˆ2) sqrt((264+264+288)ˆ2+(69)ˆ2)];

27

28 x(5,:)=[sqrt((265+264)ˆ2+69ˆ2) sqrt(264ˆ2+(75+69)ˆ2) ...

29 sqrt(264ˆ2+(75−69)ˆ2) 302 0 sqrt(264ˆ2+(69+58)ˆ2) ...

30 sqrt(264ˆ2+(69−58)ˆ2) sqrt((264+264)ˆ2+(69+35)ˆ2) ...

31 sqrt((264+264)ˆ2+(69−35)ˆ2) sqrt((264+264+288)ˆ2+(69)ˆ2)];

32

33 x(6,:)=[sqrt((265+264+264)ˆ2+58ˆ2) sqrt((264+264)ˆ2+(75−58)ˆ2) ...

34 sqrt((264+264)ˆ2+(75+58)ˆ2) sqrt(264ˆ2+(69−58)ˆ2) ...
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35 sqrt(264ˆ2+(69+58)ˆ2) 0 262 sqrt(264ˆ2+(58−35)ˆ2) ...

36 sqrt(264ˆ2+(58+35)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2)];

37

38 x(7,:)=[sqrt((265+264+264)ˆ2+58ˆ2) sqrt((264+264)ˆ2+(75+58)ˆ2) ...

39 sqrt((264+264)ˆ2+(75−58)ˆ2) sqrt(264ˆ2+(69+58)ˆ2) ...

40 sqrt(264ˆ2+(69−58)ˆ2) 262 0 sqrt(264ˆ2+(58+35)ˆ2) ...

41 sqrt(264ˆ2+(58−35)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2)];

42

43 x(8,:)=[sqrt((265+264+264+264)ˆ2+35ˆ2) ...

sqrt((264+264+264)ˆ2+(75−35)ˆ2) ...

44 sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

sqrt((264+264)ˆ2+(69−35)ˆ2) ...

45 sqrt((264+264)ˆ2+(69+35)ˆ2) sqrt(264ˆ2+(58−35)ˆ2) ...

46 sqrt(264ˆ2+(58+35)ˆ2) 0 178 sqrt(288ˆ2+(35)ˆ2)];

47

48 x(9,:)=[sqrt((265+264+264+264)ˆ2+35ˆ2) ...

sqrt((264+264+264)ˆ2+(75+35)ˆ2) ...

49 sqrt((264+264+264)ˆ2+(75−35)ˆ2) sqrt((264+264)ˆ2+(69+35)ˆ2)...

50 sqrt((264+264)ˆ2+(69−35)ˆ2) sqrt(264ˆ2+(58+35)ˆ2) ...

51 sqrt(264ˆ2+(58−35)ˆ2) 178 0 sqrt(288ˆ2+(35)ˆ2)];

52

53 x(10,:)=[1345 sqrt((264+264+264+268)ˆ2+(75)ˆ2) ...

54 sqrt((264+264+264+268)ˆ2+(75)ˆ2) ...

sqrt((264+264+288)ˆ2+(69)ˆ2) ...

55 sqrt((264+264+288)ˆ2+(69)ˆ2) sqrt((264+288)ˆ2+(58)ˆ2) ...

56 sqrt((264+288)ˆ2+(58)ˆ2) sqrt(288ˆ2+(35)ˆ2) ...

sqrt(288ˆ2+(35)ˆ2) 0];

57

58 %Angle (in matrix form)

59 alfa=zeros(10);

60

61 alfa(1,:) = [0 atan(75/265) −atan(75/265) atan(69/(265+264)) ...

62 −atan(69/(265+264)) atan(58/(265+264+264)) ...

63 −atan(58/(265+264+264)) atan(35/(265+264+264+264)) ...

64 −atan(35/(265+264+264+264)) 0];

65

66 alfa(2,:) = [atan(75/265) 0 −(pi/2) −atan((75−69)/264) ...

67 −atan((75+69)/264) −atan((75−58)/(264*2)) ...

68 −atan((75+58)/(264*2)) −atan((75−35)/(264*3)), ...

69 −atan((75+35)/(264*3)) −atan((75)/(264*3+288))];
70

71 alfa(3,:) = [atan(75/265) (pi/2) 0 atan((75+69)/264), ...
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72 atan(5/264), atan((75+58)/(264*2)) atan((75−58)/(264*2)), ...

73 atan((75+35)/(264*3)) atan((75−35)/(264*3)) ...

74 atan((75)/(264*3+288))];

75

76 alfa(4,:) = [atan(69/(265+264)), atan((75−69)/264), ...

77 atan((75+69)/264), 0, −pi/2, −atan(69−58/264), ...

78 −atan((69+58)/264), −atan((69−35)/(264*2)), ...

79 −atan((69+35)/(264*2)) −atan(69/(2*264+288))];
80

81 alfa(5,:) = [atan(69/(265+264)), atan((75+69)/264), ...

82 atan(5/264), pi/2, 0, atan((69+58)/264), atan(69−58/264), ...

83 atan((69+35)/(264*2)), atan((69−35)/(264*2)), ...

84 atan(69/(2*264+288))];

85

86 alfa(6,:) = [atan(58/(265+264+264)), atan((75−58)/(264*2)), ...

87 atan((75+58)/(264*2)), atan((69−58)/264), ...

88 atan((69+58)/264), 0, −pi/2, −atan((58−35)/264), ...

89 −atan((58+35)/264), −atan(58/(264+288))];
90

91 alfa(7,:) = [atan(58/(265+264+264)), atan((75+58)/(264*2)), ...

92 atan((75−58)/(264*2)), atan((69+58)/264), ...

93 atan((69−58)/264), pi/2, 0, atan((58+35)/264), ...

94 atan((58−35)/264), atan(58/(264+288))];

95

96 alfa(8,:) = [atan(35/(265+264+264+264)), ...

atan((75−35)/(264*3)), ...

97 atan((75+35)/(264*3)), atan((69−35)/(264*2)), ...

98 atan((69+35)/(264*2)), atan((58−35)/264), ...

99 atan((58+35)/264), 0, −pi/2, −atan(35/288)];
100

101 alfa(9,:) = [atan(35/(265+264+264+264)), ...

atan((75+35)/(264*3)), ...

102 atan((75−35)/(264*3)), atan((69+35)/(264*2)), ...

103 atan((69−35)/(264*2)), atan((58+35)/264), ...

104 atan((58−35)/264), pi/2, 0, atan(35/288)];

105

106 alfa(10,:) = [pi, atan((75)/(264*3+288)), ...

107 atan((75)/(264*3+288)), atan(69/(2*264+288)), ...

108 atan(69/(2*264+288)), atan(58/(264+288)), ...

109 atan(58/(264+288)), atan(35/288), atan(35/288), 0];

110

111 alfa = abs(alfa);
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112

113 %Generating longitudinal and tangential distance

114 for n=1:length(x)

115 for m=1:length(x)

116 El(n,m)=abs(x(n,m)*cos(beta−alfa(n,m)));
117 Et(n,m)=abs(x(n,m)*sin(beta−alfa(n,m)));
118 end

119 end

120

121 %Oliveira coherency model

122 for i=1:2

123 alpha(i)=a(i)./f+b(i).*f+c(i);

124 end

125

126 for n=1:length(El)

127 for m=1:length(El)

128

129 Coh(n,m) = ...

exp(−B3(1).*El(n,m)−B3(2).*Et(n,m)).*exp(−(alpha(1).*...
130 El(n,m).ˆ(1/2)−alpha(2).*Et(n,m).ˆ(1/2)).*(w1/(2*pi)).ˆ2);
131 if Coh(n,m)>1

132 Coh(n,m)=1;

133 end

134

135 end

136 end

137

138 %Inter−component coherency

139 coh xy=0.3537;

140 coh xz=0.3506;

141 coh yz=0.3295;

142

143 %Non−Coherent
144 % Coh=eye(10);

145 % coh xy=0;

146 % coh xz=0;

147 % coh yz=0;

148

149

150 %Fully coherent

151 % Coh=ones(10);

152 % coh xy=1;
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153 % coh xz=1;

154 % coh yz=1;

155

156

157 WP=exp(−(1i*w1*x/V1)); %Wave passage effect

158 CohWP=Coh.*WP; %Wave passage + incoherence

159

160 %Generating the coherency matrix

161 Sc=zeros(30);

162 for n=1:10

163 for m=1:10

164 Sc(n*3−2:n*3,m*3−2:m*3)=[CohWP(n,m) coh xy*CohWP(n,m) ...

165 coh xz*CohWP(n,m); coh xy*CohWP(n,m) CohWP(n,m) ...

166 coh yz*CohWP(n,m); coh xz*CohWP(n,m) ...

coh yz*CohWP(n,m) ...

167 CohWP(n,m)];

168 end

169 end

170

171 end
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E.7 Generation of Acceleration spectral density function

1 function [Sa Sv Sav Sva]=AccelSpectra(w1,wg,wh,Lg,Lh,S0)

2

3 %Kanai−Tajimi spectra

4 %First filter

5 Hg2=((1+(4*Lgˆ2)*(w1/wg).ˆ2)./((1−(w1/wg).ˆ2).ˆ2+...
6 (4*Lgˆ2)*(w1/wg).ˆ2));

7

8 %Second filter

9 Hh2=(((w1/wh).ˆ4)./((1−(w1/wh).ˆ2).ˆ2+(4*Lhˆ2)*(w1/wh).ˆ2)) ;

10

11 Sa= S0*Hg2.*Hh2; %Kanai−Tajimi %Auto−PSD (acceleration)

12

13 Sav= 1i.*Sa./w1; %Cross spectra

14 Sva= −1i.*Sa./w1;
15 Sv=Sa./(w1ˆ2); %Auto−PSD (velocity)

16 end
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F Abaqus model

Introduced as an electronic supplement:

Filenames

SFT-model1.CAE - Finite element model of the SFT with inclined tension legs

SFT-model2.CAE - Finite element model of the SFT with vertical tension legs
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G Reference Library

Introduced as an electronic supplement:

Filenames

Submerged Tunnels Reference Library.enl - Endnote reference library

Submerged Tunnels Reference Library.Data - PDF articles
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