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Assignment

A 3D straight tube (fluid and solid) should be modelled and may be tested
with the following boundary conditions at the outlet:

i) Zero reflection (Absorbing)

ii) Two- and/or three-element Windkessel model

iii) Network model

A fluid structure interaction simulation should be run on all cases, using
Abaqus (solid), Fluent (fluid) and Tango (coupling). The influence of grid
refinement and the CFL-condition should be investigated. For the solid part,
the effect of using shell elements instead of 3D-elements should be looked
at. A possibility is to use Pyformex for grid generation. As an extension
the same boundary conditions may be tested on an idealized aortic arch
geometry, and further a patient specific geometry.
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Sammendrag

Målet med denne studien var å undersøke ulike utløpsgrensebetingelser for
et rett, elastisk rør, ved hjelp av fluid-struktur-interaksjonssimuleringer. I
tillegg til å se p̊a grensebetingelser, var det ønskelig å se hvordan forskjel-
lige parametre, som tidsskritt, cellestørrelse og CFL-tall ville p̊avirke resul-
tatene. Det ble kjørt simuleringer med forskjellige tidsskritt og nett. Det
hadde liten innvirkning p̊a resultatene å forandre disse parametrene, bortsett
fra n̊ar tidsskrittene var veldig små. Da ville ikke simuleringene konvergere.
Fire ulike grensebetingelser ble testet p̊a utløpet: refleksjonsfri rand, en gitt
refleksjonsfaktor p̊a Γ = 0.9, og to- og treelements Windkesselmodeller. Den
refleksjonsfrie modellen gav nesten ingen refleksjoner, mens simuleringen der
refleksjonsfaktoren var satt til Γ = 0.9 p̊a utløpet gav den gitte mengden
refleksjoner. For det refleksjonsfrie tilfellet var resultatene unøyaktige sam-
menlignet med enklere analytiske løsninger, fordi antakelsen om Poiseuille-
strømning var ugyldig. Nøyaktigheten økte da hastighetsprofilet ble endret
fra uniformt til parabolsk. Det var ikke mulig å modellere en refleksjons-
fri rand med en to-elements Windkesselmodel. Refleksjoner oppstod ogs̊a
n̊ar parametrene var valgt slik at de teoretisk sett ikke skulle ha gitt reflek-
sjoner. Dette kunne bedres ved å bruke en tre-elements Windkesselmodel.
Da ble mengden refleksjoner veldig liten hvis parametrene ble valgt slik at
det teoretisk sett ikke skulle oppst̊a refleksjoner.
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Abstract

The goal of this study was to investigate different outlet boundary condi-
tions for a straight compliant tube, by the means of fluid-structure inter-
action simulations. In addition to investigating boundary conditions it was
desirable to see how different parameters, like time step, grid refinement
and CFL-number would influence the results. Simulations were run with
different time steps and grids. Changing these parameters had only mi-
nor influence on the results of the simulations, except for very small time
steps, when the simulations would not converge. Four different boundary
conditions were tested at the outlet: A reflection free boundary, an im-
posed reflection factor of Γ = 0.9, a two-element Windkessel model and a
three-element Windkessel model. The reflection free model gave almost no
reflections, while the simulation with a reflection factor of Γ = 0.9 gave the
imposed amount of reflections at the outlet. For the reflection free case,
comparing the results with simpler, analytical solutions gave poor accuracy,
because the assumption of Poiseuille flow was invalid. Changing the veloc-
ity profile at the inlet from uniform to parabolic improved the accuracy.
The two-element Windkessel model was not able to model a reflection free
outlet. Reflections would occur even when the parameters were chosen to
give a theoretically reflection free outlet. This was improved by using the
three-element Windkessel model. When choosing parameters that would
theoretically give zero reflections, the amount of reflections was very low.
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1 Introduction

For many engineering problems the influence of the surrounding fluid on the
displacements of a structure is negligible, and the dynamics of a structure has
negligible influence on the flow and pressure fields of a fluid. Nevertheless, in
some cases this interaction is not negligible. The flow of an incompressible
fluid in a compliant tube is one such case. A physical example of this is blood
flow in arteries. The deformation of the compliant blood vessels influences
the blood pressure, and the pressure of the fluid determines how the blood
vessels deform. A coupling between the fluid and the structure is needed
to model the propagation of the pressure and flow waves that occur in the
cardiovascular system.

Cardiovascular diseases are the main cause of death in developed coun-
tries [7, p.36]. The World Health Organization has estimated that about
30 % of all deaths globally in 2008 were due to diseases in the cardiovascular
system [16]. Good understanding of the mechanics of the human cardiovas-
cular system can be of great help when it comes to predicting and preventing
cardiovascular diseases.

Fluid-structure interaction (FSI) simulations make it possible to accu-
rately model blood flow in arteries. FSI-simulations are very computational
expensive though, so simplifications have to be made. A necessary simpli-
fication to reduce the computational cost, is to divide the cardiovascular
system into smaller parts and look at one part at a time. To make such a
simplification valid, boundary conditions that give a good representation of
the rest of the cardiovascular system are crucial.

In this study boundary conditions for blood flow through a straight, com-
pliant tube are investigated. Using a straight tube is a very basic approach,
but there are many factors that can affect the results of the simulations,
even for a very simple geometry. If the results from a simple analysis are
not reliable, they certainly will not be for more advanced models. Therefore,
in addition to testing different boundary conditions, it will be investigated
how different meshes and time steps influence the results of a simulation. As
far as it is possible, the results will be compared to the analytical solution of
similar but more simplified problems, to see if they are physical or not. It is
also interesting to see how different boundary conditions are able to model
wave reflections.

This report is organized as follows: In chapter 2 all relevant theory is pre-
sented. This includes governing equations, the analytical solutions of some
simple, relevant cases, the mathematics behind the boundary conditions that
will be tested and some general information about FSI-simulations and the
software used in this study. Parts of this chapter1 is based on the report
from the pre-project for this thesis that was written by the author in the fall

1Sections 2.1, 2.2.1, 2.2.2, 2.3, 2.4, 2.5.1, and 2.5.2.
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of 2012 [8]. In chapter 3 all the cases for the simulations are presented with
geometry, meshes, material properties and boundary conditions, before the
results are presented and discussed in chapter 4.
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2 Theory

2.1 Physiology

The cardiovascular system consists of the heart and the blood vessels. The
heart is mainly built up of myocardium, which is a type of muscle cell that
has lower contractability and much higher resistance to fatigue than the
other muscles in the body [7, p. 3]. It has four chambers: the left and
right atria on top, and the left and right ventricles at the bottom. The left
ventricle is where the blood is pumped through the aortic valve and into the
aorta.

The blood vessels distribute oxygenated blood to the body and bring
deoxygenated blood back to the heart. The system can be divided into
two parts; the pulmonary system, which consists of the right part of the
heart and the blood vessels that distribute and collect blood to and from
the lungs, and the systemic system, which consists of the left part of the
heart and the network of vessels that bring blood to and from the micro
circulation in the rest of the body. The systemic system consists of blood
vessels with three different tasks. The arteries carry blood from the heart
to the body and the veins carry the blood back to the heart. The capillaries
or the microcirculation carry out exchange processes with other tissue. The
diameter of the blood vessels vary from about 0.006 mm to 0.01 mm for
the capillaries, to roughly 25 mm for the aorta and 30 mm for the vena
cava [7, p. 6]. The aorta is the artery closest to the heart.

The walls of the large arteries have three layers: the intima (internal
layer), the media, and the adventitia (external layer). The channel for blood
flow inside the vessel is called the lumen, and the interface between the
flowing blood and the vessel wall is called the endothelium. Some of the tasks
of the endothelium are to control the blood-wall exchange and regulation of
blood coagulation. The endothelial cells are subjected to normal stresses
from the blood pressure, shear stresses resulting from friction of the flowing
blood, and circumferential tension from neighbouring cells. Blood vessels
are compliant, so the area of the vessel varies with the pressure pulse of the
flow.

Blood consists of cells and plasma. The plasma takes up about 55 %
of the blood volume, and the main ingredient in blood plasma is water
(approximately 92 %) [7, p. 22]. The volume fraction of blood cells is called
haematocrit. There are three main groups of blood cells: erythrocytes,
leukocytes and platelets. The erythrocytes (red blood cells) are the largest
group and takes up 97 % of the cell volume [7, p. 22]. Together with
the blood plasma they determine the mechanical properties of blood. The
leukocytes (white blood cells) are involved in the immune defence of the
body, and the platelets or thrombocytes are involved in blood coagulation.

There are two steps in the cardiac cycle: systole and diastole. Systole

3



is the period when the heart contracts and blood is ejected from the left
ventricle into the aorta (and similarly for the right side of the heart), and
diastole is the period when the heart relaxes. The arterial blood pressure
can be defined similarly; it varies between systolic (maximum) and diastolic
(minimum) pressure.

2.2 Fluid Model

2.2.1 Governing Equations

The governing equations in fluid dynamics are the equation of mass conser-
vation and the Navier-Stokes equations. For an incompressible, Newtonian
fluid these are given by Eqs. (1) and (2) respectively:

∇·v = 0 (1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

µ

ρ
∇2v + b (2)

where v is the velocity vector, p is the pressure, ρ is density, µ is viscosity
and b is a vector of body forces.

2.2.2 Material Model

In 1687 Sir Isaac Newton postulated the following relationship between the
shear stress and the velocity gradient for 1D fluid flow [15, p. 26]:

τ0 = µ
dvx
dy

(3)

Equation (3) can be generalized to [10, p. 326]:

T = −pI + 2µD (4)

for incompressible fluids, where T is the stress tensor, I is the identity
matrix and D is the strain rate tensor. This is the material model for a
Newtonian fluid, and the constitutive equation that is used in the Navier-
Stokes equations.

2.2.3 The CFL- and the Reynolds number

The CFL-number is an important dimensionless number for determining
whether or not a numerical computation is stable. It is defined as:

CFL =
c0∆t

∆x
(5)
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where c0 is the speed with which disturbances propagate, ∆t is the time step
and ∆x is the grid size. For most of the conditionally stable Finite Volume
Method-schemes (see chapter 2.5.1) the stability condition is:

|CFL| ≤ 1 (6)

A physical interpretation of the CFL-number is that disturbances should
not propagate over a distance longer then the size of the cell during one
time step.

The Reynolds number is a ratio between inertial and viscous forces. For
pipe flow it is defined as:

Re =
ρv0D

µ
(7)

where D is the diameter of the pipe, and v0 is the mean velocity. The
Reynolds number is used to define the transition from laminar to turbu-
lent flow. For circular pipe flow the accepted critical Reynolds number for
transition to turbulent flow is ReD,crit ≈ 2300 [15, p. 342].

2.2.4 Transient flow in One-Dimensional Stiff Tubes

Assuming one-dimensional flow where the velocity vx = vx(t) is a function
of time only, the Navier-Stokes equations are reduced to:

∂p

∂x
= −ρdvx

dt
(8)

For a velocity that is varying as a squared sine wave in time, vx = B sin2(πft),
where B is the amplitude of the velocity wave and f is the frequency, the
pressure gradient is given as:

∂p

∂x
= −πBfρ sin(2πft) (9)

or:

pin = pout + πBfρL sin(2πft) (10)

where L is the length of the tube.

2.2.5 Pulsatile Flow in One-Dimensional Compliant Tubes

In compliant tubes the cross-sectional area of the tube A, depends on the
pressure. The compliance C is defined as:

C =
∂A

∂p
(11)
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The area change with time has to be taken into account in the continuity
and momentum equation. For one-dimensional flow of an incompressible,
Newtonian fluid, and with the volume flow Q as the flow variable, Eqs. (1)
and (2) can be written as [9, ch. 8]:

∂A

∂t
+
∂Q

∂x
= 0 (12)

∂Q

∂t
+

∂

∂x
(
Q2

A
) = −A

ρ

∂p

∂x
+
πD

ρ
τ0 (13)

respectively, where x is the stream wise direction, D is the diameter of the
tube and τ0 is the shear stress. The friction term depends on the local
velocity profile, but assuming fully developed Poiseuille flow the shear stress
is given by:

τ0 =
8µQ

DA
(14)

The linearized version of the momentum equation, (13), then becomes:

∂Q

∂t
= −A

ρ

∂p

∂x
+

8πµQ

ρA
(15)

Using the definition of the compliance C and the pulse wave velocity c2
0 =

1
C
A
ρ , the area can be eliminated from Eqs. (12) and (15):

∂p

∂t
= − 1

C

∂Q

∂x
(16)

∂Q

∂t
= −c2

0C
∂p

∂x
+ bQ (17)

where b = 8πµ
ρA . Cross-derivation and subtraction give the wave equations

with damping for pressure and flow:

∂2p

∂t2
− c2

0

∂2p

∂x2
+
b

C

∂Q

∂x
= 0 (18)

∂2Q

∂t2
− c2

0

∂2Q

∂x2
− b∂Q

∂t
= 0 (19)

For inviscid flow (b = 0), Eqs. (18) and (19) are reduced to the standard
wave equations.

The Moens-Korteweg formula for the pulse wave velocity

The Moens-Korteweg formula relates the pulse wave velocity to the geo-
metrical and material properties of a tube and the flow in it. It is derived
from Hooke’s law:
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∆σθ = E
dr

r
(20)

where ∆σθ is the change in circumferential stress, E is the Young’s modulus
and r is the radius of the tube. For small deformations the following relations
between pressure and stress applies before and after deformation:

σθ1 =
pr

h
(21)

σθ2 ≈
(p+ dp)r

h
(22)

where h is the thickness of the tube. Combining the expressions for σθ gives:

dp

dA
=

Eh

2Ar
(23)

which is the inverse of the compliance. Substitution into the definition of
the pulse wave velocity, the Moens-Korteweg formula is obtained [9, ch. 8]:

c0 =

√
Eh

2ρr
(24)

Analytical solution of the wave equations with damping

Equations (18) and (19) can be solved by proposing a solution on the form:

Q = Q0e
jω(t−x

k
) (25)

p = p0e
jω(t−x

k
) (26)

where j is the imaginary unit j =
√
−1, ω is the angular frequency and k is

the wave speed with damping. Derivating and inserting into Eqs. (18) and
(19), the following characteristic equations are established:

ω2 − (
c0ω

k
)2 + jbω = 0 (27)

p0ω
2 − (

c0ω

k
)2 + j

bω

Ck
Q0 = 0 (28)

rewriting Eq. (27) gives an expression for k2:

k2 =
(c0ω)2

ω2 + jbω
(29)

Writing Eq. (29) on polar form and taking the square root gives:
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k = ±c0(1 + (
b

ω
)2)−

1
4 e−j

φ
2 (30)

where φ = arctan( bω ), or:

|k| = c0(1 + (
b

ω
)2)−

1
4 (31)

kr = |k| cos(
φ

2
) (32)

ki = |k| sin(
φ

2
) (33)

where kr is the real part of k and ki is the imaginary part of k.
Now that k is known, the damping term in Eq. (25) can be established:

∓j ω
k

= ± ω

|k|
sin(

φ

2
)∓ j ω

|k|
cos(

φ

2
) (34)

A necessary condition for damping to be present is that the real part of Eq.
(34) is negative. The solution then becomes:

Q = Q0e
jωte−γdx (35)

where γd = ω
|k| sin(φ2 ) is the damping coefficient. By using the definition of

the angle φ, the expression for γd can be rewritten to:

γd =
b

2c0
(1 + (

b

ω
)2)

3
4 (36)

so the damping coefficient is independent of frequency for b/ω << 1. Writing
out the expression for b and using the Moens-Korteweg formula for c0 it
becomes clear that γd is a function of geometry and material properties
only, for b/ω << 1:

γd =
µ

D
√
ρEhD

(37)

where D is the diameter and h is the thickness of the tube.

Characteristic and input impedance

For the inviscid form of Eqs. (18) and (19), a solution on the following
form can be suggested [9, ch. 8]:

p = p0f(x− ct) + p∗0g(x+ c0t) (38)

Q = Q0f(x− ct) +Q∗0g(x+ c0t) (39)
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where f and g are waves travelling forward and backward respectively, with
wave speed c0. Inserting into the inviscid version of Eq. (15),

∂Q

∂t
= −A

ρ

∂p

∂x
(40)

gives:

f ′(p0
A

ρ
−Q0c0) + g′(p∗0

A

ρ
+Q∗0c0) = 0 (41)

This has to be valid for arbitrary functions f and g, so:

Zc =
p0

Q0
=
ρc0

A
= − p

∗
0

Q∗0
(42)

have to be true. Zc is called the characteristic impedance of the flow, and is a
relation between pressure and flow for a unidirectional wave. The character-
istic impedance can also be expressed in terms of geometrical and material
parameters, by using the Moens-Korteweg formula for the pulse wave veloc-
ity:

Zc =

√
ρEh

A2D
(43)

Another useful parameter that is not restricted to unidirectional waves is
the input impedance Zin, which is defined as the ratio of the pulsatile com-
ponents of pressure and flow, and is a function of the angular frequency:

Zin(ω) =
p(ω)

Q(ω)
(44)

Wave reflections

For tubes that are not infinitely long, straight, and cylindrical, the boundary
conditions at the end of the tube have to be taken into account. In many
cases waves will be reflected. Wave reflections occur when there is a change
in the characteristic impedance [9, ch. 8]. A useful measure for the amount
of wave reflections is the reflection factor Γ, defined by:

Γ =
pb
pf

= −Qb
Qf

(45)

where the subscript f denotes forward travelling waves and b backward
travelling waves. The reflection factor can also be expressed in terms of the
input impedance and the characteristic impedance:
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Γ =
Zin − Zc
Zin + Zc

(46)

The terminal impedance ZT = pout
Qout

can be used instead of the input impedance
when looking at an outlet. Setting Γ = 0 gives a reflection free boundary.

2.2.6 Stationary Flow in Compliant Tubes

For laminar, fully developed pipe flow, Poiseuille flow is a valid simplifica-
tion from the Navier-Stokes equations. Then the following relation between
pressure gradient and flow is obtained [9, ch. 8]:

dp

dx
= −8πµ

A2
Q (47)

For a compliant tube the pressure can be substituted by the cross-sectional
area, to give:

dA

dx
= −C 8πµ

A2
Q (48)

Integration gives:
A(x)3 = A(0)3 − 24πµCQx (49)

or:

Q(x) =
A(0)3 −A(x)3

24πµCx
(50)

so there is a non-linear relation between area and flow for compliant tubes.
Using the simple constitutive model A(p) = A0+C(p−p0), a similar relation
between pressure and area is obtained:

p(x) = p0 +
A(x)−A(0)

C
(51)

or pressure and flow:

Q =
A(0)3 − (A(0) + C(p(x)− p(0)))3

24πµCx
(52)

2.2.7 Windkessel Models

Windkessel models are examples of lumped models. In cardiovascular biome-
chanics this means that the physics of the entire systemic arterial system are
represented by a few parameters [9, ch. 7]. The idea behind the Windkessel
models is the similarity between the cardiovascular system and a fire hose.
In a fire hose the pulsatile motion of the flow from the piston is damped by
an air chamber (or Windkessel in German), so a continuous flow comes out
of the hose. In the cardiovascular system the heart is the piston and the
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large arteries are the air chamber. The compliance of the arteries damps
the pulsatile motion of the flow so that it is almost completely smooth in
the peripheral arteries.

The two-element Windkessel model was introduced by Otto Frank in
1899, as a mathematical model for such a system. Two parameters, a resis-
tance R and a compliance C are included in this model. Later the model
has been extended to include the characteristic impedance Zc, in what is
called the three-element Windkessel model. The two models are explained
in more detail below.

Two-element Windkessel Model

The mathematical representation of the two-element Windkessel model is
obtained by demanding mass conservation. For a large artery this can be
written as:

Q = Qa +Qp (53)

where Q is the flow into the artery, Qp is the flow out of the artery, towards
the periphery, and Qa is the volume stored in the artery per time unit; the
difference between inflow and outflow. Equation (53) can be written as a
differential equation by introducing the peripheral resistance R and the total
arterial compliance CV = ∂V

∂p , which describes how the volume V changes
with the pressure [9, ch. 7]:

Qa +Qp =
∂V

∂p

∂p

∂t
+
p

R
= CV

∂p

∂t
+
p

R
(54)

On a more standard form Eq. (54) can be written as:

∂p

∂t
+

p

RCV
=
Q(t)

CV
(55)

By expressing pressure and flow solutions as series of linearly indepen-

dent Fourier modes, p =
N∑
n=0

pne
jωnt and Q =

N∑
n=0

Qne
jωnt and substituting

into Eq. (55), an expression for the impedance of the two-element Wind-
kessel model can be established [9, ch. 7]:

ZWK2
n =

R

1 + jωnRCV
(56)

with real part:

ZWK2
n,real =

R

1 + (ωnRCV )2
(57)

and imaginary part:
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ZWK2
n,imag =

ωnR
2CV

1 + (ωnRCV )2
(58)

Three-element Windkessel Model

In addition to the peripheral resistance R and the total arterial compliance
CV , the three element Windkessel model has the characteristic impedance
Zc of the artery as a parameter. The characteristic impedance comes into
the model by looking at the pressure drop between the inlet and a point
downstream, which is given by:

p− pd = ZcQ (59)

where p is the pressure at the inlet and pd is the downstream pressure. The
relation between pd and Q is given by the two-element Windkessel model:

∂pd
∂t

+
pd
RCV

=
Q

CV
(60)

Substituting Eq. (59) into Eq. (60) gives the differential equation for the
three-element Windkessel model [9, ch. 7]:

∂p

∂t
+

p

RCV
=

Q

CV
(1 +

Zc
R

) + Zc
∂Q

∂t
(61)

An expression for the impedance of the three-element Windkessel model
can be established in a similar way as for the two-element Windkessel model.
This gives:

ZWK3
n =

R+ Zc + jωnRZcCV
1 + jωnRCV

(62)

with real part:

ZWK3
n,real =

R

1 + (ωnRCV )2
+ Zc (63)

and imaginary part:

ZWK3
n,imag =

ωnR
2CV

1 + (ωnRCV )2
(64)
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2.3 Solid Model

2.3.1 Governing Equations

The governing equation in solid mechanics is the Cauchy equation of mo-
tion, which is a differential form of the balance of linear momentum for a
continuum. It is given by [9, p. 18]:

ρ
d2u

dt2
−∇ ·T = ρb (65)

where u is the displacement vector, T is the stress tensor and b is a vector
of body forces. A balance of angular momentum has to be fulfilled as well.
This turns out to be true if:

Tij = Tji (66)

where Tij and Tji are components of the stress tensor T. For derivations
see [9, p. 18].

While Cauchy’s equation of motion relates forces to stresses, a kinematic
condition is necessary to relate strains to displacements. For small deforma-
tions this can be expressed as follows:

Eij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (67)

where Eij are the components of the Green strain tensor (not to be confused
with the Young’s modulus E).

2.3.2 Material Model

To close the system of equations for the solid model, a relation between
stresses and strains is necessary. This relation depends on the material of
the model and is called a constitutive relation. For an elastic material,
stresses are functions of strains and particle coordinates only, and for a
linear-elastic material this relation is linear. The most general constitutive
equation for a linear-elastic material is given by:

T = CE (68)

where C is a fourth order tensor of material constants. In the most general
case, for a completely anisotropic material, the elastic tensor C has 36 in-
dependent constants (due to the symmetry of the stress and strain tensors,
see Eq. (66), it is reduced from 81 to 36). For an isotropic linear-elastic
material the number of independent constants is reduced to two; the Youngs
modulus E and the Poisson’s ratio ν. On matrix form, with index notation,
Eq. (68) is then given by [10, ch. 7.2]:
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Tij =
E

1 + ν
[Eij +

ν

1− 2ν
Ekkδij ] (69)

2.4 Fluid-Structure Interaction Problems

A fluid-structure interaction problem (FSI) on a domain Ω, can be divided
into a fluid subdomain Ωf and a solid subdomain Ωs, with boundaries Γf
and Γs respectively, and the fluid-structure interface Γi. This is illustrated
in figure 1. In the following, the subscript f denotes the fluid domain and s
denotes the solid domain.

Figure 1: Illustration of the FSI problem domain. From [5].

For equilibrium at the fluid-structure interface the following kinematic
and dynamic conditions have to be fulfilled at Γi [5]:

vf = vs =
dus
dt

(70)

Tf · nf = −Ts · ns (71)

where n is a unit outward-pointing normal vector.

2.4.1 Lagrangian/Eulerian/ALE-frame

Structures are usually subjected to small displacements. When solving
structural equations it is therefore reasonable to perform calculations with
respect to the deformed configuration. This is called a Lagrangian formu-
lation of the problem; a particle is followed when it moves in space. If
instead of following the particle, a certain point in space is observed, an
Eulerian formulation is used. This is the preferred method for fluids as they
are subjected to large displacements, and it is the velocity field rather than
the displacement field which is of interest. For fluid-structure interaction
problems a compromise between an Eulerian and Lagrangian formulation is
useful. It is problematic to use an Eulerian frame since the fluid domain
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deforms with the compliant walls, but it is unnecessary to follow a fluid
particle through the entire system.

An Arbitrary Lagrangian Eulerian (ALE) formulation is a reference
frame where the computational domain moves with another velocity than
the material. It is reasonable to choose the computational domain to move
with the deforming walls.

2.4.2 Monolithic and Partitioned Solution Procedures

There are two approaches to solving an FSI-problem; a monolithic and a
partitioned approach. A monolithic procedure solves the whole problem
(fluid and solid) simultaneously in one solver. A partitioned solution proce-
dure uses one solver for the fluid problem, another one for the solid problem
and a coupling algorithm to perform iterations between the two problems.

Both approaches have their advantages and disadvantages. In a mono-
lithic method the interaction can be taken into account during the solution
process and no iterations have to be performed between the solution of struc-
tural and fluid equations. However, a global solver is needed so the software
is usually less modular. A numerical scheme that is optimal for a fluid prob-
lem might not be as good for the solid case, and with a monolithic approach
it is difficult to get optimized solvers for the entire problem. In a partitioned
approach different software are used for the fluid and structure parts of the
problem, so the numerical schemes may be optimized in each solver. But
then again, great care have to be taken to maintain efficiency in the coupling
algorithm, as several coupling iterations per time step are usually needed.
Also, stability of the coupling scheme have to be considered, since not all
coupling algorithms are unconditionally stable [7, p. 307] [5, p. 3].

2.4.3 Strong/Weak coupling (Implicit/Explicit)

In a strongly or implicitly coupled scheme Eqs. (70) and (71) are fulfilled
after time discretization. Iterations are usually required to achieve this. In
a weakly or explicitly coupled scheme, the structural and fluid equations
are solved a fixed number of times in each time step, so equilibrium is not
necessarily satisfied on Γi [7, p.307] [5, p. 12]. A monolithic approach is
generally strongly coupled, while a partitioned approach can be either one.

Writing the flow solver as y = F(x), where y represents the stress and
x represents the displacement of the fluid-structure interface, and similarly
the structural solver as x = S(y), Degroote presents the most basic of the
explicit schemes, also called the conventional serial staggered (CSS) scheme,
as given in table 1 [5, p. 12].

The strongly coupled or implicit schemes enforce equilibrium on the
fluid-structure interface with iterations in each time step. The most ba-
sic techniques uses Jacobi or Gauss-Seidel iterations between the fluid and
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1. Solve the flow equations yn+1 = F(xn).
2. Solve the structural equations xn+1 = S(yn+1).
3. Go to the next time level.

Table 1: The conventional serial staggered (CSS) scheme. n indicates the
time level.

structural solvers. As an example the Gauss-Seidel iteration scheme, also
proposed by Degroote, is given in table 2 [5, p. 14].

1. Solve the flow equations yk+1 = F(xk).
2. Solve the structural equations xk+1 = S(yk+1).
3. if converged then
4. Go to next time level.
5. else
6. Increase k and go to line 1.
7. end if

Table 2: The Gauss-Seidel iteration scheme. k is the coupling iteration
within a given time step n.

The schemes included here are only given to easily illustrate the differ-
ence between explicit and implicit coupling, and are not recommended in
use. The CSS-scheme is only first order accurate in time and requires a
smaller time step than the flow and structural solvers for stability. Implicit
schemes with Jacobi or Gauss-Seidel iterations converge slowly or not at all.
For more advanced coupling schemes, where these problems are avoided,
see [5].

2.5 Numerical Solution Methods and Software

2.5.1 Computational Fluid Dynamics

”Computational fluid dynamics (CFD) is the analysis of systems involving
fluid flow, heat transfer and associated phenomena such as chemical reac-
tions by means of computer-based simulation” [14, p. 1]. The finite volume
method (FVM) is the preferred method for space discretization in CFD to-
day. In this method the governing equations are integrated over a control
volume, and the integral form is discretized. This gives a clear physical
interpretation of the problem [13] [14].

The FVM’s success is based on its capability to capture shocks, that
local grid adaption is possible, and its geometric flexibility, although it is
not as good as the finite difference method (FDM) and finite element method
(FEM) when it comes to higher orders of accuracy [13]. For the simulations
in this study, the ANSYS 12.0 CFD-solver Fluent is used. Fluent uses FVM
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to discretize the problem domain in space. The control volumes are cell-
centered so they correspond directly with the mesh [3].

In Ansys several measurements of the mesh quality are available. The
most general measure is the Element Quality which is based on a ratio be-
tween element volume and edge length. A value of 1 (best) indicates a
perfect cube and 0 (worst) indicates zero or negative volume [1, p. 124].
Another important quality measure is the skewness of the mesh. This de-
termines how close to equilateral or equiangular a cell or face is. In ANSYS
the skewness quality parameter is a number between 0 and 1, where 0 (best)
is an ideal cell/face and 1 (worst) is a completely degenerate cell. A value
below 0.5 is considered good and below 0.25 excellent [1, p. 133].

2.5.2 Computational Structural Mechanics

For structural problems the finite element method (FEM), or finite element
analysis (FEA), is the most popular solution method. In general it is a
method for solving field problems numerically. FEM differs from FVM in
that it approximates the field by piecewise interpolation of a field quantity,
usually by polynomial interpolation, which gives a continuous field. Most
types of finite elements are based on displacement fields. Values of the
field quantity are calculated at nodes, which are points where elements are
connected, loads are applied and boundary conditions are imposed [4].

For FEA there are no restrictions on geometry, loads or boundary condi-
tions. Material properties need not be isotropic, and elements with different
behaviour can be combined within one model. In this study the FEM-solver
ABAQUS 6.11-1 is used.

2.5.3 Fluid-Structure Interaction

A partitioned approach is used to solve the FSI-problem in this study, with
the in-house code Tango performing the coupling iterations between the fluid
and structure solvers. An implicit coupling scheme called IQN-ILS (Interface
quasi-Newton with a least-squares approximation of the inverse Jacobian) is
employed. The algorithm is explained in depth by Degroote, [5, ch. 4.2.3],
but a short presentation of the scheme is given in the following.

Previously the notation y = F(x) and x = S(y) has been used, where y
represents the stress and x the displacement of the fluid-structure interface,
and F and S the fluid- and structure solver respectively. Combining the
expressions gives:

x = S ◦ F(x) (72)

or:
R(x) = S ◦ F(x)− x = 0 (73)
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where R(x) is the residual. Equation (73) is a non-linear system of equation
and can be solved by Newton-Raphson iterations:

R′k∆xk = −rk (74)

where:
∆xk = xk+1 − xk (75)

and:
rk = R(x) = S ◦ F(xk)− xk = x̃k+1 − xk (76)

and R′k is the Jacobian of R at xk. Iterations are run until a convergence
criterion for the residual is fulfilled: ||rk||2 ≤ ε0. An approximation has
to be used for the Jacobian of R since the Jacobians of F and S are not
available from the fluid- and structure solvers. In addition the Jacobian of
R is usually dense, so there is a considerable computational cost of solving
the Eq. (74) if there is a large number of degrees of freedom. With an
approximation R̂′ for R′ Eq. (74) can be written by means of quasi-Newton
iterations as:

xk+1 = xk + ̂(R′k)−1
(−rk) (77)

In the IQN-ILS method an approximation of the product between the in-

verse of the Jacobian and the residual, ̂(R′k)−1
(−rk), is calculated from

information obtained during previous iterations. The details of how this is
done can be found in [5]. An illustration of the scheme is given in figure 2.
As for other quasi-Newton schemes, the IQN-ILS scheme will only converge
if the initial guess is close enough to the final solution. If this is not the case
the time step has to be adjusted.

2.6 Boundary conditions

In this study, the main concern is the boundary conditions at the outlet of
a tube with one inlet and one outlet. These will be explained in detail in
the following.

For velocity components at a solid wall the most appropriate boundary
condition is usually the no-slip condition, v = 0 [14, p. 273]. In the large
arteries the wall is moving, so a corresponding condition is the kinematic
condition given by Eq. (70). More advanced models might include the
transfer of molecules from the blood into the wall in which case the velocity
component normal to the wall is not zero. Advanced boundary conditions
for the wall is outside the scope of this paper. For details see [7, p. 59].

A simple boundary condition for the structural boundary is to let the
inlet and outlet expand freely in the radial direction, but not allow them
to move lengthwise or rotate [6]. A more advanced model could take into
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Figure 2: Representation of the IQN-ILS solution scheme. Collected from
[5].

account the external tissue support at the outer wall, but this is also outside
the scope of this paper. See [12] for details.

2.6.1 Reflection free outlet

To obtain a reflection free outlet, a pressure has to be imposed. The imposed
pressure is obtained by setting the reflection factor in Eq. (46) equal to zero,
and use the relation in Eq. (44). This gives:

p = ZcQ (78)

or on differential form:

∆p = Zc∆Q (79)

Using n to indicate the time level, Eq. (79) can be rewritten to:

pn = pn−1 + Zc(Q
n −Qn−1) (80)

2.6.2 Outlet with imposed reflections

To establish the imposed pressure for a boundary with reflections, a similar
approach can be used as for a reflection free boundary. Equation (44) is
substituted into Eq. (46) to give:

Γ =
p− ZcQ
p+ ZcQ

(81)
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Rewriting Eq. (81) and writing it on differential form gives:

∆p = Zc
1 + Γ

1− Γ
∆Q (82)

Using n to indicate the time level, this gives:

pn = pn−1 + Zc
1 + Γ

1− Γ
(Qn −Qn−1) (83)

2.6.3 Two-element Windkessel model at outlet boundary

To impose the two-element Windkessel model at the outlet, Eq. (55) is
discretized with a backwards (implicit) Euler scheme:

pn − pn−1 +
∆t

RCV
pn =

∆t

CV
Qn (84)

where n indicates the time step. Rearranging to get an explicit expression
for pn gives:

pn =
1

(1 + ∆t
τ )

(pn−1 +
∆t

CV
Qn) (85)

where τ = RCV is a time constant. It can be shown that τ is the time
it takes for the pressure to decrease to 37 % of the initial pressure, as the

homogeneous solution of Eq. (55) is an exponential function p = p0e
− t−t0

τ [9,
ch. 7].

Estimations of R and CV are needed to implement Eq. (85). Note that
R is the resistance at the outlet and CV is the total arterial compliance of
the peripheral system, not the artery itself. Then R can be estimated as:

R =
p̄

Q̄
(86)

where p̄ is the mean pressure and Q̄ is the mean flow through the artery.
CV can be estimated by using the definition of the time constant τ :

CV = τ/R (87)

where τ should be chosen as a fraction of the period of the imposed pulse.
Another way to estimate the parameters R and CV or τ is by using the

real part of the expression for the impedance of the two-element Windkessel
model, Eq. (57), substituting it for Zin in the expression for the reflection
factor, Eq. (46), and set Γ = 0. This gives:

R = Zc(1 + (ωτ)2) (88)

and:
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CV =
1

ωR

√
R

Zc
− 1 (89)

2.6.4 Three-element Windkessel Model at outlet boundary

In a similar manner as for the two-element Windkessel model, the differ-
ential equation for the three-element Windkessel model, Eq. (61), can be
discretized with a backwards Euler scheme to give:

pn − pn−1 +
∆t

RCV
pn =

∆t

CV
(1 +

Zc
R

)Qn + Zc(Q
n −Qn−1) (90)

Rearranging the equation to an explicit expression for pn gives:

pn =
1

(1 + ∆t
τ )

[pn−1 + (
∆t

CV
(1 +

Zc
R

) + Zc)Q
n − ZcQn−1] (91)

For the three-element Windkessel model, Zc should be equal to the char-
acteristic impedance of the tube, and can be calculated from Eq. (43). With
Zc known, R can be estimated as:

R =
p̄

Q̄
− Zc (92)

CV can be determined in a similar manner as for the two-element Wind-
kessel, Eq. (87). The parameters for the three-element Windkessel model
can also be estimated from the setting the expression for the reflection fac-
tor, Eq. (46), equal to zero. Inserting the real part of the input impedance,
Eq. (63), for Zin gives:

R = 1 + (ωτ)2 (93)

and:

CV =
1

ωR

√
R− 1 (94)
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3 Method

All simulations were run on a computer consisting of one host (flukus) and
two compute nodes (comp0 and comp1). Tango was run on the host. Fluent
was run in parallel processing mode on one of the compute nodes (comp0).
6 Intel(R) Xeon(R), 3.00 GHz cpu’s were used for the fluid calculations.
Abaqus was run in parallel processing mode on the other compute node
(comp1). 6 Intel(R) Xeon(R), 3.00 GHz cpu’s were used for the structure
calculations as well.

The absolute convergence criterion for the residual of the interface dis-
placement was set to 10−6, and for the load at the interface to 1 (see [2, p.
15]). The maximal number of coupling iterations per time step was 50.
The convergence criterion for both continuity and momentum in Fluent was
10−6, and the maximum number of iterations in fluent was 1000. In Abaqus
the default convergence criteria were kept, and the maximum number of
increments was set to 1000.

The geometry, meshes, material properties and boundary conditions for
the different cases are presented in the following.

3.1 Geometry, Meshes and Materials

The geometry that was used was a straight tube, with the geometry used
in [6]. The dimensions of the tube are given in table 3.

Dimensions [mm]

Length 140
Inner diameter 20.5
Thickness 1.0

Table 3: Tube geometry

3.1.1 Computational Fluid Dynamics

The fluid meshes were created with the Ansys Meshing Application. The
finest mesh consists of 29 046 6-noded wedge elements, with 16 815 nodes,
a minimum element quality of 0.882 (on a scale where 0 is worst and 1 is
best) and an average quality of 0.958. The mesh has a maximum skewness
of 0.329 which is inside the limits of what is considered good quality, and an
average skewness of 0.144, which is excellent. The mesh is shown in figure
3.

Two coarser fluid meshes were created to investigate the influence of grid
refinement. The first, hereafter referred to as the medium mesh, consists
of 13 608 6-noded wedge elements, with 8126 nodes, a minimum element
quality of 0.929 and an average quality of 0.968. The mesh has a maximum
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Figure 3: Fine fluid mesh

(a) Medium fluid mesh (b) Coarse fluid mesh

Figure 4: Alternative fluid meshes

skewness of 0.241 and an average skewness of 0.13. The mesh is shown in
figure 4a. The other, hereafter referred to as the coarse mesh, consists of
5472 6-noded wedge elements, with 3596 nodes, a minimum element quality
of 0.619 and an average quality of 0.923. It has a maximum skewness of
0.484 and an average skewness of 0.18. The mesh is shown in figure 4b. A
summary of the mesh data for the three meshes are given in table 4. The
material properties of the fluid, collected from [11], is given in table 5.

Mesh Fine Medium Coarse

Number of Elements: 29 046 13 608 5472
Number of Nodes: 16 815 8126 3596
Minimum Element Quality: 0.882 0.929 0.619
Average Element Quality: 0.958 0.968 0.923
Maximum Skewness: 0.329 0.241 0.484
Average Skewness: 0.144 0.130 0.180

Table 4: Mesh data for the fluid mesh
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Parameter Value

Density [kg/m3]: 1050
Viscosity [Pa·s]: 2.678 · 10−3

Table 5: Material data for the fluid model

3.1.2 Structural Analysis

The mesh for the structure was created by Thomas Eeg for a master thesis
written in 2012 [6]. Due to technical difficulties this mesh was used directly
instead of creating a new one for this study. The mesh consists of 2300 8-
noded, linear, hexahedral elements (C3D8), with 4692 nodes, and is shown
in figure 5.

Figure 5: Structure mesh

The material parameters for the structure, collected from [11], is given
in table 6.

Parameter Value

Density [kg/m3]: 1200
Poisson’s ratio: 0.49
Young’s modulus [Pa]: 4.0 · 105

Table 6: Material data for the structure

3.1.3 Dependence on time step and grid refinement

When testing how the results would be influenced by changing grid size
and time step, the following boundary conditions were used: A velocity was
prescribed at the inlet and a pressure at the outlet. The velocity at the inlet
was ramped up to a mean velocity of v0 = 0.2 m/s during a time period of
tr = 0.1 s, where the shape of the ramp was given by a sine function:
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vramp = v0 sin(
π

2
· t
tr

) (95)

The velocity was held constant at v0 for tc = 0.15 s, to give the flow time
stabilize to stationary conditions, before a pulse with frequency of f = 20
Hz and an amplitude of vamp = 0.01 m/s was imposed:

vpulse = vamp sin2(fπ(t− (tr + tc)) + v0 (96)

A frequency of 20 Hz was chosen to be able to test for different time steps
with a reasonable resolution of the pulse. At the outlet the pressure was
ramped up to a mean pressure of p0 = 1333 Pa (10 mmHg), in the same
manner as the velocity:

p = R0Q (97)

where R0 = p0
Q0

, Q is the flow and Q0 = v0A is the mean flow. When the
velocity pulse was imposed at the inlet a reflection free pressure condition
was applied at the outlet:

pn = pn−1 + Zc(Q̃
n − Q̃n−1) (98)

where Q̃ = Q − Q0, Zc is the characteristic impedance of the flow and n
indicates the time step. The Moens-Korteweg formula, Eq. (24), was used
to calculate the wave speed. Initially both pressure and flow was zero. A
no-slip condition was prescribed at the wall.

The inlet and outlet of the structure were allowed to move radially, but
were constrained against movement and rotation in all other directions.

Simulations were run with the finest grid to investigate if the time step
had an influence on the results. Four different time steps were tested, these
are summarized in table 7.

Time step (∆t) [s] Number of time steps

0.0015 270
0.0025 160
0.005 80
0.010 40

Table 7: Time steps for time step dependence tests. The fine grid was used
in the simulations.

For the grid refinement tests a time step of 0.0025 s was used, to make
sure that there weren’t any loss of information due to too poor resolution in
time. The simulations were run for 160 time steps.
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3.1.4 Shell elements for the structure

To check if it was possible to use shell elements for the structure, and to
see how it would influence the results, a quadrilateral mesh was created.
The mesh consists of 2300 4-noded linear quadrilateral elements, with 2346
nodes; the same number of elements as for the hexahedral mesh. The mesh
is shown in figure 6.

The same boundary conditions was used as when testing the influence of
time step and grid refinement. The simulation was run with 160 time steps
of 0.0025 s, and the medium fluid mesh was used.

Figure 6: Structure mesh with quadrilateral (shell) elements

3.2 Boundary Conditions

3.2.1 Outlet with and without wave reflections

To investigate the effects of a reflection free boundary condition at the outlet,
simulations were run in two steps:

1. CFD-analysis in Fluent through Tango.

2. FSI-analysis with Abaqus as the structural solver, Fluent as the fluid
solver and Tango for the coupling.

Both the analyses were run with the same boundary conditions, time steps
and mesh to be comparable. A FEM-analysis for the structure alone was
performed to make sure the script files were correct, but the results are
omitted in this paper, since a tube with constant internal pressure is a
trivial case.

For the reflection free case, the same boundary conditions as earlier
were used for the simulation, with the small change that the constant veloc-
ity/pressure state was held for 0.1 s longer, tc = 0.25 s, as it was desirable
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to look at the stationary state as well as the effects of the disturbance. Also,
the frequency of the pulse was increased to f = 80 Hz, to make it easier to
follow the pulse propagation through the tube and to avoid a reaction at the
outlet before the entire pulse had left the inlet. The boundary conditions
were then given by the following equations:

Inlet:

v = v0 sin(
π

2
· t
tr

) t ≤ tr (99)

v = v0 tr < t < t1 (100)

v = vamp sin2(fπ(t− (tr + tc))) + v0 t1 ≤ t < t2 (101)

v = v0 t ≥ t2 (102)

where t1 = tr + tc and t2 = tr + tc + f−1. At the outlet the pressure was
ramped up to a mean pressure of p0 = 1333 Pa, in the same manner as the
velocity, but with a linear instead of a sine-shaped ramp. The mean pressure
was reached when the flow was equal to the mean flow. When the velocity
pulse was applied at the inlet, the pressure was set to give a reflection free
outlet:

p = R0Q t < t1 (103)

pn = pn−1 + Zc(Q̃
n − Q̃n−1) t ≥ t1 (104)

where R0 = p0
Q0

, Q0 = v0 · A and Q̃ = Q − Q0. Q0 was recalculated each
time step, since the area, A, changes with time. The simulations were run
for 200 time steps of 0.0025 s.

To be able to see how a reflection free outlet behaves differently than one
with reflections another FSI-simulation was run, where a reflection factor of
Γ = 0.9 was imposed at the outlet. A CFD-analysis was not performed as
wave reflections does not occur without the coupling with the structure. The
following boundary condition was imposed for the pressure at the outlet:

p = R0Q t < t1 (105)

pn = pn−1 + Zc ·
1 + Γ

1− Γ
(Q̃n − Q̃n−1) t ≥ t1 (106)

All other parameters were the same as for the reflection free simulation.
It was also interesting to see how changing the velocity profile at the inlet

affected the results for stationary conditions, especially when comparing the
pressure gradient with that of a Poiseuille flow, Eq. (47). To do this, a
parabolic velocity profile was imposed at the inlet. The velocity was ramped
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up to a mean velocity of 0.2 m/s in a similar way as for previous simulations,
and then held constant with respect to time for a long period, to give the
flow time to reach a fully developed state. Only the stationary state was
considered, so no velocity pulse was imposed.

v(r, t) = 2v(t) · (1− (
r

R
)2) (107)

where R is the radius of the tube, and v(t) is given by:

v = v0 sin(
π

2
· t
tr

) t ≤ tr (108)

v = v0 t > tr (109)

The reflection free boundary condition was imposed at the outlet. The
simulation was run for 270 time steps of 0.0025 s.

3.2.2 Two-element Windkessel model at outlet

The inlet boundary condition is the same uniform velocity condition as for
the simulation with a reflection free outlet boundary, Eqs. (99) to (102). At
the outlet the pressure was ramped up to a mean pressure of p0 = 1333 Pa
(10 mmHg) in a similar way as for previous simulations, but after the flow
and pressure have reached a steady state, a pressure pulse given by Eq. (85)
is added to the mean pressure. This gives the following boundary condition
for the outlet:

p = R0Q t < t1 (110)

pn =
pn−1 − p0 + ∆t

CV
Q̃n

1 + ∆t
τ

+ p0 t ≥ t1 (111)

where R0 = p0
Q0

, Q0 = 0.2 · A and Q̃ = Q − Q0. Using Eqs. (86) and (87)
to calculate the parameters R and CV , and choosing a decay time τ to be
half the period of the pulse, the numbers for the first case in table 8 are
obtained.

Three additional cases were run, where the parameter R was chosen and
CV was estimated using equation (89). For the first one, a higher resistance
than for the previous case was used, R = 2.5 ·107 Pa·s

m3 and Eq. (89) was used
to calculate CV . The Zc in Eq. (89) was calculated from Eq. (43) with
A as the initial cross-sectional area of the tube. For the second, the same
resistance as for the very first case was used, and CV was calculated from Eq.
(89), but here Zc was calculated from the actual area of the outlet of the tube
when the pulse passes. For the last case a lower resistance R = 1.5 · 107 Pa·s

m3

was chosen, but the same procedure as for the previous case was used to
calculate CV . The parameters for the simulations are summarized in table
8. All simulations were run for 200 time steps of 0.0025 s.
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Case R Zc CV τ

[Pa·s
m3 ] [Pa·s

m3 ] [m2

Pa ] [s]

1 1.9047 · 107 - 3.28 · 10−10 6.25 · 10−3

2 2.5000 · 107 1.3714 · 107 7.2193 · 10−11 1.80 · 10−3

3 1.9047 · 107 1.2767 · 107 7.3255 · 10−11 1.40 · 10−3

4 1.5000 · 107 1.2767 · 107 5.5468 · 10−11 0.83 · 10−3

Table 8: Parameters for the two-element Windkessel model. The Zc given
in the table was only used to calculate CV , and is not one of the model
parameters

3.2.3 Three-element Windkessel model at the outlet

The inlet condition was the same as for the two-element Windkessel model,
Eqs. (99) to (102).

At the outlet the pressure was ramped up to a mean pressure of p0 = 1333
Pa (10 mmHg) in a similar way as for the previous simulations. When a
steady state was reached a pressure pulse given by Eq. (91) was added to
the mean pressure. This gives:

p = R0Q t < t1 (112)

pn = (
1

1 + ∆t
τ

)(pn−1 − p0 + (
∆t

CV
(1 +

Zc
R

) +

+Zc)Q
n − ZcQn−1) + p0 t ≥ t1 (113)

where R0 = p0
Q0

, Q0 = 0.2 · A, Q̃ = Q − Q0, τ = RCV and Zc is the
characteristic impedance of the tube.

Three different cases were run, with different numbers for the parameters
R and CV . In the first case Eq. (92) was used to estimate the resistance R
and the total arterial compliance CV was estimated using Eq. (87), where τ
was chosen to be half the period of the imposed velocity pulse, τ = 0.00625 s.
For the second case the same R was used, but Eq. (94) was used to estimate
CV . This should theoretically give zero reflections. In the third case a higher
resistance, R = 1.5·107 Pa·s

m3 was chosen to see how this influenced the results.
The total arterial compliance was estimated from Eq. (94). In all cases the
characteristic impedance was recalculated for each time step, with A as the
actual cross-section area of the tube, but for the first case the initial Zc was
used to estimate R. The simulations were run for 200 time steps of 0.0025
s. The parameters for the simulations are summarized in table 9.
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Case R Zc CV τ

[Pa·s
m3 ] [Pa·s

m3 ] [m2

Pa ] [s]

1 5.333 · 106 1.3714 · 107 1.1719 · 10−9 6.25 · 10−3

2 5.333 · 106 - 8.6148 · 10−7 4.5943
3 1.500 · 107 - 5.1367 · 10−7 7.7050

Table 9: Parameters for the three-element Windkessel model. The Zc given
here was used to calculate R in case 1, and was the initial Zc used in the
simulations. Zc was recalculated each time step, since the cross-sectional
area of the tube changes with time
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4 Results and Discussion

In this chapter the results from all the cases that have been described will
be presented and discussed. The cases are presented in the same order as
in the previous chapter, starting with dependence on time step and grid
refinement, and shell elements for the structure. Afterwards the simulations
with focus on different boundary conditions are discussed, starting with
CFD- and FSI-results from the reflection free case, before finishing with the
results from the simulations with Windkessel models.

4.1 Dependence on time step and grid refinement

For the FSI-simulations that were run to test the dependence of time step,
the fine mesh was used. The numbers and size of the time steps that were
tested are given in table 7. For the grid refinement test the meshes presented
in section 3.1.1 were used. The grid refinement test simulations were run
for 160 time steps of 0.0025 s. A velocity pulse was prescribed at the inlet
and a reflection free pressure condition at the outlet for all the simulations,
as described in section 3.1.3.

The pressure, flow and area at the inlet and outlet of the tube are plotted
against time in figure 7, for time steps 0.0025, 0.005 and 0.01. The simulation
that was run with a time step of 0.0015 s is omitted in the plot as it would
not converge. For both pressure and flow, changing the time step had almost
no influence. The amplitude of the pulse was a bit less for larger time steps;
this is probably because the dissipation increases when the time step and
CFL-number increases. From the area plots it is clear that the area change
at the inlet was influenced by the change in time step, but although there is
a visible difference in the plot, the change was rather small. Changing the
time step from 0.0025 s to 0.01 s gave an area change that was less than 1
% smaller, so this was not of any large concern. A small time step was still
emphasized in further simulation, to get a good enough accuracy.

The influence of grid refinement was also very small, see figure 8. A
coarser mesh gave slightly lower values for pressure, flow and area but the
effect was not larger for the pulse than for the mean values, as was the case
when increasing the time step. Since the difference was small, the medium
mesh was used for further simulation, as this was the mesh with the highest
quality, and it was more time efficient than using the fine mesh.

The CFL-numbers for the different test cases that were run are summa-
rized in table 10. It is interesting to notice that although all the simulations
were run with a maximum CFL-number much larger than one, it was only
the ones with a time step 0.0015 s (or less, but these are not included in
the table), that would not converge. To check if this had to do with the
CFL-number or just the time step, a simulation was run on the coarse mesh
with a time step of 0.002 s. This gave a lower CFL-number than for the
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Figure 7: Results from time step dependence tests. Pressure, area, and flow
at the inlet and outlet of the tube are plotted against time, for time steps
0.0025, 0.005, and 0.01. The fine grid was used in the simulations.
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Figure 8: Results from grid dependence tests. Pressure, area, and flow at the
inlet and outlet of the tube are plotted against time, for the fine, medium,
and coarse grid. The simulation was run for 160 time steps of 0.0025 s; the
first 0.2 s are omitted from the plots.
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case with the fine grid and a time step of 0.0015 s, but this case converged,
and the results were physical. It is therefore evident that the instabilities
for low time steps are not linked to the CFL-numbers. Degroote mentions
that FSI-simulations differs from other numerical problems in that decreas-
ing the time step will in some situations increase the number of coupling
iterations [5, p. 37]. Further he explains that for low wave numbers a small
time step can give instabilities for a simulation where no coupling term is
implemented [5, p. 49]. The details are omitted here, as it is outside the
scope of this paper. A coupling term is implemented in the software used,
so it is uncertain why oscillations still occur for small time steps, but there
might be a connection here.

Mesh dxmin [mm] ∆t [s] CFLmax Convergence?

Time step tests

Fine 1.174 0.0015 5.51 No, oscillations
Fine 1.174 0.0025 9.18 Yes
Fine 1.174 0.005 18.4 Yes
Fine 1.174 0.01 36.7 Yes

Grid refinement tests

Fine 1.174 0.0025 9.18 Yes
Medium 1.435 0.0025 7.51 Yes
Coarse 1.730 0.0025 6.23 Yes

Other tests

Medium 1.435 0.0015 4.51 No, oscillations
Coarse 1.730 0.0015 3.74 No, oscillations
Coarse 1.730 0.002 4.98 Yes

Table 10: CFL-numbers for all test cases (grid refinement and time step
dependence). CFL = c0∆t

∆x .

4.2 Shell elements for the structure

To test how using shell elements for the structure would influence the results,
a simulation was run with the mesh shown in figure 6, see chapter 3.1.4. The
same boundary conditions were used as when testing the influence of time
step and grid refinement. The simulation was run with 160 time steps of
0.0025 s, and the medium fluid mesh was used.

The simulation would not converge. Convergence problems occurred in
Fluent at time step 5, when the convergence criterion for continuity, 10−6,
was not reached. Changing the criterion to 10−3, for easier convergence, did
not solve the problem.

It is unlikely that using shell elements is the main reason for the problem
with convergence. Several other hexahedral meshes was created, both for
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the geometry described in this thesis and for a shorter tube. For some
meshes the simulations would not converge and for some of the cases with
the shorter tube a solution was obtained, but the results were non-physical;
there were no signs of wave propagation. The problems seem to be related
to mesh generation; Thomas Eeg also experienced similar problems in his
thesis when using the same software [6].

A test case with a working mesh and a non-working mesh was sent to
the developer of Tango, Joris Degroote, who was able to make it work with
upgraded software. It is possible that upgrading to newer versions of Tango,
Abaqus and Fluent will solve the problem.

4.3 Outlet boundary with and without wave reflections

In this chapter the results from the case described in chapter 3.2.1 are pre-
sented. The CFD-analysis with a reflection free outlet is discussed first,
and afterwards both the FSI-simulation with a reflection free outlet and the
FSI-simulation with an imposed reflection factor of Γ = 0.9.

4.3.1 CFD-analysis

The velocity and pressure at the inlet and outlet of the tube obtained from
the CFD-analysis are plotted in figure 9. From figure 9b it is clear that
the velocity at the outlet is the same as that imposed at the inlet. This
is necessary for mass conservation since the cross-section area is constant
along the tube. For the pressure it is interesting to compare the pressure
gradient of the stationary flow to that of a Poiseuille flow, Eq. (47), and
to compare the pressure gradient of the pulse to that of a one-dimensional
transient flow, Eq. (9).

There are two requirements for Poiseuille flow; that the flow is laminar,
and that it is fully developed. The Reynolds number for the flow, Eq. (7)
is Re = 1607.5. It is less then the critical Reynolds number for transition
to turbulence, Recrit ≈ 2300, so the requirement of laminar flow is fulfilled.
However, the flow is not fully developed, so the flow profile does not agree
with that of Poiseuille flow; the flow at the inlet of the tube is constant, while
Poiseuille flow has a parabolic profile. Calculating the pressure difference
between the inlet and outlet of the pipe from the results of the CFD-analysis
at time t=0.3 s and for a similar Poiseuille flow, the numbers in table 11
are obtained. The pressure change is about three times larger than that
for a Poiseuille flow, so it is clear that the assumption of such a flow is not
valid. In addition to the flow not being fully developed, a reason for the
difference could be that there might still be some transient effects present.
The pressure has stabilized to a state where it does not change with time at
t=0.3 s, but the simulation that is run is transient, not steady. The profile
imposed at the inlet might not have had enough time to reach the outlet,
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which could also influence the pressure drop through the tube.

Figure 9: Results from the CFD-analysis. (a) Pressure and (b) velocity
are plotted against time, and (c) the pressure is compared to the analytical
solution, Eq. (10). The simulation was run with a uniform velocity profile
at the inlet, and a reflection free pressure condition at the outlet, for 200
time steps of 0.0025 s.

Pressure Difference ∆p = pin − pout [Pa]

CFD-analysis pressure difference: 17
Poiseuille flow theoretical pressure difference: 5.7

Table 11: Pressure difference between inlet and outlet for stationary condi-
tions at t=0.3 s, from the CFD-results and from Eq. (47).

In figure 9c the pressure of the CFD-analysis solution is plotted together
with the analytical solution for a one-dimensional transient tube, Eq. (10).
This equation does not include the stationary pressure difference between
inlet and outlet, but this is added in the plot to make it easier to compare
the amplitude of the pulse. The stationary pressure difference added is that
of the real flow ∆p = 17 Pa, not that of a Poiseuille flow.
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Pressure Amplitude [Pa]

pmax − pmean pmean − pmin
CFD analysis: 371 313
Analytical 1D solution: 367 335.7

Table 12: Pressure pulse amplitude from the CFD-analysis and from the
analytical solution, Eq. (10).

The agreement between the one-dimensional analytical solution and the
three-dimensional simulated solution is very good, when it comes to the
shape and the amplitude of the pressure pulse at the inlet. There is a small
difference between the period of the pulse in the two cases, which is strange
since the frequency is the same. It is uncertain why this happens, but it
could have something to do with the time resolution of the pulse, which is
quite low. The magnitude of the amplitude of the pressure pulse in both
positive and negative direction is given in table 12. The small difference
probably comes from the fact that the flow in the CFD-analysis is three-
dimensional.

It is also interesting to note that Eq. (8), that is used to establish
the analytical solution, is a version of Newton’s 2nd law. The friction is
negligible, so the large changes in pressure is solely due to the inertial effects
of accelerating the mass of the fluid in the tube.

4.3.2 FSI-analysis

Several aspects are interesting to take a closer look at in the results of the
FSI-simulations described in chapter 3.2.1:

• Is the outlet actually reflection free for the simulation where this is
the imposed condition?

• Is the relationship between the amplitude of the pressure and flow
pulse described by the characteristic impedance?

• Is the actual pulse wave velocity in agreement with the pulse wave
velocity calculated from Moens-Korteweg formula, Eq. (24)?

• How does the stationary conditions agree with the equations for Poiseuille
flow, Eqs. (50) and (51)?

• Is the damping of the pressure pulse from inlet to outlet in agreement
with the theoretical damping coefficient, Eq. (37)?

A good way to see if the outlet is reflection free, is to compare the
results of the reflection free simulation with the results from the case where
a reflection factor of Γ = 0.9 was imposed. The results are compared by
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Figure 10: FSI results for a reflection free pressure outlet. A uniform velocity
profile was imposed at the inlet. The simulation was run for 200 time steps
of 0.0025 s. Pressure, velocity, area, and flow are plotted against time at
the inlet and outlet of the tube. The ramp-up and stabilization of the flow
for the first 0.25 s of the simulation are omitted.

the means of figures 10 and 11, and the pressure contour plots in figures 12
and 13. In figures 12 and 13 every 2nd time step is plotted, from t = 0.3575
s, when the peak of the pulse is observed at the inlet, until t = 0.4225 s,
when the pulse is reflected back to the inlet for the first time in the case
with reflections.

In figure 12, where the outlet boundary is reflection free, one can see that
the pressure pulse travels through the tube during the first time steps, while
for the last time steps nothing happen; a steady state is obtained. This
means that the pulse is not reflected. In some of the time steps the pulse
is barely visible, but this is because of the pressure gradient. The pressure
plot in figure 10 shows that for the peak at the outlet the pressure is lower
than the steady state pressure at the inlet, because the disturbance is quite
small and it is damped while travelling through the tube as well.

In the case with reflections it is also hard to see the pulse for some of
the time steps because of the pressure gradient, but the results are clearly
different from the ones in the reflection free case. Also, there is a response at
the inlet in the later time steps although no additional pressure or velocity
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Figure 11: FSI results for a reflection factor of Γ = 0.9 at the outlet. A
uniform velocity profile was imposed at the inlet. The simulation was run
for 200 time steps of 0.0025 s. Pressure, velocity, area, and flow are plot-
ted against time at the inlet and outlet of the tube. The ramp-up and
stabilization of the flow for the first 0.25 s of the simulation are omitted.

changes are imposed there. This means that the pressure pulse, or at least
parts of it, is reflected back through the tube. This is further illustrated
by the oscillations of both pressure, flow and cross-sectional area, after the
pulse is applied, in figure 11. No such oscillations are present i figure 10. It
is therefore evident that the outlet is reflection free when that is the imposed
condition.

The mathematical condition for a reflection free outlet is that Zc =
pamp/Qamp, where Zc is given by Eq. (43) and pamp and Qamp are the
amplitudes of the pressure pulse and flow pulse respectively. To make sure
that this is fulfilled, the ZT

Zc
-relation, where ZT =

pamp
Qamp

is plotted along the
tube, for the cases with and without reflections in figure 14. Note that the
amplitudes used in the plots are calculated at the time the pulse passes the
given point in the tube, so it is plotted for a later time step at the outlet than
the inlet, and not the same time step for the entire tube. ZT in the case with
a reflection free outlet almost coincides with the theoretical characteristic
impedance, for the entire tube. In the case with imposed reflections at the
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Figure 12: Pressure contours every 2nd time step from t=0.3575 s to
t=0.4225 s for a reflection free pressure outlet

Figure 13: Pressure contours every 2nd time step from t=0.3575 s to
t=0.4225 s for Γ = 0.9 at the outlet
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outlet, ZT is close to equal with the characteristic impedance through large
parts of the tube. Near the outlet it is much larger, due to the large reflection
factor.

Figure 14: Plot of ZT
Zc

along the tube, for the FSI-simulations with Γ = 0

and Γ = 0.9 at the outlet. ZT =
pamp
Qamp

. The amplitudes used for pamp and
Qamp are calculated at the time the pulse passes the given point in the tube,
so it is plotted for a later time step at the outlet than the inlet, and not the
same time step for the entire tube.

Imposed reflection factor Calculated reflection factor

0 0.0665
0.9 0.92

Table 13: Reflection factor at the outlet of the tube, calculated from the
results of the FSI-simulations.

In table 13 the reflection factor calculated from Eq. (46), with ZT =
pamp/Qamp, is given at the outlet of the tube for both cases. There is a
small amount of reflections at the outlet for the reflection free case. This
does not show in figures 10 and 12 because the reflection factor is only
0.0665, so it is most likely damped away before it reaches the inlet. In the
case where a reflection factor of Γ = 0.9 was imposed, the reflections are
also very close to the prescribed value.

The Moens-Korteweg formula, Eq. (24), has been used to calculate the
pulse wave velocity in all the computations. This equation gives a pulse
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wave velocity of c = 4.31 m/s. Using data from the simulations to calculate
the wave speed, by looking at the time it takes for the peak of the pressure
pulse to travel from the inlet to the outlet, gives a pulse wave velocity of
c = 4.0 m/s. Just looking at the numbers this seems like a large difference,
but it turns out that if the pulse had used ”one time step less” the simu-
lation data would have given a wave speed of c = 4.31 m/s as well. This
means that if the time step had been smaller, the pulse wave velocity of the
flow would have been in even better agreement with the Moens-Korteweg
pulse wave velocity.

Equations (50) and (51) can be used to calculate the theoretical pressure
and flow at the outlet of a compliant tube for stationary condition. These
values are given in table 14, where they are compared to the pressure and
flow of the reflection free outlet simulation. The compliance C is calculated
by using the definition of the pulse wave velocity and the Moens-Korteweg
formula, Eq. (24). The pressure differences between the inlet and the outlet
for stationary conditions, are given in table 15.

Simulations Analytical solution

Inlet Outlet Outlet

Pressure [Pa]: 1350.0 1333.0 1332.18
Flow [m3/s]: 6.99 · 10−5 6.98 · 10−5 2.31 · 10−4

Table 14: Pressure and flow through a compliant tube for stationary con-
ditions at t=0.3 s, from the results of the simulation with a reflection free
outlet and a uniform velocity profile at the inlet. The analytical solution is
calculated from Eqs. (50) and (51).

Pressure Difference ∆p = pin − pout [Pa]

FSI analysis pressure difference: 17.0
Pressure difference, equation (51): 17.8
Poiseuille flow theoretical pressure difference: 6.1

Table 15: Pressure difference between inlet and outlet for stationary con-
ditions at t=0.3 s, from the results of the simulation with a reflection free
outlet and a uniform velocity profile at the inlet. The values are compared
to Eqs. (51) and (47).

The results in tables 14 and 15 show that the linear constitutive model
for pressure as a function of area is a good approximation, but Eq. (50)
can not be used to calculate the flow. This is because the assumption of
Poiseuille flow, which Eq. (50) is based on, is not valid (see chapter 4.3.1).
The same goes for the use of Eq. (47), the pressure gradient for Poiseuille
flow, to calculate the pressure difference between the inlet and the outlet of
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the tube, as is clearly illustrated by the numbers in table 15.
It should be noted that similar to the CFD-results, there could be tran-

sient effects present at t=0.3 s. The pressure and flow seem to have stabilized
to a steady condition in figure 10, but the flow profile could still be chang-
ing throughout the tube and this would affect the pressure gradient. Still,
if the pressure and flow had been kept constant for a longer time, to let the
flow profile stabilize further, there would probably still be large differences
between the pressure drop in the simulations and that for a Poiseuille flow.
When a uniform profile is imposed at the inlet, the flow here will not change
to the parabolic profile of a Poiseuille flow, so it will never be fully developed
at the inlet.

Changing the velocity profile at the inlet to a parabola, Eq. (107),
significantly improve the results when it comes to agreement with theoretical
Poiseuille flow. The velocity profiles are plotted along the tube in figure
15. It is clear that the flow is fully developed at t=0.675 s. The pressure
difference between the inlet and outlet when the flow is fully developed, at
t=0.675 s, is 4.0 Pa; much closer to 6.1 Pa, than 17.0 Pa. The agreement
is not complete, though. This could have to do with the compliance of the
tube.

Figure 15: Velocity profiles through the tube for fully developed flow, at
t=0.675 s. The result is from the simulation with a parabolic velocity profile
at the inlet and a reflection free outlet boundary. The simulation was run for
270 time steps of 0.0025 s. No velocity pulse was imposed, just a ramp-up
to a constant mean velocity.

There is a considerable amount of damping of the pressure and flow pulse
through the tube. Using Eq. (37) the theoretical damping coefficient, γd,
and the damping term, e−γdx, can be calculated. The results are given in
table 16. The amplitude of the pressure and flow pulse at the inlet and
outlet is given in table 17.

The amplitude of the pressure pulse at the outlet is 32 % of that at
the inlet, much less then the 99.7 % given by table 16. Again the prob-
lem is that derivation of the analytical solution of the wave equation with
damping (chapter 2.2.5), is based on an assumption of Poiseuille flow. For
real flows an empirical constant should be included in the expression for the
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γd e−γdx

0.0216 0.9970

Table 16: Damping of the pulse between inlet and outlet, for the FSI-
simulation with a reflection free outlet and a uniform velocity profile at
the inlet

Inlet Outlet

39.7 12.7

Table 17: Amplitude of the pressure pulse, for the FSI-simulation with a
reflection free outlet and a uniform velocity profile at the inlet

shear stress, Eq. (14), which for this case is larger than one. More shear
stress gives a larger amount of damping. There could be other effects that
influence the results as well, but the non-validity of the Poiseuille flow as-
sumption is definitively one of the more important.

The two outlet boundary conditions presented in this section illustrates
the two extremes when it comes to wave reflections. This is useful to have
in mind for the next cases, in which the results are probably somewhere in
between.

4.4 Outlet boundary with two-element Windkessel model

For the two-element Windkessel model it is interesting to compare the results
for different values of the parameters R and CV , to see how these parameters
influence the amount of wave reflections. The case discussed here is described
in chapter 3.2.2. The parameters are summarized again in table 18 for the
four cases, which from here on will be referred to with the case number in
all figures.

Case R CV τ

[Pa·s
m3 ] [m2

Pa ] [s]

1 1.9047 · 107 3.28 · 10−10 6.25 · 10−3

2 2.5000 · 107 7.2193 · 10−11 1.80 · 10−3

3 1.9047 · 107 7.3255 · 10−11 1.40 · 10−3

4 1.5000 · 107 5.5468 · 10−11 0.83 · 10−3

Table 18: Parameters for the two-element Windkessel model

The pressure at inlet and outlet of the tube is compared for the four cases
in figure 16. There seems to be a small amount of reflection for all cases,
since the pulse comes back to the inlet, but with a much smaller amplitude.
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Figure 16: Comparison of pressure at inlet and outlet, plotted against time,
for different parameters R and CV . The results are from the FSI-simulation
with a two-element Windkessel model at the outlet and a uniform velocity
profile at the inlet. The simulation was run for 200 time steps of 0.0025 s.

There are differences in the results, though not very large. The amplitude
of the pulse at the outlet increases as R increases, which is reasonable as a
higher pressure is necessary to overcome a high resistance. The amplitude
of the reflected pulse also increases with R. Physically this makes sense as
well. The resistance can be seen as an obstacle that the pressure pulse has
to pass. The part of the pulse that is not able to pass the obstacle will
be reflected, so when resistance is increased the obstacle becomes harder
to pass and a larger part of the pressure pulse will be reflected. The total
arterial compliance of the peripheral system, CV , seems to have a smaller
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influence on the amount of reflections, and the same is the case for the
algorithm used to estimate the parameters. Cases 2-4 should theoretically
be free of reflections, while no such restrictions are applied to case 1. Still,
the amplitude of the reflected pressure pulse is larger for case 2 than for case
1, since R is highest for case 2.

Figure 17: Plot of ZT
Zc

along the tube, for the FSI-simulations with the two-

element Windkessel model at the outlet. ZT =
pamp
Qamp

. The amplitudes used
for pamp and Qamp are calculated at the time the pulse passes the given
point in the tube, so it is plotted for a later time step at the outlet than the
inlet, and not the same time step for the entire tube.

The amount of reflections becomes even clearer in figure 17, where the
terminal impedance, ZT =

pamp
Qamp

is compared to the characteristic impedance.
The amplitudes used in the plots are calculated at the time it passes a given
point in the tube, so it is plotted for a later time step at the outlet than
the inlet, and not the same time step for the entire tube. The theoretical
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impedance at the outlet of the tube, Eq. (57), is calculated and compared
to the characteristic impedance at the outlet in table 19. When it comes
to ZWK2 and Zc the disagreement is large for case 1, small for case 2, and
there is a complete agreement in case 3 and 4. In case 1 no equality between
ZWK2 and Zc was demanded, so if there had been a better agreement this
would have been a coincidence. In case 2, ZWK2 = Zc was used as a cri-
terion, but the Zc in Eq. (89) is based on the initial cross-sectional area of
the tube, while the Zc in table 19 is based on the actual area of the outlet
when the pulse passes. This is enough to give a slightly higher impedance
ZWK2 than Zc. For the last two cases the Zc in Eq. (89) is calculated in
the same way as the plotted Zc, so there is a complete agreement.

Case Windkessel impedance (real part) Characteristic impedance

ZWK2
real = R

1+(ωRCV )2
Zc

1 1.75 · 106 1.28 · 107

2 1.37 · 107 1.28 · 107

3 1.28 · 107 1.28 · 107

4 1.28 · 107 1.28 · 107

Table 19: Impedance for the different cases of the two-element Windkessel
model

From figure 17 it is clear that the agreement between the characteristic
impedance and the terminal impedance from the simulations is rather poor
at the outlet of the tube. As previously mentioned, reducing R reduces the
pressure at the outlet. Figure 17 illustrates that this also reduces ZT , as
this quantity is largest for case 2, smaller for case 1 and 3, and smallest for
case 4. In the last case the resistance was set to R = 1.5 · 107 Pa·s

m3 , and from

the plot one can read that the terminal impedance is ZT = 1.67 · 107 Pa·s
m3

at the outlet, so it is a little higher than R. Decreasing R further would
decrease ZT to give an even better fit, and it seems like the optimal value
would be R = Zc. From Eq. (89) this would give a compliance of CV = 0,
which would reduce Eq. (85) to pn = pn−1. The two-element Windkessel
model will therefore always give reflections.

Case Theoretical reflection factor Actual reflection factor

Γ = ZWK2−Zc
ZWK2+Zc

Γ = ZT−Zc
ZT+Zc

1 -0.7585 0.2590
2 0.0357 0.3719
3 0 0.2467
4 0 0.1322

Table 20: Reflection factor for the different cases of the two-element Wind-
kessel model
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The problem with reflections is highest for high frequencies. Equation
(88) shows that increasing ω increases the difference between R and Zc.
The problem can in some degree be coped with by introducing a smaller τ ,
but it will always be present, and there will be disagreements between the
theoretical reflection factor and the actual reflections. The reflection factors
at the outlet of the tube are summarized for the different cases in table 20.

4.5 Outlet boundary with three-element Windkessel model

In the previous section it was shown that the two-element Windkessel model
gives wave reflections for high frequencies even when it theoretically should
be zero reflections. In this section the results from the simulations with
a three-element Windkessel model at the outlet will be looked at to see if
this is the case here as well. The case is described in chapter 3.2.3. The
parameters that were used in the simulations are repeated in table 21, and
the cases will from here on be referred to with case numbers in all figures.

Case R Zc CV τ

[Pa·s
m3 ] [Pa·s

m3 ] [m2

Pa ] [s]

1 5.333 · 106 1.2767 · 107 1.1719 · 10−9 6.25 · 10−3

2 5.333 · 106 1.2772 · 107 8.6148 · 10−7 4.5943
3 1.500 · 107 1.2772 · 107 5.1367 · 10−7 7.7050

Table 21: Parameters for the three-element Windkessel model. The Zc given
here is calculated from the area of the outlet when the pulse passes. The
initial Zc that was used to calculate R in case 1 is Zc = 1.3714 · 107 Pa·s

m3 .

In figure 18, the pressure at the inlet and outlet is plotted for different
parameters R and CV . The figure shows that the amount of reflections is
seriously reduced when comparing with the two-element Windkessel. For
the first case there was no restrictions on the amount of reflections, so the
reflected pressure pulse is a bit higher here than for case 2 and 3, where
there theoretically should be zero reflections. There is a complete overlap of
the pressure curve for case 2 and 3, which indicates that changing R does
not influence the results as long as CV is calculated from equation (94).

In figure 19 the terminal impedance ZT =
pamp
Qamp

is compared to the
characteristic impedance. The amplitudes used in the plots are calculated
at the time it passes the given point in the tube, so it is plotted for a
later time step at the outlet than the inlet, and not the same time step
for the entire tube. The theoretical impedance at the outlet of the tube,
Eq. (63), is calculated and compared to the characteristic impedance at
the outlet in table 22. There is a small difference between the theoretical
impedance ZWK3 and the characteristic impedance Zc for case 1, but this
could be because the initial characteristic impedance is used to estimate
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Figure 18: Comparison of pressure at inlet and outlet, plotted against time
for different parameters R and CV . The results are from the FSI-simulation
with a three-element Windkessel model at the outlet and a uniform velocity
profile at the inlet. The simulation was run for 200 time steps of 0.0025 s.

the resistance, Eq. (92), and the characteristic impedance in table 22 is
calculated from the actual area of the outlet of the tube as the pulse passes.
For case 2 and 3 there is a complete agreement between ZWK3 and Zc. Also
the difference between ZT and Zc at the outlet is very small for case 2 and
3 in figure 19.

Calculating the actual reflection factor and comparing it with the the-
oretical reflection factor, gives the numbers presented in table 23. For the
simple reflection free case (see section 4.3.2) the reflection factor at the out-
let was 0.0665. For case 2 and 3 presented here, the reflection factor is
very close to this number. This indicates that the three-element Windkessel
model is capable of modelling a reflection free outlet in the same degree as
a simple reflection free model, if that is the restriction given when estimat-
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ing the parameters. This is a very important property of the three-element
Windkessel model contrary to the two-element Windkessel model.

Figure 19: Plot of ZTZc along the tube, for the FSI-simulations with the three-

element Windkessel model at the outlet. ZT =
pamp
Qamp

. The amplitudes used
for pamp and Qamp are calculated at the time the pulse passes the given
point in the tube, so it is plotted for a later time step at the outlet than the
inlet, and not the same time step for the entire tube.

Case Windkessel impedance (real part) Characteristic impedance

ZWK3
real = R

1+(ωRCV )2
+ Zc Zc

1 1.33 · 106 1.28 · 107

2 1.28 · 107 1.28 · 107

3 1.28 · 107 1.28 · 107

Table 22: Impedance for the different cases of the three-element Windkessel
model
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Case Theoretical reflection factor Actual reflection factor

Γ = ZWK3−Zc
ZWK3+Zc

Γ = ZT−Zc
ZT+Zc

1 0.0189 0.2033
2 0 0.0674
3 0 0.0682

Table 23: Reflection factor for the different cases of the three-element Wind-
kessel model
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5 Conclusion

A straight tube has successfully been used to test different boundary condi-
tions, with focus on the outlet of the tube. In addition the dependence on
time step and grid refinement was investigated.

Neither changing the time step size nor the grid size had any large influ-
ence on the results, but the simulations would not converge for very small
time steps. This was not linked to the CFL-number. Increasing the grid
size to get a lower CFL-number than for the simulations that did not con-
verge was no problem, so this had only to do with the time step size. It is
uncertain why this problem occurred, but it might have been related to the
software, since an old version of Tango was used.

There were also some problems with mesh generation for the solid, prob-
ably in the conversion from Ansys Workbench mesh files to Abaqus input
files. This was probably due to the old versions of the software, as the de-
veloper of the code managed to get it to work with the newest version of
Tango. For future work, first priority should therefore be to update to the
newest version of Tango, and perhaps also Abaqus and Fluent.

When it comes to boundary conditions, a simple reflection free model at
the outlet was in high degree able to give reflection free results, though there
were some minor reflections. This could have to do with the way ZT =

pamp
Qamp

was calculated, when the mean pressure and flow was subtracted. It is not
certain that the flow was entirely stabilized to stationary conditions when the
pulse was imposed, and the mean pressure and flow was taken from values
a few time steps before the pulse was applied. It is therefore possible that
letting the flow stabilize for a longer time before imposing the pulse would
give a more accurate estimation of the mean pressure. Another possibility
would be to use a zero mean pressure and flow, but this is not a very good
alternative, as the results would be highly non-physical. Since imposing
reflections at the outlet gave a much higher amount of reflections than the
reflection free condition, it is unlikely that it is the model itself that is the
problem.

Using a uniform velocity profile at the inlet, makes the assumption of
Poiseuille flow invalid. As a fully developed flow is a quite usual assumption
when solving flow problems analytically, this makes it hard to validate results
by comparing them to analytical solutions. Imposing a parabolic velocity
profile, significantly improves the agreement between simulations and the
analytical solutions for stationary conditions. Further investigations could
be made to see how this influence the results for pulsatile flow as well.

The two-element Windkessel model is very inaccurate when it comes
to modelling a reflection free outlet boundary. It is likely to be equally
inaccurate when modelling imposed reflections. The results are significantly
improved by upgrading to the three-element Windkessel model. The amount
of reflections for a reflection free outlet with the three-element Windkessel
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model was of the same size as for the simple reflection free model, so the small
amount of reflections could probably be explained by the same inaccuracies.

A natural continuation of the work done in this study would be to look at
more advanced boundary conditions at the inlet, since the focus in this study
has been the outlet of a tube. With things working properly for a simple
straight tube, more advanced geometry could be used as well. It could also
be interesting to look at more physically accurate material models for both
the structure and the fluid.

A one-dimensional network model for the peripheral arterial system has
been developed in a previous study at NTNU. As an extension of the work
with outlet boundary conditions, this could be coupled with the three di-
mensional FSI-modelling of the aorta.
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