
Effects of Climate on Chick Growth in the
Black-legged Kittiwake (Rissa tridactyla)

Rakel Jansen Alvestad

MSc in Biology

Supervisor: Claus Bech, IBI
Co-supervisor: Svein Håkon Lorentsen, NINA

Department of Biology

Submission date: December 2015

Norwegian University of Science and Technology



 



	 I	

PREFACE 

This master's thesis has been written at the Department of Biology at the Norwegian 

University of Science and Technology (NTNU) in collaboration with the Norwegian 

Institute for Nature Research (NINA).  

 

To my supervisors Svein-Håkon and Claus, thank you for sharing your knowledge, for 

your guidance, and for all the invaluable feedback throughout the process of writing 

this thesis. And to Signe, thank you for all the help with the data and for functioning as a 

co-supervisor, especially during the last months. I also want to thank Rob Barrett for 

analysing the diet samples, and also for teaching me so much about seabirds through all 

his work. 

 

I've spent four summers in the field together with some great people. I want to extend 

my biggest thanks to Magdalene; thank you for everything you’ve taught me, all of the 

laughs, the loud singing, and all the Anda cookies. Also to Vegard, it's been so much fun 

having you there every year. To my “field family”, Kyrre, Ingrid and Anne, whom always 

provided a safe haven for us on Stø, thank you.  

 

This thesis would never have seen the light of day without the statistical insight 

provided by my friends Friederike, Bart, Christoffer, Torgeir and Knut Andreas. Thank 

you guys so much.  

  

To all my friends: thank you for proof reading, for all the fun distractions, for always 

keeping my spirits up, and for being the amazing people you are. Ingrid, thank you for 

being the best roommate I could wish for. Didrik, Sophie, my parents, and all the rest of 

my family: thank you for taking interest in my work, the progress, and for all your love 

and encouragement.  

 

Trondheim, December 2015  

Rakel Jansen Alvestad 

 



	 II	

  



	 III	

 

ABSTRACT  

Seabirds are declining worldwide as a result of anthropogenic influences, primarily 

through climate change affecting the food availability. One of the declining species is 

the black-legged kittiwake (Rissa tridactyla), whose breeding populations in Norway 

have declined by 60-80 % since the 1980’s.  

Chick growth is a good indicator of the environmental conditions as it reflects food 

availability during the rearing period, and affects post-fledging survival and population 

recruitment. The present study investigated the impact of various climatic variables on 

the growth rate of kittiwake chicks. This was done by using data on individual chick 

growth rates obtained during the breeding seasons of 2007 through 2015 from the 

island Anda, in northern Norway. The growth of 179 kittiwake chicks was assessed 

against the North Atlantic Oscillation winter index (NAOw), sea-surface temperatures of 

the pre-breeding and breeding season, precipitation, wind, and air temperature using a 

non-linear mixed effects model. Precipitation and NAOw were both shown to negatively 

affect the growth rate of the chicks. Precipitation presumably affects chick growth rates 

directly through increasing their energy budgets. The NAOw is assumed to affect chick 

growth through food availability, although no significant results were found between 

diets and the NAOw index.  

As chick growth is likely to affect post-fledging survival, increased knowledge on which 

climatic parameters affect the growth, and to what extent, is useful for distinguishing 

the effects of climate from other factors influencing the populations. This is important 

in order to direct management efforts towards all factors influencing the population 

development. 
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SAMANDRAG 

Det er observert ein global nedgang i sjøfuglbestandar grunna menneskeleg påverknad, 

då i all hovudsak gjennom klimaendringane si verknad på tilgangen til mat. Ein av dei 

minskande artane er Krykkja (Rissa tridactyla), som har ein hekkande bestand i Noreg 

som har hatt ein nedgang på 60-80 % sidan 1980-talet. 

Ungevekst er ein god indikator på miljøforholda då det speglar tilgangen på mat, og 

påverkar overlevnaden til ungane etter at dei forlét reiret og slik seinare rekruttering til 

bestanden. Denne studia undersøkte verknaden av ulike klimavariablar på vekstraten 

hjå Krykkje-ungar. Dette vart gjort ved å nytte data på individuelle vekstratar frå 

Krykkje-ungar, samla inn i løpet av hekkesesongane i 2007 til og med 2015 på øya Anda 

i Vesterålen, Noreg. Veksten til 179 ungar vart testa mot NAO vinter indeksen (NAOw), 

havoverflatetemperaturar før- og under hekkesesongen, nedbør, vind og 

lufttemperatur ved å nytte ein ikkje-lineær «mixed effects» modell. Nedbør og NAOw 

viste båe negative effektar på vekstraten til ungane. Nedbør har truleg ein direkte 

negativ effekt på vekstratane ved at det aukar energibruken deira. NAOw påverkar 

truleg veksten indirekte igjennom å påverke tilgangen på mat, sjølv om ingen 

signifikante resultat vart funne mellom gjennomsnittlege diettverdiar og NAOw-

indeksen. 

Då ungevekst har noko å seie for overlevnaden etter at ungane forlét reiret vil auka 

kunnskap om kva klimaparametere som påverkar veksten, og i kva omfang, vera nyttig 

for å skilje effektane av klima frå andre faktorar som påverkar bestandane. Dette er 

viktig for å kunne rette forvaltningsinnsats mot faktorane som påvirker 

bestandsutviklinga.  
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1 INTRODUCTION 

1.1. Background 

The marine environment is changing due to anthropogenic influences such as over-

harvesting, pollution, habitat modifications, and global climate change (e.g. Halpern et al. 

2008, Stocker et al. 2013). In the North Atlantic many seabird species have experienced large 

reductions in population size and breeding success during the last decades. This most likely 

results from reduced prey abundance, as a consequence of climate change and overfishing 

(e.g. Frederiksen et al. 2004, 2007, Barrett et al. 2006).  

In seabirds, the effect of climate has also been demonstrated for a number of life-history 

parameters such as timing of breeding (Moe et al. 2009), breeding-success (Golet et al. 2000, 

Moe et al. 2009), chick diet (Romano et al. 2006, Hatch 2013), chick growth (Vincenzi & 

Mangel 2013), and adult survival (Kitaysky et al. 2006, Sandvik et al. 2012, Vincenzi & Mangel 

2013). 

 

1.2 Cl imate 

In the Northern Hemisphere, seabird responses to climate are commonly described using 

climate proxies such as sea-surface temperature (SST), wind, precipitation or air temperature, 

or a combination of these partly expressed in indices like the North Atlantic Oscillation (NAO) 

(e.g. Moe et al. 2009, Bustnes et al. 2013, Breton & Diamond 2014, Hovinen et al. 2014, but 

see Mesquita et al. 2015).  

The NAO refers to a redistribution of atmospheric air masses between the Arctic and the 

subtropical Atlantic and is one of the most prominent and recurrent patterns of variation in 

atmospheric circulation, particularly during winter. Monthly NAO indices are based on the 

difference in normalized sea-level pressure between Lisbon, Portugal and 

Stykkisholmur/Reykjavik, Iceland (Hurrell et al. 2003). The NAO index has been shown to 

affect terrestrial vegetation (Post et al. 2001), herbivores and carnivores (Post et al. 1997, 

Stenseth et al. 1999), and marine life and fish stocks (Stenseth et al. 2004, Sandvik et al. 2005, 

2012, Breton & Diamond 2014) through both direct and indirect patterns (see Mysterud et al. 

(2003) for a full review on NAOs effect on terrestrial ecosystems). Through the effect on wind 
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speed and direction, air temperatures, heat and moisture transports, and precipitation, the 

NAO is able to exert strong forces on the ocean, affecting the temperature of the water, the 

salinity, vertical mixing, and ice-formation in the northernmost parts (Visbeck et al. 2003). The 

indirect biological effect of the NAO is mediated through local variations in physical and 

chemical water characteristics, with varying physical responses across the North Atlantic 

(Drinkwater et al. 2003).  

Sea-surface temperatures are driven by changes in the surface wind and air-sea heat-

exchanges that are associated with NAO variations (Hurrell et al. 2003). In the Barents Sea a 

positive NAO phase increases the flux of warm water from the southwest, along with 

increasing cloud cover, air- and water temperatures, both directly and indirectly influencing 

fish growth and survival (Ottersen & Stenseth 2001). 

 While harsh weather conditions can have a direct effect on seabird mortality, large-scale 

climate variations can indirectly affect their survival through changes in prey abundance 

(Sandvik et al. 2005). For example, variations in SST is suggested to indirectly affect both the 

adult survival (Breton & Diamond 2014) and the breeding success of Atlantic puffins 

(Fratercula arctica) through the availability of first-year herring (Clupea harengus) (Anker-

Nilssen 1992, Durant et al. 2003).  

 

1.3 Chick growth 

With the on-going changes in climate, it is of increasing importance to identify the effects of 

climate on seabirds. In this context, better knowledge of how the growth and survival of 

chicks respond to varying climate during the breeding season could help predict future 

population trajectories. Thus, to predict how the changes in climate will affect future 

populations, targeted monitoring of life-history parameters is essential. In this context, chick 

growth, provisioning rate, and fledging weight are suggested to be more sensitive indicators 

of environmental conditions in seabirds than the number of fledged young. This is due to 

their influence on post-fledging survival and hence the recruitment to the population (Croxall 

& Rothery 1991, Cam et al. 2003).  
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To optimize growth under unpredictable feeding conditions, seabird nestlings have the ability 

to temporarily arrest growth when insufficient amounts of food are available, enhancing the 

probability of survival until fledging (Schew & Ricklefs 1998). Several studies, on various bird 

species, show a positive correlation between chick fledging mass and post-fledging survival 

(e.g. Tinbergen & Boerlijst 1990, Ringsby et al. 1998, Coulson 2011). This suggests that, even 

though temporarily arresting growth can enhance the probability of fledging, lighter chicks 

have a higher mortality post-fledging. Hence, the nutritional deficit experienced at the chick 

stage can affect populations through a lower subsequent recruitment (Metcalfe & Monaghan 

2001). For instance, Kitaysky et al. (2006) demonstrated that a temporary nutritional deficit of 

lipids in red-legged kittiwake (Rissa brevirostris) chicks affected cognitive abilities later in life. 

This could in turn account for low recruitment of young, raised in years of poor availability of 

high-lipid fish.  

The amount of food supplied to the chicks also affects within-clutch aggression levels in 

facultative siblicidal species, e.g. the black-legged kittiwake (Rissa tridactyla) (White et al. 

2010). Hence, in years of insufficient food availability there will be increased competition for 

food, leading to an adjustment of the brood size through either starvation or siblicide (e.g. 

Lack 1947, 1954). 

  

1.4 Aim and hypotheses 

The aim of the present study was to explore the influence of varying climatic parameters 

expressed through NAOw, SST, air temperature, wind, and precipitation on chick growth in the 

black-legged kittiwake, using data on chick growth, diet and fledging success, collected during 

a 9-year period at a colony in northern Norway.  

The study is based on the following hypotheses: 

• There will be a negative correlation between NAOw indices and chick growth rates. In 

years of high, positive NAOw indices, creating low-pressure areas with heavy wind and 

precipitation, low chick growth rates are expected due to low feeding efficiency, 

expressed through lower food load masses, and changes in chick diet.  

• Lower chick growth experienced in years with high NAOw indices will cause higher 

chick mortality compared to years with low NAOw indices. 
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2 METHODS AND MATERIALS 

2.1 The study species  

With a total population of nearly 9 million adults, and an estimated similar number of 

juveniles, the black-legged kittiwake (hereafter kittiwake) is by far the world’s most numerous 

gull species (Birdlife International 2015). Kittiwakes have a circumpolar distribution, breeding 

in the arctic and boreal zone throughout the Northern Hemisphere including the Norwegian 

coast (Cramp & Simmons 1983).  

Both sexes incubate the eggs (clutch size range 1-3 eggs, normally 2 eggs) during the 24-28 

day incubation period (del Hoyo et al. 1996). In clutches with more than one egg, the eggs 

usually hatch with 1-2 days intervals (Hatch et al. 2009). 

 The chick that hatches first (hereafter the α-chick) grows faster than the second hatchling 

(hereafter the β-chick), and is often the only one to survive to fledging, at 5-6 weeks of age. 

After 2-3 years the juveniles return to the nesting area, usually not breeding until the 

subsequent year (Wooller & Coulson 1977). Its wide range and large numbers make the 

kittiwake an extensively studied species. Also, being top predators in the marine ecosystems, 

kittiwakes function as indicators of marine productivity and biotic interactions (Montevecchi 

1993, Wanless et al. 2006, Piatt et al. 2007).  

Kittiwakes are pelagic surface feeders, feeding up to 120 km from the colony (but see e.g. 

Thaxter et al. 2012, Ponchon et al. 2014) on small fish (usually < 100 mm) such as sandeel 

(Ammodytidae spp.), herring, and capelin (Mallotus villosus) found in the upper 1-2 metres of 

the sea. Factors preventing their prey from entering the top metres of the sea, such as severe 

storms, are likely to greatly affect their food availability (Baird 1990). 

Starting in the 1980’s, the kittiwake, along with many other seabirds, has undergone a global 

decline in population size (Croxall et al. 2012). In Norway there has been a massive decline in 

the overall breeding population ( 

Fig. 1), and most colonies are now only 20-40 % of their size in the early 1980's (Fauchald et 

al. 2015).  
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Fig.  1.  Relative changes in number of kittiwakes in seven colonies in Norway and Svalbard 1980-2015 (From: 
The Norwegian monitoring programme for seabirds/SEAPOP).  
	
In the Norwegian list of endangered species of 2015, the kittiwake was listed in the 

“endangered” category, with introduced species, competition for food with fisheries, and 

climatic changes listed as the main threats (Henriksen & Hilmo 2015).  

 

2.2 Study area 

This study was performed on the island of Anda (69°04’N 15°10’E) in Øksnes municipality, 

Nordland County, Norway (Fig. 2). Anda is a small island (ca 0.5 km2) that, due to its value as a 

breeding site for seabirds, is designated both as a nature reserve, and a protected wetland 

Ramsar-site. 

The kittiwake population at Anda has not experienced the drastic decline most other 

Norwegian colonies have, counting 755 pairs at the first count in 2005 and 795 pairs in 2015 

(+5 %). The kittiwakes breeding at Anda normally utilize two main feeding areas; they can 

either fly into the fjords and straits southeast of Anda to feed on sandeel, herring and gadids 

(Gadidae spp.), or they can fly northwest to the continental shelf to feed on mesopelagic prey 

living in the productive front systems (Christensen-Dalsgaard & Lorentsen unpubl.).  
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F ig.  2.  Map of Anda marking the borders of the nature reserve. A map of Norway (top left) marks the area in 
which Anda is located, and the exact location is shown in the bottom left panel.  
 

2.3 Fieldwork  

Data on kittiwake chick growth and breeding success were collected during 2007-2015. Chick 

growth data were collected from 15-66 (mean = 37) nests established in the mid- to late 

incubation period. The nests were individually numbered and their content was checked 

every fifth day until breeding failure (defined as being the disappearance or death of the 

egg(s) or chick(s)), chick fledging, or until the end of the period of fieldwork. On each visit, the 

chicks were weighed using Pesola spring balances (accuracy of ±2 g for 100 g, and ±5 g for 

500 g balances).  

On average the chick hatches within 3.3 days after the first cracks in the eggshell are visible 

(2.3 days from first cracks to pipped, and 1 day from pipped egg to emerged chick; Hatch 

2009). Consequently, the condition of the egg on the visit prior to appearance of the chick 

and/or the wetness of the chicks' plumage was used to estimate the hatching date.  



	 	 8	

 

To be able to identify individual chicks from one visit to another, permanent markers were 

used in 2007-2013 to colour the plumage of siblings, whereas plastic (darvic) colour bands 

were used in 2014 and 2015. The colour bands were removed when the chicks were banded 

with metal bands before fledging.  

Spontaneous (non-provoked) regurgitations from chicks (during handling) together with 

regurgitations from adults caught when returning to their nests were collected during the 

study period. To ensure independence between diet samples, samples were not collected 

from adults and chicks of the same nest.  

 

2.4 Data treatment 

2.4.1 Chick growth 

Growth of each individual chick was calculated as the mean daily increase in body mass (g) 

during the linear section of the growth curve (5-25 days of age; Hatch 2009). To maximize the 

number of growth curves to be included in the study, 19 days was set as the minimum age to 

calculate the linear growth. Growth phases shorter than 19 days were excluded. Throughout 

the years there were three nests with three chicks; these were excluded from the model due 

to the low sample-size.  

2.4.2 Diet  

Diet samples were stored frozen until being analysed at Tromsø University Museum. Each 

sample was thawed and weighed to the nearest 0.1 g, after which the remains of the diet 

were classified to the lowest possible taxon and the composition was expressed as frequency 

of occurrence. 

For the analysis of load mass, only samples from adults were included. Since the adults were 

caught when returning to the nest from feeding trips it was assumed that the load mass 

represented the amount of food available to the chicks. Both adult and chick samples were 

used when expressing the diet composition. As sandeel is the main prey species of the 

kittiwakes on Anda, the diet samples were categorised into those consisting of sandeel and 

those consisting of other prey species. The other prey species included herring, glacier 
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lanternfish (Benthosema glaciale), gadids, silvery lightfish (Maurolicus muelleri), spotted 

barracudina (Arctozenus risso), offal from fisheries, and crustaceans. Unidentified fish were 

excluded from the analysis. 

2.4.3 Breeding success 

Apparently occupied nests (AON), defined as “well-built nests capable of containing eggs with 

at least one adult present” (Walsh et al. 1995), were counted at the beginning of the breeding 

season. Clutch size was calculated as the average number of eggs in the nests surveyed for 

chick growth. Only selected study plots were counted in 2012, in all other years the entire 

colony was counted. Breeding success was calculated as the number of large chicks (> 12 

days) at the end of the season divided by the number of AONs in the beginning of the season.  

2.4.4 NAO 

Winter NAO-indices (NAOw) for December through February was used as a large-scale 

indicator of winter-conditions. These were obtained from the National Center for 

Atmospheric Research (https://climatedataguide.ucar.edu/climate-data/hurrell-north-

atlantic-oscillation-nao-index-pc-based).  

In a positive phase, surface pressures that are higher than normal south of 55° N combine 

with a broad region of particularly low pressures throughout the Arctic to enhance the 

climatological southern pressure gradient. The shift from one phase to another results in 

large changes in the mean wind speed and direction over the Atlantic Ocean and the 

neighbouring continents. Positive winter indices are associated with strong winter storms 

crossing the Atlantic across northerly tracks resulting in warmer, wetter, and windier winters. 

Negative indices are correlated with colder drier winters (Hurrell et al. 2003). 

2.4.5 SST 

The average SST for March-May and June-August each year was calculated, representing the 

pre-breeding and breeding environmental conditions, respectively. Monthly averages of the 

SSTs, at 5 metres depth over a 2° x 2° grid, were obtained from the IRI/LDEO Climate Data 

Library (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version3b/). 
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2.4.6 Local weather  

The average daily air temperature, wind and precipitation experienced by each individual 

from the date of hatching until 19 days of age were used as measurements of local weather 

conditions during the breeding season. Daily weather data (air temperature (°C), wind speed 

(m/sec) and precipitation (mm)) were obtained from The Norwegian Meteorological Institute 

(www.eklima.met.no), from the Andøy weather station 46.5 km northeast of Anda.  

 

2.5 Statistical  analyses 

2.5.1 Chick growth 

All data was analysed using the software R, version 3.0.2 (http://www.r-project.org/).  

To investigate interannual variations in chick growth an analysis of variance (ANOVA) was 

used. Chick growth data was analysed using the “Nonlinear Mixed-Effects Models” (nlme) 

package (Pinheiro et al. 2015), allowing the nest and the year chicks originated from to be 

plotted as nested random effects. Chick growth was set as the response variable, with 

hatching order (singleton, α- or β-chick), NAOw, SST for pre-breeding, and breeding season, 

and the number of days with precipitation, average daily precipitation amount, temperature, 

and wind, experienced by each chick as explanatory variables. The interaction between NAO 

and the SST’s was also included. To investigate the effects between the different levels of 

hatching order, the factors were re-ordered so that the hatching level specified was first.  

The “Multi-model Inference” (MuMIn; Barto'n 2015) packages’ “dredge” function was used to 

perform automated model selection, based on Akaikes Information Criterion (AIC), 

accounting for small sample sizes by applying AICc. ΔAICc values were reported relative to the 

null model. If two or more nested models deviated by less than 2 AICc units the most 

parsimonious model, the one requiring the fewest parameters, was preferred.  

Models including correlated (r > 0.60) parameters simultaneously were excluded. This 

excluded models that included temperature and wind (-0.64), days and amount of 

precipitation (0.69), NAOw and precipitation days (-0.69), spring SST and amount of 

precipitation (-0.79) or the two SST values (0.77) simultaneously (Table S1 in the supplement).  
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2.5.2 Diet 

As 16% of the diets consisted of both sandeel and other prey types these diet samples were 

excluded from the food load mass model. Load mass was used as the response variable in a 

nlme, against proportion of sandeel, NAOw, SST for pre-breeding and breeding season, and 

year was set as a random factor. The interaction effect between NAOw and SSTs was 

included.To normalize the residuals the load mass was square rooted. To be able to compare 

diets with chick growth yearly average growth rates were set as the response variable against 

average load mass, proportions of sandeel, and NAOw in a linear model.  

2.5.3 Breeding success 

To compare breeding success between years a “test of equal given proportions” (prop.test) 

was used, testing the null-hypothesis that the proportions (probabilities of success) in several 

years are the same. A test for correlation between paired samples (cor.test) was used for 

investigating possible correlations between breeding success and chick growth, and breeding 

success and clutch size. 
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3 RESULTS 

3.1 Chick growth 

The results were based on growth data from 179 chicks, of which 82 were α-chicks, 55 β-

chicks, and 42 singletons. There was a lower number of β- than α-chicks as not all β-chicks 

fulfilled the criteria of being at least 19 days old at when the last measurements were 

obtained.		

A significant inter-annual difference in daily chick growth rate was found (F1, 8 = 6.0394, p < 

0.001; Fig. 3). The highest average daily growth rate (16.7 g/day) was in 2010, closely 

followed by 2015 (16.3 g/day) whereas the lowest average daily growth rate was in 2012 

(11.9 g/day).	

	
Fig.  3.  Annual chick growth rates (mean with standard deviation) during 2007-2015 for singletons, α- and β-
chicks, represented by circles, triangles and squares, respectively.  
	
Excluding the correlating parameters, the model selection gave two models with ΔAICc less 

than 2 (Table 1). The first model was the most parsimonious, with more than 50 % of the AICc 

weights, making it the preferred model, even though parameter values are only marginally 

different from the second model. In the second model, the negative effect of air temperature 



	 	 14	

was not significant, and further did not improve the estimates of the other covariates 

compared to the first model.  

Table 1.  The models ranked and presented with the parameter estimates, standard error (SE), t- and p-value 
(significant p-values in bold) in addition to the ΔAICc and AICc values and weights. 

Model 
rank 

Parameter Estimate ±SE t-value p-value AICc ΔAICc 
AICc 

weights 

1 

(Intercept) 17.429 0.802 21.721 0.000 

870.3 0 0.72 

Sibling:  α -0.749 0.518 -1.447 0.155 

 β -1.756 0.552 -3.182 0.003	

Precipitation  -1.051 0.377 -2.792 0.008	

NAOw -0.666 0.333 -2.001 0.085 

2 

(Intercept) 18.363 2.556 7.184 0.000 

872.1 1.89 0.28 

Sibling:  α -0.751 0.519 -1.447 0.155 

 β -1.749 0.553 -3.162 0.003	

Precipitation  -1.054 0.385 -2.735 0.009	

NAOw -0.672 0.344 -1.956 0.091 

Temperature -0.090 0.230 -0.392 0.697 

 
 
Having a sibling reduced the daily growth rate; β-chicks had a 10 % lower daily growth rate, 

whereas α-chicks had a 4 % lower weight increment compared to singletons (both excluding 

standard errors). Re-ordering the levels of hatching order in the model, to see the effect 

when compared to α-chicks, showed a significantly lower growth rate (-6 %) for β-chicks 

compared to α-chicks, with no significant difference found between α-chicks and singletons.  

For every additional millimetre of rain per day, daily growth was reduced by 6 %, 6.3 %, and 

6.7 % for singletons α-chicks, and β-chicks respectively (Fig.4.).  
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F ig.  4.  Chick growth rate (g/day) as a function of the amount of rain (mm/day) that the chicks experienced from 
hatching until 19 days of age. Circles, triangles, and squares represent data points for singletons, α- and β-chicks, 
respectively. Solid, dashed, and dotted regression lines represent singletons, α-and β-chicks, respectively. 

	
Fig.  5.  Chick growth rate (g/day) as a function of the NAO winter index (December through February). Data 
points for singletons, α- and β-chicks are represented by circles, triangles, and squares, respectively. Solid, 
dashed, and dotted regression lines represent singletons, α-and β-chicks, respectively.  
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NAOw showed marginally non-significant effects on chick growth (Fig. 5). There was a 

significant negative correlation between NAOw and precipitation (r = -0.54, df = 177, p < 

0.001), and excluding NAOw from model 1 removed the significant relationship between 

precipitation and chick growth. 

Possible two-way interactions between the different levels of the hatching order variable 

(singleton, α-, and β-chicks) and either one of the covariates (precipitation, NAOw, and air 

temperature) were investigated, but none were found to be significant (results not shown). 

 

3.2 Diet 

For 2007-2015 a total of 630 diet samples were collected and analysed, 468 of which were 

from adult birds. Overall, there was slightly more of the other prey (51.4 %) than sandeel 

(48.6 %) in the diets. Sandeel was by far the dominating species of prey, followed by glacier 

lantern fish (17.8 %) and herring (11.9 %; Table S2 in the supplement).  

The diet samples from 2012 had the lowest amounts of sandeel, with diets consisting of on 

average only 18 % sandeel prey on average, and a total of 82 % other prey. The average food 

load mass across all years was 22.3 g. The largest food loads were found in 2008, with 

average loads of 28.0 g, whereas 2011 and 2012 had the lowest average load masses, with 

16.2 and 15.7 g, respectively (Table 2). 

 
Table 2.  Annual average of adult load masses together with number of diet samples (upper panel), and annual 
proportions of sandeel versus all other prey types in the diets of chicks and adults, together with number of diet 
samples (lower panel), during the years 2007-2015. 

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Load mass (g) 26.0 28.0 24.5 25.1 16.2 15.7 20.0 25.4 20.3 

n 50 63 62 47 28 40 74 66 38 

Other prey 0.67 0.59 0.23 0.56 0.46 0.82 0.51 0.50 0.29 

Sandeel 0.33 0.41 0.77 0.44 0.54 0.18 0.49 0.50 0.71 

n 62 68 65 50 41 59 105 84 96 
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The prey types, NAOw, or the SSTs did not have any significant effects on the food load mass 

(Table S3 in the supplement). For the model using yearly averages, no significant relationships 

were found between chick growth and load mass, NAOw or the proportion of sandeel in the 

diets. However when removing NAOw from the model, food load mass had a marginally non-

significant relationship on chick growth (p = 0.082). 

 

3.3 Breeding success 

There was a significant (p < 0.001) difference in breeding success between years (Fig. 6). The 

highest breeding success was recorded in 2007 with 0.99 chicks/nest, and the lowest in 2011 

and 2014 with 0.30 and 0.32 chicks/nest, respectively. Chick growth and breeding success 

were positively correlated (r = 0.20, df = 177, p = 0.006; Fig. 6). Clutch size was positively 

correlated with breeding success (r = 0.48, df = 177, p < 0.001), but there was no significant 

correlation with the growth rates of chicks. The largest average clutch size was found in 2010 

with an average of 2.07 eggs/nest, whereas average clutch size was smallest in 2014 with 1.53 

eggs/nest (Table S4 in the supplement). 

 
F ig.  6.  Chick growth (solid circles with bars representing standard errors), and breeding success, (open circles), 
during the 2007–2015 breeding seasons. 
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4 DISCUSSION 

4.1 General f indings 

This study found that chick growth showed a significant negative relationship with the 

amount of precipitation and the NAOw. Hatching order also negatively affected the growth 

rate of individual chicks. Being a singleton was the most advantageous, followed by being the 

first-hatched out of two chicks. Sea surface temperatures, air temperature, and the number 

of days with precipitation did not show any significant effects on the growth rate of chicks. 

The clutch size was positively correlated with breeding success, which in turn was positively 

correlated with chick growth. No significant relationships were found between the large scale 

climate parameters (NAOw and SSTs) and food load mass, and only a weak relationship 

between the food load mass and chick growth rate was found. No relationship was found 

between chick growth rate and the annual proportion of sandeel in the diet. 

 

4.2 Chick growth and breeding success 

The positive correlation between clutch size and breeding success found in this study was 

expected, as more eggs per nest lead to more chicks, which, as long as the feeding conditions 

during chick growth are not deteriorating (e.g. Ponchon et al. 2014), is likely to increase the 

number of surviving chicks per nest. A negative correlation between clutch size and chick 

growth could also have been expected through increased sibling competition when food was 

scarce (Braun & Hunt 1983). Such a correlation was however not found, indicating that other 

factors than food alone was more important for explaining the survival of the chicks in this 

study. Also, as clutch sizes are based on counts in the mid to late incubation period, egg 

predation, particularly by corvids (Christensen-Dalsgaard & Langset unpubl.), can have 

adjusted the clutch size prior to the counts.  

The tendency of a positive effect of the average food load mass per year on the average 

growth rate of chicks, although weak, was expected, as chicks are able to maximize their 

growth rates when sufficient amounts of food are provided (Vincenzi & Mangel 2013). The 

lack of a stronger and significant correlation was unexpected, but might be caused by a 

number of possible explanations. First, due to the structure of the data, only a linear model 
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could be run, based on averages per year, masking individual variation in foraging 

performance between adults, and variation in foraging performance between adults with one 

or two chicks. For instance, adult kittiwakes with two chicks might have better body condition 

and be more experienced than parents with one chick (Coulson & White 1958). Second, it was 

expected that if the adult kittiwakes have to search longer for food then the return load mass 

should increase (e.g. Charnov 1976). The travelling distance to the fjords (where they catch 

their preferred prey type, sandeels) is about the same as the distance travelled to the edge of 

the continental shelf (where they mainly feed on mesopelagic fish). However, on the oceanic 

trips the birds fly further (Christensen-Dalsgaard & Lorentsen, unpubl.), indicating that they 

use more time to search for food along the continental shelf. Thus, it would be expected that 

individual load masses should be higher in years with more oceanic trips. Consequently, in 

years of high sandeel abundance, they could increase the number of trips, and their feeding 

efficiency. This would mask the effect of load mass on chick growth, as the birds may have a 

higher number of trips to the fjords, but provide smaller loads on each trip. There was 

however no effect of the proportion of sandeel in the diet on average chick growth, 

suggesting that the effect of food loads on chick growth might be mediated through an 

overall climatic effect on prey availability. 

During 2011-2013, low chick growth rates coincided with low breeding success. This is in 

accordance with life-history theory that predicts a trade-off between cost of current 

reproduction and future survival (Stearns 1992). Hence, in order to minimize the impact of 

poor environmental conditions, adult seabirds may implement a “bet-hedging” strategy, in 

which they attempt to reduce the impact of poor environmental conditions on their own 

survival by sacrificing reproduction (e.g. Jenouvrier et al. 2005). The low chick growth rates 

and breeding success could be an indication of unfavourable conditions, forcing the parents 

to reduce their breeding efforts.  

Other factors than food availability and climate might however also affect the breeding 

success of kittiwakes, predation being one such factor. For example, from 2009 and onwards, 

predation by ravens (Corvus corax) and crows (Corvus cornix) on kittiwake-eggs was 

frequently registered, although predation most likely also occurred in 2007 and 2008. In 

addition, predation on eggs and chicks by gulls (Larus argentatus and L. marinus) and sea 
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eagles (Haliaëtus albicilla) breeding near the kittiwake colony was observed (Christensen-

Dalsgaard & Langset unpubl.). Furthermore, as demonstrated by Regehr and Montevecchi 

(1997), when Larus gulls in Newfoundland, Canada, experienced extreme food stress, due to a 

delayed availability of capelin and elimination of fisheries offal, they turned to kittiwake eggs 

and chicks as an alternate food source. If this holds true for other locations as well, it could 

imply that kittiwakes on Anda could experience an increased predation pressure by Larus 

gulls, when these gulls experience shortages in their own preferred prey. 

Predation is likely to override any advantage in chick growth experienced due to hatching 

order and/or egg- or brood size, particularly in smaller colonies (Barrett & Runde 1980). 

Predation might also affect the feeding rate by forcing the parents to exert anti-predator 

behaviour instead of searching for food. However in periods of very poor feeding conditions 

adults might reduce chick guarding in order for both parents to search for food (Barrett & 

Runde 1980, Wanless & Harris 1989, Cadiou & Monnat 1996). As a result of this chicks might 

be left unattended, and will thus be more prone to predation, or falling out of their nest. 

Hence, if years of low food availability coincide with years of high predation pressure this 

could have detrimental effects on the number and condition of fledglings.  

 

4.3 Direct effects of cl imate 

In years with more precipitation during the linear growth phase chicks had lower growth 

rates. Rain increases heat loss through increased convective heat transfer, and as the 

plumage of the chicks is not yet fully waterproof, rain further increases the heat loss and 

hence energy expenditure (Gabrielsen et al. 1992). During the first 10-15 days, chicks are 

guarded by at least one of the parents. However, as the chicks grow older the activity of the 

parents at the nest changes and parents spend increasingly more time away from the nests, 

leaving the chicks more exposed (Gabrielsen et al. 1992, Roberts & Hatch 1993). In the years 

2010, 2012 and 2013, the chicks experienced the most rain during their linear growth phase 

(Fig. S1 in the supplement), averaging more than 2.4 mm per day. Especially in 2012 and 2013 

this might serve as one explanation for the low growth rates and breeding success observed.  

In 2010, despite the large amounts of rain that the chicks experienced, this was the year with 
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the highest average chick growth and the largest average clutch size. This might indicate that 

other factors, such as sufficient food availability, might be more important factors than the 

amount of rain alone. For instance, a high food abundance in the wintering areas can increase 

the survival of adults (Reiertsen et al. 2014), and if the adults are in better body condition at 

the onset of the breeding season, an increased feeding efficiency to their chicks could be 

expected (Kitaysky et al. 2001). Furthermore, if the environmental conditions for primary and 

secondary trophic levels were advantageous prior to the breeding season, this could lead to 

an increased food abundance for the kittiwakes (Arnott & Ruxton 2002), and thus influence 

chick growth positively. It is expected that this higher food abundance might compensate for 

the effects of increased precipitation and energy budgets.  

 

4.4 Indirect effects of cl imate 

In years of high positive NAOw anomalies, associated with low-pressure areas with heavy wind 

and precipitation (discussed above), the growth rates of chicks were lower than in years of 

negative indices. However, it is not only through these direct weather effects that the NAOw 

might impact on chick growth. Through its effect on wind, air temperatures, heat and 

moisture transports and precipitation, the NAOw exerts strong forces on the physiochemical 

properties of the ocean (Drinkwater et al. 2003). In turn, this affects the lower trophic levels 

that represent the food for the fish supplied to the chicks, and thereby also chick growth (e.g. 

Sandvik et al. 2005).  

For the lesser sandeel (Ammodytes marinus) in the North Sea a negative relationship was 

observed between recruitment and the NAOw, which affects sea temperatures during their 

egg and larval period (Arnott & Ruxton 2002). Sea temperatures, together with wind, also 

affects the interannual variation in abundance of the phyto- and zooplankton (i.e. Calanus sp.; 

Colebrook 1982). The abundance of sandeel is positively correlated with Calanus copepod 

abundance when the sandeel larvae hatch, indicating that it is an important prey species for 

the newly hatched sandeel larvae (Arnott & Ruxton 2002). Higher sea temperatures also 

increased the metabolic cost of wintering sandeels, reducing their growth rate, fecundity, and 

survival (Arnott & Ruxton 2002). This further lowered their nutritional value as prey for 

seabirds (Wanless et al. 2005). Hence, in years of high NAOw anomalies, increased SSTs could 
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lower kittiwake chick growth through either lower recruitment of sandeel or by reduced 

nutritional values of the sandeel. With the current changes in climate, changes in life history 

events on the lower trophic levels can lead to mismatches in the timing of food peaks, 

resulting in possible collapses, not only for kittiwakes and other top predators, but for several 

levels of the food chain (Burthe et al. 2012).  

Very little is known about the population dynamics of sandeel along the Norwegian coast. The 

sandeel population in the Gavlfjord South-east of Anda is however invaluable as a food source 

for the kittiwake (Bergstad et al. 2013). Having both the fjords and the oceanic sources of 

food probably explains why the kittiwakes at Anda has not experienced the same population 

decline as other Norwegian colonies (The Norwegian monitoring programme for seabirds, 

SEAPOP). Thus, the extremely low proportion of sandeel in the diets of 2012 (11.6 %), was 

compensated for by a fourfold increase in the amount of glacier lantern fish (43.0 %; Table S2 

in the supplement). This further coincided with the lowest chick growth rates measured, and 

low breeding success. Data from GPS-loggers, deployed on breeding kittiwakes at Anda 

(during 2011-2014; Christensen-Dalsgaard & Lorentsen unpubl.; Fig. S2 in the supplement), 

support the observed dietary shift. In 2012 a more than twofold increase in oceanic feeding 

trips, 73 %; compared to inland/fjord trips, was observed in comparison to 22 %, 24 %, and 37 

% in 2011, 2013 or 2014 respectively (Christensen-Dalsgaard & Lorentsen unpubl.). The 

distance to the continental shelf is similar to the distance to the fjords, but the total distances 

travelled during the oceanic trips are longer. The reason for this is probably that the 

kittiwakes are searching for food over a larger area, implying that the oceanic trips are more 

energetically costly for adults. Hence, when sandeel abundance is low, the adult kittiwakes 

have no option but to take the more energetically costly alternative, and search for food 

along the edge of the continental shelf.  

Even though the NAO is a widely used proxy for “climate”, Mesquita et al. (2015) point out 

that it does not always explain the patterns in the variation of the populations examined. 

Rather, they found that point correlation maps, comparing variables at a particular point on a 

map with every other point on the map, could sometimes be more helpful for identifying 

significant explanatory indices related to climate. Their main conclusion being that solely 

using NAO as a proxy for climate, without looking for other climatic clues, might lead to the 
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erroneous conclusion that there is no correlation between certain ecological processes and 

climate only because no relationship with the NAO was found.   
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5 CONCLUSIONS 

During the last three decades a shift from mostly negative to mostly positive NAOw indices 

has been observed (Visbeck et al. 2001), with a magnitude that is unprecedented in the 

record (Hurrell 1995). The effects of this shift are hard to predict. Nevertheless, the force the 

NAO exerts on local weather and SST affects the timing of life history events for many trophic 

levels. This can in turn lead to a mismatch between the timing of food availability and food 

demands during the chick rearing period for kittiwakes. Although the effects of climate on 

seabirds may be direct, through physiological effects, or indirect, through an influence on 

prey availability, the relationship between the birds and climate is significantly affected by 

climatic influences on lower trophic levels. 

Due to the changing climate, the patterns of precipitation have also been altered. In Northern 

Europe, Semmler and Jacob (2004) proposed a 50 % increase in precipitation for the period 

2070-2100 compared to the period 1960-1990. The warm air masses, resulting from a 

warmer climate, are able to hold more vapour. As a result dry areas will become drier, and 

wet areas wetter (e.g. Semmler & Jacob 2004, Kundzewicz et al. 2006, Marvel & Bonfils 

2013). Therefore, more rainfall is expected in the current study area (and the rest of coastal 

Norway). This may negatively affect chick growth rates and the condition of fledglings, and 

consequently future population recruitment.  

The present study showed that an increase in the average daily amounts of rain reduced the 

growth of kittiwake chicks. Future predicted increases in the intensity of rainfall (Semmler & 

Jacob 2004) has the potential to significantly affect chick growth to an extent where juvenile 

survival, and thus future recruitment to the adult population, is impacted. The negative effect 

of precipitation could be related to the observed effect of the climate expressed through the 

NAOw. However its main effect on chick growth is assumed mediated through the lower levels 

of the kittiwakes’ food chain. Still, this study did not show statistically significant effects of 

NAOw on the diets alone. The observed shift over the last three decades, where the NAO has 

shifted from mostly negative to mostly positive indices, increases the concern not only for the 

kittiwake but for lower trophic levels as well. 

Knowledge about the effect of varying weather parameters on life history events, 
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incorporated into expected future weather scenarios, might help predict future kittiwake 

population trajectories. Being top predators, their response to climate and food availability 

could serve as a good indicator of the effect of climate on the whole food web.  
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SUPPLEMENT 

Table	S1	
Table S1. Correlation matrix for the climate parameters used in the chick growth model. 

 Prec.days Ind.prec Ind.temp Ind.wind SST.mam SST.jja NAOw 

Prec.days 1	 0.69	 0.06 -0.04 -0.45 -0.03 -0.69	

Ind.prec 0.69	 1	 0.04 -0.24 -0.79	 -0.50 -0.54 

Ind.temp 0.06 0.04 1	 -0.64	 0.17 0.06 -0.23 

Ind.wind -0.04 -0.24 -0.64	 1	 0.31 0.43 0.01 

SST.mam -0.45 -0.79	 0.17 0.31 1	 0.77	 0.26 

SST.jja -0.03 -0.50 0.06 0.43 0.77	 1 -0.02 

NAOw -0.69	 -0.54 -0.23 0.01 0.26 -0.02 1	

Key:  
Prec.days: Number of days with precipitation during the linear growth phase of the chick 
Ind.prec: Daily amount of precipitation during the linear growth phase of the chick 
Ind.wind: Daily strength of wind during the linear growth phase of the chick 
Ind.temp: Daily air temperature during the linear growth phase of the chick 
SST.mam: Average sea surface temperatures for March-May 
SST.jja: Average sea surface temperatures for June-August 
NAOw: North Atlantic Oscillation winter index for December-February	 	



	

	 	 34	

Table	S2	
Table S2.  Composition of the kittiwake diets for adults and chicks on Anda during 2007-2015. 

Year 

% of diets 

Sandeel Herring 

Lantern 

fish Gadids 

Silvery 

lightfish 

Spotted 

barracudina Offal Crustacea 

2007 35.8 18.0 0.0 42.3 0 0 1.5 0.0 

2008 38.9 14.8 20.8 6.5 0.3 0 0.0 6.5 

2009 64.7 5.3 16.5 0.3 0.5 0 4.1 3.2 

2010 48.5 18.0 14.1 3.4 8.4 0 4.3 1.4 

2011 53.0 5.7 11.1 14.5 2.3 0 6.5 3.2 

2012 11.6 11.3 43.0 5.5 0.4 4.7 0.8 15.1 

2013 42.5 11.7 21.1 9.8 1 2.8 3.5 5.4 

2014 42.3 14.5 16.2 16.6 1.6 2.7 1.9 2.0 

2015 53.4 7.5 17.8 5.7 0.9 5.5 1.4 5.5 

Avg 43.4 11.9 17.8 11.6 1.7 1.7 2.7 5.3 
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Table	S3	
Table S3.  The model parameters for the model with food load mass set as response variable, with the 
proportion of sandeel, NAOw, SSTs as explanatory variables. Load mass was square rooted. 

Parameter Estimate ±SE t-value p-value 

(Intercept) -1563.974 1212.856 -1.290 0.198 

Proportion Sandeel -0.045 0.138 -0.329 0.742 

NAOw 1950.180 1625.166 1.2 0.442 

SST.mam 247.755 190.618 1.3 0.418 

SST.jja 145.326 112.514 1.291 0.419 

NAOw:SST.mam -316.361 267.312 -1.183 0.447 

NAOw:SST.jja -180.929 149.277 -1.212 0.439 

SST.mam:SST.jja -22.963 17.652 -1.301 0.417 

NAOw:SST.mam:SST.jja 29.345 24.54 1.196 0.443 

Key, see Table S1.  
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Table	S4	
 

Table S4.  The number of singleton, α- and β-chicks per year, used to calculate chick growth. Average 

clutch size, breeding success and chick growth for 2007-2015. 

Year n singleton n α n β Clutch size Breeding success Chick growth 
2007 1 10 8 1.8 0.99 16.00 
2008 6 8 4 1.8 0.93 14.79 
2009 2 4 4 1.74 0.74 

0.58 
14.79 

2010 1 4 7 2.07 16.68 
2011 1 6 2 1.67 0.30 14.32 
2012 2 13 4 1.74 0.44 11.93 
2013 5 11 5 1.67 0.39 13.66 
2014 5 6 5 1.53 0.32 15.24 
2015 19 20 16 1.68 0.59 16.29 
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Fig.	S1	
Fig.  S1.  The amount of precipitation chicks experienced during their linear growth phase during the 
breeding season 2007-2015 (mean values with boxes representing upper and lower quantiles, bars 
represent standard deviation). 
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Fig.	S2	
 F ig.  S2.  Feeding trips by breeding kittiwakes collected from GPS loggers during 2011-2014. 

2011	 2012	
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