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Abstract

Coping of beams is usually done in order to allow for clearance at connections, but doing so

reduces the beams strength and makes it susceptible to local web buckling at the coped section.

Due to this reduction of the beam’s strength, it was of interest to reinforce the web at the coped

end. Previous researchers have proposed several design recommendations for reinforcement of

coped beams. Possible measures involves welding on endplates or use of bolted connections at

the coped end, and provision of stiffeners at the coped region.

In this thesis a numerical study on the coped beam’s strength and behaviour is presented.

Nonlinear finite element analyses have been conducted to predict the structural behaviour and

capacities of coped beams with varying cope dimensions. The beam was strengthened by either

restraining the coped end from lateral translation or by provision of stiffeners at the coped

region.

The effect of restraining the coped end depended on the cope dimensions. For cope length-

to-reduced beam hight ratios lesser than 1 (c/h0 < 1), restrainment of the coped end would

successfully increase the beams capacity. For ratios equal to or more than one (c/h0 ≥ 1), the

effect was negligible.

Reinforcement in longitudinal direction only did not prevent the occurence of local web buckling,

so that the recommended reinforcement details of the coped beam included a combination of

stiffeners in both vertical and longitudinal direction for which the beam was able to develop the

plastic moment capacity of the full beam section without any significant sideways rigid body

movement of the longitudinal stiffeners. The proposed design recommendations considers the

webs slenderness and coped dimensions.

For coped beams with web depth-to-thickness ratios (hw/tw) less than or equal to 58 and cope

length-to-reduced web hight ratios (c/h0) less than one, longitudinal and vertical stiffeners were

required while double vertical stiffeners were required for cope ratios equal to or more than 1.

For coped beams with web depth-to-thickness ratio more than 58 and less than or equal to 67

and cope ratios less than or equal to 0.5 vertical and longitudinal stiffeners were required, while

double vertical stiffeners were required for cope ratios of more than 0.5.



Sammendrag

Utkapp og tilpasninger m̊a av og til lages for at bjelken skal passe til de konstruksjonsdelen

den skal festes til. Som en følge reduseres bjelkens kapasitet og gjør den s̊arbar for knekking av

stegplaten. Det er derfor av interesse å forsterke steget ved bjelkens utkappete ende. Gjennom

tidligere studier har det blitt foresl̊att flere m̊ater å forsterke slike utkappede bjelker p̊a. Mulige

tiltak vil være å stive av bjelkeenden med p̊asveiste endplater og med bolteforbindelser, eller

ved bruk av stivere i langsg̊aende og/eller tversg̊aende retning.

I denne oppgaven presenteres et numerisk studium p̊a kapasitet og oppførsel til utkappete bjelker

gjennom ikke-lineære element analyser i ABAQUS/CAE. Bjelken er forsøkt forsterket ved enten

fastholding av enden mot forskyvning ut av planet og/eller rotasjon om vertikalaksen, eller ved

avstivning av den utkappede enden.

Effekten av å fastholde bjelkeenden var svært avhengig av utkappets størrelse. Fastholdingen

økte bjelkens kapasitet n̊ar forholdet mellom utkappslengden og den reduserte bjelkehøyden var

mindre enn 1 (c/h0 < 1). Effekten var derimot utbetydelig n̊ar dette forholdet var lik eller

overskred 1 (c/h0 ≥ 1).

Avstivning av bjelkens utkappede ende i kun langsg̊aende retning forhindret ikke knekking av

steget, uavhengig av stivernes lengde og dimensjoner. Dermed var det ønskelig å anvende avs-

tivningsløsninger med b̊ade langsg̊aende og tversg̊aende stivere. For slike avstivningsløsninger

var det mulig å forhindre knekking av steget, som gjorde det mulig å n̊a bjelkens plastiske mo-

mentkapasitet av bjelkens fulle høyde uten nevneverdig sideveis forskyvning av de langsg̊aende

stiverne.

For forhold av høyden og tykkelsen til steget (hw/tw) mindre eller lik 58 og for forholdet mel-

lom utkappslengde og den reduserte bjelkehøyden (c/h0) mindre enn 1 var det nødvendig med

b̊ade langsg̊aende og ett sett med tversg̊aende stivere. For utkappsforhold større eller lik 1 var

det nødvendig med langsg̊aende i tillegg til doble sett med tversg̊aende stivere. For forhold

steghøyde og tykkelse lik eller større enn 58 men mindre enn 67 og utkappsforhold mindre

enn eller lik 0.5, var det nødvendig med b̊ade langsg̊aende og ett sett med tversg̊aende stivere.

For utkappsforhold større enn 0.5 var det p̊akrevd langsg̊aende og doble sett med tverrsg̊aende

stivere.
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Chapter 1

Introduction

In steel constructions secondary beams are usually connected to the main girders in a way that

elevates the top flanges at the same hight, which is usefull in design of floor slab constructions.

To construct such a connection and to provide clearance for the supports, the secondary beams

must be coped at the end, as shown in figure 1.1. The cope can be at the top, at the bottom or

at both flanges.

Figure 1.1: Top flange coped I-beam.

As a consequence of coping the end, the strength of the beam can be reduced significantly.

Thus, the coped beam may fail in local web buckling, shear yielding, flexural yielding or block

shear failure. Coping will also affect the beam’s lateral torsional buckling capacity, hence the

beam can also fail in lateral torsional buckling if not properly braced [7]. The coped beams

strength and behaviour have been investigated by a number of researchers, both worldwide and

at the Department of Structural Engineering, NTNU. From numerical and experimental studies,

several design recommendations have been provided for the coped beam’s capacity against the

most common failure modes.

Due to the beams reduced strength, it may be necessary to reinforce the web at the coped

end. Cheng and Yura (1986) proposed a set of reinforcement details, shown in figure 2.4.

1



Chapter 1. Introduction 2

These recommendations were based on a numerical study only, so that later Yam et al. (2007)

conducted a series of laboratory tests on the stiffened coped beam’s strength and behaviour in

order to assess those recommendations [8]. Based on this study, certain modifications to the

reinforcement details were proposed, as seen in figure 2.5. The experimental study was followed

by a more comprehensive numerical study in order to increase the proposed reinforcement details

applicability [9].

Another measure to increase the coped beam’s capacity is to restrain the coped end in some way.

This can be done with a welded-on endplate or with a bolted connection to adjacent construction.

In his master thesis, Carlsen (2008) studied the effect an endplate and its connection properties

would have on the coped beam’s capacity [10]. The capacity was seen to increase with increasing

endplate thickness.

In this thesis, the coped beam’s strength and behaviour in both an unreinforced and reinforced

state was investigated for a series of cope details. No experimental testing was conducted,

hence the study relied solely on results from the finite element analyses. The coped beam was

reinforced with the following measures

• Restrainment of the web at coped end

• Reinforcing the coped region with stiffeners in horizontal and/or vertical direction

The main objective was to examine the proposed reinforcement measures effect on the coped

beam’s capacity, and for which cope dimensions reinforcement of the coped end would be less

efficient. The results were compared to the design recommendations presented in the litterature

to check their applicability.



Chapter 2

Teoretical Background

2.1 Plate Buckling Theory

2.1.1 General

Slender structures, such as plates or columns exposed to compressive loading are vulnerable

to buckling, refered to a state where a very small increase of the loading causes the structure

to deflect in a very large manner. The expression is used somewhat imprecise about two phe-

nomenons, namely elastic instability and inelastic failure. When loaded with a critical load

(Ncr) the structure looses its state of equilibrium, i.e. it becomes unstable [1].

More specifically, buckling occurs when the structures stiffness is dramatically reduced, i.e. the

following expression drops to zero

[Kt] = [Km] + [Kg] = 0

where Kt is the resultant tangent stiffness, composed of the elastic (material) stiffness Km

and the stress (geometrical) stiffness Kg. In ABAQUS/CAE, the elastic stiffness depends on

the material properties, while the stress stiffness depends on the state of stress. Thus, tensile

stresses will increase the stiffness while compressive stresses will decrease it [4].

In terms of energy considerations, buckling occurs when the membrane (axial) strain energy

is converted into bending strain energy with no change of externally applied load. In slender

columns and thin plates or shells, the membrane stiffness is much greather than the bending

stiffness. Thus, large deformations will occur when the convertion takes place.

In design of plates one differs between two cases: elastic plate buckling and over-critical plate

buckling behaviour.

3
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2.1.2 Elastic Plate Buckling

The web in a steel I-beam will act as a plate loaded with membrane actions. If those membrane

actions exceeds the webs critical buckling capacity the web becomes unstable and buckles.

Coped beams are particularly vulnerable, as the web in the coped section has lost its support

by one or both of the flanges.

The critical membrane actions are determined based on the plates differential equation derived

from equilibrium considerations of an infinitesimal deformed element. Thus, for an isotropic

material the plate’s differential equation reads [11]

∇4w =
1

D
(Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+Nxy

∂2w

∂x∂y
) (2.1)

The equation is solved with respect to the boundary conditions and type of loading, in order to

assess the following expression for critical buckling load for plates loaded in axial compression

and moment

σx,cr = kσ
π2E

12(1− ν2)

( t
b

)2
(2.2)

where the plate buckling factor kσ includes the plates boundary conditions and the distribution

of externally applied forces.

For plates loaded in shear, the buckling shape is inclined at an angle. The critical shear stress

is given by the following expression

τxy,cr = kτ
π2E

12(1− ν2)

( t
b

)2
(2.3)

where kτ is the plate buckling factor for shear.

Longitudinal and vertical stiffeners are commonly used to increase the plates capacity [1]. When

the plate buckles, it will buckle in a number of sinuswaves in the longitudinal and vertical di-

rection. Use of stiffeners will alter this buckling pattern.

2.1.3 Capacity of Plates

Unlike columns which will collaps during buckling, there will for plates be possible to exceed

the external load over the critical buckling load, due to a redistribution of the internal stresses.

This over-critical capacity can be significant and usefull in design.

Design recommendations for plates are found in the Eurocode 3 [12]. For plates loaded by

axial forces and moment the capacity is based on the plates effective area in the compressional

zone. This effective area is defined by the expression Ac,eff = ρAc, where AC is the plates

compressional area and ρ is a reduction factor. The reduction factor (ρ) depends on the plate
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slenderness (λp), given by the following expression

λp =

√
fy
σcr

(2.4)

where σcr is the elastic critical buckling stress. Thus, the plates capacity reads as follows

Nx = ρfyAc = fyAc,eff (2.5)

For plates loaded with transverse forces, the following design recommendations are provided by

the Eurocode 3 [12]. The plate’s load capacity depends on the plate’s slenderness, defined the

plate hight-to-thickness ratio (hw/tw). Regarding the plate’s slenderness, three failure modes

are identified, as seen in figure 2.1.

• For small values of hw/tw the web near the loaded position will be subject to plastification

• For intermediate values of hw/tw the beam fails in global buckling of the web

• For large values of hw/tw the web cripples directly below the loaded position, while the

rest of the web stays nearly undistorted

Figure 2.1: Failure modes for beam loaded with transverse forces [1].

The design recommendations are based on the design model developed by Lagerqvist [13], which

covered all the failure modes in figure 2.1.

The capacity is determined based on the assumption that the vertical stresses in the web below

the loading are distributed equally over a section with length Leff , thus the beam’s capacity

reads

FEd ≤ FRd =
fywLeff tw

γM1
(2.6)
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where

Leff = χF ly (2.7)

The reduction factor χF is expressed by the formula

χF =
0.5

λF
χF ≤ 1.0 (2.8)

where the plates relative slenderness is defined by

λF =

√
fywtwly
Fcr

(2.9)

and

Fcr = 0.9kFE
t3w
hw

kF = 2 +
6(ss + cs)

hw
≤ 6

ly is defined by the following formulas

ly = min


le + tf

√
m1

2
+
( le
tf

)2
+m2

le + tf
√
m1 +m2

where

le =
kFEt

2
w

2fywhw
≤ ss + sc (2.11)

and

m1 =
fyfbf
fywtw

m2 = 0.02
(hw
tf

)2
for λF > 0.5

m2 = 0 for λF ≤ 0.5
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2.2 Relevant Scientific Papers

2.2.1 Cheng and Yura (1986)

In their scientific paper Local web buckling of coped beams [14] Cheng and Yura presented a

method for design of coped beams against local web buckling. Due to the discontinuity of the

web and flange at the coped corner a stress concentration may occur at this point, making regular

calculations for bending and shear stresses unable to describe the actual stress distribution at

the coped region. If the stress concentration is high enough the material will yield at the coped

corner, causes the beam to fail due to inelastic local web buckling. For slender webs, failure can

occur by elastic local web buckling at the coped region.

Cheng and Yuras study included both experimental testing in the laboratory and numerical

simulations with use of a finite element program. For practical reasons, only beams with cope

lengths less than twice the beam depth (c < 2h) and with cope depth less than half the beam

depth (dc < h/2) where considered. The difference between the testdata and numerical solutions

were quite small, ranging from 2 − 5 %. They then came up with a design model. To make it

simple for design purposes, they descided to start up with a regular plate buckling model and

then adding factors representing the complex nature of the buckling problem.

Figure 2.2 shows the plate model of the coped section, consisting of a plate simply supported

on three edges and free on the last with a linear stress distribution over the edges.

Figure 2.2: Plate model for design.
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The plate buckling capacity where set to

σcr = fkσ
π2E

12(1− ν2)

( tw
h0

)2
(2.12)

where

kcr = 2.2
(h0
c

)1.65
for

c

h0
≤ 1.0

kcr = 2.2
(h0
c

)
for

c

h0
≥ 1.0

and

f = 2
( c
h

)
for

c

h
≤ 1.0

f = 1 +
( c
h

)
for

c

h
> 1.0

The plate buckling coefficient (kcr) considers the cope dimensions and was obtained from excist-

ing litterature and by curve fitting techniques. The adjustment factor (f) considers the stress

concentrations, shear stresses, cope depths and moment variations over the coped end. Observe

that this factor increases with an increasing cope length, which again increases the beams buck-

ling capacity. This is an effect of the stress consentration at the coped corner. For short cope

length the stress consentration at the coped corner will make the actual stresses significantly

higher than the regular bending stresses along the cope length. As the cope length increases,

this stress consentration will be restricted to a small area at the end of the cope.

In their concluding remarks they stated that localized yielding due to stress concentration would

not affect the coped beams buckling capacity in any significant manner. Also, regular bending

and shear stresses causing yielding of the coped region would provide a conserative approach

for checking inelastic local web buckling for coped beams.

For elastic local buckling of the web of top flange coped beams, the proposed design model gave

a good estimate.

2.2.2 Yam et al. (2003)

In their report Local web buckling strength of coped steel I-beams [15] Yam et al. continued

the work done by Cheng and Yura [14] on the behaviour of coped steel I-beams and their

capacities against local web buckling. They stated that the previously obtained design formulas

underestimated the beams capacity, specially for a small cope depth-to-beam hight ratio (dc/h).



Chapter 2. Teoretical Background 9

Thus, a more accurate expression was desired.

Both full-scale testing in the laboratory and numerical simulations were conducted. From the

results they observed that the buckling line inclined at an angle for short cope lengths. It was

belived that shear stresses dominated the buckling behaviour for cope length-to-reduced beam

hight ratios (c/h0) lesser than 1.5.

Based on the shear stress distribution over the coped beam, they suggested a modified plate

model, as seen in figure 2.3

Figure 2.3: Platemodel with shear stress distribution.

The shear stresses at the coped T-section exceeded those of the I-section, due to the discontinuity

at the cope. Also, to maintain equilibrium the shear stresses at the junction between the

compressional flange and the web became larger than in theory. Moment was not considered,

as its influence was neglected for small cope depth-to-hight ratios. To minimize the effect of the

boundary conditions, they increased the plate model’s length from 2c to h0 for cope lengths less

than half the cope depth.

Following design formulas were developed

τcr = ks
π2E

12(1− ν2)

( tw
h0

)2
for τcr ≤ τmax =

fy√
3

(2.13)

where

ks = a
(h0
c

)b
(2.14)
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and

a = 1.38− 1.79
dc
h

b = 3.64
(dc
h

)2
− 3.36

(dc
h

)
+ 1.55

The value of the shear buckling coefficient (ks) was found by rearranging τcr and implement the

critical shear stress obtained from the numercial solutions.

They concluded that the results from the proposed design formula compared well with the test

results, with test-to-predicted ratios from 0.92 to 1.06.

2.2.3 Yam et al. (2007)

In their report The Local Web Buckling Strength of Stiffened Coped Steel I-Beams [2] Yam et al.

studied the effect of reinforcing the coped region with stiffeners in order to improve the coped

beam’s capacity. Reinforcement of the coped region was originally investigated by Cheng and

Yura [7], where stiffeners were provided to improve the local web buckling strength of coped

beams. They recommended three reinforcing details, as shown in figure 2.4

Figure 2.4: Web reinforcement details for coped beams [2].

Through numerical simulations in the program BASP they were able to determine the beam’s

buckling loads with varying reinforcement dimensions. For thin web members (d/tw > 60.0)

they recommended use of type b) reinforcing detail with Lk ≥ c/3, while for rolled sections type

a) and c) reinforcing details with Lk ≥ dc was recommended.

However, no experimental evidence was provided, making it impossible to validate the design

recommendations.

Therefore, in order to verify the reinforcing details recommended for strengthening of the coped

region, Yam et al. conducted an experimental and numerical study of coped steel I-beams.

In the experimental study, three full-scale tests were carried out. They showed that web distor-

tion occured at the coped section even when horizontal stiffeners were provided.

In the numerical study, the effect of horizontal stiffeners were investigated for stiffener type
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B. However, extending the horizontal stiffeners length did not increase the local web buckling

capacity efficiently. Thus, a minimum length of vertical stiffeners were provided in addition to

the horizonal stiffeners. The stiffener arrangements are shown in figure 2.5. Provision of vertical

stiffeners were also belived to prevent sideways movement of the coped end, but as seen in figure

2.6 the horizontal stiffeners still experienced severe sideways movement.

Figure 2.5: Different types of stiffeners at the cope region [2].

Figure 2.6: Buckled mode shape of coped beam with stiffeners in both horizonatal and vertical
direction [2].

Provision of stiffeners in both direction did improve the coped beams capacity, but it was still

lower than the reaction force corresponding to the yield moment and the shear yielding resis-

tance of the coped web. Also, extending the vertical stiffener length over the whole beam’s

depth had little effect in improving the coped sections local web buckling capacity.

In their concluding remarks they proposed the following design recommendations for reinforce-

ment of coped beams:

• For beams where c/D > 1, both the extension length of the horizontal stiffeners, LR and

the length of the vertical stiffener, Ly should not be less than 2dc

• For beams where c/D < 1, both the extension length of the horizontal stiffeners, LR and

the length of the vertical stiffener, Ly should not be less than dc
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2.3 Previous Student Work

2.3.1 Bonkerud (2007)

In his master thesis Capacity of coped beams [3] Bonkerud investigated the behaviour of coped

steel I-beams and proposed a set of design recommendations for such. The following design

criterias where checked:

A. Elastic moment and shear capacity, and the interaction of both

B. Plastic moment and shear capacity, and the interaction of both

C. Local web buckling

He assumed, after recommendations from Cheng and Yura [14], that for webs with h
tw
< 42 and

c
h < 2.0 there would not be necessary to check for buckling and that yielding would determine

the beams capacity. For an IPE300 beam however h
tw
≈ 42, buckling had to be considered.

Comparison of elastic and plastic interaction between moment and shear with numerical solu-

tions, showed that all three could be critical depending on the cope dimension. However, it

was concluded that the coped beam’s stress distribution is of such complexibility that regular

capacity checks may prove inaccurate.

The coped beam’s behaviour was investigated in a numerical study in the finite element program

ABAQUS/CAE. Several cope dimensions were analyzed and compared with experimental data

obtained in a previous study by Petterson and Røe [16].

Bonkerud presented two design formulas for design of coped beams. One based on a previously

derived formula and the other based on a plate model.

Design formula 1: Continuation of developed formula

The following formula was presented in [17] and [16]

Rcoped = Runcoped
(
1−B c

h0

)
(2.15)

where the factor B equals 0.32 for steel and 0.4 for aluminimum. From the numerical results

and through curve fitting techniques in Excel the following design formula was presented

Rcoped = Runcoped
(
1−B c

h0

)
(2.16)

where

B = 0.36 +
1

470

d

ts
− 0.09

E

Esteel
(2.17)
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and Runcoped are obtained from Eurocode 3 [12].

It was concluded that the formula provided valid results, but that more testing would be nec-

essary to reveal possible flaws.

Design formula 2: Plate model

Figure 2.7 shows the plate model developed by Bonkerud. As seen from the figure the plate

model represent a rectangular plate simply supported on three edges set askew, due to the sim-

ilarities of deformation pattern between the coped beam and the three-sided simply supported

plate.

Figure 2.7: Plate model developed by Bonkerud [3].

Figure 2.8: Deformation pattern for a) Coped beam and b) Simply supported plate on three
edges [3].

The following formula was presented

Fd = fdχtsb sin(θ) (2.18)
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The formula showed unphysical behaviour when the cope dimension was either very small or

very large. It shows the difficulty of developing general design recommendations for all types of

cope dimensions, since the behaviour of a small cope differs from that of a large cope.

2.4 Finite Element Method

2.4.1 General

The finite element method simply shortened FEM, is a tool for obtaining numerical solutions of

field problems, in this case stress analysis. A field problem is described by differential equations

or by an integral expression, both used to formulate finite elements. In each finite element a

field quantity can have only a simple spatial variation, which can be described by polynominal

terms up to x2, xy or y2 [5]. Obviously FEM provides approximate solutions only, as the actual

variation is almost certainly more complex.

In order to investigate the coped beam’s behaviour during loading, numerical simulations with

use of a finite element program is a valuable tool. In this instace ABAQUS/CAE was chosen.

The solutions obtained from such simulations can supplement or replace real testing in the lab-

oratory and will make it possible to produce data for a large number of specimens at a small

cost. The test specimens are also not restricted to practical purposes, meaning that any shape,

dimension and type of loading can be tested. However, care must be taken when evaluating

the results as several errors might occur. Such errors might be possible to identify within the

model itself through energy checks, but often the model has to be validated through external

data checks. Such validation include comparison of test results from laboratory experiments,

comparison with analytical solutions and results from other numerical simulations.

2.4.2 Linear Buckling Analysis

In ABAQUS/CAE linear buckling analyses are performed through the step BUCKLE, providing

the critical buckling load of the structure. As earlier mentioned buckling refers to a state where a

slender structure, in this case the web plate, experience a dramatic loss of its structural stiffness

and becomes unstable. In other words, the stiffness of the structure drops to zero, i.e. becomes

singular. Thus, the buckling analysis is represented by solving the following eigenvalueproblem

[4]

(
[Km] + λj [Kg]

)
{ϕ}j = {0} (2.19)
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Where λj denotes the eigenvalues and {ϕ}j denotes the eigenvectors representing the corre-

sponding buckling shapes. The buckling load Pj is provided by the product of the eigenvalue

and the applied load: Pj = λjP .

The buckling load will however differ from the real capacity of the structure, due to imperfections

and other nonlinearities.

2.4.3 Nonlinear Analysis

Nonlinear FEA differs from linear FEA in that the stiffness and loads become functions of dis-

placement or deformation. Thus, as the structural equations for linear analysis reads [K]D = R,

for nonlinear FEA the expression becomes [K(D)]D = R(D), where [K] and R defines respec-

tivily the stiffness matrix and load vector. The nonlinear structural equation cannot be solved

directly, thus an iterative process is required. Also, the principle of superposition is not appli-

cable to the nonlinear equations so that each different load case requires a seperate analysis.

Compared to linear FEA, nonlinear FEA is much more computationally costly and requires

substantially more effort from the analyst due to the difficulty of describing nonlinear problems

with realistic mathematical and numerical models and solving of the following nonlinear equa-

tions. So why choose nonlinear FEA instead of a linear approach?

As linear FEA provides satisfactory approximations for many problems, substantial departure

from linearity is quite common. Nonlinear behaviour on the other hand allows for a wide var-

ity of phenomena. In structural analysis nonlinear FEA makes it possible to investigate the

structures stability as well as the global strength. The overall behaviour of the structure is

graphically represented by the equilibrium path, shown in figure 2.9 for the linear and nonlinear

response. The linear structure is able to undergo any load and deformation, while the nonlinear

is restricted by a critical point where the structures maximum capacity is reached.

Figure 2.9: Equilibrium path for a) linear structure and b) nonlinear structure [4].
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The nonlinear equlibrium equations can be solved with use of the numerical technique Newton’s

method, shown graphically in figure 2.10. This method is prefered to other solution techniques

primarily in terms of convergence rate. The equations are solved by an iterative procedure as

follows. After an iteration i an estimate for the displacement uMi to the solution is obtained.

This estimate is not exact, where cMi+1 defines the difference between this solution and the exact

solution. Thus,

FN
(
uMi + cMi+1

)
= 0

The left-hand side of the equation is expanded in a Taylor series about the estimated solution

uMi , where all but the first two terms are neglected as the magnitude of each cMi+1 will be small.

Thus, obtain a linear system of equations

KNP
i cPi+1 = −FMi (2.20)

where

KNP
i =

∂FN

∂uP
(uMi ) and FNi = FN (uMi )

The next approximation to the solution is then

uMi+1 = uMi + cMi+1

The iteration continues until convergence, where all entries in FNi and cNi+1 are sufficiently small

[18].

2.4.4 Material Behaviour

In ABAQUS/CAE the models elastic material properties are implemented by Young’s modu-

lus (E) and Poisson’s ratio (ν), while the plastic material properties are implemented as the

stress-strain relation. ABAQUS/CAE uses true strain and stresses, hence material data which

originally are given by the engineering values must be converted into such.

Strain Measures

There exist several different strain measures, such as Green strain (εG), Almansi strain (εA),

true strain (εL) and conventional strain (εe). Common to all of them is that they have to satisfy

the constraints of finite strain measures. To fulfill those criterias the finite strain measures have

to be able to predict zero strain for rigid-body motion and reduce to infinitesimal strains if
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Figure 2.10: Iterations t convergence [4].

nonlinear terms are neglected. Additionally the strain measures should be able to predict finite

strain in a realistic manner, i.e. for full compression it should diverge to an infinite negative

strain (ε → −∞ as L → 0), and for infinite elongation it should diverge to an infinite positive

strain (ε → ∞ as L → ∞) [4]. See from figure 2.11 that the only strain measure that fulfilling

those criterias is the true (logarithmic) strain (εL).

Unlike conventional (engineering) strain (εE), true strain accounts for the geometrical changes

the specimen undergoes during deformation. Thus, the strain increment is defined with respect

to the current gauge length (L)

dεl(t) =
duL(t)

L
(2.21)

Integration of the strain increment over the deformation length yields the expression for true

strain

εl = ln
( L
L0

)
= ln(1 + εe) (2.22)

with the plastic strain given by

εpl = εl − εel = ln(1 + εe)− σt/E (2.23)

Stress Measures
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Figure 2.11: Finite strain measures [4].

Work conjugate to true strain is the true stress (σt) which refers to the current cross sectional

area. The expression for the stress measure make use of the fact that the strains in metals

remain small and that plastic deformation is incompressible [19], giving

A0L0 = AL (2.24)

Implementing this term yields the following expression for the true stress

σt = σe exp(εl) = σe(1 + εe) (2.25)
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Development of Numerical Model

The coped beam’s behaviour in both stiffened and unstiffened mode was analyzed with use

of the finite element program ABAQUS/CAE. The obtained results were compared to similar

numerical solutions on the topic.

3.1 Procedure

Geometry

The models cross section was that of an IPE300 steel beam with dimensions corresponding to

the standard europian values [20]. The beam’s length was set to 1000 mm, restrained from

translation in all directions at one end and the free end resting on a rigid block. The contact

surface between the underside of the flange and the block was simulated through a contact

algorithm. The block was chosen as the master surface and the underside of the flange acts as

the slave surface. The beam was loaded by moving the block in the vertical direction.

Considering the beams symmetric behaviour about the restrained end, the beam’s behaviour

was similar to that of a simply supported beam with a total length of 2000 mm.

A series of cope details were tested, where the coped corners were given a rounded shape with a

radius of 12 mm, according to the design recommendations in the American steel manual [21].

Figure 3.1 show the coped beam’s dimensions, with the copes dimensions as shown in table 3.1

Material

The beam and stiffeners are given similar material behaviour corresponding to that of S355

construction steel [22]. The material properties implemented in ABAQUS/CAE are presented

in table 3.2. The max. stress and strain on the stress-strain curve are respectivily given as 612

N/mm2 and 0.179. The analyses are however not expected to reach that far on the stress-strain

curve.

19
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Figure 3.1: Dimensions of coped beam.

Cope length Cope depth Cope ratio
c dc c/h0

[ mm ]

0 0 0
100 70 0.43
100 110 0.53
100 150 0.67
200 70 0.87
200 110 1.05
300 70 1.30
200 150 1.33
300 110 1.58
300 150 2.00

Table 3.1: Dimensions of coped region.

True stress Logarithmic plastic strain
σT εpL

[N/mm2]

355.6 0
378 0.047
612 0.179

Young’s modulus Shear modulus Poissons ratio
E G ν

[N/mm2] [N/mm2]

210 000 81 000 0.3

Table 3.2: Material properties for S355 steel.
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Elements - Shell Elements S4 and S4R

The shell elements stress resultant have parts in both bending (out-of plane) and membrane

(in-plane). For plane elements there are no coupling between the membrane and bending action,

thus the stiffness matrix can be established by superimposing the membrane and plate stiffness

relations [4].

The shell elements ability to describe stress distribution through the thickness is restricted,

where the solid elements will give more accurate results. However, for slender structures shell

elements will provide accurate results, which makes them preferable to the more computationally

costly solid elements.

There exist several different shell elements. The S4 element is a plane 4-node fully integrated

general purpose element type with 6 degrees of freedom in each node, able to describe large

strain behaviour [23]. Figure 3.2 shows the graphical representation of this element compared

to the 8-node solid element

Figure 3.2: Type of elements, a) 4-node shell element, b) 8-node solid element.

The S4 element does not have hourglass modes, thus hourglass controll is not required. The

S4R element is the S4 element with reduced integration. For undistorted elements reduced

integration usually provides more accurate results compared to full integration, because it softens

the behaviour of the element [24]. It is also preferable in that reduced integration significantly

reduces the computational time. The downside is that hourglass modes may occur, so that

hourglass controll is required. Hourglass modes are also known as spurious modes or zero-energy

deformation modes, and are deformation modes that are not rigid body motions were the strain

energy will integrate to zero. An element who exhibit a spurious mode has no resistance to

nodal loads that tend to activate the mode [5]. Figure 3.3 shows the independent displacement

modes of a 4-node plane element, where the hourglass modes are represented by modes 7 and

8.

Hourglass control applies constraints to prevent hourglass modes. The energy used to prevent

hourglass modes is represented by the artificial energy, which should be very small compared to

the strain energy. If not, a refined mesh or use of fully integrated S4 elements is required.
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Figure 3.3: Independent displacement modes of a 4-node plane element [5].

Chose S4R elements in modeling of the coped beam due to its advantages mentioned above.

Since shell elements does not have a volume, it’s not possible to model the web’s rounded shape

at the intersection between the web and flanges in an exact manner, as seen in figure 3.4

Figure 3.4: Real section (left hand) and model with shell elements (right hand) [6].

Compared to the real section the element model will have different cross-sectional properties,

particularly significant for the torsional constant which can up to 30 % [6]. In order to model

the beam’s cross section in a more proper manner, elements in the web near the intersection

of the web and flanges were assigned a larger thickness than the rest of the web. In his study,

Bonkerud solved this by assigning the external three elements in the web at the intersection

between the web and flanges an increased thickness. He proposed that a doubling of the element

thickness was sufficient [3]. This would add extra material to the flanges, but of such a small

amount that the effect was assumed to be negligible. Thus, the same procedure for modelling

of the beam’s cross section was contucted in this study.

Mesh - Element Size and Mesh
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The element size is important for the element models accuracy, which will improve with refined

mesh. A refined mesh also lowers the appearance of hourglass modes in the model. However, the

gain in accuracy comes with the cost of severely increased computational time [4]. In his study,

Bonkerud investigated the effect of redused element size on his model’s accuracy. He concluded

that a element size of 10 mm or less provided accurate results, hence for further studies he chose

a mesh size of 7 mm [3]. In this thesis, an element size of 7 mm was also prefered. The model

was meshed as shown in figure 3.5

Figure 3.5: Coped beam meshed in 7 mm sized elements.

Type of Analysis

The model was analyzed in a static manner through the general static analysis step with non-

linear effects taken into account, as the long-term response of the coped beam was of interest.

A static analysis was also prefered to a dynamic analysis in that it is much less computationally

costly.

Contact

The contact between the underside of the flange and the rigid block was modeled with a mas-

ter/slave formulation, where the nodes of the slave surface cannot penetrate the master surface

segments. The nodes of master surface on the other hand are free to penetrate the slave surface

segments [4]. In the model, the rigid block was chosed to act as the master surface, while the

lower flange’s underside was chosed to act as the slave surface.

Imperfections

All structures and components are postponed to geometrical imperfections. It is therefor neces-

sary to implement such in the numerical model. In ABAQUS/CAE there are several methods

for implementation of imperfections. In this study, only two methods are considered. The first

one is to use buckling shapes from the linear buckling analysis. The buckling shape correspond-

ing to the lowest eigenvalue was choosen and assigned a suitable scaling factor. The other way

was to manually implement sinus half waves by changing the node coordinates in the input file

with use of the formula

w = w0 cos
(nπy
h

)
sin
(mπz
L

)
(3.1)
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where w0 is the amplitude, L the beam length and h the beam hight. m denotes the number of

sinus half waves in the longitudinal direction, while n is the number of sinus half waves in the

vertical direction, in this instance always equal to 1.

To determine which type of imperfection to implement in the model, the unreinforced coped

beams capacity was evaluated through a nonlinear analysis. The objective was to find the most

conservative type, providing the lowest capacity. A selection of cope details was selected and

evaluated for the following imperfections

1. Buckle - Buckled shape corresponding to lowest Eigenvalue from Linear elastic buckling

analysis

2. Sinus 1 - 1 sinus half wave in longitudinal direction, 1 sinus half wave in vertical direction

3. Sinus 2 - 2 sinus half wave in longitudinal direction, 1 sinus half wave in vertical direction

4. Sinus 3 - 3 sinus half wave in longitudinal direction, 1 sinus half wave in vertical direction

The element model developed in chapter 3 was used for the analyses. The beam was restrained

from translation in every direction at one end and loaded by moving a rigid block in the vertical

direction at the other end. The coped region was assigned dimensions as listed in table 3.1. The

model’s setup is shown in figure 3.6.

Figure 3.6: Loaded coped beam.

The element size was set to 7 mm and arranged in the mesh shown in figure 3.5. All of the

imperfections were scaled with a factor of 0.3.

The results from the nonlinear analyses were presented in terms of the beam’s maximum capacity

for the different cope details, represented by the cope ratio (c/h0) as shown in figure 3.7 and

table 3.3.
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Figure 3.7: Max. Support force for different types of imperfections.

Cope length Cope depth Cope ratio BUCKLE SINUS-1 SINUS-2 SINUS-3
c dc c/h0 Rmax Rmax Rmax Rmax

[mm] [N] [N] [N] [N]

100 70 0.43 248 063 247 522 253 366 248 944
200 70 0.87 230 344 231 628 233 429 231 792
200 110 1.05 185 086 187 325 184 651 184 094
300 70 1.30 179 129 178 668 176 621 176 045
200 150 1.33 138 337 141 737 139 598 139 153
300 110 1.58 134 210 133 785 133 178 138 607
300 150 2.00 95 636 96 548 96 200 97 618

Table 3.3: Max. Support force for different types of imperfections.

Observe that the difference in maximum support force was quite small for all of the tested

cope details regarding type of imperfection implemented in the element model. The difference

between the lowest and highest value varies from 2 % for cope ratio c/dc = 2.00 to 4 % for

cope ratio c/dc = 1.58. Which type of imperfection to choose was not obvious, as all of them

for a certain cope detail came up with the lowest maximum capacity. It was also not easy to

spot a pattern regarding the different cope dimensions. For the beams with cope length of 300

mm, it was expected that SINUS-3 would provide the critical value, as the amplitude of one

of the sinus waves was located near the coped corner where the stress concentrations are the

largest. This is the case for cope ratio of 1.30, but not for the other details with cope length

300 mm. Figure 3.8 shows the lateral deformed pattern for this cope detail at the point where

it has reached it’s maximum capacity, for each type of imperfection.
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Figure 3.8: Lateral displacement U1 at max.support force, where a) BUCKLE, b) SINUS-1,
c) SINUS-2 and d) SINUS-3

As seen from the figure, the largest lateral displacements were located at the coped corner.

However, with three sinus waves in the longitudinal direction (SINUS-3) the deformed geometry

was somewhat different. Here the largest lateral displacement did not occur at the coped corner,

but close to it.

The type BUCKLE provided the critical value most often and was a simpler and more reliable

way of implementing imperfections in the model, as changing the node coordinates manually in

the input file was both time consuming and a possible sorce of error. Thus, chose BUCKLE as

the default.

Validation of the Numerical Model

In order to determine the developed numerical model’s accuracy, the results from the nonlinear

analyses were compared to a similar finite element model. The model chosen was the one

developed by Bonkerud [3]. For comparison, this model was well suited as it had many of

the same features. The beam’s length was however shorter, and had slightly different material

properties and cross sectional dimensions. Thus, this model should provide higher capacities,

however it was expected that this model should be more resistant to the applied forces.

The unstiffened coped beam was tested in a nonlinear manner, both for the uncoped beam and

the coped beams. Imperfections were implemented in both models as the buckling shape from a

linear elastic buckling analysis corresponding to the lowest Eigenvalue and scaled with a factor

of 0.3. The beams capacity was measured in terms of the maximum applied force caused by

contact with the rigid block and the beam.

Table 3.4 show the comparison of max. support force for the element model to the corresponding

results from Bonkerud’s study, defined respectivily Fmax,BUCKLE and Fmax,BONKERUD.
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c dc c/h0 Fmax,BUCKLE Fmax,BONKERUD

(
Fmax,BUCKLE

Fmax,BONKERUD

)
[ mm ] [ N ] [ N ]

0 0 0.00 249 356 288 270 0.87
100 70 0.43 248 050 275 490 0.90
100 110 0.53 248 274 261 670 0.95
100 150 0.67 213 951 218 830 0.98
200 70 0.87 230 208 230 480 1.00
200 110 1.05 185 423 186 380 0.99
300 70 1.30 138 686 141 100 0.98
200 150 1.33 179 202 172 870 1.04
300 110 1.58 134 393 135 330 0.99
300 150 2.00 95 878 98 150 0.98

Table 3.4: FEA results of max. support force.

Observe that the two models solutions corresponded well with each other. Similar to Bonkerud’s

model, the coped beam failed for all cope dimensions at the coped section, despite its increased

length. As expected, for nearly all cope details Bonkeruds model reached a slightly higher

maximum support force.





Chapter 4

Numerical Analysis: Coped Beam

with End Restrictions

4.1 Effect of Doubling the Flanges Thickness at the Fixed End

Bonkerud developed an element model for his master thesis [3] which was made to simulate

a simply supported IPE300 beam with length 1200 mm, loaded with a concentrated force at

the midspan. But, to reduce the model’s size and computational time only half the beam was

modeled. Considering the beam’s symmetry about the midspan, the deflection pattern would

be the same. Hence, the beam was modeled with a length of 600 mm, with the end restrained

from lateral movement in all three directions.

The model was compared to a series of lab experiments together with results from a selection of

hand calculation methods, and from these comparisons it was concluded that the element model

gave valid results. However, there were some shortcomings to this model. By going through

the results for each simulation in terms of the force-displacement plots, distribution of stresses

and the deformation pattern, a change of behaviour was spotted when the web thickness was

increased to one and a half or two times the original value, respectivily 10.35 mm and 13.8 mm.

Figures 4.1 show the stress distribution for an uncoped beam with web thickness of 13.8 mm

for an uncoped beam and a coped beam with cope length-to-reduced beam hight ratio of 0.53.

What happened was that the increased web thickness raised the webs buckling capacity, so that

a larger rection force was required to make the web buckle. For the uncoped beam and for the

coped beams with small cope dimensions, the increased buckling capacity was large enough that

yielding occured at the beam’s fixed end as a consequence of the increased bending stresses,

followed by buckling of the compressional flange. Thus, it was desired to change the model to

make it coincide more with the models with lower web thicknesses. Two improvements were

proposed. The first included reduction of the bending stresses at the fixed end by lowering

29
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Figure 4.1: Stress distribution for a) uncoped beam and b) coped bema 100-110 with web
thickness of 13.8 mm.

the applied loads level arm. For that purpose the nodes accross the upper and lower flange

was restrained against movement in the vertical direction, reducing the moment to zero at this

point.

Considering the regular expression for bending stresses, σ = M
I y, an increase of the flanges

cross-sectional area would increase the beams moment capacity at the fixed end. For that

purpose, the thickness of the upper and lower flange was doubled over a section 20 elements

spanning from the fixed end. A few models were analyzed for each case, and it was concluded

that the second method gave the best results. Thus, all of the cope details for the models with

web thicknesses of 10.35 mm and 13.8 mm where analyzed.

4.1.1 Results and Discussion

In figure 4.2 and in table 4.1 the capacities for the uncoped and coped beams with doubled flange

thicknesses at the fixed end were compared to the original solutions presented by Bonkerud. The

original model’s capacity with web thickness one-and a half and two times the original value,

denotes respectivily RT15,0 and RT2,0, while the beam’s capacity with doubled flange thickness

at the fixed end denotes respectivily RT15,TF2 and RT2,TF2.

See that the max. capacity of the coped beams stays nearly unaltered for the increased flange

thickness. The max. gain in strength is 6% for the uncoped beam with doubled web-thickness,

while for most of the coped beams the gain in strength is negligible. Thus, the effect of doubling

the flanges thickness at the fixed end seems insignificant. However, considerig the stress dis-

tribution over the deformed beams, the beams behaviour are clearly improved. As mentioned

earlier, the uncoped beam and the coped beam with cope lenght-to-reduced web hight of 0.53
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Figure 4.2: Max. support force vs cope ratio.

Cope ratio Max. support force
Web thickness 1.5tw Web thickness 2.0tw

c/h0 RT15,0 RT15,TF2
RT15,TF2

RT15,0
RT2,0 RT2,TF2

RT2,TF2

RT2,0

[ N ] [ N ] [ N ] [ N ]

0.00 487 268 488 936 1.00 635 318 676 110 1.06
0.43 461 794 461 556 1.00 620 673 620 847 1.00
0.53 460 266 461 027 1.00 609 301 623 762 1.02
0.67 395 928 396 928 1.00 544 262 556 719 1.02
0.87 388 566 388 713 1.00 535 785 554 783 1.04
1.05 337 139 338 401 1.00 477 723 479 666 1.00
1.30 251 282 252 647 1.00 357 707 358 850 1.00
1.33 308 432 311 478 1.01 427 096 431 695 1.01
1.58 237 431 241 224 1.02 330 958 333 836 1.01
2.00 170 848 172 675 1.01 238 973 240 679 1.01

Table 4.1: Max. support force for beam with doble flange thickness at fixed end.
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experienced buckling of the flanges at the fixed end. With the increased flange thickness how-

ever, the beams moment capacity were increased to prevent such behaviour. Figure 4.3 show

the stress distribution for the improved models for the uncoped beam and the coped beam. See

that for the uncoped beam the increased moment capacity at the fixed end prevents formation

of large stresses there, hence the beam is forced to fail in local web buckling at the loaded

position.

Figure 4.3: Stress distribution for a) Uncoped beam and b) Coped beam 100-110 with web
thickness of 13.8 mm.

4.2 Effect of Restraining the Web at the Coped End

Bonkerud modeled the beam as simply supported with the web free to move or rotate in every

direction over the beams length. However, it is customary to restrain the end of the beam in

some way, either with a welded-on endplate or with a bolted connection. Therefor, the models

strength and behaviour were investigated when doing so. At first, the web at the loaded end

was restrained from moving sideways. This was done for all of the cope details. Secondly, coped

end was also restrained from rotation about the vertical axis. The purpose of this study was

to see how the boundary conditions were affecting the beams strength and behaviour for the

different cope details. The restrainment was meant to reduce the webs buckling length in order

to increase the buckling capacity. Restraining the web from rotating as well was belived to

increase the buckling strength even more. The assumption was that for shorter copes, where

the buckled shape reach the web’s free end, the coped beam’s strength would be increased. For

longer copes however, the buckle originating from the stress concentration at the coped corner

would not reach the web’s free end and would not be affected much by the restrainment.

The model with web thickness of 6.9 mm was choosen and for each of the models, coped and

uncoped the web at the loaded end was restrained from lateral translation (U1 = 0). The web
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was also restrained from rotating about the vertical axis (U1 = R2 = 0). The results were

compared with the results if the unrestrained beams.

4.2.1 Results and Discussion

Figure 4.4 and table 4.2 shows the results in terms of maximum reaction force relative to cope

ratio obtained for all cope dimensions, both restrained and unrestrained. Rmax,0 denotes the

capacity of the unrestrained beam, while Rmax,U1 and Rmax,U1,R2 denotes the restrained beam’s

capacity, respectivily for the end prevented from moving sideways and rotating about its vertical

axis.

Figure 4.4: Max. reaction force vs cope ratio.

See from table 4.2 that the gain in strength is largest for small cope ratios. For cope ratio

c/h0 = 0.43 the capacity was increased by 30 % when restraining the web from lateral transla-

tion (U1 = 0) and by 41 % when additionally restrained from rotating about the vertical axis

(U1 = R2 = 0). For higher cope ratios the gain in capacity falls quickly and when exceeding

1 the ratio between the restrained and unrestrained coped beam’s capacity reduces to approxi-

mately 1.00, thus the gain in capacity for such cope dimensions seems negligible. This strongly

implies the previous proposed statement that for beams with copes of a certain length restrain-

ing the coped end will not affect the capacity in any particular manner. Thus, as seen from

figure 4.4 for cope lengths of 200 mm or higher (c ≤ 200) the distance from the coped corner to

the restrained end is large enough that the buckled shape is not affected by the restraining. This
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Cope ratio Max. reaction force Deviation
Restrained DOF’s

c/h0 Unrestrained Restrained U1 Restrained U1 & R2
Rmax,U1

Rmax,0

Rmax,U1,R2

Rmax,0

[ N ] [ N ] [ N ]

0.00 281 883
0.43 269 579 350 474 380 028 1.30 1.41
0.53 255 896 283 214 303 346 1.11 1.19
0.67 216 355 225 635 233 199 1.04 1.08
0.87 221 676 244 381 253 715 1.10 1.14
1.05 185 594 186 782 187 743 1.01 1.01
1.30 166 401 166 796 167 204 1.00 1.00
1.33 141 097 141 492 141 562 1.00 1.00
1.58 129 453 129 912 131 968 1.00 1.02
2.00 95 314 95 352 95 401 1.00 1.00

Table 4.2: Max. support force for restrained coped end.

is shown schematically in figures 4.5 and 4.6, where the lateral displacement U1 are compared

for the restrained and unrestrained beams with cope lenghts of respectivily 100 mm and 200

mm. See that for the shorter cope length the buckling pattern changes when restraining the

end, while it stays nearly unaltered for the longer cope length.

Figure 4.5: Lateral deflection pattern for a) Unrestrained, b) Restrained from lateral trans-
lation c) Restrained from lateral translation and rotation.

Figure 4.6: Lateral deflection pattern for a) Unrestrained, b) Restrained from lateral trans-
lation c) Restrained from lateral translation and rotation.

However, even though the effect of end restriction of the coped beams becomes more and more

insignificant with increasing cope length, it will be more precise to consider the effect in terms of

cope ratio, which takes into account the cope’s depth as well. As seen from figure 4.4, the gain
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in strength is seen to drop significantly with increasing cope depth. While the gain in capacity

for beams with cope length 100 mm and cope depth 70 mm were as high as 41 %, it drops to a

maximum of 19 % for a cope depth of 110 mm and reduces further to 8 % for a cope depth of

150 mm. The test specimen with cope ratio 0.87 experiences a gain in strength of 14 % for the

most restrained case, even though the cope length is 200mm. Thus, the effect of restraining the

reduced section at the coped end with an endplate seems negligible for cope ratios higher than

or equal to 1 (c/h0 ≥ 1).

4.3 Summary

From the previous study of the elementmodel by Bonkerud certain parameters have been altered

in order to change the coped beam’s strength and behaviour. The topics investigated were:

1. Doubling of the flanges thickness at the fixed end in an attempt to avoid yielding and

eventually failure at this end.

2. Restraining the web at the loaded end from lateral translation and rotation about the

vertical axis

For the first topic the attempt was successfull. By doubling the thickness of both flanges over a

length of 20 elements (elementsize = 7 mm), buckling of the beam’s top flange was prevented.

Also, the beam’s increased cross-section prevented large stresses to form at the fixed end, in-

stead forcing failure to occur at the loaded end only. The behaviour of the modified model for

all cope geometries were made similar to that of the models with lesser flange thicknesses, as

desired. A slightly increase of the capacity for the test specimens were also obtained, but in

most cases the improved strength were negligible.

The second topic showed that the effect on the beam’s strength when restraining it’s web at the

free end was less and less significant with increasing cope length (c). Also, the gain in capacity

was reduced with a higher cope depth (dc). The beam’s cope ratios includes both the cope

length and depth, thus the beams capacities were plotted against their respective cope ratios,

see figure 4.4. The effect of restraining the free end seemed negligible for cope ratio exceeding

1 or equal to 1 (c/h0 ≥ 1), while for cope ratios lesser than 1 (c/h0 < 1) the gain in strength

increased with lowering cope ratio. For the smallest cope dimension tested (c/h0 = 0.43), the

max. capacity increased with 41 % when restrained from both lateral translation and rotation.

However, it is practically impossible to fully restrain the beams end. In real life the restrained

end will be able to move slightly, as the endplate or bolted conncetion will not act completely

rigid and the end restrainment will be subjected to straining. Hence, a more realistic approach
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would be to model the restraining of the free end as either an endplate welded to the coped

beam, or restraining the other nodes of the free end with a series of springs given appropriate

stiffnesses. However, the results obtained in this thesis provides some insight of how the coped

beams behave when subjected to such restrainment, though the obtained solutions might not

be that conservative.



Chapter 5

Numerical Analysis: Reinforced

Coped Beams

5.1 General

Coping of the beam can lower it’s capacity significantly, due to local web buckling and to

the beam’s reduced cross sectional properties at the coped section. A way to increase the

coped beam’s capacity is to reinforce the coped end with stiffeners. The stiffened coped beam’s

behaviour has been subject to several studies, but with varying results. In the study conducted

by Cheng et.al (1984) [7] design recommendations were provided for three stiffener details,

referring to figure 2.4. They stated that yielding would control the coped section’s capacity for

horizontal stiffeners extension lengths not shorter than the copes depth (exdc). This however

contradicts with the conclusions drawn from a later study conducted by Yam et al. (2007)

[2]. Here the reinforced coped beams failed due to instability of the coped section instead of

material yielding, resulting in a design reaction force significantly lower than the reaction forces

corresponding to the yield moment capacity and shear yielding resistance of the web at the

coped section.

A more comprehensive experimental study was conducted by Yam et al. (2011) [8] and followed

by a numerical study conducted by Yam and Chung (2012) [9]. For both studies, the strength

and behaviour of steel I-beams with varying cope dimensions were investigated. The coped

beams were strengthened with end plates and stiffeners, as shown in figure 5.1.

In the experimental study 10 full scale specimens were tested. They showed that the reinforced

coped beam specimens mainly failed by yielding of the full beam section near the loading

position, followed by either a flange local buckling or rigid body movement of the longitudinal

stiffeners due to web crippling [8]. Similar behaviour was observed in the numerical study. For

all cases examined, non of the reinforced coped beams experienced flexural failure in the coped

37
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Figure 5.1: Reinforcement details.

region. Instead failure due to flexural yielding of the full beam section near the loaded position

and shear yielding in the coped section were observed. The final failure mode included either

rigid body movement of the longitudinal stiffeners due to web crippling or flange local buckling

near the loaded position.

It was of interest to further investigate the strength and behaviour of coped beam’s reinforced

with stiffeners. Thus, a numerical study was conducted with use of the finite element analysis

software ABAQUS/CAE [25]. The model developed and validated in chapter 3 was chosen,

representing an I-steel beam, 1000 mm long, with one end restrained from translation in every

direction and the other end simply supported on a rigid block. This block was also used to load

the beam at a distance of 970 mm from the beams fixed end. The coped beams were reinforced

with either longitudinal stiffeners only, or in combination transverse stiffeners. The beams cross-

sectional dimensions were modelled similar to the IPE300-profile, which is categorized in cross

sectional class 1 [22].

The reinforced coped beams were tested both in linear elastic buckling analyses and in nonlinear

analyses. In the nonlinear analysis an initial imperfection was introduced to the beam in order

to allow for buckling of the web near the coped region. The imperfection was obtained from the

buckled shape corresponding to the beam’s lowest eigenmode and assigned a scaling factor of
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Cope Detail c dc Cope Ratio
[ mm ] [ mm ] c/h0

A 100 50 0.40
B 150 70 0.65
C 200 110 1.05

Table 5.1: Dimensions of coped regions.

c dc RM,pl RV,pl&el RM,pl,red RV,pl&el,red RM,el RM,el,red

[mm] [kN] [kN] [kN] [kN] [kN] [kN]

100 50 229.8 436.6 1104.1 363.8 203.8 469.6
150 70 229.8 436.6 546.6 334.7 203.8 238.6
200 110 229.8 436.6 264.4 276.5 203.8 122.1

Table 5.2: Results elastic and plastic moment and shear capacity of the full and reduced beam
section.

1.0, assumed to be appropriate considering the distortions the web experience during welding

of the stiffeners. The beams were loaded to failure, where the force displacement curve is seen

to drop. If not, the beams max. capacity was evaluated at a vertical displacement of 35 mm.

Choose three cope geometries for testing, namely cope details A, B and C, with dimensions listed

in table 5.1. Refering to figure 1.1, coping of the beam’s end is usefull in connecting secondary

beams to the main girder. Hence, the copes dimensions were chosen to provide enough clearance

to a hypothetical adjacent main girder.

The reinforcements main objective is to prevent failure in local web buckling, at any loaction of

the beam. Thus, the stiffeners have to be arranged such that the beam eventually fails in flexural

yielding or shear yielding of the full beam section. Further increase of the beam’s strength is

not possible and would demand additionally reinforcement along the beam’s length, which is

not considered in this study. Hence, the results from the finite element analyses are compared

to the representative coped beams moment and shear capacities listed in table 5.2. Also, rigid

body movement and bending and torsional twisting of the stiffeners should be prevented.

5.2 Effects of Longitudinal Stiffeners

5.2.1 General

Use of longitudinal stiffeners are provided in order to improve the coped beam’s strength. By

forcing the coped beam to fail in flexural yielding of the full beam section the increased strength

can be significant.

Several design recommendations have been proposed for use of stiffeners. Yam et al. (2007)

recommended an extension length of both the horizontal and vertical stiffeners of min. dc for

cope length-to-beam hight ratios lesser than 1 (c/h < 1), while for c/h > 1 the extension
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length should be min. 2dc [2]. In the study by Yam et al. (2012) use of only longitudinal

stiffeners were recommended for coped beams with web depth-to-thickness ratios (d/tw) equal

to or lesser than 52.7, cope depth-to-beam depth ratios (dc/D) equal to or lesser than 0.3 and

cope length-to-beam depth ratios (c/h) equal to or lesser than 0.75 [9], with stiffeners lengths

as follows

Lx = c+ ex where ex = 2dc (5.1)

However, as the stiffeners experienced sideways rigid body movement due to web crippling it is

assumed that the provided stiffeners lengths were not long enough to provide properly anchorage

of the stiffeners. Thus, the coped beams were tested for reinforcement in the longitudinal

direction with increasing stiffener lenght (Lx).

The stiffeners material properties were the same as the beam, as seen in tableMaterialProperties.

The stiffener lengths (Lx) equals the copes length (c) plus an extension length (ex), hence

Lx = c+ ex. The longitudinal reinforced solution is shown in figure 5.2.

Figure 5.2: Reinforcement detail for coped beam with horizontal stiffener.

The stiffener dimensions tested are listed in table 5.3. The stiffeners bending- and torsional

stiffness should be large enough to prevent the stiffeners to deform together with the beam [1].

Thus, had to provide adequate dimensions for stiffener width (bx) and thickness (tx). Intially

those were set to respectivily 7.1 mm and 75 mm, but were further increased to see the effect

on the coped beams strength. The dimensions tested in the parametric study are listed in table

5.4.

The FE model developed in chapter 3 was used for testing. The stiffeners were modeled with use

of 4-noded shell elements with reduced integration (S4R-elements) and attached to the web with

a TIE-constraint. The reinforced model is shown schematicaly in figure 5.3, where the stiffeners

are placed at the top of the coped section. Normally there would be a couple of millimeters of

clearance to allow for welding, but in order to simplify the modelling the stiffeners were placed
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Cope Dimension ( c x dc)
Stiffener Length 100 x 50 150 x 70 200 x 110

Lx ex Lx/c ex Lx/c ex Lx/c
[ mm ] [ mm ] [ mm ]

0 0 0 0 0 0 0
200 100 2 50 1.33 0 0.75
300 200 3 150 2 100 1.50
400 300 4 250 2.67 200 2
600 500 6 450 4 400 3
750 650 7.50 600 5 550 3.75
800 700 8 650 5.33 600 4
1000 900 10 850 6.67 800 5

Table 5.3: Dimensions and cope details of specimens.

Model name Stiffener width Stiffener thickness
bx[mm] tx [ mm ]

MODEL-1 75 7.1
MODEL-2 75 10.7
MODEL-3 150 7.1
MODEL-4 150 10.7

Table 5.4: Longitudinal stiffener dimensions.

as specified. The model’s behaviour was tested in both linear elastic buckling analyses and

nonlinear analyses.

Figure 5.3: Elementmodel reinforced coped beam.

5.2.2 Results

Linear Buckling Analysis
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Lx [ mm ] MODEL-1 MODEL-2 MODEL-3 MODEL-4

Cope detail A (100x50)

0 629 233 629 233 629 233 629 233
200 788 186 803 701 795 323 808 242
300 828 054 844 204 840 683 850 458
400 845 385 857 050 853 960 863 653
600 846 756 868 481 859 616 878 751
800 848 402 876 619 865 984 895 791
1000 853 051 891 546 884 337 941 142

Cope detail B (150x70)

0 510 790 510 790 510 790 510 790
200 621 085 639 860 629 311 643 958
300 703 128 739 808 719 546 750 584
400 736 299 778 941 757 630 795 278
600 763 375 809 697 792 858 834 695
800 773 639 823 556 815 653 860 659
1000 783 368 840 146 862 889 919 815

Cope detail C (200x110)

0 348 744 348 744 348 744 348 744
200 421 610 424 581 421 719 424 481
300 520 175 590 162 545 942 621 120
400 548 348 618 941 572 278 655 348
600 606 092 677 414 637 529 721 503
800 630 028 706 532 681 363 763 896
1000 640 454 726 233 734 771 823 001

Table 5.5: Critical buckling load for longitudinal reinforced coped beams.

The reinforced coped beam’s strength and behaviour was investigated in linear buckling analyses

in order to provide the beams critical buckling load (Rcr), in ABAQUS given by the critical

Eigenmode from solution of the eigenvalueproblem [4]. The corresponding buckled shape was

further implemented in the nonlinear analyses as an initial imperfection assigned a scaling factor

of 1.0.

The obtained critical buckling loads (Rcr) are presented in table 5.5 and plotted relative to

longitudinal stiffener length (Lx) in figure 5.4.

See that the coped beam’s resistance to elastic buckling increases with increased reinforcement

length, with the largest gain in strength obtained when the unreinforced beam was provide a

stiffener with lenght of 400 mm. However, for stiffener lengths exceeding 400 mm, the gain in

strength was insignificant. For cope detail A the buckling capacity was increased with up to

37 % when reinforced with such stiffeners, but for reinforcement lengths up to 1000 mm the

capacity was increased further with only 9 %. For cope detail B the capacity increased with

respectivily 56 % and 16 %, while for cope detail C the capacity increased with 88 % and 26 %.
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Figure 5.4: Critical buckling load for longitudinal reinforced coped beams.

Considering figure ??, the buckled shape of cope detail B varied little with increasing stiffener

length. For all specimens, the beam buckled outwards at the top end of the cope and remained

undistorted at its fixed end.

Thus, the effect of extending the longitudinal stiffeners on the coped beam’s capacity seems

insignificant, even when increasing the stiffeners cross sectional properties. The behaviour were

further investigated in nonlinear analyses.

Nonlinear Analysis

The coped beam’s strength and behaviour was analyzed in nonlinear analyses when reinforced

with longitudinal stiffeners. The results are presented in table 5.6 in terms of max. applied

force (Rmax) at the contact surface between the rigid block and the lower flange. As the effect

of increasing stiffener length was of interest, the results were plotted as the ratio with max.

reaction force for stiffener length of 1000 mm (Rmax/Rmax,1000), relative to stiffener length

(Lx), as seen in figure 5.5. The beam experienced the following failure modes (FM)
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Longitudinal stiffener H
MODEL-1

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 241 665 1.05 WB1 237 162 1.03 WB1 177 371 0.77 WB2
200 249 374 1.08 WB1 248 317 1.08 WB1 181 877 0.79 WB2
300 248 891 1.08 WB1 247 848 1.08 WB1 233 074 1.01 WB2
400 247 317 1.08 WB1 247 556 1.08 WB1 245 816 1.07 WB2
600 245 330 1.07 WB1 247 433 1.08 WB1 246 846 1.07 WB1
800 243 858 1.06 WB1 247 470 1.08 WB1 246 868 1.07 WB1
1000 247 522 1.08 WB1 251 278 1.09 WB1 248 460 1.08 WB1

Table 5.6: FEM results of coped beam reinforced with horizontal stiffener.

• Local web buckling at the loaded position (WB1)

• Local web buckling at the coped corner (WB2)

For cope details A (c/h0 = 0.40) and B (c/h0 = 0.65) the beam’s increased strength when

reinforced with longitudinal stiffeneres was insignificant. Even when extending the stiffeners to

full length (Lx = 1000 mm), the gain in strength compared to the unreinforced beam was only

24 % for cope detail A and 6 % for cope detail B. For cope detail C (c/h0 = 1.05) however, the

beam’s capactiy was raised with up to 40 % compared to the unreinforced beam.

From the output files in ABAQUS of the coped beam’s deformed shape and stress distribution

it is possible to follow the coped beam’s behaviour as the loading proceeds. Cope detail A

and B showed similar behaviour for all stiffener lengths, where yielding was triggered quite

early at the coped corner and in the web near the loaded position. The final failure mode was

identified as local buckling of the lower part of the web, followed by a sideways displacement of

the horizontal stiffeners. This behaviour was also observed for the unreinforced coped beams,

thus reinforcement seems excessibly. However, the provision of stiffeners reduced the sideways

movement of the coped end, increasingly with elongated stiffener length. Figures 5.6 and 5.7

show the lateral translation pattern for the two cope details at failure.

Localized buckling of the top flange at the fixed end was also observed, but that is rather seen

as a result of the stress concentrations arising from the lateral movement following the local

web buckling.

For cope detail C the behaviour was somewhat different. Referring to the figure 5.5 and table

5.6, the beam’s capacity increased with 39 % from the unreinforced state up to a horizontal

stiffener length of 400 mm (Lx/c = 2). Further gain in strength was negligible, with only 1

% for stiffener length 1000 mm (Lx/c = 5). Due to the longer coped lenght (c = 200 mm),
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Figure 5.5: Max. reaction force longitudinal reinforced coped beams.
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Figure 5.6: Lateral deflection pattern of longitudinally reinforced beam with stiffener length
Lx

a) 200 mm, b) 400 mm and c) 1000 mm.

the shortest stiffeners did barely extend into the web, providing little support. For the shortest

longitudinal stiffener (Lx/c = 1) the extension length equal zero. In that case the reduced web

buckling length was somewhat lowered, increasing the beam’s capacity some (3 %). But the

buckling length of the full section at the coped corner remained unaltered and because of the

large stress consentrations located at that point, the beam failed in buckling at the coped corner

followed by severe sideways movement of the horizontal stiffener. By elongating the stiffener

lengths the behaviour was successfully improved, forcing the beam to fail at the loaded position.

Figure 5.8 shows the lateral deflection pattern at failure for increasing stiffener length (Lx).

The effect of increasing the stiffeners thickness and width on the reinforced coped beam’s ca-

pacity was investigated in a parametric study. The results are presented in table 5.7 and in

figures 5.9, 5.10 and 5.11, in terms of ratio of max. support force to max. support force of the

longest stiffener length ( Rmax/Rmax,1000 ).
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Figure 5.7: Lateral deflection pattern of longitudinally reinforced beam with stiffener length
Lx

a) 0 mm, b) 300 mm and c) 600 mm.

See that the increased cross sectional dimensions of the longitudinal stiffeners had little or no

effect on the coped beams strength. This was rather expected as the coped beams were seen

to fail mostly in local buckling of the web below the horizontal reinforcement. Thus, increasing

the stiffeners thickness and width would not prevent this from happen as the web’s buckling

length remained the same.

But, some of the results might seem a little odd. Observe from figures 5.9 and 5.11 that when

increasing the stiffeners thickness, the coped beams capacities drops below the ones for the

original model for stiffener lengths up to 600 mm. As the failure mode stays unaltered and

with the stiffened beams increased cross section, the opposite would be expected to happen.

The drop was quit small however, for all cases concerned the less than one procent. Thus, this

behaviour migth just be a result of the nonlinear effects taken into account in the model, for

instance a different buckling shape implemented as the models inital imperfections.

See from the obtained results that provision of horizontal stiffeners for cope detail A (c/h0 =
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Figure 5.8: Lateral deflection pattern of longitudinally reinforced beam with stiffener length
Lx

a) 0 mm, b) 200 mm, c) 400 mm and d) 800 mm.
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Figure 5.9: Max. reaction force for longitudinal reinforced coped beams
MODEL-2 vs MODEL-1.
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Figure 5.10: Max. reaction force for longitudinal reinforced coped beams
MODEL-3 vs MODEL-1.
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Figure 5.11: Max. reaction force for longitudinal reinforced coped beams
MODEL-4 vs MODEL-1.
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MODEL-2
tx = 10.7 mm bx = 75 mm

Cope detail Stiffener length Lx [ mm ]
0 200 300 400 600 800 1000

A (100x50) 241 665 248 608 247 925 247 015 248 189 248 546 250 285
B (150x70) 237 162 247 393 248 173 247 953 247 951 248 067 253 000
C (200x110) 177 371 182 503 238 048 247 924 247 729 247 780 250 054

MODEL-3
tx = 7.1 mm bx = 150 mm

Cope detail Stiffener length Lx[mm]
0 200 300 400 600 800 1000

A (100x50) 241 665 248 934 247 884 247 142 246 889 246 719 246 564
B (150x70) 237 162 247 995 247 958 247 662 247 508 247 502 251 066
C (200x110) 177 371 182 075 235 511 247 326 247 247 247 164 248 819

MODEL-4
tx = 10.7 mm bx = 150 mm

Cope detail Stiffener length Lx[mm]
0 200 300 400 600 800 1000

A (100x50) 241 665 248 470 247 788 247 688 247 815 247 977 249 790
B (150x70) 237 133 247 133 248 297 248 140 248 273 248 494 253 200
C (200x110) 177 371 182 640 239 131 248 363 248 270 248 430 250 763

Table 5.7: Max. reaction force for longitudinal reinforced coped beams.

0.40) and B (c/h0 = 0.65) did not improve the beams capacity efficiently compared to the unre-

inforced state. For cope detail C (c/h0 = 1.05) the beam’s capacity was successfully improved,

but extending the stiffener lengths over 400 mm (Lx/c ≤ 2) would provide almost no further

gain in strength.

This results compared well with the conclusions drawn by Yam et al. (2007), which stated that

increasing of the horizontal stiffeners length would not increase the local web buckling capacity

of the coped beam in an efficient manner [2]. However, this happened just for cope details A

and B. The results for cope detail C compared well with the design recommendations presented

by Yam and Chung (2012), that for coped beams with d/tw ≥ 52.7, dc/h ≥ 0.3 and c/h ≥ 0.75

use of only longitudinal stiffeners with an extension length of 2dc was sufficient [9]. In this

case d/tw = 35.0, dc/h = 0.37 and c/D = 0.67, and with a recommended stiffener length of

Lx = c+ 2dc = 420 mm. This compared well with the results presented in figure 5.5, where the

beam reached its max. capacity for a stiffener length of 400 mm.

The different behaviour can be explained in terms of the coped sections dimensions relative to

the beams cross sectional properties. The reinforced coped beams capacities against flexural

yielding at the coped section was seen to drop with increasing cope ratio, as seen in table 5.6

As a result, the reinforced coped sections capacities against local web buckling were less than

the corresponding yield moment capacities, so that strengthening of the coped section with
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horizontal stiffeners would be less efficient. That seemed to be the case for cope details A and

B, with cope ratio of respectivily 0.40 and 0.65, and cope depth to beam hight dc/h of 0.17 and

0.23, where provision of horizontal stiffeners hardly raised the beams capacities at all. For cope

detail C however, where c/h0 = 1.05 and dc/h = 0.37, the beams capacity increased with nearly

40 % when reinforced with a horizontal stiffener length of 400 mm, which corresponds well with

the design recommendations proposed by Yam and Chung (2012). But, an increased strength

of 40 % is not quite significant. Also, for non of the tested specimens the coped beams failed in

flexural yielding or shear yielding at the fixed end.

5.3 Effects of Combined Horizontal and Vertical Stiffeners

5.3.1 General

In the previous section it was concluded that reinforcing of the coped sections with just hori-

zontal stiffeners would not strengthen the coped beams in any efficient manner. Hence, vertical

stiffeners were added to the horizontal stiffeners.

The horizontal stiffeners location and dimensions stayed unaltered, and all stiffener lengths Lx

were tested. The vertical stiffeners were placed based on the observed location of the failure

modes from the previous section. Since the beam most usually failed due to local web buckling

at the loaded position, an obvious placement of the vertical stiffeners would be at the coped

region rigth above the loading, here refered to as vertical stiffener V 1. The coped corner was

also particular vulnerable, thus vertical stiffeners were provided at that section, refered to as

vertical stiffener V 2. The vertical stiffeners dimensions and material properties were equal to

the horizontal stiffeners. Thus, both vertical stiffeners V 1 and V 2 were assigned a thickness and

width of respectivily 7.1 mm and 75 mm. Unlike the combined stiffened solution analyzed by

Yam et al. (2007) where the vertical stiffeners length would cover only a part of the web [2], the

vertical stiffeners lengths were in this case extended over the webs hight. Thus, at the reduced

coped region, Ly1 = h0 − tf = hw,red, while at the uncoped section, Ly2 = h− 2tf = hw.

The coped beams strength and behaviour were analyzed for three types of combinations of

vertical and horizontal stiffeners for all lengths Lx, namely

• H + V 1: Horizontal stiffener and vertical stiffener at the loaded position

• H + V 1: Horizontal stiffener and vertical stiffener at the coped corner

• H + V 1 + V 2: Horizontal stiffener and vertical stiffeners at both locations

The combined reinforced solutions are shown in figure 5.12 with the details listed in table 5.8.
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Figure 5.12: Reinforcement details for coped beams.
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bx = 75 mm tx = 7.1 mm by1 = 75 mm ty1 = 7.1 mm by2 = 75 mm ty2 = 7.1 mm

H + V1 H + V2 H + V1 + V2
Lx [mm] Ly1 [mm] Ly2 [mm] Ly1 [mm] Ly2 [mm]

A B C A, B & C A B C A, B & C

0 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
200 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
300 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
400 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
600 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
800 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6
1000 232.2 212.2 172.2 278.6 232.2 212.2 172.2 278.6

Table 5.8: Dimensions of vertical and horizontal stiffeners.

Both the horizontal and vertical stiffeners were modelled with use of S4R elements and attached

to the beams flange and web with a TIE-constraint which also was used to weld the stiffen-

ers together. Figure 5.13 show the complete meshed element model for the different stiffener

combinations.

Figure 5.13: Element model reinforced beam for stiffener combination
a) H + V1, b) H + V2 and c) H + V1 + V2.

5.3.2 Results

Nonlinear Analysis

The coped beams strength and behaviour are analyzed in a nonlinear manner for three different

combinations of vertical and horizontal stiffeners, as shown in figure 5.12.
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The results are presented in tables 5.9, 5.10 and 5.11 where the stiffened coped beams capac-

ities are given in terms of the max. reaction force (Rmax) at the contact surface between the

rigid block and lower flange. The different failure modes (FM) which the beam where seen to

experience are as follows

• Flexural failure of the full beam section at the fixed end, followed by buckling of compres-

sional flange (FF)

• Flexural failure of the full beam section at the fixed end, followed by sideways movement

of stiffeners (FR)

• Local web buckling at the loaded position (LWB1)

• Local web buckling at coped corner (LWB2)

For most of the cases examined in this study, the beam failed in flexural yielding at the fixed

end (FF). Thus, the results are also presented as the ratio of max. reaction force and plastic

moment capacity of the full beam section, (Rmax/RM,pl), and plotted relative to the longitudinal

stiffener length (Lx), as seen in figures 5.14, 5.15 and 5.16.

Figure 5.14: FEM results of reinforced coped beam A.

For cope detail A (c/h0 = 0.40) that the beam failed in flexural yielding at the fixed end followed

by buckling of the compressional flange (FF), for all placements of the vertical stiffeners and

horizontal stiffener length (Lx). Thus, provison of vertical stiffeners succeeded in preventing

local web buckling at the coped section from happening, regardless of their location. See also

that it was no occurance of severe sideways movement of the coped end.

In terms of the beams capacity, the applied load exceeded the moment capacity at the full beam

section (RM,pl) with 9− 10 %. For the longest horizontal stiffener length (Lx = 1000 mm) the

moment capacity was exceeded with 14− 15 %, but in that case the FE models max. capacity

was not reached unless a very large vertical displacement of the coped end was provided, hence
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Figure 5.15: FEM results of reinforced coped beam B.

Figure 5.16: FEM results of reinforced coped beam C.

Combined stiffener H + V1

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 253 353 1.10 FF 247 021 1.07 WB2 181 846 0.79 WB2
200 251 881 1.10 FF 250 677 1.09 FR 200 470 0.87 WB2
300 250 591 1.09 FF 253 342 1.10 FF 247 976 1.08 WB2
400 250 603 1.09 FF 253 261 1.10 FF 250 903 1.09 FR
600 250 611 1.09 FF 253 029 1.10 FF 253 012 1.10 FF
800 253 282 1.10 FF 253 295 1.10 FF 252 940 1.10 FF

1000 263 019(∗) 1.14 FF 259 883(∗) 1.13 FF 255 579 1.11 FF

Table 5.9: FEM results of coped beam reinforced with horizontal stiffener and vertical stiffener
at loaded position.
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Combined stiffener H + V2

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 253 262 1.10 FF 250 044 1.09 WB1 196 753 0.86 WB2
200 253 199 1.10 FF 253 314 1.10 FF 252 885 1.10 WB1
300 253 204 1.10 FF 253 294 1.10 FF 253 338 1.10 FF
400 253 205 1.10 FF 253 271 1.10 FF 253 338 1.10 WB1
600 253 231 1.10 FF 253 258 1.10 FF 252 865 1.10 WB1
800 253 265 1.10 FF 253 267 1.10 FF 252 900 1.10 WB1

1000 263 098(∗) 1.14 FF 254 816 1.11 WB1 254 647 1.11 FF

Table 5.10: FEM results of coped beam reinforced with horizontal stiffener and vertical
stiffener at coped corner.

Combined stiffener H + V1 + V2

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 250 551 1.09 FF 253 303 1.10 FF 224 073 0.97 WB2
200 250 579 1.09 FF 252 196 1.10 FF 251 599 1.09 FF
300 250 610 1.09 FF 250 568 1.09 FF 253 080 1.10 FF
400 250 628 1.09 FF 250 575 1.09 FF 252 994 1.10 FF
600 250 610 1.09 FF 250 559 1.09 FF 251 701 1.10 FF
800 253 318 1.10 FF 253 248 1.10 FF 253 259 1.10 FF

1000 263 296(∗) 1.15 FF 259 863(∗) 1.13 FF 255 035 1.11 FF

Table 5.11: FEM results of coped beam reinforced with horizontal stiffener and vertical
stiffener at both locations.

the capacity was evaluated at a vertical displacement of 35 mm.

The capacities of the different stiffener combinations and horizontal stiffener lengths varied little,

in figure 5.14 represented by an almost straight line. Compared to the case with reinforcement

in only longitudinal direction, the difference in strength is almost insignificant where the max.

applied load exceeded the moment capacity by 6 − 8 % in reinforced state and 5 % in an

unreinforced state. But as earlier stated, use of horizontal stiffeners only do not prevent the

web from buckling at the coped end. Hence, because of the coped region’s relativily small size

the beam was already close to the moment capacity of the full section in an unreinforced state,

so that only a small increase in strength was possible when reinforced.

For cope detail B (c/h0 = 0.65) the behaviour was similar to that of cope detail A. The beam

usually failed in flexural yielding at the fixed end followed by buckling of the top flange (FF).

However, other failure modes were observed as well. When reinforced with vertical stiffener



Chapter 5. Numerical Analysis: Reinforced Coped Beams 59

at the loaded posistion only (Lx = 0 mm) the web would fail at the coped corner (WB2).

Due to the inclined buckling line, shear was assumed to be critical [15]. This behaviour was

however prevented when the vertical reinforcement was moved to the coped corner. But, due

to lack of support of the coped end the beam still failed in local web buckling, now at the

loaded position (WB1). Hence, vertical stiffeners at only one location did not prevent local web

buckling from happening. That would demand stiffeners in the longitudinal direction as well,

which was accomplished for all stiffener lengths as seen in figures 5.14 and 5.15. However, with

one exeption. Extending the stiffener over the beams full length (Lx = 1000 mm) increased the

beams capacity at its fixed end, forcing the web at the loaded position to buckle instead (WB1).

When reinforced with vertical stiffeners at both locations (H + V1 + V2), local web buckling

was prevented, both for vertical stiffeners only and for all stiffener lengths (Lx = 0 mm).

The capacities of the different stiffener combinations and stiffener lengths varied little, as seen

in figure 5.15. For failure at the fixed end, the applied load exceeded the beam’s moment

capacity with 9− 10 %, regardless of stiffener combinations and horizontal stiffener length. For

local web buckling the exceedance was 7 % when located at the coped corner and 9− 11 % at

the loaded position, respectivily for Lx = 0 mm and Lx = 1000 mm. Similar to cope detail A,

compared to the unreinforced beam and reinforced beam in longitudinal direction only, the effect

of providing vertical stiffeners seems almost insignificant and exceeding the moment capacity

with respectivily 3 % and 8− 9 %.

The behaviour of cope detail C (c/h0 = 1.05) depended more on the vertical stiffeners location.

When reinforced at the loaded position only (H + V1), the beam failed in local web buckling

at the coped corner. This happened for the horizontal stiffeners of length 200 mm and 300 mm

as well, which deflected laterally in rigid body motion. By increasing the stiffener length to 400

mm local web buckling was prevented, forcing the beam to fail in flexural yielding at it’s fixed

end. But, the horizontal stiffener would still deflect sideways in rigid body motion (FR). Hence,

further elongation of the horizontal stiffeners (Lx = 600 − 1000 mm) were needed to provide

enough sideways support.

When only vertical reinforcement was provided at the coped corner (H + V2) the webs shear

capacity was exceeded, forming a plastic hinge along the vertical stiffener causing the web to

buckle outwards. When horizontal stiffeners were added, the web buckling was located to the

loaded position, except for the stiffener lengths of 300 mm and 1000 mm for which the beam

failed in flexural yielding at its fixed end (FF).

When vertical reinforcement was provided at both locations (H + V1 + V2), local web buckling

was prevented from happening for all stiffener lengths (Lx) and the beam failed in exceedance

of the plastic moment capacity at its fixed end followed by buckling of the compressional flange

(FF). Also, no significant sideways rigid body motion of the longitudinal stiffeners was observed.

When no reinforcement was provided in the longitudinal direction (Lx = 0 mm), buckling of

the web was initiated along the vertical stiffener at the coped corner. However, the web was
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prevented from any significant sideways movement by the stiffener at the loaded position.

The coped beams capacity did vary some for the different stiffener combinations and stiffener

lengths, as seen in figure 5.16. For failure at the fixed end the applied load was similar to

that of cope detail A and B, where the beam’s moment capacity was exceeded with 9 − 11

% regardless of stiffener combinations and stiffener lengths, similar to cope details A and B.

The behaviour was also similar for local web buckling at the loaded position, where the beam’s

moment capacity was exceeded with 10 %. However, for buckling of the web at the coped corner

the beam’s capacity was reduced with a fair amount. The largest reduction was observed when

vertical reinforcement were provided at the loaded position only (H + V1), where the applied

load was either 21 − 13 % under or 8 % over the beam’s moment capacity, respectivily for

stiffener lengths of 0 mm, 200 mm and 300 mm. For the other combined stiffener solutions,

the behaviour was somewhat improved. For vertical stiffener at the coped corner (H + V2) the

applied load was 14 % under the beam’s moment capacity, while for vertical stiffeners at both

locations the difference was only 3 %.

Compared to the unreinforced beam and reinforced beam in longitudinal direction only, the

effect of providing vertical stiffeners depended on their location. But, as seen in figure 5.16 the

difference were almost insignificant for stiffener lengths of 400 mm or higher (Lx ≥ 400 mm).

But, can these results be treated as accurate? First of all, the occurence of exceeded moment

capacity might seem a little strange. However, the results obtained from the FEA are expected

to disagree some with the mathematical model, here represented by the plastic moment capacity

formula (Mpl = fyWpl). As the mathematical model is only a simplification, certain details of

the actual problem might be omitted. Also, error can arise from pourly discretization of the

model. As the mathematical model consist of an infinite number of dof’s but finite in the FE

model, the FEA solutions are clearly influenced by the chosen element size, number of element

nodes, integration rules and other formulation details [5]. Thus, assume that the observed ex-

ceedance of the beams moment capacity of magnitude up to 11 % are acceptable.

The results obtained from the FEA compared well with Yam and Chungs (2012) study on re-

inforced coped beams [9], where the reinforced coped beams failed due to web crippling or in

flange local buckling at the location of max. moment. Also, the behaviour was similar in that

the max. applied load to the beam’s plastic moment capacity at the full section, in their study

represented by the Mmax/Mpl) ratio, would decrease with increasing dc/h ratio.

In their recommendations for design of reinforced coped beams, use of combined longitudinal

and double transverse stiffeners should be provided for coped beams with 52.7 < d/tw ≤ 57.1,

dc/h ≤ 0.3 and c/h ≤ 0.9. The stiffener lengths were set to respectivily Lx = c + ex and

Ly = c + ey, where ex = ey = dc. While for coped beams with hw/tw ≤ 52.7, dc/h ≤ 0.3 and

c/h ≤ 0.75, they recommended use of only longitudinal stiffeners, where Lx = c + 2dc. How-

ever, transferring those design recommendations is not easy. In the present study, the beam’s

slenderness hw/tw = 35.0 and cope to beam ratios dc/h = 0.17− 0.37 and c/h = 0.33− 0.67. In
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c dc RM,pl RV,pl&el RM,pl,red RV,pl&el,red RM,el RM,el,red

[mm] [kN] [kN] [kN] [kN] [kN] [kN]

100 50 204.2 246.0 631.2 205.0 169.1 312.2
150 70 204.2 246.0 312.6 188.6 169.1 157.2
200 110 204.2 246.0 152.2 155.8 169.1 78.9

Table 5.12: Results elastic and plastic moment and shear capacity of the full and reduced
beam section.

following those recommendation, reinforcement should be provided in the longitudinal direction

only. This would increase the strength for all cope details, but would not prevent the beam to

fail at the coped end. Hence, the design recommendations proposed by Cheng and Yura might

not be applicable.

5.4 Effects of Reduced Web Thickness for Combined Reinforced

Coped Beam

As seen from the results, the difference in the beam’s strength for the different failure modes

was quite small. Due to the modeled IPE300 beams low slenderness, the resistance to web

crippling and local web buckling is relativily high compared to the plastic moment capacity.

Hence, the applicabilty for the different reinforcement details are tested for more slender webs.

Of present the slenderenss is defined by hw/tw = 35.0, which categorizes it in cross sectional

class 1. By reducing the web thickness to 4.0 mm the slenderness is reduced to hw/tw = 62.2,

now categorized in cross sectional class 2 [22].

The coped beams moment and shear capacities were updated for the reduced web thickness and

listed in table 5.12

5.4.1 Procedure

The coped beam was tested for a reduced web thickness of 4.0 mm for all stiffener combinations

and cope dimensions tested in the previous section, as listed in table 5.8. No changes on the

element model was conducted and the vertical and horizontal stiffener dimensions remained

unaltered (tx = 7.1 = ty1 = ty2 = 7.1 mm). Also, the extra material at the intersection of the

web and flanges were modeled as earlier with a doubling of the web thickness at its extremities,

now 8 mm thick.

The element model was tested only in nonlinear analyses, as the critical buckled shapes obtained

from previous section are used to implement the initial imperfections in the model.
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5.4.2 Results

Nonlinear Analysis

The results are presented in tables 5.13, 5.14 and 5.15, with the stiffened coped beams capacities

given in terms of the max. reaction force (Rmax). In figures 5.17, 5.18 and 5.19 the response

is plotted as the ratio of max. applied load to the beam’s full moment capacity (Rmax/RM,pl)

relative to horizontal stiffener length (Lx).

Figure 5.17: FEM results of reinforced coped beam A.

Figure 5.18: FEM results of reinforced coped beam B.

From the results it is clear that the reduced web thickness decreases the beams capacity. See

that provision of combined horizontal and vertical stiffener at the coped corner (H + V2) did

not improve the beams strength and behaviour in any significant manner. For all specimens

tested, the beam failed in local web buckling at the loaded position (WB1), with the applied

load ranging in the area of 60 % of the beams moment capacity, as seen from table 5.14.
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Figure 5.19: FEM results of reinforced coped beam C.

Combined stiffener H + V1

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 181 025 0.89 RM 105 853 0.52 WB1 63 819 0.31 WB2
200 208 500 1.02 RM 152 464 0.75 WB1 75 897 0.37 WB2
300 209 058 1.02 FF 185 454 0.91 WB1 120 300 0.59 RM
400 209 057 1.02 FF 199 118 0.98 WB1 157 710 0.77 WB2
600 250 587 1.23 FF 194 516 0.95 WB1 163 480 0.80 WB2
800 253 309 1.24 FF 194 376 0.95 WB1 165 996 0.81 WB2

1000 258 488(∗) 1.27 FF 193 464 0.95 WB1 168 764 0.83 WB2

Table 5.13: FEM results of coped beam reinforced with horizontal stiffener and vertical
stiffener at loaded position.

Combined stiffener H + V2

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 121 699 0.60 WB1 110 792 0.54 WB1 87 942 0.43 WB1
200 119 720 0.59 WB1 112 493 0.55 WB1 125 785 0.62 WB1
300 120 372 0.59 WB1 110 821 0.54 WB1 132 102 0.65 WB1
400 120 421 0.59 WB1 110 703 0.54 WB1 119 249 0.58 WB1
600 120 577 0.59 WB1 110 799 0.54 WB1 119 357 0.58 WB1
800 120 811 0.59 WB1 109 678 0.54 WB1 119 210 0.58 WB1
1000 121 188 0.59 WB1 110 446 0.54 WB1 121 886 0.60 WB1

Table 5.14: FEM results of coped beam reinforced with horizontal stiffener and vertical
stiffener at coped corner.
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Combined stiffener H + V1 + V2

Cope detail A Cope detail B Cope detail C
(100x50) (150x70) (200x110)

Lx Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM Rmax
Rmax
RM,pl

FM

[N] [N] [N]

0 209 167 1.02 FF 185 484 0.91 WB2 105 831 0.52 WB2
200 209 234 1.02 FF 197 905 0.97 WB2 148 113 0.73 WB2
300 209 238 1.02 FF 207 149 1.01 WB2 170 000 0.83 WB2
400 209 237 1.02 FF 207 768 1.02 WB2 180 263 0.88 WB2
600 209 144 1.02 FF 207 783 1.02 FF 181 148 0.89 WB
800 212 696 1.04 FF 211 715 1.04 FF 201 875 0.99 WB
1000 219 203 1.07 FF 219 300 1.07 FF 179 901 0.88 WB

Table 5.15: FEM results of coped beam reinforced with horizontal stiffener and vertical
stiffener at both locations.

However, provision of vertical stiffeners at the loaded position successfully improved the coped

beams behaviour. For cope detail A (c/dc = 0.40), the beam’s full moment capacity was

exceeded for a min. horizontal stiffener length of 200 mm (ex/c = 1). For cope detail B

(c/dc = 0.65) the capacity was brought close to the beams moment capacity (up to 98%) when

Lx ≥ 300 mm (ex/c = 1), but never exceeding it. In stead, the beam failed due to exceedance

of the shear capacity of the coped section.

For cope detail C (c/dc = 1.05) provision of vertical stiffener at loaded position increased the

beams capacity, however efficiently only for a min. horizontal length of 400 mm (ex/c = 1). Up

to such a stiffener length, failure of the beam was due to web crippling at the coped corner,

followed by sideways rigid body movement of the horizontal stiffener. Elsewhere, failure was

due to local web buckling of the coped section followed by bending of the horizontal stiffener.

As expected, provision of vertical stiffeners at both locations improved the coped beam’s strength

and behaviour the most. For cope detail A and B, failure was due to exceedance of the beam’s

full moment capacity at the fixed end. For cope detail B, the max. capacity was obtained for a

horizontal stiffener length of min. 300 mm (ex/c = 1), while for cope detail A the max. capacity

was nearly constant regardless of Lx.

For cope detail C, the beam’s max. capacity was reached for a min. horizontal stiffener length

of 400 mm (ex/c = 1). Up to that point, the beam would fail due to local web buckling at the

full beam section (WB2). Elsewhere, buckling of the web was located to the reduced section

between the vertical stiffeners (WB).
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5.5 Proposed Reinforcement of Coped Beams

The effect of reinforcing the coped beam with stiffeners in either longitudinal, vertical or in

both directions is clearly affected by the copes dimensions. In terms of increasing the coped

beam’s strength, cope detail A and B were hardly affected at all, regardless of type of stiffener

combinations and horizontal stiffener length.

For cope detail A (c/h0 = 0.40), the applied load exceeded the beam’s moment capacity at its

full section for every reinforced case examined, even the unreinforced one. However, provision

of stiffeners in the vertical direction did improve the beam’s behaviour in an important aspect

that local web buckling at the coped end was prevented.

For cope detail B (c/h0 = 0.65), the beam’s capacity for the different stiffener combinations

did not vary in any particular way. However, local web buckling was prevented when vertical

stiffeners were provided in addition to horizontal stiffeners with a min. length of 200− 300mm

when vertically reinforced at one location only.

For cope detail C (c/dc = 1.05), the coped beam’s response to the different stiffener combinations

did vary some, but as seen from figure 5.16 the strength reached a constant value for a min.

horizontal stiffener length of 200 − 400 mm. In order to prevent local web buckling, stiffener

combination H + V1 + V2 seems to be the best option, given a min. horizontal stiffener

length of 200 mm (ex/c = 0.0). However, a longer stiffener will be more resistent to rigid body

movement. Hence, a min. length of 300− 400 mm is preferable.

For the coped beam with reduced web thickness, the strength and behaviour was more suscep-

tible to reinforcement. From the results it is clear that stiffener combination H + V2 did not

increase the coped beam’s strength in any significant way, neither did it prevent the web from

buckling.

Stiffener combinations H + V1 and H + V1 + V2 were more efficient in that manner. For cope

detail A, the difference seemed negligible given that a min. hor. stiffener length of 200 mm

was provided for stiffener combination H + V1. But, due to rigid-body movement of the hor.

stiffener a length of 300 mm is prefered.

For cope detail B the beams strength was increased for both cases, however stiffener combina-

tion H + V1 + V2 was prefered in that local web buckling was prevented from happening. Both

cases required a min. hor. stiffener length of 300 mm (ex/c = 1) to act efficiently.

For cope detail C the beam’s strength was increased for both cases, however stiffener combi-

nation H + V1 + V2 is preferable in that it provides a higher capacity. Both cases required a

min. hor. stiffener length of 400 mm (ex/c = 1) to act efficiently.

Based on the results of the parametric study, the following design recommendations for coped

I-steel beams are proposed:



Chapter 5. Numerical Analysis: Reinforced Coped Beams 66

For coped beams with (h/t)w ≤ 58 and c/h0 < 1.00 use of longitudinal stiffener in combination

with vertical stiffener at the loaded position ( H + V1 ) with stiffener lengths

Lx = c+ ex where ex ≥ c

Ly1 = hw,red

For coped beams with (h/t)w ≤ 58 and c/h0 ≥ 1.00 use of longitudinal stiffener in combination

with vertical stiffener at the both locations ( H + V1 + V2 ) with stiffener lengths

Lx = c+ ex where ex ≥ c

Ly1 = hw,red

Ly2 = hw

For coped beams with 58 < (h/t)w ≤ 67 and c/h0 < 0.5 use of longitudinal stiffener in combi-

nation with vertical stiffener at the loaded position ( H + V1 ) with stiffener lengths

Lx = c+ ex where ex ≥ 2c

Ly1 = hw,red

For coped beams with 58 < (h/t)w ≤ 67 and c/h0 ≥ 0.50 use of longitudinal stiffener in

combination with vertical stiffener at the both locations ( H + V1 + V2 ) with stiffener lengths

Lx = c+ ex where ex ≥ c

Ly1 = hw,red

Ly2 = hw



Chapter 6

Conclusion

The strength and behaviour of coped beams were investigated with use of the finite element

method program ABAQUS/CAE. The finite element model used for testing was validated by

comparison with numerical solutions from a similar study. In general, the two finite element

models results compared well in terms of load deflection behaviour and stress distributions. The

ratio of ultimate loads predicted by the FEM analyses to the comparative model ranges from

0.87 to 1.04.

Based on the validated FE model, a parametric study was conducted to investigate the effect

of strenghtening the coped beam with different reinforcing measures. Those consists of either

restrainment of the coped end from lateral translation, or reinforcing of the coped region with

longitudinal stiffeners alone or in combination with vertical stiffeners. The study also included

the cope dimensions relative to beam dimensions, here represented by the ratio of cope length-

to-reduced web hight (c/h0) and the web depth-to-thickness ratio (hw/tw).

Restraining of the coped end would not prevent local web buckling from happening, but an

increase of coped beam’s capacity was obtained due to improved stabilty of the coped end.

However, this only complies to ratios of cope length-to-reduced web hight (c/h0) lesser than 1.

Otherwise the bucklig pattern remained nearly unaltered.

For reinforcement of the coped region in longitudinal direction only, all of the tested specimens

experienced local web buckling at the coped end, regardless of the longitudinal stiffener length

(Lx). For that purpose, provision of vertical stiffeners in addition is more suitable. Based on

the results from the FEM analyses, a set of reinforcement details for strengthening of the coped

section is recommended. Depending on the cope length-to-reduced-web hight (c/h0) and web

depth-to-thickness ratio (hw/tw) of the coped beams, the design recommendations includes use

of longitudinal stiffeners combined with either vertical stiffeners at the loaded position only (H

+ V1) or double vertical stiffeners (H + V1 + V2).

67
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Future work

On the topic of coped beams and reinforcement measures there are several parameters that can

be subject to further research. The following proposals concerns end restrainment of the coped

end and the provision of stiffeners:

1. Investigate the effect of restraining the coped end in a way that allow for a certain flexi-

bility. A possible measure will be to restrain the end with a series of spring elements in

longitudinal and/or lateral direction.

2. More testing on the proposed reinforcement details have to be conducted to expand and

check their applicability. In this thesis only a limited selection of cope dimensions and

beam dimensions were tested. Hence, it is of interest to test for a wider range of cope di-

mensions and beam cross sections. Also, the reinforcement applicability should be checked

for different material properties, i.e. for aluminium.
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Hand Calculations

A.1 Moment and shear capacity of coped beam

Figure A.1: Dimensions of coped beam

G 81 000 N/mm2 h 300 mm
E 210 000 N/mm2 b 150 mm
ν 0.3 tw 7.1 mm
A 5380 mm2 tf 10.7 mm
Iy−y 83 600 000 mm4 r 15 mm
Wy−y 557 000 mm3 fy 355 N/mm2

Sy 314 000 mm3

Table A.1: Materail and cross sectional properties of the full beam section
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Figure A.2: a) Bending stress distribution over full beam section, b) Shear stress distribution
over full beam section.

A.1.1 Section A-A - Full beam section

Elastic moment capacity

Mel = fyWel = 355 · 557000

= 197.735 · 106Nmm = 197.735kNm

RM,pl = MM,el/e =
197.735 · 106

1000− 30

= 203851N ≈ 203.8kN

Plastic moment capacity

Mpl = fyWpl = fy2Sy = 355 · 2 · 314000

= 222.94 · 106Nmm = 222.94kNm

RM,pl = MM,pl/e =
222.94 · 106

1000− 30

= 229835N ≈ 229.8kN
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Elastic & Plastic shear capacity

Vel,Rd = τdAv =
fy√
3γM0

Av =
fy√
3γM0

· htw

=
355√
3 · 1.0

· 300 · 7.1

= 436563N ≈ 436.6kN

A.1.2 Section B-B - Reduced beam section

Figure A.3: a) Bending stress distribution over the reduced beam section, b) Shear stress
distribution over the reduced beam section.

New location of elastic N.A.

zc,el =
(awhwtw) + af tfb

Aw +Af

=
(
h0+tf

2 )(h0 − tf )tw +
t2f b

2

tw(h0 − tf ) + btf

=
(h0+10.7

2 )(h0 − 10.7) · 7.1 + 10.72·150
2

7.1 · (h0 − 10.7) + 150 · 10.7

Distance from center of masses

zf = zc,el −
tf
2

= zc,el −
10.7

2

zw =
h0 + tf

2
− zc,el =

h0 + 10.7

2
− zc,el
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c dc h0 zc,el zw zf Iy,red
[mm] [mm] [mm] [mm] [mm] [106 ·mm4]

100 50 250 69.6 60.7 64.3 16.7
150 70 230 62.0 58.4 56.6 13.6
200 110 190 47.4 53.0 42.0 8.3

Table A.2: Reduced section properties.

Iy,red = [(
1

12
bt3f ) + (btfz

2
f )] + [

1

12
tw(h0 − tf )3 + tw(h0 − tf )z2w]

= [(
1

12
· 150 · 10.73) + (150 · 10.7 · z2f )] + [

1

12
· 7.1 · (h0 − 10.7)3 + 7.1 · (h0 − 10.7) · z2w]

New location of plastic N.A.

for zc,pl < hw:

zc,pl =
(Af +Aw)/2

tw
=

(btf + hwtw)/2

tw

=
(150 · 10.7 + hw · 7.1)/2

7.1

for zc,pl > hw:

zc,pl =
(Af +Aw)/2

tw
=

(btf + hwtw)/2

b

=
(150 · 10.7 + hw · 7.1)/2

150

Distance from center of mass

aw =
(h0 − tf )tw[

(h0−tf )
2 + (tf − zc,pl] + (tf − zc,pl)b

(tf−zc,pl)
2

(h0 − tf ) + b
(tf−zc,pl

2

=
(h0 − 10.7) · 7.1 · [ (h0−10.7)

2 + (10.7− zc,pl] + (10.7− zc,pl) · 150 · (10.7−zc,pl)2

(h0 − 10.7) + 150 · (10.7−zc,pl2

af =
zc,pl

2
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Cope length Cope depth Reduced web hight Location N.A.
c dc hw zc,pl aw af

[mm] [mm] [mm] [mm] [mm]

100 50 239.3 17.3 (web) 116.3 11.7
150 70 219.3 10.5 (flange) 108.2 5.3
200 110 179.3 9.6 (flange) 80.4 4.8

Table A.3: Reduced section properties.

c dc Wpl Av Wpl,red Av,red
[mm] [103 ·mm3] [mm2] [103 ·mm3] [mm2]

100 50 628.0 2130 217.7 1775
150 70 628.0 2130 184.7 1633
200 110 628.0 2130 126.6 1349

Table A.4: Reduced section properties.

Elastic Moment capacity

Mel,red = fyWel,red = fy
Iy,red

h0 − zc,el

= 355 ·
Iy,red

h0 − zc,el

RM,el,red =
Mel,red

c− 30

Plastic Moment capacity

Mpl,red = fyWpl,red = fy
Ared

2
(aw + af )

= 355 · Ared
2

(aw + af )

RM,pl,red =
Mpl,red

c− 30

Plastic & Elastic Shear capacity

Vpl,Rd,red = τdAv,red =
fy√
3γM0

Av,red

=
fy√
3γM0

h0tw =
355√
3 · 1.0

· h0 · tw
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c dc RM,pl Vpl&el,Rd RM,pl,red Vpl&el,Rd,red RM,el RM,el,red

[mm] [kN] [kN] [kN] [kN] [kN] [kN]

100 50 229.8 436.6 1104.1 363.8 203.8 469.6
150 70 229.8 436.6 546.6 334.7 203.8 238.6
200 110 229.8 436.6 264.4 276.5 203.8 122.1

Table A.5: Results elastic and plastic moment and shear capacity of the full and reduced
beam section tw = 7.1 mm.

c dc RM,pl Vpl&el,Rd RM,pl,red Vpl&el,Rd,red RM,el RM,el,red

[mm] [kN] [kN] [kN] [kN] [kN] [kN]

100 50 204.2 246.0 631.2 205.0 169.1 312.2
150 70 204.2 246.0 312.6 188.6 169.1 157.2
200 110 204.2 246.0 152.2 155.8 169.1 78.9

Table A.6: Results elastic and plastic moment and shear capacity of the full and reduced
beam section tw = 4.0 mm.

A.2 Moment of shear capacities of beam section with reduced

web thickness

The calculations are similar as in previous section, now with tw = 4.0 mm. However, need to

update the cross sectional properties.

Iy,1 =

n∑
i

∫
A
y2dA+ a2A = 2

[( 1

12
· 150 · 10.73

)
+
(
10.7 · 144.652

)]
+
( 1

12
· 4.0 · 278.63

)
+ 2
[( 1

12
· 4.0 · 153

)
+
(
4.0 · 151̇31.82

)]
= 69308126 ≈ 69.3 · 106mm4

Wel,1 =
Iy,1
y

=
69.3 · 106

150
= 462054 ≈ 462000mm3

Sy,1 =
n∑
i

∫
A
iyidAi = (150 · 10.7 · 144.65)

+ (4.0 · 139.3 · 69.65) + (4.0 · 15 · 131.8)

= 278880.23 ≈ 279000mm3

Wpl,1 = 2Sy,1 = 2 · 279000 = 558000mm3
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G 81 000 N/mm2 h 300 mm
E 210 000 N/mm2 b 150 mm
ν 0.3 tw 7.1 mm
A 5380 mm2 tf 10.7 mm
Iy−y 83 600 000 mm4 r 15 mm
Wy−y 557 000 mm3 ss 40 mm
Sy 314 000 mm3 cs 10 mm
fy 355 N/mm2 hw 278.6 mm

Table A.7: Materail and cross sectional properties of the reduced beam section

A.3 Resistance to transverse forces

Following calcultions are conducted on basis of the design recommendations found in NS-EN

1993 1-5

Figure A.4: Dimensions of coped beam.

kF = 2 +
6(ss + c)

hw
≤ 6

= 2 +
6 · (40 + 10)

278.6
= 3.077 < 6

Fcr = 0.9kFE
t3w
hw

= 0.9 · 3.077 · 210000 · 7.13

278.6

= 747062N ≈ 747kN
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le =
kFEt

2
w

2fywhw
≤ ss + cs

=
3.077 · 210000 · 7.12

2 · 355 · 278.6
= 164.66 > 50

= 50mm

m1 =
fyfb

fywtw
=

355 · 150

355 · 7.1

= 21.13

m2 = 0.02
(hw
tf

)2
= 0.02 ·

(278.6

10.7

)2
= 13.56

ly = min



e + tf

√
m1
2 +

(
le
tf

)2
+m2

= 50 + 10.7 ·
√

21.13
2 +

(
50
10.7

)2
+ 13.56

= 122.54mm

le + tf
√
m1 +m2

= 50 + 10.7 ·
√

21.13 + 13.56

= 113.01mm

ly = 113.01mm

λF =

√
fywtwly
Fcr

=

√
355 · 7.1 · 113.01

747.06
= 0.578

χF =
0.5

λF
=

0.5

0.578
= 0.810

FRd =
fywχF lytw

γM1
=

355 · 0.810 · 113.01 · 7.1
1.0

= 230727N ≈ 230.7kN
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FEM Results

In the following pages are the FEM results for a selection of the reinforced coped beams pre-

sented. The results are presented in terms of the beams lateral displacement pattern at max-

imum applied load, the Von Mises stress distribution of the loaded coped beams and plots of

the force-displacement relation. The selection includes the following tested specimens:

1. Cope details A (c = 100 mm, dc = 50 mm), B (c = 150 mm, dc = 70 mm) and C (c = 200

mm, dc = 110 mm)

2. Coped beam reinforced with

• Longitudinal reinforcement only (H) for stiffener lengths 200, 400 and 800 mm

• Longitudinal reinforcement combined with vertical stiffeners at either loaded position

(H + V1), at the coped corner (H + V2) or at both locations (H + V1 + V2) for

longitudinal stiffener lengths 200, 400 and 800 mm

3. The web thickness is 7.1 mm
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100-50-H-200-7.1

Fmax = 249.37 kN
U2max = 9.55 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H-400-7.1

Fmax = 227.32 kN
U2max = 8.63 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H-800-7.1

Fmax = 243.86 kN
U2max = 7.65 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H-200-7.1

Fmax = 248.32 kN
U2max = 8.63 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H-400-7.1

Fmax = 247.56 kN
U2max = 9.23 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H-800-7.1

Fmax = 247.47kN
U2max = 9.23mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H-200-7.1

Fmax = 181.88 kN
U2max = 5.55 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 10 mm
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200-110-H-400-7.1

Fmax = 245.82 kN
U2max = 10.01 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 14 mm
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200-110-H-800-7.1

Fmax = 246.87 kN
U2max = 10.35 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 18 mm
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100-50-H+V1-200-7.1

Fmax = 251.88 kN
U2max = 14.74 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H+V1-400-7.1

Fmax = 250.60 kN
U2max = 12.45 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H+V1-800-7.1

Fmax = 253.28 kN
U2max = 18.03 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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150-70-H+V1-200-7.1

Fmax = 250.68 kN
U2max = 11.25 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V1-400-7.1

Fmax = 253.26 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V1-800-7.1

Fmax = 253.30 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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200-110-H+V1-200-7.1

Fmax = 200.47 kN
U2max = 5.90 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 10 mm
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200-110-H+V1-400-7.1

Fmax = 250.90 kN
U2max = 12.38 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 20 mm



Appendix B. FEM Results 95

200-110-H+V1-800-7.1

Fmax = 252.94 kN
U2max = 19.43 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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100-50-H+V2-200-7.1

Fmax = 253.20 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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100-50-H+V2-400-7.1

Fmax = 253.21 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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100-50-H+V2-800-7.1

Fmax = 253.27 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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150-70-H+V2-200-7.1

Fmax = 253.31 kN
U2max = 19.65 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V2-400-7.1

Fmax = 253.27 kN
U2max = 19.07 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm



Appendix B. FEM Results 101

150-70-H+V2-800-7.1

Fmax = 253.27 kN
U2max = 19.80 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H+V2-200-7.1

Fmax = 252.89 kN
U2max = 21.00 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H+V2-400-7.1

Fmax = 252.83 kN
U2max = 20.13 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H+V2-800-7.1

Fmax = 252.29 kN
U2max = 20.85 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H+V1+V2-200-7.1

Fmax = 250.58 kN
U2max = 12.60 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H+V1+V2-400-7.1

Fmax = 250.63 kN
U2max = 12.45 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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100-50-H+V1+V2-800-7.1

Fmax = 253.32 kN
U2max = 18.45 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V1+V2-200-7.1

Fmax = 252.20 kN
U2max = 15.00 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V1+V2-400-7.1

Fmax = 250.58 kN
U2max = 12.60 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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150-70-H+V1+V2-800-7.1

Fmax = 253.49 kN
U2max = 18.20 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 35 mm
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200-110-H+V1+V2-200-7.1

Fmax = 251.60 kN
U2max = 15.93 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H+V1+V2-400-7.1

Fmax = 253.00 kN
U2max = 18.73 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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200-110-H+V1+V2-800-7.1

Fmax = 253.26 kN
U2max = 19.00 mm

Lateral displacement at max. applied load

Mises stress distribution at U2 = 30 mm
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