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Abstract

Comparison of Effective width method and Reduced stress method is performed based on

design procedures given in NS EN 1993-1-5

The two methods lead to exactly equal critical buckling stress and strength for uniaxially
loaded plates and no significant difference is observed between hand calculated results and

results of the numerical analysis.

Analysis of biaxially loaded plates showed that results of Reduced stress method and that of
finite element analysis are very close for square plates, but not for rectangular plates.
Reduced stress method gives 10 % - 20 % lower buckling stress and 6 % - 14 % lower strength

values compared with results from finite element analysis.

Hand calculations show that both methods lead to equal critical buckling stress for stiffened
plates. But Reduced stress method gives a very conservative strength results. It was found to
be about 10 % difference between the two methods when applied on relatively narrow and
long stiffened plates. Strength results based on Effective width method for stiffened plates
are generally lower than results of numerical analysis. The difference is especially very large
for both short and wide plates, since effect of column-like buckling is taken into
consideration. Hence the interpolation equation used in the design process is not good

enough to capture the real behavior of such stiffened plates



Sammendrag

Sammenligning av Effektiv bredde metoden og Redusert spenningsmetoden er gjort basert

pa dimensjoneringsregler gitt i NS EN- EN 1993-1-5.

Begge metodene gir lik knekkspenning og kapasitet for en- aksialt belastede, uavstivede
plater. Dessuten vises det ingen signifikante forskjeller mellom handberegnede resultater og

numeriske analyser.

Analysen av bi — aksialt belastede plater viser at Redusert spennings metode og finite
element metode samsvarer veldig godt for kvadratiske plater, men ikke for rektangulzere
plater. Redusert spennings metode gir 10 % - 20 % mindre knekkspenning og 6 % - 14 %

mindre kapasitet i forhold til analysen som er gjort med Abaqus.

For avstivede plater gir begge handberegningsmetodene lik knekkspenning. Men Redusert
spenningsmoden gir en veldig konservativ kapasitet. Det ble observert at Redusert

spenningsmetoden gir ca. 10 % mindre kapasitet for smale og lengre avstivede plater.

Effektiv beredde metoden gir generelt mindre kapasitet sammenlignet med resultatet fra
den numeriske analysen. Avviket er spesielt stort for relativ korte eller breie plater, siden
effekten av sgyle-lik knekking er tatt i betrakting. Dette viser at interpolasjons likningen som

er brukt i beregningene er ikke god nok til 8 fange oppf@rselen av avstivede plater



1.Bakgrunn

Plater med stivere inngar i store bjelker, broer, beholdere, skip og andre stgrre
konstruksjoner. Omfattende beregningsregler er gitt stal- og aluminiumsstandarden.
Beregning av oppfersel og kapasitet til plater med stivere er godt egnet for simuleringer med
datamaskinprogrammer, og beregningsresultater herfra kan gi god stgtte til den
eksisterende erfaringen pa omradet og forstaelsen av de reglene som er stilt opp. | Eurocode
3, del 1-5, er det beskrevet en alternativ metode “Reduced stress method” som skal
undersgkes, og sammenlignes med de vanlige beregningsreglene for platefelt. Oppgaven
omfatter litteraturundersgkelse, sammenligninger av regler, og numeriske simuleringer for
utvalgte geometrier av avstivede plater. Arbeidet kan benytte resultater og eksempler fra
tidligere studentarbeider for platefelt med stivere, og eksempler fra utfgrte konstruksjoner
fra ulike prosjekter.

2.Gjennomfgring

Oppgaven kan gjennomfgres med fglgende elementer:

e Redegjgre for beregningsreglene for uavstivede og avstivede plater med
aksialbelastning.

e Se spesielt pa den alternative metoden med «Reduced Stress Method» (NS EN 1993-1-
5), og forklare dens teoretiske bakgrunn. Stikkord her er elastisk knekking, bade lokal
knekking (plate mellom stivere) og global knekking (platen med stivere knekker
sammen), og modeller for kapasitetsberegninger.

e Gjgre handberegninger med utvalgte konstruksjonseksempler for uavstivede og
avstivede plater (platefelt), og sammenligne kapasiteten funnet med de ulike
metodene.

e Etablere FE modeller av platefelt, med modellering av realistiske materialegenskaper
og vanlig forekommende stgrrelser for formfeil/imperfeksjoner, og finne platefeltenes
kapasitet. Sammenligning med handberegninger.

e Konklusjoner vedrgrende «Reduced Stress Method». Fordeler og ulemper. Er metoden
et nyttig alternativ i dimensjoneringsarbeidet for en praktisk konstruksjon?

Kandidaten kan i samrad med faglzerer velge a konsentrere seg om enkelte av punktene i
oppgaven, eller justere disse.



Kommentar:

Opprinnelig var malet av oppgaven a fokusere pa alternativ metoden som ogsa er kalt
Redusert spenningsmetode. Men det viste seg at det ikke var lett a finne relevant litteratur
som er skrevet pa norsk eller engelsk.

Veideler har kontaktet Dr. —Ing. Braun, som har forsket mye pa dette omradet, og spurt om
relevant litteratur. Som svar fikk vi at Redusert spennings metoden er brukt mye i Tyskland
og derfor er mye av litteraturen skrevet pa tysk. Svar av Braun er vist under.

Etter diskusjon med veileder, ble malet av oppgaven endret til sasmmenligning av
dimensjoneringsmetodene gitt i NS-EN 1993 -1-5.

Benjamin Braun <braun@spacestructures.de>
to Arne, derik, me

Hello Arne,

the reduced stress method is a German approach so that almost everything is published in
German. It evolved since the 1950s and has been already incorporated in former standards
DIN 4114 and DIN 18800 in a similar way.

In principle relevant literature is referenced in Sections 2.3.4.2 and 2.3.2 of my thesis.
Further useful information with examples can be found in this book
http://www.amazon.de/18800-Teil-Beuth-Kommentar-Erlauterungen/dp/3433014043

If you look especially for the calibration of alpha-cr | recommend the thesis of Christian
Miuller, RWTH Aachen, see reference [84] in my thesis. Unfortunately it has been only
available as printed copy as far as | know.

To get a broader perspective | recommend to look also into the background of shell buckling.
There are some interesting publications by Thomas Winterstetter, Universitdt Essen, which

address also topics of the reduced stress method for plate buckling.

Hope this helps.
BR Benjamin

Dr.-Ing. Benjamin Braun

office +49 30 - 6392 8920
mobile +49 1573 - 9479755
fax +49 30 - 6392 95 8920
braun@spacestructures.de
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Preface

This thesis has been written as a final part of my study at Norwegian university of science

and technology - Department of structural engineering.

The report focuses on design methods of thin steel plates given on Euro code-3-1-5. In
Norway Reduced stress method is hardly used method, even it is not a commonly lectured

topic at NTNU.

It was my intention to increase the familiarity of Reduced stress method by comparing it
with the Effective width method. Simple calculations are performed on regular plates to
show the difference of the two methods and how they are applied. | hope this report will

turn out to be very useful for anybody who is interested in this topic.

At last | would like to express my appreciation and gratitude to my adviser, associate

professor Arne Aalberg for his encouragement, suggestions and guidance.

July 2013, Trondheim
Abdirakib Mohammed Derik
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1. Introduction

Structures composed of thin plates members are widely used in steel constructions. It
becomes increasingly a common practice to use thin plates in construction of bridges, ships
and other marine structure. Higher aesthetic value, economic reasons and the availability of
advanced productions techniques make the use of thin plates ideal. But thin walled steel

plates are very susceptible to buckling.

Unlike columns a compressed plate can carry loading after it has buckled. Since the buckled
part usually loses its stiffness, stresses will concentrate along the supported edges leading to

a nonlinear stress distribution pattern.

It is inconvenient to deal with the nonlinear stress distribution in a practical design situation.
Actual stress condition is usually idealized to an equivalent uniformly distributed stress
situation which makes the design process easier. NS-EN 1993-1-5 provides two alternative
methods of treating slender plated structure which are; The Effective width method and the
Reduced stress method. Both alternatives help simplify the actual nonlinear stress situation

to an equivalent uniformly distributed stress condition.

Effective width method involves reduction of cross section area of plated structures
subjected to buckling. Reduced stress method also simplifies the actual stress distribution to
an idealized form, but instead of reducing area, it limits the stress level. In other words, the

nonlinearly distributed stress is replaced by a uniform average stress level.

The common design method used in Norway is the Effective width method. The Reduced

stress method is hardly used as a design tool.

The thesis will focus on comparing the two methods to shed a light on differences,

advantages and disadvantages of the two methods.

The original aim of the study was to mainly concentrate on Reduced stress method,
especially on its background information, development of its design criteria ...etc. But
unfortunately it was not possible to find a relevant literature written in English or

Norwegian. Most of the literature related to this topic was written in German or other



languages. Therefore the aim of the thesis is modified to comparison of the two alternative

methods based on the design criteria given in NS-EN 1993-1-5.

To study the difference between the two methods both stiffened and unstiffened
rectangular plates are used. Both uniaxial loading and biaxial loading are applied to

unstiffened plates; whereas only uniaxial loading is applied to the stiffened plates.

Critical buckling stress and design strength of plates with selected dimension are manually
calculated based on the two methods. All plates which are hand calculated are also analyzed

using the multipurpose soft ware, Abaqus.



2. Literature review

2.1. Braun (2010)

Braun (2010) studied stability of plates under combined loading. He especially focused on
buckling of steel plates under biaxial compression and I-girder webs with transverse patch

loading combined with shear stress.

Biaxially loaded plates are analyzed based on the Reduced stress method given by NS-EN
1993-1-5. A large discrepancy was observed between results of Reduced stress method
and that of proven rules of DIN 1889-3 as shown on Figure 2-1. Furthermore NS-EN 1993-1-5
does not provide any interaction formula when combined transverse patch loading and

shear stress are acting on I-girder webs.
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Figure 2-1 Comparison of Reduced stress method and DIN 18800-3, Braun (2010)



The main objective of the study was to improve these limitations of the current rules of the

NS-EN 1993-1-5 and provide a more suited interaction equation.

Previous experimental works on biaxially loaded plates were restudied by using nonlinear
finite element analysis. The main parameters focused during the finite element analysis

were:

Slenderness, % ratio =30, 45, 65 and 100

Panel aspects ratio a =1 and 3

Imperfection shape and amplitude

Edge boundary conditions, both in-plane and rotational

Simulation results were compared with results of the Reduced stress method and the
following interaction equation is proposed to describe the stability behavior of biaxially

loaded plates.

<1

2 2
Ox,Ed Oz,Ed Cpyp (Gx,Ed‘oz,Ed
xPz| —

+
Ox,Rd Oz,Rd Ox,Rd"Oz,Rd

The study of |-girder web under combined shear and patch loading is not relevant for this

thesis and will not be discussed further.

2.2. Master thesis: Sandstad, K (2004)

Kathrin Sandstad (2004) restudied a stiffened plate which was previously studied by B.
Johansson and R. Maquoi (2002). In separate articles both Johansson and Maquoi (2002)
presented capacity of longitudinally stiffened plates. Their results have shown that the
strength curve dropped down and then raised up as the length of the plate panel was

increased as shown on Figure 2-2.
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Figure 2-2 Normalized resistance of plate with single stiffener, Sandstad(2004)

Sandstad argued that it is a strange that shorter plates have lower capacity than longer
plates, when all other factors are kept constant. She studied a longitudinally stiffened plate

with a single stiffener.
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Figure 2-3 Plate geometry studied, Sandstad (2004)
She analyzed a single stiffened plate using Abaqus soft ware. Width and thickness were kept
constant but length was varied from 1 m to 6 m. The plate was modeled with shell elements

while the stiffener was modeled using two nodded beam elements.

Imperfection was introduced to the nonlinear analysis using mode shapes from buckling

analysis.

Results of Sandstad (2004) didn't showed, the typical strength drop which was previously

reported by Maquoi (2002) and B. Johansson as the length of the plate was increased.
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Figure 2-4 Comparison of strength analysis, Sandstad (2006)

2.3. Master thesis: Kleppe (2006)

Kleppe (2006) studied buckling and strength of steel plates using the rules of Eurocode 3-1-5,

Eurocode -9-1-1 and the multipurpose finite element analysis soft ware, Abaqus.

Both unstiffened and stiffened plates were considered and studied. Both width and length of
the plates were let to vary. This was done to see the effect of plate-like and column-like

buckling.

Numerical analysis was performed by modeling the plates with shell elements, where as
stiffeners were modeled using two nodded beam elements. Both linear buckling analysis and

numerical strength analysis were performed.

A number of plate dimensions both unstiffened and stiffened were analyzed manually and

numerically and results of both methods were compared.

For unstiffened plates, NS-EN-1993-1-5 states that a column-like buckling should be
considered if the aspects ratio, 0. = (a/b) <1, but Kleppe (2006) has showed that
consideration of column-like buckling is only necessary when a = (a/b) <0,644.

Moreover it was observed that strength results obtained by interpolating between column

and plate-like buckling didn't match with results of the numerical analysis.



3. Elastic buckling of plates

The need to optimize materials and reduce self weight has led to an increased use of thin
steel plates. Thin plates are commonly used in bridges, offshore, ship structures and
aerospace structures. But the downside is, thin plates are very susceptible to buckling when
loaded in compression. Buckling is a stability problem which causes a sudden out of plane

deformation of the structure.

Unlike columns plates can carry loading beyond the buckling point due to redistribution of
compressive stress. For a uniaxially loaded rectangular plate, it is the central longitudinal
strip that buckles first. Since the buckled central strip has lost its stiffness, stresses will be
redistributed along the supported edges. The plate will continue to carry the loading until

the supported edges reach yielding stress.

The general critical buckling stress is expressed as:

- .LEZ.(ET o)
12(1-u%) \b

Where:

kg = buckling coefficient

t =thickness

b = width of the plate

U = Poisson’s ratio

Analytical derivation of the above equation may involve a very complex expression which
could not be easily solved. But for regular geometries, a sufficiently accurate critical buckling

stress could be determined based on differential equation of plate buckling.



3.1. Differential equation of plate buckling
Differential equation of plate buckling is derived based on the following assumptions:

e The plate is considered to be homogeneous, isotropic and linear elastic material (i.e.
Hook’s law is applicable).

e The plate has a perfect geometry

e Small deformations

e Thin plate : the thickness of the plate is very small compared to its width and length

e The plate has a constant thickness
Consider membrane forces, NX,Nyand ny expressed as force per unit length are applied to

an isolated infinitesimal plate element with dimensions, dy and dy as showing on the Figure

3-1 below. The plate element is given an infinitesimal deformation, w, in the vertical

direction and equilibrium of forces is established using the deformed configuration.

Figure 3-1 Membrane forces on deformed plate element dx.dy (Larsen, 2010)

All membrane forces shown on Figure 3-1 will attain a vertical component in Z-direction, due
to rotation of forces relative to XY-plane as the plate deforms. Refer to Figure 3-2 and Figure

3-3 taken from Larsen ( 2010).
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Figure 3-3 In-plane shear forces on a deformed plate element, (Larsen, 2010)

Now let’s calculate the equilibrium conditions:

ONy +aNVX _

1) Equilibrium in the X- direction 0 (3.2)
OX oy
ONy, ON
2) Equilibrium in Y-direction e S A (3.3)
oy OX

3) Equilibrium in Z-direction: different forces contribute to equilibrium in the Z-direction:

Vertical component of Ny, :

2
ON ow 0O°w ow
(Nxdy +—dedy) ——+——-dx |[=Nydy (—j = If higher order term is omitted,
OX OX axz OX
o®w 0Ny ow
the expression is simplified as: = | Ny ——+ — dxdy

8x2 E OX
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Vertical component of Ny :

oN ow  %w ow
Nydx +—ydydx —+—dy —Nydx — | = by omitting the higher order term,
oy v o2 oy
o®w Ny ow
the expression is simplified as: = | Ny ——-+———— |dydy
oy2 Oy oy

Vertical component ofoy :

If the higher order term is neglected, the contribution of shear forces to the vertical

2
0 ONyy 6w ONyy O
equilibrium will be: = 2ny8§'y+ axygvu a;(ya_w dydy
X X X

The sum of all vertical components of N,, Ny and ny is considered to be equal to a

uniformly distributed equivalent force, geky (X,Y)acting in the Z-direction.

o*w , Oy Ow o®w  ONy ow

— dydy +| Ny —+ — |dydy +
ol ox ox | Y Y

N 7
X o2 Oy oy

2y ON N
2Nyy ow  Txy ow Ty ow
Oxoy Ox oy oy Ox

dxdy =0ekv (X, y)dy dy

By rearranging we get:

2 2 2 ON ONy 0N
Nxa_w+Ny8_W+2NXy8_W dydl, + Ny, Txy |ow (dy | Y X My y
a2 ﬁyz OXOy ox oy )ox oy ox ) ox
=dekv (x, y)dx dy
ON ON,, ON
From equations (3.2)and (3.3) above: 8&+¢:O and —y+i=0
OX oy oy OX
Then we get:
2 2 2
o“w o“w o“w
Ny —+Ny —=+2Nyy ——— |=0eky(X,Y) (34)
a2 Vo2 aoy|



The uniformly distributed equilibrium force qekv(x,y) can be determined by performing

bending analysis and deriving the differential equation for plate bending.

Consider a uniformly distributed force; q(x, y) is applied to a rectangular plate as shown on

Figure 3-4 below.

L aky) ~
1 ke s e S xX,u
b Z4
A 47,—3;
=" dx
- 1 t
»w zw
| atxy)
0, v2

2

Oy
N ”

Figure 3-4 Stresses on rectangular plate loaded in bending, (Larsen, 2010)

Differential equation of plates in bending is given on eq. (3.5) shown below. For detailed

derivation of the equation refer to Larsen,(2010).

o*w Pw  otw 4

q
+2 + =Vi=2 (3.5)
8x4 axzayz 8y4 D
3
Where:DzE;2
12(1—v°)

By inserting equation (3.4) into equation (3.5) we get:

2 2 2
Ny ;V+Ny 0 ‘;"+2ny6 w
o*w Yy o*w N o*w _vA_ Ox oy Oxoy
6x4 axzayz 8y4 D

Hence, the differential equation of plate buckling will be: (3.6)

11
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2 2 2
1
D 8X2 6y2 OX0y

3.2. Critical buckling load of a uniaxially loaded rectangular plate

Critical buckling force of longitudinally loaded plate shown on Figure 3-5 is determined by

using the differential equation (3.6).

)

Figure 3-5 Simply supported plate with uniaxial loading (Larsen, 2010)

The differential equation for plate buckling:

2 2 2
4 1 o“w o°w o“w
Vw =—| N +N +2Nyy —— |, butN,,andN,,, =0,
WD K2 Y 52 T oy y andhxy
2
1 0
= v+ NS =0
D ox2

Since the plate is simply supported: W =W,y =0 at x=0 & x=a (these are boundary

conditions which should be satisfied).

According Larsen (2010), the following function will satisfy the boundary condition for the

above plate.

. MMX . N
w(x,y):wmnsm—sm—y (3.7)
a

Inserting equation (3.7) into the differential equation, we get:

4 m2+n2 _N_X(mnjz mmx . nmy

| —+— WmnSin——sin—-=0
a2 b)) D

d d
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Since Wpm # 0, for non-trivial solution, the expression in the parenthesis should be equal to

zero.
2 2 2
N
S| ) T __x(MJ _o
a b D a
3
Et
where D= >
12(1-u?)

D

2
2 E 2
d

n“ a
m b

Substituting for flexural rigidity, D and dividing by thickness of the plate, t:

2
oo = mb+n2a n’E (tjz
cr=|m-_Ft——| ———|
a mb | g31-y?)\b
2
k~ = E+ﬁi
° a mb

Where:

n = no. of half sine-waves in the transverse direction

m = no. of half sine-waves in the longitudinal direction

b = width of the plate
a=length

t=thickness

S mz
R
12(1-uv)\b

Ocr =Ko *Oe

(3.8)

(3.9)

(3.10)

(3.11)

The Euler stress,0p depends only on material properties and is always constant for any given

plate, but the buckling coefficient,k; depends on the loading situation, boundary conditions

and plate geometry.
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As stated on Larsen, (2010) the minimum critical buckling stress is only of interest for
stability analysis. Critical buckling stress of a plate is minimum, when it buckles in a single

half sine-wave in the transverse direction (i.e. When n =1 in equation (3.9) above).

Number of half sine-wave buckles in the longitudinal direction, m is equal to aspects ratio,

provided that ais an integer number.

The relationship between stress coefficient,ky and aspect ratio, a for longitudinally loaded,

simply supported regular plate is shown on Figure 3-6 .

12
Ko

Figure 3-6 Stress coefficient, kg for simply supported plate with longitudinal loading
(Larsen,2010)

In case of practical design,ko can be evaluated as:

kg =4 for a:§21

1\2 a
kc:(ow—j fora=-<1
o b
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3.3. Critical buckling load of biaxially loaded square plate

Analytical calculation of critical force for biaxial loading condition is only possible for square

plates. Biaxially loaded Rectangular plates could only be analyzed numerically.

N_y
Critical buckling force for simply supported square plate ' l ‘ l '
shown could be calculated based on equation (3.6) given | -
E a
previously. ;u ‘ 5
Her we assume Ny =Ny [N/mm] h‘ ' : B
Equal width and length = a square plate. I NJV
2 2 2
1 o“w o“w o“w
Equation (3.6) given as: V& =— NX—+Ny 2ny but
D a2 ayz OXoy
Nxy =0 and N=N, =N,
2 2 4 4 4
o“w 6
= V=N 3 2 Vé":af” 82W2+82I
D | ox? ay ox oxoy> oy
4 4 4 2 2
0'w o'w 0w 0 w o“w
) n —N -0 (3.12)

8x4 8x28y2 8y4 D | ox 2 6y2

As it was done for uniaxially loaded plates, we need a displacement function which could at

least satisfy the boundary conditions.

The displacement function which satisfies the differential equation (3.12) and the required

boundary conditions could be:

mmnx . n

w(x,y)= Z anmsm—nsm Tty (3.13)
b b

m=1n=1

Where: m and n are number of half sine-wave buckles in the longitudinal and transverse

direction respectively.

X
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Differentiating equation (3.13) and inserting into the equation (3.12), we get:

m*r N m?n’rc? N nr? B 12(1—U2)NT[2
b* b* b* Et3b?

(m2+n2) wmnsin%sinn%zo (3.14)

Wnm #0 = For nontrivial solution, the expression in the brackets should be equal to

Zero.
4_4 22 4 4_4 2 2
N m;t +2m n4r[ +n ;[ _ 121 l3Jz)NT[ (m2+n2):0
b b b Et”b
N = Et?’b2 m4n4 +2m2n2n4 +n4n4
cr=
12(1-v?)n(m? +n?)| b4 p? b?

According to Jones, (2006) critical force, N¢p is minimum whenm =n=1, i.e. single half sine-

wave buckle for both directions. Then the critical buckling force for the square plate will be:

3 2
Ny :L(EJ (3.15)
6(1-u2)\b

3.4. Cross sectional classes

NS-EN-1993-1-5 classifies plate cross sections depending on risk of buckling when loaded in
compression. Slender cross sections may buckle long before the loading reach yielding
stress, while others can carry compressive stress until plastic failure occurs. Based on the

slenderness ratio, plate cross sections are classified in to the following four classes:

e Class 1: are usually compact cross sections with low value of slenderness ratio. Such
cross sections can form plastic hinges and can carry the loading until plastic failure

occurs.
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e C(Class 2: this cross section is relatively compact and able to carry the loading into
plastic zone. But it's not able to form plastic hinges with enough rotational capacity.

e C(lass 3: the stress in outer most fiber of the steel member can reach yield stress, but
the cross section has a reduced capacity of plastification due to risk of buckling.

e Class 4: cross sections with high level of slenderness belong to this class. Such cross

section buckles long before compressive stresses reach yielding value.

NS-EN-1993-1-5, table 5.2 helps determine cross sectional class of plated structures based
on slenderness ratio, loading situation and support condition. If a cross-section is made up of
multiple plates, like box profiles each and every individual member should be evaluated to
determine its cross sectional class. Then the cross-section is classified according to least

favorable class of its compression members as it is stated on NS-EN 1993-1-1: 5.5.2(6).

For cross sectional class 1-3, reduction of capacity to resist pure axial compression is done
due to risk of global buckling, where as for class-4 load carrying capacity is limited due to risk

of both local and global buckling.

3.5. Behavior of stiffened plates

Slender plates are usually stiffened to increase buckling strength. When compressive load
applied to a stiffened plate reaches a critical level, the stiffened plate will buckle locally or

globally.

e Local buckling: during loading the stiffeners will stay straight and the plate panels
between stiffeners will buckle. This occurs usually when the stiffeners are much
stronger than the plate. If the web of the stiffener is very thin and high, the stiffener
itself may buckle with the plate.

e Global buckling mode: the stiffener buckles together with plating. This happens when

the stiffeners have small bending stiffness.

Increasing the rigidity of stiffeners will generally increase the stiffness of the whole stiffened
plate until a certain limit is reached. After that limit, rigidity of stiffeners will not have any

stabilizing effect on the plate. This situation is best described based
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Figure 3-7, taken from Dubas, (1986).

As shown
Figure 3-7(b), buckling coefficient,ky of the plate increases until the rigidity of the stiffener

*
reaches a certain limit,y . Increasing rigidity of stiffener over that limit will not necessarily

increase buckling strength of the plate, since the plate become susceptible to local buckling.

At lower level of stiffener rigidity, the plate and stiffener buckle together (i.e. global buckling

happens)
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Figure 3-7 Effect of increasing rigidity of stiffener on plate buckling mode
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4. Resistance of plates against pure compression

A thin slender plate structure usually buckles before the compressive stresses reach its
yielding stress. But the plate can carry loads long after it has buckled. Buckled plates will
attain nonlinear form of stress distribution, since stresses concentrate along edges which are

forced to remain straight due to the boundary condition.

i :
| E g
= AT =

Figure 4-1 Pattern of real stress distribution for uniaxially loaded plate

It is unpractical to deal with this nonlinear distribution of compressive stress when designing
plated structures and design codes usually apply simplified design methods. NS-EN 1993-1-5

provides two alternative verification methods when designing plated structures.

e Effective width method (also called effective cross section method)

e Reduced stress method

4.1. Effective width method

As it is described above, real distribution of stresses of a buckled plate is nonlinear. For
practical design, it is not easy to deal with such stress pattern. Therefore the real stress
pattern is replaced with two constant stress blocks which are equivalent to the real stress
situation. These two constant blocks are distributed over a reduced width of the plate

denoted as effective width, beff as shown on Figure 4-2.
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Figure 4-2 Real and simplified stress distribution pattern

The Effective width method is based on the hypothesis of Karman. Karman has proposed to
replace the real plate, with a fictitious model plate having same boundary conditions as the

real plate but with a reduced width, beff . According to Karman, effective width for simply

supported uniaxially loaded rectangular plate is calculated as shown on eq. (4.1) below.

o 1 .
befs =b % = bess =b T where b = width of the real plate (4.1)

y p

Karman assumed that the strength of the plate is reached when the stress level of the

fictitious model plate reach yield stress.

The assumption of Karman is very close to the simplifications used in the design code, but its
main weakness is, it was totally based on mathematical formulations and effect of
imperfection was not considered. Karman's assumption was later modified to include the

effect of imperfection.

The Effective width method given in NS-EN 1993-1-5 is only applicable for plates which

satisfy the following geometrical requirements:

e The plate geometry should be rectangular with parallel flanges.

e Stiffener should be applied either in the longitudinal direction or transverse
direction, but not diagonally.

e Thickness of the cross section should be uniform.

e Flange induced buckling should not occur.



4.1.1. Overview of design procedure: Effective width method
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In the design process, calculation of cross sectional class should be done first, to determine

whether the plate is susceptible to local buckling or not. Only plates belonging to cross

sectional class 4 are prone to local buckling.

Stiffened and unstiffened plates are treated in slightly different ways when designing

according the Effective width method given on NS-EN 1993-1-5.

A. Design procedure for unstiffened plates

The design procedure for unstiffened plates is summarized on the following table.

Table 4-1 Design procedure for unstiffened plate in compression

St
nzp Description Equations used Reference
Determination of cross
sectional class: if the
i f
| Structureis made up o Table 5.2 NS-EN 1993-1-1
multiple plates each and
every member plate should
be considered
. d Chapter 8.2,
2 A —
spects ratio, o ) Larsen, (2010)
Determine bucklin Chapter 8.2
3 - 8 Fig.8.9 apter e.%,
coefficient, k5 Larsen, (2010)
b
4 Plate slenderness, Ap Xp = t NS-EN 1993-1-5:eq
28,4.8 kO' (43)
Critical plate like buckling, Chapter 8.2
5 Ocrp =Ko "OF g '

Ocr,p

Larsen, (2010)
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For internal element

if Xp >0,673
Ay —0,055(3+1p)
p =
XZ
p
p=1 if Ap<1 NS-EN 1993-1-5:eq
6 Determination of reduction (4.2) and eq.(4.3)
factor,p For outstand element
if Xp > 0,748
A, —0,188
P=—"""
A
p
p=1 if A;<0,748
Now calculate effective area,
A NS-EN 1993-1-5:e
7 c,eff Ac,eff — p‘AC q
(4.1)
Ng = A Ny
8 Design strength, Ngg will be: R™Pc,eff y NS-EN 1993-1-1:eq

ml

(6.11)

*For wide plate with aspects ratio,aa <1 column like buckling should be checked

S First calculate critical column °Et2 NS-EN 1993-1-5:eq
. (o) =
buckling, Ocrc ’ 12(1—U2)a2 (4.8)
Determine relative column X fy NS-EN 1993-1-5:eq
10 | slenderness, A, ¢ Ocr ¢ (4.10)
Determination of reduction 1 _
11 factor due to column like Xc = —2 > NGS;1E9N 1933-1-1:eq
buckling, X ¢ ¢+«f¢ —A: (6.49)
Interpolation between
NS-EN 1993-1-5:
column-like and plate-like Pc =(p—Xc)E.(2—E.)+Xc ed
12 ) (4.13)
buckling
f NS-EN 1993-1-1:
13 Final design strength NRq =P ¢ "Ac (Lj ed
Ym1

(6.11)
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B. Design procedure for stiffened plates

Plates with only one or two longitudinal stiffeners are treated as column on elastic
foundation when calculating the critical buckling stress of the plate. But for plates with more
than three longitudinal stiffeners, an equivalent orthotropic plate is considered by smearing

the stiffeners smoothly over the plate.

Generally design procedure of stiffened plates is similar to that of unstiffened plates, but

reduction of area is done in a slightly different way.
The total plate area is subdivided into two parts which are:

e Area close to the supported edges which is 100 % effective and no reduction is
needed.

e Remaining area denoted as A, which is susceptible for both local and global

buckling. The areaA.. is shown on Figure 4-3 taken from Eurocode-3-1-5.

The total effective area of the compressed stiffened plate will be:
Ac,eff =PCAceff Joc T D Pedge,efft (4.2)

Local effective area, A off |oc Shown on Figure 4-3 is calculated based on local effective

width of sub panels, bgfs .

For a rectangular plate with a uniform compression, effective width of a sub panel is

calculated as:

beff,i = ploc,i-bi
Where:

b; = width of sub panel
Ploc,i = local reduction factor for subpanel"i"

The local reduction, pjqc j factor is calculated exactly the same way as reduction factor,p for

unstiffened plates given on Table 4-1 above.
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After the effective widths of all subpanels are determined, the effective local area is

calculated as:

Ac effloc = Z:beff,it = tzpbc,ibi (4.3)

b,p
bl.edge eff = 121 Aceftioc b3,edgc,ct:f

Figure 4-3 Stiffened plate in compression

The next step of the procedure will be calculation of relative slenderness of stiffened plate,

?\p:

iy Ac,eff,loc fy

o=
Ac  Ocrp

(4.4)

Now critical plate like buckling stress Ocrp is needed to be determined. For plates with only
one or two longitudinal stiffeners critical buckling stress, Ocr,p is done by considering the

plate as a column on an elastic foundation. All relevant equations are given on Annex A.2 of
NS-EN 1993-1-5. Plates with more than three longitudinal stiffeners are treated as

equivalent orthotropic plates. Plate-like buckling stress, Ocrp is determined using the

equations given on Annex A.1 of NS-EN 1993-1-5.

The area is once more reduced due to risk of global buckling, and the global reduction factor

is calculated as follow:
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Ao —0,055(3+1)
32
)\p

Pp = for plate with uniform compression (4.5)

Column like buckling should be checked based on the equations given on section 4.5.3 of NS-

EN 1993-1-5.

As it was done for unstiffened plate, plate-like and column-like buckling of stiffened plates
should be interpolated using eq.(4.13) of the Eurocode. Then the final strength of the

stiffened plate is calculated as:

f

Y
NRd = (pc.Ac,eff.loc + Zbedge’eﬂ:t) o (46)
m

4.2. Reduced stress method

NS-EN-1993-1-5 provides the Reduced stress method as an alternative method to determine
the stress limits for both stiffened and unstiffened plates. As opposed to the Effective width
method, the Reduced stress method assumes a linear stress distribution until first plate
element buckles. If the structure is made up of multiple plate parts, the plate part which
buckles first will govern the resistance of the entire cross section. Reduced stress method
does not assume post critical strength of the entire cross section, which means the method

does not consider load shedding from highly stressed to less stressed plate elements.

The difference between the Reduced stress method and the Effective width method
becomes very clear, if the cross section is made up of multiple plate parts. For a cross section
with only single plate element, the Reduced stress method gives equal results to that of

Effective width method.

According section (10) of NS-EN 1993-1-5, for unstiffened and stiffened plate panels

subjected to combined stresses Oy gq, O; gd @and Tgg, class 3 section properties may be

assumed, when equation (4.7) is fulfilled.
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P-Oylt,k >1
Ym1 (4.7)
Where:
Qylt k = the minimum load amplifier for the design loads to reach the characteristic
value of resistance of the most critical point of the plate.
p = the reduction factor depending on the plate slenderness, Xp to take account of

plate buckling.

The reduction factor, p could be either determined by taking the minimum value of p, ,p,

and X,y according clause 10(5a) of the Eurocode, or a value interpolated between them.

Instead of using a single buckling curve as equation (4.7), strength of the plate could be also

verified by using clause 10(5a) of NS-EN-1993-1-5.

2 2 2
(o} (o] (o} o T
x,Ed + z,Ed . x,Ed z,Ed +3 Ed

Px-fy /le pz-fy /le Px 'fy/le . Pz-fy /le Xw-fy /le

=1 (4.8)

Reduction factors p, and x,, are determined based on equations on clauses 4.5.4(1) and

5.3(1).

It is important to mention the existence of disagreement between NS-EN 1993-1-5 and Beg

et al. (2010) on how to calculate, p, . According to the Eurocode, p, could be determined by

using the clause 4.5.4(1), but Beg et al.(2010) states that determination of p,in that way

may lead to a wrong results. Beg et al. (2010) instead recommend clause B.1 (3) of NS-EN

1993-1-5.

Table 4-2 Reduction factors and corresponding clause in the Euro code to be used

Recommended clause in

Type of loading

Reduction factor

Eurocode-3-1-5

Longitudinal stress

Px

Clause 4.5.4(1)

Transverse stress

Pz

Clause B.1(3)

Shear stress

Xw

Clause 5.3(1)
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To calculate the reduction factors given in the Table 4-2, plate slenderness, Xp is needed,

and it is calculated as:

A = Qylt,k
P \/ Ogr (4.9)

Where: ot  is defined previously

O isthe min. load amplifier for the design loads to reach the critical load of the

plate under the complete stress field.

Bear in mind that in the Effective width method the plate slenderness, Xp and the column

slenderness, Xc are calculated separately from different equations in the Euro code. But in

the case of Reduced stress method, the slenderness value stated in equation (4.9) is used for
both plate-like and column-like buckling.
For simple and regular cross sections the critical load amplifiers, ac. and oy ¢ | can be

calculated manually, but in most practical situations they are determined by finite element
method, FEM. This is one of the advantages of the Reduced stress method, since for a

complex structure Oceand oy | can be easily extracted from a computer soft ware.

If Misses yield criteria is applied, the load amplifier Qyjt k can be calculated as shown on

below.

fy

Oeq,Ed (4.10)

Qult,k =

2 2 2
Where: Ogq Ep = \/Gx,Ed +07,6d ~Ox,Ed-Oz,Ed +3-TEd

fy = yield stress

Calculation of o manually for multiple loading conditions is challenging, but it could be

easily determined by using soft ware like EBplate or Abaqus.
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o = 1
cr =
1+dy 1+, 1+dy | 1+0, Uy U, 1
+ + + + ) ,+ 2 + 7 (4.11)
docy 40, 4.0cr x Qer,z 2.0y 2.0¢r; Ogr g

Where: Yy, ), are stress ratios along longitudinal and transverse edges. Such ratios could

be determined based on table 4.1 & 4.2 NS-EN 1993-1-5.

_ Ocr,x _ Ocr,z
Qerx =+ Qcrz =
Oyx,Ed Oz,Ed
T
_ Yer
Oer,t =
TEd

4.2.1. Step by step design procedure: Reduced stress method

When design loads are verified the following procedure could be followed to verify the

resistance of the plate.

A. Calculate the o :
Q. could be determined by hand calculation based on the eq. (4.11). Critical elastic
buckling stresses, Ocr,x ocr’zand Tcr are determined exactly the same way as it is

done for Effective width method. Suitable software like EBplate could be also used

to determine O .

B. Determination of 0

If the design loads are known, Qy|t k can be easily determined using the eq. (4.10) above.

C. Determine Xp using the eq.(4.9)

D. Determination of the reduction factor:
The reduction factor is determined using Table 4-2 above. It is also possible to used the

generalized equation given on Annex B.1 (3) of NS-EN 1993-1-5:
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1
pP= =
bp +«/¢g % (4.12)

Where:

p =generalized reduction factor

dp :0,5(1+ap(7\p —Xp0)+7\p)

=~ %tk
Ap_\/a—
cr

The Eurocode do not clearly state that clause B.1 (3) could be used for regular plates, but it is

used in the COMBRI design manual (2008) as an alternative method.

E. Determination of loading resistance:

Resistance of the plate can be verified by using either eq. (4.7) or eq. (4.8).
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Table 4-3 Effective width method versus Reduced stress method

No. Effective width method Reduced stress method
Is mainly described in section 4 of ) )
. Is described on section 10 of NS-EN-1993-
1 NS-EN-1993-1-5, but also includes 15
section 5-7 for a complete design
process.
. Is applicable for all form of geometries,
Applicable only for steel structures .
. . such as plates with non orthogonal
with regular geometry. It is ) .
. stiffeners, members with non parallel
2 preferably used for |- and box-girder ) )
i flanges, and webs with openings (both
cross sections. .
regular or irregular)
The actual nonlinear stress ) o
S ) ] The actual nonlinear stress distribution of
distribution is idealized by reducing o i
3 ) ) ) compressed plates is idealized to a
the real width to an effective width . .
uniform stress distribution
L Load shedding from highly stressed
The cross section is allowed to carry ]
. ] member to less stressed member is not
4 loading until all member elements .
o considered.
reach yielding stress.
Interaction between different loading
Effect of load combinations must be N ) .
. ) conditions is taken care of by using the von
separately verified using . .
] ] ) Misses criterion. Hence the strength of the
5 appropriate load interaction

equations given in the Euro code.

cross section is determined by single
verification step.
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5. Simulation program

Buckling and strength analysis will be carried on both unstiffened and stiffened plates. Hand
calculations based on Effective width method and Reduced stress method will be done on
selected plate dimensions. At last a finite element analysis using the multipurpose soft ware,

Abaqus will be performed on all hand calculated plates.

All plates are simply supported and no other form of boundary condition is considered.

Description of plate dimensions and loading conditions will be given on the following tables.

There is no practical laboratory tests involved in this project, and all plate dimensions and

loading are theoretically assumed.

5.1. Uniaxially loaded unstiffened plates

Calculations will be performed using two forms of unstiffened plates:

1. Unstiffened plates with constant width and varying length

2. Unstiffened plates with varying width and constant length

Table 5-1 uniaxially loaded, unstiffened plate dimensions: constant width and varying
length

No. Plate size (width X length) Thickness [mm]
[mm]
1 1500 X 1500 20
2 1500 X 2000 20
3 1500 X 3500 20
4 1500 X 5000 20
5 1500 X 6000 20




Table 5-2 uniaxially loaded, unstiffened plate dimensions: constant length and varying
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width
No. Plate size (width X length) Thickness [mm]
[mm]
1 2000 X 5000 30
2 3000 X 5000 30
3 4000 X 5000 30
4 5000 X 5000 30
5 6000 X 5000 30

5.2. Biaxially loaded unstiffened plates

Both hand calculation and finite element analysis will be performed on a biaxially loaded

square and rectangular plate. Four different biaxial load combinations will be examined.

Longitudinal load is considered to be the dominant load and will be kept constant.

Description of plate dimensions and load combinations are given on the following tables.

Table 5-3 Load combinations for biaxially loaded plates

No. Longitudinal loading [N/mm] Transverse loading[N/mm]
Combination 1 1000 250
Combination 2 1000 500
Combination 3 1000 750
Combination 4 1000 1000

Load combinations on Table 5-3 will be applied to a square and rectangular plate. Buckling

and strength analysis will be carried out using Euro code-3-1-5 rules and finite element

analysis.

Table 5-4 biaxially loaded plate dimensions

Plate type Width [mm] Length [mm] Thickness [mm]
Square 2000 2000 20
Rectangular 2000 4000 20




5.3. Stiffened plates
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Buckling and strength analysis will be done based on Reduced stress method, Effective width

method and finite element analysis.

Uniformly distributed uniaxial loading will be applied to rectangular plates. Plates are

stiffened longitudinally with double sided flat stiffeners

described below.

Table 5-5 Stiffener dimension

. Plate and stiffener dimensions are

Type of stiffener

Total height [mm]

Thickness [mm]

Flat and double sided 160

12

width varies between1600—3600

Figure 5-1 Typical cross section of stiffened plate

Table 5-6 Stiffened plate dimensions with varying width

No. Plate size (width X length) Thickness No. of stiffeners
1 1600X7000 10 3
2 2000X7000 10 4
3 2400X7000 10 5
4 2800X7000 10 6
5 3200X7000 10 7
6 3600X7000 10 8




Table 5-7 Stiffened plates with constant width and number of stiffeners

No. Plate size (width X length) Thickness No. of stiffeners
1 2000X2000 10 4
2 2000X3000 10 4
3 2000X4000 10 4
4 2000X5000 10 4
5 2000X6000 10 4
6 2000X7000 10 4
7 2000X8000 10 4
8 2000X9000 10 4
9 2000X1000 10 4
10 2000X12000 10 4

5.4. Abaqus modeling
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All plates are modeled as three dimensional, deformable, planar shell in Abaqus/Cae. In the

property module the section is defined as type: Shell/continuum Shell, homogeneous.

Material property:

Generally accepted values of Young's modulus, and Poisson's ratio for steel are used.

Since no laboratory test is carried out, with advisor's consent the yield stress is assumed to

N
be355 —— . Moreover, it is considered a 5 MPa hardening per1l % increment of plastic

mmz

strain.

Summary of material properties:

E= 210000 MPa and v=0,3

True stress [MPa]

Plastic strain

355

0

380

0,05
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Relationship between true and engineering stress/strain:

Oengineering =E-€engineering  @1d  Otrye =Oengineering(1+Eengineering)

e
Otrue
E

I
EE)rue =In(1+€engineering) —

Using the above relations a material property curve shown on Figure 5-2 is calculated and

shown

material curve

=
93]
o

o
(=]
[a]

— 5318:360.814

w
9]
o

0.169;355

250
200
150
100

—e— material property curve

(e} ]
o
(]
T —— >

u
(]

Engineering stress [N/mm~2]

o
D
@

0 1 2 3 4 5 6
Engineering strain [%]

Figure 5-2 Theoretical material curve used in the material analysis

Element type and Meshing:

A shell element type, S4R is used for all plate models. For stiffeners a 2-node linear beam
element, B31 is used. The beam elements have same cross section properties as that of real

stiffeners.

Most plates are meshed with approximate global size of 50 mm X 50 mm, but a finer mesh
will be considered if relevant. Beam elements are modeled with approximate global size of

25 mm X 25 mm.
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Imperfection:

Imperfection is defined by using buckling mode shapes of the linear analysis. First linear
buckling analysis is performed on a perfect geometry. Then buckling mode shape with
lowest critical force is introduced into the nonlinear analysis as an imperfection. This is

achieved by the help of *Imperfection command shown below.

*IMPERFECTION, FILE=results_file, STEP=step, NSET=name

With advisor's consent, imperfection amplitude is considered to be: % (b = width of the

plate). Only lowest buckling mode shape is introduced as an imperfection, since lowest

buckling mode is assumed to provide the most critical imperfection.

5.4.1. Modeling uniaxially loaded, unstiffened plates

In practice simply supported plates could behave in two ways:

o Loaded edge will deform

o Loaded edge remains straight

To simulate this property, boundary conditions are applied into two different ways, denoted

as "MYK" and "RETT" type boundary conditions.

*'"MYK" = is a Norwegian word meaning "soft"

*"RETT" = is a Norwegian word meaning "straight"

Depending on how the simple support is applied, unstiffened plates are categorized in to

two categories such as:

A. Plates with "MYK" type boundary conditions

B. Plates with "RETT" type boundary conditions
A) Plates with "MYK" type boundary conditions:

"MYK" type boundary condition is used to simulate plated structures, where loaded edges
are expected to deform during loading. The Simple supports are provided at the middle of

the plate and a uniformly distributed axial load is applied on both ends, see Figure 5-3.


http://abaqus.civil.uwa.edu.au:2080/v6.9/books/key/key-link.htm#usb-kws-mimperfection
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1) Step:
For linear buckling analysis step, procedure: Linear perturbation ----> Buckle is used.
For nonlinear strength analysis, steps procedure: General ----- > Static, Riks is used.
Il) Loading:

For both linear buckling and nonlinear analysis a shell edge load of 1000 N/mm is applied

from both ends as shown on Figure 5-3.
Ill) Boundary conditions:

Displacement out of plane (U3) is fixed along all edges. Translation in the longitudinal
directions is avoided by fixing two points against movement in the X-directions (U1). To
avoid rotation of the whole model, a single point is fixed against translation in transverse

direction (U2). See Figure 5-3.

fWW\LW
A A A

3

Figure 5-3 "MYK" type: boundary conditions and load application

B) Plates with "RETT" type boundary condition:

As shown on Figure 5-5, longitudinal translation is avoided by fixing the edge opposite to the
loaded end. In addition the loaded edge is modeled to say straight during loading. In other

words, all nodes along the loaded edge are constrained to have exactly equal displacement.

In most practical situations loaded edges stay straight during loading, and rules of Eurocode-

3-1-5 are developed by assuming loaded edges stay straight during loading.
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1) *Equation constraint:

All nodes along the loaded end will be assigned to have exactly the same translation in the
longitudinal direction (i.e. U1). This is achieved by creating two sets of nodes, such as EDGE-

NODES and RP (Reference point).

RP (Reference point): is a single node, at the middle of the loaded edge. During linear
analysis, a concentrated force (CF1) is directly applied at RP, but for nonlinear analysis an

imposed displacement is applied at RP.
EDGE-NODES: are all nodes on the loaded edge, except the RP.

By using *equation constraint, the two node sets will have exactly equal displacement in the
longitudinal direction. Therefore loaded edge will stay straight during loading. *equation

constraint created between the two node sets, is shown on Figure 5-4

MName: Constraint-equation

Type: Equation
Enter one row of data for each term in the equation o

[l Click mouse button 3 for table options.

I Coefficient Set Name DOF CSYSID

1 1 EDGE-MODES 1 (global)
| 2 -1 RP (Reference point) 1 (global)

Figure 5-4 Equation constraint in Abaqus

) STEP:
For linear buckling analysis step, procedure: Linear perturbation ----> Buckle is used

For nonlinear strength analysis, step procedure: General ----- > Static, General is used
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lll) Loading:

For linear buckling analysis: Concentrated force (CF1) of magnitude 1000 N is applied

longitudinally on one end. The force is applied at RP (reference point), see Figure 5-5.

For nonlinear analysis: Loading is applied as displacement driven. In other words strength it
is determined by imposing longitudinal displacement at the RP (reference point). Applied

displacements vary from 5 mm to 15 mm depending on plate dimensions.

RP | | A

Figure 5-5 "RETT" type: boundary conditions and load application

IV) Boundary conditions:

All edges are fixed against out of plane displacement (i.e. U3). All nodes along the edge
opposite to the loaded end are fixed against longitudinal translation (U1). To avoid free
rotation of the whole model in space, two corner nodes are fixed against displacement in

the transverse direction (U2), see Figure 5-5.

5.4.2. Modeling of biaxially loaded plates

Uniformly distributed load is applied for both linear buckling and nonlinear analysis. Load is
only applied to one of the two opposite sides as shown on Figure 5-6. The magnitudes of the

loads are given on Table 5-3.

Loaded edges are kept straight by using *equation constraint as discussed above, but in this

case two *equation constraints are used.



To apply the *equation constraint successfully, node sets should be created and named.
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How node sets are named is explained below, using loaded edges AB and BD on Figure 5-6 as

an example:

i. Forloaded edge, AB two sets are created: RP1 (reference point 1) as one set and all

other nodes on the same edge as another set. Using *equation constraint, all nodes

on edge AB, will be assigned to have same displacement along x-direction.

ii. Forloaded edge, BD, two sets are also created. RP2 (reference point 2) as one set

and all other nodes on edge BD as another set. By using *equation constraint, all

nodes of the two sets will have exactly equal displacement in transverse direction.

BRI

Figure 5-6 Biaxial load application and boundary conditions (in X - & Y-directions)

Linear perturbation /buckle step is used for linear buckling analysis, while STATIC-RIKS step is

used for nonlinear analysis.

In case of boundary conditions, all edges are fixed against out of plane displacement (U3). As

shown on Figure 5-6 above longitudinal edge AC is fixed against transverse direction, while

the short edge, CD is fixed against longitudinal displacement.
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5.4.3. Stiffened plates

Stiffened plates are model in similar way as unstiffened plates with "RETT" type boundary
condition, but stiffeners are added to the model. Cross section of a stiffened plate is shown

on Figure 5-1.

Stiffeners are modeled as Beam elements, and then attached to the plate part by the help of

*TIE constraint in Abaqus.

*TIE constraint is in the Interaction module of Abaqus, and helps to fuse two regions

together.
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6. Hand calculations

Hand calculations are performing using the two alternative design methods given in the Euro
code-3-1-5. Hand calculations of uniaxially loaded unstiffened plates, biaxially loaded plates

and uniaxially loaded stiffened plates will be presented on separate subtopics.

6.1. Uniaxially loaded unstiffened plates

Critical buckling force and ultimate strength of unstiffened plates are calculated based on
the two alternative methods given in the NS-EN-1993-1-5 (i.e. Effective width method and

Reduced stress method).

Calculation work sheet is shown on the next page.



Rectangular plate:
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Schematic drawing of plate with

1500

i

5000

Geometry: Material data Loading
a = length of the plate -
b = width of the plate E =2 11P°MPz — =
e —_—————
a := 500tmm f, := 358MPz -
b := 1500nm -
v = 0.
t := 30mm
235MPa
g = = 0.814
e f
Yy

A: Using effective width method:

1) Cross-section check

NS-EN-1993-1-1: table 5.2:

b
< > 42-e > Indicate the cross section is class 4

2) Aspect ratio, a

This leads to m=3 from fig.8.9,

a
Ty T 3.333 (Larsen, 2010)

OR kg can be calculated as:
(1 272 1 V(3 1 V(4 1 ) (s
Ksalt ==minl| —+o| ,|—+5a] ,|—+za] =+, —
’ a (04 2 o 3 o 4 o

3) Slenderness, A p

g

P 28.4~g-\/kT5

A = 1.076

Il
w0

53
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4) Reduction facto, p,
y :=1 Uniform compression
hp = 0.055(3 + y)
Pp = > if kp > 0.673 = 0.739369
o

1 otherwise

5) Effective length/area:
2 .
Ac = b-t = 0.045m A ¢ istotal area

Aceff = PpAc = 0.033m° According NS-EN-1993-1-5, eq.(4.1)

6) Critical plate like buckling, o¢r,p:

2 2 o, = reference buckling stress/Euler buckling
Of = T—ZJ(EJ = 75.92MPa stress
12\1 - v
Serpi= O kg = 307.064MPz N.B: for this specific plate there is no need
' of
N A — 13817 9kN calculating effect of column like buckling

=0
cr.p cr.p’c¢ since o > 1. But to make the work-

sheet general, plate-like buckling and

7) Design stress, o c.Rd.p column-like buckling are calculated", and

O, gy = indicate the strength of the plate an interpolation equation will be used.
C.Ra.p
when only "plate-like" effect is
considered.
fy Ym1=1  V.m.1 isequated this way,
NeRd.p = Ac.eff'_y v 11811.4kN since results will be compared
with results from Abaqus
Peeff —fy 262.476 MP
ScRd.p = ' = 2oz a
P Ac Tmi

8) Colum buckling: Column- like buckling should be considered, if it is relevant

7t2-E-t2
c = = 6.833 MPa

cr.c - - -1-
1.1 - v2). 52 NS-EN-1993-1-5 eq.(4.8)



9) Relative column slenderness,A ¢ will be:

2
¢ = 0.5[1 +ag(he-0.2 + ACJ = 27.213

1

Yo' = ————— =0.019
2 2
o + ﬂ
fy
NRd.spyle = Xc Ac—— = 298.8kN
Tmi

NS-EN-1993-1-5 e.q (4.10)

NS-EN-1993-1-1 e.q (6.49)

N S-EN-1993-1-5: 4.5.3(5)

10) Interpolation between plate-like and column-like buckling:

pe = (Pp —1¢) & (2 &)+ = 0.739

Rd = Pc
Tmi
f
Npq = Pe-Ac-—— = 11811.4kN
T m1

cr. Ser.
P -1 if 0< P -1<1
Ocr.c Ocr.c
Ocr.
if P -1>1
Ocr.c
0 otherwise

£ =1 =¢&=1 indicate column-like

buckling
has no effect to this plate.

45
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2: REDUCED STRESS METHOD

We need to assume a value to the design stress, o x gg, and then perform an iterative

process until we get the maximum value which makes equation (10.1) of NS-EN-1993-1-5
true.
Ox.Ed = %c.Rd.f

A) Calculation of minimum load amplifiers, oyt .k and oy

2 2
n -E t
(—j = 307.064 MPa

W P2 NS-EN-1993-1-5:10(3)
cr- :
Ox.Ed
" A p2= slenderness of the plate- in this method
ulit.
hp2 = = 1.075 it is just to differentiate from the symbol used in the
o

previous method
A p from effective width method is almost equal to A .

B) Calculation of the reduction factors, p

dopy — 0.0593 + ) _
. : o7 NS-EN-1993-1-5:10(2)
A

p2

Pp=p 2 We get equal reduction factors

oyt k oK! NS-EN-1993-1-5:10(2)
P2 =
Ym1
Ne rd.2. = Ac Oy gg = 118114KN Nc',i?l'iz design axial force based on Reduced stress
method.
O pd.2 = Oy £y = 262.476MP: O ¢,Rd.2 = design strength based on Reduced stress

method



6.1.1. Results based on Effective width method
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Table 6-1 Critical buckling force, N, and ultimate strength, Ngq4 for plate with thickness

Plate size [mm]

No. (width x length) Ner [kN] Nra kNI
1 1500 X 1500 4049,1 5672,7
2 1500 X2000 4394 5870,5
3 1500 X 3500 4146 5729,5
4 1500 X 5000 4094.2 5699,3
5 1500 X 6000 4049.1 5672,7

Plate No.1 (1500X1500) and plate No.2 (1500 X 6000) show equal buckling force and

ultimate strength. This is because they have equal buckling coefficient, k5 and the cross

sectional area is constant for all plates. Recall that critical buckling force depends on cross

sectional area and buckling coefficient.

Similar calculations were also performed by increasing the thickness (t= 30 mm), while

keeping the length constant.

Table 6-2 Critical buckling force, N, and ultimate strength, Ngq4 for plate with constant

length, and t=30 mm

Plate size [mm]

No. (width x length) Ner [kN] Nra [kN]
1 2000 X 5000 10593,7 12683,8
2 3000 X 5000 7062,5 13459,6
3 4000 X 5000 5384 13951,4
4 5000 X 5000 4099,7 13864,5
5 6000 X 5000 3531,2 14235,5
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6.1.2. Results based on Reduced stress method

Critical buckling force, N, and ultimate strength, Ngq are again calculated for the same plate

dimensions as above, but now we use Reduced stress method. Results based on Reduced

stress method become exactly equal to that of Effective width method.

Table 6-3 N¢, and Nrq for plates with t=20, based on Reduced stress method

No. Plate size [mm] Ncr [kN] NRd [kN]
1 1500 X 1500 4049.1 5672,7
2 1500 X2000 4394 5870,5
3 1500 X 3500 4146 5729,5
4 1500 X 5000 4094,2 5699,3
5 1500 X 6000 4049,1 5672,7

The two methods gave equal buckling and strength results, since single plate panels are

used. For a single plate there is no difference between the two methods.

For Reduced stress method: we simplify the stress distribution to an average and constant
value: Njq = A-(p-fy)

For Effective stress method: we reduce the area to an effective area

Nrg =(p-A)-fy

Therefore the two method lead to same results = A-(p-fy) = (p-A)-fy

6.2. Results of biaxially compressed plates

A square plate (2000X2000) and a rectangular plate (2000X4000) of thickness, t=20 mm
were loaded biaxially. Four different loading combinations are applied to each plate as

shown on Table 5-3.
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The effective width method is not applicable for plates with biaxial loading, therefore only

Reduced stress method is applied to calculate the critical buckling stress, o, and design

strength, ORy.

All hand calculations are done using MathCAD soft ware. A typical example showing all

calculation steps is given below.

Biaxially loaded plate 2000X4000, t=20 mm

Geometry: Material data 1! l’ L l’ l l J LI
a = 4000mm  E := 2.1.10°MPz b X
E — 8 - o
. z 4000
b:= 200amm  ly = 359VP 2 S 5
t := 20mm v = 0.3 o B
[l [
235MPa
g = — =10.814
. fy sigma_Y
Stress:
O Ed.x = is determined by iteration.
CEd.x = 71.34VIPa
OEd.y = CEd.x = 71.34 MPa
Ly— 2 2 —
CEd.eq = +/CEdx T OEdy ~ CEd.x CEdy = 1.34MPa
2 ¢ )2
OF y = T (_) — 18.98 MPa Euler stress in the longitudinal
12~(1 - sz direction
nz-E t 2
Cpy = > (—) = 4.745MPa Euler stress in the transverse direction
12:\1 - v \2@
) m = is the minimum number of half waves.
1) Aspect ratio: Extracted manually from fig.8.9, (Larsen,2010)
2
b 1 a -
a m =2
_a_ Koy=|m=-+=-—| =4
a = E =2 G.X [ a m bj



2) Critical stresses:

Scrx = KG.X'GE.X = 75.92 MPa

G oy = 29.656MPz

cry = Koy

3) Minimum load amplifiers according NS-EN-1993-1-5:10(2) & (3)

fy
U'Uft.k = = 4.976 \.|IX =1
CEd.eq
Ser.x WYy = Wx
Gy = = 1.064
OEd.x
Ccry
Ory = = 0.416
CEdy

4) Equation (10.6) of the NS-EN-1993-1-5 gives us:

!
) 2
1+wyy l+\uy 1+wyy l+\uy 1-wyy 1—\;/y
N = 4 n + + : =3.345
docry  Aocry docry  Aocry (2'°‘cr.x)2 (2'°‘cr.y)2
! 0.299
o == =0U.
cr n
5) The slenderness value will be:
Gyl k .
e utk _ 408 NS-EN-1993-1-5:10(3)
P o
cr
6) Reduction factors :
Ap - 0055(3 N \Vx) NS-EN-1993-1-5:4.4(2)
= = 0.232
Px ) 2 p x = is reduction factor for

P longitudinal loading

Note:
NS-EN-1993-1-5:10(5a) indicate that,py (reduction factor for transverse loading) should be

determined in a similar way as p y. But Beg et al. (2010) highly recommend eq. (B.1) under
Annex B.
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Apo = 0.¢
1 A, = 0.3¢
® = > [1+ oy (kg = hpo) + 1| = 3.008 P
1
py = ————— =0.184 NS-EN-1993-1-5: B1 (3) and table B1
2
D+ [O -

p

Reduction factors due to column like-buckling:

A: longitudinal direction:
Due to high aspect ratio, column -like buckling is not relevant for the investigated plates

B: Transverse direction
Since a generalized buckling curve is used (i.e.NS-EN-1993-1-5: B1(3)), there is
no need of calculating the column-like buckling effect specifically.

Ym.1:=1 Since the calculation results will be compared with that of Abaqus, ym1 is let to
be equal to one. This is true for all hand calculations.

By iteration the maximum loading situation which satisfy equation (10.5) is taken as
the design load

From NS-EN-1993-1-5:eq. (10.5):

2 2
OFEd.x OEd.y OFEd.x OFEd.y .
+ — . =
|
o fy ; fy ; fy ; fy OK!
- — A - — S
Tm.1 Y Tm.1 Tm.1 y Tm.1

GX.Rd = GEd.X = 71.34MPa

Maximum design load which satisfy eq. (10.5) of Eurocode-3-1-5, is assumed to be the strength of
the plate.
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Calculated results of biaxially loaded plates with different load combinations are given in the

following two tables. These results will be later compared with results of numerical analysis.

Table 6-4 Calculated Ocr,x and Ocr,y of biaxially loaded plate: 2000X2000, t=20 mm

No. Loading type [N/mm] . Ocrx [N/mmA~2] Ocr,y [N/mmA2]

1 Longitudinal = 1000 0,423 60,700 15,175
Transverse = 250

5 Longitudinal = 1000 0,384 50,611 25,306
Transverse = 500

3 Longitudinal = 1000 0,383 43,394 32,546
Transverse = 750
Longitudinal = 1000

4 Trameverse = 1000 0,4 37,920 37,920

Where:

O¢r = minimum load amplifier for design loads to reach elastic critical buckling

Ocr x = elastic buckling stress - longitudinal direction

Ocr,y = elastic buckling stress - transverse direction

Table 6-5 Calculated Ocr,x and Ocr,y for biaxially loaded plate: 2000X4000, t=20 mm

No. Loading type [N/mm] Oy O'cr’x [N/mmn2] ocr,y [N/mmn2]

1 Longitudinal = 1000 0,3637 46,300 11,575
Transverse = 250

5 Longitudinal = 1000 0,307 33,248 16,624
Transverse = 500

3 Longitudinal = 1000 0,294 25,960 19,470
Transverse = 750

4 Longitudinal = 1000 0,299 21,330 21,330

Transverse = 1000
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Ultimate strength is also calculated for the same plates and load combinations as those used
in the buckling analysis. A detailed description of plate dimensions and loading combinations
are given on Table 5-3 and Table 5-4.

Table 6-6 Ultimate strength based on Reduced stress method: Biaxially loaded plate-
2000x2000, t=20 mm

No. Loading type [N/mm)] ORd,x ORd,y
[N/mm~2] [N/mm~2]
AR
| e
s | =
o[ oo Ty
Where:

ORd x =ultimate strength—longitudinal direction

ORd,y = ultimate strength—transverse direction

Table 6-7 Ultimate strength based on Reduced stress method: Biaxially loaded plate-

2000X4000, t=20 mm

No. Loading type [N/mm] | ORd,x [N/mm~2] | opqy [N/mm~2]
Longitudinal = 1000

! Transverse = 250 127,300 31,825
Longitudinal = 1000

2 Transverse = 500 108,300 54,150
Longitudinal = 1000

3 Transverse = 750 88,300 66,250
Longitudinal = 1000

4 Transverse = 1000 71,340 71,340
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6.3. Results of stiffened plates

Longitudinally stiffened plates with flat stiffeners are uniaxially compressed. Critical buckling
load and ultimate strength of plates are hand calculated based on the two alternative

methods given in NS-EN-1993-1-5.

A typical calculation work sheet showing how the calculations are performed is also
prepared. Since the calculation took many pages, it is preferred to present it as an appendix.

Refer to appendix D.

6.3.1. Results of the stiffened plates based on effective width method
Plates with increasing number of stiffeners (i.e. varying width) and plates with increasing

length are calculated. Plate and stiffener dimensions are shown on sub topic 5.3.

Critical buckling stress and ultimate strengths will be treated in a separate sub topics to

avoid confusion.

6.3.1.1. Calculated buckling stress and buckling force based on Effective width method

Column- buckling stress/force and plate -like buckling stress/force are presented on Table

6-8 and Table 6-9 to show how buckling behavior varies as dimension changes.
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Table 6-8 Critical buckling force/stress of rectangular plates with increasing number of

stiffeners
No Plate
size(mm)
1 1600X7000
2 2000 X7000
3 2400 X7000
4 2800 X 7000
5 3200 X 7000
6 3600 X 7000
Where:

siffener
no.

3

4

Area,total
[mm~2]

21760
27680
33600
39520
45440

51360

Sigma_cr,c
[N/mm~2]
29.589

29.504
29.504
29.504
29.504

29.504

N_cr,c
[kN1
643.8566

816.6707
991.3344
1165.998
1340.662

1515.325

sigma_cr,p
[N/mm~2]
111.293

72.04
50.764
40.704
35.794

33.168

N_cr,p [kN]
2421.7357
1994.0672
1705.6704
1608.6221
1626.4794

1703.5085

Ocr ¢ / Ner,c =critical buckling stess / force : only column —likebehavior considered

Ocrp /Ncr'p =critical buckling stress / force: onlyplate —likebehavior considered

Critical buckling stress, due to column-like behavior, O¢y  is equal for all plate dimensions.

This is because of O, depends on parameters like, A| 1, length and g 1 which are constant

for all plate dimension in the table above.

As width of plates increase the effect of plate-like behavior decreases while the effect of

column- like behavior increases. This is as expected, since column- like buckling effect gets

larger as width of the plate increases.

On Table 6-8 length of plates is kept constant, while width increases. To see the effect of

increasing length, a similar calculation as above is performed. It is done by keeping the width

and number of stiffeners constant, but varying the length of the plate. Results are presented

on Table 6-9.
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Table 6-9 Calculated critical buckling stress and force for both column-like and plate-
like behavior

\ Plate size No. of Ocr,c Ner,c Ocr,p Ner,p
o [mm] Stiffeners [N/mmA2] [kN] [N/mmA2] [kN]
1 2000 X 2000 4 361,424 10 004,2 320,105 8860,506
2 2000 X 3000 4 160,633 4 446,3 152,269 4214,806
3 2000 X 4000 4 90,356 2501,1 98,026 2713,360
4 2000 X 5000 4 57,828 1 600,7 77,856 2155,054
5 2000 X 6000 4 40,158 1111,6 72,138 1996,780
6 2000 X 7000 4 25,504 706,0 72,04 1994,067
7 2000 X 8000 4 22,589 625,3 72,04 1994,067
8 2000 X 9000 4 17,848 494,0 72,04 1994,067
9 2000 X 10000 4 14,45697 400,2 72,04 1994,067

10 2000 X 12000 4 10,04 277,9 72,04 1994,067

Where:

Ocr ¢ / Ner ¢ =critical buckling stess / force : only column—likebehavior considered

Ocrp /Ncr'p =critical buckling stress / force : onlyplate —likebehaviorconsidered

Generally critical buckling force of the plate decreases as its length increase. Besides plate-

like buckling will become the dominant buckling behavior as length is increased.

According calculation rules of NS-EN-1993-1-5, critical buckling stress will be constant, when

certain limit of plate length is reached. Increasing plate length over that limit will not have

any effect on critical buckling force.

As it can be seen on the results given on Table 6-9 and Figure 6-1, buckling stress, Ocr,p will

reach its minimum value at plate length of 7000 mm and remain constant even though

length is increased.
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12000.0
€ 100000 .
& 8000.0 A
K= ' \ —+—N_cr,c (critical buckling force
o - only column like behaviour
.= 6000.0 !
= considered)
g
=2 40000 x\;\ ——N_cr,p (critical buckling force-
O . plate like behaviour)
‘£ 20000 e Y] &
L
o T . .
0.0 | | : S G |
0 2000 4000 6000 8000 10000 12000 14000
Plate length [mm]

Figure 6-1 Comparison between N¢, . and Ncr,p as a function of plate length increases

6.3.1.2. Ultimate strength of stiffened plate based on effective width method

On sub chapter 6.3.1.1 results of critical buckling stresses are thoroughly discussed. In this
sub topic discussions will be confined only on ultimate strengths calculated based on

Effective width method.

Ultimate strengths are calculated based on calculation rules given in section 4 of Euro code-

3-1-5. Plate and stiffener dimensions are given on Table 5-6 and Table 5-7.

Strength of same plate dimension will be later calculated based on Reduced stress method

and the results of the two methods will be compared.
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Table 6-10 Ultimate strength of longitudinally stiffened plates with increasing number of

stiffeners
) No : .
No. Plate size [mm] l.\lo of NRd,p [kN] Rd,interaction
stiffeners [kN]

1 1600X7000 3 4149,846 4149,846
2 2000 X7000 4 4453,873 4453,873
3 2400 X7000 5 4676,351 4463,902
4 2800 X 7000 6 4970,873 3866,711
5 3200 X 7000 7 5344,954 3428,083
6 3600 X 7000 8 5771,034 3181,306

Where:

NRd,p = Ultimate strength of the plate, when only plate- like behavior is

considered.

NRd,interaction = Ultimate strength interpolated between plate-like and

As the width increases will Njq interaction decreases, since it is calculated based on

column- like behavior.

interpolation eq.(4.13) of NS-EN-1993-1-5 and the effect of column-like behavior become

very significant as width of the plate is increased.
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Table 6-11 Calculated Ngg o and Npy interaction fOT longitudinally stiffened plate with

varying length

No Plate size [mm)] No. of stiffeners Nrd,p [kN] | NRginteraction [KNI
1 2000 X 2000 4 7156,35 5269,884
2 2000 X 3000 4 5672,295 3663,606
3 2000 X 4000 4 4918,813 3129,348
4 2000 X 5000 4 4566,295 3594,235
5 2000 X 6000 4 4455,806 4353,831
6 2000 X 7000 4 4453,873 4453,873
7 2000 X 8000 4 4453,873 4453,873
8 2000 X 9000 4 4453,873 4453,873
9 2000 X 10000 4 4453,873 4453,873
10 2000 X 12000 4 4453,873 4453,873

Table 6-11 shows that Nry ,and Ngq interaction become equal for all lengths above 7000 mm.

This is because of the column -like effect become negligible as the stiffened plate length
increases. Furthermore the plate strength will remain constant after its length has reached

certain limit. This phenomenon is further explained below.

Ocr,p =Ko O, Where: k; is buckling coefficient

o is Euler buckling: it is constant for the plate dimension examined.

2[(1+a2)2+y—1j
kg = if a<$
(W +1)(1+6) o<y
4(1+ﬁ)
=i oW

where: a=—2>0,5

A
and 6=Z sl
AP

T |l

I
-

p
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When length of the plate reach 7000 mm, a >i‘/; and buckling coefficient will only depend

on cross sectional properties,y,6 which are independent of plate length.

6.3.2. Results of longitudinally stiffened plates based on Reduced stress method

Stiffened plates discussed on sub topic 6.3.1, are also analyzed based on Reduced stress

method.

For uniaxial loading critical buckling stress, o, is calculated the same way as it is done for

Effective width method. In other words there is no difference between the two methods

when calculating critical buckling stress for uniaxially loaded stiffened plates.

6.3.2.1. Ultimate strength of longitudinally stiffened plates using Reduced stress method

On the previous topic strength of stiffened plates was determined based on Effective width
method. In this topic results calculated based on Reduced stress method are presented for

the same plates.

Table 6-12 Ultimate strength, Ngg , of longitudinally stiffened plates using Reduced stress

method
No Plate size l\.lo. of Area, total NRd,r
[mm] stiffener [mm~2] [kN]
1 1600X7000 3 21760 3792,401
2 2000 X7000 4 27680 3987,872
3 2400 X7000 5 33600 3919,178
4 2800 X 7000 6 39520 3212,712
5 3200 X 7000 7 45440 2651,798
6 3600 X 7000 8 51360 2304,38
Where: Ngq = ultimate strength based on Reduced stress method.
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One of the best merits of Reduced stress method is, computer soft ware could be utilized to
perform the calculation. This is especially very important when performing calculations on
complex plate geometries. In this project all plates have regular geometry and simple
loading conditions which can be easily hand calculated. But as an alternative way EBplate

soft ware is used to determine the critical buckling stress.

Table 6-13, shows critical buckling stresses, o pgplate determined by using EBplate soft

ware. In addition the table shows resulting ultimate strength, Ngq -

Table 6-13 Linear buckling stress, O¢y gplate and the ultimate strength based on Reduced

stress method, Ngq

No. Plate size [mm] No. stiffener | Ocr,EBplate [N/mm”2] NRrd,r [kN]
1 1600X7000 3 138,36 4160,207
2 2000 X7000 4 76,892 4104,972
3 2400 X7000 5 54,137 4032,134
4 2800 X 7000 6 44,043 3312,092
5 3200 X 7000 7 38,933 2723,583
6 3600 X 7000 8 36,099 2352,853

There is no significant difference between the calculated ultimate strengths, Nrq , on Table

6-12 and Table 6-13. The reason could be, plate geometries and loading conditions
considered are relatively simple, so that both hand calculation and EBplate soft ware give

very close critical buckling stress values.
Ultimate strength based on Reduced stress method is also calculated for stiffened plate
dimensions given on Table 5-7. Hand calculated critical buckling stress, ¢, 5 used to

determine plate strengths is presented on Table 6-9. It should be recalled that a column-like

buckling behavior is also considered according NS-EN-1993-1-5: 10(5a).
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Table 6-14 Ultimate strength, Npq , based on Reduced stress method: Stiffened plate with

varying length.
Plate size Ocr,p NRd,r
No No. Stiffeners

[mm] [N/mmA2] [kN]
1 2000 X 2000 4 320,105 4634,529
2 2000 X 3000 4 152,269 2811,178
3 2000 X 4000 4 98,026 2402,224
4 2000 X 5000 4 77,856 3062,197
5 2000 X 6000 4 72,138 3888,257
6 2000 X 7000 4 72,04 3987,885
7 2000 X 8000 4 72,04 3987,885
8 2000 X 9000 4 72,04 3987,885
9 2000 X 10000 4 72,04 3987,885
10 2000 X 12000 4 72,04 3987,885

Ultimate strength, Nrq  become constant after the length of the plate reach a certain limit,

since critical buckling stress, Ocrp will become independent of plate length. This

phenomenon was also seen for Effective width method. To see the reason behind, refer to

discussion given under subtopic 6.3.1.2.

6.3.3. Comparison of ultimate strength calculated based on Effective width and Reduced

Strength results based on the two alternative design methods are presented separately on

stress methods.

the previous tables. Now comparison of these strengths will be performed. Bear in mind that

stiffened plates are grouped in to two categories, which are:

Plates with increasing number of stiffeners and varying width

Plates with constant number of stiffeners and varying length




63

Table 6-15 Comparison of ultimate strength calculated based on the two alternative
methods: Plates with varying width

No. Plate No. NRd, eff,w NRd,r Difference | Difference
size(mm) stiffener [kN] [kN] [kN] [%]

1 1600X7000 3 4149,846 | 3792,401 357,445 9%
2 2000 X7000 4 4453,873 | 3987,872 466,001 10 %
3 2400 X7000 5 4463,902 | 3919,178 544,724 12 %
4 2800 X 7000 6 3866,711 | 3212,712 653,999 17 %
5 3200 X 7000 7 3428,083 2651,798 776,285 23 %
6 3600 X 7000 8 3181,306 2304,38 876,926 28 %

Where:

NRdeffw = Ultimate strength based on effectivewidth method

NRd r = Ultimate strength based on Reduced stress method

The difference betweenNRq off  andNgq ris around 10 % for the narrow plates. This

difference increases as the width of plates is increased. The cause of the difference is mainly
due to the fact that Effective width method allows load shedding among member plates of
the cross section. In other words plates are allowed to continue to carry loading, until all
members of the cross section reach yielding. In case of Reduced stress method the cross
section is as strong as its weakest link. No load shedding is allowed in Reduced stress

method.

It is also interesting to see that the difference between Nrq off v and Nrq rincreases as width

of the plates increase. A possible cause of this could be the role of column-like buckling.
Both methods apply column -like behavior when relevant. It seems consideration of column-
like behavior has stronger effect on Reduced stress method leading to very conservative
results. Bear in mind that use of interpolation function gives lower strength values for wider

plates, regard less of the method used.

Comparison of ultimate strengths for plate dimensions with varying length is presented on

the following table.




Table 6-16 Comparison of hand calculated Npq,and Ngq ff w : Stiffened plate with

increasing length
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No Plate size No.of NRd,r NRd, eff,w Difference | Difference
) [mm] Stiffeners [kN] [kN] [kN] [%]
1 2000 X 2000 4 4634,529 5269,884 635,355 12 %
2 2000 X 3000 4 2811,178 3663,606 852,428 23 %
3 2000 X 4000 4 2402,224 3129,348 727,124 23 %
4 2000 X 5000 4 3062,197 3594,235 532,038 15 %
5 2000 X 6000 4 3888,257 4353,831 465,574 11%
6 2000 X 7000 4 3987,885 4453,873 465,98772 10 %
7 2000 X 8000 4 3987,885 4453,873 465,98772 10 %
8 2000 X 9000 4 3987,885 4453,873 465,98772 10 %
9 2000 X 1000 4 3987,885 4453,873 465,98772 10 %
2000 X
10 4 3987,885 4453,873 465,98772 10 %
12000

Where: NRd,eff,w

NRd,r

= Ultimate strength based on effectivewidth method

= Ultimate strength based on Reduced stress method

The difference betweenNgq r and Ngq o¢f \ is larger for relatively shorter plates. The reason

could be the column-like behavior influences the calculations in different manner. Recall that

for Effective width method,xC is used for column slenderness, while Xp is used as column

slenderness in the case of reduced stress method.

Effective width method: Xc =

Reduced stress method: Xp =\/

calculating X..

f

Yy
Ocr,c
ok | Fy
Qer Ocr,p

column slenderness used when calculating X .

column slenderness used when
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As the length of the plate increases the difference between the two strengths stabilizes to be
10 %. Effect of column-like buckling will be insignificant when length increased over certain
limit, and the source of this 10 % difference is due to the fact that, Reduced stress method

do not allow load shedding between member plates of the cross section.

A graphical presentation of the difference between strengths calculated based on Reduced

stress method and Effective width method is given on the Figure 6-2.

6000

X
4000 \\ S

N

—=—N_Rd,r
——N_Rd,eff,w

strength [KN]

0 f f f f f f f f f f f f i

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Length [m]

Figure 6-2 Comparisons betweenNgq , (strength based on Reduced stress method) and

NRd,eff,w (strength based on Effective width method).
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7. Results of the Finite element analysis

As it is stated on the sub topic 5.4, a finite element analysis is carried out on unixally loaded
unstiffened plates, biaxially loaded plates and longitudinally stiffened plates. Detailed
description of plate dimensions, material properties, meshing, imperfection, loading and

boundary conditions are presented on chapter 5.

7.1. Effect of boundary conditions on uniaxially loaded unstiffened plates

Plates with "MYK" type boundary condition and "RETT" type boundary conditions are
analyzed by Abaqus. Both linear buckling force and ultimate strength are determined for
each plate. It should be noted that all other conditions are kept constant and only boundary

conditions are changed, between "MYK" type and "RETT" type.

"MYK" type boundary condition: loaded edges are free to deform and not kept straight.
Loading is also applied longitudinally on both ends. The plate is supported on three points at

the middle of the plate model.

"RETT" type boundary condition: the loaded edge is kept straight by using the function

*equation in the interaction module of the Abaqus soft ware.

Both "MYK" type and "RETT" type boundary conditions are forms of simple support and
allow free rotation at the support (i.e. rotational degrees of freedom are not fixed). The only
difference between them is how and where the simple supports are applied. For further

description of "MYK" and "RETT" type boundary conditions refer to chapter 5.4.1.

7.1.1. Buckling of plates with "RETT" type boundary condition

Linear buckling analysis of longitudinally loaded unstiffened plates with "RETT" type
boundary condition is performed using Abaqus. Plots of the lowest global and local buckling

modes are presented on Table 7-1.



Table 7-1 Linear buckling modes for longitudinally load plates with "RETT" type

boundary condition

Plate size | Buckling
N_cr-abaqus
No (width X mode Figure
length) nr.
Mode 1 4008,8kN
Mode 2 6283,7kN
1 1500x1500
Mode 4 16019kN
Mode 1 4372,2kN
2 1500x2000
Mode 2 4730,2kN
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Mode 5

U, Magnitude

-

ODB: knekk-Rett 1500%2000-iune.odb  Abaous/Standard 6.12-1  Satlun 1!
Step: Step-1
Hade 5: Eigenvalue = 16365
Primary War: U, Magnitude

Defarmed Var: U Defarmation Scale Factor: +2.0008-+07

16365kN
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Mode 1

4128,1kN

1500x3500

Mode 2

Lo

ot Vo 0 Bohiation s Facter, 10004403

4291,6kN

Mode 9

U, Magritude

knekk-RETT-1500x3500.0db  Abaqus/Standard 6.12-1  Thu Apr 25 13:10:44 Vest-Eun

Step-
9: EigenValue = 16237,

Primary Var: U, Magnitude

Deformed var:'U Deformation Seale Factor: +3.5006402

16237kN

1500x5000

Mode 1

4077,9kN




Mode 2

4168,1kN

Mode
13

U, Magnitude

+8.333e-02
+0.0008+00

¥ ODE: knekk db q 6.42-1 Fridun 14 17:14:53 Vest-Eur

Step: Step-1
ode "1 Eigenualue = 16207
Pramary Yar: U, Hagnituds
®= X Deformed var:' U Deformation Scals Factor: +5.000e+02

16207kN
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1500x6000

Mode 1

4033kN

Mode 2

4237,8kN

Mode
14

U, Magnitude
+1.0008+00
+8.167e-01
+8.333e-01
+7.5008-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.1678-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.33%0-02
+0.000e+00

M 0DB: knekk-Rett-1500%6000_june.odh  Abaqus/Standard 6.12-1  Thu Jun L

] , Step: Step-1
Mode 16173

14: Eigenvalue =
Primary Var: U, Magritude
Deformed Var: U Deformation Scale Factor: +6.000e+02

16173kN
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7.1.2. Ultimate strengths of plates with "RETT" type of boundary condition

Ultimate strength of uniaxially loaded unstiffened plates with "RETT" type of boundary
condition are numerically analyzed. Strength curve are presented on Table 7-2. Furthermore,
the type of buckling mode used to introduce imperfection and imperfection amplitude are

explained in the same table.

Table 7-2 Ultimate strength of plates with "RETT" type boundary conditions

Plate

Plate 1500x1500, t=20 Remarks
no.1

Buckling mode 1 is used to
introduce imperfection to the
analysis.

The load is applied as a
concentrated force at RP
(midpoint of the left vertical edge).
See Figure 5-5.

Applied load = 1000 N as a point
load.

The force is extracted by imposing
a displacement, U1 at longitudinal

i T direction.
50 . | The imposed displacement was
applied at RP (reference point),
s which is at the middle of the left

vertical edge.

Max. force = 5702 kN

J Displacement, U1 at max. force =
/ 2,75 mm

/ Imperfection amplitude =3 mm

Force , FR1 at reference point [N]

0.0 1.0 4.0 5.0

2.0 3.0
Displacement, U1 at reference point [mm]

—— FORCE ws DISPLACEMENT
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The plot show stress pattern at
maximum loading.

Since short edges are constrained
to stay straight, a central
horizontal plate strip buckle first
and most of strength will be
concentrated along the
longitudinal edges.

On this plot most part of the
model has reached yielding, But
yielding has started first around
corners.

s
Deformation Scale Factor: +5.000e+00

Plate

Plate 1500x2000, t=20 Remarks
no.2

Buckling mode 1 was used to

introduce imperfection to the

analysis.

The load is applied as a

concentrated force at RP

(midpoint of the left vertical edge).

See Figure 5-5

Applied load = 1000 N as a
concentrated load.

[x1.E8]
6.0

The force is extracted by imposing

a displacement, U1 at longitudinal

direction.

The imposed displacement was

; : applied at reference point, which

30 is at the middle of the left vertical
edge.

20 Max. force = 5988 kN

Displacement, U1 at max. force =

o 3,4 mm

5.0

4.0

Force , FR1 at reference point [N]

Imperfection amplitude =3 mm

i
4.0
Digplacement, 1 at reference paint [rmm)

[—— FORCE vs DISFLACEMENT |
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Stress pattern at the maximum
loading.

Though at this loading stage most
part is red colored, yielding has
started near the corners and
spread along the longitudinal
edges. This confirms the
assumption of the Effective width
method used in NS-EN-1993-1-5

Stress pattern at the onset of
yielding.

Yielding has started at the corners.

Plate
no.3

Remarks

Buckling mode 2 is used to
introduce imperfection to the
analysis.

[x1.E6]

Force, FR1 at reference point [N]

5.0

IS
[=]

3.0

2.0

1.0

0.0
q

D =
Displacement, U1 at reference point

The force is extracted by imposing
a displacement, U1 at longitudinal
direction.

The imposed displacement was
applied at reference point, which
is at the middle of the left vertical
edge.

Max. force = 5635,6 kN
Displacement, U1 at max. force =
6,36 mm

Imperfection amplitude= 3 mm
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ctor: +1.0006+00

e Factor: +1.0000400

These two plots show stress
pattern at two different loading
stages.

Plot on the top: stress pattern at
maximum loading.

Plot under: stress pattern at the
onset of yielding.

As already mentioned yielding
starts at corners, but type of
imperfection introduced has an
effect on it.

Plate no.
4

Plate 1500 X 5000, t=20

Remarks

Buckling mode 2 is used to
introduce imperfection to the
analysis.

Concentrated load of 1000 N is
applied at the reference point

[=1.E6]

4.0

Force, FR1 at reference paint [N]

2 2
Displacement, U1 at reference point

Force vs Displacement

T

The force is extracted by imposing
a displacement, U1 at longitudinal
direction.

The imposed displacement was
applied at reference point, which
is at the middle of the left vertical
edge.

Max. force = 5640 kN
Displacement, Ulat max. force =
9,10 mm

Imperfection amplitude used = 3
mm
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Stress pattern at maximum
loading.

Stress pattern just before yielding
stress is reached. (stress = 350
N/mmA~2).

Generally stress concentrations
occur

along supported edges. But the
plot shows the imperfection mode
introduced has an effect on the
pattern of stress distributions.

Plate no.
5

Plate 1500 X 6000 , t=10

Remark

=

Buckling mode 1 was used to
introduce imperfection to the
analysis.

[x1.E6]
CXil

5.0

4.0

3.0

Force , FR1 at reference point [N)

z.0

1.0

.0

a. 5 10 14

Displacement, U1 at reference paint [mm]

|— FORCE wvs DISPLACEMEN]

The force is extracted by imposing
a displacement, U1 at longitudinal
direction.

The imposed displacement was
applied at reference point, which
is at the middle of the left vertical
edge.

Max. force = 5721 kN
Displacement, U1 at max. force =
10,95 mm

Imperfection amplitude =3 mm
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Stress pattern during loading.

Stress plot top : stress pattern at
maximum loading

Stress plot bottom: stress pattern
at the onset of yielding.

7.1.3. Buckling force of plates with "MYK" type boundary condition

Buckling analysis was also performed for unstiffened plates with "MYK" type boundary
conditions. Both buckling force and pattern in each mode is exactly the same as that of

plates with "RETT" type boundary condition.

The reason why plates with "MYK" type and "RETT" type boundary have exactly equal
buckling force and pattern is, in linear analysis original configuration is taken as a reference

during computation of forces.

The lowest global and local buckling modes of plates analyzed are shown on Table 7-1.

7.1.4. Strengths of plates with "MYK" type boundary conditions.

Plates with "MYK" type boundary conditions are numerically analyzed to determine their

strengths and strength curves are shown on Table 7-3.
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Table 7-3 Ultimate strengths of unstiffened plates with "MYK" type boundary condition

No.

Plate 1500x1500 ( a=1500mm and b=1500)

Remarks

U, Magnitude
+1,0008+00
+9,167e-01
+8,333e-01
+7.500e-01
+6,667e-01
+5.833e-01
+5.000e-01
+4,167e-01
+3.333e-01
+2,500e-01
+1.867e-01
+8.333e-02
+1.510e-1&

This is a buckling mode 1, which is
used to introduce imperfection to
the nonlinear strength simulation.
A distributed load of 1000 N/mm is
applied from both ends

LPF, Load proportionality factor

The graph shows LPF versus
Displacement.

Displacement, U1l is taken from the
reference point.

Load applied = 1000 N/mm
LPF_max =3,42362

Ul at LPF_max =1,485 mm
Imperfection amplitude =3 mm

0% 0.5 1.0 5 : B : 75 0
' Dlspla‘cemem‘UW at‘refwemce !JDIHi [mml ' ’
[x1.E3]
— The resultant force is derived from
“ LPF (load proportionality factor) as
Y I S follow:
Y F =LPF*(1000 N/mm)*b
P b=is width of the plate
30| fd
g /)
8 L/ F_max=5135kN
i
2.0 g‘
[
/i
1.0 r"ll
/ H
[
0.0 i i i i
0.0 0.5 1.0 1.5 2.0 2.5

Displacerment, U1 at reference point [rm]

RESULTANT FORCE vs DISPLACEMENT
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S, Mises
Envelope (max abs)
(Avg: 75%

Stress plot at maximum loading.

43,
+3
+3

nlinear
t 19: Arc Length = 29,55

v
&= incre:

Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +1.000e+00

Plate 1500x2000 ( a=1500mm and b=2000),
t=20

Remarks

This is the buckling mode 1, used to
introduce geometric imperfection.

A distributed load of 1000 N/mm is
applied from both ends.

Deformation Scale Factor: +1.0008+02

LPF, Load proportionality factor

The graph shows LPF versus
Displacement.

/ U1 Displacement, U1 is taken from

Pl the reference point. Reference point
S is a point at the middle of left loaded

/ edge.

Load applied = 1000 N/mm
LPF_max = 3,52554

Ul at LPF_max =1,353 mm
Imperfection amplitude =3 mm

0.0 05 1.0 15 2.0 2.5 .0
Digplacerment, U1 at reference point [rmm]

| —— LPF vs DISPLACEMENT
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[x1.E3]

5.0

4.0

w
o

Force [KN]

z.0

1.0

i i
0.5 1.0 15 2.0 Z5 30
Displacement, U1 at reference point [rmm)]

——— RESULTANT FORCE vs DISPLACEMENT ‘

Max force (axial strength) is derived
from the LPF.

F =LPF*(1000 N/mm)*b

b= is width of the plate

F_max =5288 kN

z

1 O O

19: Arc Lengtn = 29.55

Deformed var: U Defarmation Seale Factor: +1.000e+00

Stress plot of the plate at maximum
loading.

It is worth noting, the pattern of the
stress plot. The short ends are not
restricted in both X- and Y-direction,
which leads to higher stress concen-
tration around the two ends of the
plate.

As opposed to this, if the short
edges were constrained to remain
straight, the stress would have been
concentrated along the longitudinal
edges. See plate no.2 (i.e. plate
1500X2000) on Table 7-2.

Plate 1500 X 3500, t=20

Remarks

U, Magnitude
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.933e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8,333e-02
+0,000e-+00

1 Step: Step-1
® Maode 2: Eigenvalue = 2.8610

Primary Var: U, Magnitude

Deformed var: U Deformation Scale Factor: +3.500e+02

Buckling mode 2, used to simulating
the geometric imperfection.

Distributed load of 1000 N/mm is
applied from both ends.
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3.0

LPF

1.0 2.0 3.0 4.0 5.0 a
Displacement, U1 at reference point [mm)]

|— LFF vs Displacement ‘

The graph shows LPF vs.
Displacement, U1 (i.e. longitudinal
direction)

Displacement, U1l is taken from the
reference point, which is the
midpoint of the left loaded edge of
the plate

Load applied = 1000 N/mm
LPF_max =3,37

Ul at LPF_max =2,791 mm

Imperfection amplitude =3 mm

[x1.E3]

5.0

4.0

w
=]

Force [KN]

r
=]

1.0

1.0 2.0 3.0 4.0 5.0 6.0

Displacement, UT at reference point [rmm]

|— Force vs displacement

Max force (axial strength) is derived
from the LPF.

F =LPF*(1000 N/mm)*b
b= is width of the plate

F_max =5054,8 kN

— <

0D8: Imperf-myk-1500X3500-june-mode-2.0db  Abaqu

Factor: +1.000e+00

ndard 6.12-1  Sun Jun 16 15:41:42 Vest-Europa (sommertid) 2013

Stress pattern at maximum loading.

Now as it is late stage of loading, the
plate has yielded all around except
at the central region.

Plate 1500 X 5000, t=20

Remarks
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Buckling mode 2 was used to
introduce imperfection to the
analysis.

A distributed load of 1000 N/mm
was applied on both ends, during

buckling analysis

3.0

~ | Distributed load is applied on both
ends.

4 Load applied = 1000 N/mm
N2 LPF_max = 3,41
Vil U1 at LPF_max = 4,042 mm
y i1 Displacement, U1 is taken from the
N T reference point, which is the

78 R R R midpoint of the left edge of the
T T plate

z.0

LPF

1.0

0.5

7 Imperfection amplitude =3 mm
P05 1’:0 : 2?0 : 3::0 4.0 5.0 .o
Displacement, U1 at reference point [mm]

| —— LFF vs Displacement ‘

[%1.E3]
5.0 T

4.0

Resultant force is derived from the
LPF. See the graph above.

w
=]

Force [KN)

Force = LPF*(1000 N/mm)*b

r
=)

b= width of the plate

o] -, Max. axial force = 5116 kN,

0.0 1.0 2.0 3.0 4.0 5.0 g.U
Displacement, U1 at reference point [mm]

—— Force vs Displacement
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S, Mises

SNEG, (fraction =

(Avg: 75%)
+3.556e+02
+3.297e+02
+3.038e+02
+2.779e+02
+2.520e+02
+2.260e+02
+2.001e+02
+1.742e+02
+1.483e+02
+1.224e+02
+0.650e+01
+7.059e+01
+4.468e+01

-10)

ome:
Step: Monlinear
1 Increment  19: Arc Length = 22,16
Primary Var: 5, Mises
[ —— )
Deformed var: U Deformation Scale Factor: +1,000e+00

Stress pattern at maximum axial
loading.

Since short edges are not forced to
stay straight, yielding occur first near
short ends.

The plot shows stress pattern in the
late stage of loading (at max.
strength). It shows a large area of
the plate has reached yield stress.
But it was the area near the short
edges that has shown sign of
yielding first.

Plate 1500X6000, t=10

Remarks

Buckling mode-1 was used to
introduce imperfection to the

analysis.

LPF, Load proportionality factor

3.5

3.0

ra
in

ra
=

-
in

-
=

0.5

2.0 4.0 6.0 g.0
Displacement, U1 at reference paint [mm)|

—— LPFvs DISPLACEMENT'

10.0

Distributed load is applied on
both ends.

Displacement, U1 is taken from
the reference point, which is the
midpoint of the left edge of the

plate

Load applied = 1000 N/mm
LPF_max =3,45616
Ul at LPF_max =4,262 mm

Imperfection amplitude = 3 mm
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CE — Resultant force is derived from

5.0

LPF-curve above.

4.0

e Distributed load applied on both

w
o

ends = 1000 N/mm

Force [KN]
-

N
o
s

Force = LPF*(1000 N/mm)*b

Maximum axial force =5184,24 kN

ob

i 1 N
2.0 4.0 6.0 8.0 in.0
Dizsplacerment, U1 at reference point [fm]

—— RESULTANT FORCE vs DISPLACEMENT |

Stress pattern at maximum

loading.

For the plate 5000X6000, t = 20

7.1.5. Comparison of plates with "MYK" type and "RETT" type boundary conditions.

Critical buckling of plates remained the same regardless of type boundary condition used.
But there is a significant difference between strength of the plates depending on how the

boundary condition is applied to the model.

Comparison of ultimate strength of plates with "MYK" type and "RETT" type boundary

conditions is summarized on Table 7-4.
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Table 7-4 Comparison of ultimate strength of plates with "MYK" and "RETT" type
boundary conditions

. Strength Strength . .
No. PI?:ne ns;n}ze "MYK" type "RETT" type D|ff[T(rNe;1ce D|fft;:/e]nce
[kN] [kN] ’
1 1500 X 1500 51354 5702,3 566,9 9,9 %
2 1500 X2000 5288,3 5988,1 699,8 11,7 %
3 1500 X 3500 5054,8 5635,6 590,8 10,5 %
4 1500 X 5000 5116 5640 524 9,3%
5 1500 X 6000 5184,2 5721,5 537,3 9,4 %

Strength results on Table 7-4, show an average difference of 10 % between plates with

"MYK" and "RETT" type boundary conditions. Plates with "MYK" type boundary conditions
are softer, since the loaded edges are not forced to remain straight and can deform. Plates
with "RETT" type of boundary conditions are stronger, since the boundary condition forces

the loaded edges to stay straight.

7.2. Numerical analysis of biaxially loaded unstiffened plates

Biaxially loaded Plate dimensions given on Table 5-4 are analyzed by using Abaqus. Hand

calculated results of the same plates are presented on subtopic 6.2.

Analysis of both linear buckling and ultimate strength is performed. Buckling mode plots and
strength curves are given as an appendix on subtopics A.1 and A.2 . Only resulting buckling

forces and ultimate strength are presented below.

Critical buckling force of square plate (2000X200, t=20) and rectangular plate (2000X4000,
t=20) with different combinations of biaxial loading is presented as follow. Plots of buckling

modes are given as an appendix on Table A- 1 and Table A- 2.




Table 7-5 Critical buckling stress of biaxially loaded plate 2000X2000, t=20

84

A :Lowest buckling | O c
No. Loading type [N/mm] g cr,x,abaqus cr,y,abaqus
mode [N/mmA2] [N/mmA2]
Longitudinal = 1000
1 1,20830 60,415 15,104
Transverse = 250
Longitudinal = 1000
2 1,00690 50,345 25,173
Transverse = 500
Longitudinal = 1000
3 0,86308 43,154 32,366
Transverse = 750
Longitudinal = 1000
4 0,75520 37,760 37,760
Transverse = 1000
Table 7-6 Critical buckling stress of biaxially loaded plate 2000X4000, t=20
A :for lowest c Y
No. Loading type [N/mm] . cr,x,abaqus cr,y,abaqus
buckling mode [N/mm~2] [N/mmA2]
Longitudinal = 1000
1 1,18390 59,195 14,800
Transverse = 250
Longitudinal = 1000
2 0,78914 39,457 19,729
Transverse = 500
Longitudinal = 1000
3 0,59182 29,591 22,193
Transverse = 750
Longitudinal = 1000
4 0,47343 23,672 23,672
Transverse = 1000
Where:

A

Ocr,x,abaqus = critical buckling stress—logitudinal direction

Gcr,y,abaqus = Critical buckling stress—transverse direction

= eigen value from buckling analysis
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Biaxially loaded, square plate (2000X2000, t = 20) and rectangular plate (2000X4000, t = 20)

are numerically analyzed to determine their strength and results are given on Table 7-7 and

Table 7-8. Strength curves extracted from the numerical analysis are given as an appendix on

Table A- 3 and Table A- 4.

Table 7-7 Ultimate strength of biaxially loaded plate 2000X2000, t=20

No Loading type Imperfection ORd,x,abaqus ORd, y,abaqus
[N/mm] amplitude [mm] [N/mmA2] [N/mmA2]
Longitudinal = 1000
1 4 155,950 38 987
Transverse = 250
Longitudinal = 1000
2 4 131,765 65,882
Transverse = 500
Longitudinal = 1000
3 4 120,271 90,203
Transverse = 750
Longitudinal = 1000
4 4 104,528 104,528
Transverse = 1000
Table 7-8 Ultimate strength of biaxially loaded plate 2000X4000, t=20
Imperfection ORd.x abaqus oRd,y,abaqus
No. Loading type [N/mm] amplitude [mm] [N'/n’\m'\z] [N/mmA2]
1 Longitudinal = 1000 4 147,665 36916
Transverse = 250
Longitudinal = 1000
2 Transverse = 500 4 114,072 57,036
Longitudinal = 1000
3 Transverse = 750 4 91,271 68,453
Longitudinal = 1000
4 Transverse = 1000 4 76,026 76,026
Where:

ORd,x,abaqus = Ultimate strength—longitudinal direction

ORd,y,abaqus = Ultimate strength—transverse direction
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7.3. Numerical analysis of uniaxially loaded stiffened plates

Hand calculations of longitudinally stiffened plates were presented on the previous chapters.
Results of the finite element analysis for the same plates will be presented on the
subsequent subtopics. Plots of buckling modes and strength curves are given on appendix B

and C.

7.3.1. Results of linear buckling analysis: stiffened plates.

Plates naturally tend to buckle to a mode shape which requires minimum energy, and critical
buckling force is considered to be the minimum force required to deform the plate in certain

mode shape.

Results of the linear buckling analysis are tabulated below. These results will be later
compared with hand calculated results given on Table 6-8 and Table 6-9. Plots of the lowest

buckling modes are presented as an appendix on Table B- 1 and Table C- 1.

Table 7-9 Critical buckling forces, Ncr,abaqus for stiffened plates with increasing number

of stiffener
No Plate size(mm) No. of stiffeners Necr,abaqus [kN]
1 1600X7000 3 3012,2
2 2000 X7000 4 2148,4
3 2400 X7000 5 1845,2
4 2800 X 7000 6 1767,8
5 3200 X 7000 7 1796,1
6 3600 X 7000 8 1879,7




87

Similarly buckling analysis is carried out for stiffened plate with constant width but varying

length. Results are given on Table 7-10 below.

Table 7-10 Critical buckling, Ncr,abaqus of stiffened plate with varying length

No Plate size(mm) No. of stiffeners Ner,abaqus [kN]
1 2000 X 2000 4 10 309,7
2 2000 X 3000 4 4 940,0
3 2000 X 4000 4 3130,8
4 2000 X 5000 4 2415,2
5 2000 X 6000 4 2 160,8
6 2000 X 7000 4 2148,4
7 2000 X 8000 4 2285,9
8 2000 X 9000 4 2529,2
9 2000 X 10000 4 2416,1
10 2000 X 10000 4 2161,6

7.3.2. Ultimate strength of uniaxially loaded, stiffened plates

Stiffened plate dimension given on Table 5-6 and Table 5-7 are numerically analyzed using

Abaqus. Results of linear buckling analysis for the plates are given on Table 7-9 and Table

7-10.

On the following tables only resulting strengths are presented. Strength curves are

presented as an appendix on Table B- 2 and Table C- 2.
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7-11 Numerically determined strength, NRd,abaqus of plates with increasing number of

stiffeners
No Plate size[mm)] No. stiffeners Imp.erfection NRd,abaqus
amplitude [mm)] [kN]

1 1600X7000 3 3,2 4 249,6

2 2000 X7000 4 4 4326,0

3 2400 X7000 5 4,8 4510,4
4 2800 X 7000 6 5,6 4695,8

5 3200 X 7000 7 6,4 4 858,5

6 3600 X 7000 8 7,2 5006,8

Table 7-12 Numerically determined strength, NRd,abaqus: Stiffened plate with increasing

length
No Plate size[mm] No. stiffeners Imp.erfection NRd,abaqus [kN]
amplitude [mm)]
1 2000 X 2000 4 4 6 339,8
2 2000 X 3000 4 4 4576,9
3 2000 X 4000 4 4 4172,4
4 2000 X 5000 4 4 4110,6
5 2000 X 6000 4 4 4189,6
6 2000 X 7000 4 4 4 326,0
7 2000 X 8000 4 4 4 452,6
8 2000 X 9000 4 4 4580,7
9 2000X10000 4 4 4110,9
10 2000X12000 4 4 4190,1
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8. Comparison of hand calculated and Abaqus results

Hand calculations based on Reduced stress method and Effective width method are
performed for both unstiffened plates and stiffened plates. A finite element analysis using
Abaqus is also carried out for the same plates. Comparisons will be done between hand

calculations and Abaqus results in the following subtopics.

8.1. Uniaxially loaded unstiffened plates

Hand calculated results based on both the Effective width method and Reduced stress
method are presented on subtopic 5.1. It has been shown for uniaxially stressed unstiffened
plates both hand calculation methods lead to exactly equal crititical buckling stress and

ultimate strength for all plate dimensions.

In case of finite element analysis, unstiffened plates are categorized depending on how the
boundary conditions are modeled in Abaqus. The two categories are denoted as, plates with
"RETT" type and "MYK" type boundary condition. Only results of plates with "RETT" type
boundary conditions will be compared with hand calculated results. The reason is that, rules

of Eurocode-3-1-5 are developed by assuming loaded edges remain straight during loading.

8.1.1. Comparison of critical buckling forces: Hand calculations versus Abaqus results

A comparison of results of hand calculation and Abaqus ("RETT" type boundary condition) is

given below. In the Table 8-1 results of both design methods are denoted as, N¢r hang since

they are equal.

Table 8-1 comparison of hand calculated critical buckling force, Nerhand and Abaqus

results, Ner abaqus

. Ncr,hand Ncr,abaqus Difference Difference
No. Plate size [mm]
[kN] [kN] [kN] [%]
1 1500 X 1500 4049,1 4008,8 -40,3 -1,0 %
2 1500 X2000 4394 4372 -22 -0,5%
3 1500 X 3500 4146 4128,1 -17,9 -0,4 %
4 1500 X 5000 4094,2 4077,9 -16,3 -0,4 %
5 1500 X 6000 4049,1 4033 -16,1 -0,4 %
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There is a quite close agreement between hand calculated buckling force, and result of linear

buckling analysis using Abaqus.

8.1.2. Comparison of hand calculated and numerically determined strengths

For uniaxially loaded unstiffened plates both Reduced stress and Effective width methods

give equal strength values, which will be denoted as N hand in the following table. These

results will be compared with numerically determined strengths, using "RETT" type

boundary conditions. Description of plates with "RETT" type boundary condition is given in

subtopic 5.4.1.

Table 8-2 Comparison of hand calculated strength, Ngy hang and numerically determined

strength, Npg, abaqus

Plate NRd,hand
No. NRd,abaqus Difference [kN] | Difference [%]
size(mm) [kN]
1 1500 X 1500 5672,7 5702,3 29,6 1%
2 1500 X2000 5870,5 5988,1 117,6 2%
3 1500 X 3500 5729,5 5849 119,5 2%
4 1500 X 5000 5699,3 5804 104,7 2%
5 1500 X 6000 5672,7 5721,5 48,8 1%

Hand calculated strength, Nrq hand and numerical determined strength, Npq apaqus Show

close agreement.




8.2. Biaxially loaded unstiffened plates
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Hand calculated critical buckling stress and strength will be compared with results from

finite element analysis. Hand calculations are performed based on Reduced stress method,

since Effective width method does not apply for multiple loading situation. Hand calculated

results are given on Table 6-4 and Table 6-5.

Table 8-3 Comparison of critical buckling stress based on Reduced stress method, ¢y y

and results of Abaqus analysis, Ocr,x,abaqus

Plate -2000X2000, t=20 mm

Loading combination Ocr.x.r Ocr,x,abaqus Difference | Difference
No. 7% 7% o
[N/mm] [N/mmA2] [N/mmA2] [N/mmA~2] | [%]
1 Longitudinal = 1000 60,7 60,415 -0,285 0,5
Transverse = 250
2 Longitudinal =1000 | oy )4 50,345 0,266 0,5
Transverse = 500
3 Longitudinal = 1000 43,394 43,154 -0,240 0,6
Transverse = 750
4 Longitudinal = 1000
Transverse = 1000
Plate -2000 X 4000, t=20 mm
No Loading combination | Ocr,x,r O'cr,x,abaqus Difference | Difference
" | [N/mm] [N/mmA2 [N/mmA2] [N/mm"2] | [%]
1 Longitudinal =1000 | -, 59,195 12,895 22
Transverse = 250
L itudinal = 1000
2 onitucina 33,248 39,457 6,209 16
Transverse = 500
L i i =1
3 ongitudinal =1000 | ¢ o, 29,591 3,631 12
Transverse = 750
4 Longitudinal =1000 ) 53, 23,672 2,342 10

Transverse = 1000
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Reduced stress method does not clearly provide a way to calculate critical buckling stress,

other than what is given as a definition to ot .

Olcr is defined as the minimum load amplifier for the design loads to reach the critical load
of the plate under a complete stress field. Based on this definition of a.,, the following

relationship could be formulated:

c or = critical bucklingstress
Ocr =—— = O¢r = O¢r *OF( where _ desien st load
o O = design stress loa

Since this project is a theoretical study, the design load, Gg is not known in advance. Its

value is found by carrying out an iteration scheme until equation (10.5) of Eurocode-3-1-5 is

satisfied.

Critical buckling stress, 6, calculated based on the above relationship gives quite good
result for uniaxial loading, but show certain weakness for biaxially compressed plates. In
particular there is a quite large discrepancy between hand calculated values and Abaqus
results for biaxially loaded rectangular plate. This shows aspect ratio has a role, which may
not be captured in the above relationship. Thus a thorough study of background calculations

and origin of o, is required. Unfortunately it is not possible to carry out such study, due to

lack of relevant literature written in English or Norwegian.

Generally it could be concluded that Reduced stress method lack an explicit way of
calculating critical buckling stress, especially for multiple loading situations. The indirectly

deducted formula, G =0, Of(g, lead to conservative results.
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Biaxially loaded plates
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Plate -2000X2000, t=20

Loadin . .
No combinat?on ORd,x,r ORd,x,abaqus Difference | Difference
[N/mm] [N/mm~2] [N/mm~2] [N/mmA] [%]
1 #‘::f;f/“e‘:';a' B 1(2’28 143,500 155,950 12,450 8 %
2 #‘::fg/“e‘:;zal B 1508(? 131,800 131,765 -0,035 0%
3 #‘::fg/‘ﬁg;a' B 17?(? 113,300 120,271 6,971 6%
4 #‘::fg/‘ﬁg;a' B 1;)(?(?0 94,800 104,528 9,728 9%
Plate 2000 X 4000, t = 20
Loadin . .
No combinat?on ORd,x,r ORd,x,abaqus Difference | Difference
[N/mm] [N/mm~2] [N/mm~2] [N/mm?] [%]
1 #‘;:f;‘;‘:'sza' B 12(5)8 127,300 147,665 20,365 14 %
2 ?r’:f;f/‘::'sza' B 1;;’8 108,300 114,072 5,772 5%
3 ?::f;l:::;al - 17050(;) 88,300 91,271 2971 3%
4 | Lonsitudinal=1000 71,340 76,026 4,686 6%

Transverse = 1000

8.3. Uniaxially loaded stiffened plates

Results of hand calculations (both Reduced stress method and Effective width method) will

be now compared with results obtained based on finite element analysis.

8.3.1. Comparison of critical buckling stresses

It was previously stated that both Reduced stress method and Effective with method lead to

exactly same critical buckling force. Such hand calculated values are compared with Abaqus

results on Table 8-5.
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Table 8-5 Comparison of hand calculated critical buckling force, Ney hand With Ner,abaqus

No Plate size I}lo. of Nerhand | Ner,abaqus | Difference | Difference
[mm] stiffeners [kN] [kN] [kN] [%]
1 1600X7000 3 2421,7 3012,2 590,5 20 %
2 2000 X7000 4 1994,1 2148 4 154,3 7%
3 2400 X7000 5 1705,7 1845,2 139,5 8%
4 2800 X 7000 6 1608,6 1767,8 159,2 9%
5 3200 X 7000 7 1626,5 1796,1 169,6 9%
6 3600 X 7000 8 1703,5 1879,7 176,2 9%

Table 8-5 above shows an average difference of 9 % between hand calculated results and

results of finite element analysis. One of the reasons could be stiffened plates with more

than two longitudinal stiffeners are treated as an equivalent orthotropic plates by smearing

stiffeners smoothly over the plate. This is just an approximate approach and could lead to a

lower buckling force and strength.

The difference is worse for narrow plate (1600X7000) with only three stiffeners. Since the

stiffeners are smeared over the plate, the two stiffeners which are nearest to the

longitudinal edges will miss some of their stiffness when hand calculated.

Table 8-6 Comparison ofNgy hang and Ney apaqus : Stiffened plate with varying length

No Plate size No. of Ncr,hand Ncr,abaqus Difference Difference
[mm] Stiffeners [kN] [kN] [kN] [%]
1 2000 X 2000 4 8 860,5 10 309,7 1449,2 14 %
2 2000 X 3000 4 4214,8 4940,0 725,2 15 %
3 2000 X 4000 4 27134 3130,8 417,4 13 %
4 2000 X 5000 4 2155,1 24152 260,1 11%
5 2000 X 6000 4 1996,8 2160,8 164,0 8%
6 2000 X 7000 4 1994,1 21484 154,3 7%
7 2000 X 8000 4 1994,1 22859 291,8 13 %
8 2000 X 9000 4 1994,1 2529,2 535,1 21 %
9 2000 X 10000 4 1994,1 2416,1 422,0 17 %
10 2000 X 12000 4 1994,1 2161,6 167,5 8%
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Comparison of the buckling results on Table 8-6, show that there is also a significant
difference between hand calculated values and the linear critical buckling force determined
by finite element analysis. Similar reason could be given as for plates with increasing number
of stiffeners on Table 8-5. Therefore results based on equivalent orthotropic considerations

may not reflect the behavior of stiffened plate exactly.

The difference between hand calculated critical forces and Abaqus results on Table 8-6 is

largest, for plate length of 9000 mm. this is due to two reasons:

e Hand calculated values become constant after plate length is increased over certain
limit, but Abaqus results continue to vary slightly. See the blue curve on Figure 8-1.
e Abaqus analysis: Buckling force tend to increase just before the length limit, at which

buckling mode shape changes from single half- sine-wave to two half-sine-waves.

In our case buckling mode changes from single half-sine -wave to two half-sine-waves when
length is increased from 9000 mm to 10000 mm. Refer to buckling mode plots given in the

appendix.

Comparison of hand calculated buckling force and Abaqus results are illustrated in

Figure 8-1.
Hand calculateded,N_cr,hand VS Abaqus results, N_cr,Abaqus
12 000.0
10000.0 .
= 80000
[
L o000
.g’ ] ——N_cr_hand
_;45 4000.0 \l —=—N_cr,abaqus
@ .|
2000.0 B na-- 2c —f
0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Plate length [m]

Figure 8-1 Comparison of critical forces: Hand calculated versus Abaqus results
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8.3.2. Comparison of ultimate strengths: Longitudinally stiffened plate

Comparison of results of Reduced stress method and Effective width method was previously
made on Table 6-15 and Table 6-16. Now each method will be compared with results of the

numerical analysis.

Table 8-7 Comparison of ultimate strength based on Effective width method, Npqg eff,w

and results of numerical analysis, NRd,abaqus

No. Plate size I_\Io. of NRd, effe,w NRd,abaqus Difference Difference

[mm] stiffeners [kN] [kN] [kN] [%]
1 1600X7000 3 4149,846 4 249,6 99,754 2%
2 2000 X7000 4 4453,873 4 326,0 -127,873 -3%
3 2400 X7000 5 4463,902 4510,4 46,498 1%
4 2800 X 7000 6 3866,711 4 695,8 829,089 18 %
5 3200 X 7000 7 3428,083 4 858,5 1430,417 29 %
6 3600 X 7000 8 3181,306 5006,8 1825,494 36 %

Comparison of results shows Nrg eff w is very close to the results of the numerical analysis,
NRd,abaqus for relatively narrow plates. But the difference widens as the width increases.

Strength of plates determined based on Effective width method is a result of an
interpolation between plate-like and column- like behavior. As the width of plates increases,
hand calculated plate strength decreases due to increased effect of column- like buckling.

Therefore Effective width method fails to describe the real strength for wider plate.

Results of stiffened plate strength based on Reduced stress method is worse than that of
Effective width method since Reduced stress method does not consider post buckling
strength of all member plates of the cross section. Recall that previous comparison between
these two methods has revealed that strength calculated based on Effective width method is

on average 10 % higher than results of Reduced stress method.
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Table 8-8 Comparison of strength based on Reduced stress method, NRd,r and results of

numerical analysis, NRd,abaqus

Plate size No. NRd.r NRd abaqus Differenc | Difference
No. . ’ )
[mm] stiffeners [kN] [kN] e [kN] [%]
1 1600X7000 3 3792,401 4249,6 457,2 11%
2 2000 X7000 4 3987,872 4326,0 338,1 8%
3 2400 X7000 5 3919,178 45104 591,2 13%
4 2800 X 7000 6 3212,712 4 695,8 1483,1 32%
5 3200 X 7000 7 2651,798 4 858,5 2 206,7 45 %
6 3600 X 7000 8 2304,38 5 006,8 27024 54 %
7000
6000 \
5000 ‘\\
PR \\ SRS ——
-E- 4000 )\ — e N K
e\
o
c —=—Strength by Reduced stress
@ 3000
=z \_/ method

2000

1000

—e—Strength by Abaqus

——Strength by Effective width

method

1 2 3 4 5 6 7 8 9 10 11 12 13
Length [m]

Figure 8-2 Plate with four longitudinal stiffeners, strength as a function of length

As shown on the Figure 8-2 strength curves based on Reduced stress method and Effective

drops down in the interval 2 m to 4 m. This shows the interpolation equation used is not

good enough to describe the behavior of the plate dimensions in this interval. As the length

increases both curves rise up, since the effect of column-like buckling gets lesser.
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9. Conclusion

For uniaxially loaded plates both Reduced stress method and the Effective width method
showed exactly same critical buckling stress and strength. This is because of only single plate
panel is used. In real life most plated structures are made up of multiple panels which could
have different thickness. In such case the two methods are expected to produce different

results.

In case of finite element analysis performed on uniaxially loaded unstiffened plate, no

significant difference was found between hand calculated results and Abaqus results.

Hand calculations on biaxially loaded plates were done only based on Reduced stress
method, since Effective width method is not applicable for multiple loading situations.
Buckling analysis performed on biaxially loaded square plate showed no significant
difference between results of Reduced stress method and Abaqus. But for biaxially loaded
rectangular plate, the analysis showed quite large difference between hand calculated
critical buckling stress and that of Abaqus. This shows Reduced stress method may fail to

describe the behavior of biaxially loaded plates with higher aspect ratio.

Reduced stress method and Effective width method showed exactly equal critical buckling
stress when applied on uniaxially loaded stiffened plates. Such hand calculated results are
found to be quite lower than result of Abaqus. There is about 10 % - 15 % difference
between hand calculated critical buckling stress of stiffened plates and result of finite

element analysis done by Abaqus.

Strength analysis of stiffened plates showed that Reduced stress method is very conservative
when compared to Effective width method. This is mainly due to the fact that Reduced
stress method does not allow load shedding between member plates of a cross section.
Effective width method allows load shedding between plate panels and lead to a better

strength results.

Strength results based on Effective width method for stiffened plates are generally lower
than results of numerical analysis. The difference is especially very large for both short and

wide plates, since effect of column-like buckling is taken into consideration. Hence the
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interpolation equation used in the design process is not good enough to capture the real

behavior of such stiffened plates.

Generally Effective width method gives better results for longitudinally stiffened regular
plate dimensions with uniaxial loading condition. But Reduced stress method can help to
make a fast judgment about strength of a plate cross section, if the minimum load

amplifiers, ¢, and aj¢ i could be determined using a computer soft ware.

Reduced stress method is the only alternative method when dealing with irregular plate

shapes, plates with arbitrarily arranged stiffeners, plate with large cut outs ... etc.

Recommendations for future study:

This thesis concentrated primarily on axially loaded rectangular plates. Slender plate
structures loaded in bending and shear are also very common. Study of moment and shear

loaded plates using Reduced stress method would have been very interesting.

Literature about the back ground work of Reduced stress method is hardly available in

Norway. Therefore a comprehensive study on this subject would have been very important.
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A.Buckling modes and strength curves of biaxially loaded plates

A.1 Buckling modes: Biaxially loaded plates

Table A- 1 Buckling modes of biaxially loaded plate-2000X2000, t=20

Loading . Sigma_cr_abaqus
No. Buckl -1 -
o [N/mm] uckling mode [N/mmA2]
A=1,2083
X=1000 G _cr,x = A*(1000 N/mm)/t
1
Y=250 o_cr,y =A*(250 N/mm)/t
1 G u%‘m”:;ig:z: s
@@= ¥ Deformed Var: U Deformation Seale Factor: +2,000e+02 O_Cr.x:60'415
o-cr,y=15,1
A =1,0069
' o _cr,x =A*(1000 N/mm)/t
2 X=1000 o_cr,y =A*(500 N/mm)/t
Y=500
BT o_crx=50,3
o_cr,y=25,2
A =0,86308
e o _cr,x = A*(1000 N/mm)/t
X=1000 e
3 o_cr,y =A*(750 N/mm)/t
Y=750
L. S, o_cr,x=43,2
e o_cr,y=32,4
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X=1000
Y=1000

......
............

-02
+0.000e+00

Step: Step-1
1‘ Mode 1: Eigenvalue = 075520
Primary Var: U, Magnitude
8= % Defarmed var: U Defarmation Scale Factar: +2,0002+02

A=0,7552

o _cr,x =A*(1000 N/mm)/t
o_cr,y =A*(1000 N/mm)/t
t=thickness

o_cr,x=37,8

o_cr,y=37,8

Table A- 2 Buckling modes of biaxially loaded plate-2000X4000, t=20

Loading
No. Buckling mode -1 Sigma_cr [N/mm~2]
[N/mm]
A=1,1839
o _cr,x=A*(1000
N/mm)/t
X= 1000 o_cr,y = A*(1000
' Y=250 N/mm)/t
L B oo t=thickness
o_cr,x=59,2
o_cr,y=14,8
A =0,78914
o _cr,x=A*(1000
X=1000 N/mm)/t
2 Y=500 o_cr,y = A*(1000

N/mm)/t
o_cr,x=39,5

o _cry=19,7
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A =0,59182

o _cr,x=A*(1000
N/mm)/t

o_cr,y = A*(1000
N/mm)/t

X=1000

Y=750

o_cr,x=29,6

o_cry=22,2

A =0,47343
o _cr,x=A*(1000

X= 1000 N/mm)/t

Y=1000 o_cr,y = \*(1000

N/mm)/t

o_cr,x=23,7

o_cr,y=23,7

A.2 Strength curves: Biaxially loaded plates

The strength of the plate is extracted as LPF (Load proportionality factor). This is then

transformed into stresses as follow:

o_x,Rd= LPF*(Loading_x-direction)/t

o_y,Rd = LPF*(Loading_y-direction)/t

Imperfection = buckling mode-1 is used for all simulations.

Imperfection amplitude = b/500 = 4 mm for all simulations
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Table A- 3 Strength curve for biaxially loaded plate 2000X2000, t=20mm

Loading .
No. [N/mm] Strength curve: LPF vs. Displacement (U1) Strength
Max LPF =3,11899
e N U1 at max. LPF =
H 2,741 mm
1 S 15 L : :
X=1 3 T
voaso, |5 |1/ 0_x,Rd= 156
- I & N/mmA2
o_y,Rd=39 N/mmA2
‘U.‘U e Dlsp\acemeif,uUW at referenc?ér?amnﬂ [rmm] 4"0 ’
| ~——— LPF vs DISPLACEMENT({UL)
82 Max LPF =2,63529
% U1 at max. LPF=
2 X=1000 g 3,199 mm
Y=500 ;:m
B o_x,Rd =131,8
N/mmA2
/ o_y,Rd =65,9
s 1.0 Z.0 3?0 E 450 : ] N/mmAz
Displacernent, U1 at reference point 1 [mm]
|— LPF v5 DISPLACEMEMNT (Ul)
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e I LI T T !

2.5

[
=]

Max. LPF =2,40541

U1 at max. LPF=
2,54301 mm

-
in

X=1000
Y=750

LPF, Load proportionality factor

[
=]

g g g o_x,Rd = 120,3
S V4 o ! | N/mma2

0 8 A O

/i o_y,Rd = 90,2
N/mmA2

i i i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Displacement, U1 at reference point 1 [rmm]

| —— LPF vs DISPLACEMENT (U1}

25— T T T

Max. LPF = 2,09055

o
in

U1 at max. LPF=

X=1000 2,519 mm

Y=1000

[
=]

LPF, Load proportionality factor

o_x,Rd = 104,5
. N/mmA2

EEERERERERERED 0_y,Rd =104,5
0.0 : 0.5 ll‘D : 1.5 . Z‘ID 21.5 . 3.0 3.‘5 4.0 N/mml\z

Displacement, U1 at reference point 1 [rmm]
|— LPF vs DISPLACEMENT{U1} |
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Table A- 4 Strength of biaxially loaded plate 2000X4000, t=20mm

Loading
No Strength curve : LPF vs. Displacement (U1) Strength

[N/mm]

T T T T T T Max. LPF

=2,95329

2.5

U1l at max.LPF =

4,37 mm

r
=)

X =1000

o_x,Rd

H

Y =250

V4N N =147,7 N/mmA2

-
=)
-

LPF, Load proportionality factor

0.5

o_Rd=363

N/mmn2

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Displacement, U1 at reference point 1 [mm]
| —— LPF vs DISPLACEMENT (U1} |

T 1 1 1 11 Max. LPF

=2,28143

2.0

] U1 at max. LPF=

3,56 mm

-
in

o _x,Rd=114,1

X=1000
N/mmA2

N

Y=500

LPF, Load proportionality factor

/ AR R o_y,Rd =57
N/mmA2

i i i i :
0.0 1.0 2.0 3.0 4.0 5.0 .0
Displacement, U1 at reference paint 1 [mm)

I —— LPF vs DISPLACEMENT (U1)




108

= T f
20 Max. LPF =
. P 1,82541
8 R
2 s M
s : H ; E—
H / U1 at max.LPF =
g : f H
X=1000 | g / 3,04 mm
Y=750 | & / 5
| 6 x,Rd =91,2
0.5
/ N/mmA2
R o zio sio 4.0 5.0 5.0
I I Displac;ament, U1 at rleference pointl1 [mm] I I U_V,Rd = 68'5
[—  LpF vs DISPLACEMENT (UL} N/mm"2
2.0 .

X=1000
Y=1000

LPF, Load proportionality factor

[
wn

[
o

[ S -

1 t
1.0 1.

Digplacement, U1 at reference point 1 [mmi

i i
5 z.0

2.5 3.0

3.5

| —— LPF ws DISPLACEMA

Max. LPF

| =1,52051

U1 at max. LPF
=2,57 mm

o_x,Rd =76
N/mmA~2

o_y,Rd =76
N/mm~2
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B.Plates with increasing no. of stiffeners : Buckling modes & strength

curves
Buckling analysis of stiffened plates (all plates have a thickness of 10 mm).
A point load is applied at the reference point.

Table B- 1 Lowest buckling modes: Plates with increasing no. of stiffeners

Plate No. of
No. . stiffen Buckling mode
size(mm) ers

N_cr,abaqus

Buckling mode 1
|REEE

N _cr=3012,2
kN

1 1600X7000 3

Lowest mode with two half-sine waves in the
transverse direction

N_cr=10634,5
kN

Buckling mode 7

Factor: +7.000

Lowest local buckling mode

N_cr=12227,8
kN

Buckling mode 1

2 2000X7000 4

N_cr = 2148,4
kN
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Buckling mode 4

Lowest mode with two half-sine waves in the
transverse direction

N_cr=8585,9
kN

Buckling mode 9

N_cr=15714,7

kN
Lowest local buckling mode
Buckling mode 1
N_cr=
1845,2kN
Buckling mode 3
2400X7000 N_cr=7364,5
kN

LdWésf mo‘de.\/-\‘/ith tWo hélf sine waves in the
transverse direction

Buckling mode 11

Y ODB: buck-1.0db  Abaqus/Standard 6.12-1 Tue Jul 09 22:05:25 Vest-Europa (sommertic

Lowest local buckling mode

N _cr=19131,5
kN
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2800X7000

Buckling mode 1

N_cr=1767,8
kN

Buckling mode 3

+8.3336-02
+0.000e+00

1 _ .. 0DBibukk-lodb Abaqus/Standard 6.12-1 Thu Mar 26 23:21146 Ve: rmaltid) 2013

waest mode with two half-sine waves in the
transverse direction

N_cr=7049,69
kN

Buckling mode 12

U, Magnitude

+0.000e+00

i ODB: bukk-1.0db  Abaqus/Standard 6.12-1 Tue Jul 09 22:15:25 Vest-Europa (sommertid) 2013

Lowest local buckling mode

N_cr=22537,4
kN

3200X7000

Buckling mode 1

N_cr=1796,1
kN

Buckling mode 4

s
+1.000e+00

+5.833e-01
+5,000e-01

ODB: buck-7-stiff-1.0db  Abaqus/Standard 6.12-1  Fri Mar 28 17:24:50 West-Europs

Lowest mode with two half-sine waves in the
transverse direction

N_cr = 7159 kN
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Buckling mode 15

U, Magnitude
+1.000e+00

+4.167¢-01
¥3.3336-01
+2.500e-01

Lowest local buckling mode

N_cr=25934
kN

3600X7000

Buckling mode 1

N_cr =1879 kN

Buckling mode 2

U, Magnitude
+1.000e+00
+3.167e-01
+8.333e-01
+7.500e-01
+6.667e-01

N cr=5173,8
kN

Buckling mode 16

N_cr=29324,8
kN




Table B- 2 Strength curve: plates with increasing no. of stiffeners
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No

Plate size
(mm)

No. of
stiffen
ers

Plot (buckling mode used to introduce
imperfection and the strength curve)

Strength [kN]

(Abaqus)

1600X7000

Buckling mode 1 is use to introduce
imperfection.

[%1.E6]

4.0

3.5

w
o

e
in
T

™
o

-
in
\‘\

Force, FR1 at reference point [N]

1.0

0s

0.0 i i L
o 4 iz,

. :8
Displacement, U1 at reference point [mm]

|7 FORCE vs DISPLACEMENT

N_Rd =4249,6 kN

U1l at max. load
=11,7 mm

Imperfection
amplitude =3,2
mm

3, Mises

Multiple section points

(Ava: 75%)
+3.555e+02
+3.265e+02
+2.975e+02
+2.685e+02
+2.3968+02
+2.1068+02
+1.6168+02
+1.5268+02
+1.237e+02
+3.488e+01
+6.570e+01
+3.672e+01
+7.744e+00

¥ ODB: imperfec-3stiff.odb  Abaqus/Standard 6.12-1  Sat Mar 30 14:32:49 Vest-Europa (nor

Step: Nonlinear

Increment  76: Step Time = 0.7600

Primary Yar: 5, Mises

Deformed Var: U Deformation Scale Factor: +1,000e+00

L o

=

Stress pattern at
maximum loading

for the plate with

. 3 stiffener
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Buckling mode 1 is used to introduce
imperfection

[x1.E6]

4.0

N,Rd = 4326 kN

U1l at max load =
12,45 mm

Imperfection

amplitude =4
35 mm
? 3.0
§ 2.5
®
2000X7000 £ /
£ /
L/
K Disp\asclemem, U1 at reference poji-r?f [eniem] =
|— FORCE vs DISPLACEMENTI
Stress pattern at
Maximum load
| for plate with 4-
stiffeners.
Buckling model is used to introduce
imperfection
N_Rd =4510,4 kN
2400X7000

Imperfection
amplitude = 4,8
mm

U1l at max.
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[#1.E6]

Force, FR1 at reference point [N]

4.5

4.0

w
in

w
=

N
in

N
=

N
n

S. 10,
Dizplacement, U1 at reference paint [mm]

15,

|— FORCE vs DISPLACEMENT

loading =12,6
mm

Stress pattern at
maximum
loading.

This is stress
pattern belongs
to plate with 5-

2800X7000

stiffeners.
Buckling mode 1 is used to introduce N_Rd = 4695,8
imperfection kN

Ul at max.

[x1.E8]
5.0

Force, FR1 at reference point [N]

4.0

w
o

I3
o

1.0

0.0

S. 10,
Displacement, U1 at reference point [mm]

15,

I— FORCE vs DISPLACEMENT

Loading = 12,45
mm

Imperfection
amplitude = 5,6
mm
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Stress pattern at
max. loading for
the plate with 6

stiffener

3200

Buckling mode 1is used to introduce
imperfection

4.0

7

z.0

Force, FR1 at reference point [N]

AL/

0.0

a 8 1z
Displacerment, U1 at reference paint [rmm]

——— FORCE vs DISPLACEMENT

N_Rd = 4858,5 kN

U1l at max.
loading =12,3
mm

Imperfection
amplitude = 5,6
mm

Stress pattern at
max. loading for
the plate with 7-
stiffeners.

3600X7000

Buckling mode 1 used to introduce
imperfection

N_Rd = 5006,8 kN

U1l at max.
loading = 12,2
mm

Imperfection
amplitude =7,2
mm
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[x1.E6]

5.0

4.0

3.0

z.0

Force, FR1 at reference point [N]

A/

0.0

a, G 12,
Displacement, U1 at reference point [mm]

——— FORCE vs DISPLACEMENT

Stress pattern at
max. loading for
the plate with 8-
stiffeners.
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C.Stiffened plate with increasing length : Buckling modes & strength
curves
Buckling analysis for stiffened plates (all plates have a thickness of 10mm)

A point load is applied at the reference point

Table C- 1 Buckling plots of plates with increasing number of stiffeners

. No. of N_cr_abaqus
No I{’Iate]sue stiffen | Buckling mode No.
mm ers [kN]
Mode 1

N_cr =10309,7
kN

1 2000X200 4

N_cr =15671,8
kN

2 2000X3000 | 4 N_cr =49040 kN

Mode 3 N_cr =15677 kN




119

N_cr =3130,8 kN

2000X4000
N_cr=15711,7
kN
Mode 1
N_cr =2415,2 kN
2000X5000

N_cr=
15702,2kN

2000X6000
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N_cr =2160,8 kN

Mode 7

N_cr =15706,7
kN

Mode 1

N_cr =2148,4 kN
2000X7000
N_cr=15712,8
i kN
Lo T
Mode 1
2000X8000 N_cr = 2285,9 kN

Mode 9

N_cr =15710,2
kN
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1

1

1

i

i

i

1

2

0
ODB: buck_L8-stiff-july.odb  Abaqus/Standard 6.12-1  Tue Jul 09 16:38:24 West-Europa (samn
Step: Linear

® Mode 9: Eigenvalue = 1571026407

Primary War: U, Magnitude

Deformed Var: U Deformation Scale Factor: +8.000e+02

2000X9000

Mode 1

N_cr =2529,2 kN

Mode 10

U, Magnitude

Y ODB: buck-L9-4stiff.odb  Abaqus/Standard 6.12-1 Tue Jul 09 17:07:47 Vest-Europa (sommertid) 201

1 Step: Step-1
Mode  "10: Eigenvalue = 1.57115E+07

Primary Var: U, Magnitude

Deformed Var: U Deformation Scale Factor: +9.000e+02

N_cr=15711,5
kN

2000
X10000

N_cr =2416,1 kN

Mode 11

U, Magnitude
e+

OD8: buck:L10-45tf.0db  Abaqus/Standard 6.12-1  Wed Jul 10 10:39:21 Vest-Ewropa (sommertd) 2013

! Step: Linear
X Made 1

Prenary Var: U
Deformed Var

i Scaie Factor: 410000403

N_cr=15712,2
kN

10

2000
X12000

Mode 1

N_cr =2161,6kN
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Mode 14

N_cr=15712,2
kN

Strength curves of stiffened plates dimensions with increasing length are given on Table C- 2.

Buckling mode 1 is used to introduce imperfection.

Table C- 2 Strength curves: stiffened plates with increasing length

Plate size

No. (mm) Figure strength

[x1E8]

6.0

N_Rd =6339,8
kN

5.0

U1 at max load

2 =2,37
g
5 a0 Both the
E- loading and the
& 2o displacement
are taken at the
10 RP (reference
1 2000X2000 point)

0.0 0.5 1.0 1.5 z.0 2.5 3.0
Displacernent, U1 at reference point [rmm)

I— FORCE vs DISPLACEMENT

Stress pattern
at maximum
loading.

Failure
occurred at
axial stress of:
229 N/mmA”2
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2000X3000

[x1.E6]

Force, FR1 at reference paint [N]

4.5

4.0

w
in

w
o

ra
n

N
o

"
n
—

1.0 /

0.5 /

)

4.0 6.0

Displacement, U1 at reference point [mm]

8.0

I— FORCE vs DISPLACEMENT

N_Rd = 4576,9
kN

U1 at max. load
=4 mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)

Stress pattern
at maximum
loading.

Most of
stresses are
concentrated
Along the
longitudinal
edges as
expected.

2000X4000

Force, FR1 at reference point [N]

2.0 3.0 4.0
Displacement, U1 at reference point [mm]

i
S.0 6.0

7.0

|— FORCE vs DISPLACEMENT

N_Rd =4172,4
kN

U1 at max. load
=5,8 mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)
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5, Mises
Multiple section points
(Av: 75%)

+8.301e+01

z ®

ODB: imperfec-Ld-dstiff-2.0db

Step: Nonlinear

Increment  &3: Step Time = 0.8300

Primary Var: 5, Mises
Defarmed Yar: U Deformati

Abaqus/Standard 6.12-1  Sun Mar 31 23:19:38 Vel

on Scale Factor: +1,000e+00

Stress pattern
at maximum
loading.

Most of
stresses are
concentrated
Along the
longitudinal
edges as
expected.

2000X5000

[x1.E6] )
4.0 oo I S
3.5 N_Rd =4110,6
kN
E. 3.0
5 U1 at maximum
@ 2.5 .
g loading=7,7
o
Z 20 / mm
w©
: /
g 1s / Both the
(=]
= loading and the
o / displacement
el / are taken at the
/ RP (reference
D'%.U z.0 4.0 &0 7.0 10.0 pOInt)'
Displacement, UT at reference point [rmm]
——— FORCE vs DISPLACEMEMT

+5.036e+01

P 0DB: imperfec-LS-4stff-update.odb  Abaqus/Standard 6.12-1

Step: Nonlinear
Increment  77: Step Tume = 0.7700
Primary Var: S, Mise:

Deformed Var: U D

Wed Apr 10 16:43:30

s
eformation Scale Factor: +1.000e+00

Stress pattern
at maximum
loading
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2000X6000

[x1.E6]

4.0

3.5

3.0

2.5

2.0

Force, FR1 at reference point [N]

ol

ool

N_Rd =4189,6
kN

U1l at maximum
loading =9,8
mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)

0.0 i
a. 5. 10, 15, 20.
Digplacement, U1 at reference point [mm]
|— FORCE vs DISPLACEMENT
s, wises
Multiple section points
(Ava: 75%

+3.885e-+01

¥ ODB: imperfec_L6-4stiff.odb  Abaqus/Standard 6.12-1  Sun Mar 31 17:10:30 Vest-Europa

v
1: Step Time = 04868

M

U Deformation Scale Factor: +1.000e+00

Stress pattern
at maximum
loading

2000X7000

[x1.E8]

4.0

3.5

3.0

2.5

2.0

1.5

Forece, FR1 at reference point [N]

1.0 /

0.5

0.0

5. 10, 15,
Digplacement, U1 at reference point [mm)

|— FORCE vs DISPLACEMENT

N_Rd = 4326
kN

U1l at maximum
loading = 12,45
mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)
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Stress pattern
at maximum
loading

2000X8000

[x1.E6]
4.5

4.0

3.8

r [ o
=] in o

Force, FR1 at reference point [N]
=
in

1.0

0.5

5

10, 15, 20,

Displacement, U1 at reference point [rmrm]

|— FORCE ws DISPLACEMENT

N_Rd = 4452,6
kN

U1 at max
loading =14,2
mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)

Stress pattern
at maximum
loading.
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[x1.E6]
" N_Rd =4580,7
- kN
£
g U1 at maximum
5 o / loading = 15,4
E mm
g / Both the
g . ;; loading and the
7 displacement
e f """"""""""""""""""""""""""""""""""""""""""""""""""" are taken at the
2000X9000 osh/ RP (reference
. f point)

‘Displacement, 1 re%erence point [mrn]

‘7 FORCE ws DISPLACEMEMNT

Stress pattern
at maximum

loading.
N_Rd=4111kN
[x1.E6]
s i P> U1 at max.
B loading = 15,4
mm
2 30
H Both the
g™ loading and the
2000X10000 | 2 , | : displacement
g f/ are taken at the
g 15 / f ; RP (reference
& , : : point)
JI’.-"
s/
/
0.0 /r L -

Ijisplacemem, L1 at reference point [mrm)

‘7 Force vs Displacement
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s, Mises

Multiple section points

(Avg: 75%)

+4 679 +01
11871401

v

a—p ¥

ODB: imperfec-L10-dstiff.odb  Abaqus/Standard £.12-1  Sun Mar 31 13:42:52 Vest-Europa (sommertid) 2013

Step: Norlinear

Increment  70: Step Time = 0.7000

Primary Var: §, Mises

Deformed Vari U Deformation Seale Factar: +1.00024+00

Stress pattern
at maximum
loading

10

2000X12000

[x1.

Force, FR1 at reference point [N]

1.0

0.5

0.0
a.

Displacement, U1 at reference point [mm)]

——  Force vs Displacement (U1}

i i :
5. 10, 15 20. 25,

N_Rd = 4190 kN

U1l at maximum
loading = 19,5
mm

Both the
loading and the
displacement
are taken at the
RP (reference
point)

S, Mises

(Avg: 75%:

Multiple section paints
)

0DB: imperfec-L12-4stiff-udate.odh  Abaqus/Standard 6.12-1  Wed Apr 10 17:48:13 Vest-Eurapa (sommertid) 2013

Step: Norlinear

@==p X Increment 78: Step Time = 0.7800

Primary Var: S, Mises
Deformed vari U Deformation Scale Factar: +1,0006+00

Stress pattern
at maximum
loading.
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D.Calculation work sheet for longitudinally stiffened plate
Both Effective width method and Reduced stress method are shown.
A typical calculation work sheet showing how the calculations are performed is given below.

The work sheet shows design procedures based on both Effective width method and the

Reduced stress method.

Plate with five equally spaced stiffeners

, 400 , ”ﬁ’%‘z
_— E
‘ 2400 ‘
Geometry Stiffener: Material date:
Plate:
. E := 2.1: 1°MPz
L (all flat type stiffeners)
a = 7000nm . ~
h. (= 160mm fy := 355MPz
b := 2400nm sl
bsup:= 400m tg == 12mmr v = 0.1
n:=35 235MPa
beng:= 400mm ( n =no. of stiffeners) ei= | ——— = 0.814
Y
tp = 10mnr
*symbol description:
a = plate length
b = plate width
bsup= plate panel between stiffeners, distance taken c/c
stiffener
bend = plate panel between edge of the plate and nearest
stiffener
4 2
Ac = n-bg nty +n-hg -ty = 2.96x 10" mm

C- sup ‘p
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Cross sectional check
Three types of subpanels to be checked:

1: subpanels at the ends: bepg X tp
2: subpanels between stiffeners: bgyp Xty

3: stiffeners as an outstand plate: hg| x t

Class 3 requirement:

C
— < 42¢ 42-¢ = 34.172 for internal element with uniform axial compression

IA

14-¢ 14-¢ = 11.391 for outstand element with uniform axial compression

i Ne!
IA

For subpanel no.1, i.e. subpanel between the outermost stiffener and the edge of the
plate

b ty)
end ~ )

tp

— 394 It is a class 4.

For subpanel no.2 =it is the subpanel between two internal stiffeners
bsup — 1y

o

For subpanel no.3 = the stiffener as an outstand plate

= 38.8 Itis a class 4.

hsl — tp
Ok, class 3 or better
=6.25

s|
Slenderness values for the subpanels:

Both the subpanels at the ends of the plate and those between stiffeners have equal width.
We need a single slenderness value.



Aspect ratio a:

a

Uloc = =175
bend
bend
tp
kp locgi=———— = 0.865549
) 28.4¢- /kc

Local reduction factor,pjo.:

Ap.loc— 0-055 (3 +v)

Ploc=
2 2

if A

o.loc> 0-673

p.loc

1 otherwise

bend.eff'= Ploc Pend = 344.672mm

bsup.eff= Pend.ef

2
Aceff.loc = M (Pend.eff tp + hsltgl) = 26833.589nm

Ac = 29600mm°

Global plate buckling:

131

Very large aspect ratio:

kcs =1

v =1
uniform compression

= 0.861679

NS-EN-1993-1-5:fig.4.4

Plate buckling will be calculated by considering an equivalent orthotropic plate, according

NS-EN-1993-1-5:A.1

Parameters like Ig| Ip v, 6 ,a are needed to calculate kg :

3 3

b'tp tS|.hS| 7 4

'sl = +n- = 2.068x 10 mm
12 12

Is|= second areal moment
of the plate

n= no. of stiffeners
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3
b~tp 4

| = = 2.198x 10°mm
P ( 2j
12-\1 —-v

Ay = ”'(hsl'tsl) — 9.6x 18 mm?> Ag| = sum of area of the individual stiffener

2
Ap = bty = 2.4x 10" mm Ap = area of the plate part only
Aspect ratio for the whole plate, a p: y =1
: i 0.5 2.917
%p = May Y T See Annex A.1: NS-EN-1993-1-5
Areal ratio,6:
On: ASI 0.4
p = = Ul
Ap
Inertia ratio, yp
: |SI 94.094 4 3.114515
’Yp = E = . \/Tp = o.
2 .
[(1 N apz) yp- 1} ) Ns-EN-1993-equation (A.2)
kG-p = 2: 2 if Otp < \/’}Tp
ap -l + 1)-(1 + ap)
4'(1 Ty Yp) . 4
if a,> fy
(W+1)'(1+5p) P P
ke.p = 15406
2 t) 2 o g = reference buckling stress
of = ol | = 3295 10°Pa
12-\1 —v

Ser.p = Ko.p O = 5.076x 10 MPa
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Global plate slenderness, A g glob:

= 2.5178621 ' Ac

kp.glob - 0.055(3 + \U)

= 0.36246
2

kp.glob
Column like buckling:

Need Ig] 1 and Ag| 1 : for the stiffener nearest to the edge and the plate part adjacent to
it, according NS-EN-1993-1-5:Fig(A1):

(bend"' bsup) 2
Agl1i= ——5— tp + hgptg) = 5920mm
NS-EN-1993-1-5:Fig.A.1
(bend.eff+ bsup.ef} # 2
Asl.1.eff= > ty + hgptg) = 5.366718« 10°mm
(bend+bsup) . 3 3
| 2 TP tsrhg
= +
sl.1 12 B
_ 6 4
lg 1 = 4.129333< 10° mm
2
" Ell / NS-EN-1993-1-5:equation(4.9
Sersl= —— = 2.950402« 10’ Pa -EN- -1-5:equation(4.9)
Agl.1@

Relative column slenderness, A ¢:

Agl.1.eff

Bacsl = = 0.90654

sl.1
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f

cr.c
hsI
e .= T NS-EN-1993-1-5:4.5.3(5)
|
|
= [T — 26.411mm
Agl1 a = 0.4¢ open section stiffener
0.09
g =0 + —— = 0.62631
|
1
D = E-|:1 +og (e —02 + }ch] = 6.925482 NS-EN-1993-1-1:6.3.1.2
1
X = - > = 0.076848
O .+ (D —A

Interpolation between plate- like and column-like buckling:

Secr. Ocr.
£ = [ p—1} f 0< —P _1<1

Scr.c Scr.c

Scr.p

1 if -1>1

Ser.c

0 otherwise

£ =0.721

pei= (pp - XC)'g-(z — &) +x = 0.34016

bend Ploc = 0.862

b = 172.336mm

edge.eff*= Ploc

_ _ 4 2
Aceff = Pc-Aceffloc +2-(Pedge.eff ) tp = 1.257437% 10" mm
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Ym.1=1
fy
= 4463.902kN

NeRd = Aceff -
Ym.1

Nc.Rd = is a design resistance - it is a value determined by interpolating between plate -like

and column- like buckling behavior.

For the sake of curiosity, let us calculate strength neglecting the effect of column- like buckling
(i.e. considering only plate behavior) :

f

y
Nc.Rd_plate = (pp'Ac.eff.Ioc + zbedge.eff'tp)'y—l = 4676.351kN
m.

CALCULATION BASED ON REDUCED STRESS METHOD

Loading situation:

Sy Ed = 116.642214679WPz uniaxial stress condition

Note: this value of o x g4 was found by iteration.

Determination of «, :
There are two possibilities to determine, a,,

1) Hand calculation using NS-EN-1993-1-5, equation (10.6)

2) Using soft ware like EBplate, Abaqus.

1) Using hand calculation to determine, a

c

I: calculating a ¢:

Sapupn= D0.763MPz This value of o¢r ; was previously calculated for Effective width
method. See the calculation done for Effective width method above.

For uniaxial stress condition,o ¢r x= 0 ¢r,p See NS-EN-1993-1-5:10(6)
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Oer.x o =C o = C .
Oery = cr.t cr.z No transverse & shear loading
Ox.Ed
NS-EN-1993-1-5:eq. (10.6):
1
2 2
1 1+, 1+y, 1+, 1+y, 1-wyy, 1-vy, 1
— = 2 + 2 + 2 + 2 + 5 + 5 + 5
o o ‘o -o ¥l
cr cr.x cr.z cr.x cr.z 2-0epy 2-agp 4 Qerr
Ocp = gy = 0.435

Il: Determination ofa,,, :

2 2 2
1 [GX.EdJ . (Gz.Edj ) (GX.Ed]_[Gz.Ed} X 3(3} NS-EN-1993-1-5: eq. (10.3)
oyl k fy fy fy fy fy

Only o y g is different from zero

f
= 3.043

Cule.k =
Ox.Ed

lll: Determination of plate slenderness, A p

Qult.k

Ay = = 2.644
cr

NS-EN-1993-1-5: eq. (10.2)

IV: Determination of reduction factor, Pp
NS-EN-1993-1-5 allows determination of reduction factor into two ways:

A: Using different buckling curves according the clause 10(5a). Here equation (4.2), (4.3)
and clause 5.2(1) could be used if necessary.

B: Using a single generalized curve based on equation (B.1)
In the following calculation, alternative A (i.e. different buckling curves) will be used).

A generalized buckling curve method is usually used when the plate is non regular or
when the loading situation is very complex.



hp = 0.055(3 + )

= if Ap> 0.673A (3+yy) 2 0

Pp_r= 2 p
p

1 otherwise

Pp r= 0.347

V: Column like buckling:
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Yy =1

NS-EN-1993-1-5:eq(4.2)

According NS-EN-1993-1-5:10(5a), a column-like buckling of the plate should be
considered. All relevant equations in section 4.5.3 will be used. The only exception is
instead of A¢ (relative column slenderness), the plate slenderness, A D which is

calculated above will be used.

|Osup+ bend

2
Agl.1.= —5 "t * Pty = 5.92x 10°mm

3 3
bend‘tp tglhg 6 4
Isl 1. = + = 4.129x 100 mm
ks 12 12

2

T ElSll 7
CSerer=—— = 2.950402< 10" Pa

Agl.1@

O cr.c_r = the subscript "r" indicate Reduced

stress method

(open section stiffener)

2
Qo= 0.5[1 + oce.-(kp - 0.2‘) + kp] = 4.7621

= 0.6263086

Ye ¢ = =0.115
cr > 5

(pc+ Pc _xp

NS-EN-1993-1-5:4.5.3(3)

hsI

e = — = 40mm
ls).1

i:= = 26.411mm
Agl.1

NS-EN-1993-1-1:6.3.1.2(1)

X ¢ r =thesubscript "r" indicate Reduced

stress method
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VI: Interpolation between plate and column buckling:

Sear.p Scr.p
Er o= —1 if 0< ~1<1
Ocrcr Ccrcr
Ser.
1 if P -1>1
Ocrcr
0 otherwise
Er =0.721

Pe_r = (Pp_r— e r)Er-(2—&r) +x¢ = 0329

VIl: Determination of resistance:

If there are different loading types, NS-EN-1993-1-5:eq. (10.5) is most appropriate to
check for resistance of the plate. When there is only uniaxial loading situation, either
eq.(10.5) or eq.(10.1) could be used.

Ym1:=1 Since results will be compared with that of Abaqus, influence of material factor is avoided

Ox.Ed
= 1.00000000000028 NS-EN-1993-1-5: eq.(10.5)
Pcrly
- OK! .
[ o j Gc.Rd_r = Ox.Ed = 116.642MP3
oR Cer.p = 50.7635MPz
Pc_r %ult.k )
———— =0.99999999999972 NS-EN-1993-1-5: eq.(10.1)
Tmi1
OK!

2: Using soft ware to determine a ¢:
By using EBplate we get the critical buckling stress, ocr EBplate= 54.137 Mpa

o.cr will be calculated based on o¢r EBplate

Scr EBplate’= 5413™MP:



Sy Ed 2 = 120.00410956081P2

Ocr_EBplate 0.451
®cr.EBplate = =u
P Ox.Ed_2
Ap_2 = 0.055(3 + vy)
pp_z = > = 0.357
Xp_Z

Interpolation equation:

Xe 2= Xe r = 0.115

gy =&r =0.721

O x.Ed_2 is determined by

Qult.k_2
= 2.561

Oer.EBplate

P2 = (Pp_2 =% 2) €2 (2 &) +1c_p = 0338

Then the resistance check will be:

Ox.Ed 2
—— = 1.0000000000002
pc_2'fy
Tm1
Pc 2 %ultk 2
- — = 0.9999999999997¢
Tm1

Strength based on acrggplate:

OcRd 2= Ox.Ed 2 — 120.00411MPa

NS-EN-1993-1-5: eq.(10.5)

NS-EN-1993-1-5: eq.(10.1)

critical buckling stress

Scr.p_2'= %cr.EBplatéCx.Ed_2 = °4137MPz
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An example showing how iterations are carried out by MathCAD

All parameters are same as those used in the last calculation above. Symbols
used are defined on last two pages above.

X¢ 2 = 0.114646592210588 Yy =1
€9 :=0.72056214092270- Ym =1
355MPa
O‘ult.k_Z(c’x.Ed_Q =
Ox.Ed _:

Scr_EBplate

%er.EB Iate(cx.Ed 2% EB Iate) =
P —= d-EEP Ox.Ed_2

ayit.k 49x.Ed_2
Y%r.EBpl ate(cx. Ed 2Scr _EBpl ate)

*p_2(%x Ed 25 _EBplate) = j

Xp_Z(C’x.Ed_Z c’cr_EBpIaIe) - 0'055(3 + ‘Vx)

pp_Z(Gx.Ed_Z Gcr_EBpIate) = 2
7‘p_2(0x. Ed 2 c‘cr_EBplate)

pc_2("xEd_2=Gcr_EBplate) = (pp_Z(GxEd_ZGcr_EBpIate) - Xc_2)'§2'(2 - §2) *tXc 2

pc_Z(Gx. Ed 2 CTcr_EBpIaIe)'O‘u It. k_icx. Ed_ﬁ
Tmi1

funksjon (Gx. Ed_2 Gcr_EBpIate) =

funksjon(a, pq 7.34.13TMPa)

o2
e

L]
(=11
A

iy
L]
(o)
2

L]
Laa
x

)

OxEd_2trial = 140MPe

root (funksjon (oy gq 2 trial 5413MPa) — 1,04 £q 2 trial)) = 120.0041095608VIPa

140
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CONTROL AGAINST TORSIONAL BUCKLING OF STIFFENERS

Flat stiffeners on axially loaded plates are prone to torsional buckling. NS-EN 1993-1-
5:9.2.1(8) states that, properties of a longitudinal flat stiffener should satisfy the following
criteria to prevent torsional buckling.

Ir fy
|—25,3E NS-EN 1993-1-5: eq. (9.3)
P

Geometry of stiffeners used:

hgt =160 mm =>height of double sided flat stiffener
t; =12mm = thickness of the stiffener

1 3 t t
3 hgt

_tghg _12-160°

st == =4,096-10°mm*
3 3
hgts,  160-12
ly st =t = =23040 mm*
St 12

lo =he st +ly st = 4119040 mm*

It _ 87805,44 mm*
I 4119040 mm*

=0,0213

f 2
53 _53 3ON/mm® 5

E 2,1-10°N/mm?

f
NN 5,3%, OK!
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