
Ann-Therese Ali 

 

 

Targeted Next-Generation sequencing 
identified novel gene variants involved in 
hereditary Colorectal Cancer 

 

 
 

 

 

Master thesis in Molecular Medicine 

Trondheim, June 2015 

Supervisor:  Wenche Sjursen 

 

 

 

Norwegian University of Science and Technology 

Faculty of Medicine 

Department of Medical Genetics 

 

 

 



I 

 

Abstract 

Colorectal cancer (CRC) is one of the most common types of cancer both worldwide and in 

Norway. Risk factors and mechanisms contributing to the disease are among dietary and 

lifestyle and somatic and inherited mutations. CRC is divided in three groups 1. Sporadic 

CRC where the patients have no family history and no identifiable mutations; 2. Familial 

CRC where the majority of genetics are unknown but the patients have at least one blood 

relative, but no specific germline mutation or clear inheritance pattern; 3. Hereditary CRC 

syndromes where the patients have inherited a single gene mutation in highly penetrant cancer 

susceptibility genes. The genes known to date to predispose to colorectal cancer are APC, 

BMPR1A, POLE, SMAD4, the MMR genes among others and these genes are related to the 

hereditary CRC syndromes. There are other genes which have been found in Genome-wide 

association studies (GWAS), exome studies or with next-generation sequencing (NGS) to be 

associated with CRC such as KLLN, AKT1, PIK3CA, OGG1, KIF23 among others. 123 

genes some known to be involved in hereditary CRC syndromes and some associated with 

CRC were sequenced in 95 patients using Haloplex targeted NGS. The purpose for this master 

thesis was to identify pathogenic variants in these genes that could be of help to explain the 

increased CRC risk in these patients.  

The results from the NGS identified 1268 unique variants which were filtered with the 

downstream analysis tool FILTUS. After the variants found in only one or two patients were 

selected. 64 unique variants were left to be further evaluated using the prediction software 

Alamut. From the 64 variants 25 variants were selected to further investigate because those 

were found to have most prominent effects on the proteins. Four out of the 25 variants were 

found to be involved in predisposition to hereditary CRC syndromes; two variants identified 

in POLE, a variant in BMPR1A and a variant in PTEN. The other variants identified may be 

involved in CRC predisposition, but further functional studies are needed to determine their 

function in CRC involvement. There were identified a few false positive variants during the 

use of Haloplex targeted NGS, but because the rate of these variants were not high this 

method seems to be a reliable method to use in cancer research.  

  



II 

 

Acknowledgements 

This master thesis was carried out at the Norwegian University of Science and Technology 

(NTNU) in Trondheim at the Department of Medical Genetics at St. Olavs Hospital.  

First of all I would like to express my gratitude to my supervisor Wenche Sjursen for giving 

me the opportunity to work on this interesting project. Thank you so much for your help, 

feedback and encouragement during the writing process. Your enthusiasm and passion for the 

field of genetics is inspiring and contagious.  

Many thanks to Maren F. Hansen for help with the laboratory work, interpretation of result 

data and for reviewing my thesis. Thank you for always being available and for answering all 

my questions. Want to wish you good luck with your doctoral study.   

I would also like to thank  Sten Even Erlandsen for taking the time to help with the 

Bioanalyzer measurements and for sequencing the Haloplex library.    

Thanks to Jostein Johansen for processing the data from the next-generation sequencing 

making the data easier to work with. I appreciate that you took the time to answer my 

questions.  

Thank you also to Liss Anne S. Lavik for showing me around the laboratory and giving me 

the necessary guidelines to work in the laboratory.  

I deeply appreciate working together with Karoline B. Rypdal on some parts of this project. It 

was very nice to have someone to work with during the laboratory part of the project and to 

discuss the work that had to be done during the project.  

My special thanks goes out to my father, mother and brother for being supportive and for 

believing in me all the way. I am truly grateful for you always being there for me.  

Last but not least I would like to thank my friends, especially Maja Helland for the nice 

lunches at the Knowledge Center in between writing.  

Trondheim, June 2015 

Ann-Therese Ali 

  



III 

 

List of Abbreviations 

AC  Amsterdam Criteria 

BMP  Bone Morphogenic protein  

Bp  Base pairs 

CIN  Chromosomal Instability 

CRC  Colorectal Cancer 

CS  Cowdens Syndrome  

EMT  Epithelial-transition mesenchymal 

FAP  Familial Adenomateous Polyposis 

FCC  Familial Colorectal Cancer 

gDNA  Genomic DNA 

GI  Gastrointestinal  

HDGC  Hereditary Diffuse Gastric Cancer 

HMPS  Hereditary Mixed Polyposis Syndrome  

HPS  Hamartomatous Polyposis Syndromes 

JPS  Juvenile Polyposis Syndrome 

LOH  Loss of Heterozygosity  

MAP  MUTYH-Associated Polyposis 

MCR  Mutation Clustered Regions 

MMR  Mismatch Repair 

MSI  Microsatellite Instability 

MSS  Microsatellite Stable 



IV 

 

NSCLC Non-Small Cell Lung Cancer 

OCCS  Oligodontia-Colorectal Cancer Syndrome 

PHTS  PTEN Hamartomatous Tumor Syndrome 

PJS  Peutz-Jeghers Syndrome 

PPAP  Polymerase Proofreading-Associated Polyposis 

NGS  Next-Generation Sequencing 

TSGs  Tumor-Suppressor Genes 

 

 

  



V 

 

List of Abbreviations for genes in this project 

APC  Adenomatous Polyposis Coli 

AKR1C4 Aldo – Keto Reductase Superfamily 

AKT1  V – Akt Murine Thymoma Viral Oncogene Homolog  

AXIN2 Axis Inhibitor 2 

BMPR1A Bone Morphogenetic Protein Receptor 1A 

BUB1  BUB1 mitotic checkpoint serine/threonine kinase 

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 

CCDC18 Coiled-Coil Domain Containing 18 

CDH1  Cadherin 1, type 1, E-cadherin 

CENPE Centromere Protein E, 312 kDa 

CTNNA1 Catenin (Cadherin-associated protein), Alpha 1, 102kDa 

DCC  DCC netrin 1 receptor  

ENG  Endoglin 

EPHB2 Ephrin Receptor B2 

FAM166A Family with sequence similarity 166, member A 

FANCM Fanconi Anemia, Complementation group M 

GALNT12 Polypeptide N – Acetylgalactosaminyltransferase 12 

GREM1 Gremlin 1, DAN family BMP antagonist 

KIF23  Kinesin Family Member 23 

KLLN  Killin, p53-regulated DNA Replication Inhibitor 

LAMB4 Laminin, Beta 4 



VI 

 

LAMC1 Laminin, gamma 1 

MAML3 Mastermind-like 3 

MYH11 Myosin Heavy Chain 11 

MUTYH MutY Homolog  

MRPL3 Mitochondrial Ribosomal Protein L3 

NOTCH3 NOTCH 3 

NUDT7 Nucleoside Diphosphate Linked Moiety X – Type Motif 7 

OGG1  8-Oxoguanine DNA Glycosylase 

PIK3CA Phosphatidylinositor – 4,5 – bisphosphate 3-Kinase, Catalytic Subunit Alpha 

POLE  Polymerase DNA directed Epsilon, catalytic subunit 

POLD1 Polymerase DNA directed Delta 1, catalytic subunit 

PPP1CB Protein Phosphatase  1, Catalytic subunit, Beta isozyme 

PRADC1 Protease – Associated Domain Containing 1 

PRSS37 Protease, Serine 37 

PSPH  Phosphoserine Phosphatase 

PTEN  Phosphatase and Tensin homolog 

RAI1  Retinoic Acid Induced 1 

SFXN4 Sideroflexin 4 

SMAD4 SMAD family member 4 

STK11  Serine/Threonine Kinase 11 

TBX3  T-box 3 

TWSG1 Twisted Gastrulation BMP Signaling Modulator 1 



VII 

 

UACA  Uveal Autoantigen with Coiled-Coil Domains and Ankyrin Repeats 

ZNF490 Zinc Finger Protein 490 

  

  



VIII 

 

Table of Contents 

Abstract ....................................................................................................................................... I 

Acknowledgements ................................................................................................................... II 

List of Abbreviations ................................................................................................................ III 

List of Abbreviations for genes in this project .......................................................................... V 

1. Introduction ............................................................................................................................ 1 

1.1 Colorectal cancer .............................................................................................................. 1 

1.1.1 Molecular genetics in CRC ........................................................................................ 2 

1.2 Syndromes known to cause hereditary CRC .................................................................... 3 

1.2.1 Lynch Syndrome ........................................................................................................ 3 

1.2.2 Familial Adenomatous Polyposis .............................................................................. 4 

1.2.3 MUTYH-Associated Polyposis ................................................................................. 5 

1.2.4 Polymerase Proofreading –Associated Polyposis ...................................................... 6 

1.2.5 Hamartomatous Polyposis Syndromes ...................................................................... 7 

1.2.5.1 Peutz-Jeghers syndrome ...................................................................................... 7 

1.2.5.2 Juvenile Polyposis Syndrome .............................................................................. 8 

1.2.5.3 Cowden Syndrome .............................................................................................. 8 

1.2.6 Syndromes associated with hereditary CRC .............................................................. 9 

1.2.6.1 Hereditary diffuse gastric cancer ......................................................................... 9 

1.2.6.2 Oligodontia-Colorectal cancer syndrome ............................................................ 9 

1.3 Other associations with CRC .......................................................................................... 10 

1.4 Next-Generation Sequencing .......................................................................................... 13 



IX 

 

1.4.1 Targeted Sequencing ................................................................................................ 13 

1.5 Aims for this master thesis: ............................................................................................ 15 

2. Material and Methods ........................................................................................................... 16 

2.1 Workflow of methods used in this project for 123 CRC genes ...................................... 18 

2.2 Material and preparation of samples before library preparation .................................... 19 

2.3 Library preparation for NGS according to Agilent Technologies .................................. 20 

2.4 Data analysis after NGS ................................................................................................. 22 

2.5 Interpreting sequence data .............................................................................................. 22 

2.5.1 Evaluation of variants .............................................................................................. 23 

2.6 Validation of variants with Sanger sequencing .............................................................. 23 

3. Results .................................................................................................................................. 25 

3.1 Measurement of DNA concentration .............................................................................. 25 

3.2 Preparation of Haloplex library ...................................................................................... 27 

3.3 Interpretation of sequence data ....................................................................................... 28 

3.4 Validation of variants found with Sanger sequencing .................................................... 32 

4. Discussion ............................................................................................................................ 34 

4.1 Variants found in genes known to predispose to inherited CRC syndromes ................. 34 

4.1.1 The variants POLE c.1373A>T and c.824A>T ....................................................... 34 

4.1.2 The variant BMPR1A c.785T>C ............................................................................. 35 

4.1.3 The variant PTEN c.377C>T ................................................................................... 35 

4.1.4 The variant GREM1 c.196_197insT ........................................................................ 36 

4.2 Variants associated with CRC found in GWAS and NGS ............................................. 37 



X 

 

4.2.1 Variants found in FAM166A, MAML3, PPP1CB, NOTCH3, LAMB4, FANCM 

and RAI1 ........................................................................................................................... 37 

4.2.2 The variants found in BUB1B and DCC ................................................................. 38 

4.2.3 Variants found in AKT1, BUB1, KIF23, LAMC1, PIK3CA and TBX3 ................ 39 

4.3 Targeted NGS Sequencing ............................................................................................. 42 

4.4 Conclusion and prospective work ................................................................................... 43 

5. References ............................................................................................................................ 44 

6. Appendix .............................................................................................................................. 51 

6.1 Patients fulfilling the Amsterdam criteria and/or the revised Bethesda guidelines ........ 51 

6.2 Overview of DNA concentration measurement for ND-1000 and Qubit ....................... 54 

6.3 Bioanalyzer results before and after pooling of samples ................................................ 58 

6.4 Overview of the 123 genes, the MMR genes are highlighted in red .............................. 63 

6.5 64 variants colour coded according to predictions with Alamut .................................... 68 

6.6 List of mean coverage for each sample .......................................................................... 76 

6.7 Target regions covered with >20 reads ........................................................................... 80 

6.8 Number of variants found in each patient before filtration ............................................ 84 

6.9 Number of variants found in each patient after filtration ............................................... 88 



1 

 

1. Introduction 

1.1 Colorectal cancer 

Colorectal cancer (CRC) is a disease that affects the epithelium of the colon and the rectum, 

and is one of the most common types of cancer both worldwide and in Norway [1, 2]. With 

more than a million new cases every year, CRC is responsible for about 15% of all the 

cancers [1, 2]. Risk factors and mechanisms contributing to this disease are among dietary and 

lifestyle factors and somatic and inherited mutations [3]. There are three major pathways 

associated with CRC that account for the majority of the CRC cases: Chromosomal instability 

(CIN), microsatellite instability (MSI), and CpG island methylation phenotype [4].  

CRC is divided into three groups: 1. Sporadic CRC which accounts for about 60% of the 

cases and include patients with no family history and no identifiable inherited gene mutation; 

2. Familial CRC (FCC), accounting for about 20-30% of the cases and where the patients 

have at least one blood relative with CRC or an adenoma, but has no specific germline 

mutation or clear inheritance pattern [5, 6]; 3. Hereditary CRC syndromes account for 

approximately 5-10% of the cases where the patients have inherited only a single gene 

mutation in highly penetrant cancer susceptibility genes. [2, 6] Family history is therefore a 

big risk factor with a lifetime risk of 10-15% if a first degree relative has CRC, and 30-100% 

in familial genetic syndromes [7]. 

The outcome for patients with CRC is dependent on which stage the disease has reached at 

diagnosis, but the odds for survival normally varies from a 90% 5-year survival rate if the 

cancers are detected at the localized stage to 10% for individuals that are diagnosed with a 

distant metastatic cancer [8]. Therefore it is important for at-risk individuals with early 

detection of CRC due to improved prognosis and a precise understanding of the genetics 

behind inherited CRC. Early detection of CRC also improves cancer surveillance and 

prevention strategies, and helps to develop better diagnostic and therapeutic approaches. [5]  
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1.1.1 Molecular genetics in CRC 

The factors behind CRC development are many and they appear to be both complex and 

heterogenous. Both dietary and lifestyle factors and inherited and somatic mutations 

contribute to CRC, and the most significant dietary and lifestyle factors seem to be a diet rich 

with unsaturated fats and red meat, total energy intake, excessive alcohol consumption and 

reduced physical activity. However, factors that are likely to protect against CRC are 

nonsteroidal anti-inflammatory drugs, estrogen, calcium and possibly some statins. [3] The 

process leading to CRC is like any other cancer due to a series of multigene events, and a 

study by Vogelstein et al. [9] suggested that the progression towards CRC could be due to a 

series of four genetic events: alteration of APC, K-ras, DCC and p53. The alterations of these 

genes follow a certain order meaning that the former gene alteration leads to the latter event. 

[9] A figure of these events can be seen under in figure 1.1.   

 

Figure 1.1. Overview of the gene mutations in chronological order that is suggested to lead to CRC, 

where the mutation in the APC gene initiates the series of mutational events [10].  

According to Knudson’s two-hit hypothesis mutations in tumor suppressor genes (TSGs) that 

are inherited will not alone cause tumorigenesis. This is because there is still one healthy copy 

of the gene in every cell in the body. A cell will not lose its function until the second copy of 

the gene has turned nonfunctional and Knudson’s two-hit hypothesis suggests that this is due 

to a somatic mutation. [11, 12] 

The hereditary CRC cases are as mentioned previously divided in two groups: hereditary CRC 

syndromes where the genetic cause is known and FCC where the genetics behind the majority 

of cases are unknown. The most likely cause of FCC is a combination of alterations in high 

penetrant single genes and low penetrant- and multigenes. Common polymorphisms in genes 
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regulating metabolism or genes regulated by environmental or other genetic factors are 

examples of this. [5]  

Genes known to date to predispose to CRC are APC, BMPR1A, CDH1, POLE, MUTYH, 

SMAD4, STK11 and the MMR genes among others. These genes are high penetrant and are 

related to the hereditary CRC syndromes. Other genes such as KLLN, AKT1, PIK3CA, 

OGG1, KIF23 among others have been found to be associated with CRC in genome wide 

association studies (GWAS), exome studies or with next-generation sequencing. In GWAS 

single nucleotide polymorphisms (SNPs) that have moderate or low penetrance are studied to 

determine their function in disease. The full names of the known genes can be found under a 

list of abbreviations (see page V).  

 

1.2 Syndromes known to cause hereditary CRC 

1.2.1 Lynch Syndrome  

Lynch syndrome, also known as Hereditary Nonpolyposis Colorectal Cancer (HNPCC) is 

responsible for about 2-4% of the hereditary CRC cases, making it the most common cause of 

hereditary CRC [2]. Lynch syndrome was earlier diagnosed in families that fulfilled the 

Amsterdam criteria (AC) I which was later modified to AC II so that the extra-colonic cancers 

could be included. An overview of these criteria can be seen in table 1.1. In the present day it 

has become clear that not all AC positive families have Lynch syndrome. This was because 

the cause of MSI was identified which is loss of mismatch repair activity, and this led to the 

discovery of the genes that cause Lynch syndrome. [4] 
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Table 1.1. Overview of the Amsterdam Criteria [4].  

Amsterdam Criteria I Amsterdam Criteria II 

At least three relatives with CRC and the following:  At least three relatives with HNPCC-related 

cancers (colorectal, endometrial, small bowel, 

ureter or renal pelvis) and the following: 

One should be a first degree relative of the other two One should be a first degree relative of the other 

two 

At least two consecutive genereations should be 

affected 

At least two consecutive generations should be 

affected 

At least one case of colorectal cancer should be 

before age 50 

At least one case of HNPCC-related cancer should 

be before age 50 

Familial adenomatous polyposis should be excluded 

in any cases of CRC 

Familial adenomatous polyposis should be 

excluded in any cases of CRC 

Verfication of tumors’ histopathology  Verification of tumors’ histopathology 

The syndrome is caused by a germline mutation in one of the MMR genes: MLH1 (MIM 

#120436), MSH2 (MIM #609309), MSH6 (MIM #600678) and PMS2 (MIM #600259), and 

has an autosomal dominant inheritance pattern [2]. This syndrome is not described in detail 

because the MMR genes were not the focus of this study, it was the focus of another master 

thesis.  

 

1.2.2 Familial Adenomatous Polyposis 

FAP is an autosomal dominant syndrome, and it is one of the common inherited CRC 

syndromes having a prevalence of 1 in 10 000 individuals. The typical traits for classic FAP 

are development of several up to thousands of colonic adenomas which starts early in 

adolescence, and will continue to CRC if untreated [2, 5]. Individuals with the classic form of 

FAP have an average lifespan of about 39 years with untreated CRC, and approximately 95% 

will have developed CRC at the age of 50. A less severe form of the syndrome is attenuated 

FAP where there are fewer colonic adenomatous polyps with an average of 30 polyps and the 

maximum being about a 100. The average age of onset is higher, also individuals with this 
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form of the syndrome will develop polyps and CRC at a later age and the average lifetime risk 

of CRC is 69%. [5] There are several extra-colonic cancers that take place in FAP such as 

duodenal cancer, which is the second most common of the extra-colonic cancers in FAP, 

fundic gland polyps are also common although they do not have a high cancer risk. Gastric 

adenomas on the other hand have a higher risk towards the development of cancer but they 

are not all that common.[2] The cause of both classic and attenuated FAP is the germline 

mutations in the adenomatous polyposis coli (APC; MIM #611731) gene which is a tumor 

suppressor acting as an antagonist in the WNT signaling pathway [2, 13]. The gene is also 

involved in processes such as cell migration and adhesion, transcriptional activation and 

apoptosis. The mutations which are associated with disease have a tendency to cluster in a 

small region called the mutation cluster region (MCR) and this results in a truncated protein. 

[13] There have been identified more than 1000 APC variants that cause truncated protein 

products due to premature stop codons or frameshifts [2]. 

Classic FAP is diagnosed if at least 100 polyps are identified, whereas attenuated FAP 10 or 

more but fewer than 100 polyps have to be present. To diagnose attenuated FAP can 

sometimes be difficult, since the number of polyps can vary with this syndrome and also 

because it can mimic classic FAP and other syndromes such as MUTYH-associated polyposis 

(MAP), Lynch syndrome and even sporadic polyp development.[5, 14] 

 

1.2.3 MUTYH-Associated Polyposis 

MUTYH-Associated Polyposis (MAP) is an autosomal recessive inherited syndrome where 

the typical traits are adenomatous polyposis present in the colorectum and an increased risk of 

CRC [5, 15]. The genetic cause of this syndrome is due to biallelic mutations in the gene 

MutY homolog (MUTYH; MIM #604933) [5, 16]. MUTYH has the cytogenetic location 

1p34.1 and encodes a DNA glycosylase which is part of the base-excision pathway by 

participating in the oxidative DNA damage repair process [2, 16]. The actual function of 

MUTYH is to help make sure that G:C to T:A transverions into highly mutagenic bases due to 

oxidative stress do not occur [5]. 

The patients usually develop colonic polyposis by the age of 40 even though development of 

polyps and cancer can take place earlier [5]. Adenomatous polyps dominate in MAP where 

the patients usually develop an average of about 50 polyps, but there have also been cases 
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with serrated polyps and unlike attenuated FAP hyperplastic polyps are common [2, 5, 15]. 

There have also been reported cases of MAP that did not show a polyposis phenotype. 

Extracolonic cancers can also occur in this syndrome where those described are breast-, 

gastric-, thyroid-, testis- and hematologic cancer. [15] 

Criteria for diagnosing MAP have not quite been fully established, but for now the MAP 

phenotype is considered similar to attenuated FAP. Diagnosing MAP according to genetics 

will confirm the syndrome and will allow for genetic testing of family members. [5]   

 

1.2.4 Polymerase Proofreading –Associated Polyposis 

According to the study by Palles et al. [17] a new hereditary CRC syndrome Polymerase 

Proofreading-Associated Polyposis (PPAP) has been identified where the cause is germline 

mutations in Polymerase DNA directed epsilon, catalytic subunit (POLE; MIM #174762) and 

Polymerase DNA directed delta 1, catalytic subunit (POLD1; MIM #174761) [8, 18, 19]. 

POLE encodes the catalytic subunit of DNA polymerase epsilon, where the enzyme is 

involved in DNA repair and chromosomal DNA replication [17, 18]. During the DNA 

replication POLE is responsible for the synthesis of the leading strand. POLE also has proof-

reading capacity through the POLE exonuclease domain which is important for maintenance 

of replication fidelity. This capacity does not only act on newly misincorporated bases but 

may also act on mismatches that are produced by non-proof reading polymerases like Polα. 

[17] POLD1 is also involved in DNA replication and repair where it participates in the 

mismatch and base excision repair pathways [17, 19]. The gene encodes the catalytic and 

proof-reading subunit of DNA polymerase delta, which is the equivalent lagging strand 

polymerase to POLE [17]. 

PPAP is a dominant inherited syndrome which predisposes to the development of several 

colorectal adenomas and carcinomas. POLE and POLD1 are both involved in proofreading 

activity and in patients with this syndrome this proofreading exonuclease activity is impaired 

due to mutations in these genes. [20]  
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1.2.5 Hamartomatous Polyposis Syndromes  

Hamartomatous Polyposis syndromes (HPS) are a group of rare hereditary genetic autosomal 

dominant disorders that cover less than 1% of all the hereditary CRCs. HPS includes Peutz-

Jeghers syndrome (PJS), Juvenile polyposis syndrome (JPS), PTEN hamartoma tumour 

syndrome (PHTS) which includes Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba 

syndrome (BRRS), and characteristic traits for all these syndromes are the Hamartomatous 

polyps. These polyps are in themselves benign comprised of cells that are indigenous in the 

area that they are found in, but these syndromes have a malignant potential to develop both 

CRC as well as extracolonic cancers.[21]  

 

1.2.5.1 Peutz-Jeghers syndrome 

In PJS the hamartomatous polyps occur in the gastrointestinal tract [22]. Characteristics for 

the PJS polyps are that they are usually multilobulated with a papillary surface with branching 

bands of smooth muscle covered by hyperplastic glandular mucosa [23]. The consequence of 

gastrointestinal polyps can be gastrointestinal bleeding, anemia and abdominal pain caused by 

intussuception, obstruction or infarction [22]. Another characteristic trait with this syndrome 

is that it causes mucocutanous hyperpigmentation of the lips, buccal mucosa and digits [24].  

PJS also has a high rate of extracolonic cancers such as gastric, small bowel, pancreatic, 

breast, ovarian, lung, cervical and uterine/testicular cancer [2].  

To diagnose this syndrome there has been a few criteria proposed: (1) There have to be 

findings of three or more Peutz-Jeghers (PJ) polyps confirmed histologically; (2) Family 

history with PJS; (3) Mucocutanous pigmentation that is characteristic and prominent with a 

family history of PJS; (4) Both mucocutanous characteristic and prominent pigmentation and 

any number of PJ polyps [25].   

PJS can occur due to germline mutations in the serine threonine kinase 11 gene (STK11; MIM 

#602216) [22]. These germline mutations have been documented in about 70-80% of the 

patients with PJS where about 15% of the cases part or all of STK11 had been deleted [24].  

The function of this gene is complex and is still being researched, but it seems to be a tumor 

suppressor gene and has been found to regulate the cell cycle, mediate apoptosis, and cellular 

polarity including other functions [2, 22, 25].  
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1.2.5.2 Juvenile Polyposis Syndrome 

JPS is characterized by juvenile polyps that usually occur throughout the gastrointestinal tract 

[2]. These polyps appear as spherical and microscopically they are characterized by 

overgrowth of an oedematous lamina proparia (mucus membranes or mucosa), with 

inflammatory cells and cystic glands [23]. This syndrome carries an increased risk of CRC 

and diagnostic criteria according to the World Health Organization (WHO) require one of the 

following: (1) having more than five polyps in the colon or rectum; (2) having Juvenile polyps 

present in the gastrointestinal tract; (3) Patients with juvenile polyps having a family history 

of JPS. [2]  

JPS can occur due to a germline mutation in one of the three genes SMAD4 (MIM #600993), 

BMPR1A (MIM #601299) and ENG (MIM #131195), all related to transforming growth 

factor-beta (TGF-beta). Mutations in SMAD4 and BMPR1A are each found in approximately 

20% of patients with JPS.[2] The BMPR1A gene is located in the same chromosomal region 

as the PTEN gene, and there have been reported large deletions in both genes. These patients 

show a more severe form of the syndrome with onset in early childhood or symptoms of both 

CS and JPS. [23]  

 

1.2.5.3 Cowden Syndrome 

PHTS includes patients that clinically have CS and BRRS. The germline mutation of the 

phosphotase and tensin homolog PTEN (MIM # 601728) gene can be the cause of both these 

syndromes. Both CS and BRRS are rare syndromes where BRRS is mostly present in the 

pediatric population whereas CS is most commonly present in adults. [2]  

CS is a disease with variable penetrance where traits such as multiple hamartomatous and 

neoplastic lesions of the skin, mucous, membranes, thyroid, breast, colon, endometrium and 

brain can be seen [26]. The mutations that occur in the PTEN gene which are associated with 

CS, are usually point mutations, smaller deletions or insertions [23]. PTEN is a tumor 

suppressor gene and in approximately 85% of probands with CS there have been identified 

germline mutations in this gene [26, 27]. PTEN encodes the protein phosphatidylinositol-3, 4, 

5-triphosphate 3-phosphatase containing the two domains, a tensin like domain and a catalytic 

domain which is similar to the dual specificity protein tyrosine phosphatases. This protein 
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unlike the other protein tyrosine phosphatases, dephosphorylates phosphoinositide substrates 

and also negatively regulates the intracellular levels of phosphatidylinositol-3,4,5-

triphosphate in cells.[28] The protein accomplishes this by antagonizing the 

phosphatidylinositol-triphosphate kinase (PI3K) signaling pathway through its lipid 

phosphatase activity which results in the following inhibition of the Akt proto-oncogene [27]. 

It also functions as a tumor suppressor because it negatively regulates the AKT/PKB signaling 

pathway [28]. The phosphatase activity of the encoding protein regulates the mitogen-

activated protein kinase (MAPK) pathway in a negative manner according to Gu et al. [29]. 

Inactivation or loss of function of PTEN will in the mentioned signaling pathways, cause 

increased cell survival and uncontrolled cellular proliferation, followed by neoplasia as seen 

in many human cancers [27].  

 

1.2.6 Syndromes associated with hereditary CRC 

1.2.6.1 Hereditary diffuse gastric cancer 

Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome with an autosomal dominant 

inheritance pattern and is caused by germline mutations in the genes Cadherin 1, type 1, E-

cadherin (CDH1; MIM #192090) and Catenin (Cadherin associated protein) alpha 1, 102 kDa 

(CTNNA1; MIM #116805). CRC has been observed in this syndrome in patients belonging to 

families positive for CDH1. 

 

1.2.6.2 Oligodontia-Colorectal cancer syndrome 

Oligodontia is the genetic explanation for severe tooth agenesis, where the characteristics are 

congenital lack of six or more permanent teeth. It is a very rare disease and is usually related 

with some multiorgan syndrome. In the study by Lammi et al. [30] it was found that 

Oligodontia may have a connection to susceptibility for hereditary CRC. The cause of 

Oligodontia and predisposition to cancer was found to be a nonsense mutation Arg656Stop in 

the Axis inhibitor 2 (AXIN2; MIM #604025) gene. [30] Mutations in this gene are associated 

with CRC with defective mismatch repair. [31]  
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1.3 Other associations with CRC  

There have been several studies that have found genes to be associated with CRC and some of 

these studies are described here. In a study by Alhopuro et al. [32] MYH11 (MIM #160745) 

was examined whether not it had a mononucleotide tract in its coding sequence since these 

tracts are vulnerable to mutations under MSI. The study by Bennett et al. [33] identified a 

hypermethylation in PTEN that resulted in downregulation of KLLN (MIM #612105) through 

transcription. In another study executed by Gylfe et al. [34]  there were identified 14 

truncating germline variants in eleven novel predisposing genes in at least two families with 

CRC. The genes identified were: AKR1C4 (MIM #600451), CCDC18, MRPL3 (MIM # 

607118), NUDT7 (MIM #609231), PRADC1, PRSS37, PSPH (MIM #172480), SFXN4 

(MIM #615564), TWSG1 (MIM #605049), UACA (MIM #612516) and ZNF490 [34]. 

DeRycke et al. [7] found CENPE (MIM #117143) and KIF23 (MIM #605064) to include 

novel missense variants in the susceptibility for FCC. The studies by Smith et al. [35] and 

Kim et al. [36] identified variants in the OGG1 (MIM #601982) gene that were associated 

with CRC. In a study by Kokko et al. [37] four heterozygous missense variants that were 

previously unreported were identified in EPHB2 (MIM #600997). Two studies by Guda et al. 

[38] identified two somatic and seven germline mutations in the GALNT12 (MIM #608812) 

gene that were associated with CRC.  

The MYH11 gene produces two splice variants SM1 and SM2, which are distinct in the C-

terminal tailpiece. In the study by Alhopuro et al. [32] a mononucleotide repeat of 8 cytosines 

(C8) was observed in the SM2 isoform, and MYH11 was therefore discovered as a candidate 

MSI colon cancer gene. Mutations that were found during this study were protein-elongating 

frameshift mutations found in 55% of the CRC cases that exhibited MSI meaning somatic 

mutations, and also found in the germline of an individual with PJS. There were also 

discovered two somatic missense mutations in one microsatellite stable (MSS) CRC. All the 

mutations led to unregulated molecules that showed constitutive motor activity. [32]  

In the study by Bennett et al. [33] the hypermethylation upstream of PTEN were detected in 

45 out of 123 patients with CS or Cowden-Like syndrome (CSL). The result of the germline 

methylation was including downregulation of KLLN also disruption of TP53 activation of 

KLLN by approximately 30%. The study found that the epigenetic modification accounted for 

one-third of CS individuals negative for germline PTEN mutation and more than 40% of 
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those with CS who were PTEN mutation negative had germline epigenetic inactivation of the 

KLLN promoter. [33]   

The results from the study by Gylfe et al. [34] showed that out of the eleven genes identified 

four showed loss of the wild-type allele in at least one tumor and a total of seven events with 

loss of heterozygosity (LOH) were detected, although none showed loss of the mutant allele. 

This proposes that complete inactivation of these genes is suitable for tumor development and 

also that these variants are major candidates for CRC susceptibility. Two of the genes that 

were of particular interest were UACA and TWSG1. This was due to that three out of 96 

familial CRC cases were found to have heterozygous truncating variants in UACA and in 

TWSG1. [34] 

The study by DeRycke et al. [7] found that the missense variants identified in KIF23 and 

CENPE were rare. The variant found in KIF23 was only observed in the ESP database of 

European Americans, but the CENPE variant was not seen in any of the public databases. 

Both of these variants were validated and replicated and both are located in previously 

reported CRC linkage regions. [7] 

In the study by Smith et al. [35] the variant identified in OGG1 was a rare inherited 

nonsynonymous variant with an over representation in patients suffering from advanced CRC 

compared to population based control subjects [35]. The variant identified was a Gly308Glu 

substitution and because Glycine at residue 308 through evolution had been much conserved 

it was predicted that the Glutamic acid substitution would interfere with function. The results 

of the study showed infrequently biallelic inherited and somatic OGG1 mutations in carriers 

of OGG1 Gly308Glu and no associated somatic mutator phenotype was observed. This 

suggests that the variant may play a role as a low-penetrance allele contributing to colorectal 

tumorigenesis. [35] In the study by Kim et al. [36] the variant discovered was a R154H 

polymorphism and it was present in patients with FAP, sporadic CRC and in normal controls. 

R154H was found to be associated with sporadic CRC patients, but did not segregate with 

cancer phenotypes. The results from the study also showed that there was low possibility of 

recessive inheritance of R154H, but this still needs to be elucidated. [36] 

The study by Kokko et al. [37] found that two of the variants I361V and R568W in EPHB2 

were identified in Finnish CRC patients, and the third variant D861N was identified in a UK 

patient with hyperplastic polyposis (HPP). The fourth variant R80H was identified in a 
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Finnish patient with CRC and was also found in 1 of 206 familial CRC patients and in 9 of 

281 healthy controls and therefore it is likely that this variant might be a neutral 

polymorphism. The results altogether suggest that EPHB2 may play a limited role in CRC 

predisposition and that it plays a bigger role in tumor progression rather than in tumor 

initiation. [37] 

The results from the study of 30 MSS colon cancer cell lines by Guda et al. [38] showed that 

the two somatic mutations identified in GALNT12 were both found in the primary colon 

tumors from which the cell lines were established, and absent in the normal colon tissues from 

the same patients. It was also found that these two mutations were within the GALNT12 

catalytic and lectin binding domains. The study proved that the two somatic mutations 

completely inactivated the enzymatic activity of GALNT12, but the wild type GALNT12 

allele was found to be retained and expressed in both tumors with the inactivating mutations. 

[38] In the other study by Guda et al. [38] which was performed to see whether germline 

mutations in GALNT12 contributed to the development of colon cancer, six of the seven 

germline variants identified encoded inactive GALNT12 enzymes. [38]   
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1.4 Next-Generation Sequencing  

Next-generation sequencing (NGS) is a term that refers to a rapid evolving high-throughput 

technology field,  that is capable of producing large numbers of DNA sequences in parallel 

very efficiently, making it a less costly and time consuming method than the earlier 

technologies used to sequence parts of the human genome, such as Sanger sequencing and 

fluorescence-based technologies [39-41]. NGS is a useful tool in cancer studies due its ability 

to not only sequence whole genomes but also focus on specific genomic regions or specific 

genes using DNA capturing methods. [40]. The NGS workflow is built up of four phases: 

sample collection, template generation, sequence reactions and detection and data analysis. 

The template has to be converted into a library of sequencing reaction templates that includes 

the common steps fragmentation and step size selection, which serve to break the DNA 

templates into smaller fragments suitable for sequencing. The template generation enables 

separation and immobilization of the DNA fragment population, thus making it possible for 

the downstream sequencing reactions to operate while millions of micro reactions are carried 

out in parallel on each template. To discover structural variants such as insertions, deletions 

and translocations sequence coverage of approximately 20x to 30x is required to overcome 

the uneven read distributions and sequencing errors. Biases can be introduced during all steps 

of NGS and the best example of this is during the template amplification steps. In these steps 

mutations can be introduced into clonally amplified DNA templates which subsequently 

masquerade as sequence variants. [41]  

 

1.4.1 Targeted Sequencing 

Targeted sequencing is a technique that is very useful in cancer research due its ability to 

focus on parts of the human genome. During targeted NGS reactions the sequencing reads are 

distributed to specific genomic locations which equal to higher sequencing coverage and 

accurate detection of sequence variants regardless of platform error rates. The regions that are 

targeted needs to be enriched using variable capture strategies such as hybrid capture, 

microdroplet PCR, or array capture techniques. [41] Targeted sequencing is also a more time 

and cost-effective method and the data results are considerably more manageable compared to 

whole exome sequencing. Target enrichment increases sample preparation, cost and time and 

brings the field of genomics into smaller laboratories. [42] There is only a small percentage of 
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the human genome’s sequence that is characterized and therefore only limited clinically 

valuable information can be gained from whole genome sequencing. Therefore target 

sequencing is a more cost effective option for clinical researchers to screen for mutations that 

could be relevant in the diagnosis and treatment of disease. Targeted sequencing has been 

useful in screening panels of disease-related genes and also helping to increase the 

characterization of genetic contribution to different diseases. Due to targeted sequencing 

being a cost and time effective method it is possible to use genetic testing in diagnosing 

diseases with complex genetics. [41] 

One of the disadvantages with increased throughput of NGS reactions is the read length. Most 

available sequencing platforms offer on average shorter read lengths than the Sanger 

sequencing methods, and this restricts the types of experiments that can be conducted by 

NGS. For instance shorter read lengths may not map or align back to the reference genome 

uniquely which results in the repetitive sequences of the genome being unmappable in these 

types of experiments. Another challenge is sequence alignment for regions where there is high 

diversity between the reference genome and the sequenced genome as it is in structural 

variants such as insertions and deletions. These challenges are usually solved through the use 

of longer read lengths or paired-end/mate-pair approaches. [41] Another downside is that the 

use of panel-based testing can increase the complexity of result interpretation due to an 

increase in the number of variants of uncertain significance (VUS) [43]. 
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1.5 Aims for this master thesis: 

The genetic cause of CRC is only known in the hereditary CRC syndromes accounting for 

only 5% of the CRCs. Several studies have indicated that some genes could be associated 

with CRC. The aim for this master thesis was to use a gen panel of several genes reported to 

be associated with CRC, in order to find the genetic cause for the patients’ increased risk of 

CRC. 123 genes were sequenced in 95 patients where some are known to be involved in 

hereditary CRC syndromes and some are associated with CRC development using NGS 

technologies. 

For this project the gene list was divided so that the focus was on either the 101 CRC genes or 

the 22 MMR genes. The aim for this master thesis was to analyze 101 genes which are not 

involved in the MMR system but some known to be involved in inherited CRC syndromes 

and some that have been found to be associated with CRC in GWAS or NGS studies. The 

patients in this project fulfilled the Amsterdam criteria and/or the revised Bethesda guidelines.   
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2. Material and Methods 

The equipment, kits, buffers, solutions and consumables used during this project are listed in 

table 2.1, 2.2 and 2.3. 

Table 2.1. Overview of the equipment used in this project 

Description Vendor/manufacturer ID 

Agilent 2100 Bioanalyzer Agilent Technologies Cat: G2940CA 

Automat pipette   

Benchtop microcentrifuge, 

Galaxy Mini 

VMR
TM 

 International Cat: 93000-196 

Benchtop rotator FSR20 Grant Boekel  

Biohit Eline Pro (Pipette)   

Biohit Pipette (Multichannel)   

Dynal Invitrogen Bead 

Separations 

Invitrogen  

Eppendorf Centrifuge 5810R VMR
TM 

International  

Eppendorf vortex mixer PCR 

96 Tube 

Mixmate
®
Eppendorf Cat: 5353000.014 

Geneflash Bio Imaging system SynGene  

Iprep
TM

 purification instrument Invitrogen Cat: 10000 

KMS1 minishaker vortexer IKA
®
  

Magnetic Particle Concentrator Dynal MPC
®
, Life 

Technologies 

Batch: 44/55 

Microplate Sealer ALPS
TM

 25 ThermoScientific  

Multichannel pipettes, 

Finnpippette 

ThermoScientific  

Nanodrop
® 

 ND-1000 

spectrophotometer 

ThermoScientific  

Plastic Pipette, Disposable, 

Sterile 

Sterilin  

Qubit 2.0 Fluorometer, 

Invitrogen
TM

 

Life Technologies Cat: Q32866 

Thermal Cycler 2720, Applied 

Biosystemes
®
 

Life Technologies Cat: 4359659 
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Table 2.2. Overview of kits, buffers and solutions 

Description Vendor/manufacturer ID 

Acetic acid solution 2 M  Lot: SLBH 6779V 

Elution Buffer (EB) 250 ml Qiagen Gmblt Cat: 19086 

Lot: 145046057 

Haloplex Target Enrichment 

Kit, 96 reactions 

Agilent Technologies Cat: # 5190-5534 

Lot: 0006246792 

HCl solution 0.3 M for 

Nanodrop 

  

Invitrogen
TM

 Qubit® dsDNA 

high sensitivity Assay Kit  

Life technologies  

Iprep
TM

Purelink
TM

gDNA 

Blood Kit 

Invitrogen Lot: 1603453 

NaOH 10 M  Lot: 1168043 

Tris-HCl, pH 8.0   

Tris 10 mM for Nanodrop   

 

Table 2.3. A list of the consumables used in this project 

Description Vendor/manufacturer ID 

Agencourt AMPure
®
 beads 

 

Beckman Coulter Inc Lot: 14060800 

 

E-Gel iBase
TM

 2% agarose Invitrogen Lot: B16074 

Herculase II Fusion DNA 

Polymerase 

Agilent Technologies Cat: 600677-51 

Lot: 0006212697 

High Sensitivity DNA Chips Agilent Technologies Lot: SF04BK50 

High Sensitivity DNA Reagents Agilent Technologies Lot: 1420 

Ladder 4 DNA Molecular 

Weight Marker IV (0.07-19.3 

Kb) 

 Lot: 11799634 

Nuclease Free Water   
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2.1 Workflow of methods used in this project for 123 CRC genes  

Exons including splice site regions, 5’- and 3’ UTRs for 123 genes were sequenced using 

DNA samples from 95 patients. The genes were sequenced on a Illumina HiSeq2500 

platform. The figure below lists the methods used in this study.

 

 Figure 2.1. Flowchart of the methods used in this project 

•  22 of 95 samples isolated using Iprep. Remaining 73 samples were 
previously isolated and stored in a refrigerator DNA isolation 

•  DNA concentration measured on all 95 samples using Nanodrop (ND-1000) 
and Qubit 2.0 

• Table showing the results from both measurements in appendix 6.2 

Measurement of DNA 
concentration 

•  Samples diluted with nuclease free water to 5 ng/µl Normalization of the 95 
samples 

• Verification of DNA size distribution by gel electrophoresis see 
figure 3.2 chapter 3 

• Digestion reaction with restriction enzymes 

•  Validation of Enrichment control DNA using the 2100 Bioanalyzer 

• Hybridization of digested DNA to Haloplex probes  

• Capturing, ligation, elution and amplification of target DNA 

•  Purification of the amplified target library using AMPure XP beads 

Preparation of Haloplex 
library 

• Normalization of all 95 samples to a final DNA concentration using 
Tris-HCl as dilution buffer in a 1:3 dilution ratio 

• Measurement of DNA concentration of each sample using 2100 
bioanalyzer  

•  Pooling of samples and another round of AMPure beads purification 
due to adaptor-primer product 

Quantification of the Haloplex 
library 

• Pooled samples measured on the 2100 Bioanalyzer 

• Real-time PCR for quantification of pooled samples 

•  Preparation of  samples for sequence run 

•  Sequencing of Haloplex library on Illumina Hiseq 2500 

Sequencing of the Haloplex 
library 

• Human genome hg19 used as reference genome 

• Alignment done using Burrows-Wheeler aligner 

• Base calling done with GATK Best Practices Recommendations 

• Variants annotated with ANNOVAR 

• Variant filtering using Filtus 

• Alamut used to determine functional impact of variants 

• 25 variants that might play a role in patients with FCC   

 

Analysis of sequence data 

• Validation of 6 variants with Sanger sequencing 

 Validating variants found with 
Sanger sequencing 
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2.2 Material and preparation of samples before library preparation 

The patient material used for this study was gDNA isolated from EDTA preserved whole 

blood. Samples from 95 patients that fulfilled the AC and/or the revised Bethesda guidelines 

(RBG) [44] were chosen for sequencing and these are listed in appendix 6.1. DNA had to be 

isolated for 22 of the 95 samples using the Iprep
TM

 Purelink
TM 

 gDNA blood kit from 

invitrogen with the Iprep instrument. The manual for the instrument Iprep was used as a 

procedure for the DNA isolation [45]. Two patients had two blood samples each. Sample 33 

and 46 were from one patient and samples 51 and 87 from the other. 

The DNA concentration of the samples were measured on both the spectrophotometer 

Nanodrop (ND-1000) and the spectrofluorometer Qubit 2.0 according to the manufacturer’s 

instructions [46, 47]. The Nanodrop, measured the absorbance of the DNA while Qubit 2.0 

measured the fluorescence. The reagents for both Nanodrop and Qubit are listed in table 2.4 

and 2.5.  

Table 2.4. Reagents, volume and application for Nanodrop concentration measurement of 95 DNA 

samples 

Reagent Volume Application 

HCl (hydrochloric acid) 2 µl For washing 

H2O (water) 2 µl Start-up of the 

spectrophotometer 

Tris buffer 2 µl Used as a blank 

 

Table 2.5. Reagents and volume for Qubit 2.0 concentration measurement of 95 DNA samples 

Solutions Volume 

Total solution in tubes 200 µl 

Total sample volume 2 µl 

Total buffer + fluorochrome 19,9 µl 

Volume in tubes of solution 198 µl 

Following the DNA concentration measurement, all samples were diluted with nuclease free 

water to a DNA concentration of 5 ng/µl. A table of the volumes in the dilutions can be found 

in appendix 6.2.  
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2.3 Library preparation for NGS according to Agilent Technologies 

Before the library preparation, the size distribution of the undiluted DNA samples was 

verified using gel electrophoresis to see if there had been any smearing below 2.5 kb, which 

indicates sample degradation. The samples tested were samples 1-10 because these were the 

oldest samples and also sample 86 were tested since this sample was from year 2014, so it 

could be compared with the results from samples 1-10. The ladder was diluted with nuclease 

free water in ratio 1:10. The gel was run for 30 minutes and the results can be seen in a figure 

3.2 in chapter 3.  

For the library preparation a custom made Haloplex Target enrichment kit for 96 samples was 

used. The sample preparation was executed according to the HaloPlex Target Enrichment 

System protocol for Illumina Sequencing [48]. The HaloPlex target enrichment system by 

Agilent technologies uses a capture method based on hybridization and amplification of the 

gDNA fragments, where the target DNA is first digested by different restriction enzymes to 

generate a library of gDNA restriction fragments. The digested DNA is then hybridized to the 

HaloPlex probes for target enrichment and sample indexing resulting in circularized gDNA 

fragments where sample indexes and Illumina sequencing motifs have been incorporated. The 

DNA-probe hybrids which contain biotin allow for capture with streptavidin-coated magnetic 

beads and DNA ligase is used to close gaps in the circularized DNA- probe hybrids.  

The final step is PCR amplification of the targeted fragments so that a sequencing-ready 

target enrichment sample can be produced. [48] A figure of the HaloPlex target enrichment 

workflow is shown in figure 2.2 below. 

All samples were diluted 1:3 with Tris-HCl and the concentration of each sample library was 

measured using Agilent 2100 Bioanalyzer. The concentration was used to pool equimolar 

amounts (10 ng) of each sample. The expected concentration in the final pool and three 

measurements with Bioanalyzer after pooling the samples can be seen in appendix 6.3. 

Before sequencing the library a real-time PCR was performed to quantify the pooled samples. 

The library was sequenced on the Illumina HiSeq 2500 platform. There were 123 CRC related 

genes where the exons including splice-site regions and 5’ and 3’ UTRs were sequenced for 

all the 95 patients. A list of the all the genes that were sequenced due to their involvement in 

CRC is listed in appendix 6.4.  
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Figure 2.2. Overview of workflow for HaloPlex target enrichment. Step 1: Target gDNA is digested 

by restriction enzymes into restriction fragments. Step 2: Digested DNA is hybridized to HaloPlex 

probes for target enrichment and sample indexing, giving circularized DNA fragments. Step 3: 

Capturing of DNA-probe hybrids with streptavidin-coated magnetic beads. Step 4: Amplification of 

targeted fragments by PCR producing a target-enriched sample ready to be sequenced. [49] 
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2.4 Data analysis after NGS 

After sequencing the Haloplex library the sequence data was interpreted by chief engineer, 

Jostein Johansen at BioCore NTNU. The human genome hg19 was used as a reference 

sequence and the alignment was done using the Burrows-Wheeler-Aligner [50]. In this study 

the variant calling was done according to GATK Best Practices Recommendations [51, 52] 

using GATK version 3.1 [53], including local realignment around indels, recalibration of 

quality scores and quality control of called variants. To analyze the regions targeted from the 

sequencing experiment, a list of these regions were used as additional information when 

running GATK to reduce running time of the pipeline. The variants were annotated with a 

software called ANNOVAR [54]. 

   

2.5 Interpreting sequence data 

Filtering of variants was done using FILTUS [55] which is a tool for downstream analysis 

used in high-throughput sequence projects. It was used to filter out variants with a minor 

allele frequency (MAF) >1% in the 1000 genomes database and all variants present in 

dbSNP138 to select only rare variants. The synonymous variants and variants of low quality 

were also removed. The 22 MMR genes and variants with coverage lower than 10 were also 

excluded. The MMR genes were removed because they were not the focus for this study. An 

overview of the filters used with details can be seen in table 2.6. The list of the remaining 

variants after the filtration can be found in appendix 6.5 which also includes information 

about what effect the mutation has on the protein.  

Table 2.6. Filters applied to variants in Filtus 

Name of 

function/database 

Filter Parameters Keep if missing 

Exclude genes 22 MMR genes   

Exonic Func Not equal to synonymous SNV  

1000 genomes Less than 0.01 Ticked off 

dbSNP138 Does not contain  Ticked off 

FILTER Equal to PASS  
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2.5.1 Evaluation of variants  

After the filtration of variants the software Alamut visual version 2.3 by Interactive 

biosoftware was used to determine whether or not the mutation had a damaging effect on the 

protein. The information about the effect the mutation had on the protein was predicted by 

different prediction programs which are a part of the software such as AlignGVGD, SIFT, 

MutationTaster and Polyphen-2. [56] 

The variants were colour coded according to their effect on the protein and appendix 6.5 

shows an overview of these variants. The variants with the most prominent effect on the 

protein were chosen for further research.  

 

2.6 Validation of variants with Sanger sequencing 

The Sanger sequencing was performed by the clinical lab, and only a few variants were 

validated. The Sanger sequencing was done according to procedures at the clinical lab.  

First a PCR was performed to amplify the fragments that were going to be sequenced. Then 

purification of the PCR-product was done with the reagent A’SAP. This purifying reagent 

eliminates excess primers and nucleotides enzymatically without eliminating any PCR 

product.  

The sequencing-PCR was then performed which was the process where single stranded  DNA 

was amplified. The sequencing reagents contained fluorescence labeled nucleotides which 

were attached to the end of each fragment. The sequence reaction produced fragments of 

different lengths, but the number of each fragment made was random. During the sequence 

reaction the annealing temperature was specific for each primer used, and it should be similar 

to the temperature used during the PCR-reaction and no higher than 60˚C. Sequencing was 

done in both directions to sequence all the way to the opposite primer and also because 

eventual findings could be double checked.  

After the sequence reaction another purifying step is necessary to eliminate excess 

fluorescence labeled nucleotides that were not incorporated in the actual sequence, salts and 

other charged molecules that could affect the sequencing performed with capillary 

electrophoresis. The reagent used for this was BigDye XTerminator Purification kit.  
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The instrument used for the capillary electrophoresis is the ABI PRISM 3130xl or the ABI 

PRISM 3730 Genetic Analyzer. The product from the sequence reaction is first injected 

electro kinetically into the capillaries which are filled with polymer. Then the negatively 

charged DNA migrates towards the positively charged electrode and close to this electrode the 

fragments migrate through a laser beam. When the fluorescence comes in contact with the 

light from the laser a spectrum from each of the four nucleotides is produced. There is also a 

CCD camera that detects the signals as the fragments in increasing length passes by the 

detection cell during the electrophoresis. Data collection software is used to convert the 

fluorescence signals into digital data and then to an electrogram which is processed in other 

analyze programs such as Seqscape. A figure of an electrogram can be seen below. 

Figure 2.3. The picture shows an electrogram from Sanger sequencing [57]  
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3. Results 

In this study 123 genes related to CRC in 95 patients were sequenced using NGS technology 

to discover novel variants involved in the development of CRC in high-risk individuals. The 

focus for this study was 101 CRC related genes. The results were interpreted using the NGS 

downstream analysis tool FILTUS and the software program Alamut. Some interpreted high 

risk variants were further investigated. 

 

3.1 Measurement of DNA concentration  

DNA concentrations were measured on Nanodrop ND-1000 and Qubit 2.0 to normalize all 

samples into an equal DNA concentration. The results can be seen in figure 3.1 and a table 

with the DNA concentration and the amount of DNA necessary to obtain the final DNA 

concentration of 5 ng/µL for each sample is listed in appendix 6.2.  

 

Figure 3.1. A graph displaying DNA concentrations of the 95 samples measured on both Nanodrop 

and Qubit. The blue line represents results from Nanodrop and the red line Qubit 2.0.  
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The DNA concentration measurement results showed that the sample concentration measured 

on Nanodrop was higher in some samples compared to samples measured with Qubit, and 

therefore the results from the Qubit measurement were used for normalization of the samples. 

The reason for the elevated concentration could be due to a systematic error in Nanodrop or it 

could have been because the samples were not mixed properly before measuring.  

The size distribution of undiltued DNA samples were verified with gel electrophoresis to see 

if the DNA in the samples were degraded, and the results can be seen in figure 3.2 below.  

 

Figure 3.2. The picture shows the results from a gel electrophoresis that tested samples 1-10 and 

sample 86 to verify the size distribution of DNA. The samples are in chronological order except for 

sample three which is the ladder meaning that well 4 contains sample nr. 3. 

The result from the gel electrophoresis shows that all the fragments were larger than band 9-

10 of the ladder well nr 3 in figure 3.2, and these bands were approximately 2.5 kb. This 

means that there was no smearing below 2.5 kb and therefore no degradation of the DNA in 

the samples. 
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3.2 Preparation of Haloplex library 

Before the Haloplex library could be pooled and sequenced the enrichment and the quantity of 

the enriched target DNA had to be validated in each sample. This was done by using the 2100 

Bioanalyzer and an example of an electropherogram from one of the samples can be seen in 

figure 3.3. 

 

 

Figure 3.3. Here is an example of an electropherogram from 2100 Bioanalyzer of sample 12 where the 

largest peak is the sample itself which lies between 200-600 bp. The x-axis displays the number of 

base pairs whereas the Y-axis plots the intensity of the sample. The peaks with the coloured numbers 

on top are the lowest and the upper markers of the ladder. The concentration of this sample is 7.66 

ng/µL which can be accepted since it is less than 10  ng/uL. 

The results from the Bioanalyzer measurement are listed in appendix 6.3 as well as the 

volume used to obtain equal molar amounts of each sample prior to pooling of the samples. 

The results showed that the target enrichment process was successful since the Bioanalyzer 

measurements showed that a library was obtained. The concentration of each sample 

(appendix 6.3) was acceptable since the concentration was supposed to be below 10 ng/µl. 

The expected concentration was consistent with actual concentration of the pooled samples as 

can be seen in the table.  
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The mean coverage across all samples was 258.18 and the table with mean coverage for each 

sample is listed in appendix 6.6. The standard deviation of the total coverage is 258.18 ± 

57.76. On average, 86.72 % of the target region were covered with >20 reads. The standard 

deviation of the regions covered with >20 reads is 2162 ± 42.92. The table with regions 

covered with >20 reads for each sample is listed in appendix 6.7.  

 

3.3 Interpretation of sequence data 

The result from the NGS was filtered with the downstream analysis tool FILTUS and the 

number of variants before any filters were added was 1268 unique variants in 123 genes. A 

table of the number of total variants in each patient is listed in appendix 6.8. From this table it 

can be seen that the number of variants in sample 33 and sample 46 both samples from the 

same patient, are not equal. Before filtering away the variants of low quality there were 305 

variants in 80 genes in sample 33 and 338 variants in 77 genes in sample 46. The number of 

variants after excluding the variants of low quality were 229 variants in 71 genes in sample 33 

and 228 variants in 77 genes in sample 46. The variants that differ between the samples are 

two nonframeshift insertion variants found in the BLM gene 

c.2318_2319insAGA:pS773delinsRD and c.2319_2320insCGG:pS773delinsSR and one 

nonframeshift insertion found in the MRPL3 gene c.471_472insTCT:p.A158delinsSA. All 

three variants were found in sample 46 and not in sample 33. Sample 33 had a 

nonsynonymous variant in the PSPH gene c.T549:p.D183E that was not found in sample 46. 

The number of variants in samples 51 and 87 that were also from the same patient were also 

unequal. Before the variants of low quality were excluded there were 316 variants in 78 genes 

in sample 51 and 297 variants in 78 genes in sample 87. After the low quality variants were 

excluded 217 variants in 72 genes remained in sample 51 and 218 variants in 70 genes in 

sample 87. The variants that differ between these samples are two nonframeshift insertions in 

BLM and one nonframeshift insertion in MRPL3 all three found in sample 51, which are the 

same variants found in sample 46.  

To make the number of variants more manageable and to focus only on the rare variants, 

filters were added to exclude variants with a MAF >1% which were present in the databases 

1000 genomes and dbSNP138. The other variants that were excluded were the synonymous 

variants, variants of low quality, the 22 MMR genes and the variants with coverage lower 
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than 10. The table with the details of the filters applied can be found in chapter 2 in table 2.6. 

After the filtration 1171 variants were excluded leaving 97 unique variants in 54 genes. To 

further decrease the number of variants the variants found in many patients were excluded due 

to the fact that they were thought to be more common in the population than those found only 

in a few patients. The variants that were chosen to look closer into were those found in one or 

two patients. Information about the predicted consequences of the mutation at protein level 

was determined using the Alamut software. Appendix 6.5 shows the remaining variants after 

filtration with information about the predicted effect the mutation has on the protein. As can 

be seen from the table in appendix 6.5 there were 64 unique variants in 41 genes to do further 

work with after the selection of variants. A table with number of variants found in each 

patient after the filtration is listed in appendix 6.9. The variants that are listed in appendix 6.5 

have mostly been found in one or two patients, but some variants were chosen that were found 

in up to ten patients, because these variants were in genes known to cause inherited CRC 

syndromes. The table shows that there are five types of mutations: 45 missense, 5 frameshift 

insertions, 5 nonframeshift insertions, 7 frameshift deletions and 2 nonframeshift deletions, 

and more than half of the mutations are according to Alamut damaging for the protein.  

The table in appendix 6.5 was used to select the variants to investigate further to see if these 

could be involved in the cause of CRC for the high-risk individuals. The variants that were 

selected were those predicted by Alamut to have a damaging effect on the protein, and these 

mostly included the frameshift variants but also a few missense variants. The reason why only 

a few variants were chosen and not all the variants that were according to Alamut damaging 

to the protein, was because these were thought to be the most interesting variants to further 

investigate. Usually the frameshift mutations are more damaging than missense mutations 

because they change the reading frame completely, although this is not always the case. The 

few missense variants that were decided to investigate further were chosen because some of 

them are known in the development towards CRC. The number of variants found to 

investigate further was 25 unique variants. 

Some of the variants chosen are found in genes that are known to cause hereditary CRC 

syndromes and these are listed in table 3.1. The remaining variants are found in genes 

associated with CRC and they are listed in table 3.2.  
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Table 3.1. A list of variants in genes known to cause hereditary CRC syndromes. The variants found 

to be false positive with Sanger sequencing are highlighted in red. 

Gene  Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

POLE 6,29,30 NM_006231:c.1

373A>T:p.Y458

F 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 

1.000) 

POLE 44 NM_006231:c.8

24A>T:p.D275

V 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value:1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 

1.000) 

APC  14,24,46

,47,49,5

9-

61,72,95 

 

NM_001127511

:c.3086_3087ins

TCGG:p.Lys103

0Argfs*2 

 

N/A N/A N/A N/A 

BMPR1A 32 NM_004329:c.7

85T>C:p.V262

A 

 

Class C0  Tolerated 

(score 0.15) 

Disease causing 

(P-value: 1) 

Possibly 

damaging 

(Humdiv 

0.923 + 

humvar 

0.884) 

GREM1 30,31,60 NM_013372:c.1

96_197insT:p.T

hr66Ilefs*35 

N/A N/A N/A N/A 

PTEN 35,48 NM_000314:c.3

77C>T:p.A126

V 

Class C0  Tolerated 

(score 0.29) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 

0.998) 

STK11 60 NM_000455:c.4

59_460insAGA:

p.Ala153_His15

4insArg 

N/A N/A N/A N/A 
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Table 3.2. Variants in genes associated with CRC   

Gene  Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

AKT1 32 NM_001014431

:c.206G>C:p.R6

9P 

Class C35 Deleterious 

(score 0.01) 

Disease causing 

(P-value: 0.995) 

Possibly damaging 

(Humdiv 0.792 + 

humvar 0.667) 

AKT1 46 NM_001014431

:c.520C>T:p.R1

74C 

Class C0 Deleterious 

(score 0) 

Disease causing 

(P-Value: 1) 

Possibly damaging 

(Humdiv 0.900 + 

humvar 0.800) 

BUB1 49,65 NM_ 004336.4: 

c. 

447_448insTCT 

p.Glu149_Thr15

0insSer 

N/A N/A N/A N/A 

BUB1B 11,45,50

,62 

NM_001211:c.2

252_2253insAG

A:p.Pro751_Lys

752insAsp 

N/A N/A N/A N/A 

BUB1B 11,45,62 NM_001211:c2

253_2254insCG

G:p.Pro751_Lys

752insArg 

N/A N/A N/A N/A 

DCC 46 NM_005215:c.1

664_1665insCG

AGAT:p.Asn55

5_Gly556insGlu

Ile 

N/A N/A N/A N/A 

FAM166A 16,22,52 NM_001001710

:c.751_752del:p.

Leu251Valfs*2 

N/A N/A N/A N/A 

FANCM 17,28 NM_020937:c.5

607_5608del:p.

Glu1870Aspfs*

4 

N/A N/A N/A N/A 

KIF23 71 NM_138555.2 

c.610_618del 

p.Phe204_Lys20

6del 

N/A N/A N/A N/A 

LAMB4 78 NM_007356:c.5

265delA:p.Lys1

755Asnfs*11 

N/A N/A N/A N/A 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

LAMC1 14,51,71

,79 

NM_002293:c.4

579_4580del:p.

Leu1527Glyfs*

7 

N/A N/A N/A N/A 

MAML3 3,37 NM_018717:c.1

513_1514del:p.

Gln505Alafs*21 

N/A N/A N/A N/A 

MAML3 3,18,34,

41,52,59

,64,77,9

0 

NM_018717:c.1

506delG:p.Gln5

02Hisfs*20 

N/A N/A N/A N/A 

NOTCH3 34 NM_000435:c.3

733_3734insT:p

.Thr1245Ilefs*2

0 

N/A N/A N/A N/A 

PIK3CA 38 NM_006218:c.1

07_108insAGA

T:p.Cys36fs* 

N/A N/A N/A N/A 

PPP1CB 72 NM_002709:c.4

69_470insAGA

TC:p.Cys157* 

N/A N/A N/A N/A 

RAI1 35,48 NM_030665:c.8

38_843del:p.280

_281del 

N/A N/A N/A N/A 

TBX3 66 NM_016569.3. 

c.1893del 

p.Asn632Thrfs*

257 

N/A N/A N/A N/A 

 

3.4 Validation of variants found with Sanger sequencing 

The variants validated were in genes included in diagnostic gene testing at the Medical 

Genetic Laboratory at St. Olavs Hospital. Thus primers for these genes were available, and 

included the two POLE variants, the PTEN variant, the BMPR1A variant, the STK11 variant 

and the APC variant. The results from the sequencing showed that the APC variant 

c.3086_3087insTCGG and the STK11 variant c.459_460insAGA were both false positive. 

The PTEN variant c.377C>T, the POLE variants c.1373A>T and c.824A>T and the BMPR1A 
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variant c.785T>C were confirmed to be true variants. An alignment of POLE with the 

position of the mutations marked can be seen below in figure 3.4.  

Figure 3.4. Overview of an alignment of POLE and POLD1 in several species. The two positions of 

the variants identified in this study p.Asp275Val and p.Tyr458Phe are marked with a black square and 

red star. The blue boxes show conserved positions with red background for completely conserved 

positions. Blue horizontal lines show the exonuclease domains and catalytic residues are shown with 

red squares within the exonuclease domains. [20] 
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4. Discussion 

The purpose of this study was to detect novel variants in genes that are both well-known and 

not so well-known to predispose to CRC in patients that have a higher increased risk for 

developing CRC than the general population. 

 

4.1 Variants found in genes known to predispose to inherited CRC 

syndromes 

4.1.1 The variants POLE c.1373A>T and c.824A>T 

The Pole variant c.1373A>T:p.Tyr458Phe that was found in three related individuals during 

this study was also found in an exome project of one large family by Hansen et al.[20] and it 

was found to be highly penetrant [20].  

In the study by Hansen et al. [20] it was found that the tyrosine in this position is completely 

conserved between species and that the position is important for exonuclease activity. When 

the same position in orthologs was mutated to phenylalanine, alanine or histidine the 

exonuclease activity was significantly reduced, resulting in reduced fidelity of DNA 

replication and an increased mutation rate. The POLE variant c.1373A>T which was 

validated with Sanger sequencing seemed to be the cause of CRC in the family in the study by 

Hansen et al.[20]  

The mutation in the POLE variant that causes the substitution from tyrosine to phenylalanine 

was in this study predicted to be damaging at protein level by all the prediction programs in 

Alamut. The alignment in figure 3.4 in chapter 3 shows that the mutation lies in a catalytic 

residue and a highly conserved region. The POLE variant identified in the samples from the 

patients in this study were from the same family as the one studied in Hansen et al [20]. 

Palles et al. [17] also found a variant in POLE and POLD1 which was heterozygous germline 

variants that were not found in any controls. This missense variant in POLE was a 

p.Leu424Val which was detected in a family with adenomas and CRC, and it appeared to 

have a dominant inheritance with a high penetrance as well. The change from leucine to a 

valine was according to the study predicted to have severe functional consequences for the 

protein function, including that the amino acid itself was highly conserved. By mapping the 
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mutation found in POLE and POLD1 onto the structure of yeast DNA polymerase it was 

found that they pack together at the interface between two helices which form the base of the 

exonuclease active site. This means that mutations of POLE 424 and POLD1 478 will alter 

the packing of the helices and thereby distort the active site which will then affect the 

nuclease activity. [17]  

The other variant in POLE c.824A>T:p.Asp275Val that was found in this study was identified 

in one patient and has not been found in any other studies. The prediction programs in Alamut 

predicted the mutation causing the substitution from Aspartic acid to Valine to be damaging at 

protein level. From the alignment in figure 3.4 it can be seen that this mutation as well lies in 

a catalytic residue and a highly conserved region. This suggests that both mutations identified 

in POLE during this study might affect the exonuclease acitivity of the protein. These findings 

and the findings in the studies described above strongly indicate that these variants are 

involved in CRC development.  

 

4.1.2 The variant BMPR1A c.785T>C 

The BMPR1A variant c.785T>C:p.Val262Ala identified in this study was found in one 

individual and it has not been reported earlier. The substitution from Valine to Alanine was 

predicted to be damaging at protein level by three of the four prediction programs in Alamut. 

According to this software the mutation lies in a highly conserved region indicating that 

alterations may affect the protein activity. On the other hand because one of the prediction 

programs (SIFT) in Alamut predicted the mutation to be tolerated, it is not definite that it has 

a damaging effect on the protein. Due to this gene’s involvement in CRC and because 

mutations in this gene causes JPS there is a strong possibility that the variant found in this 

study might also be involved in predisposition to CRC.  

 

4.1.3 The variant PTEN c.377C>T 

The PTEN c.377C>T:p.Ala126Val variant found during this study was found in two patients 

and have not been reported earlier. In a study by Tan et al. [58] a mutation in PTEN was 

found in the same codon as the variant identified in this study. The variant identified by Tan 

et al. [58] was a missense variant c.376G>C :p.Ala126Pro which was found to be pathogenic. 
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This indicates that the PTEN variant c.377C>T might also be pathogenic because it is located 

in the same codon. The difference between valine and proline is that proline is very unique 

because it is the only amino acid where the side chain is connected to the protein backbone 

twice. This makes proline an imino acid in its isolated form because it contains a NH
2+

 group 

instead of a NH
3+

 group. Due to this difference proline is unable to occupy several of the 

main-chain conformations which are easily adopted by the other amino acids. Proline often 

does not substitute well due to its unique properties.   

Three of four prediction programs in Alamut predicted the variant identified in PTEN to be 

damaging at protein level. The mutation was found to lie in a highly conserved region which 

indicates that the mutation may affect protein activity. It is not definite that the protein 

activity will be affected due to one prediction program (SIFT) classifying the mutation as 

tolerated. Since germline mutations in PTEN are the cause of both CS and BRRS, it is likely 

that the variant identified in this project could be involved in the predisposition to CRC.  

 

4.1.4 The variant GREM1 c.196_197insT 

The variant GREM1 c.196_197insT:p.Thr66Ilefs was identified in three individuals and the 

variant has not been reported earlier. The Gremlin 1, DAN family BMP antagonist (GREM1; 

MIM # 603054) encodes a member of the bone morphogenic protein (BMP) antagonist family 

and they contain cystine knots and form homo-and heterodimers. The gene belongs to a 

subfamily of BMP anatagonists the CAN (Cerberus and dan) and is characterized by a C-

terminal cystine knot with an eight-membered ring. GREM1 might be involved in regulation 

of organogenesis, body patterning and tissue differentiation. [59] 

In a study by Jaeger et al. [60] there was identified a duplication across the 3` end of the 

SCG5 gene and a region upstream of the GREM1 locus in Ashkenazi Jewish families with 

hereditary mixed polyposis syndrome (HMPS). This syndrome has a clear autosomal 

dominant inheritance of several different types of colorectal polyps and the affected 

individuals have a high occurrence of colorectal carcinoma. The duplication contains 

enhancer elements where some interact with the GREM1 promoter and are able to force gene 

expression in vitro. The mutation identified is associated with increased allele-specific 

GREM1 expression and GREM1 expression can cause reduced BMP activity which is also 
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the mechanism behind tumorigenesis in JPS. The mutation is a polymorphism rs4779584. 

[60]  

In another study executed by Yang et al. [61] 12 case-control studies involving several cases 

of CRC and healthy controls the rs4779584 polymorphism was investigated to see if it was 

associated with CRC. The results from the study showed that the GREM1-SCG5 rs4779584 

polymorphisms were associated with CRC in all the genetic models that were studied in the 

meta-analysis of the 12 case-control studies. The findings in the study suggest that the 

polymorphisms might give an increased risk for developing CRC. [61] 

Due to the mutation in GREM1 being a frameshift mutation it is almost always damaging at 

protein level because it causes a shift in the reading frame, and this might be associated with 

decreased GREM1 expression. The findings in these studies indicate that the GREM1 gene 

might be involved in the predisposition to CRC. This means that the variant found during this 

study could also be involved in CRC development.  

 

4.2 Variants associated with CRC found in GWAS and NGS  

4.2.1 Variants found in FAM166A, MAML3, PPP1CB, NOTCH3, LAMB4, FANCM 

and RAI1 

The variant identified in this study in FAM166A c.751_752del:pLeu251Valfs was found in 

three individuals, LAMB4 c.5265delA:p.Lys1755Asnfs was found in one individual and also 

found in the study by Smith et al. [62]. MAML3 c.1513_1514del:p.Gln505Alafs was 

identified in two individuals and MAML3 c.1506delG:p.Gln502Hisfs was found in nine 

patients. FANCM c.5607_5608del:p.Glu1870Aspfs was found in two patients. The variant 

found in RAI1 c.867_872del p.Gln290_Gln291del was identified in two patients. NOTCH3 

c.3733_3734insT:p.Thr1245Ilefs and PPP1CB c.469_470insAGATC:p.Cys157 were both 

identified in one patient. None of the variants except the variant identified in LAMB4 have 

been previously reported.  

In the study by Smith et al. [62]  1138 genes in 50 sporadic patients with advanced CRC were 

exome resequenced to find rare or novel germline mutations that were likely to play a role in 

colorectal tumorigenesis. The study identified germline mutations in the genes FAM166A, 

MAML3 (MIM # 608991), PPP1CB (MIM # 600590), NOTCH3 (MIM # 600276), LAMB4, 
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FANCM (MIM # 609644) and RAI1 (MIM #607642). The variants in the genes FAM166A, 

MAML3, PPP1CB and RAI1 were not described further in the study, but according to the 

study they are likely to play a role in CRC. The germline mutation found in NOTCH3 by 

Smith et al. [62] was identified in a patient diagnosed with CRC at the age of 29. This patient 

had no family history of CRC. NOTCH3 has recently been found to modulate the tumorigenic 

properties of CRC cell, but because nonsynonymous mutations are associated with cereberal 

autosomal dominant arteriopathy with subcortical infacts and leukoencephalopathy 

(CADASIL), further studies are needed to determine if loss of protein function in this gene is 

associated with CRC. The mutation identified in LAMB4 was found in a patient diagnosed 

with CRC at the age of 68 and it showed somatic loss of the wild-type LAMB4 allele. The 

patient diagnosed with this variant did not have a history of other cancers but had a 

grandfather that died of CRC at the age of 75. Although this mutation was identified in a CRC 

patient it was concluded in the study that LAMB4 was not likely to play a significant role in 

predisposition to CRC. In FANCM both germline and somatic mutations were identified and 

the mutations were found in two unrelated patients with CRC. The mutations were consistent 

with the two-hit hypothesis and the germline mutation was also identified in one control 

sample. [62] 

There is little information available about these genes and their role in CRC, therefore further 

research is necessary to determine if the variants identified in this study are involved in 

predisposition to CRC.  

 

4.2.2 The variants found in BUB1B and DCC   

The variants identified in BUB1B c.2252_2253insAGA:p.Pro751_Lys752insAsp and 

c.2253_2254insCGG:p.Pro751_Lys752insArg might be the same variant and 

c.2253_2254insCGG might be a false positive. The variant in BUB1B was found in seven 

patients. The Variant in DCC c.1664_1665insCGAGAT:p.Asn555_Gly556insGluIle was 

identified in one patient. These variants have not been reported earlier.  

The DCC (MIM #120470) gene with the cytogenetic location 18q21.3 encodes the protein 

netrin 1 receptor which functions as a tumor suppressor and is often mutated or 

downregulated in CRC and esophageal carcinoma [63]. In a study by Popat et al. [64] it was 
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found that patients with CRC with chromosome 18q allelic imbalance or loss of DCC 

expression have a poorer prognosis [64].   

The BUB1B (MIM #602860) gene may cause CIN in CRC [65].  In a study by Cahill et al. 

[66] somatic mutations were identified in 2 out of 19 CRC cell lines and these were not 

identified in 40 normal alleles [66].  

There is little information available about BUB1B and its function in CRC, therefore further 

studies are necessary to determine the function of the variant identified in this gene in CRC 

predisposition. DCC seems to play a role in CRC predisposition indicating that the variant 

identified in this gene during this study might play a role CRC. The definite function of the 

DCC variant in CRC is not clear, thus further research is necessary to determine this.    

 

4.2.3 Variants found in AKT1, BUB1, KIF23, LAMC1, PIK3CA and TBX3 

The variants identified in AKT1 c.206G>C:p.Arg69Pro and c.520C>T:p.Arg174Cys, KIF23 

c.610_618del:p.Phe204_Lys206del, PIK3CA c.107_108insAGAT:p.Cys36fs and TBX3 

c.1893del:p.Asn632Thrfs were each found in one individual. The variant identified in BUB1 

c.447_448insTCT:p.Glu149_Thr150insSer was found in two patients and the variant 

identified in LAMC1 c. 4579_4580del:p.Leu1527Glyfs was found in four patients. Neither of 

the variants have been previously reported.  

Mutations in these genes have in some studies been found to be associated with CRC and 

these will be briefly described below.  

A somatic mutation in AKT1 (MIM #164730) was identified in a study by Carpten et al. [67] 

in human breast, ovarian and colorectal cancers. The study showed that the mutation 

identified activates AKT1 through pathological localization to the plasma membrane, 

stimulates downstream signaling, transforms cells and induces leukemia in mice. This process 

suggests that AKT1 has a direct role in human cancer, and adds to known genetic changes that 

promote oncogenesis through the phosphatidylinositol-3-OH kinase/AKT pathway. [67] In a 

study by Orloff et al. [68] mutations in AKT1 were found to be associated with CS. 

According to the results 91 probands with CS negative for mutations in the known disease-

causing genes, two were found to have germline mutations in AKT1. The effect of the 

mutations was increased P-Thr308-AKT and increased cellular PIP3. [68] 
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The BUB1 (MIM # 602452) locus was in a study by Jaffrey et al. [69] studied in 32 CRC 

patients and in 20 non-small cell lung cancer (NSCLC) primary tumours with a panel of seven 

microsatellite repeats for 2q, two CA repeats in BUB1 and gene mutation analysis. In 20 of 32 

colorectal primary tumors the 2q locus was quite unstable. Results also showed 14.5% of 

CRC patients with instability within BUB1. Jaffery et al. [69] concluded that in this study 2q 

and BUB1 allelic instability in CRC were shown, but mutations in BUB1 are rare causes of 

chromosomal instability in CRC or NSCLC. [69] In another study De Voer et al. [70] 

identified haploinsufficiency or heterozygous mutations in the spindle assembly checkpoint 

genes BUB1 and BUB3 with genome-wide and targeted copy number and mutation analysis. 

208 patients with familial or early onset CRC were analyzed and they also had variegated 

aneuploidies in multiple tissues and variable dysmorphic features. The discoveries in this 

study indicated that mutations in both BUB1 and BUB3 cause mosaic variegated aneuploidy 

which increases the risk of CRC at a young age. [70]     

A missense variant in KIF23 (MIM # 605064) was identified in the study by DeRycke et al. 

[7] where 40 cases from 16 familial CRC families were germline exome sequenced. It was 

found to be a rare variant and it was only observed in the ESP database of European 

Americans. The variant was validated and replicated and is located in previously reported 

CRC linkage regions. [7] 

In a study by Peters et al. [71] a polymorphism in LAMC1 (MIM #150290) rs10911251 and 

in TBX3 (MIM # 601621) rs59336 were identified in GWAS.  Both of the polymorphisms 

were associated with CRC. The polymorphism in LAMC1 is located in a region that is highly 

evolutionary conserved. The SNP is also close to the promoter which indicates that it might 

influence gene transcription. The study strongly suggested that this polymorphism is involved 

in development of CRC. TBX3 has also been found to be over expressed in several cancers 

such as in pancreatic-, liver-, breast cancer and melanoma. TBX3 was in liver cancer observed 

as a downstream target of the Wnt/β-catenin pathway, mediating β-catenin activities on cell 

proliferation and survival. This pathway is known to play an important role in CRC 

development. [71] The study by Whiffin et al. [72] confirmed the LAMC1 SNP’s association 

to CRC in their meta-analysis of five GWAS. [72]  

In a study by Shan et al. [73] TBX3 expression was found to be higher in CRC tissues than in 

normal tissues. The study suggested that TBX3 might be involved in CRC development by 

participating in the Epithelial-Transition Mesenchymal (EMT), and EMT have been suggested 
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to be involved in regulation of cancer metastasis. TBX3 might also have the potential to be an 

effective prognostic predictor for CRC patients. [73] 

Somatic mutations in PIK3CA (MIM # 171834) in 74 tumors out of 199 CRC were identified 

in a study by Samuels et al. [74]. The location of the mutations in PIK3CA indicated that they 

are likely to increase kinase activity. The results from the study suggest that PIK3CA when 

mutated is likely to function as an oncogene in human cancers. [74] In the study by Orloff et 

al. [68] 8 probands with CS who were negative for mutations in the known causing CS genes 

were found to have heterozygous germline mutations in the PIK3CA gene. Functional assays 

showed that the result of these mutations were upregulation of AKT1 phosphorylated at 

thr308 and increased cellular PIP3. [68].  

The variants identified in AKT1 lies according to Alamut in highly conserved regions 

meaning that the mutations will have an effect on protein activity. The variants identified in 

the genes LAMC1, PIK3CA and TBX3 are frameshift mutations which means that they will 

also have an effect on the protein activity. The BUB1 and KIF23 variants are nonframeshift 

mutations and these might have an effect on the protein activity as well, although not as major 

as a frameshift mutation because they do not cause a shift in the reading frame. There is not 

sufficient enough literature available for these genes and their function in CRC to determine if 

the variants identified in this study are involved in predisposition to CRC. To determine the 

function of these genes in CRC predisposition further functional studies are needed. 
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4.3 Targeted NGS Sequencing  

Targeted sequencing is a technique that is very useful in cancer research due to its ability to 

focus on specific genes and also the entire human genome. The opportunity to use genetic 

testing in the diagnosis of diseases with complex genetics is very valuable and in cancer 

research the possibility to sequence only parts of the genome and focus on specific genes is 

extremely helpful in the research process. [41] Targeted sequencing also enables sequencing 

of all CRC related genes simultaneously which increases the time it takes to assess a patient.  

In this study there were detected 1268 unique variants using the Haloplex targeted NGS 

method where 25 of these were chosen to further investigate based on the criteria that the 

mutations were damaging at protein level. From the 25 variants two variants, one in APC and 

one in STK11, were found to be false positive by Sanger sequencing. The reason for this 

might be because during processing of NGS data it is not possible to remove the PCR 

duplicates because enzymes are used to digest the DNA. Thus removal of PCR duplicates 

would result in removal of parts of the PCR product. Due to only 6 variants being validated 

with Sanger sequencing there is a possibility that there are additional false positive variants. 

There were also found unequal number of variants in the samples that were from the same 

patients. The samples 33 and 46 that were from the same patient had a variant similarity of 

about 92% and the samples 51 and 87 had a variant similarity of about 95-97%. The possible 

explanation for the discrepancy in variants between the samples is that the variants might 

have been false positive and that the reason for their appearance might also be because PCR 

duplicates are impossible to remove. Another possible false positive variant is the second 

framshift insertion variant detected in BUB1B c.2253_2254insCGG because this variant seem 

to be in the same region as the other BUB1B variant with the only difference being one 

nucleotide. The 10 false positive variants detected in this study are an indication that the 

reproducibility of this method is not 100%. There is no guarantee that there are false negatives 

among the variants identified, and due to the selection criteria in this study to only focus on 

the frameshift variants and some missense variants known in CRC there is a possibility that 

highly penetrant variants have been lost.  

Even though false positive variants were detected the rate of these variants are not high and 

because the two POLE variants, the BMPR1A and PTEN variant detected were most likely to 

be involved in CRC development and that several other variants detected were likely to be 
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involved in CRC such as those found in the genes PIK3CA, AKT1, DCC, GREM1 among 

others, targeted sequencing seems to be a reliable method to use in cancer research.  

 

4.4 Conclusion and prospective work 

The purpose of this study was to identify novel variants in patients with an increased risk of 

developing CRC, using targeted NGS sequencing in genes known to be involved in hereditary 

CRC syndromes and in genes associated with CRC. Many variants were identified and among 

these two novel variants in POLE c.1373A>T and c.824A>T, the variant in BMPR1A 

c.785T>C and the variant in PTEN c.377C>T were found to be involved in CRC 

development. This proves that targeted sequencing seems to be a useful tool in identifying 

novel variants in CRC, but because not all variants were validated there is no guarantee that 

there are other false positive variants among those discovered in this study. There is also a 

possibility of false negative variants and loss of highly penetrant variants due to not all 

variants being further investigated. Prospective work will therefore be to validate the variants 

found in the genes AKT1, BUB1, BUB1B, DCC, FAM166A, FANCM, GREM1, KIF23, 

LAMB4, LAMC1, MAML3, NOTCH3, PIK3CA, PPP1CB, RAI1 and TBX3. These genes 

have all been associated with CRC but there is not sufficient information to state that they are 

involved in CRC and therefore further functional studies are needed. The variants identified in 

this study that were not further described mainly the missense variants, need further 

functional studies to determine their role in CRC development.    
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6. Appendix 

6.1 Patients fulfilling the Amsterdam criteria and/or the revised Bethesda 

guidelines 

 

Patient nr. AC RBG 

1 Positive Positive 

2 Positive Positive 

3 Positive Positive 

4 Positive Positive 

5 Negative Positive 

6 Negative Positive 

7 Positive Positive 

8 Negative Positive 

9 Positive Positive 

10 Positive Positive 

11 Positive Positive 

12 Positive Positive 

13 Positive Positive 

14 Positive Positive 

15 Positive Positive 

16 Negative Negative 

17 Positive Positive 

18 Positive Positive 

19 Positive Positive 

20 Positive Positive 

21 Positive Positive 

22 Positive Positive 

23 Positive Positive 

24 Positive Positive 

25 Positive Positive 

26 Positive Positive 

27 Positive Positive 

28 Positive Positive 

29 Positive Positive 

30 Positive Positive 

31 Positive Positive 

32 Positive Positive 

33 Positive Positive 

34 Positive Positive 

35 Positive Positive 
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Patient nr. AC RBG 

36 Positive Positive 

37 Positive Positive 

38 Positive Positive 

39 Negative Positive 

40 Negative Positive 

41 Positive Positive 

42 Positive Positive 

43 Positive Positive 

44 Positive Positive 

45 Positive Positive 

46 Positive Positive 

47 Negative Positive 

48 Positive Positive 

49 Negative Positive 

50 Negative Negative 

51 Positive Positive 

51 Positive Positive 

52 Negative Positive 

53 Positive Positive 

54 Positive Positive 

55 Positive Positive 

56 Positive Positive 

57 Positive Positive 

59 Positive Positive 

60 Positive Positive 

62 Positive Positive 

63 Positive Positive 

64 Positive Positive 

65 Positive Positive 

66 Positive Positive 

67 Positive Positive 

68 Positive Positive 

69 Negative Negative 

70 Positive Positive 

71 Positive Positive 

72 Positive Positive 

73 Positive Positive 

74 Positive Positive 

75 Negative Positive 

76 Negative Negative 

77 Positive Positive 
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Patient nr. AC RBG 

78 Positive Positive 

79 Positive Positive 

80 Positive Positive 

81 Negative Negative 

82 Negative Positive 

83 Negative Positive 

84 Negative Positive 

85 Positive Positive 

86 Positive Positive 

87 Positive  

88 Negative  

89 Negative  

90 Negative  

91 Negative  

92 Negative  

93 Negative  

94 Positive  

95 Positive  

96 Positive  
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6.2 Overview of DNA concentration measurement for ND-1000 and Qubit 

 

 Concentration 

Nanodrop 

Concentration 

Qubit 

Sample volume Dilution volume 

Sample nr. ng/μL ng/μL μL µl 

1 21,54 28,9 7,8 37,2 

2 31,59 43,4 5,2 39,8 

3 13,92 27,0 8,3 36,7 

4 51,48 51,0 4,4 40,6 

5 30,43 32,9 6,8 38,2 

6 76,41 49,3 4,6 40,4 

7 28,07 37,0 6,1 38,9 

8 20,10 28,4 7,9 37,1 

9 8,89 8,2 27,3 17,7 

10 22,46 27,2 8,3 36,7 

11 24,44 22,7 9,9 35,1 

12 83,29 54,0 4,2 40,8 

13 46,70 50,0 4,5 40,5 

14 31,67 36,2 6,2 38,8 

15 22,37 19,6 11,5 33,5 

16 31,16 32,3 7,0 38,0 

17 36,01 50,0 4,5 40,5 

18 41,41 41,8 5,4 39,6 

19 52,78 45,2 5,0 40,0 

20 27,03 30,8 7,3 37,7 

21 31,30 28,8 7,8 37,2 

22 29,10 38,7 5,8 39,2 

23 29,49 26,6 8,5 36,5 

24 33,99 36,2 6,2 38,8 
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 Concentration 

Nanodrop 

Concentration 

Qubit 

Sample volume Dilution volume 

Sample nr. ng/μL ng/μL μL µL 

25 33,02 36,3 6,2 38,8 

26 23,58 22,2 10,1 34,9 

27 39,30 44,1 5,1 39,9 

28 29,73 28,3 8,0 37,0 

29 23,19 22,8 9,9 35,1 

30 29,66 26,2 8,6 36,4 

31 31,22 29,7 7,6 37,4 

32 43,44 43,2 5,2 39,8 

33 22,73 25,5 8,8 36,2 

34 37,22 41,1 5,5 39,5 

35 28,28 15,3 14,7 30,3 

36 31,79 43,1 5,2 39,8 

37 48,29 30,0 7,5 37,5 

38 43,29 14,2 15,8 29,2 

39 59,52 37,8 6,0 39,0 

40 29,63 19,8 11,4 33,6 

41 23,53 20,8 10,8 34,2 

42 26,12 22,8 9,9 35,1 

43 39,51 17,3 13,0 32,0 

44 71,92 27,9 8,1 36,9 

45 27,06 47,3 4,8 40,2 

46 53,19 30,2 7,5 37,5 

47 19,40 25,7 8,8 36,2 

48 25,59 31,4 7,2 37,8 

49 32,73 45,2 5,0 40,0 

50 28,12 27,8 8,1 36,9 
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 Concentration 

Nanodrop 

Concentration 

Qubit 

Sample volume Dilution volume 

Sample nr. ng/μL ng/μL μL µL 

51 98,33 23,1 9,7 35,3 

52 52,57 27,6 8,2 36,8 

53 32,06 29,2 7,7 37,3 

54 39,64 21,8 10,3 34,7 

55 54,57 43,3 5,2 39,8 

56 46,12 46,2 4,9 40,1 

57 22,72 11,6 19,4 25,6 

58 CONTROL CONTROL CONTROL CONTROL 

59 74,04 48,6 4,6 40,4 

60 31,16 35,0 6,4 38,6 

61 55,81 56,0 4,0 41,0 

62 36,77 51,0 4,4 40,6 

63 28,35 32,3 7,0 38,0 

64 55,30 38,7 5,8 39,2 

65 31,53 38,7 5,8 39,2 

66 49,70 35,5 6,3 38,7 

67 48,63 46,1 4,9 40,1 

68 38,00 36,4 6,2 38,8 

69 62,23 42,3 5,3 39,7 

70 43,86 39,7 5,7 39,3 

71 51,78 40,3 5,6 39,4 

72 21,75 22,6 10,0 35,0 

73 13,54 17,1 13,2 31,8 

74 24,29 33,1 6,8 38,2 

75 83,05 55,0 4,1 40,9 

76 55,39 51,0 4,4 40,6 
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 Concentration 

Nanodrop 

Concentration 

Qubit 

Sample volume Dilution volume 

Sample nr. ng/μL ng/μL μL µL 

77 67,96 56,0 4,0 41,0 

78 64,76 59,0 3,8 41,2 

79 27,42 21,1 10,7 34,3 

80 58,20 54,0 4,2 40,8 

81 110,08 58,0 3,9 41,1 

82 74,62 53,0 4,2 40,8 

83 75,64 46,4 4,8 40,2 

84 42,41 40,0 5,6 39,4 

85 110,38 112,0 2,0 43,0 

86 32,51 29,4 7,7 37,3 

87 56,91 51,0 4,4 40,6 

88 99,49 40,9 5,5 39,5 

89 35,64 32,0 7,0 38,0 

90 74,65 42,8 5,3 39,7 

91 57,37 40,2 5,6 39,4 

92 84,39 65,4 3,4 41,6 

93 62,71 49,5 4,5 40,5 

94 40,19 39,7 5,7 39,3 

95 46,75 32,6 6,9 38,1 

96 56,14 27,2 8,3 36,7 
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6.3 Bioanalyzer results before and after pooling of samples  

The table presents results from validation of enrichment and quantity of enriched target DNA for each 

sample measured on 2100 Bioanalyzer. The table also shows the volume of each sample to obtain 

equimolar concentration prior to pooling. The expected- and the actual concentration in the pool can 

also be seen.  

 Sample nr Concentration 

(ng/µl) 

Volume for equimolar 

concentration 

Chip 1 1 4,53 2,21 

 2 5,56 1,80 

 3 3,18 3,14 

 4 4,28 2,34 

 5 4,45 2,25 

 6 9,42 1,06 

 7 4,55 2,20 

 8 1,08 9,26 

 9 5,06 1,98 

 10 2,55 3,92 

 11 3,70 2,70 

Chip 2 12 7,66 1,31 

 13 3,40 2,94 

 14 3,42 2,92 

 15 2,58 3,88 

 16 3,34 2,99 

 17 5,32 1,88 

 18 5,93 1,69 

 19 3,17 3,15 

 20 4,03 2,48 

 21 2,24 4,46 

 22 4,11 2,43 
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 Sample nr Concentration 

(ng/µl) 

Volume for equimolar 

concentration 

Chip 3 23 5,55 1,80 

 24 3,89 2,57 

 25 3,17 3,15 

 26 2,54 3,94 

 27 2,23 4,48 

 28 3,24 3,09 

 29 3,16 3,16 

 30 3,62 2,76 

 31 5,19 1,93 

 32 5,76 1,74 

 33 1,61 6,21 

Chip 4 34 4,31 2,32 

 35 4,30 2,33 

 36 2,44 4,10 

 37 4,67 2,14 

 38 5,16 1,94 

 39 2,84 3,52 

 40 3,90 2,56 

 41 3,31 3,02 

 42 4,22 2,37 

 43 7,30 1,37 

 44 4,26 2,35 

Chip 5 45 2,76 3,62 

 46 3,94 2,54 

 47 4,09 2,44 

 48 4,99 2,00 
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 Sample nr Concentration 

(ng/µl) 

Volume for equimolar 

concentration 

 49 3,29 3,04 

 50 4,09 2,44 

 51 4,72 2,12 

 52 4,84 2,07 

 53 4,44 2,25 

 54 3,53 2,83 

 55 5,02 1,99 

Chip 6 56 6,40 1,56 

 57 4,01 2,49 

CONTROL 58 3,69 2,71 

 59 6,63 1,51 

 60 3,17 3,15 

 61 3,95 2,53 

 62 2,74 3,65 

 63 3,26 3,07 

 64 5,27 1,90 

 65 4,68 2,14 

 66 5,94 1,68 

Chip 7 67 1,30 7,69 

 68 3,99 2,51 

 69 4,60 2,17 

 70 5,02 1,99 

 71 4,22 2,37 

 72 2,98 3,36 

 73 2,4 4,17 

 74 3,23 3,10 
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 Sample nr Concentration 

(ng/µl) 

Volume for equimolar 

concentration 

 75 3,64 2,75 

 76 5,96 1,68 

 77 3,28 3,05 

Chip 8 78 3,97 2,52 

 79 3,67 2,72 

 80 4,40 2,27 

 81 6,86 1,46 

 82 3,43 2,92 

 83 5,45 1,83 

 84 3,48 2,87 

 85 2,77 3,61 

 86 2,30 4,35 

 87 3,55 2,82 

 88 3,78 2,65 

Chip 9 89 4,02 2,49 

 90 4,29 2,33 

 91 6,81 1,47 

 92 2,78 3,60 

 93 3,85 2,60 

 94 4,26 2,35 

 95 3,55 2,82 

 96 3,01 3,32 

 Sum  265,41 

 ng in Pool Expected 

concentration of 

pool ng/µl 

 

 950 3,58  
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 Measurements 

Pooled 

samples 

Actual 

concentration  of 

pool   

ng/µl 

 

 1 3,93  

 2 3,62  

 3 4,01  
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6.4 Overview of the 123 genes, the MMR genes are highlighted in red  

 

Gene References Association with 

syndrome 

Comment 

ACVRL1    

AKR1C4 (Gylfe et al., 2013)[34] FCC  

AKT1 MIM164730 CS  

APC MIM611731  Velkjent predisposisjons gen 

ATM    

AURKA MIM603072   

AXIN1  Finner ingen bevis DeRyke[7] mener kjent gen 

AXIN2 MIM604025 OCCS  

BAX MIM600040   

BCLAF1    

BGLAP    

BLM MIM604610 BLM Haploinsufficiency 

BMP2    

BMP4    

BMPR1A MIM601299  Velkjent predisposisjons gen 

BRCA1 MIM113705  Velkjent predisposisjons gen 

BRCA2 MIM600185  Velkjent predisposisjons gen 

BUB1 (de Voer et al., 

2013)[70] 

  

BUB1B MIM602860   

BUB3 (de Voer et al., 2013)   

CCDC18 (Gylfe et al., 2013) FCC  

CCND1 MIM168461   

CCND2    

CDH1 MIM192090 CRC +HDGC Velkjent predisposisjons gen 

CDKN1A    
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Gene References Association with 

syndrome 

Comment 

CENPE (DeRycke et al.,2013) FCC  

CHEK2 MIM604373   

CTNNB1    

DCC MIM120470   

DCLRE1A    

DSG4    

DUSP10    

DUSP4    

EIF3C    

EIF3H    

ENG MIM131195 JPS  

EPCAM MIM185535   

EPHB2 (Kokko et al., 

2006)[37] 

FCC  

EXO1 MIM606063   

FAM166A    

FANCD2    

FANCM    

FLCN MIM607273 BHDS  

GALNT12 MIM608812 CRC  

GREM1 MIM603054   

HELQ    

KIF23 (DeRycke et al.,2013) FCC  

KIT MIM164920 FGST  

KLLN MIM612105 CS Germline epigenetic regulation 

(methylation) 

LAMA3    

LAMA5    
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Gene References Association with 

syndrome 

Comment 

LAMB4    

LAMC1    

LAMC3    

LIG1    

LUC7L    

MAML3    

MCC MIM159350 Finner ingen bevis DeRyke mener kjent gen 

MLH1 MIM120436 LS Velkjent predisposisjons gen 

MLH3 MIM604395 LS  

MRPL3 (Gylfe et al., 2013) FCC  

MSH2 MIM609309 LS Velkjent predisposisjons gen 

MSH3 (Duraturo et al.,2011) LS Low-risk allele 

MSH6 MIM600678 LS Velkjent predisposisjons gen 

MUTYH MIM604933  Velkjent predisposisjons gen 

MYC    

MYH11 MIM160745 PJS Recessive inheritance 

NABP1    

NOTCH3    

NUDT7 (Gylfe et al., 2013) FCC  

OGG1 (Smith et al., 

2013)(Kim et al., 

2004)[35, 36] 

FCC Low-risk allele 

PCNA    

PICALM    

PIK3CA MIM171834 CS  

PITX1    

PLA2G2A MIM172411   

PMS1 Ingen bevis i OMIM  DeRyke mener kjent gen 



66 

 

Gene References Association with 

syndrome 

Comment 

PMS2 MIM600259 LS Velkjent predisposisjons gen 

PMS2CL    

POLD1 (Esteban-Jurado et al., 

2014)(Palles et al., 

2013) 

  

POLD2    

POLD3    

POLD4    

POLE (Esteban-Jurado et al., 

2014)(Palles et al., 

2013)[8, 17] 

  

PPP1CB    

PRADC1 (Gylfe et al., 2013) FCC  

PRSS37 (Gylfe et al., 2013) FCC  

PSPH (Gylfe et al., 2013) FCC  

PTCHD3    

PTEN MIM601728 CS  

PTPRJ MIM600925   

RAI1    

RFC1    

RFC2    

RFC3    

RFC4    

RFC5    

RHPN2    

RPA1    

RPA2    

RPA3    
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Gene References Association with 

syndrome 

Comment 

SFXN4 (Gylfe et al., 2013) FCC  

SHROOM2    

SLC5A9    

SMAD4 MIM600993  Velkjent predisposisjons gen 

SMAD7 MIM602932   

STK11 MIM602216   

TBX3    

TERC    

TERT    

TGFBR2 MIM190182   

TKT    

TLR2 MIM603028   

TLR4 MIM603030   

TP53 MIM191170   

TRA2A    

TREX2    

TWSG1 (Gylfe et al., 2013) FCC  

UACA (Gylfe et al., 2013) FCC  

UBAP2    

USP6NL    

ZFP14    

ZMYM5    

ZNF490 (Gylfe et al., 2013) FCC  
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6.5 64 variants colour coded according to predictions with Alamut 

A list of variants after filtration with information on each variant from Alamut. 

The variants in red have a mutation that is predicted of all programs to be damaging to the protein, the 

variants colour coded with yellow have a mutation that can be damaging to the protein but the 

prediction programs in Alamut are contradictory and the variants in green have a mutation that is not 

damaging for the protein. The prediction programs in Alamut were not able to collect information 

about the frameshift mutations and that is the reason why N/A (not applicable) is written in these 

fields.  

 

Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

FANCD2 30 NM_033084.3

:c.1279G>T:p.

V427F 

Class C0  Deleterious

(score 0.01) 

Disease causing 

(P-value:1) 

Probably 

damaging(Hu

mdiv 1.00 

+humvar pred 

0,997) 

KIF23 71 NM_138555.2 

c.610_618del 

p.Phe204_Lys

206del 

N/A N/A N/A N/A 

KIF23 6 NM_138555.2 

c.622G>C 

p.Glu208Gln 

Class C0  Tolearated 

(score 0.26) 

Disease causing 

(P-value: 1) 

Possibly 

damaging 

(Humdiv 

0.873 + 

humvar 0.588) 

LAMA3 80 NM_198129.1 

c.8693A>G 

Class C45 Deleterious

(score 0) 

Disease causing 

(P-value: 1) 

Probably 

damaging(Hu

mdiv 0.999 

+humvar pred 

0.996) 

RAI1 35,48 NM_030665.3 

c.867_872del 

p.Gln290_Gln

291del 

N/A N/A N/A N/A 

LAMA5 3 NM_005560:c.

9691C>T:p.P3

231S 

Class C0  Tolerated 

(score 0.9) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.002 + 

humvar 0.003) 

LAMA5 13 NM_005560:c.

7655C>T:p.T2

552M 

Class C0  Tolerated 

(score 0.23) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.029 + 

humvar 0.002) 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

LAMA5 29 NM_005560:c.

8822C>T:p.T2

941M 

Class C0  Tolerated 

(score 0.05) 

Disease causing 

(P-value: 0.997) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 0.962) 

LAMA5 38 NM_005560:c.

2918C>T:p.T9

73M 

Class C0  Deleterious 

(score 0.03) 

Disease causing 

(P-value: 0.95) 

Possibly 

damaging(Hu

mdiv 0.830) 

Benign(humva

r 0.177) 

LAMA5 

  

52 NM_005560:c.

3575T>C:p.I1

192T 

Class C0  Tolerated 

(score 0.31)  

Polymorphism (P-

value: 1) 

Benign(Humdi

v 0.023 + 

humvar 0.010) 

LAMA5 80 NM_005560:c.

11015G>A:p.

R3672Q 

Class C0 Tolerated 

(score 0.41) 

Polymorphism (P-

value: 1) 

Benign(Humdi

v 0.004 + 

humvar 0.008) 

LAMC1 14,51,71,79 NM_002293:c.

4579_4580del:

p.Leu1527Gly

fs*7 

N/A N/A N/A N/A 

LAMC1 77 NM_002293:c.

2426A>G:p.D

809G 

Class C65  Deleterious Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 1.000) 

BUB1B 11,45,50,62 NM_001211:c.

2252_2253ins

AGA:p.Pro751

_Lys752insAs

p 

N/A N/A N/A N/A 

BUB1B 11,45,62 NM_001211:c.

2253_2254ins

CGG:p.Pro751

_Lys752insAr

g 

N/A N/A N/A N/A 

BUB1B 40 NM_001211:c.

800A>C:p.Q2

67P 

Class C0  Tolerated Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.000 + 

humvar 0.000) 

MAML3 3,37 NM_018717:c.

1513_1514del:

p.Gln505Alafs

*21 

N/A N/A N/A N/A 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

MAML3 3,18,34,41,

52,59,64,77

,90 

NM_018717:c.

1506delG:p.Gl

n502Hisfs*20 

N/A N/A N/A N/A 

MAML3 31 NM_018717:c.

755T>G:p.I25

2S 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value: 0.874) 

Benign 

(Humdiv 

0.090 + 

humvar 0.046) 

MAML3 59 NM_018717:c.

1713G>C:p.M

571I 

        

MAML3 92 NM_018717:c.

53T>C:p.I18T 

Class C0  Deleterious 

(Score 0) 

Disease causing 

(P-value: 0.991) 

Possibly 

damaging 

(Humdiv 

0.952 + 

humvar 0.521) 

APC 14,24,46,47

,49,59-

61,72,95 

NM_0011275

11:c.3086_308

7insTCGG:p.L

ys1030Argfs*

2 

N/A N/A N/A N/A 

POLE 5,23,39 NM_006231:c.

229C>T:p.R77

C 

Class C0  Deleterious 

(score 0.02) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

0.997) 

Possibly 

damaging 

(humvar0.696) 

POLE 6,29,30 NM_006231:c.

1373A>T:p.Y

458F 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 1.000) 

POLE 44 NM_006231:c.

824A>T:p.D2

75V 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value:1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 1.000) 

POLE 51 NM_006231:c.

2644A>G:p.N

882D 

Class C0  Tolerated 

(score 0.07) 

Disease causing 

(P-value: 0.997) 

Benign 

(Humdiv 

0.001 + 

humvar 0.007) 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

POLE 95 NM_006231:c.

4307G>A:p.R

1436Q 

Class C0  Deleterious 

(score 0.03) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

0.970) 

Possibly 

damaging 

(humvar 

0.522) 

GREM1 30,31,60 NM_013372:c.

196_197insT:p

.Thr66Ilefs*35 

N/A N/A N/A N/A 

LAMB4 78 NM_007356:c.

5265delA:p.Ly

s1755Asnfs*1

1 

N/A N/A N/A N/A 

UBAP2 41 NM_018449:c.

212G>T:p.C71

F 

Class C0  Deleterious 

(score 0.01) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 0.995) 

UBAP2 55 NM_0012825

30:c.218G>A:

p.R73Q 

        

UBAP2 65 NM_0012825

29:c.596G>A:

p.R199Q 

        

PTCHD3 44 NM_0010348

42:c.1853A>G

:p.Y618C 

Class C0  Deleterious 

(score 0.02) 

Disease causing 

(P-value: 0.986) 

Probably 

damaging 

(Humdiv 

0.996 + 

humvar 0.997) 

AXIN2 27 NM_004655:c.

769G>T:p.A2

57S 

Class C0 Tolerated 

(score 0.07) 

Disease causing 

(P-value: 0.999) 

Benign 

(Humdiv 

0.212 + 

humvar 0.040) 

FAM166

A 

16,22,52 NM_0010017

10:c.751_752d

el:p.Leu251Va

lfs*2 

N/A N/A N/A N/A 

NOTCH3 34 NM_000435:c.

3733_3734ins

T:p.Thr1245Il

efs*20 

N/A N/A N/A N/A 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

NOTCH3 40 NM_000435:c.

6532C>T:p.P2

178S 

Class C0 Tolerated 

(score 0.53) 

Disease causing 

(P-value: 0.64) 

Benign 

(Humdiv 

0.012 + 

humvar 0.006) 

NOTCH3 86 NM_000435:c.

2953C>T:p.R9

85C 

Class C35  Deleterious 

(score 0.01) 

Disease causing 

(P-value: 0.999) 

Probably 

damaging 

(Humdiv 

0.994) 

Possibly 

damaging 

(humvar 

0.726) 

ATM 65 NM_000051:c.

7308A>C:p.R

2436S 

Class C65  Deleterious 

(score 0) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

0.998 + 

humvar 0.966) 

DCC 23 NM_005215:c.

1817C>G:p.P6

06R 

Class C0  Deleterious 

(score 0) 

N/A Probably 

damaging 

(Humdiv 

0.999 + 

humvar 0.997) 

DCC 46 NM_005215:c.

1664_1665ins

CGAGAT:p.A

sn555_Gly556

insGluIle 

N/A N/A N/A N/A 

AKT1 32 NM_0010144

31:c.206G>C:

p.R69P 

Class C35  Deleterious 

(score 0.01) 

Disease causing 

(P-value: 0.995) 

Possibly 

damaging 

(Humdiv 

0.792 + 

humvar 0.667) 

AKT1 46 NM_0010144

31:c.520C>T:p

.R174C 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-Value: 1) 

Possibly 

damaging 

(Humdiv 

0.900 + 

humvar 0.800) 

FANCM 17,28 NM_020937:c.

5607_5608del:

p.Glu1870Asp

fs*4 

N/A N/A N/A N/A 

BUB1 49,65 NM_ 

004336.4: c. 

447_448insTC

T 

N/A N/A N/A N/A 
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p.Glu149_Thr

150insSer 

Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

PTEN 35,48 NM_000314:c.

377C>T:p.A12

6V 

Class C0 Tolerated 

(score 0.29) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 0.998) 

BRCA1 49 NM_ 

007300.3. 

c.889A>G 

p.Met29Val 

Class C0  Deleterious 

(score 0.04) 

Polymorphism (P-

value: 0.946) 

Benign 

(Humdiv 

0.074 + 

humvar 0.041) 

STK11 60 NM_000455:c.

459_460insA

GA:p.Ala153_

His154insArg 

N/A N/A N/A N/A 

ZFP14 14 NM_020917:c.

43T>C:p.F15L 

Class C0  Deleterious 

(score 0) 

Disease causing 

(P-value: 0.75) 

Probably 

damaging 

(Humdiv 

0.999 + 

humvar 0.914) 

SLC5A9 66 NM_0011351

81.1. 

c.1194G>T 

p.Leu398Phe 

Class C15  Deleterious 

(score 0) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

1.000 + 

humvar 0.999) 

OGG1 26 NM_016821.2

:c.412A>G:p.I

138V 

Class C0  Tolerated 

(score 1) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.000 + 

humvar 0.002) 

PIK3CA 38 NM_006218:c.

107_108insA

GAT:p.Cys36f

s* 

N/A N/A N/A N/A 

TBX3 66 NM_016569.3

. c.1893del 

p.Asn632Thrfs

*257 

N/A N/A N/A N/A 

DUSP10 85 NM_007207:c.

868C>A:p.L29

0I 

Class C0 Tolearated 

(score 0.35) 

Disease causing 

(P-value: 1) 

Possibly 

damaging 

(Humdiv 

0.907) Benign 

(Humvar 

0.346) 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

BMPR1A 32 NM_004329:c.

785T>C:p.V26

2A 

Class C0 Tolerated 

(score 0.15) 

Disease causing 

(P-value: 1) 

Possibly 

damaging 

(Humdiv 

0.923 + 

humvar 0.884) 

TGFBR2 10 NM_0010248

47.2. 

c.1292C>T 

p.Pro431Leu 

Class C15  Deleterious 

(score 0.01) 

Disease causing 

(P-value: 1) 

Benign 

(Humdiv 

0.117 + 

humvar 0.123) 

FLCN 74 NM_144997:c.

1508G>C:p.C

503S 

Class C0 Tolerated 

(score 0.39) 

Disease causing 

(P-value: 1) 

Possibly 

damaging 

(Humdiv 

0.907) Benign 

(humvar 

0.201) 

BGLAP  80 NM_199173:c.

217G>A:p.V7

3M 

Class C0 Tolerated 

(score 0.24) 

Polymorphism (P-

value: 0.739) 

Possibly 

damaging 

(Humdiv 

0.779) Benign 

(humvar 

0.304) 

LAMC3 61 NM_006059:c.

1145C>T:p.P3

82L 

Class C0  Tolerated 

(score 0.05) 

Disease causing 

(P-value: 1) 

Probably 

damaging 

(Humdiv 

0.999 + 

humvar 0.980) 

USP6NL 81 NM_0010804

91:c.1562T>C:

p.M521T 

Class C0  Tolerated 

(score 0.14) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.000 + 

humvar 0.000) 

PPP1CB 72 NM_002709:c.

469_470insA

GATC:p.Cys1

57* 

N/A N/A N/A N/A 

KLLN 58 NM_0011260

49:c.454C>T:p

.P152S 

Class C65  Deleterious 

(score 0) 

Polymorphism (P-

value: 1) 

Possibly 

Damaging 

(Humdiv 

0.728) Benign 

(humvar 

0.358) 

TLR2 29 NM_003264:c.

728C>A:p.S24

3Y 

Class C0  Tolerated 

(score 0.21) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.240 + 

humvar 0.061) 
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Gene Patients Nomenclature AlignGVGD SIFT MutationTaster Polyphen-2 

PTPRJ 67 NM_002843:c.

2017G>T:p.V

673L 

Class C0  Tolerated 

(score 0.76) 

Polymorphism (P-

value: 1) 

Benign 

(Humdiv 

0.000 + 

humvar 0.004) 
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6.6 List of mean coverage for each sample  

An overview of mean coverage for each sample and mean coverage of total samples 

Sample nr. Coverage mean 

1 217,91 

2 155,14 

3 284,05 

4 316,01 

5 225,70 

6 223,10 

7 248,41 

8 239,04 

9 219,28 

10 377,72 

11 262,86 

12 238,36 

13 272,21 

14 302,66 

15 294,23 

16 254,96 

17 213,41 

18 201,69 

19 279,53 

20 281,70 

21 322,03 

22 270,34 

23 245,22 

24 270,31 
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Sample nr. Coverage mean 

25 203,44 

26 335,31 

27 267,49 

28 244,50 

29 295,02 

30 291,44 

31 226,33 

32 118,72 

33 452,88 

34 248,16 

35 260,02 

36 233,52 

37 229,98 

38 482,46 

39 260,85 

40 301,82 

41 272,62 

42 312,87 

43 168,09 

44 272,11 

45 241,66 

46 259,53 

47 226,98 

48 157,87 

49 225,70 

50 210,06 
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Sample nr. Coverage mean 

51 183,92 

52 240,90 

53 185,95 

54 222,56 

55 238,25 

56 206,00 

57 207,38 

59 278,21 

60 250,28 

61 283,00 

62 332,20 

63 247,79 

64 199,13 

65 194,97 

66 230,95 

67 429,97 

68 238,43 

69 258,52 

70 214,06 

71 242,11 

72 307,74 

73 289,34 

74 280,99 

75 362,32 

76 167,66 

77 211,47 
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Sample nr. Coverage mean 

78 235,08 

79 234,21 

80 191,96 

81 285,06 

82 316,37 

83 237,52 

84 274,00 

85 272,22 

86 257,62 

87 317,13 

88 291,38 

89 217,64 

90 243,84 

91 225,68 

92 243,00 

93 302,79 

94 234,70 

95 298,84 

96 329,03 

Sum: 24527,47 

Mean coverage 258,18 

Standard deviation 57,76 
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6.7 Target regions covered with >20 reads 

Overview of % target regions covered with >20 reads 

Sample #regions #regions_covered>20 Percentage 

1 2493 2137 85,72 

2 2493 2065 82,83 

3 2493 2141 85,88 

4 2493 2168 86,96 

5 2493 2114 84,80 

6 2493 2173 87,16 

7 2493 2140 85,84 

8 2493 2157 86,52 

9 2493 2168 86,96 

10 2493 2209 88,61 

11 2493 2136 85,68 

12 2493 2158 86,56 

13 2493 2161 86,68 

14 2493 2172 87,12 

15 2493 2129 85,40 

16 2493 2170 87,04 

17 2493 2152 86,32 

18 2493 2129 85,40 

19 2493 2179 87,40 

20 2493 2198 88,17 

21 2493 2204 88,41 

22 2493 2212 88,73 

23 2493 2175 87,24 

24 2493 2207 88,53 

25 2493 2094 84,00 

26 2493 2172 87,12 
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Sample #regions #regions_covered>20 Percentage 

27 2493 2106 84,48 

28 2493 2147 86,12 

29 2493 2146 86,08 

30 2493 2162 86,72 

31 2493 2109 84,60 

32 2493 2008 80,55 

33 2493 2232 89,53 

34 2493 2157 86,52 

35 2493 2161 86,68 

36 2493 2138 85,76 

37 2493 2154 86,40 

38 2493 2278 91,38 

39 2493 2188 87,77 

40 2493 2216 88,89 

41 2493 2200 88,25 

42 2493 2239 89,81 

43 2493 2117 84,92 

44 2493 2207 88,53 

45 2493 2146 86,08 

46 2493 2177 87,32 

47 2493 2179 87,40 

48 2493 2084 83,59 

49 2493 2150 86,24 

50 2493 2139 85,80 

51 2493 2075 83,23 

52 2493 2143 85,96 

53 2493 2061 82,67 

54 2493 2124 85,20 
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Sample #regions #regions_covered>20 Percentage 

55 2493 2158 86,56 

56 2493 2139 85,80 

57 2493 2126 85,28 

59 2493 2184 87,61 

60 2493 2140 85,84 

61 2493 2167 86,92 

62 2493 2235 89,65 

63 2493 2183 87,57 

64 2493 2144 86,00 

65 2493 2142 85,92 

66 2493 2178 87,36 

67 2493 2265 90,85 

68 2493 2170 87,04 

69 2493 2210 88,65 

70 2493 2161 86,68 

71 2493 2141 85,88 

72 2493 2198 88,17 

73 2493 2183 87,57 

74 2493 2161 86,68 

75 2493 2204 88,41 

76 2493 2087 83,71 

77 2493 2132 85,52 

78 2493 2150 86,24 

79 2493 2138 85,76 

80 2493 2103 84,36 

81 2493 2174 87,20 

82 2493 2210 88,65 

83 2493 2145 86,04 
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Sample #regions #regions_covered>20 Percentage 

84 2493 2173 87,16 

85 2493 2184 87,61 

86 2493 2178 87,36 

87 2493 2204 88,41 

88 2493 2194 88,01 

89 2493 2171 87,08 

90 2493 2166 86,88 

91 2493 2141 85,88 

92 2493 2159 86,60 

93 2493 2210 88,65 

94 2493 2178 87,36 

95 2493 2227 89,33 

96 2493 2196 88,09 

Sum: 

 

205372 8237,95 

Mean: 

 

2162 86,72 

Standard deviation: 

 

42,92 
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6.8 Number of variants found in each patient before filtration 

 

Patient nr. Number of 

Variants 

In total genes 

1 295 78 

2 345 83 

3 305 85 

4 319 80 

5 297 78 

6 334 83 

7 319 85 

8 314 84 

9 338 83 

10 272 76 

11 321 84 

12 327 74 

13 310 81 

14 316 83 

15 321 80 

16 329 81 

17 319 85 

18 341 81 

19 344 79 

20 332 88 

21 330 84 

22 317 88 

23 312 86 

24 317 83 

25 326 84 
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Patient nr. Number of 

Variants 

In total genes 

26 318 79 

27 296 74 

28 323 82 

29 306 78 

30 304 85 

31 311 78 

32 351 85 

33 305 80 

34 303 78 

35 315 87 

36 344 81 

37 340 85 

38 285 77 

39 306 79 

40 302 78 

41 301 78 

42 293 79 

43 338 83 

44 329 83 

45 316 83 

46 338 77 

47 325 84 

48 332 81 

49 318 76 

50 324 82 

51 316 78 

52 315 86 
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Patient nr. Number of 

Variants 

In total genes 

53 304 77 

54 335 78 

55 333 81 

56 328 81 

57 357 85 

59 319 87 

60 326 82 

61 298 80 

62 304 82 

63 320 81 

64 318 82 

65 320 80 

66 318 85 

67 272 75 

68 332 79 

69 319 79 

70 335 80 

71 321 81 

72 301 82 

73 317 86 

74 306 79 

75 309 85 

76 340 83 

77 331 82 

78 348 80 

79 316 81 

80 337 80 
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Patient nr. Number of 

Variants 

In total genes 

81 324 80 

82 306 75 

83 340 90 

84 324 82 

85 336 78 

86 298 72 

87 297 78 

88 296 78 

89 304 77 

90 300 77 

91 323 81 

92 297 84 

93 305 83 

94 347 86 

95 309 82 

96 284 79 
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6.9 Number of variants found in each patient after filtration 

 

Patient nr. Number of 

variants 

In total genes 

1 17 12 

2 16 13 

3 15 13 

4 14 13 

5 14 12 

6 18 14 

7 16 14 

8 16 13 

9 21 15 

10 13 10 

11 16 12 

12 19 16 

13 15 13 

14 16 13 

15 14 12 

16 18 15 

17 19 15 

18 17 14 

19 21 16 

20 18 15 

21 14 12 

22 21 16 

23 17 14 

24 16 13 

25 19 15 

26 17 14 

27 17 14 

28 20 16 

29 18 15 

30 15 13 

31 19 15 

32 18 14 

33 14 11 

34 15 13 

35 18 15 

36 19 14 

37 18 15 
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Patient nr. Number of 

variants 

In total genes 

38 14 12 

39 20 16 

40 17 14 

41 15 12 

42 21 17 

43 21 15 

44 21 16 

45 18 15 

46 18 14 

47 24 19 

48 17 12 

49 17 13 

50 24 18 

51 21 17 

52 17 14 

53 14 12 

54 17 14 

55 20 15 

56 22 16 

57 21 16 

59 24 19 

60 17 14 

61 17 13 

62 11 9 

63 17 14 

64 21 16 

65 20 16 

66 21 16 

67 11 9 

68 18 15 

69 16 12 

70 15 12 

71 21 17 

72 12 10 

73 18 14 

74 15 12 

75 13 11 

76 20 15 

77 21 16 

78 18 13 



90 

 

Patient nr. Number of 

variants 

In total genes 

79 21 18 

80 16 13 

81 16 13 

82 16 13 

83 16 13 

84 15 12 

85 17 14 

86 15 12 

87 17 14 

88 16 13 

89 21 16 

90 18 14 

91 17 14 

92 19 15 

93 17 13 

94 23 18 

95 19 14 

96 13 9 

 

 


