
Run-time Exploitation of Application Dynamism for
Energy-efficient Exascale Computing (READEX)

Yury Oleynik∗, Michael Gerndt∗, Joseph Schuchart†, Per Gunnar Kjeldsberg‡, and Wolfgang E. Nagel†
∗Chair of Computer Architectures
Technische Universität München

Garching, Germany
†Center for Information Services and High Performance Computing

Technische Universität Dresden
Dresden, Germany

‡Department of Electronics and Telecommunications
Norwegian University of Science and Technology

Trondheim, Norway

Abstract—Efficiently utilizing the resources provided on cur-
rent petascale and future exascale systems will be a challeng-
ing task, potentially causing a large amount of underutilized
resources and wasted energy. A promising potential to improve
efficiency of HPC applications stems from the significant degree
of dynamic behavior, e.g., run-time alternation in application
resource requirements in HPC workloads. Manually detecting
and leveraging this dynamism to improve performance and
energy-efficiency is a tedious task that is commonly neglected by
developers. However, using an automatic optimization approach,
application dynamism can be analyzed at design-time and used
to optimize system configurations at run-time.

The European Union Horizon 2020 READEX project will
develop a tools-aided scenario based auto-tuning methodology
to exploit the dynamic behavior of HPC applications to achieve
improved energy-efficiency and performance. Driven by a con-
sortium of European experts from academia, HPC resource
providers, and industry, the READEX project aims at developing
the first of its kind generic framework for split design-time run-
time automatic tuning for heterogeneous system at the exascale
level.

I. INTRODUCTION

High Performance Computing (HPC) is a major driving
force for research and innovation in many scientific and
industrial areas. A constantly growing demand for computing
performance leads to the installation of increasingly powerful
and ever more complex systems characterized by a rising
number of CPU cores as well as increasing heterogeneity.
This makes optimization of HPC application a complex task
demanding severe programming effort and high level of ex-
pertise.

With growing computational performance, there is typically
also an increase in a system’s energy consumption, which
in turn is a major driver for the total cost of ownership of
HPC systems. Limitations to chip temperature and cooling
capabilities can furthermore make the performance of exascale
HPC systems power-bound. However, developers commonly
focus on the implementation and improvement of algorithms
with regards to accuracy and performance, neglecting possible
improvements to energy-efficiency. The fact that programmers

in general lack the platform and hardware knowledge required
to exploit these measures is an important obstacle for their use.

The European Union READEX Project [1] tackles the
challenges above by embracing the significant potential for
improvements to performance and energy-efficiency stemming
from the fact that HPC applications commonly exhibit dynamic
resource requirements, e.g., alternating application regions or
load-changes at application run-time. We will refer to this
as application dynamism throughout the paper. Examples of
dynamism can be found in many current HPC applications,
including weather forecasting, molecular dynamics, or adaptive
mesh-refinement applications.

It is expected that applications running on future extreme-
scale systems will exhibit even higher levels of dynamism. This
will be mainly due to the increased demand on data movement
between processing elements, both on intra- and inter-node
levels, and more complex levels of the memory hierarchy.
Furthermore, the rise of many-core co-processors and accel-
erators introduced new degrees of freedom such as offloading
and scheduling. These new types of hardware will play an
increasingly important role in the race to Exascale computing.
At the same time, dynamic changes in the performance of the
available resources will require applications to adapt at run-
time. Especially in the area of extreme data applications, the
mix of I/O and computational phases announces a high degree
of dynamic behaviour.

The READEX project will develop and implement a tools-
aided methodology that enables HPC application developers
to exploit dynamic application behaviour when run on cur-
rent and future extreme parallel and heterogeneous multi-
processor platforms. READEX combines and extends state-
of-the-art technologies in performance and energy-efficiency
tuning for HPC with dynamic energy optimization techniques
for embedded systems.

The general concept of the READEX project is to handle
application energy-efficiency and performance tuning by tak-
ing a complete application life-cycle approach, in contrast to
other approaches that regard performance and energy tuning
as a static single activity taking place in the application
development phase. With inspiration from systems scenario

Per Gunnar
Typewritten Text
 © 2015 IEEE



based design in the embedded systems domain, READEX will
develop a dynamic auto-tuning methodology spanning over the
development (design-time) and production/maintenance (run-
time) phases of the application life-cycle.

The requirements for the READEX tool-suite listed below
outline the technical ambitions of the project:

• (Semi)-automatic dynamic tuning

• Support for heterogeneous systems

• Capability for exascale deployment

• Multi-objective tuning

• Programming paradigm for application
domain dynamism

II. RELATED WORK

While a small number of dynamic auto-tuning methodolo-
gies and tools exist for run-time optimizations [2], [3], no
single standalone dynamic auto-tuning framework currently
exists with the capability to target the full breadth of large-
scale HPC applications being used in academia and industry
both now and on the road to Exascale.

Several leading EU research projects are approaching the
challenge of tuning for performance and energy-efficiency by
either introducing entirely new programming models or lever-
aging existing prototype languages. An example of the latter
approach is the ENabling technologies for a programmable
many-CORE (ENCORE) project [4], which aims to achieve
massive parallelism relying on tasks and efficient task schedul-
ing using the OmpSs programming model [5]. The READEX
project takes a different approach by developing a new generic
programming paradigm allowing to express and to utilize
dynamism of applications in the automatic tuning process.

Further European projects are focusing their optimisation
efforts on heterogeneous systems. For instance, the Perfor-
mance Portability and Programmability for Heterogeneous
Many-core Architectures PEPPHER project [6] has developed
a methodology and framework for programming and opti-
mizing applications for single-node heterogeneous many-core
processors to ensure performance portability. With Intel as a
key partner of the READEX project, we will go one step fur-
ther and provide a framework that supports the heterogeneity
of the system in the form of tuning parameters that allows
for large-scale heterogeneous applications to dynamically (and
automatically) adapt to heterogeneous resources according to
run-time requirements.

To the best of our knowledge, no dynamic auto-tuning
framework exists yet that shows the potential to scale to future
Exaflop machines. Auto-tuning frameworks typically follow
a centralized approach, where the central agent will become
a bottleneck when deployed on these systems. In contrast,
READEX aims to develop the concept of (semi)-distributed
dynamic tuning that minimises centralisation of control.

III. BACKGROUND

READEX synergistically combines and extends two tech-
nologies from the opposite ends of the computing continuum,

namely the systems scenario methodology for dynamic tuning
from the field of embedded systems with the automatic static
tuning from the area of HPC.

A. System Scenarios Methodology

In the embedded systems domain a scenario-based method-
ology [7]–[9] has been developed to enable exploitation of
application dynamism through fine-grained run-time system
tuning.

The methodology consists of exploiting detailed knowledge
about the application(s) to be run on the system, extracted
through profiling and (semi-)automatic code inspection. Using
these techniques, different Run-Time Situations (RTSs) of the
application are identified that have different costs related to
them, e.g., execution time, energy consumption, and memory
foot-print.

At design-time, RTSs are grouped into scenarios with
similar multidimensional system costs. Optimized platform
configurations are generated for each scenario. Furthermore,
efficient and possibly application-specific scenario prediction
and scenario switching mechanisms are developed.

At run-time, the upcoming scenario is predicted and a
platform configuration switch is performed based on the
mechanisms developed at design-time. Should the application
experience an RTS which was not seen at design-time a back-
up scenario guaranteed to satisfy any RTS is used.

Examples of more than 30% energy reductions have been
reported for the system scenarios methodology in the embed-
ded systems field [8]. This type of technique has not been
applied in the HPC domain and extensive research is needed
for it to happen.

B. Static Auto-tuning of HPC Applications

Most of the current tools for performance engineering
focus on collecting and presenting information for the users,
while only few focus on the automation of the performance
optimization process (auto-tuning), e.g., the Periscope Tuning
Framework (PTF) developed in the EU FP7 ICT AutoTune
project [10], [11]. PTF automatically finds optimized system
configurations for whole application runs, effectively averaging
the benefits of system adaptation over the whole run-time of
the application (static tuning). With these static auto-tuning
techniques, improvements in energy-efficiency of up to 10%
for application runs have already been achieved while keeping
the performance degradation to a few percent [12].

PTF’s main principles are the use of formalized expert
knowledge and strategies, an extensible and modular archi-
tecture based on tuning plugins, automatic execution of exper-
iments, and distributed, scalable processing. PTF provides a
number of predefined tuning plugins, including:

• Dynamic Voltage Frequency Scaling,

• Compiler flags selection,

• MPI run-time settings,

• OpenMP parallelism capping,

• MPI master-worker pattern settings



Application instrumentation and 

analysis preparation 

Instrumented 

Application

Application pre-analysis

Scenarios

Derivation of the tuning model

Tuning model

Run-time application tuning

Stop when no 

dynamicity to 

exploit

PTF & Score-P

READEX Run-time Library Pathway

A
p

p
li

ca
ti

o
n

 d
e

v
e

lo
p

m
e

n
t

(D
e

si
g

n
-t

im
e

)

P
ro

d
u

ct
io

n
 r

u
n

s

(R
u

n
-t

im
e

)

A
p

p
li

ca
ti

o
n

 l
if

e
-c

y
cl

e

Fig. 1. Overview of the READEX methodology.

PTF also provides the Tuning Plugin Interface for the
development of new plugins. It builds on the common mea-
surement tools infrastructure Score-P [13].

IV. APPROACH

The READEX approach combines the concept of system
scenarios with automatic energy and performance tuning into a
holistic tools-aided methodology spanning over the major parts
of the HPC application life-cycle, namely, application devel-
opment and performance tuning at design-time and production
runs at run-time. Figure 1 provides a high-level overview of
the methodology.

In order to support the user as well as to allow for a smooth
user interaction during the whole process, the Pathway [14]
performance engineering workflow tool will be extended with
the READEX workflow allowing to automate routine tasks as
well as to capture and to protocol the progress. The READEX
workflow can also be used with other workflow tools or carried
out manually.

A. Application Instrumentation and Analysis Preparation

During the first step of the methodology, the application is
instrumented and application-domain knowledge is provided
by the user if desired using a new programming paradigm
to be developed in the project. It will provide a possibility
for exposing parameters that define dynamic behavior of
the application to the READEX tool-suite. These application
domain parameters, referred to as identifiers, will enhance dis-
tinguishing of different system scenarios and correspondingly
adapting system configurations in order to improve overall
application performance and energy characteristics.

The paradigm will also allow developers to expose addi-
tional application-level tuning parameters to the tuning pro-
cess, e.g., alternative code-paths that will be chosen based on
the provided identifiers.

In addition to the optional information provided by the
user, the application is instrumented by automatically inserting
probe-functions around relevant code regions using existing
technologies from the Score-P infrastructure which allows for
a fine-grained analysis and tuning.

B. Application Pre-analysis

Based on the performance dynamics analysis capabilities
of PTF, the READEX analysis strategy will be developed. It
will automatically characterize present dynamism and indicate
the optimization potential. The latter gives the user an estimate
for the performance and energy-efficiency gains which could
be realized using the READEX methodology.

Following this strategy, the application is run with a repre-
sentative data set and relevant performance and energy metrics
are collected over the repetitive regions of the application. This
results in time-series of measurements representing temporal
evolution of each regions performance in a multi-dimensional
space. According to the system scenario methodology, each
region’s execution, represented by a point in this space, corre-
sponds to a run-time situation (RTS). By grouping the points
according to a multi-dimensional similarity function, clusters
of points with similar performance and energy properties, so
called system scenarios, are obtained.

In order to recognize present system scenarios, a classifier
based on the provided identifiers is built. It is used in the later
methodology steps for detecting a scenario before it is executed
so that the optimal system configuration can be applied. For
example, a combination of the function call-path associated
with the value of the function arguments can help distinguish
the expected function performance and, thus, to univocally
identify the upcoming scenario entered by the application.

C. Derivation of the Tuning Model

In order to build a tuning model allowing adaptation of
the system (both application and platform) to the dynamically
changing requirements, PTF and Score-P will be extended to
perform automatic search for optimal system configurations
for the scenarios identified in the previous step.

Exploration of the space of possible tuning configurations
is controlled by PTF tuning plugins, where each tuning plugin
is responsible for a specific tuning parameter. READEX will
support and develop a number of plugins for hardware, system
software, and application parameters.

To facilitate the determination of optimal platform con-
figurations, PTF will run the instrumented application. For
the identified scenarios, various system configurations are
evaluated in terms of the requested objective functions and
results are stored in the tuning database. Since the search space
for optimal configurations is potentially large, new search
strategies will have to be developed.

After all relevant system configurations are evaluated for
all system scenarios, the plugins create a tuning model based
on the information stored in the tuning database. The model
contains a look-up table providing the Pareto-optimal system
configurations for the known scenarios. The database itself is
exported as part of the tuning model, so that it can be populated
with new information during production runs.



D. Run-time Application Tuning

When it comes to production runs, the READEX methodol-
ogy uses the previously obtained knowledge about application
dynamism to adapt both the application and the platform to
the changing requirements. This task is carried out by the
low-overhead READEX Run-time Library (RRL). For the
already seen scenarios the optimal configuration is directly
extracted from the tuning model. For the un-seen ones an RRL
calibration mechanism is used to guess the optimal system
configuration based on machine-learning algorithms and the
data stored in the tuning model.

In order to qualify for Exascale deployments, the architec-
ture of the RRL will rely on maximal decentralization of tuning
decision making. Where un-avoidable, the RRL will rely on
scalable tree-like reduction networks for the determination of
global decisions. Furthermore, special attention will be given
to achieve low overhead.

E. Validation Approach

The READEX project considers two different metrics for
evaluation of the project success: the achieved improvement
in energy-efficiency, measured in energy-to-solution, and the
time and effort required to achieve this improvement compared
to the manual tuning.

For evaluation and validation of the project results,
READEX employs a co-design process in which the auto-
tuning methodology and the tool-suite are developed in parallel
with the manual tuning of selected applications and computa-
tional libraries.

The evaluation of the improvements in energy-efficiency
will be done on a system that has been installed at Technische
Universität Dresden in the first quarter of 2015. The system
will be equipped with more than 1400 power-instrumented
nodes that allow for scalable and accurate energy measure-
ments with a fine spatial and temporal granularity (CPU,
memory, and whole node with up to 1000 Samples/s) [15].

We will employ a wide variety of target applications to
validate our approach, e.g., the OpenFOAM CFD solver [16]
as well as benchmarks from the CORAL benchmark suite [17].
By choosing both industry-grade HPC applications and scal-
able benchmarks, we aim at maximising the potential impact
of the READEX project.

V. CONCLUSION

Energy and extreme parallelism are the major challenges
on the road to exascale computing. The European Union Hori-
zon 2020 READEX project will address these by providing
application developers with a tools-aided methodology for
automatic tuning of applications at run-time with respect to
dynamically changing resource requirements. The aim is to
significantly improve energy-efficiency and performance by
better exploiting the resources available to the application
while reducing the programming effort through the automation.

In achieving its ambitious goals, the project builds on two
proven technologies, the static auto-tuning and the system
scenarios methodology, to develop the first of its kind generic
dynamic auto-tuner. The envisioned methodology encompasses

the design-time and run-time parts of the application life-cycle.
In the first part the extensive knowledge about application
dynamism and optimal system configurations is derived, which
is then used to perform low-overhead and scalable dynamic
tuning at run-time.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 Programme under
grant agreement number 671657.

REFERENCES

[1] Run-time Exploitation of Application Dynamism for Energy-efficient
Exascale computing (READEX), last accessed August 10, 2015.
[Online]. Available: http://www.readex.eu

[2] E. César, A. Moreno, J. Sorribes, and E. Luque, “Modeling mas-
ter/worker applications for automatic performance tuning,” Parallel
Computing, vol. 32, no. 7, pp. 568–589, 2006.

[3] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A
scalable auto-tuning framework for compiler optimization,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 1–12.

[4] ENabling technologies for a programmable many-CORE (ENCORE),
last accessed August 10, 2015. [Online]. Available: http://www.
encore-project.eu/

[5] The OmpSs Programming Model, last accessed August 10, 2015.
[Online]. Available: https://pm.bsc.es/ompss

[6] S. Benkner, S. Pllana, J. L. Träf, P. Tsigas, U. Dolinsky, C. Augonnet,
B. Bachmayer, C. Kessler, D. Moloney, and V. Osipov, “Peppher:
Efficient and productive usage of hybrid computing systems,” IEEE
Micro, vol. 31, no. 5, pp. 28–41, 2011.

[7] I. Filippopoulos, F. Catthoor, and P. G. Kjeldsberg, “Exploration of
energy efficient memory organisations for dynamic multimedia ap-
plications using system scenarios,” Design Automation for Embedded
Systems, vol. 17, no. 3-4, pp. 669–692, 2013.

[8] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Ma-
magkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, and
F. Vandeputte, “System-scenario-based design of dynamic embedded
systems,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 14, no. 1, pp. 3:1–3:45, 2009.

[9] Z. Ma, P. Marchal, D. P. Scarpazza, P. Yang, C. Wong, J. I. Gómez,
S. Himpe, C. Ykman-Couvreur, and F. Catthoor, Systematic method-
ology for real-time cost-effective mapping of dynamic concurrent task-
based systems on heterogenous platforms. Springer Science & Business
Media, 2007.

[10] S. Benkner, F. Franchetti, H. M. Gerndt, and J. K. Hollingsworth,
“Automatic Application Tuning for HPC Architectures (Dagstuhl
Seminar 13401),” Dagstuhl Reports, vol. 3, no. 9, pp. 214–244, 2014.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2014/4423

[11] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin et al., “Autotune: A
plugin-driven approach to the automatic tuning of parallel applications,”
in Applied Parallel and Scientific Computing. Springer, 2013, pp. 328–
342.

[12] “Automatic Online Tuning (AutoTune),” last accessed August 10,
2015. [Online]. Available: http://www.autotune-project.eu/

[13] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony et al., “Score-p:
A joint performance measurement run-time infrastructure for periscope,
scalasca, tau, and vampir,” in Tools for High Performance Computing
2011. Springer, 2012, pp. 79–91.

[14] V. Petkov, M. Gerndt, and M. Firbach, “Pathway: Performance analysis
and tuning using workflows,” in IEEE 10th International Conference on
High Performance Computing and Communications (HPCC). IEEE,
2013, pp. 792–799.



[15] HDEEM: HIGH DEFINITION ENERGY EFFICIENCY MON-
ITORING, last accessed August 10, 2015. [Online]. Avail-
able: https://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/
forschung/projekte/hdeem

[16] H. Jasak, A. Jemcov, and Z. Tukovic, “OpenFOAM: A C++ library for
complex physics simulations,” in International workshop on coupled
methods in numerical dynamics, vol. 1000, 2007, pp. 1–20.

[17] “Coral benchmarks,” last accessed August 10, 2015. [Online].
Available: https://asc.llnl.gov/CORAL-benchmarks/




