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Abstract

Timber-concrete composite structures were originally developed for bridges and
strengthening existing timber floors, but is today used extensively also in new
buildings. The objective of this thesis was to look at the dynamic behaviour of a
timber-concrete composite system, where the concrete deck consisted of several
prefabricated elements glued together. The shear connector used was a glued-in
steel mesh, which had shown strong capacity in previous studies. The concrete
was fibre reinforced concrete.

A full-scale model was built in the laboratory, and the following tests were
performed: A dynamic test (hammer impact test) and a deflection test with 1
kN load. In addition a direct shear test was performed on two asymmetrical
specimens to find the stiffness of the shear connector. The fibre reinforced
concrete was tested separately to find its characteristic properties. There was
also made a numerical model in ABAQUS, to estimate the behaviour of the
composite beam.

The hammer impact test showed that the composite beam satisfied the dynamic
requirements sat for the beam. The shear connector proved to be weaker and
more ductile than expected. It was discovered this was due to insufficient gluing
during the assembly. The numerical analyses done in combination with the
empirical tests proved to give good estimates on the behaviour of the composite
beam. The stiffness of the shear connector proved to be more decisive of the
deflection of the beam than the frequency. Expanding the beam to a full-size
floor in ABAQUS indicated that the composite beam gave smaller values for
the frequency than what would be the case for a full floor.

The overall performance of the timber-concrete composite system tested in this
thesis was good. However, some adjustments should be made and more research
has to be done, if developing this into a new floor system.

v






Sammendrag

Komposittkonstruksjoner i tre og betong ble opprinnelig utviklet for broer og
for a forsterke eksisterende tregulv, men er i dag ogsa brukt mye i nye bygninger.
Malet med denne oppgaven er a se pa de dynamiske egenskapene pa en type
komposittkonstruksjon hvor betongdekket bestar av mindre betongelementer
limt til hverandre. Skjeerforbindelsen brukt i denne oppgaven er et innlimt
stalgitter, som har vist hgy kapasitet i tidligere studier. Betongen er fiberarmert
betong.

En fullskala modell ble bygget i laboratoriet, og fglgende tester ble utfgrt: En
dynamisk test (hammer impact test”) og en nedbgyningstest med 1 kN last.
I tillegg ble det utfort en skjaertest pa to asymetriske prgvestykker for & finne
stivheten til skjaerforbindelsen. Den fiberarmerte betongen ble testet separat
for & finne materialegenskapene. Det ble i tillegg laget numeriske modeller i
ABAQUS for & estimere konstruksjonens oppfarsel.

De dynamiske testene viste at komposittkonstruksjonen tilfredsstilte de dy-
namiske kravene som var satt pa forhand. Gjennom skjaertesten kom det fram
at skjeerforbindelsen var bade svakere og mer duktil enn forventet. Det ble
oppdaget at dette skyldtes utilstrekkelig liming under monteringsprosessen. De
numeriske analysene ga gode estimater for oppferselen til komposittkonstruk-
sjonen. Det viste seg at stivheten til skjeerforbindelsen var mer avgjgrende for
nedbgyningen av konstruksjonen enn den var for frekvensen. Ved & utvide den
numeriske modellen til et gulv i ABAQUS ble det sett at komposittkonstruk-
sjonen muligens gir noe lavere verdier for frekvensen enn det tilfellet ville vaere
for et fullskala gulv.

Pa et generelt basis viste komposittkonstruksjonen som ble testet a fungere bra
i forhold til de krav som ble satt. Det skal likevel presiseres at noen justeringer
bgr bli gjort og mer forskning ma legges ned om det skal utvikles videre til et
nytt gulvsystem.
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Notations

Latin upper case letters

A Area [mm?

E Modulus of elasticity [N/mm?]

Eo mean Modulus of elasticity along the grain, glulam [N/mm?]

E90.mean Modulus of elasticity perpendicular to the grain, glulam [N/mm?]

E, Modulus of elasticity at specific point [N/mm?]

E,cy Modulus of elasticity of reference material [N/mm?]

(ET)o Bending stiffness of beam with no composite action [Nmm?]

(EX)ey Efficient bending stiffness [Nmm?]

(E1) oo Bending stiffness of beam with full composite action [Nmm?]

(ET)real Actual bending stiffness of composite system, efficiency
calculations [Nmm?]

F Concentrated load [EN]

F(w) Input signal spectrum

Go,mean Shear modulus, glulam [N/mm?]

H(w) Frequency Response Function

I Second moment of area [mm*]

Iy fic Second moment of area of fictitious cross-section [mm?]

M, gq Design value of bending moment [kNm)]

M Bending moment [kNm]

N Axial force [kN]

Q Connector force [EN]

S Standard deviation in concrete beam tests

14 Shear force [kN]

X(w) Output signal spectrum
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Latin lower case letters

a Distance between the neutral axes [mm]

b Width [mm]

h Height [mm)]

f frequency [H z]

feo Compressive strength along the grain, glulam [N/mm]

Je,90 Compressive strength perpendicular to the grain, glulam [N/mm]

fet,L Tensile strength, concrete [N/mm]

frtres2,s Residual tensile strength, concrete [N/mm)]

frj Residual flexural tensile strength, concrete [IN/mm)]

fm Bending strength, glulam [N/mm)]

fr.o Tensile strength along the grain, glulam [N/mm]

fro0 Tensile strength perpendicular to the grain, glulam[N/mm]

fo Shear strength, glulam [N/mm]

k Slip modulus [kN/mm)

l length [mm]

D Uniformly distributed load in derivation from Kreuzinger [kN/m)

q Uniformly distributed load [kN/m)

s Spacing of shear connectors [mm)|

u Shear deformation of the connector [mm)

w Deflection [mm]

x Distance between crack and center in residual tensile
strength calculations [mm]

Zp Distance from point of interest to neutral axis [mm)|

Subscripts

1 Refers in composite calculations to the top layer, i.e. concrete

2 Refers in composite calculations to the bottom layer, i.e. glulam
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Abbreviations
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1 Introduction

1.1 Background

Timber-concrete composite structures have been studied for about 70 years. It
was originally developed as a strengthening of existing timber structures, but
was soon successfully included also in new structures. In USA, McCullough
(1943) carried out a study on behalf of the Oregon State Highway Department
to look at timber-concrete composite structures in short-span highway bridges.
In Europe, timber-concrete composite structures have been mainly used in up-
grading existing timber floors in old buildings, but have also been used in new
commercial and residential buildings (Ceccotti, 1995). Timber-concrete com-
posite decks are now found in bridges, buildings, piers, wharves, hangar aprons,
platforms etc. (Lukaszewska, 2009)

The advantage of timber-concrete composite structures is that the concrete top-
ping will mainly take compression, while the timber takes tension and bending.
The connection between them transfers the shear forces which forms between the
two elements. Compared to a timber floor this will give a stiffer construction,
with increased load capacity and high fire resistance. Compared to a concrete
floor the timber-concrete composite floor will be lighter. Problems linked to
concrete floors, like cracking in the tensile region, can also be avoided.

Traditionally, the concrete has been cast on top of the timber joists. This is
unfortunate as it exposes the timber to a wet environment, making it more
prone to e.g. creep. Recent research, by among others Lukaszewska (2009)
and Crocetti et al. (2010), in Sweden has looked at the opportunity of using
prefabricated concrete slabs. This, along with the choice of shear connector,
are both issues that need to be evaluated when designing a timber-concrete
composite construction.



1.2 Aims and limitations of the research

The principal objective for this thesis is to investigate the dynamic properties of
a timber-concrete composite beam. A novel floor system is used, with prefabri-
cated concrete elements glued to each other with epoxy instead of a continuous
concrete slab. The concrete is fibre-reinforced concrete. Several tests will be
performed in the laboratory. Primarily a dynamic test, but also a shear test
and a deflection test to determine the properties of the shear connector. The
results will be compared to numerical analyses done in ABAQUS. It will be
investigated how changing the shear stiffness and expanding the model to a
full-size floor will affect the frequency. Separate tests will be performed on the
fibre reinforced concrete to determine its characteristic values, and is presented
in its own chapter.

As the research of this thesis only is going on for 20 weeks the work presented
has several limitations. All tests are assuming a simply supported beam, which
is not a probable boundary condition in a floor. The long-term effects of the
composite beam will not be investigated. Nor will the ultimate strength of
the construction. The model presents only a strip of a floor, thus the results
obtained will only be relatively representative.



2 Timber-concrete composite
structures

The chapter presents previous research done on timber-concrete composite struc-
tures. Studies similar and relevant to the work done in this thesis is empha-
sized. However, other studies are also included to put the development of timber-
concrete composite structures in a historical perspective.

2.1 Early research

The research on timber-concrete composite systems has been ongoing for about
70 years. Some of the first full scale bending tests were performed in the United
States in the beginning of the 1940s. At the University of Illinois, Richart and
Williams (1943) tested 32 composite beams with different shear connectors in
addition to long-term tests of the beams. The shear connectors they tested
were steel plates with and without spikes, screws and spikes only and sloped
notches with and without spikes. The shear connectors consisting of triangular
steel plates and spikes gave the best results, with high load capacity, small slip
and deflection, and good composite action. The long-term tests done over a
2 1/2 years period showed little reduction of the strength of the beam due to
shrinkage or expansion (Richart and Williams, 1943). Around the same time
McCullough (1943) tested 22 beams on behalf of the Oregon State Highway
Department, later known as the Oregon tests. The goal was to develop a short-
span timber-concrete composite bridge. McCullough looked at five different
shear connectors; spikes, daps in the timber, spikes and daps combined, pipe
dowels and flat steel plates.

The conclusion drawn from the tests were:

e the ultimate strength for a composite beam is at least twice as for the
same elements without any connection.

e the deflection of a composite beam under a given load will be no more
than 25% of the corresponding deflection of the same materials used in-



dependently.

e repeated loading did not seem to have any unfavorable effect on the com-
posite beams

In Europe, timber-concrete composite beams have also been successfully used for
renovating timber floors in old masonry buildings. The composite floor is rigid
enough not only to keep its own shape, but if well connected to the walls, the
whole building’s shape. This is very favorable in case of earthquakes (Ceccotti,
1995).

2.2 In-situ vs. prefabricated

During the years different materials and ways to build timber-concrete compos-
ite beams have been tested. Traditionally the systems that have been tested
assume the concrete to be cast in-situ, on timber beams with mounted shear con-
nectors. This is a so-called "wet” connection. Despite their good performance,
there are several drawbacks with this type of systems:

e the introduction of a "wet” component in the ”dry” environment typically
found in timber buildings

e the time needed for the concrete to cure, meaning the time will pass until
the next action can take place on the site.

e the low stiffness and high creep while the concrete cures, meaning propping
is necessary to avoid permanent deflections.

e the costs of casting concrete slabs in-situ, this includes the cost of trans-
porting fresh concrete and the use of props and formwork.

e the excessive shrinking of concrete, which leads to additional deflection of
the beam.

In recent years there has been several studies on timber-concrete composite
beams where parts of it or the complete beam has been prefabricated. Lukaszewska
(2009) has tested out different timber-concrete composite systems with prefabri-
cated concrete slabs. By prefabricating it is possible to avoid the disadvantages
of casting concrete on top of timber. However, using a prefabricated concrete
slab requires greater precision when assembling the timber to the concrete, and
can be complicated for some types of connections.



\ Timber beam
HBV-shear connector

Figure 2.1: Ezxample of an HBV-element and transportation on the construction
site (from www.hbv-system.de)

Bathon et al. (2006) have done extensive research and development of a modular
element system called the HBV-system. This system consists of wall-, floor-
and roof elements which are connected off site and then transported to the
construction site, see figure 2.1. By doing this the issues concerning time and
costs in the construction process are avoided. The concrete is though cast
directly on the timber, so shrinking of the concrete and exposure of the timber
to a wet element are still issues.

In Sweden Crocetti et al. (2010) has looked at the use of fibre reinforced concrete
in composite structures. Without the need for steel bar reinforcement it is
possible to use thinner elements and by that obtain a more efficient and lighter
floor structure.

2.3 Shear connectors

2.3.1 Classification

The shear connectors connecting the timber and concrete is the most important
element of a composite structure. The connector should be rigid while under-
going stress in the elastic range, but ductile while undergoing stresses in the
plastic range (Bathon and Bletz, 2006). Figure 2.2 shows the most commonly
used shear connectors as classified by Ceccotti (1995). The shear connectors are
divided into four groups according to their stiffness k, also called slip modulus.
Connectors in group (a) are relatively inexpensive and easy to install. They are,
however, the least rigid and could provide a composite efficiency of under 50%.



Figure 2.2: Ezamples of different shear connectors: (al) nails; (a2) reinforced
concrete steel bars; (a83) screws; (a4) inclined screws; (b1) split rings; (b2)
toothed plates; (b3) steel tubes; (b4) steel punched metal plates; (c1) round in-
dentations in timber and fasteners preventing uplift; (c2) square indentations
and fasteners; (c3) cup indentations and prestressed steel bars; (c4) nailed tim-
ber planks deck and steel shear plates slotted through the deeper planks; (d1)
steel lattice glued to timber; (d2) steel plate glued to timber.

Group (b) connectors are found to have greater stiffness and strength capacity
than group (a), while group (c) connectors have similar or better capacity than
group (b). Group (d) connectors which consist of glued-in connectors are found
to be the most rigid, with a composite efficiency of almost 100% for some types
(Ceccotti, 1995; Lukaszewska, 2009).

2.3.2 Adhesives in shear connectors

The use of adhesives has been proven effective both combined with a shear con-
nector or used independently. Compared to mechanical connectors the use of
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Figure 2.3: The structural elements of a HBV element (from www.hbv-
system.de)

adhesives such as epoxy glue gives almost no slip between timber and concrete
(Lukaszewska 2009, and references therein). However, there are several things
to consider when using adhesives in the assembly process, maybe most impor-
tant the uncertainty around the performance of the adhesive under temperature
fluctuations or long-term loading (Clouston et al., 2005). Other aspects is the
pot life of the adhesive, i.e. the time it takes from the mixing to the glue is so
stiff it cannot be applied. The time the adhesive needs to cure is another issue,
as well as the high costs of epoxy resin.

2.3.3 Continuous glued-in connectors

Shear connectors similar to the connector (d2) in figure 2.2 have obtained sat-
isfactory results in several studies. The steel plate is glued into a slot in the
timber and the concrete slab is cast on top. A study carried out by Bathon
and Graf (2000) looked at the use of a steel mesh connecting the timber beam
and the concrete slab. This system was later used for the already mentioned
HBV-system, see figure 2.3. The steel mesh was 2x80 mm and reached 40 mm
into both timber and concrete. During shear tests failure happened primarily in
the wood because of shear. Later studies done with the same connector system
used a slip modulus of 415 kN/mm (Bathon and Bletz, 2006).

A similar study done by Clouston et al. (2005) looked at a steel mesh perforated



Figure 2.4: The steel mesh: (a) in the formwork, (b) prefabricated concrete slab
with inserted shear connector (Lukaszewska, 2009)

and expanded. The mesh was 2x100 mm and reached 50 mm into both timber
and concrete. Failure occurred due to rapture of the steel shear connector. The
average slip modulus was 415 kN/mm and the effective bending stiffness was
3% less than that of a beam with full composite action (Clouston et al., 2005).

Lukaszewska (2009) tested in her study several shear connectors, among them a
steel mesh as shown in figure 2.4. The mesh had a height of 100 mm and reached
50 mm into both timber and concrete. The thickness of the mesh was not stated.
The steel mesh provided the highest stiffness among the connectors tested, with
a mean slip modulus of 483 kN/mm. Failure occurred in the concrete due
to formation of cracks along the steel mesh, followed by rapture of the shear
connector. Despite its great stiffness and strength, the steel mesh was excluded
from further experimental testing. One of the reasons for this was the accuracy
needed when placing the shear connectors in the casting mould. Inaccuracy in
this process would cause problems when assembling the concrete slab and the
timber beams. Other reasons were the time and cost of the epoxy glue, and it
was thereby concluded that the steel mesh was not the easiest shear connector
to manufacture (Lukaszewska, 2009).



3 Composite theory

The chapter gives a brief introduction to the theory behind composite structures.
It also includes the calculation method for mechanically jointed beams found in
Eurocode 5 (Standard Norge, 2010).

3.1 General

Composite systems include two or more elements connected by a shear trans-
ferring connector. In bending the elements tend to slip relative to each other
and tangential forces @) are created as the shear connector counteracts the slip.
This again leads to the creation of, section by section, axial forces N in opposite
direction along the beam length, see figure 3.1. The forces’ intensity depend on
the stiffness and deformability of the connector. In the case of no connection at
all, the axial forces will be zero and the elements will act independently of each
other. No shear force is transferred and we get No composite action (NCA),
the lower bound of composite action. The higher bound is called Full composite
action (FCA), where the connection is infinitely stiff and no slip occur. The
axial forces are high and the two materials act like one. Usually, the shear con-
nector generates some slip and we get Partial composite action (PCA). In this
case the connector has a finite stiffness. Figure 3.2 presents strain diagrams for
structures with no, partial and full composite action.

o

.:E

0 =Kbd

=

Figure 3.1: The forces between the elements create compression and bending in
the upper layer and tension and bending in the lower layer. From Kreuzinger

(1994)
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Figure 3.2: A composite beam in case of a) full composite action, b) partial
composite action and ¢) no composite action

For a system to be strong and stiff, the shear connector should be efficient. This
means the shear forces are effectively transferred through the connector. A way
to measure this is using the following equation, originally proposed by Piazza
in 1983 (Lukaszewska, 2009):

(ED)yea — (EI)
1= Bl — (BT 3D

where 7 is the efficiency of the connector, (ET) is the the bending stiffness of
the beam with theoretical full composite action, (ET)q is the bending stiffness of
the beam with no composite action and (ET);cq; is the actual bending stiffness
of the beam. When the connection system is very stiff (ET),qq; is close to (ET )
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and thus n — 1. If the connection system is very flexible (ET),eq is close to
(ET)o and thus n — 0.

3.2 Design of composite structures

3.2.1 Full composite action and No composite action

In the case of No composite action and Full composite action the design calcu-
lations may be done easily. For NCA the two materials act individually, thus
normal bending theory can be used on each element. For FCA there is no slip
and the concrete section can be “transformed” into a timber section. This is
done by multiplying the width of the concrete with E./E; to acquire the same
center of gravity. The stresses throughout the cross-section can then be found
from the following equation:

Ep My,Ed
Eref Iy,fic

Op,d =

|2p] (3.2)

where 0, 4 and E, is the stress and the modulus of elasticity at the point of
interest, respectively. z, is the distance from the point of interest to the neutral
axis, while E,..s is the modulus of elasticity of the reference material (in this case
the timber) and Iy, f; is the area moment of inertia of the fictitious cross-section.

3.2.2 Partial composite action

In the case of Partial composite action the bending theory does not apply be-
cause of the slip between the materials. To find the stress distribution dif-
ferential equations of equilibrium have to be used. Below is a condensed ver-
sion of the procedure found in Kreuzinger (1994). It is meant to provide some
background knowledge to understand the equations used in the calculations of
timber-concrete composite structures. The method has proved to give very good
approximations for beams with closely spaced fasteners (Lukaszewska, 2009).

Figure 3.3 shows the deformations of a composite beam in bending where u;
and us are the longitudinal displacement of the neutral axis of the two elements.
w is the bending deflection and wu is the shear deformation of the core or the
connector system. a is the distance between the neutral axis of the two elements,
ie. a = h1/2+ hg/2. With simple bending theory one gets the following

11



Figure 3.3: The original and displaced configuration

equations:
Mi = —Eiliw"

Vi = —E;Liw"

Q = ku = k(us —uy +w'a)

u=u2-ul+wa
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Equilibrium in x- and z-direction gives:

N +Q=0 (3.7)

N)+Q=0 (3.8)

M =V, — Q% (3.9)
! h2

My =Ve - Q= (3.10)

By differentiating the sum of Eq. 3.9 and 3.10 and replacing (V] 4+ V3) with the
term -p:

My +M}+Qa+p=0 (3.11)

Then the internal forces and moments can be replaced with the elasticity prin-
ciples, and the following set of differential equations are obtained:

ElAlulll + k(UQ — Uy + w’a) =0 (312)
EsAsuly — k(ug —uj +w'a) =0 (3.13)
(Er 11 + By )w"" — k(uhy — v} + w”a)a =p (3.14)

A simple solution can be given for single span beams with a sinusoidal load
distribution, because the shape of the deformations in the direction of the axes
also correspond to sin- or cos-functions. Although the solution is acquired from
a sinusoidal load distribution it is applied successfully to many other types of
load distributions. Given:

P = posin ch> (3.15)

the deformations will be

U] = U19COS (%x) i Uz = U0COS (%x) 5w = wesin (?m) (3.16)
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where u1, uy and w are determined by solving the system of equations 3.12-3.14.
This gives the solution:

Nz 1 on .17
wo =Py EiAjvia® PO (EQ)es o
E L + By Iy +
. Fi1A;
+m By,
s (J/}/lEgAg
upp = wo e —NE2l2 3.17b
10 o7 nE1A + Es Ay ( )
™ a'ylElAl
= —wy-— 3.17¢
120 w07 nE1AL + Ey Ay ( )
1 7T2 ElAl
where v i) an 1= T

Stresses in the cross-section can be found based on these deformations and by
applying elastic principles. For example, the stress in the axis of part 1 is:

o1 = E1’U,/1(J) = Z/Q) = —E1u10§ (318)

Using the following terms:

1 u 12
wo — po ) L
0 p07r4EIef’ 0=Po 3
mnEiAra

a9 a1 = a— ag

B AL+ Er Ay’

the stress is

v1E1a1 My
_ 2
01 (El)ef (3 0)

The procedure derived here presents the basis behind the equations found in
Eurocode 5 Annex B ”"Mechanically jointed beams”, which is presented in the
next section.
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Figure 3.4: Cross-section (left) and stress distribution (right) of a composite
bean with partial composite action (from Eurocode 5)

3.2.3 The y-method

Eurocode 5 - Part 1-1, Annex B provides a simple method for calculating stresses
in the component materials and maximum deflection for mechanically jointed
beams. The equations are based on linear elasticity theory and derived above.
Eurocode 5 states the following assumptions:

The beam is simply supported with a span L. For continuous beams the
expressions can be used with L equal to 0.8 times the actual span, and for
cantilevered beams L is equal to twice the length of the cantilever.

The individual parts (of wood or wood-based panels) are either in full
length or made with glued end joints.

The individual parts are connected to each other by mechanical fasteners
with a slip modulus &.

The distance s between the fasteners is constant or varies uniformly ac-
cording to the shear force between $,,4, and Smaz, With Simee < 4Smin-

The load acts in the z-direction, creating a moment M = M(z) which
varies sinusoidally or parabolically, and a shear force V = V(z).

15



The effective bending stiffness (ET ). of a two element composite beam is given
as:

2
(El)es = Z(Ezfz +7iEiAiay) (3.21)

i=1
where F;, I; and A; are the modulus of elasticity, the second moment of area

and the area of the two composite materials respectively. The shear coefficients
v; and distances a; are given as:

-1
7T2E1A181

=1 .22
71 ,O + kll2 (3 )
a; = hl + h2 — ag (324)

2
E1A{(h h
sy = Y1 E1A1(hy + h2) (3.25)

2300 VB
where s; is the connector spacing, k; the slip modulus of the shear connector
and [ is the beam length. Remaining variables are found in figure 3.4.

The effective bending stiffness is used to calculate the stress distribution, the
load on the fastener and the deflection. The following equations are applied for
a simply supported beam with uniform load:
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_ viBiaiM

%= ED., (3.26)
T2,maz = 07(552)]:?/ (3.28)
_ W (3.29)

Sql* (3.30)

Y= 384(ED).,

where o; and oy, ; are the normal stresses, o pq. is the maximum shear stress,
F is the load on the fastener, w is the mid-span deflection, M is the bending
moment and V is the shear force in the cross-section of interest.

3.2.4 Slip modulus

The load-slip relationship of the shear connector is non-linear, which makes it
necessary to operate with several slip moduli. Ceccotti (1995) proposed two
different values; kg, for the serviceability limit state (SLS) and k, for the
ultimate limit state (ULS). kg, is taken as the secant value at 40% of the load-
carrying capacity, while k, is taken as the secant value at 60%. In general, the
values of the slip moduli should be determined by tests according to EN 26891
(Standard Norge, 1991). However, if there is no experimental data available,
Eurocode 5 Part 1-1 proposes using the formulas for kg, in timber-to-timber
connections and multiply the value by 2. k, is then taken as 2/3 of kg, also
according to Eurocode 5. This method is convenient depending on the type of
connector. Ceccotti et al. (2007) found the analytical results based on Eurocode
5 to largely underestimate both strength and stiffness of the connector tested,
with a difference up to 50% between the analytical and experimental values of
the slip moduli.
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4 Materials and method

This chapter presents the concept and construction of the timber-concrete com-
posite beam tested in this thesis. Specifications of the materials are given, as
well as a detailed description of the assembly of the beam. The chapter also
includes a presentation of the test program and the numerical models used for
comparison.

4.1 Materials

4.1.1 Glulam

The joists are made of glue laminated members in the Nordic strength class
CE L40C, which has recently replaced GL32C. The strength and behaviour are
approximately equivalent (Lukaszewska, 2009). The material parameters are
presented in table 4.1 (Moelven, 2012).

Bending Jmk 30.8 N/mm?
. feo.k 17.6 N/mm?
Tension Trook 0.4 N/mm?

. fc,O,k’ 25.4 N/mm2
Compression Fooon 5.7 N/mm?
Shear fok 3.5 N/mm?

Eo.mean | 13000 N/mm?
Modulus of elasticity | Eo, o5 10500 N/mm?
EQO,mean 410 N/mmz
Shear modulus Go.mean | 760 N/mm?
. Dk 400 kg/m3
Density v~ 170 kg /m?

Table 4.1: Properties of CE L40C
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Figure 4.1: The expanded metal. The sticks welded to the lower part are to
maintain a gap between the mesh and the surface of the concrete. The long and
short way are marked on the figure.

4.1.2 Fibre reinforced concrete

The concrete used for the composite beam is classified B30, reinforced with steel
fibres with a density of 40 kg/m?3. The fibres are 40 mm long with a hooked
end. To reduce shrinkage the mixture Mapecure SRA was added, in addition to
a superplasticizer to reduce water in the concrete. The strength properties of
the concrete was tested and is described in chapter 5. When dimensioning the
beam, properties for B30 concrete from Eurocode 2 (Standard Norge, 2008b)
was assumed. In the numerical analyses a modulus of elasticity £ = 30000
N/mm? and a density of p = 2400 kg/m?® are used.

4.1.3 Steel mesh

As a shear connector a steel mesh was chosen. Similar connectors has been used
in previous studies showing a high grade of composite action. The mesh used
as a shear connector in this thesis is an expanded metal, see fig 4.1, of type
5235 steel. The long way of the mesh is 38 mm and the short way 12 mm. The
strand width and thickness is 3,1 mm and 1,6 mm, respectively. The thickness
of the steel mesh itself varies, but is taken as approximately 3 mm.

4.1.4 Epoxy

The adhesive used to connect the steel mesh to the timber and the concrete
slabs to each other is a two component fast curing epoxy glue, Mapepoxy L.
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Technical specifications are found in the table 4.2 (Mapei, 2012). The numbers
are based on a curing temperature of 20° C and a curing time of 7 days. The
opening time of the glue is from the producer sat as 1 hour. The epoxy glue is
initially meant as a cohesion between concrete or between concrete and steel,
but was recommended also for the cohesion between timber and steel.

Compressive strength 110 N/mm?
Tensile strength 20 N/mm?
Flexural tensile strength | 40 N/mm?
Modulus of elasticity 17500 N/mm?
Density 2.0 g/cm3

Table 4.2: Properties of the epoxy glue

4.2 Construction of the composite beam

The type of timber-concrete composite system tested in this thesis consists of
several fibre reinforced concrete slabs with a steel mesh imbedded. The steel
mesh, which works as a shear connector, is glued into a slot in a glulam joist
with an epoxy adhesive. The concrete slabs are glued to each other to obtain a
continuous stress distribution along the beam, also with an epoxy adhesive.

A full-scale model of a composite floor strip was constructed with two glulam
joists in center distance 600 mm and a concrete deck. The floor strip is from here
referred to as the composite beam. In addition, two asymmetrical specimens
were made for the shear test. The beam was dimensioned so it would fulfill the
requirements of the respective Eurocodes (Standard Norge). It was intended
a 8 m span, which is usually found in commercial buildings. It was therefore
assumed a design load in the category of congregational area from Eurocode
1 (Standard Norge, 2008a). The glulam joists were designed for service class
1 in Eurocode 5. Since there was no knowledge of the stiffness of the shear
connector a stiffness of k = 415 kN/mm was assumed in the Serviceability
Limit State (SLS), based on previous research. To ensure a frequency above
the critical limit of 8 Hz defined by Eurocode 5, a frequency criteria originally
proposed by Hu and Chui (2004) was used:

w < (%)2277% (4.1)
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Figure 4.2: The full-scale beam above (a) and the shear test specimen underneath

(b)

where w is the deflection from 1 kN load and f is the fundamental frequency
in Hz. Eq. 4.1 is based on people’s perception of vibrations in correlation to
deflection and natural frequency. For a simply supported beam the deflection
and frequency can be written like this:

, [EI
3 w T ml4

_ _w o Vit 49

v=rgpr ™ J=3; o (4.2)

The dimensions of the two models can be seen in fig 4.2. Details on the dimen-
sioning are found in the appendix.

The casting of the concrete took place March 18" 2013 at the Materials Tech-
nology Laboratory at NTNU. 19 concrete elements 1200 x 50 x 500 mm? were
made, where 16 were for the full-scale model, 2 for the shear test models and
one for testing of the concrete properties. In addition six cylinders and one
standard beam were cast at the same time as the elements, also for testing of

the concrete properties. The steel mesh was cut in sections of 100 x 500 mm?.
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(a) (b)

Figure 4.4: Cracking in the concrete slabs (a) right after removing formwork
and (b) when mounting the slabs to the glulam

Two metal sticks were welded to the steel meshes to obtain a cover of 10 mm to
the concrete surface, as seen in fig 4.1. The steel meshes were then placed in the
formwork so 40 mm would be embedded into the concrete and the remaining 60
mm glued to the glulam beam. There were two steel meshes in every element,
with a center distance of 600 mm. Fig 4.3 shows the set-up of the steel mesh
in the formwork. The formwork was removed two days after casting, and the
concrete slabs put aside to cure for 28 days. When moving the concrete slabs a
weak area was discovered around the embedded steel mesh, when one concrete
slab cracked in this area due to lifting in the short ends. Fig 4.4a shows the
failure pattern.
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Figure 4.5: The slot routed in the glulam

The 16 concrete elements were all connected to two 90 x 450 x 8500 mm?

glulam joists to make the full-scale model. It was left 250 mm on each side of
the joists without any concrete deck. To mount the concrete elements to the
glulam beams, a 6 mm wide and 65 mm deep slot was routed in the members,
see fig 4.5. The slot was filled to half its depth with epoxy before inserting the
embedded steel meshes into the slot. For the full-scale model, the epoxy was
also poured in between the concrete elements to glue them together. Protection
was placed underneath the joints to prevent the epoxy of leaking through. The
composite beam was placed on a small bulged molding on each side, so it could
be assumed as simply supported. The span between the supports were 8 m.
The finished composite beam can bee seen in figure 4.6.

One problem occurred during the assembling of the full-scale model. When
mounting the concrete elements to the glulam joists, some elements were pounded
with a hammer to place them as close as possible to the next element. This
caused two elements to crack on the surface, in the area where the shear con-
nector was placed, see fig 4.4b. This supported the suspicion of the area around
the steel mesh being weaker than the rest of the concrete element. However, it
was assumed it would not affect the overall performance of the beam.

As one element cracked when the formwork was removed, there was only one
element left for the shear test specimens. This element was sawn in two (600 x
50 x 500 mm?) and each part was connected to a 90 x 400 x 500 mm? glulam
member. The assembly was like explained for the composite beam. The shear
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Figure 4.6: The composite beam

Figure 4.7: The shear test specimen

test specimen is shown in figure 4.7.

4.3 Shear test

A shear test was performed to determine the load-displacement relationship and
the slip modulus of the shear connector. Two different asymmetrical specimens
were tested. Each consisted of a 600 x 50 x 500 mm? concrete slab connected
to a 90 x 400 x 500 mm? glulam member. Figure 4.8 shows the test set-up.
The specimen is placed with the concrete slab on a support. The timber is only
supported on the side to a steel beam with a sheet of Teflon placed between the
steel and the timber to minimize friction. Load was applied according to EN
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Figure 4.9: The modal hammer (a), and the accelerometer (b)

26891, using a 100 kN hydraulic jack. Data was recorded with a frequency of 5
Hz,i.e. every 0.2 s. Two Linear Variable Differential Transformers (LVDT) were
placed on each side of the glulam element to measure the relative slip between
the concrete slab and the glulam element.

A disadvantage of the asymmetrical shear test is a slightly overestimation of the
shear strength. This is due to the eccentricity of the axial force which creates an
overturning moment. This again, will result in a compression force between the
timber and concrete and thus increase the friction between them (Lukaszewska,
2009). It therefore has to be assumed that the slip modulus derived from this
test is higher than the actual slip modulus.
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4.4 Dynamic test

A dynamic test was performed on the full-scale model. To measure the dynamic
properties of the structure a hammer test was used. This is a quick and easy way
to find eigenfrequencies and damping. It requires a modal hammer (fig 4.9a) and
an accelerometer (fig 4.9b). By hitting the structure with the hammer, a wide
frequency range is initiated. The method used for this test is called the roving
hammer method. It involves placing the accelerometer at one spot, and then
apply the hammer force on several points along the beam. The data is recorded
and processed via the analytical software LabVIEW. The modal parameters
frequency, damping and mode shapes are obtained from a Frequency Response
Function (FRF). The FRF H(w) has the following relationship to the input
signal spectrum from the hammer F(w) and the output signal spectrum from
the accelerometer X(w):

H(w) = ;(((:})) (4.3)

There is one FRF created for every hammer point, which together form a matrix
H; ;. The signals were curve fitted to fit the following expression:

H;;= Z‘: o (Withy)r (4.4)

% —w? + 2j£rwrw]

where (¢;1;), are the residues, w, is the modal frequency, &, is the modal
damping ratio, r is the mode number and n the total number of nodes. For
the test carried out in this thesis 30 hammer points were used. 3 along the
width of the beam (i=3), placed 300 mm apart, and 10 along the length of the
beam (j=10), placed 800 mm apart. The outermost rows of points are placed
above the glulam joists, see fig 4.10. Three tests were performed, where the
accelerometer was placed on each of the glulam joists and in the middle of the
concrete span, respectively. The glulam joists are from here referred to as Beam
N and Beam S, where Beam N is the joist placed towards north and Beam S the
joist placed towards south. The accelerometer was placed 660 mm from center
of the span to avoid being where one of the mode shape’s amplitude was zero.
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Figure 4.10: Placing of the points for hammer testing along the concrete deck
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Figure 4.11: The three load cases with placements of the LVDTs
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Figure 4.12: The weights applied in load case 3

4.5 Deflection test

A 1 kN load was applied in different load cases at the full-scale beam to measure
the deflection at mid-span. Three load cases were examined, see fig 4.11: Load
case 1 where the load is uniformly distributed along the width of the beam
with a spreader. Load case 2 where the load is placed upon Beam N. And
load case 3 where the load was placed in the middle of the concrete span. The
load was applied mid-span of the composite beam in all load cases. The load
consisted of two weights with a mass of 50.0 kg and 50.1 kg, which comes to
0,982 kN. Figure 4.12 shows the appearance of the weights. Two LVDTs were
placed underneath each of the glulam joists to measure the deflection, and a
third LVDT was placed underneath mid-span of the concrete for load case 3.

4.6 Numerical analysis

Three finite element (FE) models were created in ABAQUS to examine the
performance of the timber-concrete composite system. ABAQUS is a popular
computer software for finite element analysis. The first model illustrates the
shear test and was used to estimate the stiffness of the shear connection. The
second model illustrates the full-scale beam and was used to look at vibrations
and deflection of the system. The third was an extension of the full-scale beam
to a whole floor to see how that would affect the dynamic properties.
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Figure 4.13: FE model for shear testing (a) and mesh (b)

4.6.1 FE model for shear testing

The model used for shear testing consists of a timber beam (50 x 50 x 400
mm?) with a 6 mm wide and 62 mm deep slot. The slot contains a 2 mm thick
layer of epoxy along all sides and then a 2 mm wide material imitating the steel
mesh. The shear material is embedded in a concrete beam (50 x 50 x 400 mm?).
Figure 4.13a shows the FE model. C3D8, 8 node linear brick elements, were
used for all parts.

All materials were modelled as elastic materials. The glulam was in addition
modelled as a transversely isotropic material to resemble the difference between
behaviour parallel to grain and normal to grain. In order for ABAQUS to model
a non-isotropic material the engineering constants have to be transformed into
stiffness parameters. The procedure for doing this is taken from Daniel and Ishai
(2006) and the calculations can be found in the appendix. The parameters used
for the materials are the ones listed in section 4.1

The aim for the shear test model was to get an indication of what would be the
weakest element of the shear connection. It was also to imitate the deforma-
tions found in the shear test by changing the modulus of elasticity of the shear
material.
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Figure 4.14: FE model for dynamic testing

4.6.2 Full scale FE model

The model of the full scale beam consists 16 concrete slabs (1200 x 50 x 500
mm?) on top of two timber joists (90 x 450 x 8000 mm?). The concrete slabs
were connected to the joists by a 5 x 5 x 8000 mm? shear material simplifying
the real connection with a steel mesh and epoxy glue. The shear material was
given the same properties as the shear material in the shear test FE model. The
epoxy layer between the concrete elements were ignored, as analyses done in a
smaller scale showed it would have little effect on the frequencies. The full-scale
FE model can be seen in fig 4.14. As in the shear test FE model all materials
were elastic and the timber transversely isotropic. S4, 4 node shell elements,
were used for all parts. A refined mesh was made near the supports to avoid
large deformations in the elements.

A frequency analysis was performed and compared to the frequencies found
from the dynamic impact test. A general static analysis was performed with
the three load cases from section 4.5, and deflections were compared with the
ones found in the deflection test.
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Figure 4.15: FE model of floor

4.6.3 FE model of floor

The full-scale beam model was extended to a 6 m wide floor with 10 glulam
joists, still with a span length of 8 m and a center distance between the joists
of 600 mm. It was used a continuous concrete slab to simplify the model.
The glulam joists in the floor was simply supported, while the free ends of the
concrete were constrained to move in the y-direction. Figure 4.15 shows the FE
model of the floor. A frequency analysis was carried out and compared to the
results from the testing of the full-scale beam.
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5 Fibre reinforced concrete.
Testing and results of standard
beams

6 cylinders, 1 standard beam and 3 plates were cast at the same time as the
concrete elements. Tests were done to determine the flexural tensile strength
and the compressive strength of the concrete. The set-up of the tests and results
are presented in this chapter, together with an evaluation of the test results
compared to theoretical values.

5.1 Fibre reinforced concrete

Concrete has a low tensile strength, and is in most cases in need of reinforce-
ment to take the tensile forces when the concrete cracks. Fibres present an
option to conventional reinforcement in cases where only minimal reinforcement
is required, or as a supplement to conventional reinforcement. Adding fibres
increases the residual strength of the structure (Sandbakk, 2011).

5.2 Method

5.2.1 Cylinder test

Six cylinders were cast at the same time as the concrete elements. A compressive
strength test was performed to determine the compressive strength of the fibre
reinforced concrete. Dimensions of the cylinders and testing procedures were in
accordance with the NS-EN 12390 series (Standard Norge, 2005). All specimens
were approximately 100 mm in diameter and 200 mm in height. They were
loaded with a compression force until failure. In addition the cylinders were
weighed both in air and water to find the weight and volume. The results from
this is found in the appendix.
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Figure 5.1: Set-up for standard beam (from NS-EN 14651)

5.2.2 Beam test

One standard beam and one concrete element (50 x 500 x 1200 mm?®) were
cast at the same time as the concrete elements. Beam tests were performed to
find the residual tensile strength of the fibre reinforced concrete. The standard
beam was tested in accordance with NS-EN 14651 (Standard Norge, 2012). The
concrete element was sawn into three plates (50 x 150 x 550 mm?) and tested
in accordance with Norwegian Sawn Beam Test (NSBT). The two tests are
described below.

NS-EN 14651

The set-up for testing the standard beam was as described in NS-EN 14651.
A 5 mm notch was sawn in the beam and a center load was applied mid-span
distributed over the whole width of the specimen. Fig 5.1 shows the set-up. A
LVDT was placed on each side of the specimen to measure the deflection. To find
the residual flexural tensile strength the Crack Mouth Opening Displacement
(CMOD) is needed. This is found through the relationship:

§ = 0.85CMOD + 0.04 (5.1)

where 0 is the deflection. The residual flexural tensile strength is then:
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3F;1

frj =
2612,

(5.2)

where fr ; is the residual flexural tensile strength and F}; the load corresponding
with CMOD = CMOD;. lis the span length, b the width of the specimen and
hsp is the distance between the tip of the notch and the top of the specimen.
Figure 5.2 shows the relationship between CMOD; and F;. Characteristic
residual flexural tensile strength is then taken as

Irrj = frj — kS (5.3)

where S is the standard deviation of the test series and k = 1.7 when the test set-
up is as described in NS-EN 14651. The characteristic residual tensile strength
Stk res,2,5 is calculated from the characteristic residual flexural tensile strength
at 2.5 mm crack width:

frkres,2,5 = 0.37fre,3 (5.4)
The limit of proportionality (LOP) can be found by the following expression:

3Fl

fcfz.f,L = 2bh2 (55)
sp
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Figure 5.4: Crack offset for the NSBT method (Sandbakk, 2011)

where Fy, is the load corresponding to the LOP. It is the highest load value
within the first 0.05 mm. The LOP is defined as the stress at the tip of the
notch.

Norwegian Sawn Beam Test

For the plates, a Norwegian Sawn Beam Test (NSBT) was performed instead of
the beam test from NS-EN 14651. This was due to the fact that the plates were
sawn and were relatively thin. The NSBT is carried out as a four-point test with
two loads distributed over the whole width of the specimen. See figure 5.3 for
the set-up. There is no notch sawn in the plates. This means the crack in the
specimen will most likely occur other places than at mid-span. It is therefore
necessary to look at the crack offset and calculate the crack rotations. The
following procedure is from Sandbakk (2011) and shows how to derive CMOD
with crack offset:
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where ¢; are the crack rotations, d,, is the measured deflection, d,,4, is the
deflection at the crack and z is the crack offset, as seen in fig 5.4. Figure 5.5
shows the relationship between ¢3, § and CMOD. This can be expressed as:

hoiQy

CMOD = (ho:l:Qy)(bg =4 I — o

Om (5.9)

where hg is the prescribed height of the beam, 42y is the deviation from the
prescribed hg and 6, the measured deflection. By knowing the CMOD the

residual flexural tensile strength can be found by following the procedure for
NS-EN 14651.
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Specimen | Maximum load | Compressive
at failure F,,,, | strength fek
[kN] [N/mm?]

Cylinder 1 | 314.22 40.82

Cylinder 2 | 315.91 41.04

Cylinder 3 | 312.74 40.63

Cylinder 4 | 323.18 41.98

Cylinder 5 | 295.79 39.21

Cylinder 6 | 327.47 42.54

Average 314.89 41.04

Table 5.1: Results from cylinder testing

5.3 Results

5.3.1 Cylinder test

Tests were carried out in the Materials Technology Laboratory at NTNU May
13th 2013, 56 days after casting. The cylinders were tested with a loading rate of
0.5 N/mm?s. Table 5.1 shows the compressive strengths f.; and maximum load
at failure F,,,, for the six specimens. Average compressive strength is 41.04
N/mm?.

5.3.2 Beam test

Tests were carried out in the Materials Technology Laboratory at NTNU April
248 (for the beam) and May 6 2013 (for the plates) 37 and 49 days after cast-
ing, respectively. Dimensions of the beam and plates are found in the appendix.

Plots of the flexural tensile stress-CMOD relationship are shown in figure 5.6 and
5.7. The flexural tensile strength fr s at CMOD3 = 2.5 mm is the value of in-
terest to find the residual tensile strength f res2,5. Flexural tensile strengths
at relevant CMODs are shown in table 5.2. It was chosen not to use charac-
teristic flexural tensile strength to calculate the residual tensile strength due
to the big deviation in the test results and the low number of specimens. The
average residual flexural tensile strength fr 3 was found to be 2.13 N/mm? and
the average residual tensile strength frix res 2,5 of 0.789 N/mrnz. Average values
are for the plates only.
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Fr, fcft,L fr1 fr2 fr3 frikres2,5
Specimen | [kN] | [N/mm?| | [N/mm?] | [N/mm?] | [N/mm?| | [N/mm?|
Beam 1 14.65 | 5.04 4.21 4.62 4.75 1.758
Plate 1 4.61 7.26 1.57 1.04 0.98 0.362
Plate 2 4.13 6.04 2.64 1.95 1.67 0.618
Plate 3 4.33 7.26 5.08 4.03 3.74 1.385
Average | 4.36 | 6.85 3.10 2.34 2.13 0.789

Table 5.2: Results from beam testing

5.4 Discussion

5.4.1 Cylinder Test

The average compressive strength of the concrete cylinders is 41 N/mm?. This
is higher than the value 30 N/mm? which is from Eurocode 2 and used in design
calculations. However, this value is conservative. In addition the fibre reinforced
concrete is known to have a higher compressive strength than regular concrete,
as the fibres help increase the compressive strength. There is no pronounced
difference between the highest and lowest value obtained from the test.

5.4.2 Beam test

The residual tensile strength fr res,2,5 for the standard beam is 1.58 N/mm?,
while the average for the plates is 0.79 N/mm?. However, there are great dif-
ferences between the three plates. Plate 1 and 2 have quite low residual tensile
strengths (0.36 and 0.62 N/mm?) while plate 3 has a residual tensile strength
of 1.39 N/mm?. Ideally the residual tensile strength should be the same inde-
pendent of thickness.

The variation in this case can be caused by different reasons. While the standard
beam is tested according to NS-EN 14561, the plates are tested according to
the Norwegian Sawn Beam Test (NSBT). Because of the notch sawn in NS-
EN 14561 the beam is bound to crack in this section. As there is no notch
in the NSBT, the cracking will occur in the weakest section. This often gives
a higher residual tensile strength when using the NS-EN 14561 test compared
to the NSBT. It can also explain the large deviations between the plates, as
the weakest section varies depending on orientation and spreading of the fibres.
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Another reason for the variance is that the higher the testing beam is, the more
likely is it that the fibres sink to the bottom rather than spread throughout the
section. This gives a higher fibre content in the tensile zone, and thus a higher
tensile strength.

Preferably there should have been several standard beams for testing to give
a more comprehensive result. Unfortunately due to lack of concrete during
casting there was only one made. This gives a poor basis for comparison with
the plates, and it is difficult to know if the tensile strength from the beam is a
representative value. Nordbrgden and Weydahl (2012) looked at shear capacity
in fibre reinforced concrete beams. They obtained a residual tensile strength
of 4.0 N/mm? with a fibre content of 80 kg/mm?. It can be assumed that the
residual tensile strength increases proportionally with the amount of fibre by
small amounts. As Nordbrgden and Weydahl describes their value as higher
than expected, the value obtained in this thesis thus is seen as reasonable.
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6 Results

This chapter presents the results from the shear test, the dynamic impact test
and the deflection test

6.1 Shear test

The test was carried out May 23' 2013 at NTNU. Figure 6.1 shows the shear
force-slip relationship of the two specimens tested. Specimen 1 was unloaded at
a higher load than specimen 2 because the estimated maximum load was first
assumed to be 80 kN. This was adjusted when testing specimen 2. The slip
modulus % is in this case the slip modulus for the SLS (the same as kg, defined
by Ceccotti). As all testing was done within SLS no slip modulus was determined
for the ULS. The results from the shear test indicates a ductile behaviour for
the shear connector. Figure 6.1 shows a stiff connection until approximately 20
kN where the connection starts to yield and with a more gradual slope reaches
the ultimate load of 53 kN. The deformations are quite big, with a 9 mm slip
at ultimate load.

The shear force-slip plots are used to find the stiffness of the shear connector,
based on the elastic regions of the curves. This stiffness is further used in
the thesis to explain the behaviour of the timber-concrete composite beam.
Table 6.1 presents the stiffness, ultimate load and the slip at ultimate load for
the 2 specimens.

Specimen | Slip mod- | Ultimate Max slip
ulus k| load Fp. | u[mm]
[kN/mm] [kN]

1 191.88 52.85 9.67

2 239.87 52.83 8.98

Average 215.87 52.8/ 9.83

Table 6.1: Results from shear test; slip moduli and shear strength
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Figure 6.1: Results from shear test

6.2 Dynamic impact test

Tests were carried out at NTNU May 6" 2013. The first five mode shapes
and frequencies are taken into consideration. Table 6.2 shows the mode shapes
found in LabVIEW and a description of the modes.

Table 6.3 shows the natural frequencies f and damping ratios found from the
impact test. Test 1,2 and 3 refers in this case to the three different placements
of the accelerometer during the impact testing. Test 1 is with the accelerometer
placed underneath Beam N, test 2 is with the accelerometer placed underneath
Beam S, while test 3 is with the accelerometer placed in the concrete span. For
mode 3 there are two frequencies listed in the table. This is due to LabVIEW
finding two frequencies with a similar mode shape. For test 3 only mode 1, 3
and 5 were recorded, meaning there are no vibrations within the concrete deck.

The test showed an average frequency of 11.98 Hz in the first mode and an
average damping of 0.858%. It was experienced some difficulties of estimating
the damping ratios through LabVIEW, with different damping ratios depending
on the approach.
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Mode LabVIEW Description

number

Mode 1 1% bending mode,
symmetrical bending
Mode 2 1%¢  bending mode,
asymmetrical bending
Mode 3 284 bending mode,
symmetrical bending
Mode 4 224 bending mode,
asymmetrical bending
Mode 5 3'! symmetrical bend-

ing

Table 6.2: Identified mode shapes
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Mode Test 1 Test 2 Test 3
number | f [Hz| | Damping | f [Hz| | Damping | f [Hz] | Damping

[%] 2] 7]
Mode 1 12.413 | 0.831 12.127 | 0.854 11.397 | 0.970
Mode 2 15.683 | 0.898 15.364 | 0.883 -

29.242 | 0.849 29.027 | 1.028

Mode 3 34.670 | 0.507 34.976 | 0.687 33.435 | 0.578
Mode 4 | 41.886 | 0.989 41.043 | 0.950 -
Mode 5 50.951 | 0.591 50.735 | 0.742 50.855 | 0.895

Table 6.3: Frequencies and damping ratios of the five first modes

Deflection [mml]
Load case | Beamm N | Beam S | Concrete span
1 0.2359 0.2433 -
2 0.3309 0.147 -
3 0.2455 0.2541 0.021

Table 6.4: Deflection at 1 kN load

6.3 Deflection test

The test was carried out at NTNU May 15" 2013. Table 6.4 shows the deflection
of the beam at the three load cases from section 4.5. The deflection of the
concrete span in load case 3 is the net deflection. The test showed a deflection
of about 0.24 mm under a 1 kN load, with beam S having some larger deflections

than beam N. The deflection of the concrete span was 0.021 mm.
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7 Evaluation and comparison of
experimental and numerical
results

In this chapter, the results from the dynamic impact test, the deflection test and
the shear test are evaluated and compared with the results from the analysis done
ABAQUS.

7.1 Shear strength and slip modulus

The type of shear connector used in this thesis was chosen based on previous
research done on similar connections. Both Lukaszewska (2009), Bathon and
Bletz (2006) and Clouston et al. (2005) all got a high slip moduli, high ultimate
load and small relative slip using a glued-in continuous steel mesh as shear
connector. Compared to them, the connector used in this thesis shows a quite
different behaviour. Table 7.1 presents the results from this thesis together
with those of Lukaszewska (2009), Bathon and Bletz (2006) and Clouston et al.
(2005).

Research Slip mod- | Ultimate load | Max slip u
ulus k| Faz [KN] [mm)]
[kN/mm]

Shear test 215.87 52.84 9.33

Lukaszewska (2009) 483.8 81.2 4.0

Clouston et al. (2005) 415.46 111.62 1.44

Bathon and Bletz (2006) | 415 90 1.4

Table 7.1: Comparison of shear test results. Bathon and Bletz’s results are only

approximate
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Figure 7.1: The failure mode of the shear connector

Lukaszewska, Bathon and Graf, and Clouston et al. all characterized the failure
mode as brittle. As seen in table 7.1 the slip moduli is approximately double
of the slip moduli obtained from this thesis. The same applies for the ultimate
load. The deformations are also much smaller for the comparing tests. Fig 7.1
shows the failure of the test specimen. The steel mesh has yielded and then
teared at the line of the concrete. An important thing to notice is that the slot
is not entirely filled with epoxy glue. The gap between the glue and the concrete
is at places up to 15 mm, leaving a big part of the steel mesh exposed. This
is assumed to be the reason for the ductile behaviour. After a certain point
during loading, the steel mesh will collapse sideways and is then only subjected
to tensile forces. The steel strands will tear when the tensile forces get too high.
This coincides well with the shear force-slip relationship shown in figure 6.1.

Precision while gluing is therefore essential for obtaining a high stiffness of the
tested shear connector. However, also other issues could improve its behavior.
The mesh was oriented so that the long way of the mesh was turned vertically.
Estimates showed the mesh would have about three times as high capacity if
the long way of the mesh was turned horizontally. In the case of a small gap
this would not be significant. Only a small part of the mesh would be exposed,
and the forces would come as shear in the steel strands. With a gap as big as
the one discovered in the shear test, the forces will create bending in the mesh
at top and bottom which leads to the collapse. In this case the horizontally
oriented mesh resists much bigger forces. Also, the concrete elements were cast
so the rough surfaces were facing down towards the glulam joists. Irregularities
on the surface caused for some elements a bigger gap between the concrete and
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the glulam. At last it can be discussed if the steel mesh and the fibre reinforced
concrete is a good combination. The events of cracking during the construction
of the composite beam could be due to the fibres not being able to penetrate
the mesh.

The FE model was used to estimate the stiffness of the shear material used as
the connector in the full-scale model. By decreasing the modulus of elasticity in
the shear material to 10000 N/mm? it was possible to obtain the same stiffness
as found through the shear tests. This value was used for the other numerical
models. Numerical analysis showed the failure was most likely to occur in the
steel mesh close to the concrete which proved to correct. However, the FE model
for the shear test is not good for estimating behaviour, as the shear material is
modelled as a plate instead of a grid.

7.2 Dynamic behaviour

According to Eurocode 5 a floor with a natural frequency less than 8 Hz requires
special investigation. Through the tests described in section 4.4 the average
natural frequency of the first mode is 11.98 Hz. The composite beam is thus
regarded as above the critical area for uncomfortable vibrations. The vibration
criteria stated by Hu and Chui (2004) and found in eq. 4.1 is also fulfilled. This
is shown by inserting the natural frequency and the average deflection for load
case 1 from table 6.4. The dimensioning value when designing the beam was
13.94 Hz, i.e. a little over what was found from the hammer impact test.

There is a discussion whether damping found through simple tests have any
relevancy to a full-size floor. Several studies have concluded that furnishing
and non-structural components influence the damping ratio more than the con-
struction itself (Lukaszewska, 2009). There is also a general lack of trust in
measurement methods (Labonnote et al., 2012). Also in this thesis the estima-
tion of damping ratios was found difficult.

Labonnote et al. (2012) did a series of experiments to determine the frequency
and damping ratio of timber beams with different spans and orientation. The
glulam beams used in the research had a cross-section of 88 x 404 mm?, approx-
imately equal to the glulam joists in this thesis. A tendency found was that for
the higher modes and shorter spans the damping ratio was larger. This, how-
ever, was more apparent for facewise oriented beams. Also, Labonnote et al.
(2012) states that the dependence of the damping ratio on the mode number
decreases with an increasing span. E.g., the damping ratios presented in this
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thesis did not show such dependency. Looking at the modes with symmetrical
bending only (mode 1, 3 and 5), there is a decrease in the average damping
ratio from 0.86% to 0.64% between mode 1 and 3. Between mode 3 and 5 the
average damping ratio increases to 0.73%.

As a comparison Lukaszewska (2009) tested two full-scale timber-concrete com-
posite beams with different shear connectors for dynamic properties. The beams
were 4.8 m. The natural frequencies for the first mode were 18.5 and 18.9 Hz,
while they for the second mode were 24.8 and 25.0 Hz. The damping ratios were
7.3% and 7.1% for mode 1 and 6.7% and 7.5% for mode 2. Lukaszewska does
not describe the mode shapes so it is difficult to compare the values, but it is
reasonable to assume that at least the first mode is the same for both tests.

Deam et al. (2008) tested five different timber-concrete composite beams for
frequency and damping. The span of the beams were 6 m. The frequency
varied from 17.1-19.3 Hz, while the damping varied from 1.3-2.3%. Only the
first mode was evaluated.

Comparing these results can only be done indicatively as the natural frequency
is a function of mass, stiffness and length of the span. Equation 4.2 shows that
with a higher mass and longer span the frequency will decrease. This coincides
well if these results are compared with the frequencies of the composite beam
tested in this thesis. With a longer span, the frequency is lower than those found
by Lukaszewska and Deam et al. It may be questioned whether the damping
ratios from Lukaszewska are reasonable, as they are quite high compared to
the damping ratios obtained both in this thesis and by Deam et al. Compared
to the damping ratios found by Deam et al. (2008) the values found through
testing seem reasonable. They are a little lower, but according to Labonnote
et al. (2012) the damping ratio will increase with shorter spans.

To verify the results from the hammer impact test a dynamic analysis was done
in ABAQUS. Table 7.2 shows the mode shapes found through the numerical
analysis and identified as the same mode shapes as in table 6.2. In figure 7.2b
the frequencies from the experimental part are compared with those found from
ABAQUS. "Numerical” are the values found from using the same stiffness as
determined through the experimental tests. "Numerical FCA” are the frequen-
cies found when using an ”infinite” stiffness, i.e. full composite action. The
frequencies from ABAQUS coincide well with those from the impact test. For
the first mode there is a discrepancy of 2.2% between the empirically determined
and modelled frequency, where ABAQUS estimates the frequency to 11.72 Hz.
The numerical model with full composite action shows an increase in frequency
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Mode

number

ABAQUS

Description

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

18t bend-
ing  mode,
symmetrical
bending

1%t bending
mode, asym-
metrical
bending

2nd bend-
ing  mode,
symmetrical
bending

27 hending
mode, asym-
metrical
bending

3'd symmet-
rical bending

Table 7.2: Mode shapes from ABAQUS
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Figure 7.2: Comparison of the empirically determined and modelled frequencies
(a), and comparison of the modelled frequencies for FCA and PCA (b)

mainly in the modes with asymetrical bending. It was discussed if this could
be due to the torsional stiffness in the connection being more affected by the
increase in stiffness than the bending stiffness.

For the second mode there were two frequencies from the testing that could be
identified as belonging to that mode. Both differs from the numerical frequency
of 18.65 Hz. It was not discovered what caused this. Doing an analysis with
different slip moduli in the two glulam joists showed an increase in the frequency
in the second mode, but does not explain the two similar mode shapes.
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Figure 7.3: Deflections during load case 1 (a), load case 2 (b) and load case 3
(c). "Numerical” refers to the analysis done with a stiffness equal to the one
found from the shear test, while "Numerical FCA” refers to the analysis done
with an infinite stiffness.

7.3 Deflection and bending stiffness

The deflections found in section 6.3 are helpful to find the effective bending
stiffness and the grade of composite action of the composite beam. In figure 7.3
the deflections from the test are compared to those found through numerical
analysis in ABAQUS. As seen the empirically determined deflections are similar
to those from ABAQUS. For the numerical analysis done with full composite
action the deflections are about 16% lower.

The biggest discrepancy between the empirically determined and the numerical
values is found in load case 2. ABAQUS estimates a larger deflection for the
glulam joist where the load is applied (Beam N) and a smaller deflection on the
opposite joist (Beam S). The concrete material in ABAQUS does not contain
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any form of reinforcement, therefore the fibre reinforced concrete is most likely
transferring the deflections better than what the concrete does in the numerical
analysis.

Also for the deflection in the concrete span there are some discrepancy. In the
deflection test it was recorded a net deflection of 0.021 mm while it from the
numerical analysis was found a net deflection of 0.016 mm. This is probably
due to the fact that the FE model is not modelled with en epoxy layer between
the concrete elements, but a rigid connection. If comparing to the theoretical
deflection of a single simply supported concrete element, the deflection is 0.026
mm. This means the deflection from the test places itself in between, which is
reasonable.

However, it has to be emphasized that the deflections found in this test are very
small, and that the differences found may as well be caused from inaccuracies
in measuring devices or the FE model.

From the deflections in load case 1 it was possible to calculate the effective
bending stiffness and composite action of the timber-concrete composite beam.
Using equation 3.1 it was found a composite action of 61%. This was compared
to the theoretical composite action using the stiffness derived from the shear
test and Eurocode 5 Annex B, which gave 68% composite action. Both values
are lower than anticipated, primarily due to the low slip modulus of the shear
connector. It must be still be pointed out that a composite action of over 60%
is not bad, and several other type of connectors are less strong (Lukaszewska,
2009).

7.4 Expansion to a full-size floor

A FE model of a full-size floor (8x6 m) was analyzed to see if there was any
pronounced differences in frequencies between the two models. One analysis
was done with the same stiffness as the one found through the shear test, and
one with full composite action. Only the first mode was examined. Figure 7.4
shows the mode shape of the floor. ABAQUS estimated the frequency to 12.92
Hz for the floor with the original stiffness, and 14.86 Hz for the floor with full
composite action. In both cases this was an increase in frequency, from 11.72 Hz
and 11.99 Hz, respectively. This coincides with the statement from Deam et al.
(2008) that the frequency will increase when several units are coupled together.

52



Figure 7.4: First mode of the full-size floor FE model
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8 Conclusions and future research

This chapter presents the conclusions drawn form the work of this thesis, as well
as suggestions for further work

8.1 Conclusions

The aim for this thesis was to look at timber-concrete composite structures in
floors. A system with concrete elements instead of a continuous concrete slab
was developed. The steel mesh chosen as a shear connector was similar to some
used in previous studies, which had proved to be stiff and achieve almost full
composite action. By looking at the dynamic performance of a timber-concrete
composite beam the goal was to say something about the area of application of
this type of structures.

The shear connector proved to be stiff, though not as stiff as the similar connec-
tions. The connector showed large deformations before reaching the ultimate
load. This was mostly due to insufficient gluing, but could partly have been
avoided by turning the direction of the steel mesh. It can also be questioned if
a steel mesh shear connector and fibre reinforced concrete was a good combi-
nation. During the work with the concrete elements it was discovered that the
fibres did not spread well through the steel mesh. If deciding to use the steel
mesh in fibre reinforced concrete special attention and care should be paid to
this area.

Both the fibre reinforced concrete and the epoxy glue performed satisfying ac-
cording to their expectations. The concrete elements tested had a very varying
residual tensile strength, but the average value was within the capacity of the
ULS design load. The epoxy glue proved very strong in the shear tests. However
the gluing between the concrete elements were not tested in any specific way.

The hammer impact test determined the frequency of the first mode as 11.98 Hz,
above the critical area for floor vibrations. Numerical analysis with ABAQUS
gave accurate estimates. It was also shown that increasing the composite ac-
tion would not increase the frequency of the first mode in any pronounced way.
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Looking at the deflections for 1 kN load the effective bending stiffness and the
efficiency of the composite beam was computed. Comparing with the numerical
analysis, the experimental values gave very similar results. The ABAQUS so-
lution for full composite action showed that the deflections could be decreased
with around 16%. The ABAQUS model was deemed adequate for estimating the
performance of the timber-concrete composite beam. Expanding the ABAQUS
model to a full floor gave higher values for the frequency in the first mode.

In general the timber-concrete composite beam showed a satisfactory behaviour
in terms of vibration and stiffness. Some modifications should be done on the
shear connector, and further research is needed. The concept used in this the-
sis proved to be quite applicable. The assembling of the composite beam went
smoothly, and the concrete elements were relatively manageable to move. Pre-
cision is needed in the creation of the concrete elements though, as the shear
connectors have to be placed equally in every element. Also, the use of epoxy
glue requires a fast and unproblematic assembly, and the costs are quite high.
There has to be en evaluation whether increased composite action is worth the
extra costs and effort if this specific floor is to be developed.

8.2 Future research

This thesis has only touched down on some subjects concerning timber-concrete
composite floors. To fully understand the behaviour of a timber-concrete com-
posite floor, several subjects have to be investigated.

All tests done on the full-scale beam, as well as numerical analyses and analytical
calculations, assumed a simply supported beam. In a floor construction this is
not realistic, and it should be investigated how the rotational stiffness at the
supports affects frequency and damping.

Another important issues not followed up in this thesis is the long-term effects
of the floor. Timber is especially prone to creep as an effect of long-term loading
and relative humidity, and it is relevant to look at the time-dependent behaviour
of composite beams when it comes to deflections.

As mentioned above, the performance of the concrete elements was not examined
further. If the concept of concrete elements should be elaborated this must be
done, i.e. with a comparison to the alternative with a continous concrete slab.
It is also necessary to find a way to connect the concrete elements to each other
in the transverse direction.
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Appendix A

Calculations of composite beam, EC5 Annex B

600
50
450
—
90

Method A

Example Method A

Concrete

Width

Height

Area

Moment of inertia
Modulus of elasticity
Density

Glulam

Width

Height

Area,

Moment of inertia
Modulus of elasticity
Density

1200 1200
| T . 50
— 450
H J—
90 180
Method B
b1 = 600 mm

hi1 = 50 mm

A; = 30000 mm?

I, = 6.25¢6 mm*
Ey = 30000 N/mm”®
p1 = 2400 kg/m®

by = 90 mm

ho = 450 mm

As = 40500 mm?

I, = 6.83e8 mm*
B, = 13000 N/mm?
p2 = 470 kg/m®
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Load

Self weight per m
Design load

Total load SLS
Design moment
Design shear force

Shear stiffness ULS
Spacing
Shear coefficients

)

a
a2
ai

Efficient bending stiffness

/

Stresses

Normal stresses concrete

’

Compression strength concrete
Tensile strength concrete

Normal stresses glulam

’

Combined bending and tension criteria

!/

Maximum shear stress

G = 9.81 % (A1p1 + A2p2)/1000% kN/m = 0.865 kN/m

q=2.4kN/m
QSLS =3.27 kN/m
M = 26.1 kNm

V =26.1 kN

k =415 kN/mm

s = 500mm

Y1 = []. + 7T2E1A1/(k12))]71 = 0.845
Y2 = 1.0

a = h1/2+h2/2 = 250 mm

a9 = ’71E1A1(h1 + h2)/[2(’ylE1A1 + '}/QEQAQ)} = 153.4 mm
a1 =a—as = 96.6 mm

(El)ey = Erlh + 11E1Arad + Eoly + 2By Azal3
= 2.93¢13 N/mm”

o1 =mnE1aiM/(EI)cs = 3.4 MPa

T = 0.5E1h M/(ET)e; = 1.0 MPa

Oc1 =01+ 0,1 = 4.5 MPa < feq OK

o110 = 0m1 — 01 = —2.4 MPa < fe4.0,05 OK

oy =2 Esa1 M/(EI)es = 2.5 MPa
Om,2 = O.5E2h2M/(E[)€f = 3.7 MPa

0'2/(khft0d) + U77L,2/(khfmd)
=0.37 < 1.0 OK

T2, maz = O.5E2h§V/(EI)ef = 0.83 MPa < fud OK
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Appendix B

Translation to stiffness parameters for a transversely
isotropic material
The following procedure is taken from Daniel and Ishai (2006), and show the

derivation of the stiffness parameters used in ABAQUS. The material parame-
ters used for glulam CE 140C:

E, Ey Vyz | Vez | Vay Gzy

13000 | 410 | 0.6 | 0.6 | 0.6 | 760

The stiffness parameters are related to stress and strains through the following
relationship:

[o] = [C][¢]

where [C] is the matrix containing the stiffness parameters. For a transversely
isotropic material the matrix looks like this:

M= Cra Coz Ca 0 0 0
=10 0 0 (Cw-0Cw)/2 0 o0
0 0 0 0 Css O

0 0 0 0 0 Css

where the stiffnesses are related to the engineering constants in the following
way:
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1 — 193139

C fr—
R >N W
1 — 3031
Cop = ———
27 B EsA
Chy — Vo1 + V3123 _ 2 + V13V32
12 FoEsA ELE3A
o — V3g + V12V31 _ V23 + Vo113
23 EoF3A YN
055 = Gacy

The answers are obtained from the following MATLAB script:

Ex=13000;
Ey=410;
Ez=Ey;

vxz=0.6;
vxy=0.6;
vzy=0.6;
Gxz=760;
Gxy=Gxz;

vyx=Ey*vxy/Ex
vzx=Ez*vxz/Ex
vyz=Ey*vzy/Ez

Delta=[1 -vzx -vyx; -vxz 1 -vyz; -vxy -vzy 1];
d=1/ (Ex*Ez*Ey) *det (Delta) ;
Cl1=(1-vzy*vyz)/ (Ez*Ey*d) ;
C22=(1-vxy*vyx)/ (Ex*Ey*d) ;

C12=(vxz+vxy*vyz) / (Ex*xEy*d) ;
C13 = C12;
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C33 = C22;
C23=(vzy+vzx*vxy)/ (Ex*Ez*d) ;
C44=(C22-C23)/2;

C55=Gxy;

C66 = Cb5;

Cc=[C11 C12 C13 0 0 O;
C12 C22 C23 0 0 0;
C13 C23 C33 0 0 O;
000 C44 0 O;

0000 Cé6 0;
0000 0 C55]
C =
1.0e+04 *
1.3782 0.0652 0.0652 0
0.0652 0.0671 0.0415 0
0.0652 0.0415 0.0671 0
0 0 0 0.0128
0 0 0 0
0 0 0 0
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The values used in ABAQUS:

Di1111

13782

D1122

652

D2222

671

D1133

652

D2233

415

D3333

671

D1212

760

D1313

760

D2323

128
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Appendix C

Density of the fibre reinforced concrete and results
from the beam test

Density of concrete

Specimen | Dry weight [g] | Volume [cm?] | Density p [kg/m?]
Cylinder 1 | 3940.9 1525.6 2583.2
Cylinder 2 | 3942.0 1540.1 2559.6
Cylinder 3 | 3952.9 1534.9 2575.4
Cylinder 4 | 3941.3 1537.1 2564.1
Cylinder 5 | 3982.5 1540.6 2585.0
Cylinder 6 | 3996.7 1557.9 2565.4
Average 3959.4 1539.4 2572.1

Results from beam test

Beam 1:

Av. Length [mm] 500.0

Av. Width [mm] 149.0

Av. Height [mm] 121.0

& [mm] CMOD _j [mm] |F_j [kN] T R,j [N/mm~2]
0.4615 0.5 12.24 4.21
1.2705 1.5 13.45 4.62
2.1700 2.5 13.83 4.75
3.0200 3.5 14.16 4.87
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Plate 1:

% [mm] 5

Av. Length [mm] 450

Av. Width [mm] 147

Av. Height [mm] 54

& [mm] CMOD_j [mm] |F_j [kN] f_R,j [N/mm~2]
1.017 0.009 0.5 0.989 1.56
3.059 0.028 1.5 0.660 1.04
5.096 0.046 2.5 0.622 0.98

Plate 2:

X [mm] 66.5

Av. Length [mm] 450

Av. Width [mm] 55.25

Av. Height [mm] 151.25

& [mm] CMOD_j[mm] [F_j[kN] f R,j [N/mm~n2]
0.717 0.009 0.5 1.808 2.64
2.155 0.027 1.5 1.331 1.95
3.586 0.045 2.5 1.143 1.67
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Plate 3:

* [mm] 33.5

Av. Length [mm)] 450

Av. Width [mm] 52.5

Av. Height [mm] 146

& [mm] P 3 CMOD_j [mm] |F_j[knN] f_R,j [N/mm~2]
0.912 0.010 0.5 3.027 5.08
2.738 0.029 1.5 2.404 4.03
4,495 0.047 2.5 2.232 3.74
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Appendix D

Results from numerical analyses

ABAQUS refers to the analyses done with the shear stiffness obtained in the
shear test, ABAQUS FCA refers to the analyses done with an "infinite” stiffness.

Frequency analysis

ABAQUS ABAQUS FCA
Model 11.719 11.990]
Mode 2 18.64 8] 37.107|
Mode 3 34.261] 34.850]
Mode4 39.098] 51.250
Mode 5 51.170 51.890

All values in Hz.

Deflection analysis

ABAQUS ABAQUS FCA
Beam N Beam 5 Concrete span  |Beam N Beam$5 Concrete span
Load casel 0.2393 0.2393 0.2039 0.2039
Load case 2 0.3457 0.1253 0.2938 0.1080
Load case 3 0.2383 0.2383 0.0162] 0.2014 0.2014 0.016

All values in mm.
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