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Abstract 

Comparison of Effective width method and Reduced stress method is performed based on 

design procedures given in NS EN 1993-1-5 

The two methods lead to exactly equal critical buckling stress and strength for uniaxially 

loaded plates and no significant difference is observed between hand calculated results and 

results of the numerical analysis. 

Analysis of biaxially loaded plates showed that results of Reduced stress method and that of 

finite element analysis are very close for square plates, but not for rectangular plates. 

Reduced stress method gives 10 % - 20 % lower buckling stress and 6 % - 14 % lower strength 

values compared with results from finite element analysis. 

Hand calculations show that both methods lead to equal critical buckling stress for stiffened 

plates. But Reduced stress method gives a very conservative strength results. It was found to 

be about 10 % difference between the two methods when applied on relatively narrow and 

long stiffened plates. Strength results based on Effective width method for stiffened plates 

are generally lower than results of numerical analysis. The difference is especially very large 

for both short and wide plates, since effect of column-like buckling is taken into 

consideration. Hence the interpolation equation used in the design process is not good 

enough to capture the real behavior of such stiffened plates 

 

 

 

 

 

 

 

  



 
 

Sammendrag 

Sammenligning av Effektiv bredde metoden og Redusert spenningsmetoden er gjort basert 

på dimensjoneringsregler gitt i NS EN- EN 1993-1-5. 

Begge metodene gir lik knekkspenning og kapasitet for en- aksialt belastede, uavstivede 

plater. Dessuten vises det ingen signifikante forskjeller mellom håndberegnede resultater og 

numeriske analyser. 

Analysen av bi – aksialt belastede plater viser at Redusert spennings metode og finite 

element metode samsvarer veldig godt for kvadratiske plater, men ikke for rektangulære 

plater. Redusert spennings metode gir 10 % - 20 % mindre knekkspenning og 6 % - 14 % 

mindre kapasitet i forhold til analysen som er gjort med Abaqus. 

For avstivede plater gir begge håndberegningsmetodene lik knekkspenning. Men Redusert 

spenningsmoden gir en veldig konservativ kapasitet. Det ble observert at Redusert 

spenningsmetoden gir ca. 10 % mindre kapasitet for smale og lengre avstivede plater. 

Effektiv beredde metoden gir generelt mindre kapasitet sammenlignet med resultatet fra 

den numeriske analysen. Avviket er spesielt stort for relativ korte eller breie plater, siden 

effekten av søyle-lik knekking er tatt i betrakting. Dette viser at interpolasjons likningen som 

er brukt i beregningene er ikke god nok til å fange oppførselen av avstivede plater 

 

 

 

 

 

 

 

  



 
 

       

1. Bakgrunn 

 

Plater med stivere inngår i store bjelker, broer, beholdere, skip og andre større 

konstruksjoner. Omfattende beregningsregler er gitt stål- og aluminiumsstandarden. 

Beregning av oppførsel og kapasitet til plater med stivere er godt egnet for simuleringer med 

datamaskinprogrammer, og beregningsresultater herfra kan gi god støtte til den 

eksisterende erfaringen på området og forståelsen av de reglene som er stilt opp. I Eurocode 

3, del 1-5, er det beskrevet en alternativ metode ”Reduced stress method” som skal 

undersøkes, og sammenlignes med de vanlige beregningsreglene for platefelt. Oppgaven 

omfatter litteraturundersøkelse, sammenligninger av regler, og numeriske simuleringer for 

utvalgte geometrier av avstivede plater. Arbeidet kan benytte resultater og eksempler fra 

tidligere studentarbeider for platefelt med stivere, og eksempler fra utførte konstruksjoner 

fra ulike prosjekter. 

 

2. Gjennomføring 

 

Oppgaven kan gjennomføres med følgende elementer: 

 Redegjøre for beregningsreglene for uavstivede og avstivede plater med 

aksialbelastning. 

 Se spesielt på den alternative metoden med «Reduced Stress Method» (NS EN 1993-1-

5), og forklare dens teoretiske bakgrunn. Stikkord her er elastisk knekking, både lokal 

knekking (plate mellom stivere) og global knekking (platen med stivere knekker 

sammen), og modeller for kapasitetsberegninger. 

 Gjøre håndberegninger med utvalgte konstruksjonseksempler for uavstivede og 

avstivede plater (platefelt), og sammenligne kapasiteten funnet med de ulike 

metodene. 

 Etablere FE modeller av platefelt, med modellering av realistiske materialegenskaper 

og vanlig forekommende størrelser for formfeil/imperfeksjoner, og finne platefeltenes 

kapasitet. Sammenligning med håndberegninger.  

 Konklusjoner vedrørende «Reduced Stress Method». Fordeler og ulemper. Er metoden 

et nyttig alternativ i dimensjoneringsarbeidet for en praktisk konstruksjon? 

 

Kandidaten kan i samråd med faglærer velge å konsentrere seg om enkelte av punktene i 

oppgaven, eller justere disse.  

 

 

 

 

 

 



 
 

Kommentar: 

 

Opprinnelig var målet av oppgaven å fokusere på alternativ metoden som også er kalt 

Redusert spenningsmetode. Men det viste seg at det ikke var lett å finne relevant litteratur 

som er skrevet på norsk eller engelsk. 

 

Veideler har kontaktet Dr. –Ing. Braun, som har forsket mye på dette området, og spurt om 

relevant litteratur. Som svar fikk vi at Redusert spennings metoden er brukt mye i Tyskland 

og derfor er mye av litteraturen skrevet på tysk. Svar av Braun er vist under. 

 

Etter diskusjon med veileder, ble målet av oppgaven endret til sammenligning av 

dimensjoneringsmetodene gitt i NS-EN 1993 -1-5. 

 
……………………. mailsvar fra Braun……………………….. 
Benjamin Braun <braun@spacestructures.de> 
 

 

 
 

 
to Arne, derik, me 

 
 

Hello Arne, 
  
the reduced stress method is a German approach so that almost everything is published in 
German. It evolved since the 1950s and has been already incorporated in former standards 
DIN 4114 and DIN 18800 in a similar way. 
  
In principle relevant literature is referenced in Sections 2.3.4.2 and 2.3.2 of my thesis. 
Further useful information with examples can be found in this book 
http://www.amazon.de/18800-Teil-Beuth-Kommentar-Erlauterungen/dp/3433014043 
  
If you look especially for the calibration of  alpha-cr I recommend the thesis of Christian 
Müller, RWTH Aachen, see reference [84] in my thesis. Unfortunately it has been only 
available as printed copy as far as I know. 
  
To get a broader perspective I recommend to look also into the background of shell buckling. 
There are some interesting publications  by Thomas Winterstetter, Universität Essen, which 
address also topics of the reduced stress method for plate buckling. 
  
Hope this helps. 
BR Benjamin  
  
Dr.-Ing. Benjamin Braun 
---------------------------------------------- 
office  +49 30 - 6392 8920 
mobile  +49 1573 - 9479755 
fax  +49 30 - 6392 95 8920 
braun@spacestructures.de 
  

http://www.amazon.de/18800-Teil-Beuth-Kommentar-Erlauterungen/dp/3433014043
tel:%2B49%2030%20-%206392%208920
tel:%2B49%201573%20-%209479755
tel:%2B49%2030%20-%206392%2095%208920
mailto:braun@spacestructures.de
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The report focuses on design methods of thin steel plates given on Euro code-3-1-5. In 

Norway Reduced stress method is hardly used method, even it is not a commonly lectured 

topic at NTNU. 
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1. Introduction 

Structures composed of thin plates members are widely used in steel constructions. It 

becomes increasingly a common practice to use thin plates in construction of bridges, ships 

and other marine structure. Higher aesthetic value, economic reasons and the availability of 

advanced productions techniques make the use of thin plates ideal. But thin walled steel 

plates are very susceptible to buckling. 

Unlike columns a compressed plate can carry loading after it has buckled.  Since the buckled 

part usually loses its stiffness, stresses will concentrate along the supported edges leading to 

a nonlinear stress distribution pattern. 

 It is inconvenient to deal with the nonlinear stress distribution in a practical design situation. 

Actual stress condition is usually idealized to an equivalent uniformly distributed stress 

situation which makes the design process easier. NS-EN 1993-1-5 provides two alternative 

methods of treating slender plated structure which are; The Effective width method and the 

Reduced stress method. Both alternatives help simplify the actual nonlinear stress situation 

to an equivalent uniformly distributed stress condition.  

Effective width method involves reduction of cross section area of plated structures 

subjected to buckling.  Reduced stress method also simplifies the actual stress distribution to 

an idealized form, but instead of reducing area, it limits the stress level. In other words, the 

nonlinearly distributed stress is replaced by a uniform average stress level. 

The common design method used in Norway is the Effective width method. The Reduced 

stress method is hardly used as a design tool. 

The thesis will focus on comparing the two methods to shed a light on differences, 

advantages and disadvantages of the two methods. 

 The original aim of the study was to mainly concentrate on Reduced stress method, 

especially on its background information, development of its design criteria …etc. But 

unfortunately it was not possible to find a relevant literature written in English or 

Norwegian. Most of the literature related to this topic was written in German or other 
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languages. Therefore the aim of the thesis is modified to comparison of the two alternative 

methods based on the design criteria given in NS-EN 1993-1-5. 

To study the difference between the two methods both stiffened and unstiffened 

rectangular plates are used. Both uniaxial loading and biaxial loading are applied to 

unstiffened plates; whereas only uniaxial loading is applied to the stiffened plates. 

Critical buckling stress and design strength of plates with selected dimension are manually 

calculated based on the two methods. All plates which are hand calculated are also analyzed 

using the multipurpose soft ware, Abaqus.  
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2. Literature review 

2.1. Braun (2010) 

Braun (2010) studied stability of plates under combined loading. He especially focused on 

buckling of steel plates under biaxial compression and I-girder webs with transverse patch 

loading combined with shear stress.  

Biaxially loaded plates are analyzed based on the Reduced stress method given by NS-EN 

1993-1-5.         A large discrepancy was observed between results of Reduced stress method 

and that of proven rules of DIN 1889-3 as shown on Figure 2-1. Furthermore NS-EN 1993-1-5 

does not provide any interaction formula when combined transverse patch loading and 

shear stress are acting on I-girder webs. 

 

Figure 2-1 Comparison of Reduced stress method and DIN 18800-3, Braun (2010) 
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The main objective of the study was to improve these limitations of the current rules of the 

NS-EN 1993-1-5 and provide a more suited interaction equation. 

Previous experimental works on biaxially loaded plates were restudied by using nonlinear 

finite element analysis. The main parameters focused during the finite element analysis 

were: 

 Slenderness , 
b

ratio 30, 45, 65 and 100
t

  

 Panel aspects ratio α =1 and 3 

  Imperfection shape and amplitude 

 Edge boundary conditions, both in-plane and rotational  

Simulation results were compared with results of the Reduced stress method and the 

following interaction equation is proposed to describe the stability behavior of biaxially 

loaded plates. 

2 2
σ σ σ σx,Ed z,Ed x,Ed z,Ed

ρ ρ 1x z
σ σ σ σx,Rd z,Rd x,Rd z,Rd

     
        

          

  

The study of I-girder web under combined shear and patch loading is not relevant for this 

thesis and will not be discussed further. 

 

2.2. Master thesis: Sandstad, K (2004) 

Kathrin Sandstad (2004) restudied a stiffened plate which was previously studied by B. 

Johansson and R. Maquoi (2002).  In separate articles both Johansson and Maquoi (2002) 

presented capacity of longitudinally stiffened plates. Their results have shown that the 

strength curve dropped down and then raised up as the length of the plate panel was 

increased as shown on Figure 2-2. 
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Figure 2-2  Normalized resistance of plate with single stiffener, Sandstad(2004) 

 

Sandstad argued that it is a strange that shorter plates have lower capacity than longer 

plates, when all other factors are kept constant. She studied a longitudinally stiffened plate 

with a single stiffener.  

 

Figure 2-3 Plate geometry studied, Sandstad (2004) 

She analyzed a single stiffened plate using Abaqus soft ware. Width and thickness were kept 

constant but length was varied from 1 m to 6 m. The plate was modeled with shell elements 

while the stiffener was modeled using two nodded beam elements.  

Imperfection was introduced to the nonlinear analysis using mode shapes from buckling 

analysis. 

Results of Sandstad (2004) didn't showed, the typical strength drop which was previously 

reported by Maquoi (2002) and B. Johansson as the length of the plate was increased. 
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Figure 2-4 Comparison of strength analysis, Sandstad (2006) 

 

2.3. Master thesis: Kleppe (2006) 

Kleppe (2006) studied buckling and strength of steel plates using the rules of Eurocode 3-1-5, 

Eurocode -9-1-1 and the multipurpose finite element analysis soft ware, Abaqus. 

Both unstiffened and stiffened plates were considered and studied. Both width and length of 

the plates were let to vary. This was done to see the effect of plate-like and column-like 

buckling. 

Numerical analysis was performed by modeling the plates with shell elements, where as 

stiffeners were modeled using two nodded beam elements. Both linear buckling analysis and 

numerical strength analysis were performed. 

A number of plate dimensions both unstiffened and stiffened were analyzed manually and 

numerically and results of both methods were compared. 

For unstiffened plates, NS-EN-1993-1-5 states that a column-like buckling should be 

considered if the aspects ratio,  α a/b 1  , but Kleppe (2006) has showed that 

consideration of column-like buckling is only necessary  when  α a/b 0,644  . 

Moreover it was observed that strength results obtained by interpolating between column 

and plate-like buckling didn't match with results of the numerical analysis. 
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3. Elastic buckling of plates 

The need to optimize materials and reduce self weight has led to an increased use of thin 

steel plates. Thin plates are commonly used   in bridges, offshore, ship structures and 

aerospace structures. But the downside is, thin plates are very susceptible to buckling when 

loaded in compression. Buckling is a stability problem which causes a sudden out of plane 

deformation of the structure.  

Unlike columns plates can carry loading beyond the buckling point due to redistribution of 

compressive stress. For a uniaxially loaded rectangular plate, it is the central longitudinal 

strip that buckles first. Since the buckled central strip has lost its stiffness, stresses will be 

redistributed along the supported edges. The plate will continue to carry the loading until 

the supported edges reach yielding stress. 

The general critical buckling stress is expressed as: 

22π E t
σ kcr σ 2 b12(1 υ )

 
   

 
   (3.1) 

Where: 

kσ  = buckling coefficient 

t    = thickness 

b   = width of the plate 

υ  = Poisson’s ratio 

Analytical derivation of the above equation may involve a very complex expression which 

could not be easily solved. But for regular geometries, a sufficiently accurate critical buckling 

stress could be determined based on differential equation of plate buckling.  
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3.1. Differential equation of plate buckling 

Differential equation of plate buckling is derived based on the following assumptions: 

 The plate is considered to be homogeneous, isotropic and linear elastic material (i.e. 

Hook’s law is applicable). 

 The plate has a perfect geometry 

 Small deformations 

 Thin plate : the thickness of the plate is very small compared to its width and length 

 The plate has a constant thickness 

Consider membrane forces, N ,N andNx y xy expressed as force per unit length are applied to 

an isolated infinitesimal plate element with dimensions,d and dx y as showing on the Figure 

3-1 below. The plate element is given an infinitesimal deformation, w, in the vertical 

direction and equilibrium of forces is established using the deformed configuration. 

 

Figure 3-1 Membrane forces on deformed plate element dx.dy (Larsen, 2010) 

 

All membrane forces shown on Figure 3-1 will attain a vertical component in Z-direction, due 

to rotation of forces relative to XY-plane as the plate deforms. Refer to Figure 3-2 and Figure 

3-3 taken from Larsen ( 2010). 
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Figure 3-2 Nx  and Ny  on a deformed plate element (Larsen, 2010) 

 

Figure 3-3  In-plane shear forces on a deformed plate element, (Larsen, 2010) 

 

Now let’s calculate the equilibrium conditions: 

1) Equilibrium in the X- direction               
NN yxx 0

x y


 

 
 (3.2) 

 

2)  Equilibrium in Y-direction                      
N Ny xy

0
y x

 
 

 
 (3.3) 

 

3) Equilibrium in Z-direction:  different forces contribute to equilibrium in the Z-direction: 

Vertical component ofNx : 

 

2N w w wxN d dxdy dx N dx y x y2x x xx

       
             

     If higher order term is omitted, 

the expression is simplified as:     

2 Nw wxN d dx x y2 x xx

  
 
   
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Vertical component of  N :y     

2N w w wy
N d d d d N dy x y x y y x2y y yy

      
            

     by omitting the higher order term, 

the expression is simplified as: 

2 Nw wy
N d dy y x2 y yy

  
  
   

  

Vertical component ofNxy :  

If the higher order term is neglected, the contribution of shear forces to the vertical 

equilibrium will be:   

2 N Nw w wxy xy
2N d dxy x y

x y x y y x

    
   
      
 

 

The sum of all vertical components of N , N andNx y xy is considered to be equal to a 

uniformly distributed equivalent force, q (x,y)ekv acting in the Z-direction. 

2 Nw wxN d dx x y2 x xx

  
 
   

+

2 Nw wy
N d dy y x2 y yy

  
 
   

+

2 N Nw w wxy xy
2N d dxy x y

x y x y y x

    
  
      
 

= q (x,y)d dekv x y   

By rearranging we get:

2 2 2 N N NNw w w w wxy y xyxN N 2N d d d d d dx y xy x y x y x y2 2 x y x y x y x xx y

           
         
              
 =q (x,y)d dekv x y  

From equations (3.2)and (3.3) above: 
NN yxx 0

x y


 

 
 and 

N Ny xy
0

y x

 
 

 
 

Then we get:  

2 2 2w w w
N N 2N q (x,y)x y xy ekv2 2 x yx y

   
   
    

 (3.4) 
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The uniformly distributed equilibrium forceq (x,y)ekv  can be determined by performing 

bending analysis and deriving the differential equation for plate bending. 

Consider a uniformly distributed force; q(x, y) is applied to a rectangular plate as shown on 

Figure 3-4 below. 

 

 

Figure 3-4  Stresses on rectangular plate loaded in bending, (Larsen, 2010) 

 

Differential equation of plates in bending is given on eq. (3.5) shown below. For detailed 

derivation of the equation refer to Larsen,(2010). 

4 4 4w w w q42
4 2 2 4 Dx x y y

  
   

   
 (3.5) 

 

Where: 
3Et

D
212(1 υ )




  

By inserting equation (3.4) into equation (3.5) we get:

2 2 2w w w
N N 2Nx y xy2 24 4 4 x yx yw w w 42

4 2 2 4 Dx x y y

   
  
          

   

   

Hence, the differential equation of plate buckling will be: (3.6) 
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2 2 21 w w w4 N N 2Nw x y xy2 2D x yx y

   
    
    

 

3.2. Critical buckling load of a uniaxially loaded rectangular plate 

Critical buckling force of longitudinally loaded plate shown on Figure 3-5 is determined by 

using the differential equation (3.6). 

 

Figure 3-5  Simply supported plate with uniaxial loading (Larsen, 2010) 

 

The differential equation for plate buckling:   

2 2 21 w w w4 N N 2Nw x y xy2 2D x yx y

   
    
    

 , butN andN 0y xy  ,  

 

21 w4 N 0w x 2D x

 
    
  

 

Since the plate is simply supported:  w w, 0xx   at x=0 & x=a (these are boundary 

conditions which should be satisfied). 

According Larsen (2010), the following function will satisfy the boundary condition for the 

above plate. 

mπx nπy
w(x,y) w sin sinmn

a b
  (3.7) 

 

Inserting equation (3.7) into the differential equation, we get: 

22 2 Nm n mπ mπx nπy4 xπ w sin sin 0mn2 2 D a a ba b

              
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Since w 0nm  , for non-trivial solution, the expression in the parenthesis should be equal to 

zero. 

222 2 2 2Nm n mπ π D b n a4 xπ 0 N N mx cr2 2 2D a a m ba b b

3Et
where D

212(1 υ )

                          




  

Substituting for flexural rigidity, D and dividing by thickness of the plate, t: 

2 22 2b n a π E t
σ mcr 2a m b b12(1 υ )

   
        

 (3.8) 
 

22b n a
k mσ

a m b

 
  
 
 

 

 
(3.9) 
 

 

Where:  

n = no. of half sine-waves in the transverse direction 

m = no. of half sine-waves in the longitudinal direction 

b = width of the plate 

a= length 

t=thickness 

22π E t
σe 2 b12(1 υ )

 
  

 
 (3.10) 

 

σ k σcr σ e    
 
(3.11) 
 

 

The Euler stress,σe  depends only on material properties and is always constant for any given 

plate, but the buckling coefficient,kσ  depends on the loading situation, boundary conditions 

and plate geometry. 
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As stated on Larsen, (2010) the minimum critical buckling stress is only of interest for 

stability analysis. Critical buckling stress of a plate is minimum, when it buckles in a single 

half sine-wave in the transverse direction (i.e.  When n =1 in equation (3.9) above). 

Number of half sine-wave buckles in the longitudinal direction, m is equal to aspects ratio,α

provided thatα is an integer number.  

The relationship between stress coefficient,kσ  and aspect ratio,α for longitudinally loaded, 

simply supported regular plate is shown on Figure 3-6 . 

 

Figure 3-6  Stress coefficient, kσ  for simply supported plate with longitudinal loading 

(Larsen,2010) 

 

In case of practical design,kσ  can be evaluated as: 

a
k 4 for α 1σ

b
     

21 a
k α for α 1σ

σ b

 
    
 
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3.3. Critical buckling load of biaxially loaded square plate 

Analytical calculation of critical force for biaxial loading condition is only possible for square 

plates. Biaxially loaded Rectangular plates could only be analyzed numerically. 

Critical buckling force for simply supported square plate 

shown could be calculated based on equation (3.6) given 

previously. 

Her we assume N Nx Y  [N/mm] 

Equal width and length = a square plate. 

Equation (3.6) given as:    

2 2 21 w w w4 N N 2Nw x y xy2 2D x yx y

   
    
    

     but 

N 0 and N N Nxy x y    

2 21 w w4 Nw 2 2D x y

  
   
   

  ,     
4 4 4w w w4 2w 4 2 2 4x x y y

  
   

   
  

4 4 4 2 2w w w 1 w w
2 N 0

4 2 2 4 2 2Dx x y y x y

       
        
           

 (3.12) 
 

 

As it was done for uniaxially loaded plates, we need a displacement function which could at 

least satisfy the boundary conditions. 

The displacement function which satisfies the differential equation (3.12) and the required 

boundary conditions could be:  

mπx nπy
w(x,y) w sin sinnm

b b
m 1n 1



 

   (3.13) 
 

Where: m and n are number of half sine-wave buckles in the longitudinal and transverse 

direction respectively.  
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Differentiating equation (3.13) and inserting into the equation (3.12), we get: 

 
4 4 2 2 4 4 4 2 2

2 2
mn4 4 4 3 2

m 1n 1

m π m n π n π 12(1 υ )Nπ mπx nπy
2 m n w sin sin 0

b bb b b Et b 

 
     

  
  (3.14) 

 

w 0nm   For nontrivial solution, the expression in the brackets should be equal to 

zero. 

 
4 4 2 2 4 4 4 2 2m π m n π n π 12(1 υ )Nπ 2 22 m n 0
4 4 4 3 2b b b Et b


       

3 2 4 4 2 2 4 4 4Et b m π m n π n π
N 2cr 2 2 2 4 4 412(1 υ )π(m n ) b b b

 
    
    

  

According to Jones, (2006) critical force,Ncr is minimum whenm n 1  , i.e. single half sine-

wave buckle for both directions. Then the critical buckling force for the square plate will be: 

23Et π
Ncr 2 b6(1 υ )

 
  

 
 (3.15) 

 

 

 

3.4. Cross sectional classes 

NS-EN-1993-1-5 classifies plate cross sections depending on risk of buckling when loaded in 

compression. Slender cross sections may buckle long before the loading reach yielding 

stress, while others can carry compressive stress until plastic failure occurs. Based on the 

slenderness ratio, plate cross sections are classified in to the following four classes: 

 Class 1: are usually compact cross sections with low value of slenderness ratio. Such 

cross sections can form plastic hinges and can carry the loading until plastic failure 

occurs. 
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 Class 2: this cross section is relatively compact and able to carry the loading into 

plastic zone. But it's not able to form plastic hinges with enough rotational capacity. 

 Class 3: the stress in outer most fiber of the steel member can reach yield stress, but 

the cross section has a reduced capacity of plastification due to risk of buckling. 

 Class 4: cross sections with high level of slenderness belong to this class. Such cross 

section buckles long before compressive stresses reach yielding value. 

NS-EN-1993-1-5, table 5.2 helps determine cross sectional class of plated structures based 

on slenderness ratio, loading situation and support condition. If a cross-section is made up of 

multiple plates, like box profiles each and every individual member should be evaluated to 

determine its cross sectional class. Then the cross-section is classified according to least 

favorable class of its compression members as it is stated on NS-EN 1993-1-1: 5.5.2(6). 

For cross sectional class 1-3, reduction of capacity to resist pure axial compression is done 

due to risk of global buckling, where as for class-4 load carrying capacity is limited due to risk 

of both local and global buckling. 

 

3.5. Behavior of stiffened plates 

Slender plates are usually stiffened to increase buckling strength. When compressive load 

applied to a stiffened plate reaches a critical level, the stiffened plate will buckle locally or 

globally.  

 Local buckling:  during loading the stiffeners will stay straight and the plate panels 

between stiffeners will buckle. This occurs usually when the stiffeners are much 

stronger than the plate.  If the web of the stiffener is very thin and high, the stiffener 

itself may buckle with the plate.  

 Global buckling mode: the stiffener buckles together with plating. This happens when 

the stiffeners have small bending stiffness. 

Increasing the rigidity of stiffeners will generally increase the stiffness of the whole stiffened 

plate until a certain limit is reached. After that limit, rigidity of stiffeners will not have any 

stabilizing effect on the plate. This situation is best described based  
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Figure  3-7, taken from Dubas, (1986). 

As shown  

Figure  3-7(b), buckling coefficient,kσ  of the plate increases until the rigidity of the stiffener 

reaches a certain limit, *γ . Increasing rigidity of stiffener over that limit will not necessarily 

increase buckling strength of the plate, since the plate become susceptible to local buckling. 

At lower level of stiffener rigidity, the plate and stiffener buckle together (i.e. global buckling 

happens) 

 

 

 

 

 

 

 

(a)                                             (b) 

 

(c) buckling mode-a 

Global buckling 

 

 

(d) buckling mode-b 

(local plate buckling) 

 

 

Figure  3-7 Effect of increasing rigidity of stiffener on plate buckling mode    
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4. Resistance of plates against pure compression 

A thin slender plate structure usually buckles before the compressive stresses reach its 

yielding stress. But the plate can carry loads long after it has buckled. Buckled plates will 

attain nonlinear form of stress distribution, since stresses concentrate along edges which are 

forced to remain straight due to the boundary condition. 

 

Figure 4-1 Pattern of real stress distribution for uniaxially loaded plate 

 

It is unpractical to deal with this nonlinear distribution of compressive stress when designing 

plated structures and design codes usually apply simplified design methods. NS-EN 1993-1-5 

provides two alternative verification methods when designing plated structures. 

 Effective width method (also called effective cross section method) 

 Reduced stress method 

 

4.1. Effective width method  

As it is described above, real distribution of stresses of a buckled plate is nonlinear. For 

practical design, it is not easy to deal with such stress pattern. Therefore the real stress 

pattern is replaced with two constant stress blocks which are equivalent to the real stress 

situation. These two constant blocks are distributed over a reduced width of the plate 

denoted as effective width,beff  as shown on Figure 4-2. 
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Figure 4-2  Real and simplified stress distribution pattern 

 

The Effective width method is based on the hypothesis of Karman. Karman has proposed to 

replace the real plate, with a fictitious model plate having same boundary conditions as the 

real plate but with a reduced width,beff . According to Karman, effective width for simply 

supported uniaxially loaded rectangular plate is calculated as shown on eq. (4.1) below. 

cr
eff eff

y p

σ 1
b b b b

f λ

   
      

  
  

       where  b = width of the real plate 

 

(4.1) 
 

Karman assumed that the strength of the plate is reached when the stress level of the 

fictitious model plate reach yield stress. 

The assumption of Karman is very close to the simplifications used in the design code, but its 

main weakness is, it was totally based on mathematical formulations and effect of 

imperfection was not considered. Karman's assumption was later modified to include the 

effect of imperfection.  

The Effective width method given in NS-EN 1993-1-5 is only applicable for plates which 

satisfy the following geometrical requirements: 

 The plate geometry should be rectangular with parallel flanges. 

 Stiffener should be applied either in the longitudinal direction or transverse 

direction, but not diagonally. 

 Thickness of the cross section should be uniform. 

 Flange induced buckling should not occur. 
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4.1.1. Overview of design procedure: Effective width method 

In the design process, calculation of cross sectional class should be done first, to determine 

whether the plate is susceptible to local buckling or not. Only plates belonging to cross 

sectional class 4 are prone to local buckling. 

Stiffened and unstiffened plates are treated in slightly different ways when designing 

according the Effective width method given on NS-EN 1993-1-5. 

 

A. Design procedure for unstiffened plates 

The design procedure for unstiffened plates is summarized on the following table. 

 

Table 4-1 Design procedure for unstiffened plate in compression 

Step 
no. 

Description 
 

Equations used 
 

Reference 

1 

Determination of cross 
sectional class: if the 
structure is made up of 
multiple plates   each and 
every member plate should 
be considered 

Table 5.2 NS-EN 1993-1-1 

2 Aspects ratio, α   
a

b
  

Chapter 8.2,  
Larsen, (2010) 

3 
Determine buckling 

coefficient, σk   

 
Fig.8. 9 
 

Chapter 8.2, 
 Larsen, (2010) 

4 Plate slenderness, pλ   p
σ

b

tλ
28,4.ε k

 
 

  
  
 

  
 
NS-EN 1993-1-5:eq 
(4.3) 

5 
Critical plate like buckling,

cr,pσ   

 

cr,p σ Eσ k σ    

 

Chapter 8.2,  
Larsen, (2010) 
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6 
Determination of reduction 
factor,ρ   

p

p
2
p

p

For internal element

if λ 0,673

λ 0,055(3 ψ)
ρ

λ

ρ 1 if λ 1




 


  




  

  

 

p

p
2
p

p

For outstand element

if λ 0,748

λ 0,188
ρ

λ

ρ 1 if λ 0,748




 
 


  

  

 

NS-EN 1993-1-5:eq 
(4.2) and eq.(4.3) 
 
 

7 

Now calculate effective area,

c,effA   

 
 

c,eff cA ρ.A   NS-EN 1993-1-5:eq 
(4.1) 

8 Design strength, RdN  will be:  
y

R c,eff
m1

f
N A

γ
   



NS-EN 1993-1-1:eq 
(6.11) 

 
*For wide plate with aspects ratio,α 1   column like buckling should be checked  
 

9 
First calculate critical column 

buckling, cr,cσ   

2 2

cr,c 2 2

π Et
σ

12(1 υ )a



  

NS-EN 1993-1-5:eq 
(4.8) 

 
10 

Determine relative column 

slenderness, cλ   
   

y
c

cr,c

f
λ

σ
  

NS-EN 1993-1-5:eq 
(4.10) 

 
11 
 

Determination of reduction 
factor due to column like 

buckling, cχ   

    c
2 2

c

1
χ

φ φ λ


 

 NS-EN 1993-1-1:eq 
(6.49) 
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Interpolation between 
column-like and plate-like 
buckling 

c c cρ (ρ χ )ξ(2 ξ) χ      
NS-EN 1993-1-5: eq 
(4.13) 
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Final design strength 
y

Rd c c
m1

f
N ρ A

γ

 
   

 
  

NS-EN 1993-1-1:eq 
(6.11) 

 

 



23 
 

B. Design procedure for stiffened plates 

Plates with only one or two longitudinal stiffeners are treated as column on elastic 

foundation when calculating the critical buckling stress of the plate. But for plates with more 

than three longitudinal stiffeners, an equivalent orthotropic plate is considered by smearing 

the stiffeners smoothly over the plate. 

Generally design procedure of stiffened plates is similar to that of unstiffened plates, but 

reduction of area is done in a slightly different way.  

The total plate area is subdivided into two parts which are: 

 Area close to the supported edges which is 100 % effective and no reduction is 

needed. 

 Remaining area denoted as cA , which is susceptible for both local and global 

buckling. The area cA  is shown on Figure 4-3 taken from Eurocode-3-1-5. 

The total effective area of the compressed stiffened plate will be: 

c,eff C c,eff,loc edge,effA ρ A b t   

 

(4.2) 
 

Local effective area, c,eff,locA shown on Figure 4-3 is calculated based on local effective 

width of sub panels, effb .  

For a rectangular plate with a uniform compression, effective width of a sub panel is 

calculated as:  

eff,i loc,i ib ρ .b   

Where:  

i

loc,i

b width of sub panel "i"

ρ local reduction factor for subpanel"i"




  

The local reduction, loc,iρ factor is calculated exactly the same way as reduction factor,ρ  for 

unstiffened plates given on Table 4-1 above. 
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After the effective widths of all subpanels are determined, the effective local area is 

calculated as: 

c,eff.loc eff,i iloc,i
A b t t ρ b    

(4.3) 

 

 

Figure 4-3  Stiffened plate in compression 

 

The next step of the procedure will be calculation of relative slenderness of stiffened plate, 

pλ : 

yc,eff,loc
p

c cr,p

fA
λ

A σ
  (4.4) 

Now critical plate like buckling stress cr,pσ  is needed to be determined. For plates with only 

one or two longitudinal stiffeners critical buckling stress, cr,pσ  is done by considering the 

plate as a column on an elastic foundation. All relevant equations are given on Annex A.2 of 

NS-EN 1993-1-5. Plates with more than three longitudinal stiffeners are treated as 

equivalent orthotropic plates. Plate-like buckling stress, cr,pσ is determined using the 

equations given on Annex A.1 of NS-EN 1993-1-5. 

The area is once more reduced due to risk of global buckling, and the global reduction factor 

is calculated as follow:  
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p
p 2

p

λ 0,055(3 ψ)
ρ

λ

 
    for plate with uniform compression (4.5) 

 

Column like buckling should be checked based on the equations given on section 4.5.3 of NS-

EN 1993-1-5.  

As it was done for unstiffened plate, plate-like and column-like buckling of stiffened plates 

should be interpolated using eq.(4.13) of the Eurocode. Then the final strength of the 

stiffened plate is calculated as: 

  y
Rd c c,eff.loc edge,eff

m1

f
N ρ .A b t

γ
    (4.6) 

 

 

 

4.2. Reduced stress method 

 NS-EN-1993-1-5 provides the Reduced stress method as an alternative method to determine 

the stress limits for both stiffened and unstiffened plates. As opposed to the Effective width 

method, the Reduced stress method assumes a linear stress distribution until first plate 

element buckles. If the structure is made up of multiple plate parts, the plate part which 

buckles first will govern the resistance of the entire cross section. Reduced stress method 

does not assume post critical strength of the entire cross section, which means the method 

does not consider load shedding from highly stressed to less stressed plate elements. 

The difference between the Reduced stress method and the Effective width method 

becomes very clear, if the cross section is made up of multiple plate parts. For a cross section 

with only single plate element, the Reduced stress method gives equal results to that of 

Effective width method. 

According section (10) of NS-EN 1993-1-5, for unstiffened and stiffened plate panels 

subjected to combined stresses x,Ed z,Edσ , σ  and Edτ , class 3 section properties may be 

assumed, when equation (4.7)  is fulfilled. 
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ult,k

m1

ρ.α
1

γ
  

 

(4.7) 

Where:  

ult,kα =  the minimum load amplifier for the design loads to reach the characteristic 

  value of resistance of the most critical point of the plate. 

ρ  =               the reduction factor depending on the plate slenderness, pλ to take account of    

              plate buckling. 

The reduction factor,ρ could be either determined by taking the minimum value of x zρ ,ρ  

and wχ  according clause 10(5a) of the Eurocode, or a value interpolated between them. 

Instead of using a single buckling curve as equation (4.7), strength of the plate could be also 

verified by using clause 10(5a) of NS-EN-1993-1-5. 

2 2 2
σ σ σ σ τx,Ed z,Ed x,Ed z,Ed Ed. 3 1

ρ .f γ ρ .f γ ρ .f γ ρ .f γ χ .f γx y m1 z y m1 x y m1 z y m1 w y m1

         
            
         
         

 (4.8) 

Reduction factors x wρ and χ are determined based on equations on clauses 4.5.4(1) and 

5.3(1). 

 It is important to mention the existence of disagreement between NS-EN 1993-1-5 and Beg 

et al. (2010) on how to calculate, zρ . According to the Eurocode, zρ could be determined by 

using the clause 4.5.4(1), but Beg et al.(2010) states that determination of zρ in that way 

may lead to a wrong results. Beg et al. (2010) instead recommend clause B.1 (3) of NS-EN 

1993-1-5. 

Table 4-2  Reduction factors and corresponding clause in the Euro code to be used  

Type of loading Reduction factor 
Recommended clause in 

Eurocode-3-1-5 

Longitudinal stress xρ  Clause 4.5.4(1) 

Transverse stress zρ  Clause B.1(3) 

Shear stress wχ  Clause 5.3(1) 
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To calculate the reduction factors given in the Table 4-2, plate slenderness, pλ  is needed, 

and it is calculated as: 

ult,k
p

cr

α
λ

α
  

 

(4.9) 
 

Where:  ult,kα  is defined previously 

               crα      is the min. load amplifier for the design loads to reach the critical load of the 

   plate under the complete stress field. 

Bear in mind that in the Effective width method the plate slenderness, λp and the column 

slenderness, cλ  are calculated separately from different equations in the Euro code. But in 

the case of Reduced stress method, the slenderness value stated in equation (4.9) is used for 

both plate-like and column-like buckling.  

For simple and regular cross sections the critical load amplifiers, crα and ult,kα can be 

calculated manually, but in most practical situations they are determined by finite element 

method, FEM. This is one of the advantages of the Reduced stress method, since for a 

complex structure crα and ult,kα  can be easily extracted from a computer soft ware.  

If Misses yield criteria is applied, the load amplifier ult,kα  can be calculated as shown on 

below.  

y
ult,k

eq,Ed

f
α

σ
  

 

(4.10) 

Where: 
2 2 2

eq,ED x,Ed z,Ed x,Ed z,Ed Edσ σ σ σ .σ 3.τ     

                 yf   = yield stress 

Calculation of crα manually for multiple loading conditions is challenging, but it could be 

easily determined by using soft ware like EBplate or Abaqus. 
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cr

x z x z x z
2 2 2

cr,x cr,z cr,x cr,z crx cr,z cr,τ

1
α

1 ψ 1 ψ 1 ψ 1 ψ ψ ψ 1
,

4.α 4.α 4.α α 2.α 2.α α


    

       
 

 

 

 
 
(4.11) 
 

Where: x zψ ,ψ , are stress ratios along longitudinal and transverse edges. Such ratios could 

be determined based on table 4.1 & 4.2 NS-EN 1993-1-5. 

cr,x cr,z
cr,x cr,z

x,Ed z,Ed

cr
cr,τ

Ed

σ σ
α , α

σ σ

τ
α

τ

 



 

 

 

4.2.1. Step by step design procedure: Reduced stress method 

When design loads are verified the following procedure could be followed to verify the 

resistance of the plate. 

A. Calculate the crα :  

crα could be determined by hand calculation based on the eq. (4.11). Critical elastic 

buckling stresses, cr,x cr,zσ ,σ and crτ are determined exactly the same way as it is 

done for Effective width method.  Suitable software like EBplate could be also used 

to determine crα . 

B. Determination of ult,kα : 

If the design loads are known, ult,kα  can be easily determined using the eq. (4.10) above. 

C. Determine pλ  using the eq.(4.9)  

D. Determination of the reduction factor:  

The reduction factor is determined using Table 4-2 above. It is also possible to used the 

generalized equation given on Annex B.1 (3) of NS-EN 1993-1-5: 
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2
p p p

1
ρ

φ φ λ


 

 

 

(4.12) 

Where: 

ρ   = generalized reduction factor 

   p p p p0 pφ 0,5 1 α λ λ λ      

 
ult,k

p
cr

α
λ

α
   

The Eurocode do not clearly state that clause B.1 (3) could be used for regular plates, but it is 

used in the COMBRI design manual (2008) as an alternative method. 

E. Determination of loading resistance: 

Resistance of the plate can be verified by using either eq. (4.7) or eq. (4.8). 
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Table 4-3  Effective width method versus Reduced stress method 

No. 

 

Effective width method 

 

Reduced stress method 

1 

 

Is mainly described in section 4 of     

NS-EN-1993-1-5, but also includes 

section 5-7 for a complete design 

process. 

 

Is described on section 10 of NS-EN-1993-

1-5 

 

2 

Applicable only for steel structures 

with regular geometry. It is 

preferably used for I- and box-girder 

cross sections. 

 

Is applicable for all form of geometries , 

such as plates with non orthogonal 

stiffeners, members with non parallel 

flanges, and webs with openings (both 

regular or irregular) 

 

3 

 

The actual nonlinear stress 

distribution is idealized by reducing 

the real width to an effective width 

 

 

The actual nonlinear stress distribution of 

compressed plates is idealized to a 

uniform stress distribution 

4 

 

The cross section is allowed to carry 

loading until all member elements 

reach yielding stress. 

 

Load shedding from highly stressed 

member to less stressed member is not 

considered. 

 

5 

Effect of load combinations must be 

separately verified using 

appropriate load interaction 

equations given in the Euro code. 

 

Interaction between different loading 

conditions is taken care of by using the von 

Misses criterion. Hence the strength of the 

cross section is determined by single 

verification step. 
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5. Simulation program  

Buckling and strength analysis will be carried on both unstiffened and stiffened plates. Hand 

calculations based on Effective width method and Reduced stress method will be done on 

selected plate dimensions. At last a finite element analysis using the multipurpose soft ware, 

Abaqus will be performed on all hand calculated plates.  

All plates are simply supported and no other form of boundary condition is considered. 

Description of plate dimensions and loading conditions will be given on the following tables. 

There is no practical laboratory tests involved in this project, and all plate dimensions and 

loading are theoretically assumed. 

 

5.1. Uniaxially loaded unstiffened plates 

Calculations will be performed using two forms of unstiffened plates:  

1. Unstiffened plates with constant width and varying length 

2. Unstiffened plates with varying width and constant length 

 

Table 5-1  uniaxially loaded, unstiffened plate dimensions: constant width and varying 
length 

No. 
Plate size (width X length) 

[mm] 
Thickness [mm] 

1 1500 X 1500 20 

2 1500 X 2000 20 

3 1500 X 3500 20 

4 1500 X 5000 20 

5 1500 X 6000 20 
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Table 5-2  uniaxially loaded, unstiffened plate dimensions: constant length and varying 
width 

No. 
Plate size (width X length) 

[mm] 
Thickness [mm] 

1 2000 X 5000 30 

2 3000 X 5000 30 

3 4000 X 5000 30 

4 5000 X 5000 30 

5 6000 X 5000 30 

 

 

5.2. Biaxially loaded unstiffened plates 

Both hand calculation and finite element analysis will be performed on a biaxially loaded 

square and rectangular plate. Four different biaxial load combinations will be examined. 

Longitudinal load is considered to be the dominant load and will be kept constant. 

Description of plate dimensions and load combinations are given on the following tables. 

 

Table 5-3  Load combinations for biaxially loaded plates 

No. Longitudinal loading [N/mm] Transverse loading[N/mm] 

Combination 1 1000 250 

Combination 2 1000 500 

Combination 3 1000 750 

Combination 4 1000 1000 

 

 Load combinations on Table 5-3 will be applied to a square and rectangular plate. Buckling 

and strength analysis will be carried out using Euro code-3-1-5 rules and finite element 

analysis. 

 

Table 5-4  biaxially loaded plate dimensions 

Plate type Width [mm] Length [mm] Thickness [mm] 

Square 2000 2000 20 

Rectangular 2000 4000 20 
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5.3. Stiffened plates 

Buckling and strength analysis will be done based on Reduced stress method, Effective width 

method and finite element analysis. 

Uniformly distributed uniaxial loading will be applied to rectangular plates.  Plates are 

stiffened longitudinally with double sided flat stiffeners.  Plate and stiffener dimensions are 

described below. 

 

Table 5-5  Stiffener dimension 

Type of stiffener Total height [mm] Thickness [mm] 

Flat  and double sided 160 12 

 

 

Figure 5-1  Typical cross section of stiffened plate 

 

Table 5-6  Stiffened plate dimensions with varying width 

No. Plate size (width X length) Thickness No. of stiffeners 

1 1600X7000 10 3 

2 2000X7000 10 4 

3 2400X7000 10 5 

4 2800X7000 10 6 

5 3200X7000 10 7 

6 3600X7000 10 8 
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Table 5-7  Stiffened plates with constant width and number of stiffeners 

No. Plate size (width X length) Thickness No. of stiffeners 

1 2000X2000 10 4 

2 2000X3000 10 4 

3 2000X4000 10 4 

4 2000X5000 10 4 

5 2000X6000 10 4 

6 2000X7000 10 4 

7 2000X8000 10 4 

8 2000X9000 10 4 

9 2000X1000 10 4 

10 2000X12000 10 4 

  

 

 

5.4. Abaqus modeling 

All plates are modeled as three dimensional, deformable, planar shell in Abaqus/Cae.  In the 

property module the section is defined as type: Shell/continuum Shell, homogeneous. 

 

Material property: 

Generally accepted values of Young's modulus, and Poisson's ratio for steel are used.   

Since no laboratory test is carried out, with advisor's consent the yield stress is assumed to 

be
2

N
355

mm
 . Moreover, it is considered a 5 MPa  hardening per1 %  increment of plastic 

strain.  

Summary of material properties: 

E= 210000 MPa and = 0,3 

True stress  [MPa] Plastic strain 

355 0 

380 0,05 
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Relationship between true and engineering stress/strain: 

engineering engineeringσ E ε      and   true engineering engineeringσ σ (1 ε )   

e
pl true

engineeringtrue
σ

ε ln(1 ε )
E

     

Using the above relations a material property curve shown on Figure 5-2 is calculated and 

shown  

 

Figure 5-2  Theoretical material curve used in the material analysis  

 

Element type and Meshing: 

A shell element type, S4R is used for all plate models. For stiffeners a 2-node linear beam 

element, B31 is used. The beam elements have same cross section properties as that of real 

stiffeners. 

Most plates are meshed with approximate global size of 50 mm X 50 mm, but a finer mesh 

will be considered if relevant.  Beam elements are modeled with approximate global size of 

25 mm X 25 mm. 
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Imperfection: 

Imperfection is defined by using buckling mode shapes of the linear analysis. First linear 

buckling analysis is performed on a perfect geometry. Then buckling mode shape with 

lowest critical force is introduced into the nonlinear analysis as an imperfection.  This is 

achieved by the help of *Imperfection command shown below. 

*IMPERFECTION, FILE=results_file, STEP=step, NSET=name 

With advisor's consent, imperfection amplitude is considered to be: 
b

500
 (b = width of the 

plate).  Only lowest buckling mode shape is introduced as an imperfection, since lowest 

buckling mode is assumed to provide the most critical imperfection.  

5.4.1. Modeling uniaxially loaded, unstiffened plates 

In practice simply supported plates could behave in two ways:  

 Loaded edge will deform 

 Loaded edge remains straight 

To simulate this property, boundary conditions are applied into two different ways, denoted 

as "MYK" and "RETT" type boundary conditions. 

*"MYK" = is a Norwegian word meaning "soft" 

*"RETT" = is a Norwegian word meaning "straight" 

Depending on how the simple support is applied, unstiffened plates are categorized in to 

two categories such as: 

A. Plates with "MYK" type boundary conditions 

B. Plates with "RETT" type boundary conditions 

A)   Plates with "MYK" type boundary conditions: 

"MYK" type boundary condition is used to simulate plated structures, where loaded edges 

are expected to deform during loading. The Simple supports are provided at the middle of 

the plate and a uniformly distributed axial load is applied on both ends, see Figure 5-3.  

http://abaqus.civil.uwa.edu.au:2080/v6.9/books/key/key-link.htm#usb-kws-mimperfection
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I) Step:  

For linear buckling analysis step, procedure: Linear perturbation ----> Buckle is used. 

For nonlinear strength analysis, steps procedure: General   -----> Static, Riks is used. 

II) Loading: 

For both linear buckling and nonlinear analysis a shell edge load of 1000 N/mm is applied 

from both ends as shown on Figure 5-3. 

III) Boundary conditions: 

Displacement out of plane (U3) is fixed along all edges.  Translation in the longitudinal 

directions is avoided by fixing two points against movement in the X-directions (U1). To 

avoid rotation of the whole model, a single point is fixed against translation in transverse 

direction (U2).  See Figure 5-3. 

 

 

 

Figure 5-3  "MYK" type: boundary conditions and load application 

 

B)  Plates with "RETT" type boundary condition: 

As shown on Figure 5-5, longitudinal translation is avoided by fixing the edge opposite to the 

loaded end. In addition the loaded edge is modeled to say straight during loading. In other 

words, all nodes along the loaded edge are constrained to have exactly equal displacement.  

In most practical situations loaded edges stay straight during loading, and rules of Eurocode-

3-1-5 are developed by assuming loaded edges stay straight during loading.  
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I)   *Equation constraint: 

All nodes along the loaded end will be assigned to have exactly the same translation in the 

longitudinal direction (i.e. U1). This is achieved by creating two sets of nodes, such as EDGE-

NODES and RP (Reference point). 

RP (Reference point):  is a single node, at the middle of the loaded edge. During linear 

analysis, a concentrated force (CF1) is directly applied at RP, but for nonlinear analysis an 

imposed displacement is applied at RP. 

EDGE-NODES:  are all nodes on the loaded edge, except the RP. 

By using *equation constraint, the two node sets will have exactly equal displacement in the 

longitudinal direction. Therefore loaded edge will stay straight during loading.  *equation 

constraint created between the two node sets, is shown on Figure 5-4 

 

 

Figure 5-4  Equation constraint in Abaqus 

 

II)   STEP: 

For linear buckling analysis step, procedure:  Linear perturbation ----> Buckle is used 

For nonlinear strength analysis, step  procedure:  General   -----> Static, General is used 
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III)    Loading:  

For linear buckling analysis:  Concentrated force (CF1) of magnitude 1000 N is applied 

longitudinally on one end. The force is applied at RP (reference point), see Figure 5-5. 

For nonlinear analysis: Loading is applied as displacement driven. In other words strength it 

is determined by imposing longitudinal displacement at the RP (reference point). Applied 

displacements vary from 5 mm to 15 mm depending on plate dimensions. 

 

Figure 5-5  "RETT" type: boundary conditions and load application 

 

 

IV) Boundary conditions:  

All edges are fixed against out of plane displacement (i.e. U3).  All nodes along the edge 

opposite to the loaded end are fixed against longitudinal translation (U1). To avoid free 

rotation of the whole model in space, two corner nodes are fixed against displacement in 

the transverse direction (U2), see Figure 5-5.  

 

5.4.2. Modeling of biaxially loaded plates 

Uniformly distributed load is applied for both linear buckling and nonlinear analysis. Load is 

only applied to one of the two opposite sides as shown on Figure 5-6. The magnitudes of the 

loads are given on Table 5-3. 

Loaded edges are kept straight by using *equation constraint as discussed above, but in this 

case two *equation constraints are used. 
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 To apply the *equation constraint successfully, node sets should be created and named.  

How node sets are named is explained below, using loaded edges AB and BD on Figure 5-6 as 

an example: 

i. For loaded edge, AB   two sets are created: RP1 (reference point 1) as one set and all 

other nodes on the same edge as another set.  Using *equation constraint, all nodes 

on edge AB, will be assigned to have same displacement along x-direction. 

ii. For loaded edge, BD, two sets are also created. RP2 (reference point 2) as one set 

and all other nodes on edge BD as another set. By using *equation constraint, all 

nodes of the two sets will have exactly equal displacement in transverse direction.  

 

Figure 5-6  Biaxial load application and boundary conditions (in X - & Y-directions) 

 

Linear perturbation /buckle step is used for linear buckling analysis, while STATIC-RIKS step is 

used for nonlinear analysis.   

In case of boundary conditions, all edges are fixed against out of plane displacement (U3). As 

shown on Figure 5-6 above longitudinal edge AC is fixed against transverse direction, while 

the short edge, CD is fixed against longitudinal displacement. 
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5.4.3. Stiffened plates 

Stiffened plates are model in similar way as unstiffened plates with "RETT" type boundary 

condition, but stiffeners are added to the model. Cross section of a stiffened plate is shown 

on Figure 5-1. 

Stiffeners are modeled as Beam elements, and then attached to the plate part by the help of 

*TIE constraint in Abaqus. 

*TIE constraint is in the Interaction module of Abaqus, and helps to fuse two regions 

together. 
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6. Hand calculations 

Hand calculations are performing using the two alternative design methods given in the Euro 

code-3-1-5. Hand calculations of uniaxially loaded unstiffened plates, biaxially loaded plates 

and uniaxially loaded stiffened plates will be presented on separate subtopics. 

 

 

6.1. Uniaxially loaded unstiffened plates 

Critical buckling force and ultimate strength of unstiffened plates are calculated based on 

the two alternative methods given in the NS-EN-1993-1-5 (i.e. Effective width method and 

Reduced stress method).   

Calculation work sheet is shown on the next page. 
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Rectangular plate: 
Schematic drawing of plate with  
Loading 
 

Geometry: 
Material data 

a = length of the plate 

b = width of the plate  
  
 

 
 

 

A: Using effective width method: 

1) Cross-section check 

NS-EN-1993-1-1: table 5.2: 

 Indicate the cross section is class 4 

2) Aspect ratio, α  

This leads to m=3 from fig.8.9, 
(Larsen, 2010) 

 
 

 

OR   kσ   can be calculated as: 

 

3) Slenderness, λ p: 

 

E 2.1 10
5
MPa

a 5000mm
fy 355MPa

b 1500mm
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
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b
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
a

b
3.333

m 3

k m
b

a


1

m

a

b










2

4.045

k.alt min
1











2
2



1

2









2


3



1

3









2


4



1

4









2


5



1

5









2










4.045

p

b

t









28.4  k
1.076
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4)  Reduction facto, ρp 
 Uniform compression 

 

5) Effective length/area: 

 A.c  is total area 

 According NS-EN-1993-1-5, eq.(4.1) 

6) Critical plate like buckling, σcr.p: 

Edσ  = reference buckling stress/Euler buckling 

stress   

N.B: for this specific plate there is no need 
of  
calculating effect of column like buckling 
since          α  > 1. But to make the work-
sheet general, plate-like buckling  and 
column-like buckling are calculated", and 
an interpolation equation will be used. 

 

 

7) Design stress, σ c.Rd.p: 

σ
c.Rd.p

 = indicate the strength of the plate 

             when only "plate-like" effect is 
            considered. 

 γ .m.1  is equated this way, 

since results will be compared 
with results from Abaqus 

 

 

8)  Colum buckling:   Column- like buckling should be considered, if it is relevant   

 
NS-EN-1993-1-5 eq.(4.8) 

 1

p

p 0.055 3 ( )

p
2

p 0.673if

1 otherwise

0.739369

Ac b t 0.045m
2



Ac.eff p Ac 0.033m
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
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
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E
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2

 
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




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
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 75.92 MPa

cr.p E k 307.064MPa

Ncr.p cr.p Ac 13817.9kN

 m1 1
Nc.Rd.p Ac.eff

fy

m1
 11811.4kN

c.Rd.p

Ac.eff

Ac

fy

m1
 262.476MPa

cr.c


2
E t

2


12 1 
2

  a
2



6.833 MPa
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  9) Relative column slenderness,λ c  will be: 

NS-EN-1993-1-5 e.q (4.10) 
 

 NS-EN-1993-1-1 e.q (6.49) 

 

N S-EN-1993-1-5: 4.5.3(5) 

 

 

10) Interpolation between plate-like and column-like buckling: 

 
 

 

 ξ 1   indicate column-like 

buckling 
has no effect to this plate. 

 

c

fy

cr.c
7.208

c 0.21

 0.5 1 c c 0.2  c
2






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 c
1

 
2

c
2


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NRd.søyle c Ac
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m1
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

cr.p

cr.c
1 0

cr.p

cr.c
1 1if

1

cr.p

cr.c
1 1if

0 otherwise


c p c   2 ( ) c 0.739

Rd c
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

 1
NRd c Ac

fy

m1
 11811.4kN
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2: REDUCED STRESS METHOD 

We need to assume a value to the design stress, σ x.Ed, and then perform an iterative 

process until we get the maximum value which makes equation (10.1) of NS-EN-1993-1-5 
true. 

 

A) Calculation of minimum load amplifiers, αult.k and αcr 

 

 

NS-EN-1993-1-5:10(3)  

λ p2= slenderness of the plate- in this method 

it is just to differentiate from the symbol used in the 
previous method 

 

λ p from effective width method is almost equal to λ p2. 

B) Calculation of the reduction factors, ρ  

NS-EN-1993-1-5:10(2)  

ρp =ρ 2   we get equal reduction factors  

NS-EN-1993-1-5:10(2)    

Nc,Rd.2= design axial force based  on Reduced stress 

method. 
 

σ c,Rd.2 = design strength based on Reduced stress 

method 
 

x.Ed c.Rd.p
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x.Ed
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p2
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2
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p2
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ok
2
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m1
 1

Nc.Rd.2. Ac x.Ed 11811.4kN

c.Rd.2 x.Ed 262.476MPa
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6.1.1. Results based on Effective width method  

 

Table 6-1  Critical buckling force, crN and ultimate strength, RdN for plate with thickness 

No. 
Plate size [mm] 
(width x length) crN   [kN] RdN   [kN] 

1 1500 X 1500 4049,1 5672,7 

2 1500 X2000 4394 5870,5 

3 1500 X 3500 4146 5729,5 

4 1500 X 5000 4094.2 5699,3 

5 1500 X 6000 4049.1 5672,7 

 

Plate No.1 (1500X1500) and plate No.2 (1500 X 6000) show equal buckling force and 

ultimate strength. This is because they have equal buckling coefficient, σk and the cross 

sectional area is constant for all plates. Recall that critical buckling force depends on cross 

sectional area and buckling coefficient. 

Similar calculations were also performed by increasing the thickness (t= 30 mm), while 

keeping the length constant. 

 

Table 6-2  Critical buckling force, crN and ultimate strength, RdN for plate with constant 

length, and t=30 mm 

No. 
Plate size [mm] 
(width x length) crN   [kN] RdN   [kN] 

1 2000 X 5000 10593,7 12683,8 

2 3000 X 5000 7062,5 13459,6 

3 4000 X 5000 5384 13951,4 

4 5000 X 5000 4099,7 13864,5 

5 6000 X 5000 3531,2 14235,5 
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6.1.2. Results based on Reduced stress method 

Critical buckling force, crN and ultimate strength, RdN are again calculated for the same plate 

dimensions as above, but now we use Reduced stress method. Results based on Reduced 

stress method become exactly equal to that of Effective width method. 

 

Table 6-3 crN and RdN for plates with t=20, based on Reduced stress method 

No. Plate size [mm] 
 

(width x length) 

crN   [kN] RdN   [kN] 

1 1500 X 1500 4049.1 5672,7 

2 1500 X2000 4394 5870,5 

3 1500 X 3500 4146 5729,5 

4 1500 X 5000 4094,2 5699,3 

5 1500 X 6000 4049,1 5672,7 

 

The two methods gave equal buckling and strength results, since single plate panels are 

used. For a single plate there is no difference between the two methods. 

For Reduced stress method: we simplify the stress distribution to an average and constant 

value:  Rd yN A ρ f     

For Effective stress method: we reduce the area to an effective area 

 Rd yN ρ A f     

Therefore the two method lead to same results    y yA ρ f ρ A f       

 

6.2. Results of biaxially compressed plates 

A square plate (2000X2000) and a rectangular plate (2000X4000) of thickness, t=20 mm 

were loaded biaxially.  Four different loading combinations are applied to each plate as 

shown on Table 5-3. 
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The effective width method is not applicable for plates with biaxial loading, therefore only 

Reduced stress method is applied to calculate the critical buckling stress, crσ and design 

strength, Rdσ . 

All hand calculations are done using MathCAD soft ware. A typical example showing all 

calculation steps is given below. 

Biaxially loaded plate 2000X4000, t=20 mm  

 

Geometry: Material data 

  

  

  

 

Stress: 
σ Ed.x = is determined  by iteration. 

 
 

 

 

Euler stress in the longitudinal 
direction 

 

Euler stress in the transverse direction  

1) Aspect ratio: 

 

m = is the minimum number of half waves. 
Extracted manually from fig.8.9, (Larsen,2010) 
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  2) Critical stresses: 

 

 

3) Minimum load amplifiers according NS-EN-1993-1-5:10(2) & (3) 

  

 
 

 

4) Equation (10.6) of the NS-EN-1993-1-5 gives us: 

 

 

5) The slenderness value will be: 

NS-EN-1993-1-5:10(3)  

6) Reduction factors : 

NS-EN-1993-1-5:4.4(2) 

 
ρ.x = is reduction factor for 

longitudinal loading 
Note: 
 
NS-EN-1993-1-5:10(5a) indicate that,ρy (reduction factor for transverse loading) should be 

 
 determined in a similar way as ρ.x. But Beg et al. (2010) highly recommend eq. (B.1) under    

Annex B. 
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 NS-EN-1993-1-5: B1 (3) and table B1 

Reduction factors due to column like-buckling: 

A: longitudinal direction: 
Due to high aspect ratio, column -like buckling is not relevant for the investigated plates 

B: Transverse direction 
Since a generalized buckling curve is used (i.e.NS-EN-1993-1-5: B1(3)), there is 
no need of calculating the column-like buckling effect specifically. 

 Since the calculation results will be compared with that of Abaqus, γm1 is let to 

be equal to one. This is true for all hand calculations. 

By iteration the maximum loading situation which satisfy equation (10.5) is taken as 
 the design load 

From NS-EN-1993-1-5:eq. (10.5): 

 
OK! 

 

 

Maximum design load which satisfy eq. (10.5) of Eurocode-3-1-5, is assumed to be the strength of 
the plate. 
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Calculated results of biaxially loaded plates with different load combinations are given in the 

following two tables. These results will be later compared with results of numerical analysis. 

 

Table 6-4  Calculated cr,xσ and cr,yσ of  biaxially loaded plate: 2000X2000, t=20 mm 

No. Loading type [N/mm] crα   cr,xσ  [N/mm^2] cr,yσ  [N/mm^2] 

1 
Longitudinal  = 1000      
Transverse     =   250 

0,423 60,700 15,175 

2 
Longitudinal = 1000      
Transverse    =  500 

0,384 50,611 25,306 

3 
Longitudinal = 1000      
Transverse    =  750 

0,383 43,394 32,546 

4 
Longitudinal = 1000      
Transverse    =  1000 

0,4 37,920 37,920 

 

Where: 

crα  = minimum load amplifier for design loads to reach elastic critical buckling 

cr,xσ  = elastic buckling stress - longitudinal direction 

cr,yσ  = elastic buckling stress - transverse direction 

 

Table 6-5 Calculated cr,xσ and cr,yσ for biaxially loaded plate: 2000X4000, t=20 mm 

No. Loading type [N/mm] crα   cr,xσ  [N/mm^2] cr,yσ  [N/mm^2] 

1 
Longitudinal  = 1000      
Transverse     =   250 

0,3637 46,300 11,575 

2 
Longitudinal = 1000      
Transverse    =  500 

0,307 33,248 16,624 

3 
Longitudinal = 1000      
Transverse    =  750 

0,294 25,960 19,470 

4 
Longitudinal = 1000      
Transverse    =  1000 

0,299 21,330 21,330 
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Ultimate strength is also calculated for the same plates and load combinations as those used 

in the buckling analysis. A detailed description of plate dimensions and loading combinations 

are given on Table 5-3 and Table 5-4. 

Table 6-6  Ultimate strength based on Reduced stress method: Biaxially loaded plate-
2000x2000, t=20 mm 

No. Loading type [N/mm] Rd,x   

[N/mm^2] 

Rd,y   

 [N/mm^2] 

1 
Longitudinal  = 1000 
Transverse     =   250 

143,500 35,875 

2 
Longitudinal = 1000     
Transverse    =  500 

131,800 65,900 

3 
Longitudinal = 1000   
Transverse    =  750 

113,300 84,975 

4 
Longitudinal = 1000      
Transverse    =  1000 

94,800 94,800 

 

Where:  

 
Rd,x

Rd,y

σ ultimate strength longitudinal direction

σ ultimate strength transverse direction

 

 
  

 

Table 6-7 Ultimate strength based on Reduced stress method: Biaxially loaded plate-
2000X4000, t=20 mm 

No. Loading type [N/mm] Rd,x  [N/mm^2] Rd,y   [N/mm^2] 

1 
Longitudinal  = 1000      
Transverse     =   250 

127,300 31,825 

2 
Longitudinal = 1000      
Transverse    =  500 

108,300 54,150 

3 
Longitudinal = 1000      
Transverse    =  750 

88,300 66,250 

4 
Longitudinal = 1000      
Transverse    =  1000 

71,340 71,340 
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6.3. Results of stiffened plates 

Longitudinally stiffened plates with flat stiffeners are uniaxially compressed. Critical buckling 

load and ultimate strength of plates are hand calculated based on the two alternative 

methods given in NS-EN-1993-1-5. 

A typical calculation work sheet showing how the calculations are performed is also 

prepared. Since the calculation took many pages, it is preferred to present it as an appendix. 

Refer to appendix D.  

 

 

 

6.3.1. Results of the stiffened plates based on effective width method 

Plates with increasing number of stiffeners (i.e. varying width) and plates with increasing 

length are calculated. Plate and stiffener dimensions are shown on sub topic 5.3.  

Critical buckling stress and ultimate strengths will be treated in a separate sub topics to 

avoid confusion. 

 

6.3.1.1. Calculated buckling stress and buckling force based on Effective width method 

Column- buckling stress/force and plate -like buckling stress/force are presented on Table 

6-8 and Table 6-9 to show how buckling behavior varies as dimension changes. 
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Table 6-8  Critical buckling force/stress of rectangular plates with increasing number of 
stiffeners 

 

Where: 

cr,c cr,c

cr,p cr,p

σ /N critical buckling stess / force: onlycolumn likebehavior considered

σ /N critical buckling stress / force: onlyplate likebehavior considered

 

 
 

 

Critical buckling stress, due to column-like behavior, cr,cσ is equal for all plate dimensions.  

This is because of crσ  depends on parameters like, sl,1 sl,1A , length and I  which are constant 

for all plate dimension in the table above.   

As width of plates increase the effect of plate-like behavior decreases while the effect of 

column- like behavior increases. This is as expected, since column- like buckling effect gets 

larger as width of the plate increases. 

On Table 6-8 length of plates is kept constant, while width increases. To see the effect of 

increasing length, a similar calculation as above is performed. It is done by keeping the width 

and number of stiffeners constant, but varying the length of the plate. Results are presented 

on Table 6-9.  
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6 3600 X 7000 8 51360 29.504
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1515.325
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Table 6-9  Calculated critical buckling stress and force for both column-like and plate- 
like behavior    

 

Where: 

cr,c cr,c

cr,p cr,p

σ /N critical buckling stess / force: onlycolumn likebehaviorconsidered

σ /N critical buckling stress / force: onlyplate likebehaviorconsidered

 

 
 

 
 
Generally critical buckling force of the plate decreases as its length increase. Besides plate-

like buckling will become the dominant buckling behavior as length is increased. 

According calculation rules of NS-EN-1993-1-5, critical buckling stress will be constant, when 

certain limit of plate length is reached. Increasing plate length over that limit will not have 

any effect on critical buckling force. 

As it can be seen on the results given on Table 6-9 and Figure 6-1, buckling stress, cr,pσ will 

reach its minimum value at plate length of 7000 mm and remain constant even though 

length is increased.  

No. 
Plate size 

 [mm] 

No. of 

Stiffeners 

cr,cσ   

[N/mm^2] 

cr,cN            

[kN] 

cr,pσ     

[N/mm^2] 

cr,pN        

[kN] 

1 2000 X 2000 4 361,424 10 004,2 320,105 8860,506 

2 2000 X 3000 4 160,633 4 446,3 152,269 4214,806 

3 2000 X 4000 4 90,356 2 501,1 98,026 2713,360 

4 2000 X  5000 4 57,828 1 600,7 77,856 2155,054 

5 2000 X 6000 4 40,158 1 111,6 72,138 1996,780 

6 2000 X 7000 4 25,504 706,0 72,04 1994,067 

7 2000 X 8000 4 22,589 625,3 72,04 1994,067 

8 2000 X 9000 4 17,848 494,0 72,04 1994,067 

9 2000 X 10000 4 14,45697 400,2 72,04 1994,067 

10 2000 X 12000 4 10,04 277,9 72,04 1994,067 
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Figure 6-1  Comparison between cr,cN  and cr,pN  as a function of plate length increases 

 

 

6.3.1.2. Ultimate strength of stiffened plate based on effective width method 

On sub chapter 6.3.1.1 results of critical buckling stresses are thoroughly discussed. In this 

sub topic discussions will be confined only on ultimate strengths calculated based on 

Effective width method. 

Ultimate strengths are calculated based on calculation rules given in section 4 of Euro code-

3-1-5. Plate and stiffener dimensions are given on Table 5-6 and Table 5-7.  

Strength of same plate dimension will be later calculated based on Reduced stress method 

and the results of the two methods will be compared.  
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Table 6-10   Ultimate strength of longitudinally stiffened plates with increasing number of 
stiffeners 

No. Plate size [mm] 
No. of 

stiffeners 
Rd,pN    [kN] Rd,interactionN   

[kN] 

1 1600X7000 3 4149,846 4149,846 

2 2000 X7000 4 4453,873 4453,873 

3 2400 X7000 5 4676,351 4463,902 

4 2800 X 7000 6 4970,873 3866,711 

5 3200 X 7000 7 5344,954 3428,083 

6 3600 X 7000 8 5771,034 3181,306 

 

Where:   
 

Rd,pN   =                Ultimate strength of the plate, when only plate- like behavior is  

        considered. 

Rd,interactionN  = Ultimate strength interpolated between plate-like and   

        column- like behavior. 
 
 

As the width increases will Rd,interactionN decreases, since it is calculated based on 

interpolation eq.(4.13) of NS-EN-1993-1-5 and the effect of column-like behavior become 

very significant as width of the plate is increased. 
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Table 6-11  Calculated Rd,pN and Rd,interactionN for longitudinally stiffened plate with 

varying length 

No Plate size [mm] No. of stiffeners Rd,pN  [kN] Rd,interactionN  [kN] 

1 2000 X 2000 4 7156,35 5269,884 

2 2000 X 3000 4 5672,295 3663,606 

3 2000 X 4000 4 4918,813 3129,348 

4 2000 X  5000 4 4566,295 3594,235 

5 2000 X 6000 4 4455,806 4353,831 

6 2000 X 7000 4 4453,873 4453,873 

7 2000 X 8000 4 4453,873 4453,873 

8 2000 X 9000 4 4453,873 4453,873 

9 2000 X 10000 4 4453,873 4453,873 

10 2000 X 12000 4 4453,873 4453,873 

 

Table 6-11 shows that Rd,pN and Rd,interactionN become equal for all lengths above 7000 mm. 

This is because of the column -like effect become negligible as the stiffened plate length 

increases. Furthermore the plate strength will remain constant after its length has reached 

certain limit. This phenomenon is further explained below. 

cr,p σ Eσ k σ  , where: σk  is buckling coefficient 

                                       Eσ is Euler buckling: it is constant for the plate dimension examined. 
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When length of the plate reach 7000 mm,  4α γ  and buckling coefficient will only depend 

on cross  sectional properties, γ ,δ  which are independent of plate length. 

 

6.3.2. Results of longitudinally stiffened plates based on Reduced stress method  

Stiffened plates discussed on sub topic 6.3.1, are also analyzed based on Reduced stress 

method. 

For uniaxial loading critical buckling stress, crσ is calculated the same way as it is done for 

Effective width method. In other words there is no difference between the two methods 

when calculating critical buckling stress for uniaxially loaded stiffened plates. 

 

6.3.2.1. Ultimate strength of longitudinally stiffened plates using Reduced stress method 

On the previous topic strength of stiffened plates was determined based on Effective width 

method. In this topic results calculated based on Reduced stress method are presented for 

the same plates.  

 

Table 6-12  Ultimate strength, Rd,rN of longitudinally stiffened plates using Reduced stress 

method 

No 
Plate size 

[mm] 
No. of 

 stiffener 
Area, total  

[mm^2] 
Rd,rN   

   [kN] 

1 1600X7000 3 21760 3792,401 

2 2000 X7000 4 27680 3987,872 

3 2400 X7000 5 33600 3919,178 

4 2800 X 7000 6 39520 3212,712 

5 3200 X 7000 7 45440 2651,798 

6 3600 X 7000 8 51360 2304,38 

Where:    Rd,rN  = ultimate strength based on Reduced stress method. 
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One of the best merits of Reduced stress method is, computer soft ware could be utilized to 

perform the calculation. This is especially very important when performing calculations on 

complex plate geometries. In this project all plates have regular geometry and simple 

loading conditions which can be easily hand calculated. But as an alternative way EBplate 

soft ware is used to determine the critical buckling stress. 

 Table 6-13, shows critical buckling stresses, cr,EBplateσ determined by using EBplate soft 

ware. In addition the table shows resulting ultimate strength, Rd,rN . 

Table 6-13  Linear buckling stress, cr,EBplateσ and the ultimate strength based on Reduced 

stress method, Rd,rN  

No. Plate size [mm] No. stiffener cr,EBplateσ  [N/mm^2] Rd,rN  [kN] 

1 1600X7000 3 138,36 4160,207 

2 2000 X7000 4 76,892 4104,972 

3 2400 X7000 5 54,137 4032,134 

4 2800 X 7000 6 44,043 3312,092 

5 3200 X 7000 7 38,933 2723,583 

6 3600 X 7000 8 36,099 2352,853 

 

There is no significant difference between the calculated ultimate strengths, Rd,rN  on Table 

6-12 and Table 6-13. The reason could be, plate geometries and loading conditions 

considered are relatively simple, so that both hand calculation and EBplate soft ware give 

very close critical buckling stress values. 

Ultimate strength based on Reduced stress method is also calculated for stiffened plate 

dimensions given on Table 5-7.  Hand calculated critical buckling stress, cr,p used to 

determine plate strengths is presented on Table 6-9. It should be recalled that a column-like 

buckling behavior is also considered according NS-EN-1993-1-5: 10(5a). 
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Table 6-14  Ultimate strength, Rd,rN based on Reduced stress method: Stiffened plate with 

varying length. 

No 
Plate size 

[mm] 
No. Stiffeners 

cr,p  

 [N/mm^2] 

Rd,rN  

  [kN] 

1 2000 X 2000 4 320,105 4634,529 

2 2000 X 3000 4 152,269 2811,178 

3 2000 X 4000 4 98,026 2402,224 

4 2000 X  5000 4 77,856 3062,197 

5 2000 X 6000 4 72,138 3888,257 

6 2000 X 7000 4 72,04 3987,885 

7 2000 X 8000 4 72,04 3987,885 

8 2000 X 9000 4 72,04 3987,885 

9 2000 X 10000 4 72,04 3987,885 

10 2000 X 12000 4 72,04 3987,885 

 

Ultimate strength, Rd,rN become constant after the length of the plate reach a certain limit, 

since critical buckling stress, cr,p will become independent of plate length. This 

phenomenon was also seen for Effective width method. To see the reason behind, refer to 

discussion given under subtopic 6.3.1.2. 

 

6.3.3. Comparison of ultimate strength calculated based on Effective width and Reduced 

stress methods. 

Strength results based on the two alternative design methods are presented separately on 

the previous tables. Now comparison of these strengths will be performed. Bear in mind that 

stiffened plates are grouped in to two categories, which are: 

 Plates with increasing number of stiffeners and varying width 

 Plates with constant number of stiffeners and varying length 
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Table 6-15  Comparison of ultimate strength calculated based on the two alternative 
methods: Plates with varying width 

 
No. 

 

Plate 
size(mm) 

No.  
stiffener 

Rd,eff,wN  

[kN] 

Rd,rN    

[kN] 

Difference 
[kN] 

Difference 
[%] 

1 1600X7000 3 4149,846 3792,401 357,445 9 % 

2 2000 X7000 4 4453,873 3987,872 466,001 10 % 

3 2400 X7000 5 4463,902 3919,178 544,724 12 % 

4 2800 X 7000 6 3866,711 3212,712 653,999 17 % 

5 3200 X 7000 7 3428,083 2651,798 776,285 23 % 

6 3600 X 7000 8 3181,306 2304,38 876,926 28 % 

 

Where: 

Rd,eff,w

Rd,r

N Ultimate strength based on effectivewidth method

N Ultimate strength based on Reduced stress method




  

The difference between Rd,eff,wN and Rd,rN is around 10 % for the narrow plates. This 

difference increases as the width of plates is increased. The cause of the difference is mainly 

due to the fact that Effective width method allows load shedding among member plates of 

the cross section. In other words plates are allowed to continue to carry loading, until all 

members of the cross section reach yielding. In case of Reduced stress method the cross 

section is as strong as its weakest link. No load shedding is allowed in Reduced stress 

method. 

It is also interesting to see that the difference between Rd,eff,wN and Rd,rN increases as width 

of the plates increase. A possible cause of this could be the role of column-like buckling. 

Both methods apply column -like behavior when relevant. It seems consideration of column-

like behavior has stronger effect on Reduced stress method leading to very conservative 

results. Bear in mind that use of interpolation function gives lower strength values for wider 

plates, regard less of the method used. 

Comparison of ultimate strengths for plate dimensions with varying length is presented on 

the following table.  
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Table 6-16  Comparison of hand calculated Rd,rN and Rd,eff,wN : Stiffened plate with 

increasing length 

No. 
Plate size  

[mm] 
No.of 

Stiffeners 
Rd,rN   

 [kN] 

Rd,eff,wN   

[kN] 

Difference  
[kN] 

Difference 
[%] 

1 2000 X 2000 4 4634,529 5269,884 635,355 12 % 

2 2000 X 3000 4 2811,178 3663,606 852,428 23 % 

3 2000 X 4000 4 2402,224 3129,348 727,124 23 % 

4 2000 X  5000 4 3062,197 3594,235 532,038 15 % 

5 2000 X 6000 4 3888,257 4353,831 465,574 11 % 

6 2000 X 7000 4 3987,885 4453,873 465,98772 10 % 

7 2000 X 8000 4 3987,885 4453,873 465,98772 10 % 

8 2000 X 9000 4 3987,885 4453,873 465,98772 10 % 

9 2000 X 1000 4 3987,885 4453,873 465,98772 10 % 

10 
2000 X 

12000 
4 3987,885 4453,873 465,98772 10 % 

 

Rd,eff,w

Rd,r

Where: N Ultimate strength based on effectivewidth method

N Ultimate strength based on Reduced stress method




 

The difference between Rd,rN and Rd,eff,wN  is larger for relatively shorter plates. The reason 

could be the column-like behavior influences the calculations in different manner. Recall that 

for Effective width method, c is used for column slenderness, while p is used as column 

slenderness in the case of reduced stress method. 

Effective width method:  
y

c
cr,c

f
λ

σ
   column slenderness used when calculating cχ .   

Reduced stress method: 
yult,k

p
cr cr,p

fα
λ

α σ
    column slenderness used when 

calculating cχ . 



65 
 

As the length of the plate increases the difference between the two strengths stabilizes to be 

10 %.  Effect of column-like buckling will be insignificant when length increased over certain 

limit, and the source of this 10 % difference is due to the fact that, Reduced stress method 

do not allow load shedding between member plates of the cross section. 

A graphical presentation of the difference between strengths calculated based on Reduced 

stress method and Effective width method is given on the Figure 6-2. 

 

Figure 6-2 Comparisons between Rd,rN  (strength based on Reduced stress method) and 

Rd,eff,wN (strength based on Effective width method). 
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7. Results of the Finite element analysis 

As it is stated on the sub topic 5.4, a finite element analysis is carried out on unixally loaded 

unstiffened plates, biaxially loaded plates and longitudinally stiffened plates. Detailed 

description of plate dimensions, material properties, meshing, imperfection, loading and 

boundary conditions are presented on chapter 5.  

 

 

7.1. Effect of boundary conditions on uniaxially loaded unstiffened plates 

Plates with "MYK" type boundary condition and "RETT" type boundary conditions are 

analyzed by Abaqus. Both linear buckling force and ultimate strength are determined for 

each plate. It should be noted that all other conditions are kept constant and only boundary 

conditions are changed, between "MYK" type and "RETT" type. 

"MYK" type boundary condition: loaded edges are free to deform and not kept straight. 

Loading is also applied longitudinally on both ends. The plate is supported on three points at 

the middle of the plate model. 

"RETT" type boundary condition: the loaded edge is kept straight by using the function 

*equation in the interaction module of the Abaqus soft ware.  

Both "MYK" type and "RETT" type boundary conditions are  forms of simple support and 

allow free rotation at the support (i.e. rotational degrees of freedom are not fixed). The only 

difference between them is how and where the simple supports are applied.  For further 

description of "MYK" and "RETT" type boundary conditions refer to chapter 5.4.1. 

7.1.1. Buckling of plates with "RETT" type boundary condition 

Linear buckling analysis of longitudinally loaded unstiffened plates with "RETT" type 

boundary condition is performed using Abaqus. Plots of the lowest global and local buckling 

modes are presented on Table 7-1.  
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Table 7-1  Linear buckling modes for longitudinally load plates with "RETT" type 
boundary condition 

No 

Plate size 

(width X 

length) 

Buckling 

mode 

nr. 

Figure 
N_cr-abaqus 

 

 

 

1 

 

 

1500x1500 

Mode 1 

 

4008,8kN 

Mode 2 

 

6283,7kN 

Mode 4 

 

 

16019kN 

2 1500x2000 

Mode 1 

 

 

 

4372,2kN 

 

Mode 2 

 

 

4730,2kN 
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 Mode 5 

 

 

 

16365kN 

3 1500x3500 

 

 

Mode 1 

 

 
 

4128,1kN 

Mode 2 

 

 

4291,6kN 

 

Mode 9 

 

 

 

 

16237kN 

4 1500x5000 Mode 1 

 

 

4077,9kN 
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Mode 2 

 

 

4168,1kN 

 

Mode 

13 

 

 

 

16207kN 

5 1500x6000 

Mode 1 

 

 

 

 

 

4033kN 

Mode 2 

 

 

 

 

4237,8kN 

Mode 

14 

 

 

 

 

 

16173kN 
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7.1.2. Ultimate strengths of plates with "RETT" type of boundary condition 

Ultimate strength of uniaxially loaded unstiffened plates with "RETT" type of boundary 

condition are numerically analyzed. Strength curve are presented on Table 7-2. Furthermore, 

the type of buckling mode used to introduce imperfection and imperfection amplitude are 

explained in the same table. 

 

Table 7-2 Ultimate strength of plates with "RETT" type boundary conditions 

Plate 
no.1 

 
Plate 1500x1500, t=20 

 
Remarks 

 

 

 

 
Buckling mode 1 is used to 
introduce imperfection to the 
analysis. 
The load is applied as a 
concentrated force at RP 
(midpoint of the left vertical edge). 
See Figure 5-5. 
Applied load = 1000 N as a point 
load. 

 

 

 
 

The force is extracted by imposing 
a displacement, U1 at longitudinal 
direction. 
The imposed displacement was 
applied at RP (reference point), 
which is at the middle of the left 
vertical edge. 
Max. force = 5702 kN 
Displacement, U1 at max. force =  
2,75 mm 
Imperfection amplitude =3 mm 
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The plot show stress pattern at 
maximum loading. 
Since short edges are constrained 
to stay straight, a central 
horizontal plate strip buckle first 
and most of strength will be 
concentrated along the 
longitudinal edges. 
On this plot most part of the 
model has reached yielding, But 
yielding has started first around 
corners. 

Plate 
no.2 

Plate 1500x2000, t=20 
 

Remarks 
 

 

 

 
Buckling mode 1 was used to 
introduce imperfection to the 
analysis. 
The load is applied as a 
concentrated force at RP 
(midpoint of the left vertical edge). 
See Figure 5-5 
Applied load = 1000 N as a 
concentrated load. 

 

 

 

 
The force is extracted by imposing 
a displacement, U1 at longitudinal 
direction. 
The imposed displacement was 
applied at reference point, which 
is at the middle of the left vertical 
edge. 
Max. force = 5988 kN 
Displacement, U1 at max. force =    
3,4 mm 
 
Imperfection amplitude = 3 mm 
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Stress pattern at the maximum 
loading. 
Though at this loading stage most 
part is red colored, yielding has 
started near the corners and 
spread along the longitudinal 
edges. This  confirms the 
assumption of the Effective width 
method used in NS-EN-1993-1-5 
 

 

 
Stress pattern at the onset of 
yielding. 
 
Yielding has started at the corners. 

Plate 
no.3 

Plate 1500x3500, t=20 Remarks 

 

 

 
 

 
Buckling mode 2 is used to 
introduce imperfection to the 
analysis. 
 

 

 
 

The force is extracted by imposing 
a displacement, U1 at longitudinal 
direction. 
The imposed displacement was 
applied at reference point, which 
is at the middle of the left vertical 
edge. 
Max. force = 5635,6 kN 
Displacement, U1 at max. force =  
6,36 mm 
Imperfection amplitude= 3 mm 
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These two plots show stress 
pattern at two different loading 
stages. 
Plot on the top: stress pattern at 
maximum loading. 
Plot under: stress pattern at the 
onset of yielding. 
As already mentioned yielding 
starts at corners, but type of 
imperfection introduced has an 
effect on it. 

Plate no. 
4 

Plate 1500 X 5000, t=20 Remarks 

 

 

 
Buckling mode 2 is used to 
introduce imperfection to the 
analysis. 
Concentrated load of 1000 N is 
applied at the reference point 

 
 

 

 
 
The force is extracted by imposing 
a displacement, U1 at longitudinal 
direction. 
The imposed displacement was 
applied at reference point, which 
is at the middle of the left vertical 
edge. 
Max. force = 5640 kN 
Displacement, U1at max. force =   
9,10 mm 
 
Imperfection amplitude used = 3 
mm 
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Stress pattern at maximum 
loading. 
 
 

 

 

 
 
 

 
Stress pattern just before yielding 
stress is reached. (stress = 350 
N/mm^2). 
Generally stress concentrations 
occur  
along supported edges. But the 
plot shows the imperfection mode 
introduced has an effect on the 
pattern of stress distributions. 
  

Plate no. 
5 

Plate 1500 X 6000 , t=10 Remark 

 

 
 

 
Buckling mode 1 was used to 
introduce imperfection to the 
analysis. 
 
 

 

 
The force is extracted by imposing 
a displacement, U1 at longitudinal 
direction. 
 
The imposed displacement was 
applied at reference point, which 
is at the middle of the left vertical 
edge. 
Max. force = 5721 kN 
Displacement, U1 at max. force = 
10,95 mm 
Imperfection amplitude =3 mm 



75 
 

 
 

 

 
 

 
Stress pattern during loading. 
 
Stress plot top : stress pattern at 
maximum loading 
Stress plot bottom: stress pattern 
at the onset of yielding. 

 

 

 

7.1.3. Buckling force of plates with "MYK" type boundary condition 

Buckling analysis was also performed for unstiffened plates with "MYK" type boundary 

conditions. Both buckling force and pattern in each mode is exactly the same as that of 

plates with "RETT" type boundary condition.   

The reason why plates with "MYK" type and "RETT" type boundary have exactly equal 

buckling force and pattern is, in linear analysis original configuration is taken as a reference 

during computation of forces.  

The lowest global and local buckling modes of plates analyzed are shown on Table 7-1. 

 

7.1.4. Strengths of plates with "MYK" type boundary conditions. 

Plates with "MYK" type boundary conditions are numerically analyzed to determine their 

strengths and strength curves are shown on Table 7-3. 
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Table 7-3  Ultimate strengths of unstiffened plates with "MYK" type boundary condition 

 
No. 

 
Plate 1500x1500 ( a=1500mm and b=1500) Remarks 

1 

 

 

This is a buckling mode 1, which is 
used to introduce imperfection to 
the nonlinear strength simulation. 
A distributed load of 1000 N/mm is 
applied from both ends 
 
 

 
 

The graph shows LPF  versus 
Displacement.  
 
Displacement, U1 is taken from the 
reference point.  
 
Load applied = 1000 N/mm 
LPF_max = 3,42362                                  
U1 at LPF_max = 1,485 mm 
Imperfection amplitude = 3 mm 
 

 

 

 
The resultant force is derived from 
LPF (load proportionality factor) as 
follow: 
F =LPF*(1000 N/mm)*b 
b= is width of the plate 
 
F_max =5135 kN 
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Stress plot at maximum loading. 

 
2 
 

Plate 1500x2000 ( a=1500mm and b=2000) , 
t=20 

Remarks 

 
 
 
 
 

 

This is the buckling mode 1, used to 
introduce geometric imperfection. 
 
A distributed load of 1000 N/mm is 
applied from both ends. 

 
 

 
The graph shows LPF  versus 
Displacement. 
 
 U1 Displacement, U1 is taken from 
the reference point. Reference point 
is a point at the middle of left loaded 
edge. 
 
Load applied = 1000 N/mm 
LPF_max = 3,52554 
U1 at LPF_max = 1,353 mm 
Imperfection amplitude =3 mm 
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Max force (axial strength) is derived 
from the LPF. 
 
 
F =LPF*(1000 N/mm)*b 
 
b= is width of the plate 
 
F_max =5288 kN 
 

 
 

 
 
 
 
 

 
Stress plot of the plate at maximum 
loading. 
 
It is worth noting, the pattern of the 
stress plot. The short ends are not 
restricted in both X- and Y-direction, 
which leads to higher stress concen-
tration around   the two ends of the 
plate. 
 
As opposed to this, if the short 
edges were constrained to remain 
straight, the stress would have been 
concentrated along the longitudinal 
edges. See plate no.2 (i.e. plate 
1500X2000) on Table 7-2.  
 

 
3 
 

Plate 1500 X 3500,  t=20 Remarks 

 
 

 

 
 

 
 
Buckling mode 2, used to simulating 
the geometric imperfection. 
 
Distributed load of 1000 N/mm is 
applied from both ends. 
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The graph shows LPF vs. 
Displacement, U1 (i.e. longitudinal 
direction) 
 
Displacement, U1 is taken from the 
reference point, which is the 
midpoint of the left loaded edge of 
the plate 
Load applied = 1000 N/mm 
 
LPF_max = 3,37 
 
U1 at LPF_max = 2,791 mm 
 
Imperfection amplitude =3 mm 
 

 

 

 
Max force (axial strength) is derived 
from the LPF. 
 
F =LPF*(1000 N/mm)*b 
 
b= is width of the plate 
 
F_max =5054,8 kN 
 
 

 

 
 

Stress pattern at maximum loading. 
 
Now as it is late stage of loading, the 
plate has yielded all around except 
at the central region. 

 
4 
 

Plate 1500 X 5000 ,  t=20 Remarks 
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Buckling mode 2 was used to 
introduce imperfection to the 
analysis. 
 
 
A distributed load of 1000 N/mm 
was applied on both ends, during 
buckling analysis 

 

 
Distributed load is applied on both 
ends. 
Load applied = 1000 N/mm 
LPF_max = 3,41 
U1 at LPF_max = 4,042 mm 
Displacement, U1 is taken from the 
reference point, which is the 
midpoint of the left edge of the 
plate 
 
 
Imperfection amplitude =3 mm 
 

 

 
 

Resultant force is derived from the 
LPF. See the graph above. 
 
Force = LPF*(1000 N/mm)*b 
 
b= width of the plate 
 
Max. axial force = 5116 kN, 
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Stress pattern at maximum axial 
loading. 
 
Since short edges are not forced to 
stay straight, yielding occur first near 
short ends. 
The plot shows stress pattern in the 
late stage of loading (at max. 
strength). It shows a large area of 
the plate has reached yield stress. 
But it was the area near the short 
edges that has shown sign of 
yielding first. 

 

5 Plate 1500X6000, t=10 Remarks 

 

 

Buckling mode-1 was used to 

introduce imperfection to the 

analysis. 

 

 

 

Distributed load is applied on 

both ends. 

Displacement, U1 is taken from 

the reference point, which is the 

midpoint of the left edge of the 

plate 

 

Load applied = 1000 N/mm 

LPF_max = 3,45616 

U1 at LPF_max = 4,262 mm 

Imperfection amplitude = 3 mm 
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Resultant force is derived from 

LPF-curve above. 

 

Distributed load applied on both 

ends = 1000 N/mm 

 

Force = LPF*(1000 N/mm)*b 

 

Maximum axial force =5184,24 kN 

 

 

Stress pattern at maximum 

loading. 

For the plate 5000X6000, t = 20 

 

 

7.1.5. Comparison of plates with "MYK" type and "RETT" type boundary conditions. 

Critical buckling of plates remained the same regardless of type boundary condition used.  

But there is a significant difference between strength of the plates depending on how the 

boundary condition is applied to the model.  

 Comparison of ultimate strength of plates with "MYK" type and "RETT" type boundary 

conditions is summarized on Table 7-4.  
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Table 7-4  Comparison of ultimate strength of plates with "MYK" and "RETT" type 
boundary conditions 

No. 
Plate size 

[mm] 

Strength 
"MYK" type  

[kN] 

Strength 
"RETT" type  

[kN] 

Difference 
 [kN] 

Difference 
  [%] 

1 1500 X 1500 5135,4 5702,3 566,9 9,9 % 

2 1500 X2000 5288,3 5988,1 699,8 11,7 % 

3 1500 X 3500 5054,8 5635,6 590,8 10,5 % 

4 1500 X 5000 5116 5640 524 9,3 % 

5 1500 X 6000 5184,2 5721,5 537,3 9,4 % 

 

 

Strength results on Table 7-4, show an average difference of 10 % between plates with 

"MYK" and "RETT" type boundary conditions. Plates with "MYK" type boundary conditions 

are softer, since the loaded edges are not forced to remain straight and can deform. Plates 

with "RETT" type of boundary conditions are stronger, since the boundary condition forces 

the loaded edges to stay straight. 

 

 

7.2. Numerical analysis of biaxially loaded unstiffened plates 

Biaxially loaded Plate dimensions given on Table 5-4 are analyzed by using Abaqus. Hand 

calculated results of the same plates are presented on subtopic 6.2. 

Analysis of both linear buckling and ultimate strength is performed. Buckling mode plots and 

strength curves are given as an appendix on subtopics A.1  and A.2  . Only resulting buckling 

forces and ultimate strength are presented below. 

Critical buckling force of square plate (2000X200, t=20) and rectangular plate (2000X4000, 

t=20) with different combinations of biaxial loading is presented as follow. Plots of buckling 

modes are given as an appendix on Table A- 1 and Table A- 2. 
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Table 7-5  Critical buckling stress of biaxially loaded plate 2000X2000, t=20 

No. Loading type [N/mm] 
   : Lowest buckling 

mode 

cr,x,abaqusσ  

[N/mm^2] 

cr,y,abaqusσ        

[N/mm^2] 

1 
Longitudinal  = 1000      

Transverse     =   250 
1,20830 60,415 15,104 

2 
Longitudinal = 1000      

Transverse    =  500 
1,00690 50,345 25,173 

3 
Longitudinal = 1000      

Transverse    =  750 
0,86308 43,154 32,366 

4 
Longitudinal = 1000      

Transverse    =  1000 
0,75520 37,760 37,760 

  

Table 7-6  Critical buckling stress of biaxially loaded plate 2000X4000, t=20 

No. Loading type [N/mm] 
   : for lowest 

buckling mode 

cr,x,abaqusσ  

[N/mm^2] 

cr,y,abaqusσ        

[N/mm^2] 

1 
Longitudinal  = 1000      

Transverse     =   250 
1,18390 59,195 14,800 

2 
Longitudinal = 1000      

Transverse    =  500 
0,78914 39,457 19,729 

3 
Longitudinal = 1000      

Transverse    =  750 
0,59182 29,591 22,193 

4 
Longitudinal = 1000      

Transverse    =  1000 
0,47343 23,672 23,672 

 

cr,x,abaqus

cr,y,abaqus

Where:

eigen value from buckling analysis

critical buckling stress logitudinal direction

critical buckling stress transverse direction

 

  

  
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Biaxially loaded, square plate (2000X2000, t = 20) and rectangular plate (2000X4000, t = 20) 

are numerically analyzed to determine their strength and results are given on Table 7-7 and 

Table 7-8. Strength curves extracted from the numerical analysis are given as an appendix on 

Table A- 3 and Table A- 4. 

 

Table 7-7 Ultimate strength of biaxially loaded plate 2000X2000, t=20 

No. 
Loading type 

[N/mm] 

Imperfection 

amplitude [mm] 

Rd,x,abaqusσ    

[N/mm^2] 

Rd,y,abaqusσ   

[N/mm^2] 

1 
Longitudinal  = 1000      

Transverse     =   250 
4 155,950 38,987 

2 
Longitudinal = 1000      

Transverse    =  500 
4 131,765 65,882 

3 
Longitudinal = 1000      

Transverse    =  750 
4 120,271 90,203 

4 
Longitudinal = 1000      

Transverse    =  1000 
4 104,528 104,528 

 

Table 7-8  Ultimate strength of biaxially loaded plate 2000X4000, t=20 

No. Loading type [N/mm] 
Imperfection 

amplitude [mm] 
Rd,x,abaqus    

[N/mm^2] 

Rd,y,abaqusσ   

[N/mm^2] 
 

1 
Longitudinal  = 1000      
Transverse     =   250 

4 147,665 36,916 

2 
Longitudinal = 1000      
Transverse    =  500 

4 114,072 57,036 

3 
Longitudinal = 1000      
Transverse    =  750 

4 91,271 68,453 

4 
Longitudinal = 1000      
Transverse    =  1000 

4 76,026 76,026 

Rd,x,abaqus

Rd,y,abaqus

Where:

σ ultimate strength longitudinal direction

σ ultimate strength transverse direction

 

 
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7.3. Numerical analysis of uniaxially loaded stiffened plates 

Hand calculations of longitudinally stiffened plates were presented on the previous chapters. 

Results of the finite element analysis for the same plates will be presented on the 

subsequent subtopics. Plots of buckling modes and strength curves are given on appendix B 

and C.  

 

7.3.1. Results of  linear buckling analysis: stiffened plates. 

Plates naturally tend to buckle to a mode shape which requires minimum energy, and critical 

buckling force is considered to be the minimum force required to deform the plate in certain 

mode shape. 

 Results of the linear buckling analysis are tabulated below. These results will be later 

compared with hand calculated results given on Table 6-8 and Table 6-9. Plots of the lowest 

buckling modes are presented as an appendix on Table B- 1 and Table C- 1. 

 

Table 7-9  Critical buckling forces, cr,abaqusN  for stiffened plates with increasing number 

of stiffener 

No Plate size(mm) No. of stiffeners 

 

cr,abaqusN  [kN] 

 

1 1600X7000 3 3012,2 

2 2000 X7000 4 2148,4 

3 2400 X7000 5 1845,2 

4 2800 X 7000 6 1767,8 

5 3200 X 7000 7 1796,1 

6 3600 X 7000 8 1879,7 
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Similarly buckling analysis is carried out for stiffened plate with constant width but varying 

length. Results are given on Table 7-10 below. 

Table 7-10  Critical buckling, cr,abaqusN  of stiffened plate with varying length 

No Plate size(mm) No. of stiffeners cr,abaqusN  [kN] 

1 2000 X 2000 4 10 309,7 

2 2000 X 3000 4 4 940,0 

3 2000 X 4000 4 3 130,8 

4 2000 X  5000 4 2 415,2 

5 2000 X 6000 4 2 160,8 

6 2000 X 7000 4 2 148,4 

7 2000 X 8000 4 2 285,9 

8 2000 X 9000 4 2 529,2 

9 2000 X 10000 4 2416,1 

10 2000 X 10000 4 2161,6 

 

 

 

7.3.2. Ultimate strength of uniaxially loaded, stiffened plates 

Stiffened plate dimension given on Table 5-6 and Table 5-7 are numerically analyzed using 

Abaqus. Results of linear buckling analysis for the plates are given on Table 7-9 and Table 

7-10.  

On the following tables only resulting strengths are presented. Strength curves are 

presented as an appendix on Table B- 2 and Table C- 2. 
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7-11 Numerically determined strength, Rd,abaqusN of plates with increasing number of 

stiffeners 

No Plate size[mm] No. stiffeners 
Imperfection 

amplitude [mm] 

Rd,abaqusN   

[kN] 

1 1600X7000 3 3,2 4 249,6 

2 2000 X7000 4 4 4 326,0 

3 2400 X7000 5 4,8 4 510,4 

4 2800 X 7000 6 5,6 4 695,8 

5 3200 X 7000 7 6,4 4 858,5 

6 3600 X 7000 8 7,2 5 006,8 

 

 

 

Table 7-12  Numerically determined strength, Rd,abaqusN : Stiffened plate with increasing 

length 

No Plate size[mm] No. stiffeners 
Imperfection 

amplitude [mm] 
Rd,abaqusN   [kN] 

1 2000 X 2000 4 4 6 339,8 

2 2000 X 3000 4 4 4 576,9 

3 2000 X 4000 4 4 4 172,4 

4 2000 X  5000 4 4 4 110,6 

5 2000 X 6000 4 4 4 189,6 

6 2000 X 7000 4 4 4 326,0 

7 2000 X 8000 4 4 4 452,6 

8 2000 X 9000 4 4 4 580,7 

9 2000X10000 4 4 4 110,9 

10 2000X12000 4 4 4 190,1 

 

 

 

  



89 
 

8. Comparison of hand calculated and Abaqus results 

Hand calculations based on Reduced stress method and Effective width method are 

performed for both unstiffened plates and stiffened plates. A finite element analysis using 

Abaqus is also carried out for the same plates. Comparisons will be done between hand 

calculations and Abaqus results in the following subtopics. 

8.1. Uniaxially loaded unstiffened plates 

Hand calculated results based on both the Effective width method and Reduced stress 

method are presented on subtopic 5.1. It has been shown for uniaxially stressed unstiffened 

plates both hand calculation methods lead to exactly equal crititical buckling stress and 

ultimate strength for all plate dimensions.  

In case of finite element analysis, unstiffened plates are categorized depending on how the 

boundary conditions are modeled in Abaqus. The two categories are denoted as, plates with 

"RETT" type and "MYK" type boundary condition. Only results of plates with "RETT" type 

boundary conditions will be compared with hand calculated results.  The reason is that, rules 

of Eurocode-3-1-5 are developed by assuming loaded edges remain straight during loading. 

 

8.1.1. Comparison of critical buckling forces: Hand calculations versus Abaqus results 

A comparison of results of hand calculation and Abaqus ("RETT" type boundary condition) is 

given below. In the Table 8-1 results of both design methods are denoted as, cr,handN  since 

they are equal.  

Table 8-1  comparison of hand calculated critical buckling force, cr,handN   and Abaqus 

results, cr,abaqusN   

No. Plate size [mm] 
cr,handN  

[kN] 

cr,abaqusN  

[kN] 

Difference 

[kN] 

Difference 

[%] 

1 1500 X 1500 4049,1 4008,8 -40,3 -1,0 % 

2 1500 X2000 4394 4372 -22 -0,5 % 

3 1500 X 3500 4146 4128,1 -17,9 -0,4 % 

4 1500 X 5000 4094,2 4077,9 -16,3 -0,4 % 

5 1500 X 6000 4049,1 4033 -16,1 -0,4 % 



90 
 

 

There is a quite close agreement between hand calculated buckling force, and result of linear 

buckling analysis using Abaqus. 

 

8.1.2. Comparison of hand calculated and numerically determined strengths 

For uniaxially loaded unstiffened plates both Reduced stress and Effective width methods 

give equal strength values, which will be denoted as Rd,handN  in the following table. These 

results will be compared with numerically determined strengths, using "RETT" type 

boundary conditions. Description of plates with "RETT" type boundary condition is given in 

subtopic 5.4.1. 

 

Table 8-2 Comparison of hand calculated strength, Rd,handN  and numerically determined 

strength, Rd,abaqusN   

No. 
Plate 

size(mm) 

Rd,handN  

[kN] 
Rd,abaqusN  Difference [kN] Difference [%] 

1 1500 X 1500 5672,7 5702,3 29,6 1 % 

2 1500 X2000 5870,5 5988,1 117,6 2 % 

3 1500 X 3500 5729,5 5849 119,5 2 % 

4 1500 X 5000 5699,3 5804 104,7 2 % 

5 1500 X 6000 5672,7 5721,5 48,8 1 % 

 

Hand calculated strength, Rd,handN  and numerical determined strength, Rd,abaqusN  show 

close agreement.  
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8.2. Biaxially loaded unstiffened plates 

Hand calculated critical buckling stress and strength will be compared with results from 

finite element analysis. Hand calculations are performed based on Reduced stress method, 

since Effective width method does not apply for multiple loading situation. Hand calculated 

results are given on Table 6-4 and Table 6-5.  

 

Table 8-3  Comparison of critical buckling stress based on Reduced stress method, cr,x,r   

and results of Abaqus analysis, cr,x,abaqus   

Plate -2000X2000, t=20 mm 

No. 
Loading combination 
[N/mm] 

cr,x,rσ       

[N/mm^2] 

cr,x,abaqusσ    

[N/mm^2] 

Difference 
[N/mm^2] 

Difference 
[%] 

1 
Longitudinal  = 1000  
  Transverse     =   250 

60,7 60,415 -0,285 -0,5 

2 
Longitudinal = 1000      
Transverse    =  500 

50,611 50,345 -0,266 -0,5 

3 
Longitudinal = 1000      
Transverse    =  750 

43,394 43,154 -0,240 -0,6 

4 
Longitudinal = 1000      
Transverse    =  1000     

Plate -2000 X 4000, t=20 mm 

No. 
Loading combination 
[N/mm] 

cr,x,rσ       

[N/mm^2 

cr,x,abaqus   

[N/mm^2] 

Difference 
[N/mm^2] 

Difference 
[%] 

1 
Longitudinal  = 1000      
Transverse     =   250 

46,300 59,195 12,895 22 

2 
Longitudinal = 1000      
Transverse    =  500 

33,248 39,457 6,209 16 

3 
Longitudinal = 1000      
Transverse    =  750 

25,960 29,591 3,631 12 

4 
Longitudinal = 1000      
Transverse    =  1000 

21,330 23,672 2,342 10 
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Reduced stress method does not clearly provide a way to calculate critical buckling stress, 

other than what is given as a definition to cr . 

cr  is defined as the minimum load amplifier  for the design loads to reach the critical load 

of the plate under a complete stress field. Based on this definition of cr , the following 

relationship could be formulated:   

cr
cr cr cr Ed

Ed
where


     


     

cr

Ed

critical bucklingstress

design stress load

 

 
           

Since this project is a theoretical study, the design load, Ed  is not known in advance. Its 

value is found by carrying out an iteration scheme until equation (10.5) of Eurocode-3-1-5 is 

satisfied.  

Critical buckling stress, cr calculated based on the above relationship gives quite good 

result for uniaxial loading, but show certain weakness for biaxially compressed plates. In 

particular there is a quite large discrepancy between hand calculated values and Abaqus 

results for biaxially loaded rectangular plate. This shows aspect ratio has a role, which may 

not be captured in the above relationship. Thus a thorough study of background calculations 

and origin of cr is required. Unfortunately it is not possible to carry out such study, due to 

lack of relevant literature written in English or Norwegian.  

Generally it could be concluded that Reduced stress method lack an explicit way of 

calculating critical buckling stress, especially for multiple loading situations. The indirectly 

deducted formula, cr cr Ed   , lead to conservative results. 
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Table 8-4 Comparison of longitudinal ultimate strengths, Rd,x,rσ and Rd,x,abaqusσ  : 

Biaxially loaded plates 

Plate -2000X2000, t=20 

No. 
Loading 

combination 
[N/mm] 

Rd,x,r       

 [N/mm^2] 

Rd,x,abaqus  

 [N/mm^2] 

Difference 
[N/mm^] 

Difference 
[%] 

1 
Longitudinal  = 1000    
Transverse     =   250 

143,500 155,950 12,450 8 % 

2 
Longitudinal = 1000      
Transverse    =  500 

131,800 131,765 -0,035 0 % 

3 
Longitudinal = 1000      
Transverse    =  750 

113,300 120,271 6,971 6 % 

4 
Longitudinal = 1000      
Transverse    =  1000 

94,800 104,528 9,728 9 % 

Plate 2000 X 4000, t = 20 

No. 
Loading 

combination 
[N/mm] 

Rd,x,r        

[N/mm^2] 

Rd,x,abaqus  

 [N/mm^2] 

Difference 
[N/mm^] 

Difference 
[%] 

1 
Longitudinal  = 1000      
Transverse     =   250 

127,300 147,665 20,365 14 % 

2 
Longitudinal = 1000      
Transverse    =  500 

108,300 114,072 5,772 5 % 

3 
Longitudinal = 1000      
Transverse    =  750 

88,300 91,271 2,971 3 % 

4 
Longitudinal = 1000      
Transverse    =  1000 

71,340 76,026 4,686 6 % 

 

8.3. Uniaxially loaded stiffened plates  

Results of hand calculations (both Reduced stress method and Effective width method) will 

be now compared with results obtained based on finite element analysis. 

 

8.3.1. Comparison of critical buckling stresses 

It was previously stated that both Reduced stress method and Effective with method lead to 

exactly same critical buckling force. Such hand calculated values are compared with Abaqus 

results on Table 8-5. 
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Table 8-5  Comparison of hand calculated critical buckling force, cr,handN  with cr,abaqusN    

No 
Plate size 

[mm] 
No. of 

stiffeners 
cr,handN  

[kN] 

cr,abaqusN  

[kN] 

Difference 
[kN] 

Difference 
[%] 

1 1600X7000 3 2421,7 3012,2 590,5 20 % 

2 2000 X7000 4 1994,1 2148,4 154,3 7 % 

3 2400 X7000 5 1705,7 1845,2 139,5 8 % 

4 2800 X 7000 6 1608,6 1767,8 159,2 9 % 

5 3200 X 7000 7 1626,5 1796,1 169,6 9 % 

6 3600 X 7000 8 1703,5 1879,7 176,2 9 % 

 

Table 8-5 above shows an average difference of 9 % between hand calculated results and 

results of finite element analysis.  One of the reasons could be stiffened plates with more 

than two longitudinal stiffeners are treated as an equivalent orthotropic plates by smearing 

stiffeners smoothly over the plate. This is just an approximate approach and could lead to a 

lower buckling force and strength.  

The difference is worse for narrow plate (1600X7000) with only three stiffeners. Since the 

stiffeners are smeared over the plate, the two stiffeners which are nearest to the 

longitudinal edges will miss some of their stiffness when hand calculated. 

 

Table 8-6  Comparison of cr,handN  and cr,abaqusN  : Stiffened plate with varying length 

No 
Plate size 

 [mm] 

No. of 

Stiffeners 

cr,handN  

 [kN] 

cr,abaqusN      

    [kN] 

Difference 

 [kN] 

Difference 

 [%] 

1 2000 X 2000 4 8 860,5 10 309,7 1 449,2 14 % 

2 2000 X 3000 4 4 214,8 4 940,0 725,2 15 % 

3 2000 X 4000 4 2 713,4 3 130,8 417,4 13 % 

4 2000 X  5000 4 2 155,1 2 415,2 260,1 11 % 

5 2000 X 6000 4 1 996,8 2 160,8 164,0 8 % 

6 2000 X 7000 4 1 994,1 2 148,4 154,3 7 % 

7 2000 X 8000 4 1 994,1 2 285,9 291,8 13 % 

8 2000 X 9000 4 1 994,1 2 529,2 535,1 21 % 

9 2000 X 10000 4 1 994,1 2 416,1 422,0 17 % 

10 2000 X 12000 4 1 994,1 2 161,6 167,5 8 % 
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Comparison of the buckling results on Table 8-6, show that there is also a significant 

difference between hand calculated values and the linear critical buckling force determined 

by finite element analysis. Similar reason could be given as for plates with increasing number 

of stiffeners on Table 8-5. Therefore results based on equivalent orthotropic considerations 

may not reflect the behavior of stiffened plate exactly. 

The difference between hand calculated critical forces and Abaqus results on Table 8-6 is 

largest, for plate length of 9000 mm. this is due to two reasons: 

 Hand calculated values become constant after plate length is increased over certain 

limit, but Abaqus results continue to vary slightly. See the blue curve on Figure 8-1. 

 Abaqus analysis: Buckling force tend to increase just before the length limit, at which 

buckling mode shape  changes from single half- sine-wave to two half-sine-waves. 

 In our case buckling mode changes from single half-sine -wave to two half-sine-waves when 

length is increased from 9000 mm to 10000 mm. Refer to buckling mode plots given in the 

appendix.  

Comparison of hand calculated buckling force and Abaqus results are illustrated in          

Figure 8-1. 

 

Figure 8-1  Comparison of critical forces: Hand calculated versus Abaqus results 
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8.3.2. Comparison of ultimate strengths: Longitudinally stiffened plate 

Comparison of results of Reduced stress method and Effective width method was previously 

made on Table 6-15 and Table 6-16.  Now each method will be compared with results of the 

numerical analysis. 

 

Table 8-7  Comparison of ultimate strength based on Effective width method, Rd,eff,wN  

and results of numerical analysis, Rd,abaqusN   

No. 
Plate   size 

[mm] 
No. of 

stiffeners 
Rd,effe,wN

[kN] 

Rd,abaqusN   

[kN] 

Difference 
[kN] 

Difference 
 [%] 

1 1600X7000 3 4149,846 4 249,6 99,754 2 % 

2 2000 X7000 4 4453,873 4 326,0 -127,873 -3 % 

3 2400 X7000 5 4463,902 4 510,4 46,498 1 % 

4 2800 X 7000 6 3866,711 4 695,8 829,089 18 % 

5 3200 X 7000 7 3428,083 4 858,5 1430,417 29 % 

6 3600 X 7000 8 3181,306 5 006,8 1825,494 36 % 

 

Comparison of results shows Rd,eff,wN is very close to the results of the numerical analysis,

Rd,abaqusN  for relatively narrow plates. But the difference widens as the width increases. 

Strength of plates determined based on Effective width method is a result of an 

interpolation between plate-like and column- like behavior. As the width of plates increases, 

hand calculated plate strength decreases due to increased effect of column- like buckling. 

Therefore Effective width method fails to describe the real strength for wider plate. 

Results of stiffened plate strength based on Reduced stress method is worse than that of 

Effective width method since Reduced stress method does not consider post buckling 

strength of all member plates of the cross section. Recall that previous comparison between 

these two methods has revealed that strength calculated based on Effective width method is 

on average 10 % higher than results of Reduced stress method. 
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Table 8-8  Comparison of strength based on Reduced stress method, Rd,rN and results of 

numerical analysis, Rd,abaqusN  

No. 
Plate size 

[mm] 
No. 

stiffeners 
Rd,rN  

[kN] 

Rd,abaqusN  

 [kN] 

Differenc
e [kN] 

Difference 
[%] 

1 1600X7000 3 3792,401 4 249,6 457,2 11 % 

2 2000 X7000 4 3987,872 4 326,0 338,1 8 % 

3 2400 X7000 5 3919,178 4 510,4 591,2 13 % 

4 2800 X 7000 6 3212,712 4 695,8 1 483,1 32 % 

5 3200 X 7000 7 2651,798 4 858,5 2 206,7 45 % 

6 3600 X 7000 8 2304,38 5 006,8 2 702,4 54 % 

 

  

 

 

Figure 8-2  Plate with four longitudinal stiffeners, strength as a function of length 

 

As shown on the Figure 8-2 strength curves based on Reduced stress method and Effective 

drops down in the interval 2 m to 4 m. This shows the interpolation equation used is not 

good enough to describe the behavior of the plate dimensions in this interval. As the length 

increases both curves rise up, since the effect of column-like buckling gets lesser. 
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9. Conclusion 

For uniaxially loaded plates both Reduced stress method and the Effective width method 

showed exactly same critical buckling stress and strength. This is because of only single plate 

panel is used. In real life most plated structures are made up of multiple panels which could 

have different thickness. In such case the two methods are expected to produce different 

results. 

 In case of finite element analysis performed on uniaxially loaded unstiffened plate, no 

significant difference was found between hand calculated results and Abaqus results. 

Hand calculations on biaxially loaded plates were done only based on Reduced stress 

method, since Effective width method is not applicable for multiple loading situations. 

Buckling analysis performed on biaxially loaded square plate showed no significant 

difference between results of Reduced stress method and Abaqus. But for biaxially loaded 

rectangular plate, the analysis showed quite large difference between hand calculated 

critical buckling stress and that of Abaqus. This shows Reduced stress method may fail to 

describe the behavior of biaxially loaded plates with higher aspect ratio. 

Reduced stress method and Effective width method showed exactly equal critical buckling 

stress when applied on uniaxially loaded stiffened plates. Such hand calculated results are 

found to be quite lower than result of Abaqus. There is about 10 % - 15 % difference 

between hand calculated critical buckling stress of stiffened plates and result of finite 

element analysis done by Abaqus. 

Strength analysis of stiffened plates showed that Reduced stress method is very conservative 

when compared to Effective width method. This is mainly due to the fact that Reduced 

stress method does not allow load shedding between member plates of a cross section. 

Effective width method allows load shedding between plate panels and lead to a better 

strength results. 

Strength results based on Effective width method for stiffened plates are generally lower 

than results of numerical analysis. The difference is especially very large for both short and 

wide plates, since effect of column-like buckling is taken into consideration. Hence the 
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interpolation equation used in the design process is not good enough to capture the real 

behavior of such stiffened plates. 

Generally Effective width method gives better results for longitudinally stiffened regular 

plate dimensions with uniaxial loading condition. But Reduced stress method can help to 

make a fast judgment about strength of a plate cross section, if the minimum load 

amplifiers, crα  and ult,kα  could be determined using a computer soft ware. 

Reduced stress method is the only alternative method   when dealing with irregular plate 

shapes, plates with arbitrarily arranged stiffeners, plate with large cut outs ... etc. 

 

Recommendations for future study: 

This thesis concentrated primarily on axially loaded rectangular plates.  Slender plate 

structures loaded in bending and shear are also very common. Study of moment and shear 

loaded plates using Reduced stress method would have been very interesting. 

Literature about the back ground work of Reduced stress method is hardly available in 

Norway. Therefore a comprehensive study on this subject would have been very important. 
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 A. Buckling modes and strength curves of biaxially loaded plates 

 A.1   Buckling modes: Biaxially loaded plates 

   

Table A- 1 Buckling modes of biaxially loaded plate-2000X2000, t=20 

No. 
Loading 
[N/mm] 

Buckling mode -1 

 
Sigma_cr_abaqus 

[N/mm^2] 
 

1 
X=1000 

Y=250 

 

 

λ = 1,2083 

 

σ _cr,x = λ*(1000 N/mm)/t 

σ_ cr,y = λ*(250 N/mm)/t 

 

σ_cr.x=60,415  

σ-cr,y=15,1  

2 

 

X=1000 

Y=500 

 

 

λ = 1,0069 

σ _cr,x = λ*(1000 N/mm)/t 

σ_ cr,y = λ*(500 N/mm)/t 

 

σ_cr,x=50,3 

σ_cr,y=25,2 

3 
X=1000 

Y=750 

 

 

λ = 0,86308 

σ _cr,x = λ*(1000 N/mm)/t 

σ_ cr,y = λ*(750 N/mm)/t 

 

σ_cr,x=43,2 

σ_cr,y=32,4 
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4 
X=1000 

Y=1000 

 

 

λ = 0,7552 

σ _cr,x = λ*(1000 N/mm)/t 

σ_ cr,y = λ*(1000 N/mm)/t 

t= thickness 

σ_cr,x=37,8 

σ_cr,y=37,8 

 

 

Table A- 2  Buckling modes of biaxially loaded plate-2000X4000, t=20 

No. 
Loading 

[N/mm] 
Buckling mode -1 Sigma_cr [N/mm^2] 

1 
X= 1000 

Y=250 

 

 

λ = 1,1839 

σ _cr,x = λ*(1000 

N/mm)/t 

σ_ cr,y = λ*(1000 

N/mm)/t 

t= thickness 

 

σ_cr,x=59,2 

σ_cr,y=14,8 

2 
X=1000 

Y=500 

 

 

λ =0,78914 

σ _cr,x = λ*(1000 

N/mm)/t 

σ_ cr,y = λ*(1000 

N/mm)/t 

σ_cr,x = 39,5 

σ_cr,y = 19,7 
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3 
X=1000 

Y=750 

 

λ =0,59182 

σ _cr,x = λ*(1000 

N/mm)/t 

σ_ cr,y = λ*(1000 

N/mm)/t 

σ_cr,x = 29,6 

σ_cr,y = 22,2 

4 
X= 1000 

Y=1000 

 

 

λ =0,47343 

σ _cr,x = λ*(1000 

N/mm)/t 

σ_ cr,y = λ*(1000 

N/mm)/t 

σ_cr,x =23,7 

σ_cr,y=23,7 

 

 

 A.2   Strength curves: Biaxially loaded plates 

The strength of the plate is extracted as LPF (Load proportionality factor). This is then 

transformed into stresses as follow: 

σ_x,Rd= LPF*(Loading_x-direction)/t 

σ_y,Rd = LPF*(Loading_y-direction)/t 

Imperfection = buckling mode-1 is used for all simulations.   

Imperfection amplitude = b/500 = 4 mm for all simulations 
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Table A- 3  Strength curve for biaxially loaded plate 2000X2000, t=20mm 

No. 
Loading 
[N/mm] 

Strength curve: LPF vs.  Displacement (U1) 
 

Strength 
 

1 

 
 
X=1000 
Y=250 

 

 
Max LPF =3,11899 
U1 at max. LPF = 
2,741 mm 
 
σ_x,Rd= 156 
N/mm^2 
 
σ_y,Rd=39 N/mm^2 

2 
 
X=1000 
Y=500 

 

 
 
 
Max LPF =2,63529 
 
U1 at max. LPF= 
3,199 mm 
 
σ_x,Rd = 131,8 
N/mm^2 
 
σ_y,Rd =65,9 
N/mm^2 
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3 
X=1000 
Y=750 

 

 
 

 
 
 
Max. LPF =2,40541 
 
U1 at max. LPF= 
2,54301 mm 
 
σ_x,Rd = 120,3 
N/mm^2 
 
σ_y,Rd = 90,2 
N/mm^2 
 

4 
X= 1000 
Y=1000 

 

 
 
 

 
 
 
Max. LPF = 2,09055 
 
U1 at max. LPF= 
2,519 mm 
 
σ_x,Rd = 104,5 
N/mm^2 
 
σ_y,Rd = 104,5 
N/mm^2 
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Table A- 4  Strength of biaxially loaded plate 2000X4000, t=20mm 

No 
Loading 

[N/mm] 
Strength curve : LPF vs.  Displacement (U1) Strength 

1 

 

X =1000 

Y = 250 

 

 

 

 

Max. LPF 

=2,95329 

U1 at  max.LPF =  

4,37 mm 

 

σ_x,Rd 

=147,7 N/mm^2 

 

σ_y,Rd = 36,9 

N/mm^2 

2 
X=1000 

Y=500 

 

Max. LPF 

=2,28143 

U1 at max. LPF= 

3,56 mm 

σ_x,Rd = 114,1 

N/mm^2 

σ_y,Rd =57 

N/mm^2 
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3 

 

 

X=1000 

Y=750 

 

 

 

 

 

Max. LPF = 

1,82541 

 

U1 at max.LPF = 

3,04 mm 

 

σ_x,Rd =91,2 

N/mm^2 

 

σ_y,Rd = 68,5 

N/mm^2 

 

4 

 

X=1000 

Y=1000 

 

 

 

 

Max. LPF 

=1,52051 

 

U1 at max. LPF 

=2,57 mm 

 

σ_x,Rd = 76 

N/mm^2 

 

σ_y,Rd =76 

N/mm^2 
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 B. Plates with increasing no. of stiffeners : Buckling modes & strength 

curves 

Buckling analysis of stiffened plates (all plates have a thickness of 10 mm). 

A point load is applied at the reference point. 

Table B- 1  Lowest buckling modes: Plates with increasing no. of stiffeners 

No. 
Plate 

size(mm) 

No. of 
stiffen

ers 

 

Buckling mode 

 

N_cr,abaqus 

1 1600X7000 3 

Buckling mode 1

 

 

N_cr = 3012,2 
kN 

Buckling mode 5 

 

Lowest mode with two half-sine waves in the 
transverse direction 

N_cr=10634,5 
kN 

 
Buckling mode 7 

 
Lowest local buckling mode 

N_cr =12227,8 
kN 

2 2000X7000 4 

Buckling mode 1 

 

 

N_cr = 2148,4 
kN 
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Buckling mode 4 

 
Lowest mode with two half-sine waves in the 
transverse direction 
 

N_cr=8585,9 
kN 

 
Buckling mode 9 

 
Lowest local buckling mode 

 
 

N_cr = 15714,7 
kN 

3 2400X7000 5 

Buckling mode 1

 

 

N_cr = 

1845,2kN 

 
Buckling mode 3 

 
Lowest mode with two half sine waves in the 
transverse direction 
 

N_cr = 7364,5 
kN 

Buckling mode 11 

 
Lowest local buckling mode 

N_cr = 19131,5 
kN 
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4 2800X7000 6 

Buckling mode 1 

 

 

N_cr= 1767,8 
kN 

 

Buckling mode 3 

 
Lowest mode with two half-sine waves in the 
transverse direction 
 

N_cr = 7049,69 
kN 

 
Buckling mode 12

 
Lowest local buckling mode 
 

N_cr = 22537,4 
kN 

5 3200X7000 7 

Buckling mode 1 

 

 

 

N_cr = 1796,1 
kN 

Buckling mode 4 

 
Lowest mode with two half-sine waves in the 
transverse direction 
 
 

N_cr = 7159 kN 
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Buckling mode 15 

 
Lowest local buckling mode 
 
 

N_cr = 25934 
kN 

6 3600X7000 8 

Buckling mode 1 

 

 

N_cr =1879 kN 

Buckling mode 2

 
 

N_cr = 5173,8 
kN 

 
Buckling mode 16 

 
 
 

N_cr = 29324,8 
kN 
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Table B- 2  Strength curve: plates with increasing no. of stiffeners 

No
. 

Plate size 
(mm) 

No. of 
stiffen
ers 

Plot  (buckling mode used to introduce 
imperfection and the strength curve) 

Strength [kN] 

(Abaqus) 

1 1600X7000 3 

              

 

 

Buckling mode 1 is use to introduce 
imperfection. 

 

 

N_Rd =4249,6 kN 

 

U1 at max. load 
=11,7 mm 

Imperfection 
amplitude =3,2 
mm  

 

 

 

 

 

Stress pattern at 
maximum loading 
for the plate with  
3 stiffener 
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2 2000X7000 4 

     

 

 

             
Buckling mode 1 is used to introduce 
imperfection 

 

 

N,Rd = 4326 kN 

 

U1 at max load = 
12,45 mm 

 

Imperfection 
amplitude = 4 
mm 

 

Stress pattern at  

Maximum load 
for plate with 4-
stiffeners. 

 

 

 

3 2400X7000 5 

Buckling mode1 is used to introduce 
imperfection

 

N_Rd =4510,4 kN 

 

Imperfection 
amplitude = 4,8 
mm 

 

U1 at max. 
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loading = 12,6 
mm 

 

Stress pattern at 
maximum 
loading. 

This is stress 
pattern belongs 
to plate with 5-
stiffeners. 

4 2800X7000 6 

Buckling mode 1 is used to introduce 
imperfection 

 

 

N_Rd  =  4695,8 
kN 

U1 at max. 
Loading = 12,45 
mm 

 

Imperfection 
amplitude = 5,6 
mm 
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Stress pattern at 
max. loading for 
the plate with 6 
stiffener 

5 3200 7 

Buckling mode 1is used to introduce 
imperfection 

 

N_Rd = 4858,5 kN 

U1 at max. 
loading = 12,3 
mm 

Imperfection 
amplitude = 5,6 
mm 

 

 

 

Stress pattern at 
max. loading for 
the plate with 7-
stiffeners. 

6 3600X7000 8 

Buckling mode 1 used to introduce 
imperfection 

 

 

N_Rd = 5006,8 kN 

U1 at max. 
loading = 12,2 
mm 

Imperfection 
amplitude =7,2 
mm 
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Stress pattern at 
max. loading for 
the plate with 8-
stiffeners. 
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 C. Stiffened plate with increasing length : Buckling modes & strength 

curves 

Buckling analysis for stiffened plates (all plates have a thickness of 10mm) 

A point load is applied at the reference point 

Table C- 1  Buckling plots of plates with increasing number of stiffeners 

No 
Plate size 
[mm] 

No. of 
stiffen
ers 

Buckling mode No. 
N_cr_abaqus 

[kN] 

1 2000X200 4 

Mode  1 

 

 

N_cr = 10309,7 
kN 

Mode 3 

 

N_cr = 15671,8 
kN 

2 2000X3000 4 

Mode  1 

 

 

 

N_cr =49040 kN 

Mode 3 N_cr =15677 kN 
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3 2000X4000 4 

Mode 1 

 

 

N_cr =3130,8 kN 

Mode 5 
 

 
 
 

N_cr = 15711,7 
kN 

4 2000X5000 4 

Mode  1 

 

 

 

N_cr = 2415,2 kN 

 

Mode  6 

 

N_cr = 
15702,2kN 

5 2000X6000 4 Mode  1  
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N_cr = 2160,8 kN 

Mode  7 
 

N_cr = 15706,7 
kN 

 

 

6 2000X7000 4 

Mode  1 

 

N_cr = 2148,4 kN 

Mode  8 

 

N_cr =15712,8 
kN 

7 2000X8000 4 

Mode  1 

 

 

 

N_cr = 2285,9 kN 

Mode  9 
 

N_cr =15710,2 
kN 
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8 2000X9000 4 

Mode  1 

 

 

 

N_cr =2529,2 kN 

Mode 10 

 
 

N_cr = 15711,5 
kN 

 

9 

2000 
X10000 

4 

Mode  1 

 

N_cr =2416,1 kN 

Mode 11 
 

 

N_cr = 15712,2 
kN 

 

 

10 

 

2000 
X12000 

4 

Mode  1 

 

N_cr = 2161,6kN 
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Mode  14 
 

 
 

N_cr = 15712,2 
kN 

Strength curves of stiffened plates dimensions with increasing length are given on Table C- 2. 

Buckling mode 1 is used to introduce imperfection. 

 

Table C- 2  Strength curves: stiffened plates with increasing length 

No. 
Plate size 

(mm) 

 
 

Figure 
 
 

strength 

1 2000X2000 

 

 
N_Rd =6339,8 
kN 
 
U1 at max load 
=2,37 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
 
 

 

 
Stress pattern 
at maximum 
loading. 
 
 Failure 
occurred at 
axial stress of:         
229 N/mm^2 



123 
 

2 2000X3000  

 
 
N_Rd =  4576,9 
kN 
 
U1 at max. load 
= 4 mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
 
 

 

 
Stress pattern 
at maximum 
loading. 
  
Most of 
stresses are 
concentrated 
Along the 
longitudinal 
edges as 
expected. 
 
 
 

3 2000X4000 

 

 
 
 
N_Rd = 4172,4 
kN 
 
U1 at max. load 
=5,8 mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
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Stress pattern 
at maximum 
loading. 
 
Most of 
stresses are 
concentrated 
Along the 
longitudinal 
edges as 
expected. 
 
 

4 2000X5000 

 

 
 
N_Rd = 4110,6 
kN 
 
U1 at maximum 
loading = 7,7 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point). 
 

 

 
 
 
Stress pattern 
at maximum 
loading 
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5 2000X6000 

 

 
 
N_Rd =4189,6 
kN 
 
U1 at maximum 
loading = 9,8 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 

 

 
 
Stress pattern 
at maximum 
loading 

6 2000X7000 

 

 
 
N_Rd =  4326 
kN 
 
U1 at maximum 
loading = 12,45 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
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Stress pattern 
at maximum 
loading 

7 2000X8000 

 

 
 
N_Rd = 4452,6 
kN 
 
U1 at max 
loading  = 14,2 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 

 

 
 
Stress pattern 
at maximum 
loading. 
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8 2000X9000 

 

 
 
N_Rd = 4580,7 
kN 
 
U1 at maximum 
loading = 15,4 
mm 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
 

 

 
 
Stress pattern 
at maximum 
loading. 

9 2000X10000 

 
 

 

 
N_Rd = 4111 kN 
 
U1 at max. 
loading  = 15,4 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 
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Stress pattern 
at maximum 
loading 

10 2000X12000 

 
 

 
 

 
N_Rd = 4190 kN 
 
U1 at maximum 
loading = 19,5 
mm 
 
Both the 
loading and the 
displacement 
are taken at the 
RP (reference 
point) 

 
 

 
 

 
Stress pattern 
at maximum 
loading. 
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 D. Calculation work sheet for longitudinally stiffened plate 

 Both Effective width method and Reduced stress method are shown. 

A typical calculation work sheet showing how the calculations are performed is given below. 

The work sheet shows design procedures based on both Effective width method and the 

Reduced stress method.  

  

Plate with five equally spaced stiffeners 

 

Geometry Stiffener: Material date: 

Plate:  
(all flat type stiffeners)   

 
 

   

 
 ( n = no. of stiffeners)  

 

*symbol description: 
 
a = plate length 
b = plate width 
bsup= plate panel between stiffeners, distance taken c/c 

stiffener  
bend = plate panel between edge of the plate and nearest 

stiffener 

 

E 2.1 10
5
MPa

a 7000mm
fy 355MPa

hsl 160mm
b 2400mm

ts l 12mm  0.3
bsup 400mm

n 5
bend 400mm 

235MPa

fy
0.814

tp 10mm

Ac n bsup tp n hsl tsl 2.96 10
4

 mm
2


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  Cross sectional check 

Three types of subpanels to be checked: 

1: subpanels at the ends:  bend x tp 

 
2: subpanels between stiffeners:  bsup x tp 

 
3: stiffeners as an outstand plate: hsl x t 

Class 3 requirement: 

  for internal element with uniform axial compression  

  for outstand element with uniform axial compression 

For subpanel no.1, i.e. subpanel between the outermost stiffener and the edge of the 
plate 

 It is a class 4. 

For subpanel no.2 = it is the subpanel between two internal stiffeners 

 It is a class 4. 

For subpanel no.3 = the stiffener as an outstand plate  
 

Ok, class 3 or better 

 

Slenderness values for the subpanels: 

Both the subpanels at the ends of the plate and those between stiffeners have equal width. 
We need a single slenderness value. 

C

t
42  42  34.172

C

t
14  14  11.391

bend

tsl

2











tp
39.4

bsup tsl

tp
38.8

hsl tp

2









tsl
6.25
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Aspect ratio α: 

Very large aspect ratio:   
 

 

Local reduction factor,ρloc:  

uniform compression 

 

 

 

 NS-EN-1993-1-5:fig.4.4 

 

Global plate buckling: 

Plate buckling will be calculated by considering an equivalent orthotropic plate, according 
NS-EN-1993-1-5:A.1 

Parameters like Isl, Ip, γ , δ ,α  are needed to calculate kσ :  

Isl= second areal moment 

of the plate     
n= no. of stiffeners 

loc
a

bend
17.5

k 4

p.loc

bend

tp

28.4  k
0.865549

 1

loc

p.loc 0.055 3 ( )

p.loc
2

p.loc 0.673if

1 otherwise

0.861679

bend.eff loc bend 344.672mm

bsup.eff bend.eff

Ac.eff.loc n bend.eff tp hsl tsl  26833.589mm
2



Ac 29600mm
2



Isl

b tp
3



12
n

tsl hsl
3



12









 2.068 10
7

 mm
4


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Asl = sum of area of the individual stiffener  

 Ap = area of the plate part only 

Aspect ratio for the whole plate, α p:  

 
See Annex A.1: NS-EN-1993-1-5 

Areal ratio,δ:  

 

Inertia ratio, γp 

  

Ns-EN-1993-equation (A.2) 

 

 

σ E = reference buckling stress 

 

 

Ip

b tp
3



12 1 
2

 

2.198 10
5

 mm
4



Asl n hsl tsl  9.6 10
3

 mm
2



Ap b tp 2.4 10
4

 mm
2



 1

p max
a

b
0.5 









2.917

p

Asl

Ap
0.4

 p

Isl

Ip
94.094

4
 p 3.114515

k.p 2

1 p
2







2

 p 1








p
2

 1( ) 1 p 

 p
4
 pif

4 1  p 

 1( ) 1 p 
p

4
 pif



k.p 15.406

E


2
E

12 1 
2

 

tp

b









2

 3.295 10
6

 Pa

cr.p k.p E 5.076 10
1

 MPa
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  Global plate slenderness, λ p.glob: 

 
 

 

Column like buckling: 

Need Isl.1 and Asl.1 :  for the stiffener nearest to the edge and the plate part adjacent to 

it, according NS-EN-1993-1-5:Fig(A1): 

 

NS-EN-1993-1-5:Fig.A.1 

 

 

 

NS-EN-1993-1-5:equation(4.9)  

 

Relative column slenderness, λ c: 

 

A.c

Ac.eff.loc

Ac
0.907

p.glob A.c

fy

cr.p
 2.5178621

p

p.glob 0.055 3 ( )

p.glob
2

0.36246

Asl.1

bend bsup 
2

tp hsl ts l 5920mm
2



Asl.1.eff

bend.eff bsup.eff 
2

tp hsl ts l 5.366718 10
3

 mm
2



Is l.1

bend bsup 
2

tp
3



12

ts l hs l
3



12














Isl.1 4.129333 10
6

 mm
4



cr.s l


2
E Is l.1

Asl.1 a
2



2.950402 10
7

 Pa

cr.c cr.s l

A.c.sl

Asl.1.eff

Asl.1
0.90654
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NS-EN-1993-1-5:equation(4.11)  

 NS-EN-1993-1-5:4.5.3(5) 

 
 open section stiffener  

 

 NS-EN-1993-1-1:6.3.1.2 

 

Interpolation between plate- like and column-like buckling: 

 

 

 

 
 

 

c A.c.sl

fy

cr.c
 3.302685

e
hs l

4


i
Isl.1

Asl.1
26.411mm

 0.49

e 
0.09

i

e









 0.62631

c
1

2
1 e c 0.2  c

2






 6.925482

 c
1

c c
2

c
2



0.076848



cr.p

cr.c
1









0

cr.p

cr.c
1 1if

1

cr.p

cr.c
1 1if

0 otherwise



 0.721

c p c   2 ( ) c 0.34016

loc 0.862

bedge.eff loc

bend

2
 172.336mm

Ac.eff c Ac.eff.loc 2 bedge.eff  tp 1.2574373 10
4

 mm
2


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Nc.Rd = is a design resistance - it is a value determined by interpolating between plate -like 

and column- like buckling behavior.  

For the sake of curiosity, let us calculate strength neglecting the effect of column- like buckling 
(i.e. considering only plate behavior) :  

 

CALCULATION BASED ON REDUCED STRESS METHOD 

Loading situation: 

 uniaxial stress condition 

Note: this value of σ x,Ed was found by iteration.  

Determination of crα  : 

There are two possibilities to determine, crα   

 
1) Hand calculation using NS-EN-1993-1-5, equation (10.6) 
 
2) Using soft ware like EBplate, Abaqus.  

1)   Using hand calculation to determine, crα  : 

I: calculating α cr: 

 This value of σcr.p  was previously calculated for Effective width 

method. See the calculation done for Effective width method above. 
 
For uniaxial stress condition,σ cr.x= σ cr.p  See NS-EN-1993-1-5:10(6) 

 

 m.1 1

Nc.Rd Ac.eff

fy

m.1
 4463.902kN

Nc.Rd_plate p Ac.eff.loc 2bedge.eff tp 
fy

 m.1
 4676.351kN

x.Ed 116.6422146751MPa

cr.p 50.7635MPa

cr.x cr.p
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   No transverse & shear loading 

NS-EN-1993-1-5:eq. (10.6): 

 

 

II: Determination of ult,kα : 

NS-EN-1993-1-5: eq. (10.3) 
 

Only σ x.Ed is different from zero  

 

III: Determination of plate slenderness, λ p 

 
NS-EN-1993-1-5: eq. (10.2) 

IV: Determination of reduction factor, ρp 

NS-EN-1993-1-5 allows determination of reduction factor into two ways: 
 
A: Using different buckling curves according the clause 10(5a). Here equation (4.2), (4.3) 
and clause 5.2(1) could be used if necessary. 
 
B: Using a single generalized curve based on equation (B.1) 
 
In the following calculation, alternative A (i.e. different buckling curves) will be used).  
 
A generalized buckling curve method is usually used when the plate is non regular or 
when the loading situation is very complex. 

cr. 0 cr.z 0
cr.x

cr.x

x.Ed


1

cr

1 x

4 cr.x

1 z

4 cr.z


1 x

4 cr.x

1 z

4 cr.z










2
1 x

2 cr.x
2





1 z

2 cr.z
2




1

cr.
2













1

2


1

cr

cr cr.x 0.435

1

ult.k

x.Ed

fy









2
z.Ed

fy









2



x.Ed

fy









z.Ed

fy









 3

 Ed

fy









2


1

ult.k

ult.k

fy

x.Ed
3.043

p

ult.k

cr
2.644
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NS-EN-1993-1-5:eq(4.2)  

 

V: Column like buckling: 

According NS-EN-1993-1-5:10(5a), a column-like buckling of the plate should be 
considered. All relevant equations in section 4.5.3 will be used. The only exception is 
instead of λc (relative column slenderness), the plate slenderness, λ p which is 

calculated above will be used.  

 NS-EN-1993-1-5:4.5.3(3) 

 

 

 σ cr.c_r = the subscript "r" indicate Reduced 

stress method 
 

(open section stiffener) 
  

 

 NS-EN-1993-1-1:6.3.1.2(1) 

χ c_r  = the subscript "r" indicate Reduced 

stress method 
 

x 1

p_r

p 0.055 3 x 

p
2

p 0.673 3 x  0if

1 otherwise



p_r 0.347

Asl.1.

bsup bend

2
tp hsl ts l 5.92 10

3
 mm

2


Isl.1.

bend tp
3



12

tsl hsl
3



12
 4.129 10

6
 mm

4


cr.c_r


2

E Is l.1

Asl.1 a
2



2.950402 10
7

 Pa

e.

hs l

4
40mm

 0.49
i

Isl.1

Asl.1
26.411mm

e. 
0.09

i

e.









 0.6263086

 c 0.5 1 e. p 0.2  p
2







 4.7621

 c_r
1

 c  c
2

p
2



0.115
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  VI: Interpolation between plate and column buckling: 

 

 

 

VII: Determination of resistance: 

If there are different loading types, NS-EN-1993-1-5:eq. (10.5) is most appropriate to 
check for resistance of the plate. When there is only uniaxial loading situation, either 
eq.(10.5) or eq.(10.1) could be used. 

 Since results will be compared with that of Abaqus, influence of material factor is avoided 

 NS-EN-1993-1-5: eq.(10.5) 

OK!  

 
OR 

 NS-EN-1993-1-5: eq.(10.1) 

OK! 

2: Using soft ware to determine α cr: 

By using EBplate we get the critical buckling stress, σcr_EBplate= 54.137 Mpa 

α.cr  will be calculated based on σcr_EBplate : 

 

_r
cr.p

cr.c_r
1 0

cr.p

cr.c_r
1 1if

1

cr.p

cr.c_r
1 1if

0 otherwise



_r 0.721

c_r p_r c_r  _r 2 _r( ) c_r 0.329

 m1 1

x.Ed

c_r fy

 m1









1.00000000000028

c.Rd_r x.Ed 116.642MPa

cr.p 50.7635MPa

c_r ult.k

 m1
0.99999999999972

cr_EBplate 54.137MPa
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σ x.Ed_2 is determined by   

 
 

 
 

Interpolation  equation: 

 

 

 

Then the resistance check will be: 

 
NS-EN-1993-1-5: eq.(10.5) 

 NS-EN-1993-1-5: eq.(10.1) 

Strength based on αcrEBplate: critical buckling stress 

  

x.Ed_2 120.0041095605MPa

cr.EBplate

cr_EBplate

x.Ed_2
0.451

ult.k_2

fy

x.Ed_2
2.958

p_2

ult.k_2

cr.EBplate
2.561

p_2

p_2 0.055 3 x 

p_2
2

0.357

c_2 c_r 0.115

2 _r 0.721

c_2 p_2 c_2  2 2 2  c_2 0.338

x.Ed_2

c_2 fy

 m1









1.0000000000002

c_2 ult.k_2

 m1
0.99999999999978

c.Rd_2 x.Ed_2 120.00411MPa cr.p_2 cr.EBplatex.Ed_2 54.137MPa
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 An  example showing how iterations are carried out by MathCAD  

All parameters are same as those used in the last calculation above. Symbols 
used are defined on last two pages above. 

  

  

 

 

 

 

 

 

 

 

 

c_2 0.11464659221058879 x 1

2 0.7205621409227041  m1 1

ult.k_2 x.Ed_2 
355MPa

x.Ed_2



cr.EBplatex.Ed_2 cr_EBplate 
cr_EBplate

x.Ed_2



p_2 x.Ed_2cr_EBplate 
ult.k_2x.Ed_2 

cr.EBplatex.Ed_2cr_EBplate 


p_2 x.Ed_2 cr_EBplate 
p_2 x.Ed_2 cr_EBplate  0.055 3 x 

p_2 x.Ed_2 cr_EBplate 
2



c_2 x.Ed_2 cr_EBplate  p_2 x.Ed_2 cr_EBplate  c_2  2 2 2  c_2

funksjon x.Ed_2 cr_EBplate 
c_2 x.Ed_2 cr_EBplate  ult.k_2 x.Ed_2 

m1



x.Ed_2.trial 140MPa

root funksjon x.Ed_2.trial 54.137MPa  1 x.Ed_2.trial  120.0041095605MPa
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CONTROL AGAINST TORSIONAL BUCKLING OF STIFFENERS 

Flat stiffeners on axially loaded plates are prone to torsional buckling. NS-EN 1993-1-

5:9.2.1(8) states that, properties of a longitudinal flat stiffener should satisfy the following 

criteria to prevent torsional buckling. 

yT

P

fI
5,3

I E
                      NS-EN 1993-1-5: eq. (9.3) 

Geometry of stiffeners used: 

st

s

h 160 mm height of double sided flat stiffener

t 12 mm thickness of the stiffener

 

 
  

 

3 st
T st st

st

t1
I h t 1 0,63

3 h

 
  

 
  

 

3 3
6 4st st

x,st

3 3
4st st

y,st

4
p x,st y,st

t h 12 160
I 4,096 10 mm

12 12

h t 160 12
I 23040 mm

12 12

I I I 4119040 mm


   


  

  

  

 

4
T

4
p

87805,44 mmI
0,0213

I 4119040 mm
               

2
y

5 2

f 355 N/mm
5,3 5,3 0,009

E 2,1 10 N/mm
 


  

 

yT

p

fI
5,3 OK!

I E
  


