
Numerical Analysis of the Dynamic 
Behaviour of Railway Catenary Systems 
in Accordance with Norwegian Conditions

Petter Røe Nåvik

Civil and Environmental Engineering

Supervisor: Anders Rönnquist, KT

Department of Structural Engineering

Submission date: June 2013

Norwegian University of Science and Technology



 



 

I 

 

Department of Structural Engineering                 

Faculty of Engineering Science and Technology 

NTNU- Norwegian University of Science and Technology 

MASTER THESIS 2013 

SUBJECT AREA: 

Structural dynamics 

DATE: 

10.06.13 

NO. OF PAGES: 

119 

TITLE: 
 

Numerical Analysis of the Dynamic Behaviour of Railway Catenary Systems in 
Accordance with Norwegian Conditions 

 
 Numerisk analyse av dynamisk oppførsel til kontaktledningsanlegg ved 

høy hastighet etter norske forhold 
 

BY: 
 

 
Petter Røe Nåvik  

 

 
RESPONSIBLE  TEACHER: Associate Professor Anders Rönnquist 
 
SUPERVISOR(S): Associate Professor Anders Rönnquist 
 
CARRIED OUT AT: Department of Structural Engineering (Institutt for konstruksjonsteknikk) 

SUMMARY: 
 

The dynamic behaviour of the railway catenary system is of great importance as the speed 

of the train increases. The aim for this study was to make a numerical model of the 

catenary system in three dimensions to be able to investigate what should be done with 

existing catenary systems in Norway to increase the train speed. In Norway there is a high 

ratio of curves with small radius, thus it is very important to include three dimensions. 

Abaqus has been used to obtain the numerical model. Both static and dynamic analyses 

have been done on this model. The results from the analyses have been compared with 

measurements, and this has shown that the model is able to describe the dynamic 

behaviour of the catenary system with sufficient accuracy. In future work it is 

recommended to look especially into how the contact interaction between the contact wire 

and the pantograph is modelled. 
 

ACCESSIBILITY 

 



 

II 

 

 



 

Norwegian University of Science and Technology 

Faculty of Engineering Science and Technology 

Department of Structural Engineering 

III 

 

Masteroppgave for Stud.techn. Petter Røe Nåvik, våren 2013 

Numerisk analyse av dynamisk oppførsel til kontaktledningsanlegg ved høy 

hastighet etter norske forhold 

Numerical Analysis of the Dynamic Behaviour of Railway Catenary Systems in Accordance with 

Norwegian Conditions 

For strømforsyning til elektriske tog i Norge benyttes en kontaktledning som togenes strømavtaker glir mot. 

For at denne forsyningen skal være pålitelig og avbruddsfri i høye toghastigheter stilles det strenge statiske og 

dynamiske krav til kontaktledningsanleggets egenskaper som mekanisk konstruksjon. På grunn av topografiske 

forhold er norske jernbaner spesielt preget av mange og krappe kurver. Rundt 40 % av jernbanenettet består av 

kurveradier under 1100 m. I slike krappe kurver endres kreftene i anlegget i forhold til rettstrekning.  

Oppgaven skal kartlegge hvordan det er mulig å etablere en numerisk modell i Abaqus for et komplett 

kontaktledningsanlegg etter norske forhold. Modellen skal kunne få frem de dynamiske effektene i hvert 

enkelspenn (mellom stolper) og for en komplett seksjon med midt anker, modellert i 3D. Det legges vekt på en 

riktig interaksjon mellom pantograf og kontaktledning, men viktige parametere må også verifiseres mot kjente- 

og målte verdier. Systemets konfigurasjon bør også vurderes mht. geometri av system, bruk av Y-line og antall 

hengtråder der viktige dynamiske egenskaper dokumenters som egenfrekvenser og former i tillegg til 

systemets fleksibilitet. En viktig del av studiet er å evaluere systemet når sentrale parametere som oppløftkraft, 

spennkraft, temperatur varieres og mulig feedback i kontaktledningsanlegget studeres. Vurdere hvordan 

modell, analyse og resultat står i forhold til gjeldende regelverk.  

Litteraturstudie og numerisk modellering, State-of-the-art: 

 Kontaktledningsanleggets mekaniske funksjonalitet og dynamiske egenskaper. 

 Pantografens mekaniske funksjonalitet og dynamiske egenskaper. 

 Modell i Abaqus av enkelt spenn, rettstrekning. 

 Modell i Abaqus av komplett seksjon, rettstrekning. 

 Tidsplans løsninger (linjert eller ikke-linjert) med bevegelig last og kontakt, vurder friksjon 

 Dynamiske egenskaper som frekvenser og moder etableres. 

 Kontroller med håndberegninger 

 Analyser ved samplede resultater for studie av frekvensinnhold og sammenligning med målte verdier 

fra liknende eksisterende konstruksjoner. 

 Alternativ utforming og konsekvenser av resultat - typer tiltak som er / kan tenkes bli brukt. 

Det vil være opp til kandidaten å selv vektlegge de enkelte delene i oppgaven der oppgaven utføres i henhold 
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hjemmesider.  
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Abstract 
The dynamic behaviour of the railway catenary system is of great importance as the speed of 

the train increases. The aim for this study was to make a numerical model of the catenary 

system in three dimensions to be able to investigate what should be done with existing 

catenary systems in Norway to increase the train speed. In Norway there is a high ratio of 

curves with small radius, thus it is very important to include three dimensions. Abaqus has 

been used to obtain the numerical model. Both static and dynamic analyses have been done on 

this model. The results from the analyses have been compared with measurements, and this 

has shown that the model is able to describe the dynamic behaviour of the catenary system 

with sufficient accuracy. In future work it is recommended to look especially into how the 

contact interaction between the contact wire and the pantograph is modelled. 
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Sammendrag 
Den dynamiske oppførselen til kontaktledningssystemet på jernbanen er av stor betydning når 

hastigheten på togene øker. Målet for denne studien var å lage en numerisk modell av 

kontaktledningssystemet i tre dimensjoner. Dette ble gjort for å være i stand til å undersøke 

hva som må gjøres med det eksisterende kontaktledningssystemet i Norge for å kunne øke 

toghastigheten. I Norge er det en høy andel av kurver med liten radius, derfor er det svært 

viktig å inkludere tre dimensjoner. Abaqus har blitt brukt for å lage den numeriske modellen. 

Det har blitt kjørt både statiske og dynamiske analyser på modellen. Resultatene fra disse 

analysene har blitt sammenlignet med målinger, og dette har vist at modellen er i stand til å 

beskrive den dynamiske oppførselen til kontaktledningssystemet med tilstrekkelig 

nøyaktighet. I det fremtidige arbeidet anbefales det å se spesielt på hvordan kontakten mellom 

kontaktledningen og strømavtakeren burde modelleres. 
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1 Introduction 
The railway overhead wire system which is studied in this work consists of a contact wire, a 

messenger wire, droppers, registration arms and brackets as seen in Figure 1. The messenger 

wire carries the contact wire via the droppers, and makes it possible to obtain the desired 

geometry, stiffness and elasticity. The brackets carry the messenger wire, and are fastened to 

the poles. The main function of the registration arms, which are fastened to the contact wire, 

is to obtain the right horizontal geometry of the contact wire. The contact wire is the 

conductive part which transfers the electricity to the train through the pantograph. 

 

Figure 1 The different parts of a simple catenary system[1] 

The pantograph, Figure 2, is the device on top of the train which transfers the electricity from 

the contact wire to the train. Two bow strips of coal at the top of the pantograph are the actual 

components which transfers the electricity. This transfer is crucial for the running of the train 

thus there has to be contact between the pantograph and the contact wire. Simeon and Arnold 

[2] describes this contact as the most critical part in the transmission of the electricity to the 

trains of today. The contact is mainly ensured by introducing an upwards pressure in the 

pantograph.  

 

Figure 2 A pantograph 
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The contact force between the pantograph and the contact wire varies as the train moves and 

this introduces the importance of dynamic analyses to ensure contact in every situation. 

Contact may be lost due to large oscillations[2]. A period of contact loss is called an arch. The 

dynamics of this system is very complex and its complexity has become more interesting as 

the speed which trains run at increases[3].  

In this study a part of the Norwegian Railway that is located between Soknedal and Støren 

will be investigated. This railway was built in 1919 and electrified in 1970[4], and was built 

on piecework. The part which has been investigated is called “Wire 152 Soknedal Station” by 

The Norwegian National Rail Administration. This part has been chosen due to its many 

irregularities.  

1.1 The aim of the thesis 

The primary aim of this thesis was to make a numeric model of a train running along a 

straight catenary section in three dimensions. This model should be able to run dynamic 

analyses to investigate the contact forces between the contact wire and the pantograph, and 

the vertical displacements of the contact wire along the whole section. It should be possible to 

include non-linearities in the model as well. 

There are several important things which have to be studied to be able to model a catenary 

section in a way that gives answers that can match measured forces and displacements. 

Firstly, one needs to study the catenary systems mechanical and dynamical properties. 

Secondly, the pantographs mechanical and dynamical properties should be studied. Finally, 

the state-of-the-art for the catenary-pantograph interaction should be investigated. 

The model should then be validated by comparing analyses results with measurements, 

literature and calculations.  

 

1.2 The layout of the thesis  
In Chapter 2 there will be presented the necessary theory about catenary systems in general 

and the specific catenary systems used in Norway to understand what is investigated later in 

the thesis. Chapter 3 describes how the numerical model has been made and why it is 

modelled as it is. Chapter 4 presents the methods used for obtaining the measurements. The 

results from both analyses and measurements will be presented and discussed in Chapter 5. 

The conclusion will be presented in Chapter 6. 

A .zip-file will be included. This contains the .cae- and .jnl-file for the numerical model, two 

films of the pantograph running along the contact wire in the numerical model, and a 

Microsoft Excel-file describing the geometry. See Appendix F for a more detailed description. 
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2 Theory 

2.1 The catenary system 

The catenary system is, as mentioned in the introduction, the wire system above the railway 

track which consists of a contact wire, a messenger wire and a defined number of droppers. 

This system is held up by cantilevers which are fastened to poles on the side of the track. A 

model of a catenary system is displayed in Figure 3, and a picture of a real system is shown in 

the introduction, in Figure 1. 

Some catenary systems also have parts called stitched wires. Stitched wires are connecting 

elements which are inserted between the catenary wire and the support. Their purpose is to 

make the contact wire height more equal along a span[3]. A catenary system with stitch wires 

is shown in Figure 4. 

 

 

The different catenary systems used in Norway are called Table 54, System 35, System 20 

and System 25. However, at present only the three latter can be chosen for building.[6]. The 

 

Figure 3 Model of a simple catenary system[5]. 

 

Figure 4 A catenary system with stitch wires[6], the green line describes the catenary wire, the 

red line is describes the contact wire, the black wires describes the droppers and the blue wires 

describes the stitch wires. 
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technical regulations for the contact wire describe which system should be used for a 

specified railway section. The criteria that decide which system to use are the desired train 

velocity, the type of pantograph which are in use, the density of trains, and the type of tracks 

used[7]. 

There are two different types of System 35, one with stich wires and one without. These 

systems are suitable for multiple pantographs, and velocities around 130 km/h. The maximum 

section length is 2 x 800 metres and the tension force is 7,1 kN in both the contact wire and 

the messenger wire[6].  

System 20 is split into four different groups; A, B, C1 and C2. System 20 A is developed for 

one pantograph with speeds up to 200 km/h. This system includes the use of stitch wires and 

the radii of the curves should be larger than 800 metres. One section is allowed to maximum 

be 2 x 750 metres long. Both the contact wire and the messenger wire is subjected to a tension 

force of 10 kN[6]. One span of system 20 A is shown in Figure 5. 

 

 

System 20 B is dimensioned for train speeds up to 160 km/h with one pantograph, and there 

are no stitch wires. The system can be used with curvature radii below 800 metres, and the 

maximum length of a section is 2 x 650 metres. The tension force is 10 kN in both the contact 

wire and the messenger wire[6]. A model of one span of System 20 B is presented in Figure 6. 

 

 

Figure 5 The catenary system "System 20 A". The maximum span length is 75 metres, but the 

recommended length is 70 metres[6]. The figure is not in scale. 

 

Figure 6 The catenary system "System 20 B". The maximum span length is 75 metres, but the 

recommended length is 70 metres[6]. The figure is not in scale. 
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System 20 C1 is designed for train speeds up to 200 km/h with one pantograph in sections 

inside tunnels. It can be built both with, and without, stitch wires, and the curvature radii 

should be larger than 5000 metres. The minimum height of the system is 0,75 metres and the 

tension force 13 kN in both the contact wire and the messenger wire. [6] An overview of one 

span of this system is shown in Figure 7. 

 

 

System 20 C2 is also designed for use in tunnels. It allows a maximum train speed of 200 

km/h, and the use of one pantograph. The system is built without stitch wires and the 

minimum height of the system is 0.30 metres. The tension force is 13 kN in both the contact 

wire and the messenger wire. [6] A span of System 20 C2 is displayed in Figure 8. 

 

 

  

 

Figure 7  The catenary system "System 20 C1". The maximum span length is 45 metres. [6] The 

figure is not in scale. 

 

Figure 8 The catenary system "System 20 C2". The maximum span length is 30 metres. The 

system height is denoted SH[6]. The figure is not in scale. 
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The system called “System 25” is the catenary system in Norway designed for the highest 

train speeds. The maximum allowed train speed is 250 km/h, the system contains stitch wires 

and the minimum radii of the curvatures are 800 metres. The tension forces introduced are 

15kN in both the contact wire and the messenger wire, and the maximum section length is 2 x 

600 metres. [6] There is shown one span of System 25 in Figure 9. 

 

 

Table 54 is an old catenary system which is still in use in Norway, but not in new railway 

sections. The maximum train speed allowed is 130 km/h for this system. The original tension 

forces were 7,6 kN in both the contact wire and the messenger wire, but to cope with higher 

speeds they were changed to respectively 10 kN and 5 kN[8]. 

  

 

Figure 9 The catenary system "System 25". The maximum span length is 30 metres[6]. The 

figure is not in scale. 
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2.1.1 Case study – catenary section “Wire 152” at Soknedal station 

The studied railway section is located just north of Soknedal station which is approximately 

70 kilometres south of Trondheim, see Figure 10. The section is part of “Dovrebanen” which 

runs from Oslo to Trondheim. 

 

The section was built with the catenary system “Table 54”, and it is 1451 meters long. The 

Norwegian National Rail Administration measurement of the position says that the section is 

between km 487.029 to 488.33. This is equivalent with between cantilever 1261 and 1288. 

The section is divided into twenty-six spans. The lengths of the spans are 40 and 60 metres. 

In the studied railway section there is a part with very small curvature, R=323m, and there is a 

bridge where the contact wire has to be lowered to pass under. The position of the curve and 

the bridge along the section are marked in Figure 11. The small curvature is between km 

487.75 and 488.18, and have span lengths of 40 metres. And the contact height starts to 

decrease at km 487.9. This is irregularities which reduces the allowed running speed on the 

section to 70 km/h. The rest of this sections geometry is described in detail in Appendix C-1, 

C-2, C-3 and C-4.[8]. 

 

 

Figure 10 Location of Wire 152 at Soknedal station. The location is shown by the "A" in the red 

marker. The figure is based on [9]. 
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2.1.2 The contact wire 

The contact wires main task is to ensure transfer of electrical energy to the train without 

interruptions. In addition to this it is of great importance that the wear on both the contact 

wire, and the collection strips on the pantograph, is as low as possible to reduce maintenance 

costs[3]. There are two main things done to reduce this wear. Firstly, the contact wire has 

been mounted with zigzag, also called the stagger. This results in the wire travelling back and 

forth on the collection strips, decreasing wear.  Figure 12 shows a typical zigzag on a section 

without curvature. In curvature the poles will be placed on the outside of the bend to obtain 

the same zigzag effect.[3] The geometry of the zigzag at “Wire 152” is presented in Appendix 

C-2. 

Secondly, the contact wire is designed to have a pre-sag, an initial vertical displacement, 

which is introduced to ensure contact without raising the mean contact force[3]. Pre-sag is 

described in detail later in the theory. 

  

 

Figure 11 The geometry of the studied railway section seen from above. The black line markes 

the track. The figure is based on [10]. 

 

Figure 12 Zigzag of the catenary system 
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The contact wire used in “Table 54” is “Ri 100 Cu”. Its cross sectional area is not perfectly 

circular, but has grooves in the side to enable the dropper clips fasten to it as illustrated by 

Figure 13. This cross sectional area is given in the literature as 100 mm
2
[3, 6], but after 

modelling the cross section in AutoCAD, a software for computer-aided design, it was found 

to be 105.85 mm
2
, which is the value which will be used in this work. CrossX were used to 

find other cross sectional parameters. The moments of inertia were found to be Iy=986.5 mm
4
, 

and Iz=839.2 mm
4
. Whereas the St. Venant number (torsion constant) is J=1511.5 mm

4
. 

According to rules in Norway the maximum mean value of the wear is given as 20% of the 

original cross sectional area before the wire has to be changed[11]. The new cross sectional 

area is then given as 80 mm
2
, but the calculated value from AutoCAD is 83.68 mm

2
, and it is 

this value that will be used here. Appendix A displays the figure that shows the size of the 

worn cross sectional area against the nominal diameter. The moments of inertia for the worn 

cross section were found to be Iy=710.4 mm
4
, and Iz=503.3 mm

4
. Whereas the St. Venant 

number (torsion constant) is J=835.3 mm
4
. 

The specific weight of this contact wire is 8,9 N/m, the Young’s modulus, E, is 124*10
9
 Pa, 

Poisson’s ratio is 0.34 and the coefficient of thermal expansion is 1.65*10
-5

 K
-1

[12]. 

2.1.3 The messenger wire 

The messenger wire is the carrying wire, and is also referred to as the catenary wire in the 

literature. Its purpose is to lift the contact wire to the desired vertical position. The use of 

messenger wires permits longer spans and reduces the wear on the collection strips[3]. 

The messenger wire used in this work is “Cu 50/7”. It has a circular cross section with a 

diameter of 9 mm, its specific weight is 4,46 N/m[6], the Young’s modulus, E, is 113*10
9
 Pa, 

Poisson’s ratio is 0.0 and the coefficient of thermal expansion is 1.7*10
-5

 K
-1

[12]. 

  

 

Figure 13 Cross section of the contact wire Ri 100 Cu[3] 
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2.1.4 The droppers 

The droppers have the function of connecting the contact wire and the messenger wire so that 

the messenger wire can support the contact wire. The connection to the other wires is by 

dropper clips, such as the one shown in Figure 14. The droppers used here is Bz II 10/49, it 

has a circular cross section with the diameter of 4,5 mm, its specific weight is 0,89 N/m[6], 

the Young’s modulus, E, is 100*10
9
 Pa, Poisson’s ratio is 0.0 and the coefficient of thermal 

expansion is 1.7*10
-5

 K
-1

[12]. The different parts of a dropper are shown in Figure 15. 

 

 

 

Figure 14 The dropper’s connection to the contact wire at “Wire 152”. The connection to the 

messenger wire is approximately the same. 

 

Figure 15 Description of a stranded type dropper[3]. In the studied section there are used 

dropper wires with massive cross sections. 
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2.2 The cantilever 
The cantilever is the system which supports the messenger wire and the contact wire. It is 

mounted on a pole that stands up from the ground. An example of a cantilever with all its 

components is displayed in Figure 16. It is designed so that the top anchor is mostly subjected 

to tension forces and the cantilever tube only is subjected to compressional forces. The top 

anchor can in some situations be subjected to a small compressive force if the combination of 

the wind load and the effects of the curvature is larger than the tensile load resulting from the 

weight of the catenary system.[3] 

The steady arm can be mounted in different directions, as shown in Figure 17, to either push 

or pull the contact wire into zigzag. Which way it is mounted depends on which way the 

forces acts, and then one mounts the arm so it will be in tension.[3] 

 

 

Figure 16 Description of a type of cantilever used in Norway[3] 

 

Figure 17 a) Pull-off support and b) push-off support on cantilevers[3] 
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2.3 Pre-sag 
Some catenary systems are designed so that the centre of a span is lower than at the supports. 

This is called pre-sag. This ensures that the overhead contact line has more similar elasticity 

at the supports and in the middle of the span. The pantograph has to lift more in the centre of 

the span due to the pre-sag. And as a result the operating height of the pantograph varies less. 

It is found that at speeds lower than 200 km/h the pre-sag definitely provides better running 

quality. This because at those velocities the static behaviour is dominating, and the elasticity 

is then of great importance for the behaviour[3]. 

2.4 Pre-tensioning and midpoint anchor 

To obtain the desired stiffness and geometry of the catenary system it is necessary to 

introduce tension in both the contact and messenger wire. This stress varies from system to 

system and the maximum permissible working tensile stress to be applied to a unworn contact 

wire should be calculated as the standard EN 50119 requires, see formula (2.1)[13]. 

 min int* * * * * * *w temp wear icewind eff clamp jon K K K K K K    (2.1) 

Here σw is the maximum stress, σmin is the minimum tensile failing strength, n is the safety 

factor, Ktemp gives the relationship to temperature, Kwear gives the factor of maximum 

permitted wear, Kicewind describes the effect of wind and ice loads, Keff describes the efficiency 

of the tensioning equipment, Kclamp describes the efficiency of the tensioning clamps and Kjoint 

describes the reduction of tensile strength in joints. The maximum value of the stress may not 

exceed 65% of the minimum tensile failing strength.[14] 

The tension is obtained by using tensioning equipment at both ends of a wire length. The 

tensioning mechanism should be designed so that the tension does not vary more than 3% due 

to temperature changes[3]. The equipment used in the studied section is the same as the one 

presented in Figure 18. In addition to what is displayed in this figure a bar is used to distribute 

the right force to the messenger and contact wire, shown in Figure 19. The fastening position 

of the tensioning wire at the bar decides what the force will be in each wire, this due to force 

and moment equilibrium. The pre-tensional forces used at the site are 10 kN in the contact 

wire and 5 kN in the messenger wire[8]. 
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This tensioning device makes the catenary able to move in the longitudinal direction, which is 

undesirable. Consequently a mid-point anchor, which is placed approximately in the middle 

of the tensioning section, has been installed. This prevents the wires migrating towards the 

ends under changing loading conditions[3]. The mid-point anchor is introduced by fastening a 

wire on the contact wire, and then this wire is fastened to a pole. 

 

Figure 18 Picture of the tensioning equipment used at “Wire 152” 

 

Figure 19 The tensioning equipment used at “Wire 152” 
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2.5 Summary of the properties of the wires in Table 54 
The components of Table 54 are described in Table 1. 

 

  

Tabell 54 Type 

Specific 

weight 

[N/m] 

Diameter 

[mm] 

Cross 

section 

[mm
2
] 

Tension 

[kN] 

Young’s 

modulus 

Poisson’s 

ratio 

Thermal 

expansion 

coefficient 

Messenger 

wire 

Cu 

50/7 
4.46 9.0 49.48 5.0 113*10

9 
0 1.7*10

-5 

Contact 

wire 

Ri 100 

Cu 
8.9 12.0 100 10.0 124*10

9 
0.34 1.65*10

-5 

Dropper 
Bz II 

10/49 
0.89 4.5 9.6  100*10

9 
0 1.7*10

-5 

Table 1 The components of Table 54[6] 
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2.6 The pantograph 
The pantograph is the device on top of the train which purpose is to transfer electric energy 

from the contact wire to the electric traction unit on the train. One can simplify the pantograph 

into four components; the main frame, an arm, a pantograph head and a drive[3].  The 

pantograph studied is shown in Figure 20. 

The pantograph is a complex mechanical system. At the bottom of the pantograph one has the 

fastening to the train’s roof. This connection is very stiff and thus transfers forces and 

displacements to the bottom of the pantograph from the train. These forces and displacements 

are mostly due to irregularities in the track, crosswinds and the dynamic reactions in the train 

during motion. 

The drive is the component which introduces the lifting force in the pantograph. The force is 

introduced by compressing the air inside the bellow[3]; thus it is a very stable force. When the 

pantograph moves up and down the drive will, in addition to introduce an upward force, 

function as a damper that is activated only by movement downwards. The reason it doesn’t 

introduce damping on the way up is that the drive will be filled with more air as it does, and 

then counterbalance this effect[15]. 

The arm is fixed to the main frame and the drive, and it raises the pan head due to the force 

applied in the drive[16]. In addition to this there is also dry friction in the joint in the middle 

of the arm[17], which makes the system a bit more stable. 

The pan head is fixed to the upper part of the arm by means of a pan tube. Two levers are 

fitted to the pan head on one end, and take up the collector strips at the other ends. The 

collector strips are raised up against weight and contact pressure by leaf springs[16]. These 

strips are the parts of the pantograph which are in directly contact with the contact wire, and 

they are the parts which transfer the power. On the current pantograph these strips are of plain 

carbon and are four centimetres wide and 1600 millimetres long[8].  

 

Figure 20 Simplified description of the pantograph, model WBL88[12], showing the collector 

strips, the pan head the arm, the main frame and the drive. 
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2.7 The contact force 
The term contact force describes the force that acts between the pantograph and the contact 

wire. In running situations this force varies according to many factors such as elasticity, the 

static force used, where the pantograph is along a span and which speed the train travels at. 

One differentiates between whether the train is in movement or not when describing the 

contact force. When the train stands still one is interested in the static force, which is 

measured as the force between the collector strips and the contact wire. Whilst the train is 

moving it is the dynamic force is looked at, and this force is divided into two contributions, 

the aerodynamic contact force and the dynamic interaction between the contact line and the 

pantograph.  The aerodynamic contact force is defined as the sum of the static contact force 

and the resulting forces resulting from the aerodynamic effects of the running speed.[3] The 

contact wire slides on top of the pantograph as shown in Figure 21. 

 

 

  

 

Figure 21 How the contact wire slides on top of the pantograph. 
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If the magnitude of the contact force is too low there will be times when there is no contact 

due to dynamic effects. Periods with no contact is called arcing. If the contact force is too 

high the contact will be well insured, but it will lead to undesirable rapid wear on the carbon 

collector strips. Thus the magnitude of the contact force is an interesting parameter to 

investigate. 

The Norwegian National Rail Administration has given values for maximum, minimum and 

recommended mean force, and the standard deviation of the force[18]. These values are 

respectively shown in formula (2.2), (2.3) and (2.4), and in Figure 22 and Figure 23. 

Maximum mean contact force[18]: 

 
2

,max    0,000586 *     70   0    160midF v N for v      (2.2) 

Minimum mean contact force[18]: 

 
2

,min    0,00096 *     50   0    250midF v N for v      (2.3) 

Recommended mean contact force[18]: 

 

 
2   0,00104 *    55   0    250midF v N for v      (2.4) 

  

 

Figure 22 Limits for the mean value of the contact force[18] 
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The standard deviation(S) of the contact force should be maximum 20% of the maximum 

mean contact force for the given speed. This gives the values shown in Figure 23[18]. 

In addition to this, the following demands apply[18]: 

- 68,3 % of all the values shall be within (Fmid,max + S) and (Fmid,max – S). 

- 95,5 % of all the values shall be within (Fmid,max + 2*S) and (Fmid,max – 2*S). 

- 99,7 % of all the values shall be within (Fmid,max + 3*S) and (Fmid,max – 3*S). 

The contact force demands for the train speeds of interest in this study is computed and shown 

in Table 2. 

  

 

Figure 23 Largest standard deviation for the contact force[18] 

Speed (km/h) 70 90 130 200 

Maximum mean contact force (N) 72.87 74.75 79.90 93.44 

Minimum mean contact force (N) 54.70 57.78 66.22 88.40 

Recommended mean contact 

force(N) 
60.10 63.42 72.58 96.60 

The standard deviation (N) 14.57 14.95 15.98 18.69 

Fmid,max + S (N) 87.45 89.70 95.88 112.13 

Fmid,max – S (N) 58.30 59.80 63.92 74.75 

Fmid,max + 2S (N) 102.02 104.65 111.86 130.82 

Fmid,max – 2S (N) 43.72 44.85 47.94 56.06 

Fmid,max + 3S (N) 116.59 119.59 127.85 149.50 

Fmid,max – 3S (N) 29.15 29.90 31.96 37.38 

Table 2 Contact force demands at different velocities 
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2.8 The Elasticity 
Elasticity is a term which is much used in railway literature. It is a measurement of how 

flexible the catenary system is in the vertical direction. This is measured in how many 

millimetres the contact wire is pushed upwards per Newton. In Humar [19] the exactly same 

thing is referred to as the flexibility influence coefficient. The flexibility matrix is the inverse 

of the stiffness matrix. A typical value for the elasticity of high-speed lines is 0.5 mm/N[3]. 

The elasticity of the system is a static entity. In dynamics it would be more interesting to look 

at the impedance (dynamic stiffness) of the system[20, 21]. The dynamic stiffness can be 

explained as the stiffness the structure has in a given dynamic situation. The dynamic stiffness 

has contributions from the static stiffness, damping and mass[22]. “The dynamic stiffness of 

the catenary is defined as the ratio of the load to the displacement caused by this load”[23]. 

The “dynamic elasticity” can then be found by computing the inverse of the dynamic 

stiffness. 

2.9 The vertical displacement of the contact wire 
The maximum uplift at support should be less than 120 mm according to The Norwegian 

National Rail Administration[24]. The normal uplift at support should is between 30 and 55 

millimetres[8]. 

EN50318 also presents values for the maximum uplift, but these values are for train speeds of 

250 km/h and 300 km/h[25].  

 

  



Theory 

20 

 

2.10 Dynamic characteristics of typical overhead contact line designs 
Dynamic characteristics of typical overhead contact line designs include the natural 

frequencies, f, the wave propagation speed, c, the reflection coefficient, r, the Doppler factor, 

α, the amplification coefficient, γA, the limiting speed, vα, the non-uniformity, u, and damping 

[3]. 

2.10.1 The natural frequencies of catenary systems 

The natural frequencies of the catenary system are numerous because of it has many degree of 

freedoms (DOFs) and there can be calculated one frequency for each DOF. In this work, 

where the geometry is very different from span to span, there will be expected to be even a 

larger number of frequencies. In EN 50318[25] the frequency range of interest is 0 to 20 Hz 

when the speed is between 250 km/h and 300 km/h and this range is also used in the 

literature[26, 27]. 

To check if the first natural frequencies are of the right order of magnitude one can use the 

formula presented in Kiessling [3], and shown below. 

 1 / (2 )
' '

CW MW

CW MW

H H
f L

m m





  (2.5) 

Here f1 is the first natural frequency, HCW is the tensile force in the contact wire, HMW is the 

tensile force in the messenger wire, m’CW is the mass per meter in the contact wire and m’MW 

is the mass per meter in the messenger wire.[3] 

2.10.2 The wave propagation speed 

The wave propagation speed, c, is the speed of a transversal impulse i.e. the local vertical 

movement caused by the pantograph moving[3]. If the train speed is so high that it catches up 

with the impulse the wire will get an infinite large vertical displacement[24]. It is computed as 

shown in formula (2.6). 

 0  , m/s
'

CW

H
c

m




    (2.6) 

Where σ is the longitudinal stress (Pa), γ is the specific mass (kg/m
3
), H0 is the longitudinal 

force (N) and m’ is the mass per meter (N/m) for the contact wire[3]. For the studied section 

the longitudinal force is 10 kN and the mass per meter is 0.89 kg/m[6]. This gives the studied 

system a wave propagation speed of 106 m/s or 382 km/h. 

2.10.3 The reflection coefficient 

The reflection coefficient, r, is defined in formula (2.7)[3]. 

 
'

1/ 1
'

CW CW

MW MW

H m
r

H m

 
   

 
  (2.7) 

Where HCW is the longitudinal force (N) in the contact wire, HMW is the longitudinal force (N) 

in the messenger wire, m’CW is the mass per meter (N/m) for the contact wire and m’MW is the 
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mass per meter (N/m) for the messenger wire[3]. The reflection coefficient for this system is 

thus 0.53. 

2.10.4 The Doppler factor 

The Doppler factor, α, is a factor which approaches zero as the velocity of the train 

approaches the wave propagation speed. It is defined in formula(2.8).[3] 

    /CW CWc v c v      (2.8) 

For the studied system this gives a Doppler factor of 0.69 at 70 km/h, 0.62 at 90 km/h, 0.49 at 

130 km/h and 0.31 at 200 km/h. 

2.10.5 The amplification coefficient 

The amplification coefficient, γA, shows whether the change in the contact force will be less 

or more than the previous time the pantograph hit a reflecting transversal wave as the 

pantograph approaches the source of the reflection, e.g. a dropper. It is computed as in 

formula(2.9).[3] 

 /A r    (2.9) 

For the studied system this gives an amplification coefficient of 0.77 at 70 km/h, 0.85 at 90 

km/h, 1.08 at 130 km/h and 1.71 at 200 km/h. 

2.10.6 The limiting speed 

The limiting speed is given as the speed for which the amplification coefficient is equal to 1 

and is computed as in formula (2.10).[3] 

 
 
 

1
.

1
CW

r
v c

r






  (2.10) 

The limiting speed for the studied system is then 117 km/h. 

2.10.7 The non-uniformity 

The degree of non-uniformity, u, can be an evaluation of the suitability of the overhead 

contact line for a specific application. This can be calculated as formula (2.11) shows[3]. 

 
 
 

max min

max min

100%
e e

u
e e


 


  (2.11) 

Here emax and emin are the maximum and the minimum elasticity in a span[3]. 
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2.10.8 Damping 

The damping which occurs in the system is very important, but is difficult to measure and to 

model. It describes all energy-dissipating mechanisms in the system[28]. The amount of 

damping shows how fast the oscillations in the system reduces, and thus whether there will be 

a problem to use more than one pantograph on the same train[29].  

Increasing the damping in the system, by inserting rubber damping hangers or friction 

damping hangers, has been tried as shown in Figure 24. The introduction of these components 

have been found by Aboshi, et al. [30] to reduce arcing and wear on the contact wire.  

 

 

 

 

  

 

Figure 24 Friction damping hanger and rubber damping hanger[30] 
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3 Numerical modelling 
The numerical model is primarily based on information which The Norwegian National Rail 

Administration and Schunk Nordiska have provided, see Appendix C-1 to C-4, and [6]. It is a 

model of “as planned”, not “as built”. Additional information has been taken from articles 

with similar problems. The finite element method program used to make the numerical model 

was Abaqus 6.12. 

The required information for establishing this model is: 

 The catenary geometry 

 Length of each span 

 Length and position of each dropper 

 The zigzag of the catenary 

 The height from track to contact wire 

 The radius of the curves, and how long they are 

 The length of a transition section 

 With or without stitch wires 

 Type of connections between wires 

 The masts 

 Position relative to the track 

 Stiffness of the components 

 Type of connection to the wires 

 The pantograph 

 The length and width of the bow strips 

 A numerical model of the pantograph 

 Damping values 

 Stiffness values 

 Masses 

 Friction 

 Static and aerodynamic uplift forces 

 The mounting sequence  

The camber, the height difference between the inner and outer track, which is present in 

curvature, has not been taken into account in this work. But it should be included in future 

work. 

The model has been in constant development from the start of this work to its end. Changes 

have been made to improve the model, based on results of the analyses carried out. 
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The first model was a model of only one straight span, see Figure 25. This was done to get 

hold of how to model the different properties of the system. There were applied analyses to 

this model which has not been updated to match the properties of the final model. 

 

 

The model of one span was then developed to model a whole section of spans in two 

dimensions. Analyses done on the whole section introduced new problems which had to be 

fixed, and the development of the model resulted in the final numerical model of the whole 

section in three dimensions. 

  

 

Figure 25 Numerical model of one catenary system span. 
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3.1 The geometry of the railroad 
The geometry of the system has been found by first making a simplified, but correct, global 

geometry of the track in Microsoft Excel. The global coordinates of the track, found in Excel, 

were then used to find the global coordinates of the positions of the masts and then the 

catenary system. A Matlab code was then used to obtain the track geometry with the preferred 

accuracy. Another Matlab code was made to export the global coordinates of the masts and 

the catenary system into .csv-files so it could easily be included in the numerical model. The 

steps for making this geometry in Abaqus are as follows;  

i. Choose the part one wishes to model 

ii. Choose “Create Wire: Point to point” 

iii. For both the messenger wire and the contact wire choose “Polyline and Chained 

wires”, for droppers choose “Polyline and disjoint wires” and for the track choose 

“Spline and Chained wires”. 

iv. Right click on the first cell and click on “Read from file” and find the correct .csv-file. 

The Matlab code is included in Appendix D, and the Excel file is included on the 

DVD. In Figure 26 the geometry of the numerical model is displayed with the y-axis 

scaled with a factor of five. 

 

Figure 26 The obtained geometry for “Wire 152” in the numerical model in Abaqus; y-axis is 

scaled with a factor of five 



Numerical modelling 

26 

 

For this particular railway section studied the geometry for each span was very different, and 

it is therefore difficult to make a generalized script to describe it. This is why Matlab was not 

used from the beginning. It is possibly easier to make a generalized Matlab script for newer 

systems, where the geometry is more alike.  This should be considered in future work to 

reduce the time building a model. 

In the first attempts to make a numerical model the geometry was not well defined. This was 

because the exact geometry from The Norwegian National Rail Administration had not yet 

been received. The geometry of the catenary system was then modelled in 2D, and then 

stretched out in 3D to obtain the zigzag. The droppers where modelled with the same length, 

and then stretched to the desired length by compressing them with the application of 

temperature. The stresses from this compression where removed after the right length was 

obtained. This worked for the given situation, but it was easier to model everything directly in 

three dimensions when the required information was available, and the duration of the 

analyses was reduced. 

The numerical model is made with the x-z-plane as the horizontal plane where the x-axis 

starts tangential to the train movement, and the z-axis perpendicular to the train movement. 

The y-axis is the height with zero value at the top of the railway track.  

Displacement in x- y- and z-direction will respectively be called U1, U2 and U3, and rotations 

about the x-, y-, and z-axis will respectively be called UR1, UR2 and UR3. 

3.2 The catenary system 
All the wire components, contact wire, messenger wire and droppers, are modelled as 3D 

deformable wires, and they are discretized by Timoshenko beam elements with hybrid 

formulation. 

In theory it is likely that it would be sufficient to use Euler-Bernoulli beam elements instead 

of Timoshenko elements, since the main difference is the inclusion of shear deformations[31], 

and this is of a small magnitude in these wires. But in Abaqus all the analyses failed to 

converge when Euler-Bernoulli elements where used. Timoshenko elements where 

consequently used in all the wire components. Euler-Bernoulli beam elements is used in the 

literature[32], so it may be desirable to be able to use it in future work. 

Hybrid formulation was used because it is designed to handle very slender situations, like 

wires, where the axial stiffness is very large compared to the bending stiffness of the beam. 

This formulation treats the axial force as an independent unknown to reduce the chance of 

errors and thus obtain convergence easier[33]. 

The mid-point anchor is modelled as a point that is fastened against all movement, except in 

the vertical direction. This is too rigid compared to the mid-point anchors real contributions. 

This entity should be modelled as two wires which are both fastened to the contact wire, and 

with the other end fastened to a pole each. 

The reason the wires is not modelled as either shells or solids is that it would have introduced 

an extreme amount of degree of freedoms, which is undesirable for the analysis duration. 
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3.2.1 The contact wire 

The cross-section of the contact wire is modelled as a generalized cross-section with profile 

properties obtained from the analysis program CrossX; see Appendix E-1 and E-2. The 

primary reason for using a generalized cross-section is that the geometry of the cross section 

was difficult or impossible to draw directly into Abaqus. Also it made it easier to introduce a 

worn cross-section afterwards.  

The top surface of the collector strip was used as the master surface and the circumferential 

surface of the wire was used as the slave surface. The length of each contact wire element had 

to be very small compared to the total length in order to describe the contact with the 

pantograph sufficiently. If the length of each element were too large the master surface would 

go through the slave surface. Thus the element length had to be smaller than the width of the 

collector strip, which is four centimetres, to prevent this error. It was first tried with an 

element length of three centimetres, which described the system accurately for most cases, but 

in some of the analyses an error occurred which was believed to originate from a too long 

element length. An element length of two centimetres was consequently tried. This made all e 

analyses terminate. The reason for this termination has not been adequately investigated, but 

due to experiences from other models one solution to fix this may be to enlarge the radius on 

the sides of the collector strips cross section, which is described later. The element length 

finally used in the analyses was then three centimetres. 

3.2.2 The Messenger wire 

The messenger wire is modelled with a solid circular cross section and the material properties 

described in the theory. 

3.2.3 Droppers 

The droppers were also modelled with beam elements to be able to describe the fact that it 

bends under compression. In addition to this it is important that the droppers have some kind 

of geometrical error to be able to bend before reaching buckling. This is included in this 

model as small errors in geometry that occurs at pre-tensioning. The tension in the messenger 

wire and the contact wire drags slightly differently, so the droppers will be slightly diagonal 

from the messenger wire to the contact wire, and this will be the geometrical error which is 

necessary. 

The connections between the droppers, and the contact wire and the messenger wire are in 

practice free to rotate in any directions, but because this causes singularity in the model the 

rotational degree of freedoms had to be tied. Thus both the translational and the rotational 

degrees of freedom were tied in this connection. The masses of these connectors between the 

droppers and the CW and MW are not included in this work, but when they are included they 

should be included as point masses to include the effects of inertia forces. 

At one time it was tried to model this connection with the connector type called “JOIN” in 

Abaqus. That appeared in the analyses to be too rigid, and caused many errors, and eventually 

termination of the job.  
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3.3 The cantilever 

3.3.1 Registration arms 

The registration arms are modelled as springs that follow the line of action; this is in order to 

enable effects in both horizontal and vertical directions to be included. 

Their purpose is to hold the contact wire, solely to obtain the right geometry in the horizontal 

plane, not carry any significant weight in the vertical plane. Thus they do not have much 

stiffness and are consequently modelled as springs with little stiffness. 

The springs are fastened to the rigid part of the mast with a connection fastened against all 

translational and rotational displacement. At the connection point with the contact wire they 

are fastened against all rotational displacement and displacement in U3-direction.  

For later work it is desirable to model these components as bars that are free to rotate at their 

connection to the rigid mast. This would enable the model to describe whether the registration 

arm pushes the contact wire or pulls at it, which is necessary to include especially when the 

horizontal movement is to be analysed.  

3.3.2 Brackets 

In this work the brackets are modelled as rigid points, this because the movement of that point 

can be neglected. The messenger wire is fastened to the brackets so it is free to travel along its 

own length axis and to rotate about its normal directions. The other degrees of freedom are 

fixed. 

This modelling of the brackets is to stiff compared to the actual stiffness. The error is not big, 

but it is desirable at a later point to model the whole mast as a truss system with the actual 

bars that are in use. 
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3.4 Pantograph 
In this study the pantograph has been modelled in two slightly different ways shown in Figure 

27. Both models are modelled as a mass-spring-damper system, and they both describe the 

pantograph called WBL 88 which is in use in the studied railway section.  

 

 

M1 describes the two pan heads and the second mass, M2, the mass of the pantograph arm. 

Both of these components are modelled as solids which later is made rigid by a constraint in 

Abaqus called “Rigid Body”. 

The springs, K1 and K2, and dampers, C1 and C2, describe measured values of stiffness and 

damping between the respective components introduced. In the model received from Schunk 

Nordiska the damping between the arm and the main frame were modelled as C2 when the 

 

Figure 27 The upper left model is a numerical model of the pantograph WBL 88, the model to 

the upper right is a simplified version of the same model. They are numerical models of the 

figure at the bottom. M1 and M2 is masses, X1 is the distance between the two collector strips, 

K1 is a spring constant, C1 and C2 is damping constants, U1 is a friction constant, F1 is a static 

uplift force and Fa2 is an aerodynamic uplift force, values for these parameters is displayed in 

Table 4. 



Numerical modelling 

30 

 

displacement were going down, and zero when the displacement were going up, this is not 

included in this work, but should be modelled in future work. The model received from 

Schunk Nordiska, with numerical values is displayed in Appendix B. 

Forces that are presented in this model are the static uplift, F1, which is introduced to ensure 

contact and the aerodynamic force, Fa2, which gives an extra lifting force when the speed 

increases. The aerodynamic force is in this work modelled as a constant force of 5N, which is 

the tested value at a wind speed of 100 km/h. 

The dry friction in the arms joint, U1, is modelled as connector force which is assigned to a 

connector between the main frame and the arm. 

The numerical values for the properties included in the model are shown in Table 3. 

 

 

  

Parameter Value 

2*M1, mass of the pantograph 4*2,3 kg 

X1, distance between collector strips 595 mm 

C1, the damping between one collector strip and the arm 10 Ns/m 

K1, the stiffness between one collector strip and the arm 3100 N/m 

M2, mass of the arm 16,5 kg 

U1, the friction force in the arm 17 N 

F1, the static uplift force 55 N 

Fa2, the aerodynamic uplift force 5 N (at 100 km/h) 

C2, the damping between the arm and the main frame 63,5 Ns/m 

Table 3 Numerical values for the used pantograph (Appendix B) 
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The pan head is modelled as a solid beam with the cross section displayed in Figure 28. As 

presented in the theory, the width of each collector strip is 4 cm. However, in order to avoid 

problems in Abaqus regarding the contact between the contact wire and the collector strip, the 

width is modelled as 6 cm wide curves on the sides with a radius of one centimetre. This 

solution may be the cause of the problem described in the chapter about the contact wire. 

Therefore an attempt to model the curves with larger radius should be tried. The part is seeded 

with an approximate size of five millimetres. The mesh is shown in Figure 29. 

 

 

 

Figure 28 The cross section of the pan head obtained from the Abaqus model. 

 

Figure 29 The mesh of the collector strip used in Abaqus. 
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This is a sufficient model to do quite accurate analyses, but to describe the pantograph better 

the pan head and the connection between the pan head and the upper part of the arm should be 

made more complicated. The pan head should be modelled with two bow strips that both have 

a spring and a damper in each end. This to include the pan heads ability to tilt to both sides. It 

is also desirable to model the pan head in this way because the measurements done along the 

track displays four forces, one for each end point on the collection strips. This is shown in 

Figure 30. 

The aerodynamic forces that act on the pantograph can be significant in many situations. 

Pombo, et al. [34] show that there is a tendency that when wind loads are included the contact 

forces increases and the pan head is raised. They also observe that the variation of the contact 

force is increased when including wind loads. These loads are included as one load in this 

study, and it is modelled as a constant force. This is the usual way to introduce the force[35]. 

One should still aim to include the force as non-linear in future work to improve the models 

ability to predict what happens under different wind conditions and varying velocities. 

The forces and displacements on the pantograph from the train which were presented in the 

theory are not taken into account in this model.  

  

 

Figure 30 The positions where the force measurements on the pantograph are done are shown as 

F1, F2, F3 and F4.  The figure is of the pantograph seen from above.[12] 
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3.5 Damping of catenary systems 
The catenary system is a structural system with very light damping thus the damping 

characterization is important[26]. The damping of the catenary system is included as Rayleigh 

damping [19, 28, 31]. It is usual to include the damping as proportional damping, such as 

Rayleigh damping, in the literature [26, 32, 36-42]. The Rayleigh damping matrix defines the 

global damping matrix as a linear combination of the mass matrix and the stiffness matrix as 

shown in formula (3.1)[28]. 

      C M K       (3.1) 

To obtain values for α, the mass proportional damping coefficient, and β, the stiffness 

proportional damping coefficient, the natural frequencies of the global system had to be 

identified. Then the first natural frequency and a frequency a little lower than the maximum 

frequency of interest were used to computed them as shown in formula (3.2)[28]. 

 1

1 1

2 2
    n

n n


   

   
 

 
  (3.2) 

ζ is the damping ratio, ω1 
is the first natural frequency (rad/s) and ωn is the higher frequency 

(rad/s). The motivation for choosing ωn as close to the highest frequency of interest and not 

the highest is that this gives a more correct damping throughout the whole range of 

frequencies[28]. 

The values used for α, β and ζ in the literature differ. Damping values used in the literature is 

displayed in Table 4. 

Yong Hyeon Cho [46] has done research based on real data where the damping ratios were 

found to be between 0.01 and 0.04. 

Based on this information the damping ratio used in this study is 0.01 in the contact wire and 

the droppers, and 0.05 in the messenger wire. In future work whether the damping is non-

linear should also be investigated. Wu and Brennan [23] show that the damping ratio is not 

constant. It grows as the velocity increases. This is because the nominal natural frequency 

Article αCW αMW βCW βMW ζCW ζMW 

Pombo and Ambrósio [32] 0.027 0.027 0 0 - - 

Wu and Brennan [23] - - - - 0.01 0.01 

Yong Hyeon, et al. [15] - - - - 0.01 0.05 

Cho [1] - - -  0.01 0.05 

J. Ambrósio [26] 0.027 0.027 0 0 - - 

Poetsch, et al. [29] - - - - 0.01 0.01 

Jong-Hwi, et al. [41] 0.01 0.05 0.0001 0.0001 - - 

Zhang, et al. [43] - - - - 0.01 0.01 

Sung Pil, et al. [44] - - - - 0.01 0.05 

Y.H and T.C [45]     0.02 0.02 

Table 4 Damping values used in the literature. α is the mass proportional damping coefficient, β is 

the stiffness proportional damping coefficient and ζ is the damping ratio. 
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decreases when the train speed increases. The non-linear damping will have a positive effect 

on the system’s performance. 

3.6 The pre-tensioning force 
The pre-tensioning force is introduced in the model as pre-scribed temperature. This was done 

by calculating the necessary temperature in both the contact wire and the messenger wire to 

obtain respectively 10 kN and 5 kN. The temperatures calculated are specific for the given 

materials and cross sectional area, as one can see in the formula used, formula (3.3). 

 
F

T
EA

    (3.3) 

Where ΔT is the necessary pre-scribed temperature, F is the desired tension force, E is 

Young’s modulus, A is the cross sectional area and α is the thermal expansion coefficient. 

This formulation requires that the temperature have to be calculated again if the cross-

sectional area is reduced due to wear on the wire. It would be better to introduce the tensional 

forces in the same way they are introduced at site with weights at the end of each section. It 

should be aimed to include this in future work. 

  



Numerical modelling 

35 

 

3.7 The contact force 
In this work the contact between the contact wire and the pantograph is modelled with the 

hard contact that allows separation in the normal direction and with no friction in the 

tangential direction. It is crucial that the model can describe situations where there is no 

contact, thus the inclusion of separation in the normal direction. It is modelled in Abaqus with 

the following steps; 

i. Make an “Interaction Property” 

ii. Add tangential behaviour with the formulation “Frictionless” 

iii. Add normal behaviour as “Hard” Contact and check off “Allow separation after 

contact” 

iv. Make an “surface-to-surface contact” interaction 

v. Choose the collector strip(s) as the Master surface, and the contact wire as the Slave 

surface 

vi. Change the properties to match those in Figure 31. 

 

Figure 31 The interaction properties of the contact between the pan head and the contact wire 
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This formulation of the contact between the pan head and the contact wire is too simple 

considering its complexity. One thing that has to be included in future work is the friction 

force that emerges when the pan head slides under the wire. This friction force is especially 

important and significant in sections with curvatures of small radii[8]. In Ding, et al. [47] the 

friction coefficient of carbon rubbing against copper is of a value between 0.09 and 0.14  

dependent on the temperature and the arc discharge. It is of great importance how this friction 

is included in Abaqus to be able to describe the highly non-linear properties of it. 

Another which can be done with the formulation is that the normal behaviour could be 

defined in a function of the relative penetration between the two parts. This should be 

included by penalty formulation to allow loss of contact, which a kinematic constraint will not 

do[26]. Research should also be done on how the contact can be modelled differently to 

decrease the analysis duration. A proposition is to find out how one can model the wire as the 

master surface. If the wire could be made as the master surface one could possibly enlarge the 

length of each wire element, and this would reduce the duration of the analysis. 

There have been tried to model the normal interaction with a spring stiffness in Abaqus/CAE, 

but this did not allow separation. It was therefore not used. This spring stiffness should be 

included in future work because it is included in EN50318:2002’s reference model[25]. But it 

is essential that it still allows separation between the contact wire and the collector strip. 
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3.8 The numerical steps of the analyses 

3.8.1 The first step 

In the first step a little portion of the pre-tensioning force is introduced. This in order to obtain 

the necessary amount of stiffness required by the numerical analysis, before loads such as 

gravity can be introduced. The reasons for not introducing the whole magnitude of pre-tension 

at once is that this lifts the contact wire so high that numerical errors are introduced. And if 

gravity had been included without the pre-tensioning it is likely that the system would not 

have found equilibrium because of the very low stiffness in the wires. There was tried out in 

analyses how much tension to introduce in this first step to avoid numerical errors. The per 

cent of the total pre-tension introduced in this step were set at 20% for the contact wire and 

28,5% for the messenger wire. 

3.8.2 The second step 

In the second step the rest of the pre-tension and the gravity of the wires were introduced 

simultaneously. The model is then as it would be without a train passing by. 

After this the steps of the analyses differ. First the steps for studying the elasticity are 

presented, and then secondly the method for finding the natural frequencies will be shown. 

Finally, the method for doing the dynamic analyses with the moving train will be presented. 

Both the elasticity analyses and the frequency analyses are done without the train being 

present. 

3.8.3 Elasticity analyses 

The third step is to drag the contact wire up with a force of 150 N in fifteen selected points in 

a span, one at the time, and then measure the uplift in millimetres relatively to the position 

with pre-sag. The fifteen points are the two points at the registration arms, at each of the six 

droppers and in the middle between those eight points. The positions of these points along a 

span are shown in Figure 32. 

 

 

3.8.4 Frequency analyses 

In these analyses there are two more steps. The third step computes the natural frequencies 

and the fourth computes the complex eigenfrequencies and the damping ratio. 

First the analysis has to run only a frequency analysis to obtain the frequencies necessary for 

calculating the Rayleigh damping coefficients. Then the analysis can run again including the 

step with the complex frequency analysis. After running some analyses the number of 

interesting frequencies was set to be 2000. 

 

Figure 32 The points where the force is applied in the elasticity analyses. The red dots are the 

position, the red arrows are the forces and the blue lines are the wires; the top one is the 

messenger wire, the bottom one is the contact wire and the vertical lines are the droppers. 
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3.8.5 The dynamic analyses 

3.8.5.1 The third step 

The third step consists of applying the static uplift force and the mean aerodynamic force on 

the pantograph. The aerodynamic force is included in this step because in the next step the 

train has constant velocity from time step one and the force will then need to be introduced 

before the train starts moving. 

3.8.5.2 The fourth step 

The fourth step is when the train moves. The method used for moving the train (pantograph) 

at the right speed along the right path in the numerical model were to use pre-scribed 

displacements. In this model the degree of freedoms (DOFs) needed to be pre-scribed were 

U1, U3 and UR2, but the method is applicable to all six degrees of freedom. To know the 

exact displacements per time step the Matlab code made for the description of the track was 

used. The Matlab script was adjusted to write out an input file, .inp, which describes the 

amplitude of displacements/rotations for each time step in Abaqus. This input file was 

included into the main input file in Abaqus by the use of the keyword *INCLUDE as shown 

in Figure 34. The displacement of each DOF were included separately, and the magnitude of 

the displacement were describe by using the keyword *AMP. Figure 33 shows parts of the 

additional input file, which describes the amplitude of each displacement or rotation. In the 

same input file one can see how the amplitudes are assigned their respective 

displacement/rotation with the use of “*Boundary”. 
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Figure 33 Parts of the input file which is included in the main input files 

 

Figure 34 The keyword which include the extra input file into the main input files 
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4 Measuring methods 

4.1 Geometry 
Selected geometry properties of some of the spans along the studied railway section have 

been measured with varying accuracy. Three geometry properties; the stagger, contact wire 

height and the elevation of the outer rail, where measured in the three spans between pole 

1276 and 1279. In addition the distances between droppers in span between pole 1277 and 

pole 1278 were measured. 

The stagger was measured as the horizontal distance from the middle of the track to where the 

contact wire was at each position measured. The contact wire height was measured as the 

height from the top of the inner rail to the bottom of the contact wire. The camber (the 

elevation of the outer rail) was measured as the height difference between the inner rail and 

the outer rail. This was measured with the use of a laser, a bubble level and an inch rule the 

way Figure 35 displays it. The laser could be moved from side to side so the laser beam could 

hit the contact wire. 

The distance between the droppers were also measured with the laser, and were measured 

standing on the top of a train. 

  

 

Figure 35 The method for measuring different geometrical values on the catenary system  
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4.2 Tension in the contact wire 
The tension in the contact wire was measured with a tension measuring device which is 

shown in Figure 36. The device used was CableBull[48]. To measure the force one has to first 

measure the diameter of the wire, and adjust the device to this diameter. Then the device is 

mounted on the contact wire as shown in Figure 36, and the axial tension force is measured. 

 

 

4.3 Elasticity 
The elasticity was measured on sight by dragging the contact wire up with a measured force, 

and then the displacement of that point where measured for that force. The elasticity was then 

calculated as the displacement (mm) per Newton (N). The force was introduced by one person 

lifting the wire with a dynamometer, and then reading of the force on the dynamometer and 

the displacement of that point simultaneously. The margin of error for this measurement 

method is large, but it is fast and easy to obtain results. The dynamometer used is shown in 

Figure 37.  

 

Figure 36 Tension test at site with the device CableBull[48]. 
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The elasticity was also measured in the numerical model, by pushing the contact wire up with 

a defined force at fifteen points in a selected span; at each registration arm, each dropper and 

between each dropper. The displacement were found the respectively points and the elasticity 

was found. 

4.4 Modal parameter identification 
One measurement series has been done in order to try to identify the modal parameters of the 

catenary system. This has been done using a modal hammer, Figure 38, and an accelerometer, 

Figure 39. The modal hammer is designed to excite and measure impact forces on medium to 

very large structures[50]. And the accelerometer yields simultaneously dynamic acceleration 

and force measurements from exactly the same location on the structure[51]. Both the 

accelerometer and the modal hammer were wired to a power supply/signal conditioner, see 

Figure 40 and then wired to a NI dynamic module which was standing in a NI chassis as 

shown in Figure 41. The dynamic module was then connected to a PC by an USB-port. The 

program used to read these measurements were LabView with the extension called “Record 

Impact Testing FRF data.vi”[52]. 

 

Figure 37 Dynamometer, Pesola PHS040[49] 

 

Figure 38 Modal hammer, Brül and Kjær type 8208[51] 
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Figure 39 Accelerometer, Kistler type 8770A50[50] 

 

Figure 40 Signal conditioner/power supply, Kistler Type 5134[52] 

 

Figure 41 NI chassis type cDAQ-9174 with the NI dynamic mounted[53] 
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The whole system described above was set up on the roof of a railway wagon to be able to do 

the measurements at that height, 5,6 metres above ground. The accelerometer was fastened to 

one additional dropper clamp, and this was then fastened to the contact wire between to 

existing droppers, see Figure 42. The contact wire was then hit with the modal hammer for 

each meter away from the accelerometer and up to twenty one meters away. After the 

measurements were done, the analysis of them should be done in LabView “Modal Parameter 

Identification.vi”[52]. The programs ability is to do a force response frequency analysis to 

obtain the natural frequencies and their modal damping ratio. The theory for force-response 

frequency analyses can be found in Chopra [28]. 

 

 

 

 

 

 

 

 

 

Figure 42 The fastening of the accelerometer the contact wire. The accelerometer is the grey 

thing on the top of the dropper clamp. The white cable sends the measured information to the 

computer. 
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5 Results and discussion 
In this chapter the results will be presented and discussed one by one.  

In all the analyses with reduced cross sectional area, the pre-scribed temperatures which 

introduce the pre-tension were not adjusted. Thus the tension forces in these analyses are too 

low. 

5.1 Natural frequencies and modes 
Three natural frequency analyses have been performed in this work. They will be presented 

after a short presentation of theoretical values for the first natural frequencies of one span. 

After the presentation of the analyses the results from these will be presented and discussed. 

The first natural frequency of the system, computed as presented in the theory, should for a 

span of 60 metres be; 

 1
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And for a span length of 40 metres be; 
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In the theory the frequency range of interest was presented as between 0 and 20 Hz.  

5.1.1 The numerical analyses 

5.1.1.1 Analysis 15 

Analysis 15 found natural frequencies of “Wire 152” when it was modelled as a straight 

section and without wear on the contact wire. This analysis has taken into account 300 

frequencies in the range between 0 Hz and 4 Hz. Analysis 15 has not been updated since it 

first was developed, so it does not have the exactly same properties as the other analyses. 

Differences compared to the other analyses may occur due to this. In future work this analysis 

should be updated to have the same properties as the other analyses, and to include 

frequencies between 0 Hz and 20 Hz. 

5.1.1.2 Analysis 26 

Analysis 26 computed the natural frequencies of “Wire 152” when it was with curvature and 

without wear on the contact wire. The analysis was designed to take out the first 2000 

frequencies, which were found to be in the range 0 Hz to 18 Hz. 

5.1.1.3 Analysis 33 

Analysis 33 calculated the natural frequencies of “Wire 152” when it was modelled with 

curvature and with 20% wear on the contact wire. This analysis has also been designed to take 

out 2000 frequencies, and these frequencies were between 0 Hz and 18 Hz. 
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5.1.2 Results and discussion of the natural frequencies 

The frequencies found in the three analyses, Analysis 15, Analysis 26 and Analysis 33, are 

presented respectively in Figure 43, Figure 44 and Figure 45. One can see from these figures 

that there are extremely many natural frequencies present in the catenary section. The reason 

for this high number of frequencies in the desired interval is, as mentioned previously, that 

nearly no span has the same geometry and axial tension which results in many frequencies in 

the same area of interest. The frequencies are almost continuous in the whole range of 

frequencies computed. 

 

 

 

Figure 43 The natural frequencies from 0 Hz to around 4 Hz of the whole section found in 

Analysis 15. This is the first 300 natural frequencies of the model. 

 

Figure 44 The natural frequencies from 0 Hz to around 18 Hz of the whole section found in 

Analysis 26. This is the first 2000 natural frequencies of the model. 
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The difference in frequencies for the model with and without a worn cross section is not 

major, as seen in the histograms above. The frequencies in the analysis with a worn cross 

section are slightly lower, than for the analysis without wear. They are even lower for the 

model done on the straight section. The first natural frequencies are 0.70085 Hz for Analysis 

15, 0.74104 Hz for Analysis 26 and 0.74364 Hz for Analysis 33. This shows that the first 

natural frequency is of the same magnitude in all analyses, and that the difference between 

worn and unworn contact wire does not affect the natural frequencies much. This can also be 

shown by looking at the magnitude of the last frequency computed which is 18.138 Hz for 

Analysis 26 and 17.761 Hz for Analysis 33. 

One can clearly see by comparing the histograms that the number of frequencies found when 

“Wire 152” was modelled as a straight section is considerably less than when including 

curvature. This confirms that differences in geometry and tension due to curvature results in a 

higher number of modes in the same frequency range. 

To find the range of natural frequencies which are of importance the corresponding 

generalized mass ratio for each frequency in Analysis 26 and 33 is computed. They are 

respectively shown in Figure 46 and Figure 47. Analysis 15 is not included because there are 

too few frequencies included.  

By looking at the generalized mass one can determine the resistance the catenary system has 

against an applied acceleration with a given frequency. A relatively low generalized mass 

means that at the given frequency the impact on the catenary system will be low[3]. 

 

Figure 45 The natural frequencies from 0 Hz to around 18 Hz of the whole section found in 

Analysis 33. This is the first 2000 natural frequencies of the model. 



Results and discussion 

48 

 

 

From the figures presented above one can see that the frequencies below 6 Hz are the 

frequencies with the highest corresponding masses. And thus the catenary system will 

primarily be affected by these frequencies. This is the same result which Kiessling [3] has 

presented. It can also be seen that the number of frequencies above 12 Hz considerably 

affecting the system are very low. The frequency range of interest looks approximately the 

same for both Analysis 26 and 33. 

 

Figure 46 The generalized mass ratio plotted against its natural frequency from Analysis 26. The 

ratio is computed as the generalized mass for each mode divided by the maximum value for the 

generalized mass. The cross section of the contact wire is unworn. 

 

Figure 47 The generalized mass ratio plotted against its natural frequency from Analysis 33. The 

ratio is computed as the generalized mass for each mode divided by the maximum value for the 

generalized mass. The cross section of the contact wire is worn by 20%. 
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The frequencies of the most interesting magnitude, shown above to be between 0 Hz and 6 

Hz, are displayed for Analysis 15, 26 and 33 in respectively Figure 48, Figure 49 and Figure 

50.  

 

 

 

Figure 48 The natural frequencies between 0 Hz and approximately 4 Hz from Analysis 15.  
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Figure 49 The natural frequencies between 0 Hz and approximately 6 Hz from Analysis 26. 

 

Figure 50 The natural frequencies between 0 Hz and approximately 6 Hz from Analysis 33. 
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5.1.2.1 Analysis 15 

From Figure 48 one can clearly see that there are accumulations of eigenmodes around some 

frequencies in Analysis 15. The first clear accumulation is in the range between 0.70 Hz and 

0.77 Hz. These frequencies are the first natural frequencies for 60 metres long spans in the 

contact wire. The next accumulation is between 1.10 Hz and 1.15 Hz, and these are the first 

natural frequencies of the contact wire were the spans are 40 metres. 

5.1.2.2 Analysis 26 

From Figure 49 one can see that there are accumulations of modes around some frequencies 

in Analysis 26, but it is not as clear as for Analysis 15. This is the effect of including 

curvature in the analysis, which makes the geometry of every span different. The first 

accumulation is around 0.87 Hz, the second around 1.32 Hz, the third around 1.72 Hz and the 

fourth around 2.0 Hz. 

The frequencies in the area around 0.87 Hz is found to excite the spans with a length of 60 

metres both in and out of plane. In Figure 51 the corresponding mode to the frequency of 0.87 

Hz is shown. One can clearly see in this figure that the mode shape is a half sine wave. This is 

also found to be the case for the frequencies around 0.87 Hz. The mode shape for the 

frequencies around 1.32 Hz is also found to be shaped as a half sine wave, but it excites the 

spans with a length of 40 metres. The frequencies between around 0.87 Hz and 1.32 Hz can 

be looked at as fundamental frequencies of the different spans. 

The next accumulation of frequencies around 1.72 Hz is found to give modes shaped like a 

full sine wave in the spans of 60 metres. The corresponding mode shape for the natural 

frequency of 1.75 Hz is shown in Figure 52. The frequencies around 2.0 Hz have also 

corresponding modes shaped like a sine wave, but they excites the spans of 40 metres.  

It is found when regarding the mode shapes in Abaqus that the first natural frequencies of the 

droppers are around 6.6 Hz, and thus outside the most interesting range of frequencies. 

The eigenmode which have the highest generalized mass is shown in Figure 53. One can 

clearly see that the impact on the system at its natural frequency will be large since it excites 

almost the whole catenary section. 

 

 

 

Figure 51 Eigenmode 15 with frequency=0.87 Hz from Analysis 26. This displays half sine waves 

of the 60 metres long spans. 
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Figure 53 The eigenmode which has the highest generalized mass in Analysis 26. This is 

eigenmode 212 and the frequency is 3.23 Hz.  

 

5.1.2.3 Analysis 33 

It is clear from Figure 49 and Figure 50 that the natural frequencies found in Analysis 26 and 

33 are approximately the same. The mode shapes is also found to be similar for the first, 

second, third and fourth area of frequency accumulation in both analyses. The results from 

Analysis 33 will thus only be presented in Table 5. 

The small difference in the natural frequencies of the model with and without a worn contact 

wire indicates that it is difficult to use frequency analyses to measure the magnitude of wear. 

It should be noted that with the correct axial tension force in the worn contact wire the result 

would have been slightly different. Since the tension force is too low it is likely that the 

frequencies are too low as well. This is due to a lower geometrical stiffness than with the 

correct tension force. 

 

Figure 52 Eigenmode 95 with frequency=1.75 Hz from Analysis 26. This displays sine wave 

modes of the 60 metres long spans in the model. 

Natural Frequencies Frequency (Hz) 

First accumulation of frequencies 0.85 

Second accumulation of frequencies 1.29 

Third accumulation of frequencies 1.69 

Fourth accumulation of frequencies 1.92 

The frequency with the highest generalized mass 3.26 

Table 5 Frequency areas with accumulation of modes in Analysis 33. 
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5.2 Damping 
The damping included in the analyses is, as mentioned earlier, Rayleigh damping. Two plots 

of the effective damping ratios for each natural frequency are obtained from Analysis 26 and 

Analysis 33, and shown respectively in Figure 54 and Figure 55, together with plots of the 

introduced Rayleigh damping, the mass proportional damping and the stiffness proportional 

damping. 

 

 

 

 

Figure 54 The effective damping ratios for each natural frequency in the whole model from 

Analysis 26. 
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Based on the figures above, it is difficult to tell if the damping which is introduced is correct 

or not. In theory the effective damping ratios, blue dots, should have followed the path of the 

Rayleigh damping function. But because one damping ratio is used for the messenger wire, 

and one for the contact wire, two Rayleigh graphs are present, red and green line. It is then 

difficult to say where the blue dots should have been. To have more control on the damping it 

is generally smarter to operate with one damping ratio for the whole model. However, based 

on these figures it is possible to tell that the damping is mostly mass-dependent. This because 

the measured effective damping ratios of the most interesting frequencies, 0-6 Hz, can be seen 

to follow the mass proportional part of the Rayleigh curve. 

In Abaqus there is a general problem with introducing the damping as Rayleigh damping 

when the contribution from the geometrical stiffness to the total stiffness matrix is 

considerable. This is because the β-value is only multiplied by the stiffness matrix without the 

geometrical stiffness contribution when used in the analyses.  

 

Figure 55 The effective damping ratios for each natural frequency in the whole model from 

Analysis 33. 
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The damping ratios used in the models was 0.01 in the contact wire and 0.05 in the messenger 

wire. It is found that it is easier to describe and have control over the actual damping if only 

one value is used. It is suggested that this damping ratio in future work should be 0.01. 

 

5.2.1 Measurements 

Frequency-response measurements were taken on site. Modal parameter identification with 

these measurements was tried. This identification was difficult since the program used did not 

allow small enough mesh to obtain accurate results. In Figure 56 the interface of the program 

is shown, and two frequencies and their corresponding damping ratios displayed. These 

results are plausible, but, as previously mentioned earlier, not very accurate. 

 

  

 

Figure 56 Interface of the modal parameter identification program with one of the 

measurements done at the site. In the figure one can see that there is found a natural frequency 

of 2.67 Hz and a corresponding damping ratio of 0.00891. 
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5.3 Elasticity 

5.3.1 Numerical analyses 

The numerical analyses of the elasticity were performed by applying a static uplift load of 150 

N to selected points along the span between pole number 1277 and 1278, and finding the 

displacement at those points. Two elasticity analyses were done, Analysis 28 and Analysis 34. 

Analysis 28 was applied when the contact wire was unworn, and Analysis 34 was applied 

when the contact wire was worn 20%. In Figure 57 one can see a screen shot of how the test 

was performed in the numerical model.  
 

 

The result from Analysis 28 gives a maximum elasticity of 0.9955 mm/N which occurs in the 

middle of the span. The mean value for the elasticity in the span was 0.6111 mm/N. In Figure 

58 the obtained elasticity for the whole span from Analysis 28 is displayed. 

Analysis 34 gives a maximum elasticity of 0.9883 mm/N and a mean value of 0.604 mm/N. 

The maximum elasticity was found in the middle of the span. The elasticity for the whole 

span found in Analysis 34 is displayed in Figure 58. 

5.3.2 Measured values 

The measured results have, as explained previously, a large margin of error due to 

imprecision in the simultaneous readings of the force and displacement. The maximum 

elasticity was found in the middle of the span, and was 0.9 mm/N. The mean value found was 

0.506 mm/N. 

 

 

Figure 57 Elasticity test in the middle of the span between pole 1877 and 1278 with the 

displacement shown and the red arrow illustrates the uplift force. The uplift force was 150 N. 

The y axis is scaled up with a factor of 20, and the deformation is scaled up by a factor of 5.  
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5.3.3 Discussion of the elasticity 

The figure clearly illustrate that the elasticity obtained in the numerical model is close to the 

reality. But it would be preferable to do the measurements at the site with higher precision to, 

reduce the margin of error and thus have better results for validation of the numerical model. 

 

  

 

Figure 58 The elasticity results from Analysis 28, Analysis 34 and the measurements at site.  
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5.4 The tension force in the contact wire and the messenger wire 
The introduced pre-tensioning force in the contact wire and the messenger wire were 

respectively 10 kN and 5 kN. In addition to this the gravity load and the geometry gives the 

total tension in the wires. In Figure 59 the tension forces in the model without wear are 

displayed. The maximum value in the contact wire was 14.8 kN. 

 

The tension force measurements obtained from the studied railway section are shown in Table 

6 together with obtained tension forces from the numerical model. 

 

 

One can see that the differences between the measured values and the values from the 

numerical values are far from the same. Due to the fact that the contact wire should have 

approximately 10 kN as the maximum tensioning force it is reasonable to believe that the 

measurements are incorrect. Despite this it is important to look at the loss of tension in the 

system. In both the measured results and the results from the model the tension decreases 

when considering spans further away from the sections end. This is correct because it is at the 

ends the tension is applied. The difference in tension is much larger in the numerical model 

than in the measured results. The reason for the large decrease of tension in the model should 

be investigated and fixed in future work. It is possibly due to accumulation of forces at the 

supports. 

 

Figure 59 Tension forces in the numerical model without wear. The legend on the left shows 

which magnitude each colour describes. 

Span 
1272/ 

1273 

1276/ 

1277 

1277/ 

1278 

1278/ 

1279 

1279/ 

1280 

1281/ 

1282 

Span from the right in Figure 59. 15 11 10 9 8 6 

Measured tension in contact wire 

(kN) 
16.5 17.2 17.2 17.3 17.3 17.7 

Measured tension in contact wire in 

per cent of maximum value 
93.2% 97.2% 97.2% 97.7% 97.7% 100.0% 

Tension in contact wire from 

numerical model (kN) 
7.1 7.3 7.5 7.8 8.3 10 

Tension in contact wire from 

numerical model in per cent of 

maximum value 

71.0% 73.0% 75.0% 78.0% 83.0% 100.0% 

Table 6 Tension forces in the contact wire, both from measurements at site and from the 

numerical model. 
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5.5 Wear 
The wear of the contact wire was measured at seven points along the studied section, six of 

them in the middle of the span, and one at a support. The results of the measurements done in 

the middle of the spans are presented in Table 7. The wear found at support 1277 was 9.75%. 

All the measured values of the wear are inside the limit of 20%. But it is interesting to see that 

the wear is larger at the support than in the middle of the span. This reflects that the contact 

force at the support is possibly larger than in mid span. 

  

Span 1272/1273 1276/1277 1277/1278 1278/1279 1279/1280 1281/1282 

Wear 4.17% 5.83% 6.25% 5.67% 6.00% 5.92% 

Table 7 The measured wear of the contact wire in six different spans. 
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5.6 Pre-sag 
The pre-sag have been measured at site, and found in the analyses both for a worn contact 

wire and an unworn contact wire. The results are displayed in Figure 60. 

It is clear from the figure above that the pre-sag obtained in the numerical model is to large in 

the examined spans. In span 1278 to 1279 the model is quite close to reality. The pre sag there 

is 26.5% too large in the model without wear, and 20% too large when wear is included. The 

respective values for span 1277 to 1278 are 266% without wear and 349% with wear. And in 

span 1276 to 1277 it is 127% and 117%. The reason for this large error may be that the 

tension force is too low in the model. However, the shape of the pre-sag is correct. 

As a result of different dropper design in the spans some of the spans in the numerical model 

have shown a pre-lift instead of a pre-sag. This effect occurs in span three, four and five from 

the south, and in span two, three and four from the north. This may be a result of differences 

in the geometry of the droppers. A small dropper height in the middle of the span will result in 

a high vertical component of the pre-tensioning force, and thus a large lift of the wire. This 

effect has not been checked at site, but should be checked in future work. 

 

Figure 60 Pre-sag of some spans in the catenary section. There is included pre-sag found from 

measurements, analyses with and without a worn contact wire. 
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5.7 Implicit dynamic analyses 
Nine different dynamic analyses have been performed on the numerical model of “Wire 152” 

in this work. These nine analyses are presented below. One should be aware that the real 

running speed of the train is normally between 70 and 90 km/h at this railway section. So the 

railway section is not designed to run at speeds of 130 km/h and 200 km/h. Most of the 

analyses were done using parallel processing which with testing were found to reduce the 

duration of each analysis. There was not a linear relation between the duration and the number 

of processors used. Thus if one only wished to reduce the total time of the analyses it would 

be more efficient to run all at the same time with one processor each. 

First each dynamic analysis will be presented, and then the results from these analyses will be 

displayed and discussed one by one. 

5.7.1.1.1 Analysis 10 

Analysis 10 was an early analysis of the section Wire 152 when it was modelled as a straight 

section. Many parameters have been changed after this version of the numerical model was 

made. The main differences are that the pantograph model was of different pantograph from 

the one used in Norway, and that it was run along a straight section. The train was driven at 

200 km/h and there was no wear on the contact wire. The maximum time step used was 0,01 

second for the dynamic part of the analysis. The results from this analysis will not be shown 

because it is difficult to compare its results with the other analyses due to big differences in 

the modelling. 

5.7.1.1.2 Analysis 27 

Analysis 27 was the only analysis which included two bow strips on the pantograph. The train 

was driven at 70 km/h and there was no wear on the contact wire. The maximum time step 

used was 0,01 second for the dynamic part of the analysis. The results of this analysis will not 

be displayed because the friction force used in the pantograph was pointed the wrong way. 

And due to time limitations it was not possible to run it again after the error was fixed. 

5.7.1.1.3 Analysis 29 

Analysis 29 was run with one bow strip on the pantograph. The train was driven at 70 km/h 

and there was no wear on the contact wire. The maximum time step used was 0,01 second for 

the dynamic part of the analysis. The duration of the analysis was approximately 70 hours 

when three logical processors were used. 

5.7.1.1.4 Analysis 30 

Analysis 30 was run with one bow strip on the pantograph. The train was driven at 70 km/h 

and the contact wire was worn 20%. The maximum time step used was 0,01 second for the 

dynamic part of the analysis. The results of this analysis will not be shown for the same 

reasons as for Analysis 27. 
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5.7.1.1.5 Analysis 31 

Analysis 31 was run with one bow strip on the pantograph. The train was driven at 90 km/h 

and there was no wear on the contact wire. The maximum time step used was 0,008 second 

for the dynamic part of the analysis. The duration of the analysis was approximately 109 

hours with one logical processor used. 

5.7.1.1.6 Analysis 32 

Analysis 32 was run with one bow strip on the pantograph. The train was driven at 130 km/h 

and there was no wear on the contact wire. The maximum time step used was 0,005 second 

for the dynamic part of the analysis. The duration of the analysis was approximately 62 hours 

with three logical processors used. 

5.7.1.1.7 Analysis 35 

Analysis 35 was run with one bow strip on the pantograph. The train was driven at 200 km/h 

and there was no wear on the contact wire. The maximum time step used was 0,003 second 

for the dynamic part of the analysis. The duration of the analysis was approximately 59 hours 

with three logical processors used. 

5.7.1.1.8 Analysis 36 

Analysis 36 was run with one bow strip on the pantograph. The train was driven at 90 km/h 

and the contact wire was worn 20%. The maximum time step used was 0,008 second for the 

dynamic part of the analysis. The duration of the analysis was approximately 57.5 hours with 

three logical processors used. 

5.7.1.1.9 Analysis 37 

Analysis 37 was run with one bow strip on the pantograph. The train was driven at 130 km/h 

and the contact wire was worn 20%. The maximum time step used was 0,005 second for the 

dynamic part of the analysis. The duration of the analysis was approximately 50 hours with 

three logical processors used. 
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5.7.2 The contact force 

The contact forces computed in the analyses are taken out by extracting all the contact forces 

which acts on the collector strip, sum them for each time step and thus obtain the total contact 

force in each time step. The results from Analysis 29, 31, 32, 35, 36 and 37 are respectively 

shown in Figure 61, Figure 62, Figure 63, Figure 64, Figure 65 and Figure 66. In these figures 

the contact forces will be displayed at the position they act along the railway track between 

Oslo and Trondheim. Thus the x-axis displays the distance from Oslo in kilometres. This is 

done to more easily compare the numerical results with the measured results which are 

displayed in the same way. 

 

 

 

 

Figure 61 The contact force along the section from Analysis 29, speed=70km/h and full cross 

section. 
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Figure 62 The contact force along the section from Analysis 31, speed=90km/h and full cross 

section. 

 

Figure 63 The contact force along the section from Analysis 32, speed=130km/h and full cross 

section 
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Figure 64 The contact force along the section from Analysis 35, speed=200km/h and full cross 

section 

 

Figure 65 The contact force along the section from Analysis 36, speed=90km/h and 20% worn 

cross section. 
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There have been measurements done of this contact force for the given catenary section. 

These measurements have been done by The Norwegian National Rail Administration with a 

train speed of 90 km/h. The results from one measurement are presented in Figure 67. 

 

Figure 67 Measurement of the contact force occurring along Wire 152 at 90 km/h. This is 

measured by The Norwegian National Rail Administration.[8] 

The statistical values obtained from the measurement above are shown in Figure 68. 

 

Figure 66 The contact force along the section from Analysis 37, speed=130km/h and 20% worn 

cross section. 
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Figure 68 The statistical analysis of the measurement of the contact force occurring at Wire 152 

at 90 km/h. This is measured by The Norwegian National Rail Administration.[8] 

 

5.7.2.1 Discussion of the contact force 

In the analyses above one can see that the contact force suddenly have high peaks, these high 

forces are not real. This is because the measured maximum value at 90 km/h were 105.98 N 

as presented in Table 8, and the maximum values are much larger than this. The high peaks 

are possibly due to a numerical error in the contact interaction formulation. And it is very 

likely that this error is the reaction of the collector strip getting hooked a little bit by the 

contact wire. Numerical it is the master surface which fastens a bit in a slave node. The effect 

of this error is that the standard deviation can be raised; this is especially seen in Analysis 29 

and 36. It also results in too high maximum values for the contact force, and contact losses 

which should not have occurred. 

 

 



Results and discussion 

68 

 

In Table 8 there is displayed a selection of important contact force values for all the numerical 

analyses. 

The mean contact force was found to be almost the same for all the analyses, with a value 

around 77.7 N. Compared to the measured value of 70.996 N, the magnitude of the numerical 

result is thus very close to the reality. 

One can clearly see that the standard deviation of the contact force is dependent on the 

velocity of the train. The only value that differs from this is the standard deviation in Analysis 

29 which is clearly erroneous due to the suddenly high and low values which occur. The 

standard deviation obtained in the numerical model is twice as high as the measured one at 90 

km/h. The main reasons for this is probably due to an over simplified contact interaction 

formulation, numerical errors, lack of wear in Analysis 31 and a too low a tension force in 

Analysis 36. 

The maximum values shown in the figures are mostly wrong because they are a reaction to 

the numerical problem of the contact formulation. But if one adjusts the values for this error, 

as done in Table 8, one can see that the maximum values are only slightly different from the 

measured one. 

The contact force along one span can be seen to vary in patterns. The pattern gets clearer as 

the train speed is increased. It is easiest to see the pattern in Figure 63. For most spans the 

highest contact force occurs just after the train have passed a support. This is because the 

contact force increases when the pan head suddenly change vertical direction and is pressed 

down by the pre-sag of the contact wire. In the rest of the span the contact force reacts on the 

stiffness of the wire. Around the droppers the stiffness is higher, and the contact force 

increases. In the same way the force decreases between the droppers, and has its minimum 

value in the middle of the span. In the spans were the pre-sag have become a pre-lift, the 

contact force is largest in the middle of the span due to the high stiffness here. It has its 

 

Analysis 

29 

Analysis 

31 

Analysis 

32 

Analysis 

35 

Analysis 

36 

Analysis 

37 

Train speed (km/h) 70 90 130 200 90 130 

Mean value of the 

contact force (N) 
77.63 77.71 77.59 78.24 79.55 77.61 

Standard deviation of 

the contact force (N) 
24.5 17 21.57 36.12 28.17 20.28 

Maximum value of 

the contact force (N) 
348.9 451.14 260.1 272.4 505.2 159.45 

Approximately 

maximum value 

without the errors 

120 130 175 272.4 100 159.45 

Minimum value of the 

contact force (N) 
0 0 0 0 0 0 

Wear of the contact 

force 
0 0 0 0 20% 20% 

Table 8 Summary of important contact force values obtained from the numerical analyses. 
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minimum value just after the support, when the pantograph stretches out again to follow the 

contact wire up. 

Another effect in the model is that the contact forces increases from the first span in the area 

with small curvature, at km 487.75, until the middle of the curve, at km 487.96.Then it 

decreases until it reaches the same contact force values at the end of the curve, at km 488.18, 

as it had before the curve. This effect can be seen in all the plots of the contact force. But this 

effect is not clear in the measurement. The reason may be that the speed of the train when the 

measurements were done was too low to show a clear effect. And that the effects of wear are 

highly important. A presented before, the wear at support was larger than the wear at mid 

span. This can reflect that the wear where the contact forces is highest have the most worn 

cross sections, and thus the biggest reduction in elasticity. The elasticity then becomes more 

even along the span, and may reduce this effect seen in the numerical analysis without wear. 

Another answer to the difference between the numerical results and the measurements is that 

the effect in the model is erroneous. 

It is crucial that the model could describe separation of the contact, as presented in the chapter 

about numerical modelling. This is equivalent to describing the contact force as zero. It is 

easy to see that the model allows this when regarding the plots. It is a good thing that there are 

no real losses of contact in the models with a train speed of 70 or 90 km/h because that is the 

real train velocity at the site. 
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5.7.3 The uplift of the contact wire at support 1277 

The relative vertical displacement for the contact wire at support 1277 is here shown in Figure 

69, Figure 70, Figure 71, Figure 72, Figure 73 and Figure 74 for the different analyses that 

have been run. It is computed as the displacement of the contact wire point relative to the pre-

sag condition.  

 

 

 

Figure 69 The vertical displacement of the contact wire at support 1277 in Analysis 29, speed=70 

km/h and full cross section 
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Figure 70 The vertical displacement of the contact wire at support 1277 in Analysis 31, speed=90 

km/h and full cross section 

 

Figure 71 The vertical displacement of the contact wire at support 1277 in Analysis 32, 

speed=130 km/h and full cross section 
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Figure 72 The vertical displacement of the contact wire at support 1277 in Analysis 35, 

speed=200 km/h and full cross section 

 

Figure 73 The vertical displacement of the contact wire at support 1277 in Analysis 36, speed=90 

km/h and 20% worn cross section 
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The first displacements which occur in the plots above have to be because of an impulse 

induced by the train. The reasoning for this is that the displacements before the train passes 

the support clearly growths with increasing train speed. But it is not due to the impulse which 

travels with the transversal wave propagation speed. This impulse travels at 382 km/h, as 

presented in the theory, and is therefore at support 1277 after 7.9 seconds. The excitation of 

the point starts to happen after about 0.25-0.29 seconds in all the analyses. This period time 

indicates that the oscillation is due to longitudinal waves in the wire. They are introduced by 

starting the train at a given velocity, and not increased steadily from zero to the desired speed. 

The longitudinal wave velocity can be computed by formula (5.3).[54] 

 
E

c


   (5.3) 

Where c is the longitudinal wave velocity (m/s), E is the Young’s modulus (MPa) and ρ is the 

density (kg/m
3
). The speed is then computed to be 3726 m/s or 13415 km/h. With this speed 

the wave uses 0.226 seconds to the support. When the inertia is taken into account it is very 

likely that the speed is lowered slightly, and thus this wave is the reason for the early 

oscillations of the wire. The amplitude of the oscillation is dependent of the magnitude of the 

force introduced, and is then clearly dependent on the velocity of the train. This effect is 

likely to happen in the real world as well. But it is then initiated by catenary section changes, 

friction and geometrical errors on the contact wire. 

 

Figure 74 The vertical displacement of the contact wire at support 1277 in Analysis 37, 

speed=130 km/h and 20% worn cross section. 
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The transversal impulse of the wave propagation speed can also clearly be seen in Figure 72 

after 7.9 seconds. Based on theory presented earlier this is correct. It is difficult to see in the 

plots with lower train speeds, but it is present as very small displacements with high 

frequency compared to the other movement. The fact that the displacements introduced by 

this impulse increases with velocity is good, because higher velocity results in a larger 

impulse. 

The extreme values of the displacements take place when the pantograph is beneath the 

studied point for every analysis except Analysis 35. In this analysis the speed is so high that 

the amplitude of the transverse impulse is increased due to the amplification factor presented 

in the theory. That can result in a large displacement just before the support. The support is 

shown by the green line. After the pantograph has passed the point the wire continue to 

oscillate due to the dynamic properties of the system. If the dynamic oscillations damp out 

before the analysis is over, the remaining oscillations are possibly due to a combination of the 

transversal impulse, longitudinal impulse and movement with at frequencies with 

approximately zero damping. 

It is interesting to look at the development of the displacements magnitude as the speed of the 

train increases. In the analyses with a train speed of 70 km/h and 90 km/h it is clear that the 

behaviour is quasistatic. This is due to the fact that the amplitude of the oscillations after the 

train has passed is very small. The amplitude of the dynamic oscillations is around 2 

millimetres at 70 km/h and around 4 millimetres at 90 km/h, and is mostly a reaction of the 

transversal and longitudinal impulses. The small increase between 70 and 90 km/h are due to 

an increase in the impulses causing the movement, as stated earlier. In Analysis 32, where the 

speed is 130 km/h, one can clearly see that the oscillations are significantly larger, both before 

the train passes, and after the train has passed. The increase which happens before the passing 

of the train is a consequence of a train speed which is larger than the limiting speed of 117 

km/h. This results in an amplification factor of more than 1.0, and therefore the amplitude 

grows as the train approaches the source of reflection, the support. An effect due to this is that 

the maximum value is actually less than for the analysis done at lower speeds because the 

train has probably passed the support when the transversal impulse was on its way down 

again. 

When the train speed is increased to 200 km/h in Analysis 35 the dynamic response increases 

considerably. This indicates a resonant behaviour of the wire. The maximum value happens, 

as previously stated, before the train passes the support. The displacement when the train 

passes is 27.8 millimetres and thus almost the same as for the other analysis. The natural 

period of damped vibration is approximately one second, which gives a frequency of 1 

Hz[28]. This is the same as the first natural frequency for the nearby spans. The viscous 

damping ratio, ζ, is found by the use of four cycles after the train have passed. It can be found 

by formula (5.4).[19] 

 
2 2 2
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4

n i
n

n in

u

un


 

  
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Where ui denotes the displacement at peak i and n describes the number of cycles included. 

The damping ratio in Analysis 35 has then been calculated to be 0.0234. This means that there 

is a 50% reduction of in the displacement amplitude after 4.7 cycles, which is equal to 4.7 

seconds since the period is 1 second. This is calculated with formula (5.5) [28]. 

 
50% 0.11/j    (5.5) 

This is a very important parameter to check. It gives information about whether the amplitude 

of the displacement has decreased enough before the next pantograph passes the same point. 

In this case; if the distance between two pantographs was 200 metres, the train speed could 

maximum be 153 km/h if the second pantograph was to pass the same point after the 

amplitude has been reduced by 50%. 

The magnitude of the displacements found at the support is lower than the maximum tolerated 

uplift of 120 mm for all analyses. The uplift found in the implicit dynamic analyses is of the 

same magnitude as the usual uplift in the catenary system “Table 54”, which is presented in 

the theory to be between 30 and 55 millimetres. 

It is generally difficult to discuss the results in the analyses with a worn contact wire because 

the tension force introduced there was wrong. Both the wear and the reduction of the tension 

force results in a reduced stiffness and thus a higher elasticity. The effect this has on the 

displacement is that it is generally larger compared to the other analyses with the same train 

speed. 
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5.7.4 The displacement at mid span between support 1277 and 1278 

The relative vertical displacement for the contact wire point in the middle of the span between 

support 1277 and 1278 is here shown in Figure 75, Figure 76, Figure 77, Figure 78, Figure 79 

and Figure 80 for the different analyses run. It is computed as the displacement of the contact 

wire point relative to the pre-sag condition.  

 

 

 

Figure 75 The vertical displacement at mid span between support 1277 and 1278, Analysis 29 

speed=70 km/h and the cross section is full 
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Figure 76 The vertical displacement at mid span between support 1277 and 1278, Analysis 31 

speed=90 km/h and the cross section is full 

 

Figure 77 The vertical displacement at mid span between support 1277 and 1278, Analysis 32 

speed=130 km/h and the cross section is full 
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Figure 78 The vertical displacement at mid span between support 1277 and 1278, Analysis 35 

speed=200 km/h and the cross section is full 

 

Figure 79The vertical displacement at mid span between support 1277 and 1278, Analysis 36. 

Speed=90 km/h and 20% worn cross section. 
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The shape of the plots of the vertical displacement in the middle of the span is very similar to 

the plots of the vertical displacement at support. The biggest difference is that the 

displacements are larger. The displacement which occurs earliest in the plot is thus due to 

longitudinal waves and transversal waves in the material as presented earlier. It is also clear 

that the dynamic response increases due to the train speed. Especially in Analysis 35 the 

dynamic response is large, and, as seen in Figure 78, there seems to be little or no damping 

present. To study the damping more thoroughly one should let the system vibrate for a longer 

time period after the train has passed. 

The maximum displacement of the contact wire can from the figures clearly be seen to 

increase with velocity. There have not been found any measurements of the maximum 

displacement in the middle of one span, so the obtained cannot be validated. They are 

probably of the right magnitude when comparing these values to the values at support. These 

values are generally larger and that should be the case because the elasticity is bigger in the 

middle of the span. 

An interesting observation is that there are no clear magnifications of the transversal impulse. 

This is because this point is not close to any source of reflection, and will therefore not have 

the same effect as at support. 

  

 

Figure 80 The vertical displacement at mid span between support 1277 and 1278, Analysis 37. 

Speed=130 km/h and 20% worn cross section. 
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5.7.5 The trajectory of the contact point between the pan head and the contact 

wire 

The trajectory of the contact point describes the position of the collector strip in the vertical 

direction whilst the train moves in the horizontal direction. The point of reference is the top of 

the railway track beneath the contact wire. The red line plotted in the figures below describes 

the initial position of the contact wire before gravity and tension is applied. It would have 

been better to show the vertical geometry after these loads had been applied, but this was not 

possible due to time limitations. 

 

 

 

 

Figure 81 The path of the pantograph in Analysis 29, speed=70 km/h and full cross section 
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Figure 82 The path of the pantograph in Analysis 31, speed=90 km/h and full cross section 

 

Figure 83 The path of the pantograph in Analysis 32, speed=130 km/h and full cross section 
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Figure 84 The path of the pantograph in Analysis 35, speed=200 km/h and full cross section 

 

Figure 85 The path of the pantograph in Analysis 36, speed=90 km/h and 20% worn cross 

section. 
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In Figure 81, where the situation is quasistatic, the position of the collector is the sum of the 

pre-sag and the static uplift due to the contact force in that point. As the train speed increases 

there is also an increase of the displacement component which is due to dynamical effects. 

Around the train speeds which the section is designed for, the highest position of the collector 

strip should be at support. In both Analysis 29 and 31, were the train speed is 70 km/h and 90 

km/h, the trajectory of the collector strip has the highest vertical position at the supports. This 

is good because it describes what really happens in the real at the same train speed as the 

design speed. When the velocity is increased to 130 km/h, which is outside the operating 

speed range, the highest position is actually at mid span. As the speed is increased to 200 

km/h the pantograph pushes the contact wire further up along the whole section, and results in 

a path which matches the one for 70 km/h, but only lifted up more. 

In all the figures of the path of the pantograph one can see that the position is suddenly higher. 

This is because of the pre-lift discussed earlier, and results in a maximum vertical position in 

the middle of one span. 

There can be seen from most figures that the movement of the pantograph follows a relatively 

smooth path. This is very good because it matches the actual movement of a running 

pantograph also at higher train velocities. 

 

 

 

 

Figure 86 The path of the pantograph in Analysis 37, speed=130 km/h and 20% worn cross 

section. 
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6 Conclusion and future directions 
In this work a numerical model which successfully describes the train running along a straight 

catenary section in three dimensions has been made. In addition, a model which describes the 

train running along a catenary section with curvature in three dimensions has been developed. 

Several static and implicit dynamic analyses have been performed on the numerical model to 

validate it. The obtained results can be summarized as follows: 

(i) The contact force between the pantograph and the contact wire is described accurately 

in the dynamic analyses. But there are still some errors due to a numerical problem in 

the contact interaction formulation. 

(ii) The uplift of the contact wire is of the correct magnitude during both elasticity 

analyses and dynamic analyses.  

(iii) The model has shown to be able to include vertical displacements due to both the 

transversal and longitudinal impulses. 

(iv) The frequency range of the uppermost importance is found to be between 0.87 Hz and 

6 Hz. This is as expected from the literature. 

(v) The pre-sag is found to be too large in the numerical model compared to the 

measurement; this should therefore be investigated more thoroughly. 

(vi) Analyses done with higher train speeds than the normal speed have shown that the 

speed limit of the section is of the correct magnitude. 

The challenge for future work will be to discover the problems outlined in the following 

points: 

 The interaction between the contact wire and the pantograph should be improved 

 Including friction 

 Including stiffness between wire and collector strip 

 Using the wire as master surface, and the pan head as slave surface 

 Change how the pre-tensioning is introduced 

 Do frequency analyses of the vertical displacement in selected points; at support and 

in the middle of the span 

 Modal parameter identification should be done to find the damping ratio of the 

existing system 

 Non-linear damping dependent on train velocity should be looked into 

 More analyses between 90 km/h and 130 km/h should be performed to find a speed 

limit of the section 

 Consider using Graphics Processing Unit(GPU) to reduce the duration of the analyses 
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Appendix 

Appendix A Wear of the contact wire[8] 
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Appendix B The pantograph model from Schunk Nordiska[17] 
1.1 Tekniska data för simulering WBL 88 AT ,Flygtoget BM73 

 

 

 

Benämning Del Data Enhet Anmärkning 

Toppbygel massa  M1 2x2,3 Kg primär massa 

Avstånd mellan kolslitskenor  X1 595 mm  

Effektiv dynamisk sax massa M2 16.5 Kg sekundär massa 

Toppbygelns dämpnings konstant  C1 10 Ns/m primär  

Saxens dämpnings konstant  C2 0 Ns/m sekundär  

Saxens dämpnings konstant  C3 63,5 Ns/m sekundär  

Saxens fiktion U1 17 N  

Fjäderkonstant för toppbygel K1 3100 N/m  

Statiskt upptryck F1 60 N  

Fjäderväg från A till B  - 35 mm för primär massan 

Fjäderväg vid statiskt upptryck (F1) - 12 mm  

Max höjd - 2,0 m maximal höjd för strömavtagaren(från viloläge) 

Toppbygelbredd  1.8 m  

Längd kolslitskena - 1,03 m  

Höjd kolslitskena - 0,039 m i mitten av kolslitskenan i förhållande till dess ändar 

Aerodynamisk uppkraft på toppbygel Fa1 0 N vindstilla vid 100 km/h 

Aerodynamisk uppkraft på saxen Fa2 5 N vindstilla vid 100 km/h 
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Appendix C-1 Overview of the properties of sections in the area of 

interest[8] 
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Appendix C-2 Table of poles for the section “Wire 152” from pole 1261 to 

1288[8] 
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Appendix C-3 Geometrical design of the droppers in section “Wire 152” [8] 
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Appendix C-4 Geometrical design of the track[8] 
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Appendix D Matlab code for writing the input file for pre-scribed 

displacements and the .csv-file for the track geometry 

clear all 

close all 

clc 

 

format longe 

filename='C:\Users\Mastermind3\Dropbox\Skole\Masteroppgave\Infoommaterialg

eometriosv\GeometriLedning152SoknedalStasjon.xlsx'; 

sheet='TilAbaqusSpor'; 

xlRange1='B1:GP1'; 

xlRange2='B3:GP3'; 

valuesU1=xlsread(filename,sheet,xlRange1); 

b=0; 

c=0; 

for i=1:length(valuesU1) 

    c=c+1; 

    a=isnan(valuesU1(c)); 

    if a==0 

        b=b+1; 

        U1(b)=valuesU1(c); 

    else 

    end 

end 

 

 

 

valuesU3=xlsread(filename,sheet,xlRange2); 

b=0; 

c=0; 

for i=1:length(valuesU3) 

    c=c+1; 

    a=isnan(valuesU3(c)); 

    if a==0 

        b=b+1; 

        U3(b)=valuesU3(c); 

    else 

    end 

end 

%Speed 

prompt = 'What is the train speed in km/h? '; 

speedkmh = input(prompt) 

%%%%SPLINE%%% 

u1u1=0:1:1200; 

u3u3=spline(U1,U3,u1u1); 
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figure(7) 

plot(U1,U3,'o',u1u1,u3u3) 

 

e=length(u1u1); 

torg(1)=0; 

speed=speedkmh/3.6; 

for i=1:e-1 

    ds(i)=sqrt((u1u1(i+1)-u1u1(i))^2+(u3u3(i+1)-u3u3(i))^2); %arc-length 

for each new step 

    torg(i+1)=torg(i)+ds(i)/speed; %when the train are at each point, in 

seconds from start 

end 

%%%%RESAMPLE%%%%% 

figure(4) 

subplot(1,2,1),plot(torg,u1u1),grid, xlim([min(torg) max(torg)]) 

TS = timeseries(u1u1,torg); 

t = min(torg):0.02:max(torg); 

RETS = resample(TS,t); 

tid=RETS.time; 

u1=squeeze(RETS.data); 

subplot(1,2,2),plot(tid,u1),grid, xlim([min(t) max(t)]) 

%%save SFT.txt y -ascii 

%New spline 

u1u1=u1; 

u3u3=spline(U1,U3,u1); 

figure(8) 

plot(U1,U3,'o',u1u1,u3u3) 

 

 

 

%%%%Include rotations 

d=1; 

f=length(u1u1); 

ur2=zeros(1,f); 

for i=1:(f-2) 

    d=d+1; 

    ur2(d)=-atan((u3u3(d+1)-u3u3(d))/(u1u1(d+1)-u1u1(d))); 

end 

ur2(f)=ur2(f-1); 

U=[tid u1u1 u3u3 ur2']; 

% 

%%%TIL ABAQUS%%%%%%% 

filename=sprintf('SpanMast1261to1288SoknedalStasjonAmpInp%dkmt.inp',speedk

mh); 

fid = fopen(filename,'w'); 

for j=1:3 
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    if j==1 

        fprintf(fid,'*Amplitude, name=U1\n'); 

    elseif j==2 

        fprintf(fid,'\n*Amplitude, name=U3\n'); 

    else 

        fprintf(fid,'\n*Amplitude, name=UR2\n'); 

    end 

    u=1; 

    N=length(tid); 

    Nstart=1; 

 

    for t=Nstart:N 

        Amp=round(U(t,j+1)*100000)/100000; 

        if u==1 

            fprintf(fid,'%g, %g',tid(t-Nstart+1),Amp); 

        elseif u>1 && u<4 

            fprintf(fid,', %g, %g',tid(t-Nstart+1),Amp); 

        else 

            fprintf(fid,', %g, %g\n',tid(t-Nstart+1),Amp); 

            u=0; 

        end 

        u=u+1; 

    end 

end 

 

fprintf(fid,'\n** Name: U1 Type: Displacement/Rotation'); 

fprintf(fid,'\n*Boundary, op=NEW, amplitude=U1'); 

fprintf(fid,'\nTrain, 1, 1, 1.'); 

fprintf(fid,'\n** Name: U3 Type: Displacement/Rotation'); 

fprintf(fid,'\n*Boundary, op=NEW, amplitude=U3'); 

fprintf(fid,'\nTrain, 3, 3, 1.'); 

fprintf(fid,'\n** Name: UR2 Type: Displacement/Rotation'); 

fprintf(fid,'\n*Boundary, op=NEW, amplitude=UR2'); 

fprintf(fid,'\nTrain, 5, 5, 1.'); 

 

fclose(fid); 

disp('Klart - PUH') 

 

% %% 

% %Trackgeometry 

% 

% fid = fopen('SpanMast1261to1288SoknedalStasjonTrackgeometry.csv','w'); 

% 

%     for t=1:length(u1u1)-1 

%         X1=round(u1u1(t)*100000)/100000; 

%         Y1=0; 
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%         Z1=round(u3u3(t)*100000)/100000; 

%         X2=round(u1u1(t+1)*100000)/100000; 

%         Y2=0; 

%         Z2=round(u3u3(t+1)*100000)/100000; 

%         fprintf(fid,'%g, %g, %g, %g, %g, %g\n',X1,Y1,Z1,X2,Y2,Z2); 

%     end 

% 

% 

% fclose(fid); 

% disp('Klart - Track - PUH') 

Published with MATLAB® R2013a 

http://www.mathworks.com/products/matlab
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Appendix E-1 The cross sectional properties for the contact wire obtained 

from CrossX 
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Appendix E-2 The cross sectional properties for the worn contact wire 

obtained from CrossX 
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Appendix F Zip-file contents 
 

1. SpanMast1261to1288SoknedalStasjonrightgeometry.cae 

a. This is the numerical model of “Wire 152” in Abaqus 

2. SpanMast1261to1288SoknedalStasjonrightgeometry.jnl 

3. Analysis31Contact.mov 

a. Displays an animation of the train running along the contact wire, with the 

contact forces which occur displayed in black text. Only look at the number at 

the top for the sum of forces acting between the collector strip and the contact 

wire. 

b. One can also see how the train follows a curved path. 

c. The speed was 90 km/h. 

4. Analysis31Dynamics.mov 

a. Displays an animation of the dynamics which occurs when the train runs under 

the contact wire. The y-axis is scaled with a factor of five, and the 

deformations are scaled with a factor of ten. Thus the deformations in the y-

axis are scaled with a factor of fifty. 

b. One can also see how the train follows a curved path. 

c. The speed was 90 km/h. 

5. GeometriLedning152SoknedalStasjon.xlsx 

a. This file displays the geometry of “Wire 152” 


