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Preface
The following thesis is my final work towards a masters degree in structural
engineering at the Norwegian University of Science and Technology (NTNU).
It constitutes the work required for completion of the course TKT4915 BEREG-
NINGSMEKANIKK for the spring semester of 2013. The work performed
and written about in this thesis is a continuation of the work I carried out
in TKT4511 BEREGN MEKANIKK FDP during the fall semester of 2012.

The experience gained from the following courses was valuable for finish-
ing this thesis; TKT4201 KONSTR DYNAMIKK, TKT4108 DYNAMIKK
VK, TKT4192 ELEMENTMET/STYRKE and TKT4197 IKKELIN EL ANAL-
YSE. Participating in these courses, one obtains a set of tools for analysing
almost every structural system. In my opinion, it was interesting to take on
this project since the catenary–pantograph system is new and different from
the systems usually used as examples in the courses for structural dynamics
and finite element method. Now that I have finished, I am more confident
that I have developed these tools sufficiently to take on more than the normal
systems. And so, the experience has been extremely rewarding for me.

Over the course of this spring semester I have been working on this the-
sis in close relation to my supervisor, Anders Rönnquist, and fellow student
colleague, Petter Røe Nåvik. I would like to thank both of them for the help
they have given me. I would like to thank Anders specially for the countless
hours spent answering my questions and making me ask myself new ones.
Additionally I would like to thank Tor Egil Thoresen from the Norwegian
national rail administration and the employees of the Trondheim office for
helping us obtain measurements of Norwegian systems and giving us infor-
mation on it.

Trondheim, June 2013
Arnar Kári Hallgrímsson
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Abstract–English
Some domestic flight routes in Norway rank among the busiest in Europe.
Experience has shown that, in countries such as France and Germany, high
velocity trains can be preferable to flying, given that the distance is not too
great (usually under 1000km). The domestic flight routes mentioned are all
under that limit and therefore, there is great interest for increasing velocities
of trains travelling in Norway. The biggest barrier for this purpose is the
dynamic behaviour of the catenary–pantograph system, which is the system
supplying power to the train. This thesis covers the modelling of that system,
experimentally and numerically.

The catenary–pantograph system mainly consists of a messenger wire,
contact wire and a pantograph. Electrical power is transmitted from the
contact wire through the pantograph to the train’s engine. Consistent contact
between the pantograph’s head and contact wire is vital for the train to
operate at high velocities. Too much or too little contact leads to increased
wear in the system. In order to examine the performance of the system, the
contact force is defined, i.e. the force at the point of contact. This force is
one of the most important property of the system and the aim of this thesis
is to find out which of the system’s parameters affect it. These parameters
are related to the overhead wires and the pantograph. Many researches and
studies have focused on the pantograph and it is a well defined part of the
system, however the overhead lines are less known and will therefore be the
main focus of this thesis.

iii



iv



Abstract–Norwegian
Flyruter i Norge er blant de travleste i Europa. Erfaringer fra land som
Frankrike og Tyskland viser at høyhastighetstog kan være et alternativ til
fly, dersom avstanden ikke er for stor (under 1000km). De travleste fly-
rutene i Norge er alle under 1000km og det er derfor stor interesse for å øke
hastighetene av tog på de strekninger. Et av problemene ved en slik utbyg-
ging er den dynamiske oppførselen til kontaktledningssystemet som forsyner
togene med elektrisitet. Denne oppgaven tar for seg modelleringen av et slikt
system, både eksperimentelt og numerisk.

Overføring av strøm foregår gjennom kontaktledningssystemet som består
av en bæreline, en kontaktledning og en strømavtaker. Elektrisk strøm er
overført fra kontakttråden gjennom strømavtakeren til togets motor. Pålitelig
kontakt mellom strømavtaker og kontakttråden er viktig for at toget skal
kunne operere ved høye hastigheter. For mye eller for lite kontakt fører til
økt slitasje i systemet. For å undersøke ytelsen av systemet, blir kontak-
tkraften definert, dvs. kraften som virker i et kontaktpunkt. Denne kraften
er en av de viktigeste egenskapen av systemet. Formålet med denne studien
er å bestemme hvilke systemet parametre som påvirker den. Disse param-
eterne er knyttet til kontakttråden og strømavtakeren. Strømavtakeren er
en vel definert del av systemet, men kontakttråden og bærelinen er mindre
kjent, og vil derfor være hovedfokus i denne oppgaven.
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1 Introduction
Transportation, for both people and goods, has become increasingly impor-
tant in today’s global environment. Travelling by train is a popular trans-
portation mode and is competitive over others like flying or driving when it
comes to different factors such as safety, price, environmental effects, comfort
and time. Research has shown that it is better to take the train rather than
flying or driving, if the distance travelled is under 1000km and the train can
travel at a velocity of more than 250km/h (Wu and Brennan, 1998). Trains
travelling over that limit are usually electrically powered. The subject of this
thesis is the system that supplies electricity to trains.

The system that supplies electricity to trains is called the catenary–
pantograph system, see figure 1.1. The biggest challenge of increasing ve-
locity on the system is its dynamic behaviour. The system mainly consists of
the contact wire, messenger wire and the pantograph. On top of the train sits
the pantograph, that slides along the contact wire collecting electrical power
and delivers it to the train’s engine. Contact between the pantograph and
the contact wire is an important measure of current collection performance,
it is described by a dynamic contact force. Either too low or too high contact
force yields negative effects on the system. The aim of this thesis is too study
the dynamic behaviour of the system, the parameters that are important to
it and how they affect it. Important characteristics of the system include
wave propagation velocity in the contact wire, pre–sag of the system, tension
in the wires and etc. The thesis deals with the issue generally but a special
emphasis is put on Norwegian conditions.

Some domestic flight routes in Norway ranked among the busiest in Eu-
rope in 2011; these are Oslo–Trondheim, Oslo–Bergen and Oslo–Stavanger
(Aftenbladet, 2011). All three routes are shorter than 1000km so there is
a good possibility that trains could replace flying for these routes if their
velocities are increased. Most trains in Norway run on electricity, but some
are still run on diesel oil but the objective is to eventually convert them to
run on electricity.

In order to check if the train is the best transportation option a feasibility
study was performed for a trip between Trondheim and Oslo. Environmen-
tal emissions data was obtained from (Vestlandsforskning, 2013) and time
and price data from (SAS, 2013; NSB, 2013; Lavprisekspressen, 2013). Main
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Figure 1.1: The catenary–pantograph system, (Zhou and Zhang, 2011).

assumptions for all options are that the trip is between the central train sta-
tions of Trondheim and Oslo and that each transport option is fully utilized.
Assumptions for each option are:

Train travelling between Trondheim and Oslo is currently done by so
called long distance trains (norsk. Fjerntog) run on electricity. Ticket price
and time schedule were given at (NSB, 2013).

Intercity trains are capable of reaching velocities over 250km/h and have
been proven successful in, e.g. France and Germany. According to (JBV and
Railconsult AS, 2012), if one was to be built between Trondheim and Oslo
it would take max. 180min to travel between the places depending on the
route. Since the intercity line does not exist, ticket price is not available, but
experience shows that it would be cheaper than a plane ticket.

Car trip time is calculated based on an average velocity of 90km/h and a
30min food stop; the car uses 7l/100km of petrol and the price of petrol is
assumed to be 14, 5NOK/l.

Bus price and time estimate is based on information obtained from Lavprisek-
spressen, (Lavprisekspressen, 2013).

Flying is done with a Boeing 737 and 120km of train travelling are added
due to trips to and from the airports to the central train stations. The
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ticket price contains both the fly ticket and train tickets. Total time is
30+70+55+25+20 = 200min due to trips to and from airport (30min and
20min), flight time (55min) and waiting at the airport (70min and 25min).

Table 1.1: Comparison between different transportation modes for the trip
between Trondheim and Oslo.

Train Intercity Car Bus Flying
SO2 [kg] 0 0 0 0 0,02
CO [kg] 0 0 0,08 0,02 0,1
Nox [kg] 0,01 0 0,02 0,2 0,14
CO2 [kg] 1,71 1,16 21,8 6,64 60,78

NMVOC [kg] 0 0 0,01 0,01 0,01
CH4 [kg] 0,01 0 0 0 0
PM [kg] 0 0 0,02 0,01 0,01

ECS [kWh] 43,13 28,2 81,05 24,17 193,2
AR/mp 0,48 0,48 1,96 0,34 0,15

EC [NOK] 2,34 1,52 25,86 25,89 74,68
Price [NOK] 399 - 982 429 910
Time [min] 400 130-180 346 510 200

Results can be seen in table 1.1 where NMVOC stands for Non-Methane-
Volatile-Organic-Compound, PM for particulate matter, ECS is energy con-
sumption, AR/mp stands for accident risk per million persons and finally EC
stands for environmental cost. The table shows that environmental effects
from taking the train are significantly lower than for the other options. Al-
though taking the bus is nearly as cheap as taking the train it takes much
longer. The only thing standing in the way of trains taking over is that it
takes twice the amount of time to travel by train than plane, something that
could change with the introduction of intercity train lines or simply by in-
creasing velocity of the current trains. The table shows that planes are safer
than trains, however researchers studying this topic disagree between them
on which is safer (Koerner, 2004; Brown, 2010). The consensus is though
that both options are much safer than using a private car. If the time it
takes to travel by train could be reduced, the lower environmental costs and
comfort of taking the train would make it the more attractive option.
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1.1 Literature survey

The catenary–pantograph system has been popular for research and an abun-
dance of literature exists on the subject. Knowledge of the system has greatly
increased since it was first introduced, which has led to significant improve-
ments that mostly relate to increases allowable velocity on the system. The
system has been modelled analytically, numerically and in the laboratory.
Summary of theories for the system, along with different modelling methods
can be found in (Poetsch et al., 1997; Kia et al., 2010).

Simple models are often ideal for learning how a system behaves, in (Wu
and Brennan, 1998, 1999) a simple one degree of freedom (DOF) model is
developed. The models illustrate dynamic behaviour of the system, but key
characteristics are missing, such as wave propagation velocity. Methods used
in these simple models for obtaining the stiffness variation of the contact wire
have been used for optimization of pantograph models (Park et al., 2003; Kim
et al., 2007).

In the absence of complete theoretical understanding researchers turned
to scaled laboratory models (Farr et al., 1961; Willets and Edwards, 1966;
Willets et al., 1966; Willets and Suddards, 1970). Results from these labora-
tory studies were distorted because the models were scaled down too much,
but dynamic behaviour such as pre–sag and variations in tension force were
observed. In (Manabe, 1989; Drugge, 2000), these models were improved
upon and the models proved successful in simulating for example wave prop-
agation velocity which is vital to the system. Building a scaled model can
be difficult, especially with regard to the overhead lines. Some researchers
turned to hybrid modelling, where the overhead lines are modelled math-
ematically while the pantograph is a physical model (Zhang et al., 2002;
Facchinetti and Mauri, 2009; Bruni et al., 2012; Facchinetti and Bruni, 2012).

Nonlinear effects of the system, such as contact loss or slackening of the
droppers, cannot be modelled without using numerical modelling. Numerical
modelling of the system has increased as computational power increases,
most studies use the finite element method for modelling the catenary and
a lumped mass model for the pantograph. These studies are for example
(Schaub and Simeon, 2001; Cho et al., 2010; Zhou and Zhang, 2011; Jung
et al., 2012). Special properties of the system have also been modelled like
the initial configuration of the catenary (Lopez-Garcia et al., 2006; Arias
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et al., 2009) and nonlinearities due to slackening of droppers (Cho, 2008;
Lopez-Garcia et al., 2008).

Additionally, the work carried out here is based largely on the work
done previously by the author (Hallgrimsson, 2012), which originated from
(Sølvberg, 2008). A textbook from Siemens on contact lines served as a
handbook throughout the process as well (Kiessling et al., 2012).

1.2 Objectives and research questions

The main objective of the thesis is to identify parameters that affect the
system’s dynamic behaviour. That objective is reached by developing a nu-
merical model that is descriptive of the system and is flexible with regard to
changing parameters and running. Performing a parameter study will give
a good indication of which parameters are important. An additional aim of
the thesis is to learn about previously built scaled laboratory models of the
system and find out if it is feasible to build one. The numerical model is also
supposed to be able to model a scaled down system, that will be checked by
implementing a thought up scaled model in the numerical one. The research
questions are:

• What parameters of the system are important to its dynamic behaviour?

• How do these parameters affect the system?

• Is it feasible to build a scaled laboratory model?

• Can the numerical model simulate results for scaled down systems?

1.3 Assumptions and organisation of the thesis

The assumptions of the thesis are mostly in regard to the numerical model:

Numerical model

• Modelling spans of different lengths together or in a curvature is not
possible.

• The model only accounts for trains with one pantograph.
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• Effects from lateral movements are not accounted for, the model is 2D.

• Nonlinear effects from dropper slackening are not included.

• Temperature or weather conditions are not included.

• The system is in perfect condition, no wear is present on the pantograph
contact strip or in the contact wire cross section and there are no track
irregularities.

In addition full–scale measurements were not obtained and so the numerical
model is not validated.

The thesis is setup in the following manner:

Ch. 2 describes the catenary–pantograph system in general, it describes dif-
ferent parts and properties of it. The reference system, that will later
on be used in the numerical model, is presented along with the relevant
system parameters.

Ch. 3 covers the numerical model developed. The theoretical background
necessary to model the system is reviewed along with practical issues
related to the modelling itself and results are presented.

Ch. 4 focuses on the scaled laboratory model. Previous scaled models that
were built are reviewed and the experience gained from them is summed
up in order to suggest a model that could be built in the future. The
suggested model is implemented in the numerical model for a simulation
of how it will perform.

Ch. 5 lists up the conclusions made from the numerical and scaled model.
Ideas for further work are presented.

Appendices are placed at the back with different information relevant to the
thesis. Appendix A shows the results obtained for cross section values of
the contact wire. Mathematical principles needed for the derivation of the
element matrices are found in appendices B and C, while the element matrices
themselves are found in appendix D. Integration method steps are presented
in appendix E. The model of the pantograph used in the reference system
along with values necessary to implement the model are put in appendix F.
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Matlab programs that constitute the numerical model and a movie file that
shows a run of the model are put into a zip–file that accompanies the thesis
electronically, these files are listed up in appendix G.
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2 Catenary–pantograph system
The definition of the catenary–pantograph system according to (Kiessling
et al., 2012):

Contact lines are a system of electrical conductors used in con-
junction with a sliding current collector to supply electrical en-
ergy to vehicles. Contact lines can be overhead contact lines or
conductor rail lines.

Overhead contact lines (the catenary system) are the subject of this report
along with the sliding current collector (pantograph). Together they make
up the catenary–pantograph system. The different parts of the system and
physical factors important to its behaviour will be covered in this chapter.
This study is done with respect to Norwegian conditions, therefore a span of
the Norwegian rail system is chosen as a reference system and will be defined
in this chapter.

2.1 General system

The different parts of overhead contact lines or catenary system are: contact
and messenger wires, droppers and support poles (registration arms and sup-
port brackets) (see figure 2.1). Other important factors that need mention
are the pantograph, wave propagation velocity, pre–sag and zig–zag.

2.1.1 Individual parts of the system

Contact wire (cw) and messenger wire (mw) make up most of the
catenary system. The contact wire serves as a medium through which elec-
tricity is supplied to the train via the pantograph while the messenger wire’s
purpose is to support the contact wire. The important properties of the wires
are mass per unit length (ρ), Young’s modulus (E), moment of inertia (I)
and the tension force (P ). Both mechanical and electrical considerations have
to be acknowledged when choosing material and cross section of the contact
wire but only mechanical for the messenger wire. The most common mate-
rial to use for the contact wire is copper, either a solid wire or stranded wire
and sometimes with alloy additives such as silver or magnesium (Kiessling
et al., 2012). The material chosen for the messenger wire is also often copper.
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Figure 2.1: Individual parts of the catenary–pantograph system, (Seo et al.,
2006).

Typical cross section of a contact wire can be seen in figure 2.2, values for
variables shown in the figure can be found in (Kiessling et al., 2012).

Droppers attach the contact wire to the messenger wires. They are de-
signed to carry all loads from the contact wire, horizontal and vertical. At-
taching the droppers to the contact wire is usually accomplished through a
clasp, see figure 2.3, which is the reason why the contact wire’s cross section
is shaped as it is. Droppers are a source of stiffness, damping and mass to
the system but they also represent a geometric nonlinearity; they slacken as
a pantograph passes by and when they are slackened they do not give any
resistance to motion. This source of nonlinearity is well recognized and some
researchers have tried to include it in the numerical models they develop
(Cho, 2008).

Support poles carry horizontal and vertical forces from the catenary sys-
tem. The messenger wire is extended directly from the pole (called a support
bracket), while the contact wire is extended via the registration arm. These
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Figure 2.2: Typical contact wire cross section, (Kiessling et al., 2012).

Figure 2.3: Dropper clamped onto the contact wire (Photo: Petter Røe
Nåvik).
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Figure 2.4: Support pole on a Norwegian track, part of the reference system
(Photo: Petter Røe Nåvik).

parts transfer the forces from the catenary system to the support. The reg-
istration arm is lighter and more flexible than the support bracket because
it cannot influence the stiffness variation of the contact wire too much. Its
main purpose is to constrain the contact wire in the lateral direction normal
to the train direction. Support brackets are very stiff and constrain move-
ment in all directions. Several different arrangements of these parts exist,
one of them can be seen in figure 2.4.

As the train travels along the span the upward lift from the pantograph
creates a wave that propagates from the contact point along the span in both
directions. Increased stiffness at both dropper and support pole locations
will cause the wave to reflect backwards from them towards the pantograph.
Amplifications occur in the uplift as the pantograph travels towards the wave,
resulting in a condition that limits the allowable train velocity, (Kiessling
et al., 2012):

vα = cp,cw
1− r
1 + r

(2.1)

where subscript p stands for propagation, cp,cw is the wave propagation ve-

12



(a)

(b)

(c)

Figure 2.5: Three different types of catenary systems: (a)Simple catenary
(b)Stitched catenary (c)Compound catenary, (Farr et al., 1961)

locity (see section 2.1.4) and r is the reflection coefficient expressed as:

r = 1
1 +

√
Pcwρcw

Pmwρmw

(2.2)

Complete derivation of these factors can be found in (Kiessling et al., 2012).

2.1.2 Different catenary systems

There are three typical types of catenary systems, see figure 2.5; simple cate-
nary, stitched catenary (often referred to as Y–line) and compound catenary.
These three types can furthermore be divided according to the method of
producing tension in the wires. Either the wires are fixed at the support
poles or weight–tensioning devices are used. If the wires are fixed, pre–sag
and tension vary with temperature and therefore it is considered inconvenient
for high train velocity (Farr et al., 1961).

The simple catenary arrangement was among the first systems to supply
electric power to running trains. Its disadvantage is the large stiffness vari-
ation along the span, yielding more dynamic effects in the system because
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the pantograph will lift the wire higher in the middle of the span than at the
supports. Ideally the vertical height of the pantograph should be uniform as
it runs through, to do that the system’s stiffness variation must be as small
as possible. To counteract this problem, the stitched and compound cate-
nary systems were developed. The stitched catenary is supposed to smooth
out the irregularity of the stiffness at the supports. That is accomplished by
supporting the contact wire with an additional wire, see figure 2.5. Stitched
catenary systems are also commonly used to increase performance of tracks
that run in a curvature, where the radius is larger than 700m (Sture et al.,
1982). In a compound catenary system the contact wire is suspended by
droppers from a auxiliary messenger wire, which is suspended by droppers
from the main messenger wire. By doing that, the stiffness variations will
even out over the whole span. The difference between stitched and compound
systems is that the stitch system smooths out stiffness peaks at the supports,
while the compound systems creates a more uniform stiffness for the whole
span.

2.1.3 Pantograph

The pantograph sits on the top of the train and collects power from the
contact wire and transfers it to the train’s engine. Different types of the
pantograph exist but all of them are basically made up from a head and
frame assembly, see figure 2.6. The frame assembly makes sure that the head
assembly stays in contact with the contact wire. Both head and frame have
a mass that results in inertia of the system as it moves. Due to that mass,
the pantograph cannot react instantaneously to changes in stiffness variation
of the contact wire and therefore the contact force will vary (Drugge, 2000;
Farr et al., 1961). The pantograph’s behaviour is velocity dependent, because
of its aerodynamic resistance. Due to these effects and the build of the
pantograph, its behaviour is often nonlinear.

2.1.4 Wave propagation velocity

The upward force of the pantograph causes waves to propagate in both direc-
tion from the contact point. These waves have a propagation velocity that is
critical to the behaviour of the system, according to (EN 50119:2001, 2001)
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Figure 2.6: The WBL 88 pantograph used for the reference case (Larsson
and Drugge, 1998).

the system’s velocity should not exceed 70% of the wave propagation velocity
which is expressed as:

cp =
√
Pcw
ρcw

(2.3)

2.1.5 Pre–sag

Pre–sag is the static displacement of the contact wire due to gravity, it is a
factor which significantly influences the degree of variation for the contact
force, (Jung et al., 2012) and is therefore vital for the dynamic behaviour
of the system. The pre–sag is controlled by the length of the droppers and
the tension force in the wires. According to (Cho et al., 2010), optimal
pre–sag is obtained by controlling train velocity, span length, uplift force
of the pantograph and stiffness variation in the contact wire. The pre–sag
should be decreased if train velocity is increased and alternatively increased
if any of the other factors mentioned are increased. Using optimal pre–sag at
velocities close to the wave propagation velocity does not affect the system
because the latter is a governing factor for the system behaviour.
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Figure 2.7: Stagger of the catenary system, Contact wire (–) and Middle of
the track (- -), (Sølvberg, 2008).

2.1.6 Zig–zag

The catenary system is staggered from one side to the other to reduce the
wear on the pantograph, see figure 2.7. In this way the contact point between
the pantograph and contact wire moves over the length of the pantograph,
typically this length can be 300mm from the middle as in figure 2.7. Dy-
namic effects resulting from the stagger can be great and should preferably
be accounted for according to (Facchinetti and Bruni, 2012).

2.1.7 Contact force

The most important and descriptive measurement for the performance of
the catenary–pantograph system is the contact force. Too low contact force
results in arcing between the contact wire and pantograph, which results in
increased wear of the system and could lead to loss of power. If the contact
force is too high, unacceptable wear of the contact wire and pantograph will
occur. Additionally large vertical displacements of the contact wire could
occur if contact force is too high, which would have negative effects on a
trailing pantograph in the case of trains that have more than one. The force
exerted by the pantograph onto the contact wire when the train is stationary
is the static contact force. That force, along with the aerodynamic effects
from the pantograph as the train is in motion, is called the aerodynamic
contact force. Adding that to the dynamic force components of the system
(e.g. inertia of system masses) when the train is moving gives the dynamic
contact force or just contact force (F ).
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2.1.8 System requirements

Requirements are made for the catenary–pantograph system regarding al-
lowable system parameters and setup of the system. The aim of the model
developed here is not to simulate a system that is so accurate that it can
be used for design, rather be simple and descriptive of system behaviour.
Despite that, some of these requirements will be covered here for a frame of
reference. International and European standards exist for design and mod-
elling of the system, e.g. (EN 50318:2002, 2002; EN 50119:2001, 2001), from
which requirements are obtained and also from various studies. According
to (Poetsch et al., 1997) the following key parameters must be observed:

• Mean contact force Fm:
According to the regulations of the Norwegian national rail adminis-
tration (http://www.jernbaneverket.no, JBV) the requirements for
the mean contact force are (in [N ]), (JD 542, 2004):

Fm,max = 0, 000586v2 + 70 [N ] for: 0 ≤ vtr ≤ 160 (2.4)
Fm,max = 0, 00097v2 + 60, 2 [N ] for: 160 < vtr ≤ 250 (2.5)
Fm,min = 0, 00096v2 + 50 [N ] for: 0 ≤ vtr ≤ 250 (2.6)
Fm,rec = 0, 00104v2 + 55 [N ] for: 0 ≤ vtr ≤ 250 (2.7)

where vtr is the velocity of the train in [km/h] and rec stands for recom-
mended. The first term in these equations represent the aerodynamic
force that affects the pantograph, while the second term represents the
static uplift force of the pantograph. Figure 2.8 shows these require-
ments.

• Range of the contact force, Fm ± 3σm, where σm is the contact force
standard deviation:
Standard deviation of the contact force should be within 20% of the
maximum mean value for a given velocity, see figure 2.9. Figure 2.10
shows the range, given a maximum standard deviation value. The range
is based on a Gaussian distribution, so 99, 7% of the values should fall
within it. In (EN 50119:2001, 2001) the requirements for this range
(Fm± 3σm) are given, see table 2.1. According to the table the contact
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force should not exceed 300N and that compares well with figure 2.10.
Note that AC andDC stand for the current system used for the system.

Table 2.1: Requirements for contact force range according to (EN 50119:2001,
2001)

System vtr Contact force [N]
[km/h] Max. Min.

AC ≤ 200 300 > 0
AC > 200 350 > 0
DC ≤ 200 300 > 0
DC > 200 400 > 0

• Statistical occurrence of contact loss:
The system should never experience contact loss and therefore it is
unacceptable and the statistical occurrence should be zero.

• Statistical occurrence of a contact force below a specified low value:
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According to (JD 542, 2004) the critical point of low contact force is
Fm = 10N , therefore a check will be made of the statistical occurrence
below that value. At low velocities, the range of contact force as ex-
pressed above will go under 10N , that was fixed afterwards and the
minimum in figure 2.10 is 10N .

• Maximum contact wire displacement at the registration arm:
The maximum contact wire displacement at the support as the panto-
graph passes by was found to be 48−−55mm for a velocity of 250km/h
and 55 − −65mm for a velocity of 300km/h for a reference model in
(Cho, 2008). Since no other requirements were found, this will be used
as a reference.

Maximum static displacement, or pre–sag, is also of interest. Normally the
ratio between pre–sag and span length is 1/1000 for the contact wire and
1/100 for the messenger wire (Cho, 2008).

2.2 Reference system

The reference system chosen is a single span between Støren and Soknedal,
specifically track nr. 152. Several spans of the track were studied, but the
one chosen is the 40m long span between masts (support poles) 1277 and
1278. Information on design values for the span were obtained from (Design
tables, 2013) and some general system variables for Norway were obtained
from (Sølvberg, 2008). The span represents a simple catenary system (no
Y–line) and weight–tensioning devices are used to produce the pretensioning
in the wires. Table 2.2 lists up the system’s parameters necessary for a sim-
ulation in the numerical model developed here, except for the time step of
the integration method (see section 3.1.5). The parameters in the table that
have not been mentioned above are; A-cross section area, ξ-critical damping
ratio, k-stiffness, m-mass and c-damping. Some parameters were not obtain-
able from the sources mentioned, such as information relating to registration
arms, support brackets and droppers but they were obtained from (Cho,
2008). The cross section dimensions and moment of inertia for the contact
wire were obtained from a fellow colleague (Nåvik, 2013), see appendix A.
Only the cross section area of the messenger wire is available, not dimensions
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nor moment of inertia. The assumption used to obtain the moment of iner-
tia is that it is half of the contact wire’s moment of inertia, since that is the
same ratio between their cross section areas. Velocity of the train that the
reference system is designed for is 130km/h.

Field measurements were performed on the system, in order to assess the
error that is between actual and design values. A laser distance meter was
used to assess different lengths in the system, e.g. length between droppers
and their height. Those measurements showed that the system is set up in
almost exactly the same way as it is designed. Finding the eigenfrequencies
and their accompanying modes is of great interest for every structural system.
In order to obtain them, a modal hammer was used. The frequencies of the
system are too low for the hammer and its software, and so the results could
not be processed.

Tension force A device used to measure the tension force in the wires
at arbitrary locations was provided by JBV, see figure 2.11. Great errors
between measured values and designed values were observed:

Pcw,measured = 17, 2kN Pcw,design = 10kN error = 17, 2− 10
10 · 100 = 72%

That is a 72% error from the designed value which is extreme. Several dif-
ferent factors could cause this error, perhaps most likely the measurement
device was calibrated in a wrong way. No matter what the cause is, it is im-
portant to note that actual values may differ from design values. How much
will errors in the system parameters affect the system? The design value will
be used in the numerical model.

Elasticity Measuring the elasticity of the contact wire is done by pulling
up the wire by a weighing device, which shows how much force is used to pull
it, and measuring the corresponding displacement of the wire as it is pulled
with a laster distance meter Doing that, the user has the force needed to lift
the wire up a certain displacement. The expression for elasticity is:

e = δdisp
Fpull

(2.8)
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Figure 2.11: Device used to measure tension in the wires (Photo: Petter Røe
Nåvik).

where e represents the elasticity, δdisp the displacement the wire undergoes as
it is pulled by a force Fpull. Structural engineers prefer to use the reciprocate
of the elasticity, i.e. the stiffness. But, since this is commonly used in the
railway field it will be used here. The elasticity curve can be seen in figure
2.12. It is important to realize that this method is not accurate, which means
that the values may be a little off, but the shape of the curve compares well
with what it should be. Recommended properties of the elasticity curve are
given in table 2.3 (Kiessling et al., 2012). For the reference span (design
velocity of 130km/h) the elasticity value at mid point is 0,9 which is lower
than the table recommends or 1,20. This result is conservative, it would
be worse if the value was higher. Uniformity of elasticity for the reference
system:

unif = 100 ∗ emax − emin
emax + emin

= 100 ∗ 0, 90− 0, 17
0, 90 + 0, 17 ≈ 68% (2.9)
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Figure 2.12: Measured elasticity curve of the reference system

The uniformity is higher than expected, which is fine, but it could stem from
the inaccuracy of the measurement. The more uniform the elasticity curve
is the better.

Table 2.3: Recommended values for elasticity at the middle of the span and
uniformity of the elasticity curve (Kiessling et al., 2012)

vtr e Degree of elasticity
[km/h] [mm/N ] uniformity [%]
≤ 100 1,20 50
≤ 160 1,20 30
≤ 200 1,10 20
≤ 280 0,60 10
> 280 0,40 8
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3 Numerical modelling

This chapter covers the process of numerically modelling the catenary–pantograph
system. The objective of the model is to illustrate the dynamic behaviour
of the system and how the parameters defining the system affect it. The
theoretical background needed to model the system is reviewed and results
are presented. The model is developed using MATLAB.

3.1 Theoretical background

The numerical model of the combined system can be expressed in the follow-
ing equation of motion:

Md̈ + Cḋ + Kd = F (3.1)

where M,C and K are global system matrices for mass, damping and stiff-
ness respectively, F is the external force vector and d, ḋ, d̈ are vectors of
displacement, velocity and acceleration, respectively. Placing a dot over a
variable means that it is the derivative of that variable w.r.t time, double dot
means the second derivative w.r.t time. The represented forces in equation
3.1 are inertial-, dissipative-, internal-(elastic-) and external-force in that
order from the left.

There are several different methods for solving the equation for the catenary–
pantograph system. According to (Poetsch et al., 1997), two common meth-
ods used are the finite element method (FEM) for the catenary and a lumped
mass model for the pantograph. The majority of studies covered in the lit-
erature survey use these methods and also the numerical model described
here is based on them. Modelling the contact between these structures is
not as straightforward, many different methods have been proposed for that
purpose. The one chosen here is based on a model presented in (Zhou and
Zhang, 2011) because of its ability to reattach in case of contact loss. These
different methods for modelling the catenary, pantograph and the contact
between them will be covered in this section.
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3.1.1 Catenary model

The catenary is modelled, with the help of FEM, as a pre–tensioned beam
model. This section describes the method and the necessary steps that need
to be taken to successfully make a discretized model of the catenary wires.
Assumptions made for the model are:

• The coordinate system for the model is as follows, x-axes in the direc-
tion of the train movement, y-axes vertical direction from the ground
up and z-axes normal to the direction of the train.

• Lateral displacements of the wires in the xz-plane are assumed to be
negligible. This assumption simplifies the problem and converts it from
3D to 2D. Staggering has been mentioned to be important but in an
effort to keep the model simple it is not included, if it were to be
included the model would have to be 3D.

FEM steps: The basic steps that characterize every process where FEM
is used are, according to (Cook et al., 2001):

• Preprocessing–The parameters of the problem are defined and are ap-
plied in the model. These parameters are geometry of the problem,
material properties, loading applied and boundary conditions. When
all parameters have been defined and implemented, the model is dis-
cretized into elements. The size and type of elements must be chosen
by the user.

• Numerical analysis–Once the model has been discretized and all prob-
lem parameters are in place, the element matrices (stiffness, damping,
mass, external loading) can be formed in the local coordinates. These
element matrices are then assembled into global matrices (in global
coordinates) and the problem can be solved using a time–stepping
method.

• Postprocessing–After the equation of motion is solved globally the field
variables at each node can be plotted up and analysed. These variables
are for example the degrees of freedom at each node, forces etc.

26



Element type The most commonly chosen model for describing the cate-
nary is a string model; it is common because it is simple and fast (Poetsch
et al., 1997). Beam models are more complex but they include important
characteristics of the catenary that need to be considered as well. That
is why a beam model was chosen for this study. Two different beam ele-
ments are proposed: the Euler–Bernoulli that includes bending stiffness and
the Timoshenko that also includes shear deformation and rotational inertia
effects. According to (Poetsch et al., 1997), many who study the catenary–
pantograph system believe that the inclusion of bending stiffness is not im-
portant. A study by (Jensen and True, 1998) proposes that as the train’s
velocity increases, the importance of including the bending stiffness is in-
creased. Since the subject here is high velocity trains, the Euler–Bernoulli
beam element was chosen. It is chosen over the Timoshenko element because
according to (Poetsch et al., 1997) there is no need to consider shear defor-
mation or rotary inertia effects when the wavelength in the contact wire λ is
larger than 5cm. For the reference system defined in section 2.2:

λ = 2π
√
EI

P
= 2π

√
1, 24e+11 · 9, 87e-10

10000 = 0, 695m (3.2)

The wavelength of the reference system is over ten times the minimum and
therefore the the Euler–Bernoulli element is judged to be adequate.

The 2D Euler–Bernoulli beam has two nodes with 3 degrees of freedom
in each node: vertical, axial and rotational. The elements DOF vector:

dcw = dmw = [u1 v1 θ1 u2 v2 θ2]T (3.3)

where subscripts 1 and 2 represent the node number, ui is the axial displace-
ment, vi is the vertical displacement and θi the rotational displacement.

Hamilton’s principle: The element matrices and the global matrices can
be derived using Hamilton’s principle (Quek and Liu, 2003; Cook et al., 2001;
Wilson, EL., Inc; Langen and Sigbjörnsson, 1979).

For the model derivation, applying Hamilton’s principle, the generalized
Lagrangian functional is defined as:

L = T − Π +Wf (3.4)
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Figure 3.1: Time history of displacement, (Langen and Sigbjörnsson, 1979)

where L is the Lagrangian functional, T is the kinetic energy, Π is the po-
tential energy and Wf is the work done by dissipative and external forces.
The terms of equation 3.4 are dependent on time histories of displacement
(u(x, t)), velocity (u̇(x, t)) and acceleration (ü(x, t)). Let ū = u(x, t) + δu

be a solution to the functional, δu is a small displacement (virtual displace-
ment). The solution must satisfy compatibility, boundary conditions and
given values for u(x, t) at arbitrary time values t1 and t2, see figure 3.1.
Hamilton’s principle states that for all solutions in the time domain (t1 and
t2) that satisfy these conditions, the one that makes the Lagrangian func-
tional a minimum yields the most accurate solution:

δ

t2∫
t1

Ldt = 0 (3.5)

This requirement can be used to derive the equation of motion.

Start with the kinetic energy for an arbitrary solid:

T = 1
2

∫
V
%u̇Tu̇dV (3.6)
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where V is the solid’s volume, % mass density and u̇ is velocity. The dis-
placements and velocities are calculated from nodal DOF:

u = Nd⇒ u̇ = Nḋ (3.7)

where N represents the shape functions. The expression for kinetic energy
of a single element:

T = 1
2

∫
Ve

%ḋT
e NTNḋedVe = 1

2 ḋT
e

(∫
Ve

%NTNdVe︸ ︷︷ ︸
me

)
ḋT

e = 1
2 ḋT

e meḋe (3.8)

where Ve is the volume of the element, de are the element nodal DOF and
me is the element’s mass matrix.

The potential energy, in this case the elastic strain energy, for an arbitrary
solid is defined as:

Π = 1
2

∫
V
εTσdV (3.9)

where ε and σ are the strains and stresses of the solid. The stress–strain
relation according to Hooke’s law for a linearly elastic material with initial
stresses (Cook et al., 2001):

σ = Eε+ σ0 (3.10)

where E is a matrix of material constants and σ0 is the initial stress. Ap-
plying Hooke’s law, equation 3.9 gives:

∫
V

1
2ε

TEεdV +
∫
V
εTσ0dV (3.11)

The first term of the integrand in equation 3.11 is transformed using the
usual strain–displacement equations, see appendix C.

ε = Bd where B = d2

dx2 N = N′′ (3.12)

Using these expression the first term in equation 3.11 becomes:
∫
V

1
2ε

TEεdV =
∫
V

1
2dTN′′EN′′ddV (3.13)
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The second term, on the other hand, requires a little bit of manipulation.
First of all, the second order nonlinear terms have to be added to the strain–
displacement relations (see appendix C) and the term becomes (Wilson, EL.,
Inc):

∫
V
εTσ0dV = 1

2

∫
V

[uT,x uT,y uT,z]Σ


u,x
u,y
u,z

 dV = 1
2

∫
V

gTΣgdV (3.14)

where Σ is the initial stress matrix:

Σ =


σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , σrs =


sij 0 0
0 sij 0
0 0 sij


0

(3.15)

where r, s ε{x, y, z}, s represent initial stresses and:

g = Gd where G = d

dx
N (3.16)

Finally the potential energy of a single element becomes:

Π = 1
2

(∫
Ve

dT
e (N′′)TEN′′de + dT

e (N′)TΣN′dedVe

)
(3.17)

= 1
2

(
dT

e

(∫
Ve

(N′′)TEN′′dVe︸ ︷︷ ︸
kem

)
de + dT

e

(∫
Ve

(N′)TΣN′dVe︸ ︷︷ ︸
keg

)
de

)
(3.18)

= 1
2(dT

e kemde + dT
e kegde) = 1

2dT
e kede (3.19)

where kem and keg are the elements material and geometric stiffness matrices,
adding them together gives the total element stiffness matrix ke.

The third and last part of the Lagrangian functional is the work done by
external forces on an arbitrary solid:

Wf =
∫
V

uTfbdV +
∫
Sf

utfsdSf −
1
2

∫
V

uTcu̇dV (3.20)

where the first term represents work done on the solid by body forces, the

30



second term is work done by surface traction and the last term represents
work done by dissipative forces. Sf represents the surface of the solid and c
damping. For a single element equation 3.20 becomes:

Wf =
∫
Ve

dT
e NTfbdVe +

∫
Se

dT
e NTfsdSe −

1
2

∫
Ve

dT
e NTcNḋedVe

= dT
e

(∫
Ve

NTfbdVe︸ ︷︷ ︸
Fb

)
+ dT

e

(∫
Se

NTfsdSe︸ ︷︷ ︸
Fs

)
− ...

...− 1
2dT

e

(∫
Ve

NTcNdVe︸ ︷︷ ︸
ce

)
ḋT

e

= dT
e Fb + dT

e Fs −
1
2dT

e ceḋT
e = dT

e fe −
1
2dT

e ceḋT
e (3.21)

where ce is the elements damping matrix, Fb and Fs are element nodal
forces, equivalent to the body and surface forces acting on it and. Adding
them together yields the total element nodal load vector:

fe = Fb + Fs (3.22)

Now that all terms of the Lagrangian functional have been stated for an
element, equations 3.8, 3.19 and 3.21 can be inserted into equation 3.5:

δ

t2∫
t1

(
1
2 ḋT

e meḋe −
1
2dT

e kede + dT
e fe −

1
2dT

e ceḋe

)
= 0 (3.23)

⇒
t2∫
t1

(δḋT
e meḋe − δdT

e kede + δdT
e fe − δdT

e ceḋe) = 0 (3.24)

⇒
t2∫
t1

δdT
e (−med̈e − ceḋe − kede + fe)dt = 0 (3.25)

Appendix B illustrates how equation 3.24 is obtained from 3.23; the in-
terchangeability of the integration and variation operators is used (Clarke,
2013). The same principle is also used to get from equation 3.24 to 3.25,
only with different operators, i.e. between the variation and differentiation
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operators:

δḋT
e = δ

(
ddT

e
dt

)
= d

dt
(δdT

e ) (3.26)

Using this rule and integrating the first term of equation 3.24 by using inte-
gration by parts (Kreyszig, 2010):

t2∫
t1

δḋT
e meḋedt = [δdT

e meḋe]t2t1︸ ︷︷ ︸
=0

−
t2∫
t1

δdT
e med̈edt = −

t2∫
t1

δdT
e med̈edt (3.27)

The first term after the initial integration is equal to zero because of the
conditions that were stated in the beginning that each time history of dis-
placements must satisfy, i.e. δde = 0 at t1 and t2. The integration sign in
equation 3.25 can be dropped because if the integral is supposed to equal
zero then the integrand must also equal zero:

δdT
e (−med̈e − ceḋe − kde + fe) = 0 (3.28)

Since δdT
e is not necessarily equal to zero, the equation inside the parenthesis

must equal zero. Finally the equation of motion for a single element is
complete:

med̈e + ceḋe + kede = fe (3.29)

And so Hamilton’s principle has been used to derive the equation of mo-
tion, along with the element matrices. These matrices for a beam element
are:

me = ρ
∫
lel

NTNdx (3.30)

ce = c
∫
lel

NTNdx (3.31)

kem = EIz

∫
lel

(N′′)TN′′dx (3.32)

keg = P
∫
lel

(N′)TN′dx (3.33)

where all variables have been defined in chapter 2. Although the element’s
damping matrix may be calculated according to equation 3.31 it is often
better to skip it and formulate the global damping matrix using the global
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mass and stiffness matrices (see section 3.1.3), and therefore the element
damping matrix is left out for now.

These integrals are calculated for the beam element with 2 DOF at each
node with the help of the Hermitian interpolation functions (Cook et al.,
2001):

N1 = 1
4(1− ζ)2(2 + ζ) (3.34)

N2 = 1
8(1− ζ)2(1 + ζ) (3.35)

N3 = 1
4(1 + ζ)2(2− ζ) (3.36)

N4 = −1
8(1 + ζ)2(1− ζ) (3.37)

N = [N1 N2 N3 N4], N′ = [N ′1 N ′2 N ′3 N ′4], N′′ = [N ′′1 N ′′2 N ′′3 N ′′4 ] (3.38)

where ζ is the isoparametric coordinate. Defined as −1 ≤ ζ ≤ 1, ζ = −1
represents the left end of the element while ζ = 1 represents the right. The
element matrices are presented in appendix D for the 2 DOF element. For the
3 DOF element the rows and columns for the axial DOF are simply added.
There are no coupling effects between the axial DOF and the other ones.
The entries in the matrices that relate to the axial DOF are calculated in the
same manner as the other ones but with different shape functions. Linear
shape functions are used:

N1 = 1− ζ, N2 = ζ (3.39)

Once the element matrices have been formulated coordinate transforma-
tion is needed to take them from local to global coordinates:

Me = T′meT Ke = T′keT (3.40)

where Me and Ke are the element matrices in global coordinates and T is
the transformation matrix for the element (see appendix D). Only when that
is finished can the element matrices be assembled into the global matrices:

Kcw =
Nel∑
i=1

Ke,i Mcw =
Nel∑
i=1

Me,i (3.41)
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where and Nel for number of elements in the model. Assembly for the mes-
senger wire is the same. These matrices are then introduced to the system’s
total matrices from equation 3.1.

Registration arm, support bracket and droppers: The mass, damp-
ing and stiffness values for each of the main components of the catenary
system can be added to the global mass, damping and stiffness matrices in-
dividually. Each entry in the matrices corresponds to a DOF at a certain
node, therefore it is simply a matter of finding those entries and adding the
value to them. The registration arms and support brackets are modelled as
mass–springs so they contribute to the mass and stiffness matrices while the
droppers are modelled as mass-springs-dashpots so they add to the mass,
stiffness and damping matrices.

The droppers couple the contact and messenger wire and so their formu-
lation requires more thought. They are modelled as mass–spring-dashpots
and the force in each dropper is:

fdr,i = mdrg + kdr(vmw − vcw) + cdr(v̇mw − vcw) (3.42)

where the subscript dr is for dropper and g is the gravitational acceleration.
The droppers represent a nonlinearity in the catenary system because if it
slackens it gives no resistance to the vertical motion of the wire (Cho, 2008).
These nonlinear effects will not be included in the model developed here.
Values for mass, stiffness and damping of these different parts are given in
table 2.2. As an example the following shows how stiffness of a dropper is
implemented in the global stiffness matrix:

Kdr =



. . . · · · · · · · · ·
... kdr · · · −kdr

...
... ... . . . ... ...
... −kdr · · · kdr

...
· · · · · · · · · . . .





...
vcw
...

vmw
...


(3.43)
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3.1.2 Pantograph model

Unlike the catenary, the pantograph is a smaller entity and not a part of
a greater system. Due to this, experimentation and research on it is easier
and more practical. Several research papers from the literature survey focus
on developing an optimized pantograph model, where a sensitivity analysis
is performed on the pantograph’s design variables (e.g. head mass, head
stiffness etc.) (Lee et al., 2012; Kim et al., 2007; Park et al., 2003). The
producers of pantographs implement the results from these kinds of studies
and have well defined models for their products. The pantograph model in
the reference case is the WBL88 produced by Schunk Nordiska (sch, 2013)
and the mathematical model used here was obtained from them, see appendix
F.

The pantograph is modelled as two lumped masses with 2 DOF, where
the pan-head is one mass and the frame is idealized as one mass. Between
the frame and the roof of the train there is a friction force that acts in
opposite direction to movement of the mass and a one-way damper that has
a damping value for downwards motion but not upwards. For simplicity the
model will assume the damper works in both ways. Two forces act on the
mass, aerodynamic and static. The aerodynamic force is given as 5N given
a train speed of 100km/h, the force is dependent on speed but the variations
is low and 5N will be assumed for all speeds. The static force is set to 60N
but for Norwegian conditions 55N is used, therefore 55N will be used in this
thesis. The top mass is actually split into two masses that will in reality
experience different degrees of motion but they are considered negligible and
therefore the masses are modelled as one. Between the top mass and the
frame there are springs and dashpots. The adapted pantograph model is
seen in figure 3.2. Equations of motion for the pantograph:

2m1v̈tm + 2c1v̇tm + 2j1vtm − 2c1v̇fr − 2k1vfr = −F (t) (3.44)
m2v̈fr + (2c1 + c3)v̇fr + 2k1vfr − 2c1v̇tm − 2k1vtm = ...

... = Fa2 + F1 − sgn(vfr)U1 (3.45)

where vtm and vfr are vertical displacement for top mass and frame respec-
tively, F (t) is the contact force covered in section 3.1.4, sgn(·) is equal +1
if · is positive and −1 if · is negative and all other variables are defined in
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Figure 3.2: Adapted pantograph model after the one obtained from Schunsk
Nordiska, (sch, 2013)

appendix F. The equations in matrix form:2m1 0
0 m2

v̈tmv̈fr
+

 2c1 −2c1

−2c1 (2c1 + c3)

v̇tmv̇fr
+ ...

...+
 2k1 −2k1

−2k1 2k1

vtmvfr
 =

 −F (t)
Fa2 + F1 − sgn(vfr)U1

 (3.46)

or:
Mpgd̈pg + Cpgḋpg + Kpgdpg = Fpg (3.47)

where the subscript pg stands for pantograph.

3.1.3 Damping

Formulating the damping matrix for vibrating structures is a key factor in
accurately modelling it. Damping is the physical phenomenon of reducing
oscillations that occur in a system, it is the dissipation of mechanical energy
into another form of energy (e.g. heat). The catenary–pantograph system is
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an oscillating system and therefore it is important to characterize its damp-
ing. Damping in the pantograph is well known, and the knowledge obtained
on it from other research is implemented in the pantograph model described
in section 3.1.2. Few studies have looked into damping in the catenary. This
section focuses on how damping in the catenary has been treated and new
ways of treating it.

The catenary is obviously a damped system as its response decreases
gradually after it has been excited by the pantograph. Several papers state
that the system can be assumed lightly damped (Cho et al., 2006; Arnold
and Simeon, 2000; Poetsch et al., 1997) and furthermore (Wu and Brennan,
1998) states that the system can be assumed lightly damped for train speed
up to 500km/h. Due to the low damping in the system and the uplift of
the wire, vibrations will occur over an area much bigger than the one near
the pantograph location. That means that the system must be simulated
as a whole. The choice of a time–step integration method has to take the
low damping into account, for example it would be inaccurate to introduce
numerical damping. The errors introduced by the integration method will be
conserved in the system since the damping is low, that is why it is important
to use small time steps to counteract that effect. The numerical model de-
veloped here uses a single pantograph and according to (Harell et al., 2005),
which studies multiple pantograph setups, damping has a much greater effect
on a a trailing pantograph than a leading one. Despite that, damping is still
extremely important for any system if one wants to accurately predict its
response.

The majority of studies on the catenary–pantograph system use mass
and stiffness proportional damping (Rayleigh damping). A part of these
studies, where it is mentioned specifically, are (Pombo and Ambrosio, 2012;
Facchinetti and Bruni, 2012; Benet et al., 2007; Cho et al., 2010; Alberto
et al., 2008; Seo et al., 2006; Sølvberg, 2008; Seo et al., 2005; Diana et al.,
1998). In (Drugge, 2000), damping is proportional only to stiffness and
is determined using the lowest eigenfrequency. The only damping model
that is not proportional found in the literature survey is where an equiva-
lent damping model is used for a 1 DOF analytical model in (Lopez-Garcia
et al., 2007) and (Kia et al., 2010). Due to this commonly accepted prac-
tice, Rayleigh damping is used in the numerical model. The shortcomings
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of Rayleigh damping is that damping is the same for each eigenmode. A
method was proposed in (Wilson and Penzien, 1972), where each mode can
have its own damping behaviour. This method is introduced here and the
effect it has on the system behaviour is examined. Two other methods de-
veloped in (Adhikari, 2000; Pilkey, 1998) were also examined for use in this
numerical method but measurement data was needed for their implementa-
tion. Measurements were performed on the reference system for this purpose
among others, but the results could not be used.

Rayleigh damping Characterizing the global damping matrix using a lin-
ear combination of the global mass and stiffness matrices is called propor-
tional damping or Rayleigh damping. In addition to these global matrices,
eigenfrequencies of the system are needed along with critical damping ratios
to formulate the damping matrix. Eigenfrequencies are obtained from the
global mass and stiffness matrices by solving the undamped free vibration
problem (Felippa, 2004):

Md̈ + Kd = 0 (3.48)

where the variables were defined before in section 3.1.1. Introducing a solu-
tion d(t) = ∑

i viejωit into equation 3.48:

(−ω2
iM + K)v = 0⇒ det[K− λiM] = 0 (3.49)

where λi = ω2
i is the i–th eigenfrequency and v is the eigenvector. Solving

this problem for a multi DOF system can be quite cumbersome. MATLAB
provides a built–in function that solves it automatically (eig(K,M)).

The damping matrix, using Rayleigh damping:

C = αM + βK (3.50)

where the coefficients α and β are dependent on eigenfrequencies (ω) and
critical damping ratios(ξ), see figure 3.3. Critical damping ratios indicate if
the system is underdamped (ξ < 1), critically damped (ξ = 1) or overdamped
(ξ > 1) (Rönnquist, 2012). Choosing two values for critical damping ratios
and two eigenfrequencies for the equations shown in figure 3.3 produces a set
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Figure 3.3: Fraction of critical damping necessary to obtain Rayleigh damp-
ing coefficients (Cook et al., 2001).

of linear equations, solving for α and β:

α = 2ωmωn(ξmωn − ξnωm)
ω2
n − ω2

m

n 6= m (3.51)

β = 2(ξnωn − ξmωm)
ω2
n − ω2

m

n 6= m (3.52)

Usually the first two eigenfrequencies are chosen to calculate the coefficients.
According to (Poetsch et al., 1997) the critical damping ratio values for the
wires are between 0, 003 and 0, 01 but a more recent experiment shows that
these values may be overly conservative, the values should be between 0, 01
and 0, 04 (Cho et al., 2006). This is an important parameter and will be
included in the parameter study, for the reference case 0, 01 is used for both
wires. Finally the damping matrix can be formulated by using equation
3.50. Rayleigh damping is a good solution for the damping problem, but
only if the system shows similar damping characteristics in different parts
of it (Cook et al., 2001). This is important to consider, since damping can
be quite different near registration arms and support brackets for example.
To counteract that effect, the mass and stiffness matrices used to find the
eigenfrequencies include the individual values from those parts.
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Orthogonal damping matrix proposed in (Wilson and Penzien,
1972) The derivation method was done with the help of (Wilson, EL.,
Inc). Assume that the now known damping matrix satisfies the following
criterion:

ΦTCΦ =


. . .

2ωnξn
. . .

 (3.53)

where Φ is the eigenvector matrix and the right hand side matrix contains
only entries on the diagonal for every eigenfrequency and its correspond-
ing critical damping ratio. It is important that the eigenvector matrix be
normalized so that

ΦTMΦ = I (3.54)

where I is the entity matrix. Pre–multiply equation 3.53 by ΦM and post–
multiply it by MΦT:

ΦMΦT︸ ︷︷ ︸
I

C ΦMΦT︸ ︷︷ ︸
I

= ΦM(2ωnξn)MΦT =
N∑
n=1

Cn (3.55)

where n is the number of node and N is the total number of nodes. That is
how a damping matrix can be formulated for each specific mode separately.
According to (Wilson, EL., Inc) this modal damping matrix is physically im-
possible and is simply a mathematical definition. The total damping matrix
can finally be written as:

C =
N∑
n=1

Cn =
N∑
n=1

2ξnωnMvnvT
nM (3.56)

where as with Rayleigh damping, vn is the n–th eigenvector.
Comparison between Rayleigh and Wilson–Penzien damping is presented

in the results section.

3.1.4 Contact formulation

The contact formulation implemented here is based on the contact model
presented in (Zhou and Zhang, 2011). Equations of motions for the catenary
and pantograph have already been formulated along with the respective mass,
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damping and stiffness matrices. The equation of motion for the whole system
was stated in equation 3.1 where the matrices are defined as:

M =
Mcw 0

0 Mpg

 ,C =
Ccw 0

0 Cpg

 ,K =
Kcw 0

0 Kpg

 (3.57)

The zero notation in the matrices represent matrices full of zeros that fill up
the space needed to complement the matrices. The vectors in equation 3.1
are similarly:

d =

dcw
dpg

 , ḋ =

ḋcw
ḋpg

 , d̈ =

d̈cw
d̈pg

 ,F =

Fcw

Fpg

 (3.58)

The matrices and vectors presented above from equation 3.1 have all been
defined before and nothing has changed except now they represent the whole
catenary–pantograph system.

The coupling effect for the system is implemented by the contact force.
As seen in section 3.1.2 the contact force is applied on the top mass with the
direction pointing downwards. For the catenary wire, it is upwards pointing
and at the same global location as the pantograph is supposed to be. The
position of the pantograph is calculated by using the train’s speed. For each
time step the displacements of both catenary and pantograph are calculated,
then the contact force is derived from them:

If vcw > vpg, then F(t) = 0 (3.59)
If vcw < vpg, then F(t) = kc|vcw − vpg| (3.60)

where vcw and vpg are the vertical displacements of the catenary and panto-
graph respectively, Fk is the contact force and kc is the contact stiffness. The
contact stiffness is set to 50.000N/m, according to (EN 50318:2002, 2002).
Equation 3.59 states that if there is a gap between the catenary and panto-
graph the contact force is equal to zero and the program moves on to the
next time step. If on the other hand, there is no gap, the contact force is
calculated based on how far the pantograph penetrates the catenary wire.
Once the force has been calculated it is implemented in the total force vec-
tor and the new displacements are calculated for the same time step using
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the updated force vector, these displacements are then used in the next time
step. Performing a check like this in every time step ensures that even though
there is a detachment the model will attach again.

3.1.5 Time–stepping method

Due to low damping and wave propagation in the catenary, it is important
to choose the right time–stepping solution method for the system for the rea-
sons stated in section 3.1.3. The time–stepping solution method used in the
numerical model is the constant average acceleration method, which is a spe-
cial case of the Newmark method (see section E). This method is also used in
several other studies, for example in (Zhou and Zhang, 2011). In (Cho, 2008)
however, the HHT–α method (see (Cook et al., 2001)) is chosen based on a
study between it and the constant average acceleration method. The HHT–α
method is chosen because it does not undergo spurious oscillations, however
it does introduce numerical damping that was not considered acceptable by
(Poetsch et al., 1997). Beyond these two methods there are several more that
have been used, for example central difference method (Benet et al., 2007),
and all of them have their pros and cons so it is up to the user to weigh
those against the goals of the study. This study aims for simplicity and a
fast running model, that is why the constant average acceleration method is
chosen.

According to the results from (Cho, 2008) the time step has to be max-
imum ∆t = 0, 001s for the dispersive wave propagation to be included.
The requirement made by the standard (EN 50119:2001, 2001) is that the
catenary–pantograph must be modelled for at least every 0, 2m of length, so
the time step is dependent on the train’s velocity. Considering the known suf-
ficient time step of ∆t = 0, 001s, using the requirement from (EN 50119:2001,
2001) would yield a velocity of about 720km/h. If velocity in the model ex-
ceeds that, the time step needs to be lowered. However it is unlikely that
this study needs to check the response of the system for such great speeds
and the time step is set constant to ∆t = 0, 001s.
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3.2 Results

Results from the numerical model are presented here, they are based on the
reference system and most values can be obtained from table 2.2. Values
that are not given there are the time step implemented, contact stiffness,
velocity of the train and element size. Choice of time step and contact
stiffness was discussed in sections 3.1.5 and 3.1.4 and are ∆ = 0, 001s and
kc = 50.000N/m, respectively. The velocity chosen for the reference case
is 100km/h which is reasonably below allowable design value for the span
130km/h. Element size was chosen 0, 5m because it has proven to be the
optimal size for a numerical model of the system (Cho, 2008). Effects from
axial degrees of freedom are considered negligible for the contact wire and a 4
DOF element is used, while the 6 DOF element is still used for the messenger
wire. In addition, effects from coordinate transformation are negligible and
will therefore be skipped. Four spans will be modelled in order to avoid
reflection effects of the wave from the endpoints and most results will be
obtained from the third span, i.e. third from the origin. After the results
from the reference case have been covered, the results from the parameter
study are presented. Note that more focus is put on examining the contact
wire since its behaviour is more directly related to the dynamic behaviour of
the system. Figure 3.4 shows initial geometry of the model.

3.2.1 Results for reference system

Static displacement of the system is calculated by:

dstatic = K−1F (3.61)

The global force vector used to calculate static displacement is assembled
by element force vectors like the global mass and stiffness matrices, these
vectors for the 6 and 4 DOF elements are expressed as:

fe,6DOF =
[
P − ρglel

2 − ρgl2el
12 − P − ρglel

2
ρgl2el
12

]T
(3.62)

fe,4DOF =
[
− ρglel

2 − ρgl2el
12 − ρglel

2
ρgl2el
12

]T
(3.63)
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Figure 3.4: Static displacement of the four spans together with initial geom-
etry.
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Figure 3.5: Static displacement of the contact wire in the third span.

Maximum static displacement in the contact wire obtained from the program
is ≈ 8cm, while the recommended value is 4cm using a ratio of 1 : 1000 be-
tween pre–sag and span length. Error between calculated and recommended
value is 50%. The error could be credited to the fact that out in the field the
geometry is controlled and can deviate from what it is supposed to be. Mod-
elling the support poles and droppers could reduce the error, but this would
have to be checked in a further study. Having the static displacement of the
contact wire correct is important to the dynamic behaviour of the system, as
will be shown in the parameter study. Static displacement is shown together
with initial geometry in figure 3.4 and figure 3.5 shows the static result of
the contact wire in span 3.

Elasticity is obtained from the model and compared to the one obtained by
measurements in figure 3.6. The modelled curve fits well with the measured
one, although as mentioned in section 2.2 there are errors in the measured
data. However, the curves show similar form and numbers while the modelled
curve is more conservative. Uniformity of the modelled elasticity is 55, 5%
and the midpoint value is e = 0, 77, these numbers compare well to the
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Figure 3.6: Elasticity of span 3 in the numerical model compared with mea-
sured elasticity for the reference span.

recommended values in table 2.3.

Eigenfrequencies for the four span system are shown in figure 3.7, modes
are only shown for the contact wire but they are similar in the messenger wire.
Both mode shapes and frequencies compare well with what other researchers
have found for the system, such as in (Kiessling et al., 2012; Zhang et al.,
2006). The lower modes dominate the system, as was observed out in the
field for the reference system.

Wave propagation velocity for the contact wire in the reference span is:

cp,cw =
√

10e3
0, 94 = 103, 14m/s = 371km/h

Plotting up the displacement of a single point can help calculate the wave
propagation velocity of the wire in the model. Figures 3.8, 3.9 and 3.10 show
the displacement of three points in span 3. Matlab is used to accurately find
the time when the point first starts to move, i.e. when the displacement first
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Figure 3.7: Eigenmodes of the contact wire for the four spans modelled. The
number and frequency (fi) of each mode, i, is given below each figure.
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exceeds 1e+5m. The location of the point is known and the time when it
first starts to move and from that wave propagation velocity is calculated.
Table 3.1 shows the calculated wave propagation velocity for each point and
the average. Average value is calculated and compared to the theoretical
value, the error is 0, 62%. Figure 3.8 shows the vertical displacement at a
support pole, the maximum value is around 12mm which is way below the
reference value presented in section 2.1.8 of around 50mm. Those values were
obtained for much higher speeds and should probably be lower, but 12mm
is acceptable.

Table 3.1: Calculated wave propagation velocity values for chosen points in
span 3

x [m] cp [km/h]
80 375,5
90 372,0
100 372,3

Average 373,3
Theoretical 371

Dropper slackening has been discussed and many researchers believe it
to be important to the dynamic behaviour of the system. Figures 3.11 and
3.12 show how the height of droppers 15 and 18 in the model (x = 96, 5m
and x = 118m). The figures show that the droppers experience compression
before and after the train passes and it would be an improvement to the
model if their mechanical properties were removed from the global matrices
as they slacken.

Contact force is presented for all four spans in figure 3.13 and concen-
trated on span 3 in figure 3.14. Initial steps are required to reach equilibrium
in the calculations and that is why span 3 is shown separately, no numer-
ical disturbances should affect it. The contact force’s mean and standard
deviation are given in the figure captions. Comparing the results from the
numerical model and the requirements it can be seen that the mean and
generally the total range are fine, but the standard deviation is higher than
it should be. That could be because dropper slackening is not modelled.
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Figure 3.8: Vertical displacement of a point at support pole in span 3 (x =
80m) for the contact wire.
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Figure 3.9: Vertical displacement of a point in span 3 (x = 90m) for the
contact wire.

The statistical range recommended, see figure 2.10, says that for a velocity
of 100km/h the contact force should be within 15 − 120N . This range is
violated six times, one above and five below. That being said, although the
statistical range is violated no contact loss occurs in span 3. Displacement
curves of the pantograph and contact wire at each point as the train passes
by for span 3 is shown in figure 3.15. It clearly shows that problems arise
as the pantograph nears the support pole, because that is where the biggest
changes in elasticity occur.

3.2.2 Parameter study

Now that the dynamic behaviour of the system has been observed it is inter-
esting to see what happens when some of the parameters are changed. A pa-
rameter study is accomplished by running the model several times, changing
one parameter each time while the other remain unchanged. The following
parameter study examines the effects of tension force, velocity of the train,
critical damping ratio and the method of modelling damping. The system
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Figure 3.10: Vertical displacement of the midpoint of span 3 (x = 100m) for
the contact wire.

which is examined is still the reference system, so that when the parameters
that is being studied is changed all others are set to reference system values.

Tension force Reference values for tension forces in the system are 5kN
and 10kN for the messenger and contact wire, respectively. An analysis was
run were results for max. static displacement, max. dynamic displacement
at chosen points, mean and standard deviation of contact force along with a
count for contact loss were obtained for tension values of 2, 5kN−15kN with
intervals of 500N . Changing the tension had severe effects on the system as
was expected, results are shown in figures 3.16-3.22.

As the tension force increases the dynamic behaviour of the system be-
comes more stable, the contact force’s mean generally increases and the stan-
dard deviation of it decreases. Maximum static and dynamic displacements
decrease as tension force is increased. Changes in dynamic displacement at
the support point are more erratic than at midpoint, but so is the nature of
its time history of displacement (see figure 3.8. For low tension force values
there seem to be greater effects on the system, as can be seen from contact
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Figure 3.11: Height change of dropper number 15 in the model, span 3
(x = 96, 5m).
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Figure 3.12: Height change of dropper number 18 in the model, span 3
(x = 118m).
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Figure 3.13: The contact force for all four spans. Mean contact force is
Fm = 65N and standard deviation of it is σm = 23, 8N .
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Figure 3.14: The contact force for span 3. Mean contact force is Fm = 67, 3N
and standard deviation of it is σm = 19N .

loss and standard deviation, when it is low these values become dangerously
large for the system’s behaviour. The numerical model obviously captures
the wave propagation velocity of the contact wire as can be seen from figure
3.22. As the tension increases, the theoretical value will increases obviously,
but what is interesting to see is that the wave propagation velocity observed
in the model also increases.

Damping Default value of critical damping ratio for both wires in the
reference system is 0, 01. Other researchers have found that this value can
be increased to 0, 04 for the messenger wire, but here it was deemed too
high. That is why a parameter study was performed for this property, to
see what effects it had to change the value. For completeness of the study,
both values were varied between 0, 01− 0, 04 with an interval of 0, 005. The
damping model proposed by Wilson and Penzien was implemented. Critical
damping ratios were varied between 0, 01 − −0, 04, where the ratio is 0, 04
for the first eigenfrequency and ascends down to the last one where the
ratio is 0, 01. Implementing the damping model did not change much in
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Figure 3.15: Displacement curves of pantograph and contact wire at points
when the train passes by.

2500
5000

7500
10000

12500
15000 2500

5000
7500

10000
12500

15000
56

58

60

62

64

66

P
cw

 [N]
P

mw
 [N]

F m
 [

N
]

Figure 3.16: Mean contact force for different values of tension in the wires.
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Figure 3.17: Standard deviation of contact force for different values of tension
in the wires.
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Figure 3.18: Maximum static displacement, which is always at midspan, for
different values of tension in the wires.
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Figure 3.19: Number of times contact loss occurs for each run of the model,
plotted with different values of tension in the wires.
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Figure 3.20: Maximum vertical displacement at support point x = 80m for
different values of tension in the wires.
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Figure 3.21: Maximum vertical displacement at midpoint of span 3 x = 100m
for different values of tension in the wires.
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Figure 3.22: Wave propagation velocity (cp,cw) of the contact wire for different
tension force values, measured at midpoint of third span (x = 90m).

58



0 0.5 1 1.5 2 2.5 3 3.5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [s]

D
is

pl
ac

em
en

t [
m

]

 

 
Rayleigh

Wilson−Penzien

Figure 3.23: Vertical displacement time histories at midpoint of span 3 (x =
100m) for two different damping models, Rayleigh and Wilson–Penzien.

the system, see figure 3.23. More information is required about eigenmodes
and eigenfrequencies for the system for that to be effective. Furthermore,
effects from damping can be better researched when there are more than one
pantographs in the system.

Varying the critical damping ratio between these boundaries had almost
no effects on the mean or standard deviation of the contact force, which is
why it is not displayed here. Figure 3.25 shows the vertical displacement
time history of a chosen point (midpoint of span 3, x = 90m) as critical
damping ratio is changed. The changes are not big but as the ratio is in-
creased the time history curve becomes more smooth, as expected. Note that
for figure 3.25 the critical damping ratio of the contact wire was varied but
the one of the messenger wire was fixed at default value. Figure 3.24 shows
the number of times contact loss happens with different values of damping
ratios. Increasing the ratio for the messenger wire seems to increase contact
loss, while increasing it for the contact wire decreases contact loss. Displace-
ments occur at points in the contact wire before the pantograph reaches those
points, due to the propagating wave. These displacement have a negative ef-
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Figure 3.24: Contact loss count plotted up with respect to different damping
ratio values for both contact and messenger wires.

fect on the dynamic behaviour of the system, but increasing the damping
ratio decreases these displacements, and as the pantograph passes by these
points they are closer to being where they are supposed to be. That being
said, the damping ratio of the contact wire is obviously a governing factor,
and even though the damping ratio of the messenger wire would be increased
in the model it would not have much to say.

Train velocity The default value of train velocity is 100km/h, velocities
chosen for the parameter study are 50−−500km/h with a 25km/h interval.
There are two values of interest for the wire, that is wave propagation velocity
and limiting velocity due to reflection in the system as described in sections
2.1.4 and 2.1.1, respectively. These velocities, calculated for the reference
system, are cp,cw = 371km/h and vα,cw = 122, 7km/h and will be marked on
the figures.

Figures 3.26-3.29 show the results from varying train velocity, these re-
sults are mean and standard deviation of contact force along with contact
loss count and maximum vertical displacements of chosen points. The results
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Figure 3.25: Vertical displacement time history of the midpoint of span 3,
for different critical damping ratios.

clearly show that at velocities near cp,cw and vα,cw the dynamic behaviour of
the system is significantly affected. Peaks in contact force mean and standard
deviation along with maximum vertical displacements are almost directly re-
lated to these velocities, although contact loss seems to occur near these
values. In any case, the dynamic behaviour changes considerably around
both velocities and they should be avoided. It is interesting to note that
around cp,cw the standard deviation of the contact force is twice as large as
the mean, which is unacceptable.
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Figure 3.26: Mean of the contact force with different values for velocity of
the train.
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Figure 3.27: Standard deviation of the contact force with different values for
velocity of the train.
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Figure 3.28: Contact loss count with different values for velocity of the train.
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Figure 3.29: Maximum values of vertical displacement values at two different
points, support pole in the beginning of span 3 and midpoint of span 3. These
are plotted up with different values of train velocity.
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4 Laboratory model
When they are built properly, scaled down models of structural systems can
be valuable tools for examining its behaviour. For most systems, e.g. the
catenary–pantograph, building a full–scale experimental model may be too
expensive in terms of time and money. Therefore, it is preferable to scale
the system down to a manageable size. Several scaled models have been
built before and will be covered in this chapter (Farr et al., 1961; Willets and
Edwards, 1966; Willets et al., 1966; Willets and Suddards, 1970; Manabe,
1989; Drugge, 2000). The aim of this chapter is to examine necessary steps
for building a scaled model, what works and what does not.

Problems also arise when a scaled model is built. The following questions
must be answered before embarking on such as mission. Are the efforts of
building the model greater than what is gained by it? Is theoretical knowl-
edge of the system sufficient for a complete study of its dynamic behaviour?
Are the measuring devices available able to capture the properties and be-
haviour of the system? The aim of this chapter is also to try and answer
these questions.

4.1 Previous work

4.1.1 Models based on the work from (Farr et al., 1961)

The following articles (Farr et al., 1961; Willets and Edwards, 1966; Willets
et al., 1966; Willets and Suddards, 1970) all cover the same model originally
built by (Farr et al., 1961) and will therefore be reviewed in the same section.

Only a handful of scaled laboratory models have been built and for study-
ing the catenary–pantograph system. Reasons for that may be that it is a
rather troublesome venture since it is a complex system, theoretical under-
standing has grown considerably over the years and measurement equipment
for field testing has evolved significantly.

The earliest scaled model study found for this thesis is the one done by
(Farr et al., 1961). In the study, two main reasons are listed for building a
scaled model:

• Experimental tests and measurements may be practically and econom-
ically unfeasible.
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• The system is too complex and theoretical knowledge is inadequate.

Despite advancements in the field of measuring equipment, it is still imprac-
tical to perform a complete study on the full–scale system. Most train tracks
are used daily so it is difficult to make modification to the components of
the system for a certain track. Special test tracks for full–scale studies have
been built but are expensive and not worth the cost or effort in most cases.
Some of the advancements in measuring equipment has been put to use in
a special test train. JBV has one called the Roger1000 and measures vari-
ables such as the contact force and displacement of wires. The information
obtained by Roger1000 is valuable but the measurements are only done for
system checking, not for experimental purposes. Therefore, it is better to
build a scaled model in a lab where environmental and system variables can
be controlled. The second point mentioned is obsolete. Significant progress
has been made in studying the system theoretically, directly and indirectly.
With the increase in computational power and development of methods like
the finite element method it has become easier to model structural systems
in general. Furthermore, understanding of how the catenary–pantograph
system works has increased through countless theoretical and experimental
studies. Although insufficient theoretical understanding was a reason for
them to build a scaled model, with that fixed today it could be a reason
for building a model. Researchers armed with this theoretical understanding
may have even more success than their predecessors in understanding the
system behaviour based on a scaled model.

Setup of the model built in (Farr et al., 1961) is seen in figure 4.1. It is
a simple catenary model representing a straight section with no gradients,
curves or special sections. Scaled parameters are proposed for a auxiliary
contact wire but no test are performed on a compound system. Curved
sections are placed at the ends so the pantograph can run continuously and
has space to accelerate, but the actual testing area is the straight part of the
track. All components of the system are represented in a scaled version, such
as supports, droppers (see figure 4(a)) and pantograph (see figure 4.2). One
of the biggest problems faced by (Farr et al., 1961) is finding the appropriate
material for representation of the wires. Scaling factors are chosen for the
system, see section 4.2, and they are implemented for all system variables.
Finding a suitable combination of every system variable can be troublesome.
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The problem that arises with the wires is that, according to scaling chosen,
they need to have the flexibility of a relatively thin wire and mass properties
of a thicker wire. Several different approaches were tried like circular wires,
stranded wires, non–metallic threads and etc. The best solution was found
to be specially manufactured beaded tungsten wires. Maximum allowable
speed on the model corresponds to a full–scale speed of 160km/h (28km/h
scaled).

The devices used to measure up the scaled model were relatively sim-
ple compared to what is available today. Basic behaviour of the system is
observed, but the results in general are distorted because the system is too
much scaled down (Kim, 2007).

In (Willets and Edwards, 1966), the aim was to increase the running
speed of the pantograph. That is accomplished by changing the flat curved
sections of the model’s ends, see figure 4.1, and replacing them by ramps.
The gradient of the ramps will slow the pantograph down as it tries to climb
and accelerate it as it moves down the ramp. The new model is capable
of modelling full–scale speeds up to 200km/h (35km/h scaled). In addition
the scaled pantograph model was replaced by a simpler model, see figure
4.3. Advanced measuring devices were installed that enabled the authors
to extract more information from the model. The results from the model
show that as speed is increased, more contact loss occurs, and contact loss
happens mostly around the supports or if speed is high enough it happens
at mid-span.

(Willets et al., 1966) introduce pre-sag into the model and also study what
happens when the number of droppers per span is changed. These changes
are implemented on the adjusted model by (Willets and Edwards, 1966). By
introducing adjustable droppers, the pre-sag can be controlled in the model
see figure 4.4. The results show that optimal pre-sag gives increased design
speed, the same happens when the tension force in the wires is increased.
Tension force affects the pre–sag, so if it is increased to much, it can have
negative effects as seen before. The study also states that decreasing the
amount of droppers in the model can have positive effects, when everything
is taken into account (e.g. material cost and etc.). Maximum speed for the
model is the same as in (Willets and Edwards, 1966).

The third and last study that uses the model from (Farr et al., 1961) is
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Figure 4.2: Scaled pantograph model from (Farr et al., 1961).

Figure 4.3: Scaled pantograph model from (Willets and Edwards, 1966).
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(a) (b)

Figure 4.4: These are two different setups for droppers. The one in 4(a)
is the original dropper from (Farr et al., 1961) and the one in 4(b) is the
adjustable dropper from (Willets and Edwards, 1966).
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(Willets and Suddards, 1970). The changes they make are aimed to increase
running speed, changing dropper lengths and testing different catenary sys-
tems. Running speed was increased by increasing the size of the ramps and
introducing a improved trolley, on which the pantograph lies on. Changes in
the pantograph trolley do nothing regarding the dynamic model of the pan-
tograph itself. The final version of the model was able to model full–scale
speeds of 320km/h (56km/h scaled). Stitched wires and compound catenary
setups were also introduced. Similar measurement methods are used as in
the previous studies although they added a study of the contact wires elas-
ticity. The study points out that errors can occur between design values and
actual values for tension force and dropper lengths. Testing on the lab mod-
els reveals that these effects or not great if the errors are within described
ranges, see (Willets and Suddards, 1970). Implementing stitched wires, using
compound catenary and/or pre-sag improved the performance of the system
and increased allowable speeds.

4.1.2 Manabe (1989)

The model built by (Manabe, 1989) builds upon the experience gained in
studies covered in section 4.1.1. Manabe’s however was to develop a more
realistically scaled model, that could be used for quantitative measures.

The model of the catenary is a scaled version of a compound catenary
system. Simple copper plate was used for the contact wire and stranded
steel wires for messenger wire and auxiliary messenger wire. Due to more
favourable scaling choices, finding materials is much easier than for (Farr
et al., 1961). The pantograph model is a scaled version of the PS–200 A–
type used by the Japanese Shinkansen lines, a comparison study was run with
a different two low–mass pantograph model in the study Specially noted in
(Manabe, 1989) is a defect in the model, says that the frictional force between
pantograph and contact wire along with the aerodynamic force applied to
the pantograph do not satisfy the similarity law. These same concerns were
raised by (Farr et al., 1961).

Scaling used in the model is performed such that the system parameters
(e.g. geometry, mass per unit length etc.) are more realistic. Reaching those
realistic values meant instead that the scaled down speed was 50− 170km/h
instead of 28km/h in (Farr et al., 1961). Manabe’s objective was to reach
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speeds of 100 − 340km/h, so his scaling factor for speed was 0, 5. This was
accomplished by running the model on an existing pantograph equipment,
500m in length (compared to ≈ 40m in (Farr et al., 1961), capable of reaching
those speeds.

Analysis for the scaled model is more sophisticated than the ones run
in section 4.1.1. Importance of the wave propagation velocity is recognized
and it plays a key role in the parameter study. Strain gauges are used to
measure strain in the contact wire, results show that as the pantograph passes
droppers the strain there becomes compressive as is expected. Results show,
that as the pantograph’s speed reaches the wave propagation velocity in the
wire contact loss and stress in the wire increases.

4.1.3 Drugge (2000)

The most recent laboratory model to be built is by (Drugge, 2000). The aim
of that model was to be simple yet descriptive of dynamic characteristics in
the system. It was used to display the effects of running the pantograph
at speeds near the wave propagation speed in the contact wire, multiple
pantograph operation, different values for tension in the wire and changes in
values for pantograph components.

The catenary part of the model consists of 8 rigid bars that form an
octagon, see figure 4.5. In order to simulate a distributed stiffness system,
the contact wire is suspended from springs that are fastened to the rigid
bars at 25mm intervals (length of one rigid bar is 1, 928m). Tension in the
wire is obtained by attaching a weight at support pole 1. Support poles are
placed between bars and there is a horizontal arm at each one that holds the
contact wire, making sure the model does not fall inwards to the center due
to the tension force. Maximum allowable scaled down speed on the model is
≈ 30km/h. Placed in the center of the octagon is a vertical pole, from which
the pantograph model is extended on a rotating arm. The pantograph model
is made up from a contact bar, a frame and a base see figure 4.6. Dynamic
characteristics of a typical pantograph model are described by the one used
here (e.g. torsional stiffness, translational stiffness, damping, moment of
inertia etc.).

Displacements are measured in the contact wire at places between support
poles 4 and 5, see figure 4.5. Vertical and angular motion are measured for
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Figure 4.5: Drugge’s laboratory model setup (Drugge, 2000).

Figure 4.6: Drugge’s pantograph model (Drugge, 2000).
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the pantograph, and while the pantograph does not need power from the
catenary to run there is a current running through that is measured and
indicates if there is contact loss.

The noteworthy results from the study are that the lab model does
describe the dynamic characteristics of the catenary–pantograph system.
Spring distribution yields a stiffness variation in the system that is accurate,
the stiffness at the support poles is 2, 5 times the stiffness in the middle of the
span. Wave propagation velocities in the contact wire are between 8, 1m/s
and 10, 3m/s for the different experimental setups proposed, velocities that
are obtainable within the restrictions of a laboratory setup. Movement of the
different system’s parts increases and becomes more chaotic as the velocity
of the pantograph reaches the wave propagation velocity.

All in all the modelling is successful, the model is simple and yet exhibits
some important traits of the catenary–pantograph system. It is worth noting
that some of these effects may be an effect from the laboratory model itself
and are not reflective of real life situation.

4.1.4 Hybrid–in–the–loop (HIL)

Hybrid laboratory studies (HIL) are studies where there is a physical model of
the pantograph connected to a mathematical model of the catenary. Several
researchers have used this method (Bruni et al., 2012; Facchinetti and Bruni,
2012; Facchinetti and Mauri, 2009; Zhang et al., 2002). This is a clever
method since no scaling is necessary, simple pantograph equipment can be
used, models exhibit characteristic behaviours of the system and the model
does not take up a lot of space (see figure 4.7). The biggest problem is
obtaining and installing the equipment necessary to represent the interaction
between the pantograph and catenary. If that equipment can be obtained
it is worth it because so much different testing can be done, e.g. different
catenary solutions can be implemented with a keystroke or adding/reducing
the amount droppers. There are obviously many options and according to
the studies mentioned this method has proven to be successful. Especially
interesting is the results from (Facchinetti and Mauri, 2009) where they state
that friction effects at contact point between pantograph and catenary along
with aerodynamic effects are negligible for model studying of the system,
this is confirmed by full–scale measurements. The finding erases concerns,
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Figure 4.7: Hybrid–in–the–loop test stand (Bruni et al., 2012).
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brought up by (Farr et al., 1961; Manabe, 1989), where they claimed these
effects to be negative to their models.

4.1.5 Suggested model

What can be taken from the experience gained in these previous works are
the following. Scaling the model too much down will yield distorted results
like in (Farr et al., 1961). If the aim is to build a accurate model than it is
best to use realistic scaling values and rather solve the problem of reaching
high speeds in the model and finding a large enough space to store the model.
For a simple model, were the numerical results do not need to be accurate,
maybe it is better to come up with a clever solution like the one in (Drugge,
2000). Although that model had parameters similar in size to the model in
(Farr et al., 1961) its setup was different which allowed for more realistic
results.

It is the suggestion of the author that if a model were to be built it
would use similar scaling as in (Manabe, 1989). Development of measuring
equipment alone will make it worth it to build a model similar to that one.
Equipment measures most of the same things as back then, but with a greater
sampling rate which can be important to the system. The biggest problems
will be, as mentioned before, finding a large enough storage space and having
equipment that reaches high speeds. Large storage spaces are abundant
and should not be hard to find in Trondheim or somewhere outside of the
city. The speed range of interest for Norwegian rails is much lower than
Manabe dealt with, although the same scaling factor were to be used it would
scale down a smaller value. There are other things than those mentioned
by Manabe that would be interesting to examine if a model existed. An
area that has not been examined thoroughly is damping in the system, a
scaled down laboratory model could give insight into the dissipative workings
of the system. Building a track that ran in a curve would be especially
interesting, since it has not been done with realistically scaled models. Other
improvements of could be to build spans with different catenary system types
and instead of using a copper plate it would be good to use the actual cross
section shape. The model study should focus on the catenary, instead of a
scaled down pantograph a simple equipment exerting constant force upwards
could be used or the pantograph model used by (Drugge, 2000).
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The numerical model developed in section 3 is intended to work also for
scaled down models. To test that it will be implemented on the reference
system scaled down by the factors used by Manabe. The scaling laws are
presented in the next section and system parameters in terms of scaling
factors are presented along with the scaled down values of the reference
system.

4.2 Scaled model

Previous work of has been introduced and the model from (Manabe, 1989)
was judged to be most feasible. This section will cover the scaling consid-
erations needed if a scaled model is to be built. They are then used on
the reference system to obtain a scaled system parameters, which will be
implemented in the numerical model developed for this thesis. One of the
objectives of the numerical model is to be able to simulate scaled down mod-
els, and in this way the model is being checked if it works in that way..

4.2.1 Scaling laws

Scaling down a structural system can be tricky. The scaled model should be
as small as possible without losing dynamic characteristics of the full–scale
system or so small that measuring displacements and forces becomes difficult.
It is important to know what quantities need to be scaled down, they are
obtained by realizing the forces affecting the system. These forces include
the gravity force on system mass, forces from the pantograph, tension in the
wires and forces derived from wind conditions (Farr et al., 1961).

The three basic properties of the system, from which all other values that
need to be scaled can be derived from, are length [L], mass [M ], and time
[t]. Let the scaling factors for these values be λ for length, µ for mass and τ
for time. The scaling laws for the catenary–pantograph system are presented
in (Farr et al., 1961) and improved upon in (Manabe, 1989), the latter is
derived here.

In order to make the model manufacturing easier, it is clever to introduce
two different scaling factor for horizontal and vertical length (λh and λv).
There are four scaling factors that have to be considered, by a little manip-
ulation these can be reduced to three. The scaled model is operated in the

77



same gravitational field as the full–scale one, so acceleration should be scaled
to unity:

λv
τ 2 = 1 (4.1)

introducing a scaling factor for velocity:

λh
τ

= αs (4.2)

Now there are only three scaling factors that have to carefully chosen, λh, µ
and αs. As stated above, other necessary system parameters can be obtained
from these factors. For example, Young’s modulus:

E = [m][L]
[t]2[L]2 = [m]

[t]2[L] = µα2
s

λ3
h

(4.3)

it is customary to represent fundamental variables, when studying lab models
and calculating units, by [] (e.g. length-[L], mass-[m] and time [t]) as can be
seen from the equation above.

4.3 Scaled model results

The scaling factors used by Manabe (1989) will be used here and they are:

λh = 1 µ = 2 αs = 0, 5 (4.4)

Table 4.1 lists up most of the system parameters expressed by the scaling
factors, their reference system values and corresponding scaled down values.
The mass, stiffness and damping scaling values for the pantograph are also
applicable to the droppers, registration arms and support brackets. Contact
stiffness is also scaled in the same way as pantograph stiffness but the critical
damping ratios remain unchanged, the reason for that is that they are ratios.
Damping in the wires will scale down due to other factors that it is dependent
on: mass, stiffness and eigenfrequencies (see section 3.1.3). Some system
parameters are scaled to unity and are therefore not listed in the table, these
are: horizontal displacements/lengths (L), damping (c), cross sectional area
(A) and moment of inertia (I). Since horizontal length is scaled to unity,
the span length and arrangement of droppers will not be changed. Same
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rules apply for the time step needed for the integration method, the system
must be modelled every 0, 2m and is therefore dependent on train velocity.
Velocity is scaled by 0, 5, so given a reference case velocity of 100kmk/h the
scaled down velocity must be 50km/h. That means that the time step must
be below:

∆t = 0, 2
50e3/3600 = 0, 0144 (4.5)

Obviously the previous known optimal time step of 0, 001s will be sufficient.
Applying all of these scaling values to the reference system, the results can
be obtained. For the purposes of showing some of the results there are two
other system parameters that need to be derived in terms of scaling factors,
frequency (f) and elasticity (e).

f = 1
[t] = αs

λh
= 0, 5 (4.6)

e = [L]v
[m] [L]v

[t]2
= λ2

h

µα2
s

= 2 (4.7)

where the subscript v stands for vertical.
Figures 4.8–4.11 show the results from the scaled model. Comparing

them to their full–scale identical figures (3.7,3.6,3.10 and 3.14) it is easily
seen if the scaled down values are implemented in the numerical model it
will yield results with similar scaling. Some of the key results parameters
were obtained from the scaled model and compared with results from the
reference case, these can be seen in table 4.2. The columns in table 4.2
represent from the first; parameter, parameter value in the reference system,
scaling factor, what the scaled model results should be, what the scaled result
is and finally error between them. The largest error between scaled and full–
scale results is 7, 81% for the standard deviation of the contact force, but
all others are within 2%. Errors within 2% are acceptable and it shows that
the numerical model can be used on scaled models. Standard deviation is a
difficult parameter to control, but since the scaled model results are smaller
than what was expected, and it is preferable that standard deviation is small,
it is also acceptable.
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Figure 4.8: Eigenmodes of the contact wire for scaled model. The number
and frequency (fi) of each mode, i, is given below each figure.
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Table 4.2: Comparison between running the numerical model with full–scale
parameters and scaled down ones.

Parameter Ref. System Scaling Scal. System Scal. Model Error [%]
Fm [N] 65,00 2,00 130,00 132,72 2,05
σm [N] 23,80 2,00 47,60 44,15 -7,81

dstat,max [m] 0,08 4,00 0,32 0,32 0,00
emax [mm/N] 0,77 2,00 1,54 1,55 0,65
e− unif [%] 55,50 1,00 55,50 55,50 0,00
cp,cw [km/h] 373,30 0,50 186,65 190,63 2,09

f1 [Hz] 1,06 0,50 0,53 0,53 0,00
f2 [Hz] 1,08 0,50 0,54 0,54 0,00
f3 [Hz] 1,14 0,50 0,57 0,57 0,00
f4 [Hz] 1,21 0,50 0,61 0,61 0,82
f5 [Hz] 2,09 0,50 1,05 1,05 0,48
f10 [Hz] 3,13 0,50 1,57 1,57 0,32
f20 [Hz] 5,74 0,50 2,87 2,87 0,00
f100 [Hz] 17,83 0,50 8,92 8,91 -0,06
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Figure 4.9: Elasticity curve of the scaled model.
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5 Conclusions
Dynamic behaviour of the catenary–pantograph system has been examined,
by a literature survey and by modelling it numerically. More focus was put
into examining the catenary system instead of the pantograph. The reason
for that is that important parameters and behaviour of the pantograph are
already well known and documented, a mathematical model of it was imple-
mented in the numerical model based on this knowledge. Suggested articles
that present findings on pantograph behaviour are (Pombo and Ambrosio,
2012; Lee et al., 2012; Pombo et al., 2009). Properties found to be critical for
the dynamic behaviour of the catenary are wave propagation velocity, speed
of the train, limiting speed due to reflection in the system and the critical
damping ratio.

Parameters of the system controlling the first two properties are tension in
the wires and their mass per unit length. Wave propagation velocity proved
to be a critical factor to the system, it is controlled by mass per unit length
and tension force in the wire. Behaviour of the system becomes chaotic as
the train’s speed nears this velocity limit and the parameters controlling it
should be set so that the limit is high. The further the train’s velocity is
from the wave propagation velocity, the better the system behaves. Same
effects were observed when the velocity of the train was around the limiting
speed due to reflection in the system.

Damping is an area of this system that has not been researched enough
and has room for improvement. Large part of the literature for the system
was examined and proportional damping models seem to be the only ones
used to represent this phenomena in the system. Motion at low frequencies
dominates the system and it was interesting to see the change in the system
as the damping model obtained from (Wilson, EL., Inc) that has the option
for different damping at different frequencies. That being said, effects from
damping are not important to systems with a single pantograph.

Work that has been done previously on scaled laboratory models for the
system was reviewed. Valuable insight was obtained to what could be done
and what could not be done. Building scaled models that are scaled down
considerably will give distorted results and it is recommended that if a lab-
oratory model were to be built, that it would be done in large scale. The
biggest factor for building the actual model is the chance to study damping
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or the effects of curvature in the system or the effects curvature. The nu-
merical model proved to be a good tool for checking scaled down models as
expected.

5.1 Future work

The numerical model developed here proved to be descriptive of the system
while also being simple and having low run time. If improvements are to be
made for the model in the future it is important that these characteristics
should not be lost. The ideas for future work improvements on the model
are presented given that criteria. If these improvements yield increased com-
plexity in the model and a long calculation time it would perhaps be better
to turn to commercial finite element software such as ABAQUS or ANSYS.
Improvements that could be beneficial to the numerical model are:

• Changing the model from 2D to 3D would allow for effects such as
curvature and zig–zag to be included. These effects are important to
the system’s behaviour and should be included, but it would be risky
since the calculation time could increase.

• Adding nonlinear effects of dropper slackening. Many studies have
shown the importance of this property to the systems behaviour and
adding it should be included (Cho, 2008). That would mean that for
every time step the geometry of the droppers need to be checked and if
they are in compression the global stiffness and damping matrices need
to be updated. This operation could be time consuming, but since the
matrices in whole are not being changed, this could be a possibility for
improvement.

• Changing the program code so that spans of different lengths and with
different dropper arrangement could be modelled together. In reality
different span arrangements are often built side by side and full–scale
measurement data does exist for these lines that could be used for
validating the model. Validation is possible for the model as it is today
but this could give more accuracy in the results. This improvement
would not result in increased calculation time.
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• Implementing the option of having multiple pantographs. If damping
is to be studied for the system, including multiple droppers is essential.
Damping does not affect the system to a great degree when there is only
one pantograph. Increase in calculation time should not be significant,
and for simplicity the same mathematical model could be used for both
pantographs.

• Different contact formulation methods should be tested. The one used
in this thesis proved successful, but there are many formulations that
have been implemented and it would be interesting to see if any of them
gives better results.

• Making the computer code more user friendly, i.e. commercializing it.
Setting up a simple graphical user interface could make the model more
accessible. Checking dynamic performances of a system with a model
that requires only minutes in calculation time and can easily change
system parameters is good to have.

Building a scaled laboratory model is obviously suggested as well for
future work. As mentioned before, damping in the system is underdeveloped
and future work should include a study of damping. Work on damping
was initiated during the course of this study but could not be completed
due to bad measurement results. Two different PhD theses were studied for
this purpose where different methods for modelling damping in a structural
system are proposed (Adhikari, 2000; Pilkey, 1998). Both methods require
measurements of eigenmodes and frequencies, which were almost retrieved
for the reference system with a model hammer, but problems arose with the
measurements and ultimately could not be retrieved. For future work, this
measurement should be repeated and the results used to model damping in
the system. The numerical model developed here can be used to try out
different formulations of damping.
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A Contact wire cross section
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Scale: 1:0.1081y'= -6.3 mm y'= 6.3 mm
z'= -6.3 mm

z'= 6.3 mm

Base material:

Name: Contactwire
E = 1.240e+005 N/mm²
G = 4.470e+004 N/mm²
ν = 0.34 
ρ = 8930.00 kg/m³

C = center of gravity
S = shear center

Angle (y',y)  =-0.00 deg

y'c =  0.0 mm
z'c = -0.1 mm
y's =  0.0 mm
z's = -0.4 mm
ys  =  0.0 mm
zs  = -0.3 mm

True area
 1.0567e+002 mm²

Weight per unit length
 0.01 kN/m

Mass per unit length
 0.94 kg/m

PARAMETER*         VALUE                

A  1.0567e+002 mm²
Iy  9.8650e+002 mm4

Iz  8.3921e+002 mm4

It  1.5115e+003 mm4

Sy  1.6089e+002 mm³
Sz  1.3987e+002 mm³
ry  3.0554e+000 mm
rz  2.8181e+000 mm
κy  1.13699
κz  1.26461

Iy' (y' at C)  9.8650e+002 mm4

Iz' (z' at C)  8.3921e+002 mm4

Iy'z' (at C)  0.0000e+000 mm4

STIFFNESS          VALUE                

EA 1.3104e+004 kN
EIy 1.2233e-001 kN·m²
EIz 1.0406e-001 kN·m²
GIt 6.7562e-002 kN·m²
GAsy 4.1545e+003 kN
GAsz 3.7353e+003 kN

GA 4.7237e+003 kN

EIy' 1.2233e-001 kN·m²
EIz' 1.0406e-001 kN·m²
EIy'z' 5.7744e-018 kN·m²

* Apply to an equivalent cross section of base material



B Application of calculus of variations
From section 3.1.1 there is a derivation of the Hamilton principle where prin-
ciples from calculation of variations are used. These derivations are shown
here. The main principle used is that the variation and integration operators
can be interchangeable. Some of the derivations are from (Quek and Liu,
2003) and the principles of variation calculations are taken from (Clarke,
2013).

In order to get from equation 3.23 to 3.24 the following derivations are
made, starting with the first term:

δ

(
1
2dT

e kede

)
= δ

(
1
2{d1 d2}

k11 k12

k21 k22

d1

d2


)
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2δ
(
{d1k11 + d2k12 d1k12 + d2k22}
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d2


)
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2
1k11 + 2d1d2k12 + d2

2k22)

= 1
2

[
∂(d2

1k11 + 2d1d2k12 + d2
2k22)

∂d1
δd1 + ∂(d2

1k11 + 2d1d2k12 + d2
2k22)

∂d2
δd2

]
= (d1k11 + d2k12)δd1 + (d1k12 + d2k22)δd2

= {δd1 δd2}

d1k11 + d2k12

d1k12 + d2k22

 = {δd1 δd2}

k11 k12

k21 k22

d1

d2


= δdT

e kede (B.1)

where k12 = k21. Applying similar derivations the rest of the terms in equa-
tion 3.23 become:

δ

(
1
2 ḋT

e meḋe

)
= δḋT

e meḋe (B.2)

δ

(
1
2dT

e ceḋe

)
= δdT

e ceḋe (B.3)

δ(dT
e fe) = δdT

e fe (B.4)
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C Strain–displacement equations
The strain–displacement relations can be expressed as follows, the second
order nonlinear terms added for the geometric stiffness are shown in paren-
thesis:

εx = ∂u

∂x
+
(

1
2uT,xu,x

)

εy = ∂v

∂y
+
(

1
2uT,yu,y

)

εz = ∂w

∂z
+
(

1
2uT,zu,z

)
(C.1)

γxy = ∂u

∂y
+ ∂v

∂x
+
(

1
2uT,xu,y + 1

2uT,yu,x
)

γxz = ∂u

∂z
+ ∂w

∂x
+
(

1
2uT,xu,z + 1

2uT,zu,x
)

γyz = ∂v

∂z
+ ∂w

∂y
+
(

1
2uT,yu,z + 1

2uT,zu,y
)

where e.g. uT,x =
[
u,x v,x w,x

]
and: u, v and w are displacements in x, y,

z direction respectively. These relations are identical to the classical Green–
Lagrange strain (Wilson, EL., Inc)
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D Element matrices

The two node Euler–Bernoulli beam element with 2 DOF at each node has
the following element matrices (Rönnquist, 2012):

me = ρlel
420


156 22lel 54 −13lel
22lel 4l2el 13lel −3l2el
54 13lel 156 −22lel
−13lel −3l2el −22lel 4l2el

 (D.1)

kem = EI

l3el


12 6lel −12 6lel
6lel 4l2el −6lel 2l2el
−12 −6lel 12 −6lel
6lel 2l2el −6lel 4l2el

 (D.2)

keg = P

30lel


36 3lel −36 3lel
3lel 4l2el −3lel −l2el
−36 −3lel 36 −3lel
3lel −l2el −3lel 4l2el

 (D.3)

where ρ is the mass density per unit length, lel is the element length, E
is Young’s modulus of elasticity, I is the moment of inertia and P is the
pretensioned axial force.

The two node Euler–Bernoulli beam element with 3 DOF at each node
has the following element matrices (Quek and Liu, 2003):

me = ρlel
420



140 0 0 70 0 0
0 156 22lel 0 54 −13lel
0 22lel 4l2el 0 13lel −3l2el
70 0 0 140 0 0
0 54 13lel 0 156 −22lel
0 −13lel −3l2el 0 −22lel 4l2el


(D.4)
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kem = EI

l3el



Al2el

I
0 0 −Al2el

I
0 0

0 12 6lel 0 −12 6lel
0 6lel 4l2el 0 −6lel 2l2el
−Al2el

I
0 0 Al2el

I
0 0

0 −12 −6lel 0 12 −6lel
0 6lel 2l2el 0 −6lel 4l2el


(D.5)

keg = P

30lel



0 0 0 0 0 0
0 36 3lel 0 −36 3lel
0 3lel 4l2el 0 −3lel −l2el
0 0 0 0 0 0
0 −36 −3lel 0 36 −3lel
0 3lel −l2el 0 −3lel 4l2el


(D.6)

where A is the elements cross section and all other variables are the same
as above. Transformation matrix used for the element with 3 DOF at each
node (Quek and Liu, 2003):

T =



C S 0 0 0 0
−S C 0 0 0 0
0 0 1 0 0 0
0 0 0 C S 0
0 0 0 −S C 0
0 0 0 0 0 1


(D.7)

where C and S represent the cosines and sines of each elements angle between
local and global coordinate systems.
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E Time–stepping solution method
The following is an algorithm for Newmark’s time–stepping solution method
(Chopra, 2007). Different values for γ and β control which method it is.
The method used here is the average–acceleration method, where γ = 1

2 and
β = 1

4 . All variables used in the algorithm have been defined in the text
above and have the same meaning here, subscript zero means initial values.

1.0 Initial calculations

1.1 r̈0 = M−1(F0 − Cṙ0 −Kr0).

1.2 Select ∆t.

1.3 K̂ = K + γ
β∆tC + 1

β(∆t)2M.

1.4 a = 1
β∆tM + γ

β
C; and b = 1

2βM + ∆t
(

γ
2β − 1

)
C.

2.0 Calculations for each time step, i

2.1 ∆F̂i = ∆Fi + aṙi + br̈i. Where ∆Fi = Fi − Fi−1.

2.2 ∆ri = K̂−1∆F̂i.

2.3 ∆ṙi = γ
β∆t∆ri − γ

β
ṙi + ∆t

(
1− γ

2β

)
r̈i.

2.4 ∆r̈i = 1
β(∆t)2 ∆ri − 1

β∆t ṙi −
1

2β r̈i.

2.5 ri+1 = ri + ∆ri, ṙi+1 = ṙi + ∆ṙi, r̈i+1 = r̈i + ∆r̈i.

3.0 Replace i by i+ 1 and repeat steps 2.1− 2.5.
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F Pantograph specs
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1.1 Tekniska data för simulering WBL 88 AT ,Flygtoget BM73 
 

Benämning Del Data Enhet Anmärkning 

Toppbygel massa  M1 2x2,3 Kg primär massa 

Avstånd mellan kolslitskenor  X1 595 mm  

Effektiv dynamisk sax massa M2 16.5 Kg sekundär massa 

Toppbygelns dämpnings konstant  C1 10 Ns/m primär  

Saxens dämpnings konstant  C2 0 Ns/m sekundär  

Saxens dämpnings konstant  C3 63,5 Ns/m sekundär  

Saxens fiktion U1 17 N  

Fjäderkonstant för toppbygel K1 3100 N/m  

Statiskt upptryck F1 60 N  

Fjäderväg från A till B  - 35 mm för primär massan 

Fjäderväg vid statiskt upptryck (F1) - 12 mm  

Max höjd - 2,0 m maximal höjd för strömavtagaren(från viloläge) 

Toppbygelbredd  1.8 m  

Längd kolslitskena - 1,03 m  

Höjd kolslitskena - 0,039 m i mitten av kolslitskenan i förhållande till dess ändar 

Aerodynamisk uppkraft på toppbygel Fa1 0 N vindstilla vid 100 km/h 

Aerodynamisk uppkraft på saxen Fa2 5 N vindstilla vid 100 km/h 

     

 

 



G Zip–file
The thesis is handed in on an electronic format, where there is an option for
attachments. The electronic attachment for this thesis is a zip–file containing
Matlab program necessary to run the numerical model and a movie file that
displays a run of the model. The programs attached are:

• PCrun.m

• Geometry.m

• assembleCat.m

• indadd.m

• Rayleighdamping.m

• WilsonPenziendamping.m

• WBL88.m

• Newmarkint.m

• Themodel.m

• Staticdisplacement.m

• Eigenfrequencies.m

• Elasticity.m

• Dropperdisplacement.m

• PantographPosition.m

• Dynamicthreepoints.m

• Contactforce.m

• Motion.m

• movie.avi
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