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SAMMENDRAG: 
Hensikten med denne oppgaven var å undersøke hvordan deformasjonen av Docol 600 DL stålplater utsatt 
for eksplosjonslast kan bli nøyaktig gjenskapt ved bruk av forskjellige numeriske teknikker. Et innledende 
forsøk ble gjennomført ved bruk av en gasskanon til å simulere eksplosjonslast. Forsøkene var mislykket i 
den forstand at de ikke klarte å gjenskape et realistisk lastbilde, men eksperimentene ble brukt for å kalibrere 
den numeriske modellen. 
 
Fokuset ble flyttet til simulering av eksperimenter gjennomført på Raufoss i 2010 av Rakvåg. Eksperimentene 
ble gjennomført på kvadratiske 400mm x 400mm, 0,7mm tykke Docol 600 DL stålplater med en avstand til 
eksplosivene på 300mm, 400mm, 450mm og 550mm. Materialmodell for stålet ble bestemt fra tidligere 
arbeider gjort ved SIMLab. 
 
Numeriske simuleringer i LS-DYNA og IMPETUS ble brukt for å simulere oppførselen av stålplatene med 
med en ren Lagrange teknikk, en ukoblet Euler-Lagrange metode, koblede Euler-Lagrange simuleringer og 
en diskret partikkelmetode. De rene Lagrangeanalysene ble basert på data fra CONWEP, og feilet dermed 
på å beskrive geometrien på eksplosivene og feilaktig representerte derfor eksplosjonslasten. De ukoblede 
og koblede analysene beskrev geometrien av eksplosivene nøyaktig, men et krav om en fin diskretisering av 
Euler-domene førte til økt behov for datakraft. En vellykket 2D til 3D kartlegging av løsningsvariable i Euler-
domenet ble gjennomført for å redusere regnetiden. Partikkelmetoden ga de mest nøyaktige resultatene 
samtidig som den var den enkleste å ta i bruk. 
 
Ved å gjøre simuleringer med de ulike numeriske metodene kom det fram at den største feilkilden ved å 
gjenskape opplevd komponentoppførsel lå i å definere lastparameterene fra eksplosjonslasten nøyaktig. 
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Abstract

The main objective in this study was to investigate how the deformation
of Docol 600 DL steel plates subject to blast loading can be accurately
recreated with different numerical simulations. An initial experiment was
undertaken employing a gas gun to simulate the blast loads. The experi-
ments failed to properly emulate a proper blast load, but the experiment
served as an initial benchmark for calibration of the numerical models.

Focus shifted on to simulating experiments performed at Raufoss in 2010
by Rakv̊ag. Experiments on quadratic 400mm by 400mm, 2mm thick Do-
col 600 DL steel plates were performed for standoffs at 300mm, 400mm,
450mm and 550mm. Material models for the steel plates were determined
from previous work done at SIMLab.

Numerical simulations in LS-DYNA and IMPETUS were utilized with a
pure Lagrangian approach, an uncoupled Eulerian-Lagrangian approach,
a coupled Eulerian-Lagrangian and a discrete particle method. The pure
Lagrangian simulations were based on data from the CONWEP standard,
thus it failed to properly describe the charge geometry and consequently
misrepresented the properties of the blast load. The uncoupled and cou-
pled Eulerian-Lagrangian simulations properly described the charge geom-
etry, but a requirement of a sufficiently fine discretization of the Eulerian
mesh rendered full 3D simulations with a high computational demand.
A 2D to 3D mapping technique in the Eulerian domain was successfully
completed to reduce the computational time. The discrete particle ap-
proach yielded the most accurate results while being the easiest to define
numerically.

Employing the different numerical techniques revealed that the main source
of error in recreating expected deformation lies in the capability of prop-
erly describing the blast load conditions.
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Chapter 1

Introduction
Accidental explosions or terrorist attacks serves as a serious reminder of how
devastating a blast load scenario can become in account of the loss of civilian
lives and structural failure. International peace-keeping operations deal with the
explosion phenomena on a daily basis and it is evident that protection against
such incidents is of uttermost importance.

Traditionally protective buildings are made out of concrete that is able to with-
stand enormous blast loads and a wide variety of weaponry. A big drawback of
the concrete-based protective system is the massive weight that makes it more
or less stationary and ill-suited for mobile systems. This has sparked an interest
in developing light-weight protective structural components such as thin steel
and aluminium plates and panels.

Previous work on typical blast load scenarios have been done in abundance.
This is mainly driven by the military industry that possesses large available re-
sources. The problem with carrying out a full scale explosive test is the limited
value of the results as the experiment specimen often is destroyed together with
the testing equipment. The focus has therefore shifted from live experiments
to numerical simulations, both for the reduced cost and the quality of the out-
put data that becomes available. The affordability of computing power today
allows engineers to use numerical simulations to predict the ultimate loads and
deformations of structural components with great accuracy. However, the nu-
merical simulations mainly done by the finite element codes require the physics
behind the problem to be properly defined. The highly complicated physical
processes behind the problems have led to a variety of different numerical tech-
niques for simulating blast loads ranging from applying simple pressure loads to
fully coupled gas-structure interaction-simulations and discrete particle-based
approaches. The choice of what type of simulation to choose for a particular
problem will rely on several questions; how accurate does the result of the sim-
ulation have to be? Is the benefit of a complicated simulation enough to offset
the increased computational time and added risk of user errors? How accurate
are the advanced numerical simulations compared to the simple ones?
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CHAPTER 1. INTRODUCTION

Numerical simulations of blast load scenarios are well investigated in research
articles and are the subject of several theses. The papers by Alia and Souli [2]
and Chafi et. al [16] investigated the multi-material Eulerian approach and its
applicability to describe air-blasts, whereas the results showed a good agreement
between numerical and experimental data. A comparison between the coupled
Eulerian-Lagrangian (CEL) formulation and particle method was performed by
Olovsson et. al in [42], which indicated that the particle method is a viable
alternative to describe fluid behaviour to the already established continuum-
based approaches. A study on the effects of fluid-structure interaction (FSI)
employing the CEL technique was performed by Subramaniam et. al in [52].
In this study it was observed that the FSI effects becomes insignificant when
the ratio between structural velocity and particle velocity of the incident blast
pressure wave starts approaching zero. Another study on FSI effects performed
by Nian et. al [38] indicated that the differences between including and not
including FSI diminishes in cases of structures with large stiffness and/or large
mass.

This introduction will not try to give a review of all the previous work that
has been done, but rather highlight some of the more relevant work related to
this thesis performed at SIMLab. In his 2009 thesis, Rakv̊ag [44] investigated
the combined blast and fragment loading on steel plates. In 2011, Hallset and
Haagenruud [27] continued some of this work, further investigating the effects
of blast loading on perforated plates. Both these theses involved advanced fully
coupled Eulerian-Lagrangian simulations with successful results. Other studies
performed by Børvik et. al [13] investigated the differences between a Pure La-
grangian, an uncoupled Eulerian-Lagrangian and a coupled Eulerian-Lagrangian
approach to recreate a blast load scenario. The study showed that even though
some of the analyses were more complex, they did not necessary provide more
accurate results when compared to full scale experiments.

This thesis will focus on the numerical simulations of lightweight steel plates
that are subject to blast loads. A collection of different approaches and numeri-
cal simulations will be employed to investigate what simulation techniques that
is best-suited in respect of accuracy, computational effort and user-friendliness
to recreate a specified blast load scenario.

A short overview of each chapter is presented below.

Chapter 2 - Theory. Relevant theory to this study, including: explosives,

2



CHAPTER 1. INTRODUCTION

blast physics and mathematical treatment, pressure, blast design and reflection
effects, material model and parameters, numerical methods, Lagrangian FEA,
Eulerian FEA, Arbitrary Lagrangian-Eulerian (ALE) FEA and the discrete par-
ticle method.

Chapter 3 - Materials. Material parameters and how they are determined
for the forthcoming numerical analyses are presented.

Chapter 4 - Experimental Work. Description and procedure of the experi-
ments performed on the steel plates. Both the experiments at NTNU and the
experiments at Raufoss are presented.

Chapter 5 - Experimental Results. The results of the different experiments
described in chapter 4 are presented and processed.

Chapter 6 - Preliminary Numerical Study. A mesh sensitivity study for the
forthcoming numerical simulations is completed. A cross platform validation
between LS-DYNA and IMPETUS are performed together with a calibration of
numerical parameters for the multi-material Eulerian analyses.

Chapter 7 - Numerical Methods. Numerical simulations of the different blast
load scenarios are performed with a range of different techniques including a
pure Lagrangian approach, a multi-material Eulerian formulation, an uncoupled
Eulerian-Lagrangian simulation, a coupled Eulerian-Lagrangian simulation and
a particle based approach.

Chapter 8 - Comparison and Discussion of Numerical Results. Comparison
of the results from the simulations performed in the previous chapter is pre-
sented. Further discussion and critique of the different numerical techniques.

Chapter 9 - Concluding Remarks. Summary of results and conclusions.

Chapter 10 - Further Work. Recommended work to further investigate the
challenges encountered in this thesis.
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Chapter 2

Theory

2.1 The Blast Phenomenon
In this section the theory behind blast physics and explosives is presented.

2.1.1 Explosives
Explosive threats can be divided in to five main categories [51]:

• Military Weapons
• Improvised Explosive Devices (IED)
• Terrorist Threats
• Accidental Explosions
• Advanced Explosives

Millitary Weapons and IEDs are often used in combat situations where there
is a lack of a controlled environment. They range from general purpose bombs
to fragmentation and penetration bombs. The effect and usage of these depend
primarily on the target and the desired effect. The terrorist threats can range
from package type bombs to vehicle-borne suicide bombs.

There are an abundance of different types of high explosives (HE). Different
types of explosives are compared by converting to a TNT-equivalent mass by
employing a ratio of explosive-specific energies. These ratios are determined
from a series of empirical testing and are therefore somewhat approximate [51].
Table 2.1 shows the TNT equivalent factors for different explosives.
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Table 2.1: Explosives characteristics [51]

Explosive TNT eqv. mass
Liquid Nitroglycerin 1.481
Pentolite 1.400
C-4 1.190-1.370
HMX 1.256
Semtex 1.250
RDX 1.185
Comp B (0.6RDX, 0.4TNT) 1.148
TNT 1.000
Blasting Gel 1.000
Dynamite 0.900
ANFO (94 % ammoniumnitrate, 6% fuel oil) 0.870
60% nitroglycerin dynamite 0.600

2.1.2 Blast Physics
The more general term explosion is defined by [5] as an event undergoing a
rapid chemical or nuclear reaction with the production of noise, heat, and vi-
olent expansion of gases. Further, [10] defines an explosion as a process where
combustion of a premixed gas cloud is causing a rapid increase of pressure. This
increase in pressure can originate from nuclear reactions, HE, loss of contain-
ment in containers with high pressure and several others sources. It is evident
that the keyword rapid is a determining factor.

2.1.2.1 The Explosive Process

For HE, the explosive process can typically be broken down in to 5 sub-events
[50].

Initiation The explosion reaction, often referred to as the com-
bustion phase, generates a hot gas at a high pres-
sure.

Expansion The surrounding air is forced out of the volume it
occupies. The layer of air surrounding the gaseous
products is compressed. The expelled layer contains
most of the energy released by the explosion.
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Disequilibrium Disequilibrium is created between the compressed
air inside the blast wave and the air in front of it,
this causes the blast wave to move outwards from
the center of the explosion. The pressure decreases
as the wavefront travels further from the explosive
source.

Suction The momentum of the gas causes it to over-expand,
resulting in the pressure to often fall below atmo-
spheric. The negative phase applies a decelerating
force on the surrounding gas molecules, resulting in
a reversal of flow back towards the center.

Equilibrium Eventually, equilibrium is restored.

2.1.2.2 The Blast Wave

During the expansion phase of an explosive process, the blast wave is exerted
from the source. The term blast wave includes both sonic compression waves,
shock waves and rarefaction waves [10]. The waves have quite different charac-
teristics and are illustrated in figure 2.1.

(a) Sonic compression - rar-
efaction wave

(b) Shock - rarefaction
wave

(c) Shock - sonic compres-
sion - rarefaction wave

Figure 2.1: Type of waves

What kind of blast wave that is created from a specified explosion depends
primarily on two factors; what type of explosions are present (how is the energy
released from the explosive) and the distance from the explosive source. For
strong explosions, a shock wave followed by a rarefaction wave as illustrated in
figure 2.1b is typical. Usually for weak explosions, a sonic compression wave
followed by a rarefaction wave is the most common (figure 2.1a) [10].
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Figure 2.2: Blast wave moving outwards from the source

In studying air blast theory, one should become accustomed to thinking about
a blast wave as a degenerate shock wave rather than describing a blast wave as
a strong acoustic wave. One should be aware of the following notions of whom
none of them are consistent with acoustic theory [4]:

• Of waves moving faster than sound.
• Of finite large pressure, density and temperature changes.
• Of finite particle velocities associated with the waves.
• Of wave fronts across which changes in various blast parameters are so

rapid they are usually considered discontinuous ”jump” conditions.

Regardless of the source of the initial disturbance, the compressibility of air
will lead to a creation of an almost discontinuous ”shock-up” of pressure, tem-
perature and density. The resulting shock-front moves supersonically and the
transmission of blast waves in air is therefore described as a non-linear process
involving non-linear equations of motion [4].

The idealized blast wave is produced from a spherical symmetric source, such
that the properties of the blast wave are only functions of the distance from the
charge itself and the time elapsed since detonation. An ideal pressure gauge
which in no way interferes with the blast follows all points of variations in
pressure records the history of absolute pressure at a fixed distance R. Such
conditions would produce the following pressure time history [4]:
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P (t)

P+
so + Pstat

Pstat

Pstat − P−so

0
0 ta ta + T+ ta + T+ + T−

t

�
�

��	

Positive phase

�
�
�	

P(t)
�
�

��	

Negative phase

Figure 2.3: Idealized blast wave [4]

Where P+
so is the positive peak side-on pressure, P−so is the negative peak side-on

pressure, ta is the arrival time, T+ is the duration of the positive phase and T−
is the duration of the negative phase. Pstat is the static pressure.

Various representation of this curve on an continuous form is presented in [10]
and [50]. For practical design purposes, the shape is usually taken as a triangle
with the negative phase being neglected. The most commonly used approxima-
tion to describe a pressure time-history on a continuous format is the Friedlander
Equation [10, 50]:

P (t) = Pstat + P+
so

(
1− t

T+

)
e

−bt

T + (2.1)

Where the decay coefficient b must be determined from empirical testing. Note
that the Friedlander equation does not neglect the negative phase.

2.1.2.3 Impulse

The specific impulse is defined as:
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i+s =
ta+T+∫
ta

[P (t)− Pstat]dt (2.2)

i−s =
ta+T++T−∫
ta+T+

[P (t)− Pstat]dt (2.3)

Where i+s is the positive specific impulse and i−s is the negative specific impulse.
The different impulses are illustrated in figure 2.4.

P (t)

Pstat

0
0 ta ta + T+ ta + T+ + T−

t

�
�

��	

Positive specific impulse

�
�
�	

P(t)
�

�
��	

Negative specific impulse

Figure 2.4: Impulse [4]

In classical mechanics, impulse is the integral of force with respect to time.
When blasts are considered, the specific impulse is the integral of pressure with
respect to time, but is simply referred to as the impulse.
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2.1.2.4 Pressure

The pressure increase produced by the passing of a blast wave needs to be ac-
curately represented and described. In fluid dynamics, it is often referred to
different types of pressures with the terms static pressure Pstat, dynamic pres-
sure Pdyn and stagnation pressure Pstag [10]. The static pressure is what we
often refer to as the atmospheric pressure or the constant pressure present at
the blast site. The dynamic pressure is the pressure increase that we attribute
to the blast wave. The dynamic pressure can also be expressed as follows:

Pdyn = ρU2

2 (2.4)

Where ρ is the density of the flow medium and U is the flow velocity. The
stagnation pressure is the sum of the dynamic pressure and the static pressure

Pstag = Pstat + Pdyn (2.5)

When the blast wave passes a point, we have two different types of pressures
present. The side-on pressure Pso is the pressure measured perpendicular to the
propagation of the blast wave, and the reflected pressure Pr is measured parallel
to propagation direction in the opposite direction of the direction of movement.
The two different type of pressure are illustrated in figure 2.5.

Because of the connection between the wavefront velocity U to the pressure
increase produced by a blast in equation (2.4), studies have been carried out to
find empirical correlations between U and Pso. The most widely used in the US
military are the equations derived by Rankine & Hugoniot for blast waves at
room temperature. The Pso can be calculated from [49, 21].

Pso
Pstat

= 2γMs
2 − (γ − 1)
γ + 1 (2.6)

Where γ is the ratio between the specific heat capacities at constant pressure Cp
and the specific heat capacity at constant volume Cv respectively γ = Cp

Cv
. Ms

is the ratio between the velocity of the shock front U and the speed of sound in
the surrounding fluid a0, Ms = U

a0
. For normal atmospheric conditions; γ = 1.4.

This leads to the following equation:
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U =

√(
6Pso + 7Pstat

7Pstat

)
a0 (2.7)

Where U is the wavefront velocity, Pso is the side-on pressure and Pstat is the
static pressure. This can further be derived in to an equation for the expected
peak dynamic pressure Pdyn [49, 21].

Pdyn = 5P 2
so

2 (Pso + 7Pstat)
(2.8)

An upper limit to the applied blast load is obtained if the surface it hits head
on is infinitely rigid [4]. All flow behind the wave is stopped and the pressures
are considerably larger compared to the side-on pressure. For shock waves weak
enough that air behaves as a perfect gas, there is derived a relation between the
peak reflected pressure Pr and the peak side-on pressure Pso:

P̄r = 2P̄so + (γ + 1) P̄ 2
so

(γ − 1) P̄so + 2γ
(2.9)

P̄r = Pr
Pstat

(2.10)

P̄so = Pso
Pstat

(2.11)

If γ = 1.4 is assumed constant and combined with equation (2.11) and (2.10):

Pr = 2Pso
[

7Pstat + 4Pso
7Pstat + Pso

]
(2.12)
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Pso

(a) Side-on pressure

Pr

(b) Reflected pressure

Figure 2.5: Side-on and reflected pressure described [4]

At low values of Pso, the reflected pressure approaches the acoustic limit of twice
the incident overpressure. For strong shocks, equation (2.12) would approach
the upper limit of P̄r = 8P̄so [5]. In practice γ is not constant because air ionizes
and dissociates as the shock strength increases, this will lead to an even greater
upper limit of equation (2.12). It is also important to note that this is for an
infinitely rigid wall. As a structure subject to a blast load is deformed, the
target area will be subject to deformation that in turn will alter the pressures.
In reality, the reflected pressures will often be a value in between the upper and
lower limits. Generally, a typical reflected shock wave will compare to a regular
blast wave as illustrated in figure 2.6. Note that the positive duration typically
is not altered between side-on and reflected pressures.
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P (t)

Pr

Pso

Pstat

�
�

��	

Reflected shock wave

�
�

��	

Regular blast wave

t
ta ta + T+ + T−

Figure 2.6: Reflected side-on pressure [23]

As explained previously, the reflected pressure on an infinitely rigid wall repre-
sent the upper limit of Pr. If the blast approaches the structure at an oblique
angle, the reflected pressure will be values in between Pr and Pso. The oblique
reflection is classified as either a regular or a mach reflection [5]. To treat the
regular reflection in a design perspective, the Pr is scaled with a reflection co-
efficient Crα that is a function of Pso and the angle of incidence α (see figure
2.7). The values for Crα can be found in CONWEP, the UFC or other similar
standards [49].

Pr = CrαPso (2.13)
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charge

α
Surface normal vector

Figure 2.7: Angle of incidence

There exist some critical angle of incidence that is dependent on shock strength,
below which regular reflection cannot occur [4]. When the incident is below this
value, one might encounter a mach reflection. The mach reflection is treated
somewhat differently because of the complex nature of the problem. When a
charge detonates close to the surface, the reflected waves will bounce off the
ground and fuse with the original incident wave to form a mach front. This
effect is illustrated in figure 2.8 [48].
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Ground Surface
Structure

Reflected wave�
��

Charge
@@R

Incident wave�
��

Mach front@
@@I

Path of triple point
�

�
�
�	

Figure 2.8: The mach reflection

The point where the incident waves and reflected waves fuse is called the triple
point. A practical effect of a mach reflection is that the pressure and the positive
impulse close to the triple point are considerably greater than those that would
have been formed if the burst was placed on the ground itself [4].

2.1.2.5 Blast Design

For practical design purposes it exists standards such as CONWEP or the UFC
that estimate the expected peak pressure, impulse and other various blast load
parameters as a function of charge weight, standoff and other surrounding fac-
tors. These values are determined by a long series of empirical testing, and serve
as a good tool for a simplified validation of what numbers one could expect to
see in an experiment or explosive incident. A big drawback of the standards is
that it is often impossible to achieve the exact same conditions as performed
experiments because the explosive parameters are affected by a wide range of
different circumstances, thus the values will be estimates.

To be able to compare different types of explosive incidents for blast design
purposes, one usually converts the explosive mass to a TNT equivalent mass.
This can be expressed as a function of the heat of detonation of the various
materials as follows [23]:

WTNT =
(
QEXP
QTNT

)
WEXP (2.14)

where
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WTNT is the TNT equivalent weight
QEXP is the heat of detonation of the explosive in question.

(found in the UFC)
QTNT is the heat of detonation of TNT. (found in the UFC)
WEXP is the weight of the explosive that is subject to com-

parison

Several problems arise when converting to TNT equivalent mass, as the scaling
factor itself is a function of standoff and charge weight as shown in [31]. Note
that equation (2.14) is the effective charge weight that is primarily related to
the blast output parameters for unconfined detonations. The effective charge
weight produced by the confinement effects of the explosion will differ.

When the TNT equivalent mass is found, the scaled distance is found by em-
ploying the following equation:

Z ≡ R

W
1
3
TNT

(2.15)

where

Z is the scaled distance
R is the standoff distance
WTNT is the explosive weight in TNT equivalents.

The scaled distance can then be compared, as a smaller scaled distance will
typically lead to a higher pressure, impulse and consequently more force to the
subjected surroundings.

The estimated blast load parameters can then be found from plots in the stan-
dards such as the one in figure 2.9.
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Figure 2.9: Positive phase shock wave parameters for a spherical TNT explo-
sion in free air at sea level [23]
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2.2 Constitutive Equation
In order to represent the elastic-plastic material behaviour of the steel plates,
a constitutive equation needs to be established. As described in [18]; when a
material yields, the loads, deformation and stresses are non-linearly related and
history-dependent. Strain increments are regarded as composed of recoverable
(elastic) and non-recoverable (plastic) components [18]:

{dε} = {dεe}+ {dεp} (2.16)

where

{dε} total strain increment vector
{dεe} elastic strain increment vector
{dεp} plastic strain increment vector

Stress increments are associated with only the elastic components such that [18]:

{dσ} = [E] {dεe} or {dσ} = [E] ({dε} − {dεp}) (2.17)

where

{dσ} stress increment vector
[E] elastic material property matrix

In general, {dσ} contains increments of all six components of stress such that
[18]:

{dσ} = [dσx, dσy, dσz, dτxy, dτ yz, dτ zx]T (2.18)

where

{dσi} stress increment in ith direction
{dτ ij} shear stress increment in i-j plane

Being able to describe the elastic-plastic material behaviour requires a yield
criterion, a flow rule and a hardening rule. The yield criterion relates the state
of stress to the onset of yielding. The flow rule relates the state of stress {σ},
and the six increments of plastic strain {dεp} when an increment of plastic flow
occurs. The hardening rule modifies the yield criterion for straining beyond
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the initial yield. Yielding is defined by F = 0, where F is defined as the yield
function [18].

F = F ({σ} , {α} ,Wp) (2.19)

where

{σ} total stress vector
{α} vector describing kinematic hardening
Wp scalar describing the isotropic hardening

{α} and Wp describes how the yield surface is altered in multi-dimensional stress
space in response to plastic strain increments. As mentioned in [44] three factors
are important regarding material behaviour subjected to blast and penetration
problems.

• strain
• strain-rate
• temperature

Increased strain-rate normally increases the strength and an increased temper-
ature decreases the strength. A commonly used material model which accom-
modates the aforementioned factors is the Johnson-Cook material (JC) model
[12]:

σeq =
(
A+Bεneq

)(
1 + C ln ε̇

ε̇0

)(
1−

(
T − Tr
Tm − Tr

)m)
(2.20)

where

A,B,C, n,m material constants
εeq equivalent plastic strain
ε̇ strain-rate
ε̇0 reference strain-rate
T temperature
Tr reference temperature
Tm melting temperature

The strain-rate sensitivity term
(

1 + C ln ε̇
ε̇0

)
was modified in [15] to be able to

represent small strain-rate effects. A modified version of JC can be written as
[12]:
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σeq =
(
A+Bεneq

)(
1 + ε̇

ε̇0

)C (
1−

(
T − Tr
Tm − Tr

)m)
(2.21)

The non-linear isotropic strain hardening Voce law is used to represent strain
hardening:

σeq = σ0 +
n∑
i=1

Qi (1− exp (−Ciεeq)) (2.22)

where

σ0 initial yield stress
Q1, C1 primary hardening
Q2, C2 secondary hardening

The final constitutive relation using modified JC with Voce hardening results
in the following equation:

σeq =
(
σ0 +

n∑
i=1

Qi [1− exp (−Ciεeq)]
)(

1 + ε̇

ε̇0

)C (
1−

(
T − Tr
Tm − Tr

)m)
(2.23)

In the event of fracture, a fracture criterion needs to be set. As mentioned
in [44], a ductile fracture is highly dependent on the stress triaxiality. A sim-
ple fracture criteria which includes stress triaxiality and is widely used is the
Cockcroft-Latham (CL) fracture criterion [30]:

W =
∫ εf

0
〈σ1〉dεeq ≤Wcr (2.24)

and

〈σ1〉 =
{
σ1 σ1 ≥ 0
0 σ1 < 0 (2.25)

where

σ1 major principle stress
Wcr the critical value of the plastic work per unit volume

until fracture
W the plastic strain energy density
εf the strain at fracture

The concept is that damage accumulates until W = Wcr is reached at εeq = εf .
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2.3 Failure Modes
In the event of failure in the plates subject to blast loading, a system of classify-
ing different failure modes is described in [54]. Note that the study in [54] was
based on the failure of circularly shaped plates. However, it is assumed that
this can be translated in to similar expected behaviour for quadratically shaped
plates. Failure of plates subject to impulsive velocities are classified in to three
distinct failure modes [54]:

• Mode I: Large ductile deformation (figure 2.10a)
• Mode II: Tensile-tearing and deformation (figure 2.10b)
• Mode III: Transverse shear (figure 2.10c)

Mode II can be further divided into three levels of tensile tearing [39];

• II* Partial tensile tearing
• IIa Complete tensile tearing with increasing deformation
• IIb Complete tensile tearing with decreasing deformation

The main failure modes are depicted in figure 2.10

(a) Mode I

(b) Mode II

(c) Mode III

Figure 2.10: Failure modes [54]

Mode II* is the borderline case between Mode I and Mode IIa. Mode IIb is the
borderline case between Mode IIa and Mode III [44].
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2.4 Numerical Methods

2.4.1 Time Integration
Initially the analyst has the choice between an implicit and an explicit time
integration scheme to a numerical simulation. Explicit time integration proves
the best suited for high speed blast simulations. Explicit methods have major
advantages when it comes to solving contact problems and wave propagation
problems created by a blast or impact loading because no equilibrium iterations
are necessary [35]. The explicit scheme have a low cost per time step, but since
the method is conditionally stable, a very small time step is required.

Perform a first order Taylor-series expansion of the displacement dn+1 and dn−1
about time tn and combine the resulting equations:

ḋn = dn+1 − dn−1

2∆t or d̈n = dn+1 − 2dn + dn−1

∆t2
(2.26)

These two equations are often referred to as the conventional central difference
equations [35]. Since we employed a first order Taylor series expansion, the pri-
mary error term in these equations are proportional to ∆t2 which implies that
the displacement d has second order accuracy.

Substitute the central difference approximations for velocity and acceleration
in to the equilibrium equation for a non-linear MDOF system

[M ]
{
D̈
}

+ [C]
{
Ḋ
}

+
{
Rint

}
=
{
Rext

}
(2.27)

To obtain [35].
{D}n+1 =

[
Keff

]−1 {
Reff

}
n

(2.28)

where [
Keff

]
= 1

∆t2 [M ] + 1
2∆t [C] (2.29)

23



CHAPTER 2. THEORY

{
Reff

}
n

=
{
Rext

}
n
−
{
Rint

}
+ 2

∆t2 [M ] {D}n

−
(

1
∆t2 [M ]− 1

2∆t [C]
)
{D}n−1 (2.30)

If lumped mass matrices combined with mass proportional damping is employed,
displacements {D}n+1 may be computed very efficiently. However since the
mass proportional Rayleigh damping damps lower modes mainly, the dynamic
response will contain high frequency numerical noise [35]. It may be desirable
to include a stiffness-proportional damping in order to damp high frequency
numerical noise. The solution of an equation system is then required since
the effective stiffness

[
Keff

]
becomes non-diagonal, thus the computational

cost per time step is greatly increased. However, it may be shown that if the
equilibrium equations are established with velocity lagging by half a time step,
the problem with increased computational cost may be traversed [35].

2.4.1.1 Time Integration in LS-DYNA

The classic half-step central difference method is the integration scheme imple-
mented in LS-DYNA [32]. Establish the equation of motion with the velocity
term lagging half a time step behind:

[M ]
{
D̈
}
n

+ [C]
{
Ḋ
}
n− 1

2
+
{
Rint

}
n

=
{
Rext

}
(2.31)

By employing {
Ḋ
}
n− 1

2
= 1

∆t
(
{D}n − {D}n−1

)
(2.32)

and{
Ḋ
}
n+ 1

2
= 1

∆t
(
{D}n+1 − {D}n

)
(2.33)

To obtain {
D̈
}
n

= 1
∆t

({
Ḋ
}
n+ 1

2
−
{
Ḋ
}
n− 1

2

)
=
{D}n+1 − 2 {D}n + {D}n−1

∆t2 (2.34)
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By substituting these equations in to the equation of motion and approximating
the damping term by:

1
2∆t [C]

(
{D}n−1 − {D}n+1

)
≈ 1

∆t [C]
(
{D}n−1 − {D}n

)
(2.35)

The preferred form of the central difference method is obtained [35]:

{D}n+1 = ∆t2 [M ]−1
{
Reff

}
n

(2.36)

Where{
Reff

}
n

=
{
Rext

}
n
−
{
Rint

}
+ 1

∆t2 [M ]
(
2 {D}n + {D}n−1

)
− 1

∆t [C]
(
{D}n − {D}n−1

)
(2.37)

The preferred form of the central difference method can only guarantee first-
order accuracy, but for small damping values and small time steps it has almost
the same accuracy as the classical central difference method [35]. In order for
initial calculations to be performed, a need exists to employ a backward finite
difference approximations [35] which yields:{

D̈
}

0 = 2
∆t

({
Ḋ
}

0 −
{
Ḋ
}
− 1

2

)
(2.38)

leads to{
Ḋ
}
− 1

2
= {D}0 −

∆t
2
{
D̈
}

0 (2.39)

By approximating
{
Ḋ
}
− 1

2
with a central difference [1]:

{
Ḋ
}
− 1

2
= 1

∆t
(
{D}0 − {D}−1

)
(2.40)

To arrive at an expression for {D}−1 [18]:

{D}−1 = {D}0 −
{
Ḋ
}

0 ∆t+ ∆t2

2
{
D̈
}

0 (2.41)

where the value of
{
D̈
}

0 can be found from the equilibrium equation of motion.
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The time integration loop implemented in LS-DYNA is illustrated in figure
2.11 [32].

Figure 2.11: Time integration loop in LS-DYNA [32]

2.4.1.2 Stability of the Explicit Time Integration

One big drawback of the explicit analysis is the conditional stability of the
explicit analysis. The solution is bounded only when the time increment ∆t is
less than the stable time increment ∆tcr. It can be shown that the stability
limit can be defined in terms of the eigen-frequency (ωj) and the fraction of
critical damping (ξj) of eigen-mode φj [36]:

∆tcr ≤ min
[

2
ωj

(√
1− ξ2

j − ξj
)]

(2.42)

Since for all practical problems, damping is likely to be small for all modes, thus
for an undamped material, the upper bound for the critical time step becomes:

∆tcr ≤
2

ωmax
(2.43)

The physical interpretation is that ∆t must be small enough so that information
does not propagate more than the distance between adjacent nodes during a
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single time-step. The stable time increment can then be expressed in terms of
the dilatational wave speed cd, and the characteristic length Le of the smallest
element in the FE model [36].

∆tcr = Le

cd
(2.44)

where

Le Characteristic length of the smallest element
Cd Dilatational wave speed in the material

2.4.2 Finite Element Formulations
In this section, an introduction to the Lagrangian, Eulerian and the Arbitrary
Lagrangian Eulerian finite element formulations will be given. The different
finite element formulations arise from the same set of fundamental conservation
laws. These equations must always be satisfied by a physical system [7]. The
four conservation laws relevant for thermomechanical systems are.

• Conservation of mass
• Conservation of linear momentum
• Conservation of energy
• Conservation of angular momentum

The conservation laws are usually expressed as partial differential equations
(PDE). These equations are derived by forcing the conservation laws on to a
domain of a body that in turn leads to an integral relation [7].

For each of the element formulations, the conservation equations will be repre-
sented, also how the different kinematic relations differ from one another. The
kinematic relations together with most of the theory in this section is taken
from [7] if not stated otherwise.

2.4.2.1 Preliminary Kinematics

A body in the initial state at time t=0 is referred to as being in the reference
configuration Ω0. The significance of the reference configuration lies in the fact
that motion is defined with respect to this configuration. The boundary of the
respective configurations are referred to as Γ0 and Γ.

27



CHAPTER 2. THEORY

The motion or deformation of a body is described by a function φ (X, t) with
material coordinates X and time t as independent variables [7]. This function
gives the spatial positions of the material points as a function of time through:

x = φ(X, t) (2.45)

This relation is also called a map between the reference and current configura-
tion. The displacement of a material point denoted u is the difference between
its current position and its original position:

u(X, t) = φ(X, t)−X (2.46)

An illustration of the kinematic relations can be seen in figure 2.12

y, Y
φ(X, t)

X x
Ω0

Ωu

Γ0 Γ
x,X

Figure 2.12: Kinematic relations

The velocity is the rate of change of the position vector for a material point:

v(X, t) = ∂φ(X, t)
∂t

= ∂u(X, t)
∂t

≡ u̇ (2.47)

The acceleration is the rate of change of velocity of a material point:

a(X, t) = ∂v(X, t)
∂t

= ∂2u(X, t)
∂t2

≡ v̇ (2.48)

To describe the deformation and the measure of strain is an important part of
non-linear continuum mechanics. An important variable in this matter is the
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deformation gradient:

Fij = ∂φi
∂Xj

≡ ∂xi
∂Xj

or F = ∂φ

∂X
≡ ∂x

∂X
≡ (∇0φ)T (2.49)

The deformation gradient F is often also referred to as the Jacobian matrix of
the motion φ(X, t).

Two different approaches are used to describe the deformation of a body in
a continuum. In the Lagrangian description the independent variables are the
material coordinates X and the pseudo-time t. This description is therefore of-
ten referred to as a material description. In the other approach the independent
variables are the spatial coordinates x and the pseudo-time t. This is called
a spatial or Eulerian description. Note that so far the kinematic relations are
only for material points, as they do not differ for the two formulations.

2.4.3 Lagrangian FEA
In classical solid mechanics, the Lagrangian formulation is the most widely used.
The attractiveness roots in how the formulation handles complicated boundary
conditions and the ability to follow specific material points. There exist differ-
ent varieties of the Lagrangian formulation, namely the Updated Lagrangian
Formulation and the Corotational Lagrangian Formulation among others. In
this study however, we will focus on the Total Lagrangian Formulation in which
integrals and derivatives are taken with respect to the material coordinates X.

In a Lagrangian mesh, the nodes are coincident with the material points as
illustrated in figure 2.13, so in short the nodes XI = constant in time. This
leads to the fact that the mesh cannot deform without the material deforming
and vice versa. This suits the applicability of solid mechanics greatly since most
non-linear materials are history dependent, and they are easily traceable if re-
ferred to the initial undeformed configuration. The fact that the mesh deforms
with the body allows the analyst employ the use of history dependent materials
with finite (small) deformations. Another advantage of the Lagrangian formu-
lation is that is an easy task to track material boundaries because they coincide
with element edges. The tracking of element quadrature points are also simple
because the mesh is coinciding with material points.
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Figure 2.13: The Lagrangian FE formulation

As stated in section 2.4.2 the conservation laws have to be satisfied for a phys-
ical body. For the Lagrangian formulation the conservation gives rise to the
following equations [7]:

Conservation of mass

ρ (X, t) J (X, t) = ρ0 (X) or ρJ = ρ0 (2.50)

Conservation of linear momentum

ρ0
∂v(X, t)

∂t
= ∇0 · P + ρ0b or ρ0

∂vi(X, t)
∂t

= ∂Pji
∂Xj

+ ρ0bi (2.51)

Conservation of angular momentum

F · F = P T · F T or FikPkj = PTikF
T
kj = FjkPki, S = ST (2.52)

Conservation of energy

ρ0ẇ
int = ρ0

∂wint(X,t)
∂t = Ḟ

T : P −∇0 · q̃ + ρ0s
or

ρ0ẇ
int = ḞjiPij − ∂q̃i

∂Xi
+ ρ0s

 (2.53)

where
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ρ0 is the original density
ρ is the current density
w is the hyperelastic potential on the reference config-

uration
b is the body force vector
J is the determinant of the Jacobian between spatial

and material coordinates J = det [∂xi/∂Xj ] .
F is the deformation gradient Fij = ∂xi/∂Xj

S is the Second Piola-Kirchhoff (PK2) stress.
P is the nominal stress (the transpose of the first Piola-

Kirchoff stress).
q is the collection of internal variables in the consti-

tutive model
s is the specific heat source term

One big drawback of the Lagrangian element formulation is that it has difficul-
ties with treating severe deformed bodies. Because the mesh is fixed at specific
material point, extensive deformation may cause markedly distorted elements.
The severly distorted elements will contribute to a degraded accuracy and a
negative Jacobian determinant might be obtained that can worsen the numer-
ical errors greatly [7]. Therefore, for applications where we expect very large
deformations, an Eulerian FEA might be more applicable.

2.4.4 Eulerian FEA
Eulerian FEA is most suited for problems with very large deformations. As
opposed to the Lagrangian formulation where the mesh is fixed on specific ma-
terial points, the Eulerian mesh is fixed in space, and the material can deform
independently of the mesh. The dependent variables are functions of the Eu-
lerian spatial coordinate x and the time t. In short it is often said that the
Eulerian nodes xI = constant in time. This serves to be ideal for problems
where the material is not history dependent and very large deformations of the
body are present. In fluid mechanics, it is very hard and often impossible to de-
scribe the motion of the fluid with respect to a reference configuration. However
it is not needed since the state of a newtonian fluid is independent of its history.

An illustration of the Eulerian FEA can be seen in figure 2.14 for the shearing
of a rectangular plate in two dimensions. As we can see, the material points
deform independently from the mesh.
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Figure 2.14: The Eulerian FE formulation

The conservation equations that must hold in the Eulerian element formulation
are as follows:

Conservation of mass:

Dρ

Dt
+ ρdiv(v) = 0 or Dρ

Dt
+ ρvi,i = 0 or ρ̇+ ρvi,i = 0 (2.54)

Conservation of linear momentum:

ρ
Dv

Dt
= ∇ · σ + ρb ≡ div (σ) + ρb or ρ

Dvi
Dt

= ∂σji
∂xj

+ ρbi (2.55)

Conservation of angular momentum:

σ = σT or σij = σji (2.56)

32



CHAPTER 2. THEORY

Conservation of energy:

ρ
Dwint

Dt
= D : σ −∇ · q + ρs or ρẇint = Dijσij −

∂qi
∂xi

+ ρs (2.57)

where

v is the velocity field
D is the rate of deformation, the velocity strain D =

sym(∇v)
σ is the Cauchy stress tensor

In contrast to the Lagrangian description, it is not easy to track material in-
terfaces because they do not coincide with element edges. Tracking methods or
approximate methods such as volume or fluid approaches need to be employed
for moving boundaries. In addition to this, the Eulerian mesh must be large
enough to enclose the material in its deformed state, or instabilities may occur.

2.4.5 Arbitrary Lagrangian Eulerian FEA.
The two aforementioned formulations have their obvious strengths and weak-
nesses. To capitalize on the strengths of both methods the Arbitrary Lagrangian
Eulerian (ALE) finite element formulations have been developed. The goal of
the ALE formulation is to capture the advantages of both the Lagrange and Eu-
lerian formulations while marginalizing the disadvantages associated with each
method. The result is a formulation where the mesh is adopting to the material
deformation to reduce the numerical errors associated with large elements in
the Eulerian formulation and to prevent ill-shaped elements in the Lagrangian
formulation. The ALE formulation also treats the problem of describing com-
plicated boundaries in the Eulerian formulation. The problems associated with
the Lagrangian and Eulerian formulations are illustrated in figure 2.15.
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Figure 2.15: Lagrangian and Eulerian associated problems [40]

In an ALE formulation, the mesh will adapt in order to better represent the
large deformations. This effect is illustrated in figure 2.16.

remeshed
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@R

(a) Lagrangian

remeshed
@
@
@
@@R

(b) Eulerian

Figure 2.16: Adaptation of the ALE-mesh [40]

When both element formulations are implemented in the same code, it allows
for materials with very stiff subdomains to be represented accurately by a La-
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grangian formulation, modelled together with fluids deforming comprehensibly
in an Eulerian mesh. It is quite often suitable to treat parts of a model as a
Lagrangian structure and other parts as Eulerian, This is called a Fluid Struc-
ture Interaction (FSI) formulation. A FSI coupling algorithm is needed for the
communication between the different parts [40].

In section 2.4.2.1 it was stated that the displacement, velocity and accelera-
tion of the material was independent of the chosen element formulation. This
also holds for the ALE formulation. However, the displacement, velocity and
acceleration of the mesh are different in the three element formulations. To
properly describe kinematics in the ALE formulation, the ALE referential do-
main Ω̂ is introduced together with the ALE coordinates χ. The ALE domain
Ω̂ is used to describe the motion of the mesh independently of the material.

The motion of the mesh is described by:

x = φ̂(χ, t) (2.58)

The φ̂ function is crucial. By employing this function the points in the ALE
domain is mapped on to x in the spatial domain. By combining equation (2.45)
and (2.46) with equation (2.58) we relate the material coordinates to the ALE
coordinates:

χ = φ̂
−1

(x, t) = φ̂
−1

(φ(X, t), t) = Ψ(X, t) (2.59)

or
Ψ = φ̂

−1
◦ φ (2.60)

Then the material motion can be expressed as a composition of the mesh motion
and the Ψ map:

x = φ(X, t) = φ̂(Ψ(X, t), t) (2.61)

or
φ = φ̂ ◦Ψ (2.62)

The compatibility of the different domains is illustrated in figure 2.17.
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Spatial Domain Ω
•x

φ̂(χ, t) = φ ◦ψ−1 φ(X, t) = φ̂ ◦ ψ

ψ(X, t) = φ̂
−1
◦ φ

Reference Domain Ω̂
•χ

Material Domain Ω0

•X

Figure 2.17: Compatibility of different domains

While the mesh kinematics was easy to obtain for the Lagrangian and Eulerian
formulations, it becomes a bit more cumbersome with the ALE formulation.
Mesh displacement is obtained by:

û(χ, t) = x− χ = φ̂(χ, t)− χ (2.63)

Mesh velocity is defined analogously to the material velocity

v̂(χ, t) = ∂φ̂(χ, t)
∂t

≡ φ̂,t[χ] (2.64)

Mesh acceleration follows:

â(χ, t) = ∂v̂(χ, t)
∂t

= ∂2û(χ, t)
∂t2

= û,tt[χ] (2.65)

For convenience the kinematics for material and mesh motion with respect to
all three formulations are given in table 2.2.
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Table 2.2: Kinematics for material and mesh motion for all three formulations
[7]

Description General ALE Lagrangian Eulerian

Motion
Material x = φ(X, t) x = φ(X, t) x = φ(X, t)

Mesh x = φ̂(χ, t) x = φ(X, t) x = I(x)
(χ = X, φ̂ = φ) (χ = x , φ̂ = I)

Displacement Material u = x−X u = x−X u = x−X
Mesh û = x− χ û = x−X = u û = x−X = 0

Velocity Material v = u,t[X] v = u,t[X] v = u,t[X]
Mesh v̂ = û,t[X] v̂ = û,t[X] = v v̂ = û,t[X] = 0

Acceleration Material a = v,t[X] a = v,t[X] a = v,t[X]
Mesh â = v̂,t[X] â = v̂,t[X] = a â = v̂,t[X] = 0

Prior to expressing the governing equations for the ALE formulations, two def-
initions must be stated. The convective velocity ci is defined as the difference
between the material and mesh velocity

ci = vi − v̂i (2.66)

The material time derivative which is embedded in the ALE formulation is
defined as follows:

Df

Dt
= f,t[χ] +f,j

∂xj
∂χi

wi = f,t[χ] +f,j cj (2.67)

The governing equations can then be expressed as follows:

Conservation of mass:

ρ̇+ ρvk,k = 0 or ρ,t[χ] +ρ,i ci + ρvk,k = 0 (2.68)

Conservation of linear momentum:

ρv̇i = ρ
(
vi,t[χ] + vi,jcj

)
= σji,j + pbi (2.69)

Conservation of angular momentum

σij = σji (2.70)
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Conservation of energy:

ρ(E,t[χ] +E,i ci) = σijDij + bivi + (kijθ,j ),i +ρs (2.71)

where
Df
Dt is the material time derivative
c is the convective velocity
θ is the temperature
k is the thermal conductivity of the material

2.4.6 Numerical Implementation of ALE
In this section an overview of the numerical implementation of the Arbitrary
Lagrangian Eulerian formulation in LS-DYNA are given. The theory in this
section is taken from the LS-DYNA theory manual if not stated otherwise.

2.4.6.1 Operator Split Technique

As explained earlier, the ALE formulation may be thought of as an algorithm
that performs automatic rezoning of the mesh. In theory, the ALE formula-
tion contains the Eulerian formulation as a subset, because an ALE calculation
without the rezoning would simply be a Eulerian formulation. Most ALE imple-
mentations only allow one single material in each element, this greatly speeds up
the calculation process. In a single material ALE formulation LS-DYNA first
computes the Lagrangian time derivative and updates the history variables.
Subsequently the relative motion between the mesh and material is computed,
and then the history variables are updated once more. This is also called an
operator split technique and is illustrated in figure 2.18.

Nodes
Mesh

Figure 2.18: Operator split technique
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The overall flow of an single material Euler/ALE timestep is as follows:

1. Perform a Lagrangian time step.

2. Perform mesh smoothing.

(a) Decide which nodes to move.
(b) Move the boundary nodes.
(c) Move the interior nodes.

3. Perform an advection step.

(a) Calculate the transport of the element-centered variables.
(b) Calculate the momentum transport and update the velocity.

2.4.6.2 Mesh Smoothing

The repositioning of the nodes is referred to as the mesh smoothing process.
In an Eulerian formulation the nodes are moved back to their initial position
while in an ALE analysis, they are moved back such that the mesh does not
possess severe distortions. Most problems associated with the mesh smoothing
process are when complicated boundaries are present. It is important for the
mesh smoothing algorithm not to present a crude mesh where a good refine-
ment is needed to accurately represent the final solution. In LS-DYNA there
are essentially two ways of repositioning the nodes in a single material ALE
formulation:

1. Force a set of nodes to stay on a straight line between two master nodes,
also often referred to as the direct method. The forcing is done in the
parametric domain to conserve the correct ratio of distances between the
nodes. The direct method is illustrated in figure 2.19
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Figure 2.19: Direct Method [40]

2. An iterative mesh smoothing algorithm. This can be done in several dif-
ferent ways, but the most useful methods implemented in LS-DYNA are
called the Simple average method illustrated in figure 2.20 where the co-
ordinates for the node to be moved is the average of the coordinates of the
surrounding nodes. The Equipotential smoothing algorithm is harder to
visualize but the new node placements are obtained by solving Laplace’s
equation in the parametric domain.

Surrounding nodes

Node to be moved

Figure 2.20: Simple average [40]

2.4.6.3 The Advection Step

The re-mapping of the solution variables on to the new configuration is called
the advection step, and this is the process that is associated with the largest
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portion of the numerical errors in an ALE analysis. In LS-DYNA there are two
different advection algorithms; the first order accurate Donor Cell scheme and
the second order accurate Van Leer scheme. Both methods utilize the half index
shift scheme for advection of node centered variables (velocities and tempera-
tures). Because a perfect fit of the solution variables is generally not possible
within a reasonable timeframe, a compromise between speed and accuracy has
to be done to ensure a viable computational time.

The algorithms for performing the remap step are taken from classical com-
putational fluid dynamics. They are referred to as advection algorithms after
the first order, scalar conservation equation that is frequently used as a model
hyperbolic problem:

∂φ

∂t
+ a (x) ∂φ

∂x
= 0 (2.72)

A good advection scheme should be monotonic, conservative and as little dissi-
pative and dispersive as possible. What the four attributes imply is presented
in the subsequent paragraphs. It is also important to note that the algorithm
should be as accurate as possible and stable when the timestep employed is
below a critical value. Although many of the solution variables such as the
stress and plastic strain are not governed by the conservation equations like
momentum and energy, it is still highly desirable that the volume integral of
all the solution variables remain unchanged by the remap step [32]. This is
especially important for the mass and energy conservation equations because
negative values would lead to physically unrealistic solutions.

Monotonic

A monotonic advection scheme is a numerical implementation that does not
introduce higher maximum values or smaller minimum values in the history
variable fields. This is presented mathematically as:

max
x∈V

(φnew) ≤ max
x∈V

(
φold

)
(2.73)

min
x∈V

(φnew) ≥ min
x∈V

(
φold

)
(2.74)

This is an important condition to ensure that no non-physical or unrealistic
effects can alter the final solution.
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Conservative

If an advection scheme is conservative it does not change the total mass, mo-
mentum or volume of the system. This condition ensures that the fundamental
conservation equations expressed in equation 2.67 to 2.71 holds. Expressed
mathematically as: ∫

V

φnewdV =
∫
V

φolddV (2.75)

Dissipative

The advection algorithm should strive to minimize the dissipative effects. A
strong dissipative algorithm smears out the solution variable fields in time.

φ φ

X X

Initial
Dissipative

Figure 2.21: Dissipative [40]

Figure 2.21 illustrates a wave moving through a mesh in the x direction. As the
dissipative effect increases, the wave gets smeared out in time.

Dispersion

A dispersive error occurs when the different frequencies travels at different
speeds. Dispersion errors originate from the fact that different solution vari-
ables with different frequencies don’t necessarily have the travel at the same
speed, and this balance may be shifted if not treated carefully. Dispersion of
high frequencies can often be counteracted by employing a dissipative scheme
that damps out higher frequencies.

Below follows an outline of the numerical implementation of the two advection
schemes in LS-DYNA.
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The First Order Donor Cell Scheme

The Donor cell scheme is monotonic, conservative and fast. However there is a
big drawback that the scheme is only first order accurate and has large dissi-
pative errors. This severely limits the usefulness of this scheme. In theory, the
Donor cell scheme is also dispersive, but the errors are often camouflaged by
very strong dissipation, thus high frequencies that travel too slow are quickly
damped out. This scheme is an upwind method, meaning that the scheme uses
data from the upstream convective velocity aj , thus the flux fφj is dependent on
the sign of a at node j which defines the upstream direction. The scheme only
collects information from elements that share common sides and utilizes internal
averaging making the advected variables the volume weighted average of their
projection on to the new mesh. The donor cell algorithm therefore assumes that
the distribution of φ is constant over the element.

Mathematically the Donor Cell Scheme is formulated as:

φn+1
j+ 1

2
= φnj+ 1

2
+ ∆t

∆x

(
fφj − f

φ
j+1

)
(2.76)

fφj = aj
2

(
φnj− 1

2
+ φnj+ 1

2

)
+ |aj |2

(
φnj− 1

2
− φnj+ 1

2

)
(2.77)

where

fφj is the flux or the so-called transport volume of be-
tween two adjacent elements.

aj is the convective velocity or the velocity of the con-
tact discontinuity at node j.

The advection algorithm stems from a first order Godunov method applied to
the advection equation (2.72). The Donor cell scheme for one and two dimen-
sions are illustrated in figure 2.22 and 2.23.
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Figure 2.22: The donor cell advection scheme in one dimension [40]
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Figure 2.23: The donor cell advection scheme in two dimensions [40]

The Second Order Van Leer Scheme

The van Leer scheme is monotonic, conservative and second order accurate.
This comes at the drawback of a much higher computational cost compared to
the donor cell method. It is based on the assumption of a mesh consisting of
rectangular elements. In most cases, severe element distortion or the enforcing
of monotonicity introduce second order errors terms and the scheme is in reality
reduced to a first order numerical scheme [32].
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The basic idea is to reconstruct an assumed linear variation of the history vari-
able fields. The assumed fields are mapped from the old mesh on to the new
configuration. Where the donor cell scheme assumed piecewise constant dis-
tribution of φ over the element, the Van Leer replaces the piecewise constant
distribution with a higher order interpolation function φn

j+ 1
2
(x) that is subject to

an element level conservation constraint. The value of φ at the element centroid
is regarded in this context as the average value of φ over the element instead of
the spatial value at xn

j+ 1
2

(if the field is assumed linear).

φnj+ 1
2

=
∫ xj+1

xj

φnj+ 1
2
(x)dx (2.78)

Generally the φn
j+ 1

2
(x) function can be of any numerical order, but introduc-

ing a function of a high order will result in an extremely cumbersome numerical
scheme that will prove to be too expensive to solve effectively, therefore φn

j+ 1
2
(x)

is almost always assumed as a linear function.

The assumed piecewise linear functions are found from the classical central dif-
ference method where x now is the volume coordinate. The volume coordinate
of a point is simply the volume swept along the path between the element cen-
troid and the point itself. Conservation of volume is guaranteed by expanding
the linear function about the element centroid.

∂φL

∂x = φ4−φ2
Lφ φ

X X
L L

φL > max(φ2, φ3, φ4)

φ1 φ2 φ3 φ4 φ5

Figure 2.24: The second order Van leer advection scheme [40]

As we can see from figure 2.24 the resulting linear field might become non-
monotonic such that:
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φnewi > max
i=1,nel

(φi) (2.79)

To counteract this, the numerical scheme can enforce monotonicity in one of
two different ways.

The easiest and least accurate method is to determine the maximum and min-
imum allowed slopes to the left and to the right of node φn

j+ 1
2

and the force
φn
j+ 1

2
(x) to fall in between this range by employing the following equation:

∂φL
∂x

= 1
2(sgn(sL) + sgn(sR)) ·min(

∣∣sL∣∣ , ∣∣sR∣∣ , |S|) (2.80)

where

sL is the slope to the left of φn
j+ 1

2

sR is the slope to the right of φn
j+ 1

2
S is the slope across φn

j+ 1
2

from φn
j− 1

2
to φn

j+ 3
2

This is illustrated in figure 2.25

L− L+
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2L

−

SR = φ4−φ3
1
2L

+

S = φ4−φ2
L

φ

X
φ1 φ2 φ3 φ4 φ5

L

Figure 2.25: the enforcing of monotonicity with the second order Van Leer
scheme [40]

The second and more elegant method is to restrict the average value of φ in the
transport volumes associated with element j + 1

2 . The latter definition allows
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the magnitude of the φ transported to adjacent elements to be larger than the
first formulation. And as a result the second method is more able to transport
solutions with large discontinuities. Figure 2.26 summarizes the second order
Van Leer advection scheme.

Before mesh
smoothing

Piecewise
linear field

New configuration
φ φ φ

L3

A

Lnew
3 φnew

3 = A
Lnew

3

X X X
φ1 φ2 φ3 φ4 φ5 φ1 φ2 φ3 φ4 φ5 φ1 φ2 φ3 φ4 φ5

Figure 2.26: Summary of the second order Van Leer advection scheme [40]

Half Index Shift

While the two aforementioned advection algorithms work well for element cen-
tered variables such as stresses and strains, they have to be modified to ad-
vect node associated variables such as velocity without being non-conservative.
LS-DYNA advects momentum instead of velocity to guarantee that the algo-
rithm stays conservative. To advect the momentum an auxiliary set of element-
centered variables are constructed from the velocity, and then advected by em-
ploying one of the two standard advection schemes. Then the algorithm has
to reconstruct the new velocities from the auxiliary variables. This process is
called the Half Index Shift algorithm and is quite cumbersome numerically.
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Nodes
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v1 v2

v3 v4

Figure 2.27: The half index shift algorithm employed to advect the node
associated variables [40]

As is illustrated in figure 2.27, the half index shift algorithm is used to trans-
port the nodal velocities to the integration points of the surrounding elements
(four different positions for two dimensions, eight different positions for three
dimensions). Subsequently they are advected by employing the standard Donor
cell or van Leer scheme. Then the new velocities are transported back to the
nodes.

2.4.6.4 Critical Time Step Size

Due to the implemented advection schemes, the mass flux velocity influence
the critical time step size in equation (2.42) The new critical time step is now
bounded by two conditions:

∆tcr = min
nel

[
∆xe

cd
,

∆xe

4vflux

]
(2.81)

vflux = max
i

(‖vi − v̂i‖) (2.82)

where

∆xe is the characteristic length of an element.
cd is the dilatational wave speed.
vi is the material velocity from equation (2.47).
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v̂i is the mesh velocity from equation 2.64.

The definition of ∆tcr ensures that a particle will not flow across more than
one quarter of an element in one time step. This is important for the advection
accuracy [40].

Typically the cost of an advection step is two to five times that of a Lagrangian
time step. By only performing an advection step for every ten Lagrangian steps,
the cost of an ALE calculation can often be reduced by a factor of three with-
out adversely affecting the time step size. Generally it is not worth the cost
to advect an element unless at least twenty percent of its volume will be trans-
ported because the gain in time step size will not offset the cost of the advection
calculation [32].

2.4.6.5 Multi-Material ALE

In the previous section we covered the single material ALE formulation where
only one material is present in the movable mesh. LS-DYNA contains a Multi-
Material Arbitrary Lagrangian Eulerian (MMALE) formulation that allows for
different materials such as steel and air to be present in the same element. This
is particularly useful for problems where multiple gasses are mixing or where
the boundary between a gas and a fluid with large deformations needs to be
modelled. This formulation can contain a mixture of fluids moving through an
Eulerian mesh that is also moving relative to a fixed reference frame. This is
illustrated in figure 2.28.

rigid boxair
water

rigid plate

ALE mesh

the ALE mesh is forced
to follow these 3 nodes

Figure 2.28: Multi-Material ALE formulation [40]
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Figure 2.28 illustrates the MMALE formulation where two different materials
are deforming inside a shared Eulerian mesh that is also translating with respect
to a fixed reference frame. It is also possible for the mesh to deform while it
contains multiple materials.

By default, all materials inside one element are assumed being exposed to the
same strain rate. This simplification can cause trouble such as drastically drop-
ping the stable time increment and non-physical deformation. LS-DYNA solves
this by employing a pressure iteration algorithm together with an interface re-
construction numerical scheme to properly describe how the different materials
deform inside the same element. The boundaries between the multiple materials
are internally defined as where the volume fraction equals 50%.

In this thesis the MMALE formulation will be utilized to simulate explosives in
a Eulerian domain with an equation of state (EOS). The explosive agent needs
to be defined as a separate material inside the Eulerian domain, thus a multi-
material Euler formulation needs to be employed to properly describe the system
behaviour. Because of the almost discontinuous pressure changes when the blast
wave propagates in the Eulerian mesh, an extremely small element size is re-
quired to properly describe the blast wave behaviour. An MMALE formulation
is therefore preferred because it can refine the mesh close to the pressure front
as the wave is propagating forward and will lead to a more accurate solution.

2.4.6.6 Fluid Structure Interaction

It is often suitable to treat parts of a model as purely Lagrangian, purely Eu-
lerian or purely ALE. A fluid structure coupling algorithm is needed for the
communication between the different parts. There are two different fluid struc-
ture coupling algorithms available in LS-DYNA.

Constraint Based Formulation

The constraint based method implemented in LS-DYNA directly modifies the
velocities of both the fluid and the structural nodes directly to force them to
follow each other. The Eulerian nodes are projected on to the edges of the
Lagrangian surface and the mass, force and momentum are lumped on to the
Lagrangian structure. The main drawback of the constraint based method is
that it does not conserve energy. The constraint based method is illustrated in
figure 2.29.
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Before re-distributing
momentum

Lagrangian surface

Eulerian
mesh

Lag. nodes
Eul. nodes

vL

v1 v2

v3 v4

v̄L

v̄1 v̄2

v̄3 v̄4

After re-distributing
momentum

∑
Nivi 6= vL

I =
∑
mivi +mLvL

∑
Niv̄i = v̄L

Ī =
∑
miv̄i +mLv̄L

Ī = I

Figure 2.29: The constraint based FSI algorithm [40]

The Penalty Based Method

The penalty based method are for most problems the preferred FSI coupling al-
gorithm because it conserves energy almost exactly [40]. The algorithm tracks
the relative displacement between the fluid and the structure to detect pene-
tration. When penetration is present, interface springs are placed between the
penetrating nodes and the contact surface, thus a force is applied to ensure that
the fluid-structure interface follows one another. The force applied will be pro-
portional to the magnitude of the relative displacement between the fluid and
the structure. The penalty based method is illustrated in figure 2.30.
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Coupling starts Later

Lagrangian
structure

Eulerian
element

Fluid mat. pts.
Lag. nodes

Eul. nodes

d

Figure 2.30: The penalty based FSI algorithm [40]

The algorithm does not enforce the contact condition as accurate as the con-
straint based method, it produces numerical noise and is not as stable, but if it
is properly defined it prevails as the method of choice because of energy conser-
vation.

If the algorithm is not defined properly, leakage through the coupling inter-
face might occur. The leakage is either caused by a crude coupling grid or due
to numerical errors in the interface reconstruction. Coupling grid refinement or
activation of the leakage control option in LS-DYNA should then be considered.

2.4.7 Discrete Particle Method (DPM)
As an alternative to the ALE or FSI formulations, a discrete particle method
may be employed. The method is based on modelling a blast simulation or a
specific gas behaviour by employing a set of discrete particles. The most obvious
advantages include a greatly reduced computational effort and the absence of
advection errors compared to an ALE or FSI formulation [41]. The model for
the particles is based on kinetic molecular theory where the rigid particles obey
Newton’s laws of classical mechanics. The gas-structure interactions can be
modelled with perfectly elastic collisions in a purely Lagrangian domain, thus
eliminating the numerical advection errors and other numerical errors outlined
in section 2.4.6.3 that lead to energy dissipation in the ALE formulation [41, 14].
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2.4.7.1 Kinetic Molecular Theory

The kinetic molecular theory is a study of gas molecules and their interactions on
a microscopic level. This in turn lead to the macroscopic relationship engineers
know as the ideal gas law. The theory is based on the four following assumptions
[41]:

• The average distance between the molecules is large compared to their
size.

• There is a thermo-dynamical equilibrium, i.e the molecules are in random
motion

• The molecules obey Newton’s laws of classical mechanics
• The only molecule-molecule and molecule-structure interactions are per-

fectly elastic conditions.

The molecular theory was first proposed in 1738 by Daniel Bernoulli [9, 8] when
he proposed that air pressure against a surface can be decomposed in to dis-
crete molecular collisions. Later on in 1860 James Clerk Maxwell derived an
expression for the molecular velocity distribution for a gas at thermal equilib-
rium [41, 37].

The ideal gas law serves as a base for these derivations:

PV = nRT (2.83)

where

P is the pressure
V is the volume
n is the number of molecules [mol]
R is the universal gas constant
T is the absolute temperature

In blast mechanics, it is important to describe the pressure accurately. From
the kinetic molecular theory it is possible to derive the pressure that is exerted
on to a surface from one particle when an elastic collision occurs. The average
pressure against a wall at x = Lx from a particle collision with the wall (see
figure 2.31) can be expressed as [41]:

Px,i = mi |vx,i|2

LxLyLz
= mi |vx,i|2

V
(2.84)

where
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mi is the mass of particle i.
vx,i is the velocity in the x direction of particle i
V is the volume Lx × Ly × Lz

Lx

Ly

Lz

(0, 0, 0)
Vi

Figure 2.31: Molecule collision [40]

With N molecules, the pressure in the x direction can be summed up as:

Px = 1
V

N∑
i=1

mi |vx,i|2 (2.85)

In a thermal equilibrium, the kinetic energy is evenly distributed in all Cartesian
direction, such that:

Px = Py = Pz = P = 2Wk

3V = 2
3wk = nMv2

rms

3V (2.86)

where

Wk is the total translational kinetic energy of all the
molecules in the system

wk is the specific translational kinetic energy per unit
volume

M is the molar mass
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vrms is the root-mean-square acceleration

If equation (2.86) is combined with equation (2.83), we arrive at the following
expression for the root-mean-square acceleration

vrms =

√√√√ 1
N

N∑
i=1
|vi|2 =

√
3RT
M

(2.87)

From Maxwell’s statistical descriptions, it is possible to derive quantities such as
the mean free path and frequency of collisions that in turn are significant parts
of the discrete particle formulation. The Maxwell-Botzmann distribution of
molecular velocities in an ideal gas is based on the assumption that the velocity
distribution in orthogonal directions are uncoupled [41], thus the velocity in
x direction is not a function of the velocity in the y direction and vice versa.
From this single assumption it is possible to show that the molecular velocity
distribution at thermal equilibrium is [37]:

f(v) = 4π
(

M

2πRT

) 3
2

v2 exp
[
−Mv2

2RT

]
(2.88)

The root-mean-square velocity at thermal equilibrium can then be calculated
as the integral [41, 42]:

vrms =

√∫ ∞
0

v2f (v) dv (2.89)

It is important to note that the thermal velocity vrms should not be confused
with flow velocity. For illustrative purposes, air molecules at room temperature
typically have a root-mean-square velocity of roughly 500 m/s [42].

The frequency of collision can be derived from equation (2.88):

fc = nvr
2
p

√
8πRT
M

(2.90)

where

rp is the molecular radius
nv is the number of molecules per unit volume
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The mean-free-path I of a molecule is also derived from Maxwells statistical
descriptions

I = 1√
2πnvr2

p

(2.91)

Macroscopically the translational kinetic energy per unit volume wk is a fraction
of the specific internal energy e = ρCvT of the gas [41]. If one were to assume
that the heat capacities are temperature independent, the following relation
holds:

P = 2
3wk = (γ − 1)e = (γ − 1)ρCvT (2.92)

It is important to note that the internal energy in an ideal gas can be divided
in to translational kinetic energy, vibration energy and spin, but it is only the
translational kinetic energy that produces the pressure. The fact that the vibra-
tion and spin energy does not contribute to the pressure allows the analyst to
model the same pressure with a reduced number of particles as long as the total
mass of the particles mtot and vrms stays constant. This is fundamental for the
discrete particle method implemented in a computer code, because simulating
every single molecule would be computationally extremely expensive.

Molecules Particles

Wk = 1
2

Np∑
i=1

miv
2
i W̄k = 1

2

Np∑
i=1

m̄iv̄
2
i

W̄k = Wk ⇒ P̄ = P

vi

mi

m̄i

v̄i

� P -P̄

Figure 2.32: A reduced number of particles represent the same pressure [41]

56



CHAPTER 2. THEORY

2.4.7.2 Numerical Implementation of the Discrete Particle Method

As stated earlier, the discrete particle method is purely Lagrangian. The simple
formulation of the fluid flow makes it easy to define and numerically robust [41].
The numerical implementation in IMPETUS takes in to account co-volume ef-
fects, and in addition the interaction between the gas particles allows the quota
of translational energy and rotational energy to change during the course of the
simulation. This leads to a much more complex interaction between the gas
particles than described in the previous section, but the fundamentals remain
the same. The discrete particle method employed in this thesis is implemented
in the finite element code IMPETUS.

Depending on the molecular weight, the number of molecules per gram of det-
onation product is in the range of 1022 − 1023 molecules [42]. It is therefore
impossible to simulate every molecule within a reasonable timeframe. The need
for computational efficiency in the numerical implementation has led to the fol-
lowing assumptions and deviations from the kinetic molecular theory [41, 42, 28]:

• The particles are given a spherical shape to speed up contact treatment

• The particles are assumed rigid

• Each particle represents many molecules. Typically 1015−1020 depending
on application

• To obtain a smoother pressure distribution, the impulse transfer from
particle collisions is slightly smeared out in time.

2.4.7.3 The Discrete Particle Method for Blast Applications

The discrete particle method has several advantages over a full ALE analysis
both when it comes to efficiency, advection errors and severe contact problems
[14]. Because it is impossible to simulate every single molecule, some effects will
not be as accurately represented as in a continuum formulation. Despite this
fact, a good representation of the blast load scenario can be achieved as done in
[14] and [42]. It is important to note that as the standoff increase more and more
particles are needed to properly describe fluid flow such as a blast wave. For
large values of the scaled distance Z, the method is a crude approximation.
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Chapter 3

Materials
Proper material models needs to be defined in order to get reliable results from
the FE simulations.

3.1 Material Docol 600 DL
The steel plate material used in the upcoming experiments is a cold-rolled, dual
phase steel of type Docol 600 DL supplied from Swedish steel AB (SSAB). The
nominal yield strength is reported to be in the range of 280 MPa to 360 MPa,
and the nominal tensile strength ranges from 600 MPa to 700 MPa [47]. The
chemical composition is shown in table 3.1.

Table 3.1: Chemical composition of Docol 600 DL (in wt%) [47]

C Si Mn P S Altot
0.1 0.4 1.5 0.01 0.002 0.04

3.2 Experimental Work
The main focus in this thesis will be numerical simulations, therefore the exper-
imental work with regards to establishing the material model and its attributes
will be based on the extensive work done in the doctorate Ductile Fracture in
Dual-Phase Steel [26] by Gruben. In his thesis a detailed overview of mechanical
testing, theoretical aspects of ductile fracture and numerical simulations on 2.0
mm thick Docol 600 DL plates is found. A comparison of material behaviour for
0.7 mm and 2.0 mm thick Docol 600 DL plates has been performed by Rakv̊ag
[44], that confirmed material isotropy.

Five experiments were conducted in [26] to determine the material paramaters
of the Docol 600 DL plates.

(a) Uniaxial tension test
(b) Plane-strain tension test
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(c) In-plane shear test
(d) Modified Arcan test set-up with β = 90◦
(e) Modified Arcan test set-up with β = 45◦

The experiments were performed at room temperature with strain rates of ap-
proximately 10−3s−1. For added accuracy, the strain fields were recorded using
Digital Image Correlation (DIC), and used as a benchmark for comparing the
material model used in the numerical simulation. A comparison of strain fields
observed in the experiments and the finite element analysis are shown in figure
3.1 and 3.2.

Figure 3.1: Experiment (a) to (c) versus FEA solution comparison [26]
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Figure 3.2: Experiment (d) to (e) versus FEA solution comparison [26]

The force-displacement histories from the instruments used in the experiments
and strain fields gathered with DIC were used to determine the material model
parameters.
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3.3 Docol 600 DL Parameters
Based on the work in [26], it is assumed that the material is perfectly plastic
and obeying the von Mises yield criterion with the associated flow rule. Nom-
inal elastic properties are described by a Young’s modulus of 210 GPa and a
Poisson’s ratio of 0.33.

As mentioned in [26], appropriate values for the materials strain-rate sensitivity
C and ε̇0p are shown to be 0.005 and 0.001 respectively in the work of [53] and
[19]. After necking strain rate increases significantly, and delays the evolution
of the neck. The strain-rate sensitivity term is added such that it captures this
effect.

In order to capture the post-necking behaviour, an iterative method similar
to the one used in [6] was implemented. The primary hardening in equation
(2.23) saturates for small strains, while the post necking stress is controlled by
the secondary hardening. Then an iterative process was performed in order to
optimize the material model. This was done by fitting the Voce curve accord-
ing to the pre-necking results and comparing force-displacement curves from
FE-simulations and experimental results. The fitted Voce curve on top of the
experimental results are shown in figure 3.3.

Figure 3.3: Voce versus experimental results [26]
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The final Voce and JC coefficients are shown in table 3.2.

Table 3.2: Voce Coefficients [26, 44]

σ0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2 ˙ε0p C
283.3 268.3 39.38 396.6 5 0.001 0.005

As seen in table 3.2, the yield strength range of 280 MPa to 360 MPa stated
in the supplied SSAB datasheet [47] corresponds quite well with the observed
yield strength of 283.3 MPa. This also applies for the supplied tensile strength
indicated in the range of 600 MPa to 700 MPa compared to the observed in the
derived curve from the experiment (figure 3.3).

Additional material data used in LS-DYNA MAT 107 is based on Hallset and
Haagenruds thesis in 2011 [27] and are shown in table 3.3.

Table 3.3: Additional material data for Docol 600 DL [27]

Coeff. LS-DYNA var. Value Description Units
ρ ro 7850 Density of steel [ kgm3 ]
χ xsi 0.9 Taylor-Quinnery coefficient [−]
cp cp 452 Specific heat capacity for constant P [ J

kgK ]
α alpha 1.2E-5 Thermal expansion coefficient [K−1]
tr tr 293 Room temperature [K]
tm tm 1800 Material melting temperature [K]
t0 t0 293 Initial temperature [K]
Dc dc 1 Critical damage parameter [−]
Wcr pd/wc 7.48E8 Critical CL parameter [Pa]
Tc tc 1650 Critical temperature par. [K]
τc tauc 1E20 Critical shear stress par. [−]
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3.4 Fluid Parameters
To accurately describe air behaviour in LS-DYNA, a proper definition of fluid
parameters needs to be established using input cards MAT NULL and
EOS LINEAR POLYNOMIAL. The parameters in table 3.4 are based on data
found in [44].

Table 3.4: EOS LINEAR POLYNOMIAL and MAT NULL parameters for air
[44]

ρair [kg/m3] C4 [-] C5 [-] E0 [J/m3] V0 [-]
1.25 0.4 0.4 2.5E5 1.0

3.5 Explosives Parameters
In order to simulate the explosive process in LS-DYNA, a proper definition of
the explosive agent needs to be addressed. The parameters are employed in LS-
DYNA using the input cards MAT HIGH EXPLOSIVES BURN and EOS JWL.
The parameters in table 3.5 and 3.6 are based mainly on data from [14], and
supplemented by findings in [17] and [44]. Coefficients not included in this
section are not tampered with, thus set to default values or simply set to zero.

Table 3.5: EOS JWL parameters for C4 [14]

A [Pa] B [Pa] R1 [-] R2 [-] ω [-] E0 [J/m3]
5.974E11 1.39E10 4.5 1.5 0.32 8.7E9

Table 3.6: MAT HIGH EXPLOSIVE BURN parameters for C4 [14], [17] and
[44]

ρC4 [kg/m3] D [m/s] PCJ [Pa] β [-] k [-] g [-]
1601 8190 2.8E10 2 1 1
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Experimental Work
The experiments covered in this thesis will serve as benchmarks for the numerical
simulations in chapter 7. Three separate experiments are presented in this thesis

• Experiments performed by Rakv̊ag in 2009 [44] at NTNU (section 4.1.3)
• Experiments performed in connection with this thesis (2013) at NTNU

(section 4.1.4)
• Experiments performed by Rakv̊ag in 2010 at Raufoss [44] (section 4.2)

4.1 Experiments at NTNU

4.1.1 Introduction
SIMLabs two-stage compressed gas gun was used to simulate blast loading.
It is primarily intended for penetration studies, and was designed and built
at NTNU, Department of Structural Engineering, in close collaboration with
the Norwegian Defence Construction Service, Central Staff, Technical Division
(FBT). At the time it was built in the mid 1990s, it was the first of its kind in
Norway. The gas gun is capable of launching a 0.25 kg projectile to a velocity
of 1000 m/s [11]. The gas gun is shown in figure 4.1.

Figure 4.1: Experimental rig
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4.1.2 Gas Gun Description
A schematic of the test set-up is shown in figure 4.2. The main components
are the pressure tank, the firing section, the barrel, the impact chamber and
the support. The pressure tank has an internal volume of 20 litre and is made
of stainless steel. The barrel is 9.6 m long (figure 4.3), and is comprised of a
stainless, acid-proof steel (AISI 316L). The internal diameter of the barrel was
measured to be 50.32 mm in [11]. The impact chamber consists of a 16 m3

large tank, 4 meters long with an outer diameter of 2.4 meters, whereas the
wall-thickness in all parts of the tank is 25 mm, where only St52-3N steel has
been employed.

Figure 4.2: Experimental rig setup [11]

Master thesis "Blast loaded steel plates"

Written by: Kristoffer H. A. and Fredrik B. H.

Scale:1:5

Experimental rig barrel

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

Firing-
unit

Vacuum
pump

Barrel
Lead seal

Impact chamber

Figure 4.3: Barrel schematic (Illustrations based on [11])

66



CHAPTER 4. EXPERIMENTAL WORK

The gas gun was originally intended to be used for penetration studies with
ballistics. It was later modified to be able to simulate blast loading. My-
lar membranes are placed on either side of the firing section, and then air is
pumped in to the pressure tank and the firing section. When half of the desired
pressure is reached in both the main tank and the firing section, the air valve
for the firing section is closed such that the pressure stays constant in the firing
tank. Pressure continues to build up in the main tank until the desired pressure
is reached. To fire the gas gun, the pressure in the firing section is released,
causing the membranes to rupture and the pressure is released in to the barrel.
The mylar membranes are designed to break on a specified pressure gradient,
such that by inserting membranes that ruptures at a pressure gradient approxi-
mately 50% larger than half of the desired pressure, the firing of the gun can be
controlled by the evacuation valve. For the simulation of blast loads the barrel
will be filled with air at 1 atm, which means that the vacuum pumps depicted
in figure 4.3 are not used. The firing of the gas gun is illustrated in figure 4.4
and 4.5.
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4.1.3 Experiments Performed at NTNU in 2009
Two sets of experiments were performed in 2009:

• Measuring reflected pressures
• Plate loading

4.1.3.1 Experiment Rig

The gas gun experiments were conducted by fixing a frame approximately 35
cm from the muzzle of the barrel (as shown in figure 4.6).

(a) Picture of rig in 2009
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Figure 4.6: 2009 experiment overview
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Measuring Reflected Pressure

The reflected pressure generated by the gas gun is measured using pressure
transducers fixed in a rigid plate (shown in figure 4.7a), and positioned such as
illustrated in figure 4.7b.

(a) Pressure transducers positioning
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Figure 4.7: Pressure readings setup 2009 (As seen from behind)

Plate Loading

The plates used in experiments are 0.7mm thick 340mm x 340mm Docol 600
DL steel plates (example shown in figure 4.8) using boundary conditions shown
in figure 4.9.

Figure 4.8: Docol 600 DL steel plate
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Figure 4.9: Plate boundary conditions (2009)

The plates are positioned in between the frames with enough slack such that
they are not pinched.

4.1.3.2 Experiment Procedure

Measuring Reflected Pressure

A series of experiments employing 5, 10, 15, 20, 30 and 40 bar in the main tank
of the gas gun was performed. See section 5.1.1 for results.

Plate Loading

Only the experiments resulting in permanent deflections are considered, thus
only the 40 bar pressure experiment is presented in this thesis.

4.1.4 Experiments Performed at NTNU in 2013
Previous work by Rakv̊ag [44] shows that the peak pressure levels are subject
to stagnation. In order to combat the peak pressure stagnation the barrel was
retrofitted with a funnel, shown in figure 4.10.

4.1.4.1 Experiment Rig

The experiment rig used in 2013 is the same as used in 2009, only retrofitted
with a funnel.
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(a) Barrel extended with a funnel (2013)

51,32

320 30

260

Master thesis "Blast loaded steel plates"

Written by: Kristoffer H. A. and Fredrik B. H.

Scale:1:4

Experimental rig firing mechanism open

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

�Plate

[mm]
(b) Rig 2013 schematic

Figure 4.10: Experiment overview

Measuring Reflected Pressure

The reflected pressure readings set-up will be similar to the experiments per-
formed in 2009, illustrated in figure 4.7. The only modification is the retrofitted
funnel.

Plate Loading

The plates subjected to loading are similar to the ones used in 2009 (see section
4.1.3 and figure 4.8). The plate boundary conditions are modified, illustrated
in figure 4.11. The plates are 390mm x 390mm in order to fit better with the
new boundary conditions used in this thesis.
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Figure 4.11: Plate boundary conditions (2013)
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4.1.4.2 Experiment Procedure

Measuring Reflected Pressure

A series of experiments (similar to the ones presented in 4.1.3) were performed
using various pressures ranging from 5 bar to 30 bar in the main tank. Additional
experiments were performed using the main tank only and the firing section only,
in order to investigate their individual impacts on reflected pressure readings
(illustrated in 4.5).

Table 4.1: Test matrix 2013

Pressure Main tank only Firing section only Normal set-up[Bar]
5 X
10 X X X
15 X
20 X
30 X

See section 5.1.1 for results.

Plate Loading

3 successful plate loading experiments were performed at the following pressures:

Table 4.2: Plate loading experiment set-up 2013

Pressure # of experiments[Bar]
30 1
40 2

See section 5.1.2 for results.

4.2 Experiments at Raufoss (2010)
Full scale experiments employing real explosives were performed at Raufoss
(2010) conducted mainly by Rakv̊ag and K. O. Hauge from NDEA. Two sets of
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experiments were performed:

• Side-on pressure measurements based on a ground placed charge.
• Blast loading steel plates.

Cylindrical (130 mm long and with a diameter of 30 mm) C4 charges, at approx-
imately 140-146g were employed. Three different C4 casings were used in the
original experiments intended to investigate the effect of fragmentation, however
only the naked charges will be investigated in this thesis (illustrated in figure
4.12).

Figure 4.12: Charge types (From left: Pre-frag, Cased and Naked)

4.2.1 Side-on Pressure Experiments
Originally the side-on pressure experiments were intended to be used as a basis
for load curves for the related plate loading experiments.

4.2.1.1 Experiment Rig

The rig used for measuring side-on pressure consist of a charge placed on a steel
plate, and a small steel tap placed directly in front of the charge in order to
prevent the sensors to be hit by debris from the explosion (shown in figure 4.13
and 4.14).
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Figure 4.13: Side-on pressure rig
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Figure 4.14: Side-on pressure rig schematic

Table 4.3: Sensor distances at Raufoss

Sensor # R [m]
1 0.6000
2 0.7500
3 0.1250
4 0.1325
5 0.1400
6 0.2000
7 0.2075
8 0.2150

4.2.1.2 Experiment Procedure

The side-on pressure sensors were placed at various distances shown in table
4.3. The side-on pressure was recorded for all three charge types, however only
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the ”Naked” charge will be discussed in this thesis. 4 different naked charge
tests were performed. See section 5.2.1 for results

4.2.2 Blast Loading Steel Plates
A series of blast loaded plate experiments were conducted at 4 different stand-
offs.

4.2.2.1 Experiment Rig

The rig used for blast loading plate experiments consists of two identical plate-
rigs which makes it possible to test two different standoffs for each explosive
charge (see figure 4.15a).

(a) Blast loading steel plates rig
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(b) Rig at Raufoss schematic

A schematic of the experimental setup is shown in figure 4.15b which shows how
the charge is placed directly in front of the plate.

2mm thick, quadratic 400x400mm Docol 600 DL steel plates are employed,
which are bolted to the frames. The plate geometry and boundary conditions
can be seen in figure 4.15.

75



CHAPTER 4. EXPERIMENTAL WORK

400

300

Master thesis "Blast loaded steel plates"

Written by: Kristoffer H. A. and Fredrik B. H.

Scale:1:3

Old boundary conditions

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

Figure 4.15: Plate boundary conditions (Raufoss 2010)

4.2.2.2 Experiment Procedure

Two explosive experiments were performed, thus permanent plate deflections
from four different standoffs could be extracted.

Table 4.4: Experiment details for Raufoss

Experiment # R [mm] Explosives

1 300

C4 140-146 g550

2 400
450

See section 5.2.2 for results.

76



Chapter 5

Experimental Results

5.1 Experiments at NTNU
In this section the results from the experiments described in section 4.1.3 and
4.1.4 will be presented. The results are presented alongside each other because
they are both performed using the gas gun at NTNU.

5.1.1 Reflected Pressure Time-History
The experiment data is extracted using the methods described in section 4.1.3.1.
The data from the pressure sensors suffered from a lot of noise, thus making it
necessary to apply a filter in order to properly process the data. A 100 Hz 2.
order lowpass Butterworth filter algorithm was employed to filter the raw data
(See Appendix A.2 for details). A collection of comparisons between raw data
and the corresponding filtered pressure time-histories can be found in Appendix
A.1. Filter validation was performed by comparing the impulses of both raw
data and filtered results, thus making sure impulses are preserved in the filtering
process. An example of the filtered results is shown in figure 5.1.
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Figure 5.1: Reflected pressure time-history from the midpoint sensor (sensor
1, NTNU 2013)

Data from sensor 1 is compared for the two aforementioned experiments in figure
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5.2 and table 5.1.
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Figure 5.2: Reflected pressure time-history NTNU comparison
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Table 5.1: Peak reflected pressure and impulse comparison NTNU

Sensor
2009 (40 Bar) 2009 (30 Bar) 2013 (30 Bar)
ir,exp Pr,exp ir,exp Pr,exp ir,exp Pr,exp

[kPas] [kPa] [kPas] [kPa] [kPas] [kPa]
1 54.30 299.49 47.51 292.82 15.72 164.29
7 31.90 246.31 33.51 269.98 10.81 144.46
8 14.83 253.60 13.69 235.97 3.53 67.35
9 5.42 180.36 2.09 166.72 -4.74 23.88
11 30.03 266.31 1.36 24.78 -15.58 5.87

As mentioned in section 4.1.4 the intention behind retrofitting the barrel with
a funnel was to increase the peak pressure and impulse. However based on the
data in both table 5.1 and figure 5.2, it is evident that the funnel has reduced
the total impulse for all the various pressure levels in the main tank.

For the upcoming numerical simulations, it is important to check whether or
not the pressure load is evenly distributed around the plates centre. Initially the
data from 2009 was examined and found to be approximately centred. However,
by investigating the results the loads from 2013 are found to be not centred.
A good representation of the pressure distribution was found by looking at the
data from sensors 2, 3, 7 and 8 (illustrated in figure 5.3a). Ideally if the pres-
sure is evenly distributed around the centre, sensor 2 and 3 should give similar
results as sensor 7 and 8. Pressure data indicates signs of the load distribution
being consistently non-centred for all the different pressure levels in the main
tank. An example of pressure time-history being non-centred is shown in figure
5.3b and table 5.2.
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Figure 5.3: Pressure results

Table 5.2: Peak pressures recorded using 10 Bar

Sensor # Pr,exp
[kPa]

1 200.8
2 76.6
3 9.2
7 154.2
8 28.4
13 4.4

From examining the results, it is evident that the funnel somehow forces the
pressure loading out of alignment.

5.1.2 Loaded Steel Plate Deformations
After a series of initial tests it was shown that any tests using pressures beneath
30 Bar in the main tank only resulted in elastic deformation, and are therefore
omitted. Note that the different plate boundary conditions should be considered
when comparing the plate deflections from 2009 and 2013.

80



CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.3: Plate deformations summary

Experiment ∆exp [mm]
NTNU (2009) NTNU (2013)

30 bar test # 1 8 ± 2
40 bar test # 1 ∼ 15 18 ± 2
40 bar test # 2 20 ± 2

Accurate measurements of midpoint deflection proved to be difficult, due to
asymmetrical deformations in all the plates subjected to loading. The asym-
metrically deformed plates are shown in figure 5.4

(a) 30 Bar test 1 (b) 40 Bar test 1

(c) 40 Bar test 2

Figure 5.4: Deformed plates (2013) due to air-pressure loading

The deformed plates show signs of the load not being centred, reaffirming the
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suspicions from the reflected pressure measurement-results in section 5.1.1. The
plate-deflections are larger than what was reported back in 2009, despite being
loaded by a smaller impulse and peak pressures. However, there are signifi-
cant changes concerning plate boundary conditions (shown in figure 4.9) which
would indicate that the boundary conditions used now (2013) allows for more
deformation.

Comments concerning the reflected pressure- and plate loading experiment at
NTNU are listed below.

• The plate might not be centred perfectly in front of the muzzle.
• The newly added funnel might be unsymmetrical and forces the pressure

wave out of alignment.
• The plate might not be perfectly placed perpendicular to the direction of

the pressure flow.
• The pressure readings from the transducers might be inaccurate.
• The plate deflections might be inaccurately measured.

5.2 Experiments at Raufoss (2010)

5.2.1 Side-on Pressure Time-History
Pressure time-history was recorded for all sensors, and the data was largely
consistent. The resulting peak side-on pressures from the experiments are sum-
marized in table 5.4.

Table 5.4: Side-on pressure readings

Sensor # Pso,exp [kPa]
Test # 1 Test # 2 Test # 3 Test # 4

1 1742.53 1576.93 3223.43 1296.25
2 1047.09 1376.42 1010.00 1001.51
3 362.31 362.31 362.31 362.31
4 277.62 285.84 294.20 338.86
5 127.58 137.63 344.70 213.95
6 89.38 100.15 92.96 138.25
7 84.27 96.72 73.78 110.98
8 18.67 48.17 16.99 25.30

82



CHAPTER 5. EXPERIMENTAL RESULTS

Examples of the pressure time-history plots are shown in figure 5.5.
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Figure 5.5: Side on pressures Raufoss (2010)

Based on the relatively large value in sensor 1 in Test # 3, it might indicate that
this is an anomaly. Seemingly sensor 3 could be malfunctioning considering it
was recording the same peak pressures for all 4 tests, or sensor 3 is somehow
capped at a certain peak pressure.

5.2.2 Blast Loaded Steel Plate Deformations
Experimental results from the blast loaded plates described in section 4.2.1.2
are shown in table 5.5.

Table 5.5: Experiment results for Raufoss

Experiment # R ∆exp

[mm] [mm]

1 300 32.19
550 18.47

2 400 26.93
450 24.07

An example of a deformed plate is shown in figure 5.6.
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Figure 5.6: Plate deformation example from experiments at Raufoss

The plate deformation seems to be symmetric judging by figure 5.6.

Comments and potential error-sources regarding the experiments at Raufoss:

• The side-on pressure transducers might be inaccurate

• The small steel tap in the side-on experiments might disturb the experi-
mental results

• The measured distances might be inaccurate

• The mass of the explosive agent, or the geometry could deviate from the
reported values

• The plate might have geometric imperfections
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Chapter 6

Preliminary Numerical Study
The foundation for the upcoming numerical models will be established in this
chapter by accounting for the necessary calibrations required in order to recreate
experimental results.

6.1 The Lagrangian Model
The Lagrangian formulation described in 2.4.3 will be employed in order to rep-
resent the different plate- and supporting frame-geometries presented in chapter
4. An initial study on mesh sensitivity will be performed in LS-DYNA, followed
by a cross-platform validation for the two numerical codes LS-DYNA and IM-
PETUS. After the cross-platform validation, a calibration of the number of
particles employed in the discrete particle method will be performed.

6.1.1 Mesh-Sensitivity Study
A mesh-sensitivity study will be performed in LS-DYNA to determine which
elements and corresponding attributes, that are appropriate to accurately rep-
resent the expected deformation.

Introduction

A simple benchmark problem was defined and modelled in LS-DYNA. A quar-
ter symmetry model based on the geometry shown in figure 4.11 was created,
and loaded by a generalized blast wave. The applied load in the defined bench-
mark problem is represented by a Friedlander approximation employing a set of
parameters expected to be a good representation of the loads observed in the
experiments. The parameters are shown in table 6.1 and illustrated in figure
6.2. The applied load area is described in figure 6.1c.

Even though no experimental data is present to validate theses numerical sim-
ulations, the results are expected to converge towards one solution as the mesh
is refined.
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The numerical model consists of three parts; a frame, clamp and a plate (shown
in figure 6.1). The frame and the clamp consists of rigid solid elements, and
are restricted from any movements or rotations. The 0.7 mm thick plate will be
modelled both by shell and solid elements. A general contact algorithm will be
employed between all parts with a steel-steel friction coefficient set to zero. The
plate material model is based on data from section 3.3. Note that in LS-DYNA
the rigid elements must be assigned a density, which in turn has been set to
the same density used for the plates. However considering the frame and the
clamp are restricted from any movement or rotations, the assigned density will
not have an impact on the analyses.

(a) Front (b) Back
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Figure 6.1: Numerical model overview (frame: yellow, clamp: red, plate: blue)

Table 6.1: Friedlander parameters

Parameter Value
b 2
T+ 0.02
Pso 300 kPa

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
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Figure 6.2: Friedlander load curve

Procedure

The different shell and solid element formulations with corresponding element
sizes investigated are tabulated in table 6.2. The plate response is expected to be
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dominated by bending, such that an appropriate number of thickness integration
points needs to be determined for shells. The number of solid elements through
the plates thickness is investigated for the same reason.

Table 6.2: Mesh sensitivity study element sizes overview

Shell elements
Element size # of integration points Total # of

[mm2] through plate thickness elements
5x5 3,5 and 7 1521

2.5x2.5 3,5 and 7 6084
1x1 3,5 and 7 37636

Solid elements
Element size # of elements through Total # of

[mm3] plate thickness elements

5x5x0.7
1 1521
2 3042
3 4563

2.5x2.5x0.7
1 6084
2 12168
3 18252

1x1x0.7
1 37636
2 75272
3 112908

A very small solid element size needs to be employed in order to prevent bad
aspect ratios, which would be very computationally expensive. However, they
are included to illustrate the benefits of employing shell elements for this par-
ticular type of problem.

The analyses will be run for a simulation time of 50 ms, and the deflection
of the center node will be recorded. The simulated time of 50 ms allows the
plates to be permanently deformed, and also have enough time to determine a
permanent deflection based on the average of the oscillating plates elastic de-
formations.

The solid element formulation employed in LS-DYNA is especially intended
for elements with poor aspect ratio using full integration, and the shell elements
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are employing a standard Belytschko-Tsay formulation [33] employing reduced
integration. The Gauss-Lobatto integration rule was used in the thickness inte-
gration, in order to have integration points at the shell element surfaces.

The analyses were performed using LS-DYNA synchronized multiprocessing
(SMP) solver version ls971d R6.1.0 with double precision (I8R8). Primarily
a Xeon64 system Linux cluster was employed allocating 3 processors on each
analysis. See appendix B.1 for a keyword example.

Results

The results from the analyses are shown in table 6.3, and are further illustrated
in figure 6.3. An example of a deformed plate is shown in figure 6.4
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Table 6.3: Results from the mesh sensitivity study

SOLIDS
Element size # of elements ∆max ∆perm CPU time

[mm] through thickness [mm] [mm] [h:min:s]*

5
1 11.43 5.23 [01:14:03]
2 15.94 10.50 [04:25:54]
3 21.66 17.36 [08:39:34]

2.5 1 12.79 6.58 [03:01:03]
2 25.42 20.02 [16:01:58]

3**** - - [–:–:–]

1 1 43.15 18.89 [24:13:40]
2**** - - [–:–:–]
3**** - - [–:–:–]

SHELLS
Element size # of thickness ∆max ∆perm CPU time

[mm] integration points [mm] [mm] [h:min:s]*

5
3 26.47 15.26 [00:01:42]**
5 25.53 13.41 [00:02:11]**
7 25.46 13.61 [00:02:38]**

2.5
3 25.94 13.52 [00:12:32]**
5 25.36 13.31 [00:15:44]**
7 25.03 12.65 [00:18:42]**

1***
3 27.59 15.10 [04:24:54]
5 26.76 14.45 [05:07:32]
7 26.54 13.99 [05:51:30]

* Since the CPU resources available are not constant, reported CPU times
should not be used as accurate measurements.

** Analyses were run using 4 processors on an intel core i7-3612QM CPU per-
sonal laptop.

*** For smaller elements an increase in displacement occurs (especially for
1x1x0.7 [mm] solids). By controlling the energy readouts it is confirmed that
increased sliding energy is the culprit for the increase in midpoint displacement.
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**** Analyses not completed because the expected CPU time was too long.
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Figure 6.3: The plates midpoint deflection

Figure 6.4: Example of a deformed plate at T = 0.05s employing 5x5 [mm]
shell elements with 5 integration points through the thickness

As expected employing less than three solid elements through the plate thick-
ness represents bending poorly. The 5x5x0.23 [mm] solid elements requires a
CPU time of over eight hours compared to approximately two minutes using
shells. This makes shell elements the appropriate choice for further study.

Based on the results in this section, a shell element formulation with reduced
integration employing 5x5 [mm] elements, and 5 thickness integration points, is
chosen based on its proven accuracy compared to the smaller element sizes, and
its efficiency.
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For shell elements employing reduced integration it is important to check for
hourglassing. See figure 6.5a for the energy balance for the selected shell element
formulation.
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Figure 6.5: Reduced integration versus full integration

Hourglass energy is observed in figure 6.5a. The hourglass energy is suspected
to be caused by small high frequency plate-oscillations that does not affect the
maximum and permanent displacement to any noticeable degree. Additional
simulations using similar elements employing full integration were performed,
and by comparing the results (shown in figure 6.5b), it is observed that the max-
imum and permanent deflections are not significantly affected by hourglassing.
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6.1.2 Cross-Platform Validation
In order to compare numerical results between IMPETUS and LS-DYNA we
have to ensure that the two yields approximately the same results for identi-
cal problems. In this section the two codes are compared using two defined
problems.

Introduction

Two scenarios that represents the different experiments performed in this thesis
are subject to a cross-platform validation. The first scenario is based on the
numerical simulations described in section 6.1.1, and the geometry is based on
the experiments in section 4.1.4. The second scenario is based on the geometry
from the experiments in section 4.1.3.

Procedure

An overview of the scenario 1 geometry is shown in 6.6, followed by a description
of the applied load in figure 6.7

(a) Front (b) Back
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(c) Load area schematic

Figure 6.6: Scenario 1 overview (frame: yellow, clamp: red, plate: blue)

For scenario 1, three nodal deflection time-history plots will be subject for com-
parison as shown in figure 6.7a.

92



CHAPTER 6. PRELIMINARY NUMERICAL STUDY

Master thesis "Blast loaded steel plates"

Written by: Kristoffer H. A. and Fredrik B. H.

Scale:1:3

Current boundary conditions

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

End

Quart

Midpoint

(a) Recorded node-deflections

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−50

0

50

100

150

200

250

300

Time [s]

P
re
ss
u
re

[k
P
a]

Friedlander

(b) Friedlander load curve

Figure 6.7: Scenario 1 further explained

As mentioned in the previous section, a Friedlander curve is chosen for the ap-
plied load in scenario 1 because it is a good representation of the loads observed
in the experiments.

An overview of the scenario 2 geometry is shown in figure 6.8, followed by a
description of the applied load in figure 6.9b.
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Figure 6.8: Scenario 2 overview (frame: yellow, clamp: red, plate: blue)

For scenario 2, two nodal deflection time-history plots will be subject for com-
parison as shown in figure 6.9a.

93



CHAPTER 6. PRELIMINARY NUMERICAL STUDY

Master thesis "Blast loaded steel plates"

Written by: Kristoffer H. A. and Fredrik B. H.

Scale:1:3

Current boundary conditions

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

Quart

Midpoint

(a) Recorded node-deflections

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−50

0

50

100

150

200

250

300

Time [s]

P
re
ss
u
re

[k
P
a]

Blockpulse

(b) Blockpulse load curve

Figure 6.9: Scenario 2 further explained

The applied load in scenario 2 is a blockpulse (illustrated in figure 6.9b) with
peak pressures of 300 kPa at 10ms intervals, evenly distributed on a area
sketched in figure 6.8c. A blockpulse is employed in order to represent sud-
den loading-offloading observed in the experiments.

The geometry created in LS-DYNA is exported and imported into IMPETUS.
However IMPETUS does not employ the same set of shape functions as LS-
DYNA, thus it allows for higher order solid elements to be employed without
the increased numerical noise present in classic explicit codes with non-linear
elements. The third order elements in IMPETUS (figure 6.10) have shown ex-
cellent performance in plasticity problems [41] but results in increased compu-
tational costs compared to classic first order linear elements. Different element
sizes were therefore chosen in the two codes such that the results would be as
comparable as possible. The recommended 5x5 [mm] shell element from section
6.1.1 is employed in LS-DYNA, therefore an element size of 15x15x0.7 [mm]
was chosen in IMPETUS. This was based on the assumption that three linear
shell elements in LS-DYNA are approximately the equivalent of employing a
single third-order element in IMPETUS. A comparison of the different element
formulations is shown in figure 6.11.
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Figure 6.10: IMPETUS elements [43]

5x5x0.7 [mm]
linear shell element

15x15x0.7 [mm]
third order solid element

Figure 6.11: Cross-platform element comparison

Only a graphically comparison between the deflection time-histories from each
code will be performed in order to validate the cross-platform plate deformation.

Results

The recorded nodal deflections for Scenario 1 are shown in figure 6.12, and
shown for Scenario 2 in figure 6.13.
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Figure 6.12: Scenario 1 nodal deflection time-history comparison

By examining the deflection time-history curves from scenario 1, it is evident
that IMPETUS and LS-DYNA generate approximately similar results. The
maximum midpoint deflections are almost identical, and the only apparent dif-
ference is that the oscillations are not in sync. This could be explained by the
fact that the two element formulations results in different plate stiffness’s.
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Figure 6.13: Scenario 2 nodal deflection time-history comparison

In the deflection time-histories from scenario 2 it is also observed strong similar-
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ities between LS-DYNA and IMPETUS. However the deflection in IMPETUS
is observed to be slightly bigger than what is produced in LS-DYNA, which also
could be explained by the difference in stiffness generated by the two different
element formulations. A comparison of the computational time in IMPETUS
against the time in LS-DYNA is shown in table 6.4.

Table 6.4: Computational time compared

Scenario LS-DYNA IMPETUS
[h:min:s] [h:min:s]

1 [00:02:11] [04:02:22]
2 [00:02:30] [06:50:47]

Based on the results in this section it is observed that the two codes can generate
similar results despite using different element formulations. A cross-platform
comparison is valid given that it is based on the conditions presented in this
section (identical input geometry except for IMPETUS employing 15x15x0.7
[mm] solid elements for the plate, compared to the 5x5 [mm] shell elements
employed in LS-DYNA).
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6.1.3 Number of Particles
In chapter 7 the discrete particle method will be employed to describe various
blast loads. As outlined in section 2.4.7.2 it is impossible to simulate every
single molecule present in the experiment because of the computational demand.
Therefore a proper amount of particles needs to be chosen to sufficiently retain
accuracy but not increase the computational time to an unacceptable level.

Introduction

As seen in section 6.1.2, the third order solid elements greatly increase the com-
putational time of the analyses in IMPETUS. Therefore a quarter symmetry
model should be employed wherever applicable. Due to the apparent random-
ness of the particle motion, the effect of employing a symmetry condition with
varying amount of particles will be investigated further. Analysis will be run
to determine a sufficient number of particles that is needed to present the same
displacements for both a full and a quarter symmetry model. An increased
amount of particles are needed to accurately represent the blast load when the
standoff distance increases, thus a balance between an acceptable computational
time and accurate results must be achieved. For a low amount of particles, one
would expect the results to be inaccurate and jagged because of the evident
discrete particle collisions. For an increased amount of particles the results will
more resemble a continuum fluid which is the main idea.

Procedure

The largest standoff distance from the experiments in section 4.2.2 is chosen for
these simulations, seeing that a sufficient amount of particles for this standoff
will suffice for the shorter standoff distances.

To ensure a properly defined quarter symmetry model, the amount of particles
was adjusted such that both the full and quarter symmetry model presented the
same amount of particles per unit volume of explosives, in this way the particle
radius are identical in both the quarter symmetric and full model. The same
third order solid element as used in the cross platform validation was employed
in all simulations (see figure 6.10), with an element size of 15x15x2 [mm]. The
different cases investigated are presented in table 6.5 and pictures of the numer-
ical models are shown in figure 6.14.

Cases investigated:
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Table 6.5: Number of particles per model

Np Standoff, R Mass C-4
Full/Quart [mm] [g]

104 / 0.25× 104

550 145105 / 0.25× 105

106 / 0.25× 106

107 / 0.25× 107

(a) Full (b) Full (NP =105)

(c) Quart (d) Quart (NP =0.25 × 105)

Figure 6.14: Models used in IMPETUS

Number of particles exceeding 107 is simply too computationally expensive to be
performed in this thesis. The analyses are run for 10ms, and the displacements
for the mid- and quarter points (shown in figure 6.13) are recorded.

Results

The results from the analyses are compared alongside experimental data in table
6.6, and time-displacement plots for the mid- and quarter-points are depicted
in figure 6.15.
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Table 6.6: Number of particles study results

Geom. Np
∆max ∆perm CPU-time Rel. ir err. ∆perm

∆exp
· 100%[mm] [mm] [h:min:s]* [mms]**

Full 104 20.25 15.50 [04:31:05] 1.1038e-2 83.92 %
Quart 1

4 × 104 19.21 15.00 [01:29:32] 81.21 %
Full 105 18.32 12.75 [04:56:59] 1.1179e-2 69.03 %

Quart 1
4 × 105 18.24 12.95 [01:36:11] 70.11 %

Full 106 22.05 17.50 [10:31:48] 1.7300e-3 94.75 %
Quart 1

4 × 106 21.93 17.50 [02:58:54] 94.75 %
Full 107 24.12 20.0 [82:21:18] 1.2954e-3 108.28 %

Quart 1
4 × 107 24.06 19.9 [21:25:09] 107.74 %

*Note that the CPU times are somewhat affected by the workload on the CPU
cluster, thus it is only the general trend of increased computational time that
are outlined.

**The relative error is computed as the integral:

emid =
∫ tend

0
|zmid,full(t)− zmid,quart(t)| dt (6.1)
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(b) Np = 105
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(c) Np = 106
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(d) Np = 107

Figure 6.15: Time-displacement plots for various Np

A time-lapse of one of the numerical simulation can be seen in figure 6.16. For
visualization purposes, the particles are not rendered.

(a) T = 0s (b) T = 1e-3s (c) T = 1e-2s

Figure 6.16: Time-lapse of the simulation employing 1
4 × 106 number of par-

ticles [m]
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As we observe from the results, for a low amount of particles the quarter symmet-
ric model deviates markedly from the full model. We observe that the quarter
symmetry model underestimates both the peak and permanent deflection. This
is in all likeliness caused by two factors:

• The perfect symmetric deformation in the quarter model will result in a
stiffer behaviour.

• Fewer particles will hit dead center because of the reflective boundaries
along the symmetry axes on the global particle domain.

As the amount of particles increases, the results from the two models converges,
and for the last two cases the results are almost identical. For a low amount
of particles, the computational time between the two representations are at a
three to one ratio. We observe that when the amount of particles increases,
the difference between the two models in terms of computational time increase
exponentially.

A Np = 0.25 × 106 for the quarter symmetric model is chosen for all future
discrete particle analyses on the basis of computational time and accuracy.
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6.2 The Multi-Material Eulerian Model
In order to perform numerical simulations of the explosive process described in
section 4.2. Two materials such as the explosive agent and the surrounding air
needs to be numerically represented.

It was initially intended to employ a purely Multi-Material Eulerian (MME)
using the single point Eulerian formulation in LS-DYNA. However, in order
to accurately represent the explosive process, the pure MME required an ex-
tremely small element size (in the order 0.1x0.1 [mm]), thus severely increasing
the computational demand. Because of this, it was decided to apply a MMALE-
formulation where the Eulerian mesh grid is fixed. Note that remeshing occurs
on the front between different materials within the fixed mesh grid. This would
retain the accuracy of a fine mesh when representing the close-ranged blast
wave propagation while reducing the computational expense. The remeshing of
the shock front will lead to advection errors, but the benefits of employing the
MMALE formulation outweighs the alternative of employing a finely meshed
single point Eulerian formulation. Even though in principle the fluids are mod-
elled as a MMALE, it will for future reference be referred to as a Multi-Material
Eulerian because of the fixed Eulerian mesh grid.

In this chapter a study will be performed in order to determine the appro-
priate numerical parameters best suited for the upcoming MME simulations
with regards to accuracy and efficiency.

6.2.1 Introduction
The side-on experiments at Raufoss (2010) presented in section 5.2.1 will be
used as a benchmark for the MME simulations because of its repeatability and
simple set-up. The necessary equation of state and material data for the explo-
sive agent and surrounding air are based on the parameters presented in sections
3.4 and 3.5.

The numerical parameters employed consistently in all the MME simulations
are based on recommendations from the supplied [33], [34], [24], [25], and also
[3] and [40]. Additional consulting was performed via an unofficial LS-DYNA
user forum [46], where especially Dr. Len Schwer from SE & CS offered a great
deal of assistance. All the numerically related parameter-choices has been sum-
marized and commented on in appendix B.2, however the key parameters will
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be presented in this section. The second order Van Leer advection scheme pre-
sented in section 2.4.6.3 is employed, and it is set to advect node- and element
associated variables at every Lagrangian timestep. The pressure iteration algo-
rithm implemented in LS-DYNA mentioned in section 2.4.6.5 is also employed
in order to properly describe how the different material deforms within the same
element. An initial timestep of 10−8s with a timestep scaling factor of 0.6 was
found to produce the most stable simulations, and will be applied consistently
for all the upcoming MME analyses.

The following sections will cover the initial selection of MMALE element for-
mulations in LS-DYNA, followed by a study on the correlation between domain
size and numerical instabilities. This will ultimately lead to a selection of an ap-
propriate domain size, which would then be subject for a mesh sensitivity study.
An expected convergence of the solutions corresponding to the mesh refinement
would make it possible to recommend an element size for further study based
on its efficiency and accuracy. Lastly the possibility of a 2D to 3D mapping
technique is explored.

6.2.2 Investigating Two MMALE Element Formulations
in LS-DYNA

A full 3D simulation of the explosive process is expected to become computa-
tionally expensive, such that a study on a more computationally affordable 2D
element formulation is performed. The 2D analyses require rotational symme-
try around at least one axis. This section will be dedicated to investigating the
difference between the 2D and 3D element formulations.

Introduction

The following element formulations are subject for further investigation:

• SECTION SOLID (3D)
• El. 11: 1 point ALE multi-material element [33]

• SECTION ALE2D (2D)
• El. 14: Axisymmetric solid (x-y plane, y-axis of rotational symme-

try) – area weighted [33]

The 2D element formulation has the obvious advantage of requiring less elements
than the 3D formulation while employing the same domain-length. However the
2D formulation can only be applied if a rotational axisymmetric condition can
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be respected (meaning that a scenario can be properly represented employing
symmetry around at least one axis). The comparison between the two element
formulations will be performed by numerically simulating the aforementioned
side-on pressure experiment at Raufoss (2010) from section 4.2.1, which would
uncover whether or not the two element formulations generate similar results.

Procedure

A 3D and 2D model were created, with the respective domain sizes shown in
figure 6.17.

3D

charge

tracer

tracer

charge
2D

0.8
0.13

0.13

0.8 [m]

0.8

2.2

0.8

Figure 6.17: Domain sizes explained

The 3D domain-length was made shorter than the 2D model in order to mini-
mize the number of elements. Only 1

8 of the total geometry in the experiment
is modelled for the 3D simulation, using reflective boundaries in the xy-plane,
xz - plane and yz - plane such that symmetry is utilized to reduce the computa-
tional expense. The remaining surfaces are applied with a boundary pressure of
1 bar, allowing air to escape the domain. Tracers in the numerical models were
positioned at the standoff R = 0.6 m (shown in figure 6.17), where the recorded
pressure time-history data will be the benchmark in which the two element for-
mulations are compared by. The charge geometry in the 3D model was employed
with the ”Initial volume fraction geometry” implementation in LS-DYNA, filling
the existing ”air-elements” with the C4 material and the corresponding EOS.
Information about the elements employed in both of the models are shown in
table 6.7
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Table 6.7: Numerical models overview

Model Element size Total # of
[mm] elements

3D 10x10x10 512 000
2D 10x10 17600

Results

The resulting peak side-on pressures and impulses from the analyses are shown
in table 6.8, and the side-on pressure time-history plots are shown in figure 6.18.

Table 6.8: Section comparison results

Sensor Section Pso iso CPU-time
[kPa] [Pas] [h:min:s]

1 3D 1517 121 [01:11:28]
2D 1673 130 [00:01:46]
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Figure 6.18: Section comparison 2D vs 3D

Based on comparison in table 6.8 and figure 6.18 a relatively good correlation
between the two element formulations is observed. The small observed differ-
ences could be explained by how the charge geometry is represented in the two
formulations. The 2D model described the charge as perfectly round, whereas
the charge in the 3D model have to be discretized. The 2D-analyses is observed
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to be far more efficient when comparing the recorded CPU time in table 6.8,
thus making the 2D element formulation the recommended choice where a sym-
metry condition can be justified.

The analyses had difficulties employing multiple symmetric multiprocessing
(SMP) processors, therefore the analyses were performed with only 1 SMP pro-
cessor allocated.

Some numerical instabilities are observed in the energy readouts from the 3D
model (shown in figure 6.19) which manifests in the form of a non-physical sud-
den increase of pressure. This is probably caused by the applied pressures on
the global domain boundaries. This results in an increase of the kinetic and
total energy in the system. However, by examining the graphical output it is
observed that the instabilities originates near the top corner directly above the
charge, such that it does not influence the recorded pressures on the ground.
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Figure 6.19: Energy balance for the 3D analysis

Note that the observed energy drop (at approx. t=0.5 ms) is caused by the blast
wave front escaping the domain, thus reducing the total energy in the system.

The numerical instability is also present in the 2D model, however to a lesser de-
gree, indicating it could be related to the domain size, which will be the subject
for further investigation in the next section.

107



CHAPTER 6. PRELIMINARY NUMERICAL STUDY

6.2.3 MME Domain Sensitivity Study
In this section a study employing different MME domain sizes is performed in
order to further illustrate the correlation between domain size and numerical
instability. Based on the results, the domain size that displays a negligible
amount of numerical instability and still retains its numerically efficiency will
be chosen for further study.

Introduction

In order to minimize the number of required analyses, a peak side-on pressure
and impulse comparison identical to the one presented in section 6.2.2 will be
employed, thus placing tracers at a standoff R = 0.6 m.

Procedure

The domain sizes subject for further investigation are shown in figure 6.20.
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Figure 6.20: Domain sizes investigated

The domain size of the first 3D analysis is set to a length of 0.8 m such that the
tracer is placed within the Eulerian domain. The same numerical parameters
and elements employed in section 6.2.2 were applied in this section.

Results

The resulting peak side-on pressures and impulses from the analyses are com-
pared in table 6.9, whereas the side-on pressure time-histories are compared in
figure 6.21.
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Table 6.9: The results from the study on domain size

Section Domain Height # of Pso iso CPU time
[m] elements [kPa] [Pas] [h:min:s]

3D
0.6 288000 1178 79 [02:04:20]*
0.8 512000 1517 121 [01:11:28]
1.0 1000000 1571 125 [01:33:141

2D
0.6 13200 1673 130 [00:01:21]
0.8 17600 1673 130 [00:01:46]
1.0 22000 1673 130 [00:02:05]

* This domain size was very susceptible to numerical instabilities, thus increas-
ing the CPU-time by a factor of ∼2 compared to a 3D domain size of 0.8x0.8x0.8
[m].
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Figure 6.21: A side-on pressure time-history comparison (R = 0.6 m)

The 3D element formulations seem to be very sensitive to the domain size based
on the shapes of the side-on pressure time-histories in figure 6.21, however this
is not so clear just by comparing the data in table 6.9.

By examining the maximum side-on pressure time-history for the 2D element
formulations, there does not seem to be an apparent difference between the do-
main sizes. However by looking at the energy output data it is observed a slight
increase of energy for the smaller domain sizes.

By examining the energy readouts from the 3D and 2D analyses it seems like nu-
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merical instability is directly related to the distance the blast wave is allowed to
travel before it escapes the domain. Four additional simulations were performed
with the 2D element formulation to further illustrate the correlation between
domain size and numerical instabilities. The additional analyses are performed
with decreasingly smaller domain heights, while still retaining a domain-length
of 2.2 m. The energy balance plots are shown in figure 6.22,
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(a) Domain height = 0.8 m
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(b) Domain height = 0.6 m
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(c) Domain height = 0.4 m
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(d) Domain height = 0.3 m

Figure 6.22: The energy balance for various domain sizes employing the 2D
element formulations

Based on the results in table 6.9 and figures 6.21 and 6.22 it is evident that
there is a correlation between domain size and numerical instabilities. The 3D
element formulations seems to be more susceptible to numerical instabilities,
which could be explained by the reduced domain-length in which the blast wave
is allowed to travel.

A minimum MME domain size of 0.8 m is chosen for further study, because
as observed the numerically created non-physical pressure have no impact on
the main positive phase of the side-on pressure at R = 0.6 m. Since the upcom-
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ing numerical simulations in chapter 7 will employ a maximum standoff at R =
0.55 m, the results from this section will have justified employing a minimum
domain size of 0.8x0.8 m2 and 0.8x0.8x0.8 m3 for both the 2D and 3D element
formulations respectively.

6.2.4 Mesh-Sensitivity Study
In this section a study on the impact of element size in the MME analyses will
be performed in order to find the optimal choice of element size considering
efficiency and accuracy.

Introduction

A 2D formulation is preferred because the simulations can be performed very
efficiently while retaining accuracy. By employing the recommended minimum
domain size from the previous section 6.2.3, a series of simulations using different
element sizes will be performed in order to see if the solution converges as the
mesh is refined. Note that this is the element size in the rigid Eulerian mesh
and would as a result affect the maximum allowed characteristic lengths of the
elements at the remeshed shock front. The element size that produces accurate
results, and still is computationally inexpensive will be chosen for further study
as a result of this study.

Procedure

A set of analyses will be performed employing 4 different element sizes shown
in table 6.10. Tracers are positioned at R = 0.6 m and R = 1.4 m.

Table 6.10: Numerical models overview

Element size Total # of
[mm] elements
10x10 17520
5x5 70400

2.5x2.5 281600
1x1 1744230
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Results

The resulting peak side-on pressures and impulses from the analyses are com-
pared in table 6.11, whereas the side-on pressure time-histories are shown in
figure 6.23

Table 6.11: Eulerian mesh sensitivity comparison

R Element size Pso iso CPU-time
[mm] [mm] [kPa] [Pas] [h:min:s]

0.6

10x10 1393 129 [00:01:00]
5x5 2235 161 [00:10:50]

2.5x2.5 2490 166 [02:58:32]
1x1 2721 154 [73:39:56]

1.4

10x10 164 45 [00:01:00]
5x5 222 53 [00:10:50]

2.5x2.5 243 55 [02:58:32]
1x1 252 56 [73:39:56]
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Figure 6.23: Eulerian mesh sensitivity side-on pressure time-histories com-
pared for R = 0.6 m and R = 1.4 m

By examining the results in table 6.11 and observing the side-on pressure time-
history in figure 6.23, it is evident that mesh refinement convergence around
the results from employing 5x5 [mm] elements and smaller. The 10x10 [mm]
elements underestimates both the impulse and peak side-on pressure. The dif-
ferences between the various element sizes seems to diminish by the distance
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from the charge, which could be explained by that the initial blast wave prop-
agation near the explosive is more sensitive to the element size.

By comparing the computational time and accuracy shown in table 6.11, el-
ement sizes of 5x5 and 5x5x5 [mm] are recommended for further study in the
upcoming MME analyses in order to sufficiently represent the close range blast
propagation.

For the situations where axisymmetry conditions cannot be fulfilled, the 3D
element formulation must be employed. Applying 5x5x5 [mm] elements in the
recommended domain size in 3D would require a total of 4 096 000 elements.
This would drastically increase the total computational time, and the amount
of storage required to complete the analyses. Because of this, an alternative
approach needs to be considered such as the 2D to 3D mapping technique im-
plemented in LS-DYNA, which was successfully employed in [55]. This technique
will be further investigated in the next section 6.2.5.

6.2.5 Mapping a MME Analysis from 2D to 3D
In order to minimize the computational expense of simulating three dimensional
blast wave propagations, a study on the 2D to 3D mapping technique imple-
mented in LS-DYNA will be performed.

Introduction

In order to be able to represent the close range blast wave propagation accurately
without employing the recommended 5x5x5 [mm] element size from section
6.2.4, it is necessary to find an alternative solution. It is possible to allow the
blast wave to propagate in a refined 2D mesh before being mapped into a 3D
domain. The remap into the 3D domain can be applied as soon as the rotational
axisymmetry condition no longer can be justified. A step by step explanation
on the 2D to 3D mapping technique is presented in [3].

Procedure

Because the blast wave in the two dimensional domain only will be allowed to
propagate for a short amount of time, it is decided that a smaller domain can
be utilized without experiencing the numerical instabilities discussed in section
6.2.3. A 0.5x0x5 m2 2D domain size was created employing 1x1 [mm] elements
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(shown in figure 6.24a). A 1x1 [mm] element size was found to represent the
initial blast propagation in the best possible way, without being too computa-
tionally expensive. The results from the last cycle of the 2D analysis is mapped
over in to a cubic 3D 0.8x0.8x0.8 m3 domain with an element size of 10x10x10
[mm]. The selected 10x10x10 [mm] element size in the 3D domain is employed
because the blast wave is less sensitive to element size the further away it is from
the charge. Note that the 2D analysis is modelled with rotational axisymmetry
around the y-axis, and the result is mapped around the z-axis in the 3D domain
(shown in figure 6.24).

(a) 2D domain (b) 3D domain

Figure 6.24: Mapping description

Tracers are positioned at R = 0.6 m, such that the side-on pressure can be
compared against the already performed simulations using only 2D element
formulations from section 6.2.4, and the 3D element formulation employing the
10x10x10 [mm] elements from section 6.2.3.

Results

The resulting peak side-on pressures from the analysis are compared against a
selection of 2D and 3D analyses from sections 6.2.4 and 6.2.3. The results are
shown in table 6.12 and figure 6.25.
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Table 6.12: Mapping from 2D to 3D results

Description Element size Pso iso CPU time
[mm] [kPa] [Pas] [h:min:s]

2D axisymmetric 5x5 2235 160 [00:14:26]
3D solids 10x10x10 1517 121 [01:11:28]

2D Mapped to 3D 1x1,10x10x10 2028 163 [01:16:58]*

* CPU-time is the total time of the 2D and 3D analyses.
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Figure 6.25: The 2D to 3D mapping results compared to 2D only and 3D only

Based on the results in table 6.12 and examining the side-on pressure time-
history in figure 6.25, it seems like the 2D to 3D mapping technique success-
fully manages to retain most of the fine-mesh precision when representing the
close-range blast wave propagation, and still be computationally efficient. Thus
making the 2D to 3D mapping technique the preferred choice in future analyses
were an axisymmetry-condition can not be utilized for the whole domain.

Note that there exists other techniques meant to decrease the computational
expense for MME analyses. For example element erosion and mesh biasing,
both of which have been employed with success in [55]. However these alterna-
tives were not further explored in this thesis.
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Chapter 7

Numerical Methods

7.1 Introduction
Originally this thesis was supposed to focus on blast calculations and numerical
simulations of the gas gun at NTNU. This however posed as a problem because
the gas gun struggled with emulating an ideal blast wave and had a very com-
plex geometry that disturbed the air flow around the test specimen. It can be
concluded from figure 5.1 that the positive duration of the blast is around one
hundred times longer than that of an explosion in free air with the same mag-
nitude. This posed us with a problem both regarding the increased simulation
time, and a proper description of the blast load variables.

It was in the end decided to use the gas gun experiments as a preliminary
method to validate our numerical techniques, and then apply the techniques
and knowledge we gained from this study to properly validate the experiments
performed at Raufoss (2010) presented in section 4.2.

7.2 Experiments at NTNU
In this section the experiments performed at NTNU (described in section 4.1)
will be subject for numerical simulations.

7.2.1 Lagrangian
A Lagrangian formulation is employed first because it is the easiest simulation
to define.

7.2.1.1 Simulations Employing a Discretized Pressure Distribution
in LS-DYNA

Introduction

In this section a series of Lagrangian analyses will be performed using the
pressure-time history from the experiments at NTNU (see figure 7.1) as load
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curves applied directly on the plates in each sensors tributary area.
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(a) 40 Bar (2009) experiment data
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(b) 30 Bar (2013) experiment data

Figure 7.1: Load curves

Procedure

In order to simplify the simulations and enable the possibility of a quarter
symmetry model, the pressure distribution is assumed to be centred. This
allows choosing pressure readings from sensors 1, 7, 8, 9 and 11 as representable
as a discretized circular pressure distribution on a quarter-symmetry model as
seen in figure 7.3b. This assumption is employed despite the results from section
5.1.1 showing a non-centred pressure distribution in the 2013 experiments.
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Figure 7.2: Pressure distribution for 2009 and 2013 simulations

118



CHAPTER 7. NUMERICAL METHODS

(a) 2009 (front) (b) 2013 (front)

Figure 7.3: Numerical models overview

The boundary conditions for the 2009 model are based on figure 4.9, and the
boundary conditions employed in the 2013 model are based on figure 4.11. The
parameters employed for the numerical models are identical to the ones used in
section 6.1.1, which means that the plates are assumed to be placed in between
the frame and clamps with enough slack, such that they are not pinched. Also
the mesh elements have been allocated in a circular pattern after the geometry
in figure 7.2b such that the discretized pressure distribution from the sensors
are not overlapping on any elements.

Results

The results from the Lagrangian analyses are presented in table 7.1, followed
by a midpoint deflection time-history plot for the 2009 analysis in figure 7.4.

Table 7.1: Lagrangian NTNU results

Experiment ∆max ∆perm ∆exp CPU time ∆perm

∆exp
× 100%[mm] [mm] [mm] [mm] [h:min:s]*

40 Bar (2009) 18.7 14.3 15 [00:21:47] 95.33 %
30 Bar (2013)* - - 8 [00:05:03] -

*The numerical simulation was aborted because the plate got sucked out of the
supports.
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Figure 7.4: Midpoint node deflection time-history from the 2009 analysis

By examining results in table 7.1 and figure 7.4 it is observed that the 2009
load curves (shown in figure 7.1a) combined with the established Lagrangian
model (shown in figure 7.3a) results in a good representation of the reported
permanent deflection from the experiment. A time-lapse from the 2009 analysis
is shown in figure 7.6

(a) T=0.0448s (b) T=0.0768s (c) T=0.4s

Figure 7.5: A time-lapse from the 2009 Lagrangian analysis

A time-lapse from the 2013 analysis is shown in figure 7.5 displaying the plate
being sucked out of the supports.
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(a) T=0.0448s (b) T=0.0768s (c) T=0.0992s

Figure 7.6: A time-lapse from the 2013 Lagrangian analysis

By employing the load history from 2013 it is observed in figure 7.6 that the
plate first experience some elastic deformation, and then is sucked out of the
supports in the opposite direction.

As to why employing the recorded pressure from 2013 poorly represents the
experimental loads could be explained by that the pressure-sensors are mal-
functioning or are not properly calibrated. Also the close proximity between
the funnel and plate, allows for little room for the air to evacuate through, such
that it could create a suction in the pressure transducers. This will be subject
for further investigation in the MME analyses in section 7.2.2.

Another source of error is the discretization of the pressure distribution, which
will be the subject for further investigated in the next section.
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7.2.1.2 Simulations Employing a Continuous Pressure Distribution
in IMPETUS

Introduction

To capitalize on the strengths of the different numerical codes, a different ap-
proach was selected when it came to simulate the plate deformation with a
Lagrangian description in IMPETUS.

As seen in the previous section the load curves can be directly applied to zones
with individual tributary areas. The boundaries between these zones can (and
will) represent discrete sudden load changes with respect to space that might af-
fect the permanent plate displacement in a non-realistic manner. To investigate
if these sudden changes affect response in a noticeable way we created a load
field that interpolated the load curves from the different sensors in a continuous
manner.

Procedure

In LS-DYNA one would normally apply loads directly to a set of element faces.
The faces in each set are selected discretely by the analyst, such that applying a
different load to each element face would be highly time consuming. This would
also complicate the mesh refinement process because load definitions would have
to change if the mesh is altered. However in IMPETUS, the loads are applied
to faces inside existing user-defined geometry. Because the load applied on the
faces inside the user-defined geometry can be described as functions of space
and time, one can in practice apply a different load to each element face in
the whole domain with minimal effort. IMPETUS was therefore employed to
eliminate the large discrete load variations across elements at the tributary area
intersection described earlier.

To create the continuous load field, functions for the various parameters in
the load equation have to be established. A MATLAB script was written to
curve-fit a Friedlander equation (eq. (2.1)) to the load curves for each sensor in
figure 7.2a. Peak pressure Pr and the impulse i+r were kept constant while the
positive duration T+ and the decay coefficient b were varied to create the best
fit. A typical example of the Friedlander curve fit can be seen in figure 7.7
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Figure 7.7: Example of the Friedlander curve fit

The resulting parameters in the Friedlander equation can then be interpolated
with respect to space in a radial direction outwards from the center of the plate.

The resulting pressure load field is a spatial description of the load that is
an approximation of the original test data. The resulting Friedlander equation
(eq. (7.1)) is dependent on the spatial position of the element and time.

P (t, x, y) = Pr(x, y)
(

1− t

T+(x, y)

)
e

−b(x,y)t

T +(x,y) (7.1)

Pr(x, y) = Pr(r) (7.2)

b(x, y) = b(r) (7.3)

T+(x, y) = T+(r) (7.4)

r =
√
x2 + y2 (7.5)

By employing equation (2.1), every element in the FE mesh will have their
own Friedlander equation that is interpolated from continuous variables, thus
eliminating the errors associated with the large discrete changes in load across
the tributary area boundary. An illustration of the Friedlander load field tech-
nique can be seen in figure 7.8.
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Figure 7.8: 2D Lagrange explained

To capture the non-radial symmetric effects such as the one observed in section
5.1.1, equation (7.1) can be augmented to include the angle θ (see figure 7.8). By
multiplying equation (2.1) with 7.6 the effect of pressure changes with varying
θ is captured:

f(r, θ) = cos2(θ)
(

1− P90(r)
P0(r)

)
+ P90(r)

P0(r) (7.6)

θ = arctan(y
x

) (7.7)

where

P0(r) is the pressure at θ = 0◦(e.g sensor 2, 3, 4 or 6. See
figure 4.7b)

P90(r) is the pressure at θ = 90◦ (e.g sensor 7, 8, 9 or 11.
See figure 4.7b)

Note that equation (7.7) is only valid for a quarter symmetric model placed in
the positive x and y quadrant.

This method is created to prevent the approximations made by a tributary
area approach; however it contains several approximations and assumptions by
its own. The approach assumes that the peak pressure and positive duration
is a continuous variable with respect to space. It also approximates these vari-
ables with a polynomial that have to be of a finite small polynomial order to
simplify the numerical implementation. The polynomial with an order between
one and ten that have the lowest error norm will suffice. As seen in figure 7.16
the resulting functions are not far from its parent. This method also assumes
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that the time of arrival ta of the blast wave is constant across the whole plate.
In reality there are some small discrepancies, but this will only be apparent for
very large plates or for extremely small values of the scaled distance Z.

Experiments from 2009

In order to validate the experimental data, a numerical simulation of the experi-
ments described in section 7.2.1.2 using a Friedlander load field was attempted.

The load field was created from experimental data in section 5.1.1 and it was
applied to a quarter symmetry model with appropriate boundary conditions
seen in figure 7.9. The experimental data did not exhibit any non-symmetric
radial effects such that augmenting the load field with equation (7.6) was not
necessary. Examples of the Friedlander fitted functions for two of the sensors
can be seen in figure 7.10.

(a) Front (b) Back

Figure 7.9: Numerical model (2009)
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Figure 7.10: Examples of the Friedlander fitted functions

Two examples of the Friedlander variable functions that are interpolated in the
radial direction can be seen in figure 7.11.
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Figure 7.11: Examples of interpolated Friedlander variable functions

The simulation time was set to 400ms, and the midpoint deflection-history was
recorded.

Results

The displacement-time curve of the midpoint of the steel plate can be seen in
figure 7.12, and the results are summarized in table 7.2.
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Figure 7.12: 2D Lagrange Displacement vs time

Table 7.2: Friedlander load field 2009 NTNU

Experiment ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [h:min:s]*

40 Bar (Figure ..) 33.27 31.35 15.00 23:06:08 209 %

*Note that the CPU times are somewhat affected by the workload on the CPU
cluster, thus only the general trends of computational time are outlined.

A time-lapse of the deformation is depicted in figure 7.13.

(a) T = 0s (b) T = 4e-3s (c) T = 4e-1s

Figure 7.13: Time-lapse of the simulation [m]

127



CHAPTER 7. NUMERICAL METHODS

As we see observe from the results, the Friedlander field approach overestimates
the permanent deflection of the midpoint. This is most likely a result of multiple
combining factors:

• The experimental data does not closely resemble Friedlander equation.

• The blast wave hits all elements at the plate at the exact same time

• The idealized geometry in the numerical model

The overestimation was anticipated, but the displacements are expected to agree
more for experiments with explosives that produce a more ideally shaped blast
wave.

Experiments from 2013

A quarter symmetric numerical model was established and is shown in figure
7.14. The pressure readings from the experiments are as stated in section 5.1.1
quite non-ideal, such that the curve-fitted Friedlander equations will be a crude
approximation of their parent functions. To improve the simulation, equation
(7.1) was augmented with (7.6) to capture the non-radial symmetry effects of the
pressure sensors. The same 15x15x0.7 [mm] third order solid element described
in section 6.1.2 was employed.

(a) Front (b) Back

Figure 7.14: Reflected model used for further numerical simulations

The curve-fitted Friedlander equations for two of the sensors can be seen in
figure 7.15
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Figure 7.15: Friedlander fitted functions examples

Examples of the interpolated variable functions are seen in figure 7.16.
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Figure 7.16: Examples of interpolated variable functions

The simulation time was set to 400ms, and the midpoint deflection-history was
recorded.

Results

As seen from the results in section 7.2.1.1, numerical results from these experi-
ments are of limited value. When a Friedlander load field is created, the same
result is observed where the steel plate flies in the opposite direction of what is
expected. A time-lapse of the deformation can be seen in figure 7.17 and the
results are summarized in table 7.3.
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Table 7.3: Friedlander load field displacement

Experiment ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [h:min:s]*

30 Bar (Figure ..) - - 19 26:48:21 -

*Note that the CPU time are somewhat affected by the workload on the CPU
cluster, thus only the general trends of computational time are outlined.

(a) T = 0s (b) T = 0.140s (c) T = 0.160s

Figure 7.17: Time-lapse of deformation Friedlander load field

These results along with the results in section 7.2.1.1 indicates that a further
investigation into the experiments at NTNU should be performed.
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7.2.2 Multi-Material Eulerian
An attempt was made to recreate the NTNU experiments from section 4.1
numerically by applying the MME formulation investigated in section 6.2.

Introduction

The numerical simulations will be compared alongside experimental data from
section 5.1.1, and the result will serve as validation of the established numerical
model from section 6.2. Potentially the analyses could help describe the airflow
better and perhaps explain the difference between the pressure-readings from
2009 and 2013.

Procedure

It is assumed that the experiment can be modelled with radial symmetry which
allows the use of the 2D element formulation described in section 6.2.2, thus
reducing the computational need. Assuming radial symmetry would imply that
the plates are circular. However since the placement of the pressure sensors
(shown in figure 4.7) are possible to represent with radial symmetry, a correct
plate geometry would only lead to negligible differences when compared with the
experimental data. The difference between the recorded pressures in the sensors
when employing a circular and square plate is assumed negligible. The numerical
models (shown in figure 7.18) are created with the aforementioned 2D element
formulation, employing the 5x5 [mm] elements based on the recommendation
from section 6.2. The numerical parameters are identical as the ones employed
in section 6.2.
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(a) Pressure tank in MME analysis

(b) Impact chamber in MME analysis

Figure 7.18: Geometry used in the 2D MME analysis

The steel encapsulating the main tank, barrel and impact chamber is represented
by restricting the nodes along the top edge of the system against any directional
flow, which is illustrated in figure 7.19.

�
��	

nodes representing
the steel casing

Figure 7.19: Illustration of the MME model boundary conditions

Air is modelled by employing the material and EOS parameters presented in
section 3.4, and modifying the material and EOS parameter in order to accom-
modate for the pressurized air in the main tank. The modified parameters are
shown in table 7.4.
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Table 7.4: Parameters for the pressurized air in the main tank employed in
the simulations

Experiment ρ E0
[kg/m3] [J/m3]

2009 (40 Bar) 50.1 107

2013 (30 Bar) 37.6 7.5× 106

Tracers are positioned on the plate as shown in figure 7.20a in correspondence
with the pressure transducer positioning as shown in figure 4.7b. Two models
are created based on both the 2009 (shown in figure 7.20a) and 2013 (shown
in figure 7.20b) geometry. The small tank (or firing section shown in figure
4.2) is not modelled as it was shown that by using only the main tank gives
approximately the same results as using both (See appendix A.1 figure A.1c
and A.2a).
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Figure 7.20: MME models employed in the 2009 and 2013 simulations

The plate is modelled as completely rigid, and so is the funnel employed in the
2013 simulation (shown in figure 7.20b).

Results

The peak reflected pressure and impulse from the 2009 simulation are compared
alongside the experimental results from section 5.1.1 in table 7.5. Figure 7.24
shows a pressure time-history comparison between the tracer-readings from the
mid-pont sensor in the numerical simulation with the pressure time-history from
the corresponding sensor in the experiments. The data from the numerical
simulation suffered from a lot of numerical noise, such that the data has been
filtered using the same 2. order 100 Hz lowpass Butterworth algorithm employed
on the experimental data (see appendix A.2).
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Table 7.5: A comparison between experimental data from 2009, and the cor-
responding numerical simulation

Sensor Pr Pr,exp ir ir,exp
[kPa] [kPa] [kPas] [kPas]

1 372.46 299.49 37.86 54.30
7 376.20 246.31 31.65 31.90
8 553.75 253.60 21.01 14.83
9 234.77 180.36 4.95 5.42
11 61.99 266.31 1.79 30.03
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Figure 7.21: Comparison between pressure time histories from the experiment
and simulations (2009)

Based on the comparison in table 7.5, and figure 7.21, it is observed a clear
correlation between the numerical simulation and the experimental data. This
is especially noticeable by comparing the impulses from sensors 7 and 9 in table
7.5, and the peak pressures shown in figure 7.21.

A time-lapse of the simulation is shown in figure 7.22.
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(a) T=0.015s (b) T=0.016 (c) T=0.017

Figure 7.22: A time-lapse of the airflow in impact chamber for the 2009
simulation [Pa]

By examining the airflow (shown in figure 7.22), it is observed a lot of suction
near and around the plate. A time-lapse describing the air evacuating the main
tank in the 2009 simulation is shown in figure 7.23.

(a) Pressure tank airflow (T=0.0s)

(b) Pressure tank airflow (T=0.0019999s)

(c) Pressure tank airflow (T=0.0039994s)

(d) Pressure tank airflow (T=0.0059997s)

(e) Pressure tank airflow (T=0.0079996s)

Figure 7.23: Airflow in Pressure tank time-lapse

The peak reflected pressure and impulse from the 2013 simulation are compared
alongside the experimental results from section 5.1.1 in table 7.6. A pressure
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time-history comparison is shown in figure 7.24, employing the same sensor-
position as for the 2009 experiments.

Table 7.6: A comparison between experimental data from 2013, and the cor-
responding numerical simulation

Sensor Pr Pr,exp ir ir,exp
[kPa] [kPa] [kPas] [kPas]

1 167.10 164.29 15.75 15.72
7 117.70 144.46 10.56 10.81
8 71.02 67.35 4.13 3.53
9 72.99 23.88 2.88 -4.74
11 157.07 5.87 7.39 -15.58
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Figure 7.24: Comparison between pressure time histories from the experiment
and simulations (2013)

By examining the data in table 7.6 and the plots in figure 7.24 it is observed
once again similarities between the simulation and experimental data, which is
especially noticeable for sensors 1, 7 and 8.

A time-lapse of the simulation is shown in figure 7.25.
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(a) T=0.015s (b) T=0.016 (c) T=0.017

Figure 7.25: A time-lapse of the airflow in impact chamber for the 2013
simulation [Pa]

By observing the airflow time-lapse in figure 7.25, it is noticed a lot of suction
around where sensor 9 and 11 are placed, indicating that there is a lot of turbu-
lence around the plate caused by the funnel. The presence of turbulence could
explain the lowered pressure and subsequently lowered impulse recorded by the
sensors in the 2013 experiment compared to the 2009 experiment.

Based on the results in this section it is evident that the MME model established
in section 6.2 can be utilized with success on a different problem than what the
model was calibrated for.

Even though the numerical simulations performed in this section are idealized
cases of the experiments, the observed correlation between simulated and ex-
perimental data suggests that the gas gun experiments are performed within a
controllable environment with manageable error-sources.

In section 5.1.1 it was suggested that some of the sensors in the experiment
described in section 4.1.3.1 malfunctioned because it recorded large values of
negative pressures with corresponding large values of negative impulses. These
numerical simulations helps us to understand why the sensors at the periphery
of the plate (see sensor 9 and 11 in figure 4.7 and experimental results in table
7.6) recorded such unexpected values and why the numerical simulations in sec-
tion 7.2.1 results in such a different behaviour compared to what was observed
in the experiments in section 5.1.2. The added funnel described in section 4.1.4
alters the air flow in such a way that in reality the sensors far from the center
records the side-on pressure instead of the reflected pressure. This effect is il-
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lustrated in figure 7.26.

air flow parallel to
the pressure transducers

sensors
9 and 11

air flow perpendicular to
the pressure transducers

Figure 7.26: Gas gun vacuum

If this should be a subject for further study it is recommended to perform
Lagrangian analyses without the loads originating from sensors 9 and 11
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7.3 Experiments at RAUFOSS
As mentioned in section 7.1 the experiments at Raufoss described in section
4.2 will be subject to a range of different numerical simulation techniques in
this chapter. It starts out with the most basic simulations and ends up with
complicated procedures to investigate which of the techniques that best recreates
the observed plate deformations.

7.3.1 Lagrangian
Introduction

Initially we want to recreate the deformation by employing a purely Lagrangian
approach. The main procedure would normally be to apply measured head-on
pressures as loads across the whole exposed area of the plate. However this be-
comes troublesome in this study because the experiments performed in section
4.2.1 differs in various areas compared to the experimental setup with the plates
in section 4.2.2.

Several problems arise if one wanted to employ the experimental pressure data
in the plate setup:

• The pressure experiments only recorded the side-on pressure and not head-
on pressure. As outlined in section 2.1.2.4 the head-on pressure or so called
reflected pressure is substantially higher compared to the side-on pressure.

• The blast load parameters recorded in the side-on experiments are not at
the same standoff distances as the plate experiments, such that the highly
non-linear blast parameters will change when the standoff is altered.

• The explosives were placed on the ground itself in the side-on pressure
experiments, thus ground reflections are amplifying the recorded pressure.
In the plate experiments, the standoffs are small relative to the distance
between the explosive and the ground. This causes only the incident waves
to hit the plate as the waves that are reflected off the ground will not fuse
with the original waves before it hits the target plate.

When the pressure-history is not given for a problem, the natural thing to do
would be to employ a standard method such as CONWEP or the UFC to esti-
mate the blast load parameters. The values in these standards are fitted from
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live experiments and will only yield approximate values to the blast load param-
eters. The numerical simulation with these parameters would then not be a test
of the Lagrangian numerical technique, but rather a test of the exactness of the
employed standard. To circumvent this problem, the study of the Lagrangian
technique will be carried out in two parts:

Part one will employ the UFC standard to estimate the blast load and ap-
ply this load on a finite element model. This will test how well the UFC can be
employed to recreate the expected deformations in this particular experiment.

Part two will make use of the blast module embedded in LS-DYNA, *LOAD-
BLAST-ENHANCED (LBE). The procedure is purely Lagrangian and applies a
blast load on specified segments as a pressure load and can be defined to include
mach-reflection and surface-effects. The blast load parameters are taken from
CONWEP but no pressure data is being processed by the analyst.

Both parts are in essence purely Lagrangian, but it is only the second part
that will be a test of the Lagrangian technique as it is LS-DYNA that treats
the blast load parameters and not the analyst.

7.3.1.1 Estimating the Deformation with the UFC

In this section the pressure load generated by the explosive agent will be repre-
sented by a Friedlander equation for each standoff.

Procedure

As outlined in section (2.1.2.5) the blast load parameters are estimated from
plots in the UFC standard. The full calculations of the blast load parameters
can be seen in appendix C.1. A short summary of the values in the Friedlander
equations are given in the table 7.7 and illustrated in figure 7.27.
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Table 7.7: Values used in the Friedlander equations

R P+
r i+r T+ b

[mm] [kPa] [Pas] [s] [-]
300 24131.65 6.83E+02 2.17E-04 6.49
400 11445.30 4.55E+02 5.55E-04 12.86
450 8480.55 3.89E+02 8.15E-04 16.70
550 4826.33 2.99E+02 9.78E-04 14.68
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Figure 7.27: Reflected pressure time-history based on calculations from the
UFC

The load curves from figure 7.27 are applied to finite element models of the plate
with appropriate boundary conditions. The numerical model is depicted in fig-
ure 7.28, and the simulations are performed for 15 ms whereas the displacement
of the center-node is monitored.
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Figure 7.28: Lagrangian model used for all Raufoss simulations

The numerical model is based on the boundary conditions in figure 4.15. As
described in section 6.1.1 the frame and clamps are assumed rigid. The newly
added bolts are also assumed rigid and restricted from any movement or ro-
tations in any directions. The Lagrangian model is described in section 6.1.
The plate is modelled as 2 mm thick with holes to account for the plate being
fastened with bolts.

Results

The results are summarized in table 7.8 and time-displacement plots can be
seen in figure 7.29. The simulations required a shorter timestep than the stan-
dard recommendation from LS-DYNA, thus having to employ a timestep scaling
factor of 0.3.

Table 7.8: Lagrangian (UFC) simulations displacement comparison

R ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [h:min:s]*

300 34.55 30.50 32.19 [00:10:45] 94.75 %
400 23.96 20.00 26.93 [00:11:41] 74.27 %
450 20.85 17.10 24.07 [00:10:33] 71.04 %
550 16.37 10.90 18.47 [00:07:02] 59.01 %

*Note that the CPU times are affected by the workload on the CPU cluster,
thus the numbers are only outlines of what one could expect from such analyses.
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Figure 7.29: Lagrangian (UFC) deflection time-history plots by standoff

We observe from the resulting time-displacement plots that the permanent de-
flection is underestimated for all standoff distances. The underestimation is
likely caused by many combining factors, some of them mentioned below:
• The charge geometry is not correct. The UFC only have tables listed for

spherical and hemispherical charges such that the load is underestimated.
[23] states that the load from a cylindrical charge may exceed the load
from a spherical charge by a ratio of five to one, while [22] estimates a
scaling factor of 1.5 - 2.0.

• The reflected pressures and impulses in the UFC have an infinitely rigid
wall as a reference point. A deformable section will have a relative move-
ment that will lead to a reduction of the pressure load. This is not taken in
to account in a purely Lagrangian approach. This will lead to an increased
pressure load and offsets the errors in these analyses.

• The pressure loads in the Lagrangian formulation does not follow the
deformable geometry (as shown in figure 7.30)

• The method of converting to TNT-equivalency by ratios of detonation
heat is as outlined in [23], a bad approximation.
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The results were inaccurate but the computational time of the analyses were
short and the description of the load conditions were very easy to obtain. The
familiarity that most analysts have with the classic Lagrangian approach also
minimizes the risk of user-end errors in the setup of the numerical model. This
approach might be useful for a concept study where a lower level of accuracy is
sufficient.

Undeformed Deformed

Lagrangian
structure

Pr Pr

Figure 7.30: Illustration of the pressure orientation in an UEL

7.3.1.2 Estimate the Deformation with LBE

Procedure

The *LOAD BLAST ENHANCED (LBE) is based on empirical test data, thus
no data for the gas parameters are needed. The LBE can include mach reflec-
tions and other ground effects, but this was not employed here, the assumption
being that the standoffs are small relative to the height off the ground such that
the reflected waves does not fuse to form a mach-front. The only input needed
in the LBE is the TNT equivalent weight and the standoff. As to date, no
other charge geometries than a spherical or hemispherical charge is included in
the LBE. [23] states that the TNT equivalent weight of C4 is a function of the
standoff itself. The recommended values being between 1.2 and 1.4. A middle
value of 1.3 was chosen in these simulations.

The same numerical model as in the previous section was employed and is
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depicted in figure 7.28.

Results

Table 7.9: Lagrangian (LBE) simulations displacement comparison

R ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [h:min:s]*

300 32.54 28.65 32.19 [00:13:04] 89.00 %
400 24.59 20.40 26.93 [00:13:53] 75.75 %
450 21.73 17.75 24.07 [00:13:33] 73.74 %
550 17.40 12.25 18.47 [00:08:52] 66.32 %
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Figure 7.31: Lagrangian (LBE) deflection time-history plots by standoff

As we observe from the results in table 7.9, the deformations were underesti-
mated in this approach. The LBE simulations have the same pitfalls as the UFC
approach outlined in the previous section. An obvious error source is that the
TNT equivalency of the C4 were not accurately described as this ratio changes
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with increased standoffs. The LBE does however take in to account the spatial
placement of the explosive, thus having different arrival times of the blast wave
to different parts of the plate. This will however be minor alterations to the
blast load for small structural parts such as this.

The LBE proved to be slightly more accurate than the UFC approach and is
by far the easiest to employ of the two as no hand calculations or approximate
chart values were employed. The computational time is about the same, and
the risk of user-end errors are minimal as there were only two input parameters.
For initial calculations to estimate structural deformation or for concept studies
the LBE seems to be the preferable alternative of the two.
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7.3.2 Multi-Material Eulerian
Introduction

In this section a numerical simulation of the side-on pressure experiment de-
scribed in section 4.2.1 will be performed.

Procedure

The numerical model employed is a 2D axisymmetric model based on the rec-
ommendations from section 6.2, shown in figure 7.32.

charge
@
@R

Figure 7.32: Model used in simulating side-on pressure

Tracers are placed along the ground of the model at the same distances as the
standoffs in the experiment (shown in table 4.3). See appendix C.2 for the
associated keyword file.

Results

The results from the side-on pressure simulation are presented in table 7.10,
followed by two pressure time-history comparisons with experimental data for
the sensors at R = 0.6 m, and R = 1.4 m.
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Table 7.10: The results from the side-on pressure simulation at Raufoss (2010)

Sensor Pso Pso,exp iso iso,exp CPU time
[kPa] [kPa] [Pas] [Pas] [h:min:s]

1 2195

1743

161

24.5

[00:13:53]1577 24.0
3223 20.0
1296 19.2

5 222

128

53

4.0

[00:13:53]138 4.1
345 4.0
214 4.1
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Figure 7.33: Side-on pressure comparison

A time-lapse of the simulation is shown in figure 7.34.
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(a)
T=4e-
5s

(b)
T=8e-5s

(c) T=2.4e-
4s

(d) T=4.4e-
4s

(e) T=6.8e-4s

Figure 7.34: A time-lapse of the side-on pressure simulation at Raufoss (2010)
[Pa]

Based on the results in table 7.10 and figure 7.33, it is evident that the impulse
and peak side-on pressure is overestimated in the numerical simulation. The
study in section 6.2 showed that a further refinement of the mesh converges
towards an even higher peak pressure and impulse which would indicate that
the chosen element size is not the source of the discrepancy.

Because the experimental and numerical results were so inconsistent a vali-
dation of the recorded pressure-data from Raufoss was performed by comparing
the data with values calculated with the UFC. The values in the UFC were
calculated employing the scaled distance equation (2.15), and a chart in [23]
describing positive phase shock wave parameters for ground explosions. Bear in
mind that values from the UFC are for hemispherical shaped charges. Cylin-
drical charges are expected to generate larger peak pressures and impulses ac-
cording to [29, 22]. The standoff at R = 600 mm was used as the benchmark
distance. Because the UFC employ imperial units, an initial unit-conversion
needs to be performed:

WC4 = 0.14 kg⇒WC4 ≈ 0.31 lb
R = 0.60 m⇒ R ≈ 1.96 ft

}
(7.8)

The TNT equivalent mass of C4 used in the experiments are calculated em-
ploying a scale factor of 1.3 based on the recommendations from table 2.1 and
[31].

WTNT = 1.3 ∗WC4 = 1.3 ∗ 0.31 lb ≈ 0.4 lb (7.9)
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The scaled distance formula (2.15):

Z = 1.96 ft
0.4 1

3 lb
1
3
≈ 2.66 ft

lb
1
3

(7.10)

The values obtained from the UFC are summarized in table 7.11.

Table 7.11: Values obtained from the UFC

Parameter Imperial units SI units
Pso,UFC 195 psi 1345 kPa
iso,UFC 19.2 psi-ms 132.1 Pas
t0,UFC 1.11 ms 1.11 ms

A Friedlander was created based on the parameters in table 7.11, and it is
plotted alongside the pressure time histories from the numerical simulation and
an example of the experiments in figure 7.35.
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Figure 7.35: Comparison of the data from the UFC, numerical simulation and
experimental data

A comparison between the numerical, UFC and experimental data is shown in
table 7.12
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Table 7.12: The results from the side-on pressure validation for data from
Raufoss (2010)

Pso Pso,UFC Pso,exp iso iso,UFC iso,exp
[kPa] [kPa] [kPa] [Pas] [Pas] [Pas]

2195 1345

1743

161.0 132.1

24.5
1577 24.0
3223 20.0
1296 19.2

By comparing the results in table 7.12, it is observed that the UFC slightly un-
derestimates the peak side-on pressure, and greatly overestimates the impulse
compared to the experimental data.

Based on the results in this section it is shown that both the numerical simu-
lations and the UFC overestimates the impulses compared to the experimental
data. This indicates that the discrepancies between the experiment and simu-
lation might be explained by inaccuracies in the recorded data. The differences
could also be explained by several combining factors, whereas some of them are
presented here:

• The influence of friction between the shock front and the ground
• The point of detonation might differ between the experiment and simula-

tion
• The charge mass and geometry
• The horizontal alignment of the charge and sensors in the experiment
• The small steel tap placed in front of the charge might impact the exper-

imental results, and is not accounted for in the simulation
• The possibility of instrumental errors

151



CHAPTER 7. NUMERICAL METHODS

7.3.3 Uncoupled Eulerian Lagrangian (UEL)
UEL analyses will be employed in order to numerically represent the blast loaded
plate experiments described in section 4.2.2.

7.3.3.1 UEL Employing a Discretized Pressure Distribution

Introduction

In an UEL, pure MME simulations are performed in order to generate load
curves that subsequently are employed in separate Lagrangian analyses.

Procedure

Because the experiment cannot be represented with rotational symmetry, the
recommended 2D to 3D mapping technique from section 6.2.5 is employed. Ad-
ditional MME analyses employing only 3D elements are performed to further
illustrate the benefits of employing this method. The plate is represented in
the MME simulations by a set of nodes acting as reflective boundaries, thus
modelling the plate as completely rigid shown in figure 7.36b.

(a) Volume (b) Rigid plate

Figure 7.36: Example of MME model geometry employed in UEL (R = 300
mm)

Tracers have been positioned in front of the rigid boundaries in the MME anal-
yses (see figure 7.37) such that the pressure time-history can be recorded. The
Lagrangian model is identical to the one employed in section 7.3.1 and shown in
figure 7.28. The sectioning of the mesh has been adapted to the tracer positions

152



CHAPTER 7. NUMERICAL METHODS

shown in figure 7.37 such that it creates a perfect discretization of the pressure
distribution.
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Figure 7.37: Tracer positioning and corresponding tributary area

In the 2D to 3D mapping analyses, the blast wave will be allowed to propagate
in the 2D MME domain until it has reached approximately 100 mm from the
reflected boundaries representing the rigid plate. This will allow the blast wave
propagation to be optimally represented by a fine mesh for as long it is possible
without disrupting the airflow around the plate.

Results

The results from the analyses are compared alongside experimental data in table
7.13, and deflection time-histories from all the simulated standoffs are shown in
figure 7.38.

153



CHAPTER 7. NUMERICAL METHODS

Table 7.13: UEL simulations displacement comparison

R ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [h:min:s]*

UEL analyses employing mapping from 2D to 3D
300 30.88 27.40 32.19 [00:58:41] 85.12 %
400 26.85 23.50 26.93 [01:31:42] 87.26 %
450 24.47 21.00 24.07 [01:44:27] 87.25 %
550 18.77 16.20 18.47 [01:43:13] 87.71 %

UEL analyses employing only 3D elements
300 20.41 17.00 32.19 [00:56:38] 52.81 %
400 16.62 11.50 26.93 [10:25:16]** 42.70 %
450 15.02 9.00 24.07 [03:09:19] 37.39 %
550 13.24 4.00 18.47 [01:06:36] 21.66 %

* Note that the reported CPU-time for the 2D to 3D mapped results are the
total time for both MME analyses and the Lagrangian analyses.

** The reported CPU-time is not representative for the analysis, as it prob-
ably is due to a heavy work load on the CPU cluster.
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(d) R = 550 mm

Figure 7.38: Deflection time-histories for the UEL analyses

By examining the permanent deflection-results in table 7.13, it is evident that
the deformation is underestimated for both the 2D to 3D mapping technique
and by employing a full 3D model. It is also observed that the deformation
increases when using the mapping technique compared to the full 3D approach.
This further supports the results in section 6.2.4 which showed that MME anal-
yses employing 10x10x10 [mm] 3D elements underestimates the impulse and
peak pressure. This shows the importance of properly describing the initial
blast wave propagation with a sufficiently fine mesh.

A time-lapse describing the gas-plate interaction is presented in figure 7.39 fol-
lowed by a figure describing how the results from the last cycle in the 2D domain
(figure 7.40a) is mapped over to the first cycle in the 3D domain (figure 7.40b).
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(a) T = 5e-5s (b) T = 9.97e-5s (c) T = 1.796e-4s (d) T = 3.197e-4s (e) T = 5.897e-4s

Figure 7.39: A time-lapse of the MME analyses (R = 300 mm)

(a) Last 2D cycle (b) First 3D cycle

Figure 7.40: Mapping from 2D to 3D explained (300 mm standoff)

By examining figure 7.40b and 7.40a it can be observed that the result mapped
from 2D to 3D looses some fidelity. This is expected because the 3D domain
employs elements that are ten times larger.

The pressure loads generated in the MME analyses does not consider FSI effects,
thus resulting in an underestimation of deflection (see figure 7.30). Another im-
portant aspect to consider is that the recorded pressure-histories in the MME
simulations are inflated because the plates are assumed rigid, thus resulting in
overestimating the applied loads in the Lagrangian analyses. This would coun-
teract the effects from the lack of FSI consideration. An overview of the main
causes suspected to be responsible for the discrepancies between numerical and
experimental data is listed below:
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• The lack of FSI effects
• The discrete pressure distribution
• The coarse mesh employed in the 3D model
• The plate being modelled as completely rigid

In order to perform these analyses with sufficient accuracy, the analyst have to
perform three separate simulations;

1. A 2D MME analysis with a fine mesh
2. A 3D MME analysis with a coarse mesh
3. A Lagrangian analysis

The amount of time required to set up these simulations are not covered in the
CPU time, and should therefore be kept in mind when comparing this method
to the alternatives presented in this thesis.

7.3.3.2 UEL Employing a Continuous Pressure Distribution

Introduction

As explained in section 7.2.1.2 the large discrete pressure variations across the
tributary area boundary (shown in figure 7.37) might give rise to unrealistic
deformations in the numerical simulations. To eliminate these large discrete
changes, a continuous load field can be interpolated from the tracer data and
applied to the numerical model as functions of space and time in IMPETUS.

Procedure

The same procedure as in section 7.2.1.2 was applied to create the Friedlander
load field. Load curves were fitted from the pressure data obtained from the
uncoupled multi-material Euler simulations in section 7.3.3.1. The peak pressure
and impulse were kept constant while the decay coefficient and positive duration
were varied to obtain the best fit. Examples of the interpolated Friedlander
functions are depicted in figure 7.41.
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Figure 7.41: Examples of interpolated Friedlander functions

From the curve-fitted functions the Pr(x, y), T+(x, y) and b(x, y) variable func-
tions were interpolated with respect to space and augmented in to a Friedlander
equation that is identical to equation (7.2.1)

Examples of the interpolated variable functions are depicted in figure 7.42.
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Figure 7.42: Examples of interpolated Friedlander functions

The Friedlander load field was then applied to a numerical model identical to
the one employed for in the Lagrangian simulations in section 7.3.3.1

The data from the numerical simulations in section 7.3 represents a much more
ideally shaped blast wave compared to the gas gun experiment. This result is
a better fit for the variable functions and should consequently yield a better
prediction with respect to deformation.
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Results

The results are presented in table 7.14 and time-displacement plots are seen in
figure 7.43.

Table 7.14: The results from a UEL simulation employing a continuous pres-
sure distribution

R ∆max ∆perm ∆exp CPU-time ∆perm

∆exp
· 100%[mm] [mm] [mm]** [mm] [h:min:s]*

300 29.75 26.10 32.19 02:15:43 81.08 %
400 27.17 23.20 26.93 02:15:02 86.15 %
450 24.48 19.90 24.07 02:12:19 82.68 %
550 18.88 13.80 18.47 02:12:03 74.72 %
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Figure 7.43: UEL Friedlander displacement time history-plots

This method was specifically designed to investigate if the tributary area ap-
proach contribute to noticeable errors in a Lagrangian approach. Concluded
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from the simulation output the Friedlander field approach does not have a pos-
itive impact regarding the correlation between the numerical and experimental
results. The error is larger compared to the tributary area approach in section
7.3.3.1, and this implies that the tributary area is not the root of the displace-
ment errors in the uncoupled calculations.

The fact that the Friedlander-field approach gives yields less deflection than
the simulations in section 7.3.3.1 probably stems from the following:

• The interpolated field functions does not perfectly fit the sensor data.

• This formulations does not take in to account the time delay at which the
pressure hits the different parts of the plate

• The tributary area approach in section 7.3.3.1 overestimates the deflection

• An increased loading rate
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7.3.4 Coupled Eulerian Lagrangian (CEL)
Simulations employing a CEL formulation will be used to simulate the blast
loading plates experiments at Raufoss (2010) described in section 4.2.

Introduction

The explosive process will be represented with the MME model from section 6.2.
The Lagrangian plates and corresponding supports are identical to the ones in
section 7.3.3. The different parts are created with separate meshes, and are
illustrated in figure 7.44.

(a) Combined (b) Lagrangian model (c) MME air volume

Figure 7.44: An overview of the different parts in a CEL analysis (R =300
mm)

Procedure

The same 2D and 3D mapping technique is employed as in the UEL analyses
in section 7.3.3. In order to minimize the number of simulations, the same 2D
results from section 7.3.3 are mapped in to the 3D domains in this section.
Two additional analyses will be performed by employing full 3D models. One
with 10x10x10 [mm] elements, and the other with 5x5x5 [mm] elements. Even
though MME analyses using 5x5x5 [mm] elements were previously disregarded,
it was decided to perform a set of CEL analyses with these element sizes on
NTNU’s supercomputer VILJE with 16-32 MPP processors allocated.
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The coupling between the MME fluids and the Lagrangian parts is the penalty-
based method described in section 2.4.6.6 and illustrated in figure 2.30. The
corresponding parameters are shown in the keyword file example in appendix
C.3. After recommendations from [46], fully integrated shell elements were
employed in order to increase the number of contact points for the pressure it-
eration process. As shown in section 6.1.1, shell elements with full and reduced
integration generate sufficiently similar results.

In order to reduce the computational need and avoid the numerical instabil-
ities observed in section 6.2, a simulation time of only 3 ms will be applied. The
midpoint deflection will be monitored, and subsequently benchmarked against
the experimental results from table 5.5.

Results

The results from the analyses are compared alongside experimental data in table
7.15, and deflection time-histories from all the simulated standoffs are shown in
figure 7.45.

Table 7.15: Overview of the results from the CEL simulations

R El. size ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [mm] [h:min:s]*

CEL analyses employing the 2D to 3D mapping technique
300 1,10 40.55 37.00 32.19 [11:26:27] 114.94 %
400 1,10 34.09 30.00 26.93 [11:26:33] 111.40 %
450 1,10 31.08 27.00 24.07 [11:32:33] 112.17 %
550 1,10 23.98 20.00 18.47 [11:47:39] 108.28 %

CEL analyses employing only 3D elements

300 10 31.53 28.00 32.19 [23:53:00] 86.98 %
5 33.95 30.70 [05:35:24]** 95.37 %

400 10 24.39 20.50 26.93 [23:38:00] 76.12 %
5 28.92 25.00 [05:36:20]** 92.83 %

450 10 21.76 17.50 24.07 [22:09:00] 72.70 %
5 25.93 21.10 [05:41:59]** 87.66 %

550 10 17.91 12.50 18.47 [22:41:00] 67.68 %
5 21.92 18.10 [02:45:20]*** 97.99 %

*The analyses are only performed for 3 ms, which should be kept in mind when
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comparing the CPU time with the other methods at 15 ms. The reported CPU
times for the 2D to 3D mapping results are the total time of both MME analyses
and the Lagrangian analyses.

** The analyses were performed employing NTNUs supercomputer VILJE run-
ning on 16 MPP processors.

*** The analysis was performed employing NTNUs supercomputer VILJE run-
ning on 32 MPP processors.
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Figure 7.45: Midpoint displacement time history comparison for the full sim-
ulation employing 5x5x5 [mm] elements and the 2D to 3D mapping technique

Based on the results in table 7.15 and figure 7.45, it is observed once again that
simulations with MME domains consisting of 10x10x10 [mm] elements under-
estimates the plate deflection. This is confirmed by the results in sections 6.2
and 7.3.3. Comparing these with the results from UEL using similar element
size, shows that the inclusion of FSI effects (shown in figure 7.46) increases the
permanent plate deflection. The same effect is observed in the 2D to 3D map-
ping results, which overestimates the deflections compared to the experiments.
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This indicates that the coarse mesh not only poorly represents the initial blast
wave propagation, but also the air flow around the plate.

By employing the recommended 5x5x5 mm3 elements in the MME domain,
a relatively good representation of the plate deflection from the experiments is
achieved. This further illustrate the importance of a sufficiently fine mesh in
order to represent the initial blast wave propagation and the air flow around
the plate.

An illustration describing the FSI effects on a structure is shown in figure 7.46.

Undeformed Deformed

Lagrangian
structure

Pr Pr

Figure 7.46: Illustration of the pressure orientation in an CEL

A time-lapse showing the gas-plate in the CEL analyses is shown in figure 7.47.
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(a) T = 1e-4s (b) T = 3.4983e-4s (c) T = 5.9992e-4s

Figure 7.47: Time-lapse for a CEL at R = 400 mm

An overview of the suspected causes behind the discrepancies between numerical
and experimental data is listed below:

• The mesh is too coarse in order to properly describe proper load conditions
• Leaking through the penalty coupling interface
• The approximations in pressure iterations

A lot of work is required by the analyst in order to create a acceptable CEL
representation of the experiment. As one would expect a deep understanding
of the associated theory presented in section 2.4.5 is required. However the
analyst also needs to be aware of and understand the function of every numerical
parameter associated with the analysis in question.
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7.3.5 The Discrete Particle Method (DPM)
Introduction

As an alternative to the ALE formulation for simulating the fluid-structure in-
teractions there is the DPM. The DPM have several advantages over an ALE
formulation, both when it comes to computational effort and to establish a
feasible numerical model. The DPM will be employed to try and recreate the
displacement in the experiments performed at Raufoss (2010) described in sec-
tion 4.2.

Procedure

The model geometry was imported from LS-DYNA in to IMPETUS to ensure
that the numerical model were identical for both codes. The model is identical
to the one employed in section 6.1.3 where the appropriate amount of particles
that presented accurate results for a quarter symmetric model was determined.
The different cases investigated are presented in table 7.16. The analyses were
run for 15ms and the plates midpoint displacements were monitored.

Table 7.16: Case set-up for standoff based particle method simulations

R C-4 mass Number of particles
[mm] [g] Np

300

145 0.25× 106400
450
550
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Figure 7.48: Numerical model used in standoff case-study explained

The model is reflected for visualization purposes.

Results

The results from the analyses are compared alongside experimental data in table
7.17, and time-displacement plots for the midpoint are depicted in figure 7.49.

Table 7.17: Standoff results for particle method

R ∆max ∆perm ∆exp CPU time ∆perm

∆exp
· 100%[mm] [mm] [mm] [mm] [h:min:s]*

300.00 36.27 33.30 32.19 [02:59:55] 103.45 %
400.00 30.52 26.95 26.93 [03:08:13] 100.07 %
450.00 27.59 23.90 24.07 [03:09:28] 99.27 %
550.00 21.93 17.25 18.47 [03:13:58] 93.39 %

*Note that the CPU time are somewhat affected by the workload on the CPU
cluster, thus it is only the general trend of computational time that are outlined.
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(b) R = 400 mm
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(c) R = 450 mm
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(d) R = 550 mm

Figure 7.49: Standoff Time-displacement history

A time-lapse of the numerical simulation can be seen in figure 7.50. The figure
is reflected across both symmetry axes for visualization.

(a) T = 0s (b) T = 1e-3s (c) T = 6e-3s

Figure 7.50: Time-lapse of numerical simulation at R = 400 mm, [m]

As we observe from the results; the permanent deflection of the plate agrees
very well with the experimental data, especially for standoff distances at 400
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mm and 450mm.

To further validate the DPM, the accumulated blast impulse transferred from
the particles to the steel plate is extracted from the numerical simulations. It is
important to note that the accumulated impulse that is recorded in IMPETUS
is in units Ns and not Pas as one would have grown accustomed to in blast
physics. The impulse is divided by the exposed area and differentiated with
respect to t to obtain the reflected pressure-time plots.

di

dt
= Pr(t) (7.11)

It is important to note that this pressure is an average over the whole exposed
area, and when the plate deforms the exposed area changes. Because of this,
the impulse is normally reported in units Ns.

The blast impulse time history and the pressure time history can be seen in
figure 7.51 and are summarized in table 7.18.
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Figure 7.51: Impulse- and pressure-time history in IMPETUS
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Table 7.18: Impetus impulse and reflected pressure standoff comparison

R Peak impulse Peak reflected pressure. Reflected impulse
[mm] [Ns]* Pr [kPa]** [Pas]*
300 88.34 16500.00 982.00
400 65.05 9500.00 722.00
450 56.09 7400.00 620.00
550 40.06 4500.00 445.00

*Because the impulse is deviated from discrete particle collisions and, the peak
reflected pressure will be somewhat affected by the interval in which the data
are written to the output file. The data should be viewed as approximate.

** The peak pressures are read as approximate values from a central moving
average curve with 5 intervals.

The load data extracted from IMPETUS generates results which lies in the
proximity of the loads calculated with the UEL. This further validates the sim-
ulations carried out with the DPM.
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Comparison and Discussion
of Numerical Results
This chapter will sum up and compare the different numerical techniques em-
ployed to simulate the experiments at Raufoss in 2010. Figure 8.1 compares
the permanent midpoint deflections of the different simulations, and the corre-
sponding results are summarized in table 8.1 and figure 8.1. The most accurate
prediction of deflection for each numerical method was chosen for comparison.
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Figure 8.1: Plot of all methods combined
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Table 8.1: Complete displacement comparison

Analysis R ∆perm ∆perm

∆exp
· 100% CPU time

[mm] [mm] [h:min:s]*

UFC

300 30.50 94.75 % [00:10:45]
400 20.00 74.27 % [00:11:41]
450 17.10 71.04 % [00:10:33]
550 10.90 59.01 % [00:07:02]

LBE

300 28.65 89.00 % [00:13:04]
400 20.40 75.75 % [00:13:53]
450 17.75 73.74 % [00:13:33]
550 12.25 66.32 % [00:08:52]

UEL

300 27.40 85.12 % [00:58:41]
400 23.50 87.26 % [01:31:42]
450 21.00 87.25 % [01:44:27]
550 16.20 87.71 % [01:43:13]

CEL

300 30.70 95.37 % [05:35:24]**
400 25.00 92.83 % [05:36:20]**
450 21.10 87.66 % [05:41:59]**
550 18.10 97.99 % [02:45:20]***

Particle

300 33.30 103.45 % [02:59:55]
400 26.95 100.07 % [03:08:13]
450 23.90 99.27 % [03:09:28]
550 17.25 93.39 % [03:13:58]

*As the analyses in LS-DYNA were performed on a different system than the
particle blast simulations in IMPETUS, these CPU times should only be taken
as general outlines.

**These analyses were performed on VILJE (16 MPP processors) with a simu-
lation time of 3 ms in contrast to the other analyses at 15 ms.

***This analysis was performed on VILJE (32 MPP processors) with a sim-
ulation time of 3 ms in contrast to the other analyses at 15 ms.

While some of the simulations agreed well with experimental results, they are
expected to change if friction is chosen to be included in the models. The
air-steel friction coefficient is believed to have a negligible effect on the final
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deflection, but an introduction of a steel-steel friction coefficient is expected to
change the results slightly. Structural damping effects are also present in the
experiments, but the lack of parameters to properly describe this effect led us
to not include this in the simulations. Experimental uncertainties such as errors
in the horizontal and vertical alignment of the charge, geometric errors in the
components and errors in the charge initiation point are also present. It was
chosen not to include the effects of a non-symmetric initiation point and errors
in the vertical and horizontal alignment because it would have prevented us
from employing quarter symmetry that would in turn drastically increase the
computational effort. Small errors might stem from not properly describing the
material behaviour, but the extensive work done by Gruben [26] leads us to
believe that this error is negligible for small deformations such as this.

Lagrange (UFC and LBE)

Both of the Lagrangian approaches underestimated the blast load, and conse-
quently the resulting deformation. This is mainly believed to stem from the lack
of describing FSI effects and a failure to properly describe the charge geome-
try, thus misrepresenting the blast load parameters. [55] and [29] outlines that
an incorrect description of the shape of the explosive agent results in a poor
description of the blast load which consequently leads to a failure in describ-
ing wanted component behaviour. This is further confirmed by a study in [22]
that concludes that the peak pressure and impulse is increased for cylindrically
shaped charges. The method of applying the pressure load at discrete zones of
tributary area was shown to not be the cause of the inaccuracies.

Uncoupled Euler-Lagrange

The UEL simulations proved to be better than the pure Lagrange simulations,
especially when the standoff is increased. The charge geometry was accurately
represented and this lead to an increased correlation with experimental data.
The blast load obtained by performing the initial calibration of the numerical
model underlines the challenges encountered when full scale experiments are
performed. This is noticeable as the experiments seems to consistently report
underestimated values of the blast load. A drop in accuracy compared to the
other methods is observed when the standoff decreases. This is mainly believed
to originate in a lack of FSI effects as the plates at low standoffs deform ex-
tensively more than the plates further out. The 2D to 3D mapping technique
greatly increased the accuracies of the numerical simulations, as the initial det-

173



CHAPTER 8. COMPARISON AND DISCUSSION OF NUMERICAL
RESULTS

onation and expansion phase proved to be highly mesh sensitive. Additionally
by employing this technique, the total model size was reduced while retaining a
sufficient level of accuracy, which is supported by the results in [55].

Coupled Euler-Lagrange

The CEL approach further increased the accuracy of the numerical simulations
compared to the UEL technique. The gain in accuracy was especially evident
for low standoffs as the relatively large deformation of the steel plate was taken
in to account. The inclusion of FSI effects was initially thought to only have a
small impact on the macroscopic deformation and behaviour of the plate, sup-
ported by [45]. A positive effect have been observed for all the CEL simulations
compared to the UEL approach. However, despite the increased accuracy the
main cause behind a failure to successfully recreate expected deformation is sus-
pected to be a crude discretization of the Eulerian mesh close to the explosive
agent. The deflections in table 8.1 are for a full 3D model, as these had the
lowest error compared to experimental data. When the 2D to 3D mapping tech-
nique was employed with a CEL technique, the simulations overestimated the
deflections for all standoffs, indicating that the mesh around the charge was not
sufficiently discretized (see results in section 7.3.4). At the largest standoff, the
CEL approach achieved the best accuracy of all the methods. This indicates a
trend where the CEL would be preferred over a DPM as the Z increase. The
experienced numerical instabilities and non-physical disturbance of airflow are
also observed in [20].

The Discrete Particle Method

The DPM generally proved to be the most accurate of all the simulation tech-
niques. A drop in accuracy is noticed when the standoff increases, as an in-
creased amount of particles have to be employed for large standoff distances.
As outlined by [14] the discrete particle approach have the potential to become
a very useful tool for simulating close-range blast effects on structures.

It is evident from all the simulations that the big hurdle in successfully sim-
ulating the expected deformation is to accurately describe the load conditions.
This is especially evident in the Lagrangian analysis as these failed to properly
describe the charge geometry, and consequently the expected blast load param-
eters were misrepresented. This shows that only relying on CONWEP to define
the blast load parameters is a dangerous practice. The deformation of the plates
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compared to the simulated results with the DPM are illustrated in figures 8.2
to 8.5.

(a) Experiment (b) Simulation (c) [m]

Figure 8.2: R = 300 mm

(a) Experiment (b) Simulation (c) [m]

Figure 8.3: R = 400 mm
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(a) Experiment (b) Simulation (c) [m]

Figure 8.4: R = 450 mm

(a) Experiment (b) Simulation (c) [m]

Figure 8.5: R = 550 mm
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Remarks Regarding Computational Time

The computational time between the different analyses spanned from minutes
to several days. It is important to take this in to account when a simulation
technique is to be chosen. This thesis reported the computational time for all the
analyses that were run, but the analyses were often run on completely different
systems and under different circumstances thus rendering a direct comparison
impossible.

Remarks Regarding User Friendliness

It became apparent that defining a feasible numerical model was increasingly
hard for the more advanced approaches, the exception being the DPM imple-
mented in IMPETUS. The vast amount of numerical parameters required in LS-
DYNA to properly define the CEL simulations was together with the unfamil-
iarity that structural engineers have with Eulerian FEA the biggest challenges
encountered in this thesis. In contrast, the DPM method was so effortlessly
defined because of the general purpose of the IMPETUS software. One of the
goals of the IMPETUS AFEA software is to minimize the non-physical numer-
ical parameters that have to be tuned in the definition of a numerical model
[43], thus together with being the easiest software to employ, it was the most
accurate for this particular problem.
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Concluding Remarks
Numerical simulations of several blast-like scenarios have been performed in
this thesis; simulations of the gas gun at NTNU, simulations of a ground placed
explosive charge and simulations of blast loaded Docol 600 DL steel plates both
in the gas gun and with explosives. In the gas gun experiments, the pressure
data from performed experiments served as validations, while the permanent
midpoint deflection served as the benchmark for the blast loaded plates. In ad-
dition to these comparisons, the computational time for the different techniques
was outlined to illustrate some of the difficulties engineers have to combat when
utilizing different finite element methods.

The experiments involving the gas gun at NTNU proved to be hard to sim-
ulate because of the complex geometry of the gas gun itself and the addition of
a funnel that disturbed the airflow extensively. Focus was therefore shifted on to
simulating experiments performed by Rakv̊ag at Raufoss in 2010. Experiments
of the ground placed charge proved to be difficult to validate because the nu-
merical simulations consistently overestimated both the peak pressure and the
impulse. This is probably a result of many combining factors, but the largest
contributor is most likely a failure in properly describing the gas dynamics in
the simulations and properly measuring the side on pressure in the experiment.
Deviations in the experimental setup such as a slight variation in the charge
geometry and the spatial placement of the charge are also likely to cause some
of errors in the numerical analyses.

Numerical simulations of the experiments with the blast loaded Docol 600 DL
steel plates from Raufoss was performed with a pure Lagrangian approach, an
uncoupled Lagrangian-Eulerian approach, a coupled Lagrangian-Eulerian for-
mulation and a discrete particle method. All of the numerical techniques were
performed at four different standoffs in the experiment, and almost all of the
simulations presented non-conservative results. The pure Lagrangian approach
was the least accurate because of an inability to properly describe the geometry
of the charge, and consequently misrepresenting the blast load. The uncoupled
simulations properly described the blast load, but the lack of fluid-structure
interaction effects and a crude discretization of the Eulerian mesh near the ex-
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plosive agent are expected to be the main source of error. To isolate the main
source of the discrepancy, a 2D to 3D mapping technique was employed and it
was successfully concluded that a sufficiently fine discretization of the Eulerian
mesh around the explosive agent yielded a larger blast load and consequently
increased expected deformation. Coupled Eulerian-Lagrangian simulations were
performed and the inclusion of fluid-structure interaction had positive results in
regards of correlation between numerical and experimental results. The compu-
tational demand of the coupled calculations was successfully reduced by intro-
ducing a mapping of the 2D Eulerian solutions from the uncoupled simulations
in to the coupled domain. A sufficiently discretized Eulerian mesh near the
charge and the inclusion of FSI effects resulted in conservative results regard-
ing plate deflection. The discrete particle method was the most accurate of all
the methods, while being very easy to define numerically. A proper description
of the charge geometry and fluid-structure interaction effects combined in a
purely Lagrangian domain resulted in good experimental-numerical correlation
together with an efficient computational time.

Several different numerical techniques were utilized to simulate the deforma-
tion of blast loaded steel plates at four different standoffs. A discrete particle
method proved as the most accurate while being the easiest to define numer-
ically. Results in this thesis indicate that the main culprit in the inability to
recreate expected deformations lies in a failure to properly describe the load con-
ditions. It shows that it is a dangerous practice to rely solemnly on standards
such as CONWEP or the UFC to describe the blast load parameters.
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Further Work
The advancements made within computer-aided engineering has created an
abundance of methods and techniques of simulating blast loading. The intention
behind writing this thesis was to create an overview of methods presently used
to simulate blast loading, and showcase each methods strengths and weaknesses.

The experiments used as benchmarks in this thesis are relatively simple, so
the numerical methods presented in this paper have not been utilized to their
full potential. Therefore the following studies could be subject for further work:

• Use the numerical model created in section 7.2.2 in order to optimize the
gas cannon experiment with respect to both penetration studies and using
air-pressure to emulate blast loading.

• Investigate the various methods of reducing the computational expense
while retaining accuracy for MME analyses in LS-DYNA, such as mesh
biasing, element erosion, mapping from 1D or 2D to 3D.

• Further explore the causes behind the observed numerical instabilities.

• Perform more full scale experiments with explosives to gather more blast
load data, thus further increase the foundation in which the numerical
simulations can be validated against.

• Investigate how different charge geometries affect the blast load parame-
ters.

• Employ the particle based approach to see how it performs for more com-
plex blast scenarios.

• Investigate how the introduction of a steel-steel friction coefficient and
structural damping affect the component response.

• Explore the method of combined empirical loading with a reduced ALE
domain.
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Appendix A

Experimental Results (Ch. 5)

A.1 NTNU Pressure History (Section 5.1.1)
In the following graphs only results from pressure transducer in position 1 are
shown. Both raw data and filtered results are shown.
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Figure A.1: Pressure Histories 5-30 Bar test 1
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(e) 15 Bar pressure test 1
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(f) 15 Bar pressure test 2
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(g) 20 Bar pressure test 1
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(h) 20 Bar pressure test 2
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(i) 30 Bar pressure test 1

Notice that peak pressures does not increase for 10 bar and up. However the
impulse increases as expected. In order to investigate the effect of using only
main chamber or just the small chamber an additional 4 tests were performed

A.2



APPENDIX A. EXPERIMENTAL RESULTS (CH. 5)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−50

0

50

100

150

200

250

300

350

Time t (s)

P
re
ss
u
re

P
(k
P
a)

Raw data
Filtered data

(a) 10 Bar in main tank only test 1
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(b) 10 Bar in main tank only test 2
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(c) 10 Bar in small tank only test 2
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(d) 10 Bar in small tank only test 3

Figure A.2: Pressure history 10 bar in main and small tank only

The experiments performed using the small tank only proved to be of small
value. Apparently the volume of air in the small chamber is not enough to
propagate with the same amount of speed along the barrel.
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A.2 Matlab Script (Section 5.1.1)
%
% Master Thesis "Blast loaded steel plates"
% By Andersen, Kristoffer H. and Hernandez, Fredrik B.
%
close all
clear all
clc
%
% Pressure Histories
%
MaxP = 350; % Maximum plotted pressure [kPa]
MinP = -50; % Minimum plotted pressure [kPa]
Maxt = 0.2; % Maximum plotted time-interval [s]
set(0,’defaulttextinterpreter’,’latex’) % Enable latex fonts
set(0,’DefaultAxesFontSize’, 25) % Set up font size
%
% Gather data from sensor # 1
%
load 10barsmall002.txt % Load raw data
S2(:,1) = X10barsmall002(:,1); % Set up time history in vector S2 [s]
S2(:,2) = X10barsmall002(:,2); % Set up pressure history in vector S2 [kPa]
%
% Set up Butterworth algorithm
%
cutF = 100; % Cutoff frequency [Hz]
samplR = 500000; % Sampling rate [Hz]
cutN = cutF*2/samplR; % Normalized cutoff frequency [-]
[b,a]=butter(2,cutN); % Initialize Butterworth algorithm
%
% Employ Butterworth algorithm
%
filt=filter(b,a,S2); % Use Butterworth on vector S2
%
% Plot
%
h=plot(S2(:,1),S2(:,2),’b:’,... % Plot both filtered and raw data

filt(:,1),filt(:,2),’k’);
xlabel(’Time t (s)’); % Name x-axis
ylabel(’Pressure P (kPa)’); % Name y-axis
axis([0 Maxt MinP MaxP]); % Select axis-range
Leg=legend(’Raw data’,’Filtered data’); % Create legend
set(Leg,’Fontsize’,35) % Set up legend font size
set(h(1),’linewidth’,1.5) % Set up custom linewidt for raw data
set(h(2),’linewidth’,3) % Set up custom linewidt for filtered data
A=trapz(filt(:,1),filt(:,2)) % Check integrated value of filtered data
B=trapz(S2(:,1),S2(:,2)) % Check integrated value of raw data

save 10BarS2F.txt -ascii filt % Save filtered data vector in ASCII file
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A.3 Raufoss Side-on Pressure History (Section
5.2.1)
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Figure A.2: Side-on pressure histories for test 1-4
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Appendix B

Preliminary Numerical Study
(Ch. 6)

B.1 LS-DYNA Keyword (Section 6.1.1)
*KEYWORD
*INCLUDE
SUPPORTS.k
PLATE_SH_M5_FR.k
CLAMPS.k
*TITLE
$# title
Andersen and Hernandez Master Thesis 2013
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ CONTROL SETTINGS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*CONTROL_ACCURACY
$# osu inn pidosu

1 4 0
*CONTROL_ENERGY
$# hgen rwen slnten rylen

2 2 1 1
*CONTROL_SHELL
$# wrpang esort irnxx istupd theory bwc miter proj

0.000 0 0 1 2 2 1 0
$# rotascl intgrd lamsht cstyp6 tshell nfail1 nfail4 psnfail

1.000000 1 0 1 0 0 0 0
$# psstupd irquad cntco itsflg irquad

0 0 0 0 2
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

0.05000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
0,0.5
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ OUTPUT PARAMETERS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*DATABASE_GLSTAT
$# dt binary lcur ioopt
1.0000E-5 0 0 1

*DATABASE_MATSUM
$# dt binary lcur ioopt
1.0000E-5 0 0 1

*DATABASE_NODOUT
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$# dt binary lcur ioopt dthf binhf
1.0000E-5 0 0 1 0.000 0

*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid
0.0100000 0 0 0 0

$# ioopt
0

*DATABASE_HISTORY_NODE
$# id1 id2 id3 id4 id5 id6 id7 id8

6560 6579 6599 0 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ SECTION PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*SECTION_SHELL_TITLE
PLATE
$# secid elform shrf nip propt qr/irid icomp setyp

1 2 1.000000 5 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
7.0000E-4 7.0000E-4 7.0000E-4 7.0000E-4 0.000 0.000 0.000 0

*SECTION_SOLID_TITLE
SOLIDS
$# secid elform aet

2 1 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ MATERIAL PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*MAT_MODIFIED_JOHNSON_COOK_TITLE
STEEL DOCOL 600DL
$# mid ro e pr beta xsi cp alpha

1 7850.00002.1000E+11 0.330000 0.000 0.900000 452.00000 1.2000E-5
$# e0dot tr tm t0 flag1 flag2

1.000E-3 293.00000 1800.0000 293.00000 0.000 1.000000
$# a/siga b/b n/beta0 c/beta1 m/na
2.8330E+8 0 0.000000 0.005000 1.000000

$# q1/a c1/n q2/alpha0 c2/alpha1
2.6830E+8 39.380 3.9660e+8 5.000

$# dc/dc pd/wc d1/na d2/na d3/na d4/na d5/na
1.000000 7.48E+8 0.000 0.000 0.000 0.000 0.000

$# tc tauc
1650.00001.0000E+20

*MAT_RIGID_TITLE
Steel
$# mid ro e pr n couple m alias

5 7850.00002.1000E+11 0.330000 0.000 0.000 0.000
$# cmo con1 con2

1.000000 7 7
$# lco or a1 a2 a3 v1 v2 v3

0.000 0.000 0.000 0.000 0.000 0.000
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ LOAD PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*DEFINE_CURVE_FUNCTION_TITLE
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LOAD_CURVE
$# lcid sidr sfa sfo offa offo dattyp

10 0 1.000000 1.000000 0.000 0.000 0
$# function
300000.*(1-time/0.02)*exp(-2*time/0.02)
*LOAD_SEGMENT_SET_ID
$# id heading

1Load
$# ssid lcid sf at dt

47 10 1.000000 0.000 0.000
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ CONTACT PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE
$# cid title
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

2 46 3 2 0 0 0 0
$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20
$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ SEGMENTS AND SETS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*SET_PART_LIST_TITLE
Contact_Supports_and_Clamps
$# sid da1 da2 da3 da4 solver

46 0.000 0.000 0.000 0.000MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

4 6 0 0 0 0 0 0
*SET_SEGMENT_GENERAL_TITLE
contact_slave_segment
$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 2 0 0 0 0 0 0
*SET_SEGMENT_GENERAL_TITLE
contact_master_segment
$# sid da1 da2 da3 da4 solver

46 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 4 6 0 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ PART DESCRIPTION
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*PART
$# title
Plate
$# pid secid mid eosid hgid grav adpopt tmid

2 1 1 0 0 0 0 0
*PART
$# title
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Supports
$# pid secid mid eosid hgid grav adpopt tmid

4 2 5 0 0 0 0 0
*PART
$# title
Clamps
$# pid secid mid eosid hgid grav adpopt tmid

6 2 5 0 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ BOUNDARY CONDITIONS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*BOUNDARY_SPC_SET_ID
$# id heading

0BC_FIXED
$# nsid cid dofx dofy dofz dofrx dofry dofrz

30 0 1 1 1 1 1 1
*SET_NODE_GENERAL_TITLE
Fixed_Supports_Clamps
$# sid da1 da2 da3 da4 solver

30 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 4 6 0 0 0 0 0
*END
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B.2 LS-DYNA Keyword (Section 6.2)
The parameter choices are commented on in table B.1. The parameters not
shown, are not tampered with, and left to the default values.

Table B.1: Parameters used in LS-DYNA comments

Card Parameter Comment

*CONTROL ALE

dct = -1 Recommended by [33]. See B.2.1.1
meth = -2 Recommended by [33]. See B.2.1.2
prit = 1 Recommended by [33]. See B.2.1.3

pref = 1E5 Assumed 1 bar atmospheric pressure
checkr = 0.1 Recommended by [33]. See B.2.1.4

B.2.1.1 CONTROL ALE Remark 9 in [33]
DCT is an obsolete (unused) flag in pre-R5 releases of 971 but can be used starting with
the R5 release to invoke an alternate advection scheme. DCT=-1 is recommended over
the default scheme, especially for simulating explosives and includes the following major
changes:
(a) Relaxes an artificial limit on the expansion ratio limit. The default limit improves
stability in some situations but can overestimate the explosive impulse.
(b) Corrects redundant out-flux of material at corner elements. The redundancy can lead
to negative volume.
(c) Removes several artificial constraints in the advection which were originally
implemented to assist in stability but are no longer needed.

B.2.1.2 CONTROL ALE Remark 10 in [33]
The METH=-2 advection type is the same as METH=2 with only one exception. It
employs a looser constraint on monotonicity requirement during ALE advection. When
METH=2, for each advection process along three directions (front/back, top/bottom,
left/right), the maximum/minimum values for advected history variables in the three
elements along that direction are capped. METH=-2 relaxed the monotonicity condition
so that the advected value is capped at the maximum/minimum value in the element itself
and its neighboring 26 elements. This option, in certain conditions, can better preserve
the material interface for materials defined with *MAT_HIGH_EXPLOSIVE_BURN.

B.2.1.3 CONTROL ALE Remark 1 in [33]
By default, all materials in a multi-material element are assumed to undergo the same
element averaged strain rates. This assumption may not be robust when mixing materials
with very different compressibility. In this case, an assumption of pressure equilibrium
(PRIT=1) in the element may be more appropriate.
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B.2.1.4 CONTROL ALE Remark 4 in [33]
Due to one point integration, ALE elements may experience a spatial instability in the
pressure field referred to as checker boarding. CHECKR is a scale for diffusive flux
calculation to alleviate this problem.
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Numerical Methods (Ch. 7)

C.1 UFC (Section 7.3.1)
The full calculations to estimate the blast load parameters in section 7.3.1 are
shown here. The UFC stems from the US military where imperial units still
governs such that a conversion to SI units are needed in order to compare with
our results.

Table C.1: UFC calculations, unit conversions

R R WC4 WC4
[mm] [ft] [kg] [lb]
300 0.984251969

0.1425 0.31415835400 1.312335958
450 1.476377953
550 1.804461942

Table C.2: C4 TNT equivalence per standoff

R QC4 QTNT
QC4
QT NT

WEQ,TNT

[mm] [ft− lb/lb] [ft− lb/lb] [-]* [lb]
300

2.22E+06 1.97E+06 1.13E+00 3.54E-01400
450
550

*As shown in [31] and [50] the TNT equivalence factor for C4 is a function of
the scaled distance, typically in the range of 1.2-1.4. The recommended value
in the UFC underestimate the TNT-equivalent weight.
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Table C.3: Scaled distance per standoff

R Z

[mm] ft
lbs1/3 ]

300 1.39E+00
400 1.86E+00
450 2.09E+00
550 2.55E+00

With the scaled distance we can find the blast load parameters. As mentioned
in section 7.3.1 it is impossible to find a blast load scenario in the UFC that are
completely identical to the experiments performed in this thesis. The closest
match is to employ the chart in figure 2.9. Here it is assumed that the explosive
is placed in free air because the standoff is so small that the waves reflected
from the ground will not fuse with the original incident waves before they hit
the target plate. The blast wave parameters from the chart are summarized in
table C.4.

Table C.4: Friedlander input data based on UFC

R P+
r i+r T+

[mm] [psi] psi−ms
lbs1/3 ] ms

lbs1/3 ]
300 3500 140.1 0.307
400 1660 93.3 0.784
450 1230 79.7 1.152
550 700 61.3 1.382

The data is converted to SI units:

Table C.5: Friedlander input data based on UFC, SI units

Standoff, R P+
r i+r T+

[mm] [kPa] [Pas] [s]
300 24131.65 6.83E+02 2.17E-04
400 11445.30 4.55E+02 5.55E-04
450 8480.55 3.89E+02 8.15E-04
550 4826.33 2.99E+02 9.78E-04
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Corresponding Friedlander functions are created from the data in table C.5.
The decay coefficients are found by integrating the Friedlander function such
that:

T+∫
0

P+
r

(
1− t

T+

)
e

−bt

T + dt = i+r (C.1)

Table C.6: Decay coefficients per standoff

R b
[mm] [-]
300 6.49
400 12.86
450 16.70
550 14.68

C.2 LS-DYNA Keyword (Section 7.3.2)
*KEYWORD 200000000
*INCLUDE
VOLUME.k
*TITLE
$# title
Side-on pressure simulation Raufoss
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ CONTROL SETTINGS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 1 -2 0 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.000 1.000 0.000 0.000 1 0 1.0e+5 0
$# ncpl nbkt imascl checkr

1 50 0 0.100
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

0.004000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

1.E-8 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*CONTROL_ENERGY
$# hgen rwen slnten rylen

2 2 2 2
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$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ OUTPUT PARAMETERS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*DATABASE_TRHIST
$# dt binary lcur ioopt
1.0000E-7 0 0 1

*DATABASE_GLSTAT
$# dt binary lcur ioopt
5.0000E-6 0 0 1

*DATABASE_MATSUM
$# dt binary lcur ioopt
5.0000E-6 0 0 1

*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid
4.0000E-4 0 0 0 0

$# ioopt
0

$
$******** DEFINE FIXED TRACER TRACER POINTS FOR OUTPUT ********
$
*DATABASE_TRACER
$# time track x y z ammg nid

0.000 1 0.300000 0.001000 0.000000 0 0
0.000 1 0.400000 0.001000 0.000000 0 0
0.000 1 0.450000 0.001000 0.000000 0 0
0.000 1 0.550000 0.001000 0.000000 0 0
0.000 1 0.600000 0.001000 0.000000 0 0
0.000 1 0.750000 0.001000 0.000000 0 0
0.000 1 1.250000 0.001000 0.000000 0 0
0.000 1 1.325000 0.001000 0.000000 0 0
0.000 1 1.400000 0.001000 0.000000 0 0
0.000 1 2.000000 0.001000 0.000000 0 0
0.000 1 2.075000 0.001000 0.000000 0 0
0.000 1 2.150000 0.001000 0.000000 0 0

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ SECTION PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*SECTION_ALE2D
$# secid aleform aet elform

1 11 0 14
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ MATERIAL PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ rho = 125.2 kg/mˆ3 @ 100 bar @ 5 degrees
$ rho = 75.1 kg/mˆ3 @ 60 bar @ 5 degrees
$ rho = 50.1 kg/mˆ3 @ 40 bar @ 5 degrees
$ rho = 37.6 kg/mˆ3 @ 30 bar @ 5 degrees
$ rho = 25.0 kg/mˆ3 @ 20 bar @ 5 degrees
$ rho = 12.5 kg/mˆ3 @ 10 bar @ 5 degrees
$ rho = 1.27 kg/mˆ3 @ 1 bar @ 5 degrees
*MAT_HIGH_EXPLOSIVE_BURN
$# mid ro d pcj beta k g sigy
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1 1601.0000 8190.0000 2.80E+10 2.000 1.000 1.000 0.000
*MAT_NULL
$# mid ro pc mu terod cerod ym pr

2 1.270000 0.000 0.000 0.000 0.000 0.000 0.000
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ EQUATIONS OF STATE
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ e0 = 2.5e+7 N/mˆ2 @ 100 bar @ 5 degrees
$ e0 = 1.5e+7 N/mˆ2 @ 60 bar @ 5 degrees
$ e0 = 1e+7 N/mˆ2 @ 40 bar @ 5 degrees
$ e0 = 7.5e+6 N/mˆ2 @ 30 bar @ 5 degrees
$ e0 = 5e+6 N/mˆ2 @ 20 bar @ 5 degrees
$ e0 = 2.5e+6 N/mˆ2 @ 10 bar @ 5 degrees
$ e0 = 2.5e+5 N/mˆ2 @ 1 bar @ 5 degrees
*EOS_JWL
$# eosid a b r1 r2 omeg e0 vo

15.9740E+111.3900E+10 4.500000 1.500000 0.320000 8.7E+9 1.000000
*EOS_LINEAR_POLYNOMIAL
$# eosid c0 c1 c2 c3 c4 c5 c6

2 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0
2.5000E+5 1.000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DETONATION DESCRIPTION
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*INITIAL_DETONATION
$# pid x y z lt

0 0.000 0.000 0.000 0.000
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ ALE GROUP
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*ALE_MULTI-MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ PART DESCRIPTION
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*PART
$# title
Explosive
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 1 0 0 0 0
*PART
$# title
Air
$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 2 0 0 0 0
*END
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C.3 LS-DYNA Keyword (Section 7.3.4)
*KEYWORD 200000000
*INCLUDE
VOLUME.k
CLAMPS.k
BOLTS.k
PLATE.k
SUPPORTS.k
*TITLE
$# title
Pressure simulation Raufoss
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ CONTROL SETTINGS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 1 -2 0 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.000 1.000 0.000 0.000 1 0 1.0e+5 0
$# ncpl nbkt imascl checkr

1 50 0 0.100
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

0.005000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

1E-8 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*CONTROL_SHELL
$# wrpang esort irnxx istupd theory bwc miter proj

0.000 0 0 1 2 2 1 0
$# rotascl intgrd lamsht cstyp6 tshell nfail1 nfail4 psnfail

1.000000 1 0 1 0 0 0 0
$# psstupd irquad cntco itsflg irquad

0 0 0 0 2
*HOURGLASS
$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 1 0.001000 0 1.500000 0.060000 0.100000 0.100000
*CONTROL_ENERGY
$# hgen rwen slnten rylen

2 2 2 2
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ OUTPUT PARAMETERS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*DATABASE_NODOUT
$# dt binary lcur ioopt dthf binhf
1.0000E-7 0 0 1 0.000 0

*DATABASE_GLSTAT
$# dt binary lcur ioopt
5.0000E-7 0 0 1

*DATABASE_MATSUM
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$# dt binary lcur ioopt
5.0000E-7 0 0 1

*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid
2.5000E-4 0 0 0 0

$# ioopt
0

*DATABASE_HISTORY_NODE
$# id1 id2 id3 id4 id5 id6 id7 id8

5000 5209 5189 0 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ SECTION PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*SECTION_SOLID
AIR_EXPL
$# secid elform

1 11
*SECTION_SOLID_TITLE
RIGID_SUPPORTS
$# secid elform aet

2 1 0
*SECTION_SHELL_TITLE
PLATE
$# secid elform shrf nip propt qr/irid icomp setyp

3 16 1.000000 5 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
2.0000E-3 2.0000E-3 2.0000E-3 2.0000E-3 0.000 0.000 0.000 0

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE
$# cid title
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

10 468 3 2 0 0 0 0
$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20
$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
*SET_PART_LIST_TITLE
Contact_Supports_and_Clamps
$# sid da1 da2 da3 da4 solver

468 0.000 0.000 0.000 0.000MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

4 6 8 0 0 0 0 0
*SET_PART_LIST_TITLE
All_Contact
$# sid da1 da2 da3 da4 solver

500 0.000 0.000 0.000 0.000MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

4 6 8 10 0 0 0 0
*SET_SEGMENT_GENERAL_TITLE
contact_slave_segment
$# sid da1 da2 da3 da4 solver

10 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 10 0 0 0 0 0 0
*SET_SEGMENT_GENERAL_TITLE
contact_master_segment
$# sid da1 da2 da3 da4 solver
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468 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 4 6 8 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ MATERIAL PROPERTIES
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ rho = 125.2 kg/mˆ3 @ 100 bar @ 5 degrees
$ rho = 75.1 kg/mˆ3 @ 60 bar @ 5 degrees
$ rho = 50.1 kg/mˆ3 @ 40 bar @ 5 degrees
$ rho = 37.6 kg/mˆ3 @ 30 bar @ 5 degrees
$ rho = 25.0 kg/mˆ3 @ 20 bar @ 5 degrees
$ rho = 12.5 kg/mˆ3 @ 10 bar @ 5 degrees
$ rho = 1.27 kg/mˆ3 @ 1 bar @ 5 degrees
*MAT_HIGH_EXPLOSIVE_BURN
$# mid ro d pcj beta k g sigy

1 1601.0000 8190.0000 2.80E+10 2.000 1.000 1.000 0.000
*MAT_NULL
$# mid ro pc mu terod cerod ym pr

2 1.270000 0.000 0.000 0.000 0.000 0.000 0.000
*MAT_RIGID_TITLE
Steel
$# mid ro e pr n couple m alias

3 7850.00002.1000E+11 0.330000 0.000 0.000 0.000
$# cmo con1 con2

1.000000 7 7
$# lco or a1 a2 a3 v1 v2 v3

0.000 0.000 0.000 0.000 0.000 0.000
*MAT_MODIFIED_JOHNSON_COOK_TITLE
STEEL DOCOL 600DL
$# mid ro e pr beta xsi cp alpha

4 7850.00002.1000E+11 0.330000 0.000 0.900000 452.00000 1.2000E-5
$# e0dot tr tm t0 flag1 flag2

1.000E-3 293.00000 1800.0000 293.00000 0.000 1.000000
$# a/siga b/b n/beta0 c/beta1 m/na
2.8330E+8 0 0.000000 0.005000 1.000000

$# q1/a c1/n q2/alpha0 c2/alpha1
2.6830E+8 39.380 3.9660e+8 5.000

$# dc/dc pd/wc d1/na d2/na d3/na d4/na d5/na
1.000000 7.48E+8 0.000 0.000 0.000 0.000 0.000

$# tc tauc
1650.00001.0000E+20

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ EQUATIONS OF STATE
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ e0 = 2.5e+7 N/mˆ2 @ 100 bar @ 5 degrees
$ e0 = 1.5e+7 N/mˆ2 @ 60 bar @ 5 degrees
$ e0 = 1e+7 N/mˆ2 @ 40 bar @ 5 degrees
$ e0 = 7.5e+6 N/mˆ2 @ 30 bar @ 5 degrees
$ e0 = 5e+6 N/mˆ2 @ 20 bar @ 5 degrees
$ e0 = 2.5e+6 N/mˆ2 @ 10 bar @ 5 degrees
$ e0 = 2.5e+5 N/mˆ2 @ 1 bar @ 5 degrees
*EOS_JWL
$# eosid a b r1 r2 omeg e0 vo

15.9740E+111.3900E+10 4.500000 1.500000 0.320000 8.7E+9 1.000000
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*EOS_LINEAR_POLYNOMIAL
$# eosid c0 c1 c2 c3 c4 c5 c6

2 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0
2.5000E+5 1.000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ 2D to 3D mapping initialization, ALE GROUP and COUPLING parameters
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*INITIAL_ALE_MAPPING
100,0,200
0,0,0,300
*SET_PART
100
1,2
*SET_MULTI_MATERIAL_GROUP_LIST
200
1,2
*DEFINE_VECTOR
300,0,0,0,0,0,1
*ALE_MULTI-MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1

*CONSTRAINED_LAGRANGE_IN_SOLID
$# slave master sstyp mstyp nquad ctype direc mcoup

500 2 0 1 3 4 2 0
$# start end pfac fric frcmin norm normtyp damp

0.000 1.000 0.000 0.000 0.000 0 0 0.000
$# cq hmin hmax ileak pleak lcidpor nvent blockage

0.000 0.000 0.000 1 0.100 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ PART DESCRIPTION
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*PART
$# title
Explosive
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 1 0 0 0 0
*PART
$# title
Air
$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 2 0 0 0 0
*PART
$# title
Supports
$# pid secid mid eosid hgid grav adpopt tmid

4 2 3 0 0 0 0 0
*PART
$# title
Clamps
$# pid secid mid eosid hgid grav adpopt tmid

6 2 3 0 0 0 0 0
*PART
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$# title
Bolts
$# pid secid mid eosid hgid grav adpopt tmid

8 2 3 0 0 0 0 0
*PART
$# title
Plate
$# pid secid mid eosid hgid grav adpopt tmid

10 3 4 0 0 0 0 0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ BOUNDARY CONDITIONS
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
*BOUNDARY_SPC_SET_ID
$# id heading

0BC_FIXED
$# nsid cid dofx dofy dofz dofrx dofry dofrz

30 0 1 1 1 1 1 1
*SET_NODE_GENERAL_TITLE
Fixed_Supports_Clamps
$# sid da1 da2 da3 da4 solver

30 0.000 0.000 0.000 0.000MECH
$# option e1 e2 e3 e4 e5 e6 e7
PART 4 6 8 0 0 0 0
*END

C.4 IMPETUS Keyword (Section 7.3.5)
#Andersen and Hernandez Master Thesis 2013
#IMPETUS keyword example
#450mm standoff with 250 000 particles

*KEYWORD

#Include geometry from LS-DYNA
*INCLUDE
RQ_CLAMPS_2.k
*INCLUDE
RQ_PLATE_M15_2.k
*INCLUDE
RQ_SUPPORTS_2.k
*INCLUDE
RQ_BOLTS_SMALLER_CUT.k

#Define unit system
*UNIT_SYSTEM
SI

#Analysis control parameters
*TIME
[%analysis_termination_time]
*OUTPUT
[%analysis_termination_time/20],1e-5
*OUTPUT_NODE
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NS,10
*SET_NODE
10,0
5278,5322

#Define parameters
*PARAMETER
analysis_termination_time=0.01 #Analysis runtime
s0=2.833e8 #Yield stress
Q1=2.683e8 #Voce coefficient Q1
Q2=3.966e8 #Voce coefficient Q2
C1=39.38 #Voce coefficient C1
C2=5.0 #Voce coefficient C2
rho_steel=7850.0 #Material density
E_steel=2.1e11 #Material elastic module
pr_steel=0.33 #Material Poisson ratio
C_mat=0.005 #Strain rate hardening parameter
ref_strainrate=0.001 #Reference strain rate
friction=0.0 #Steel-Steel friction coefficient

#Particle blast parameters
nParticles=1000000 #Number of particles
c4_length=0.13 #Height of the C4-charge
c4_radius=0.015 #Radius of the C4-charge
standoff=0.45 #Standoff
d_p_x=0 #X-coordinate of initiation point
d_p_y=0 #Y-coordinate of initiation point
d_p_z=[%standoff] #Z-coordinate of initiation point

#Define element order and symmetry axes
*CHANGE_P-ORDER
ALL,0,3
*BC_SYMMETRY
XY

#Define contact algorithm
*CONTACT
1
ALL,0,ALL,0,[%friction],-1.0e13

#Define materials
*MAT_PWL
5,[%rho_steel],[%E_steel],[%pr_steel],
1,0,0,[%C_mat],[%ref_strainrate],
*FUNCTION
1
%s0 + %Q1*(1-exp(-%C1*epsp)) + %Q2*(1-exp(-%C2*epsp))
*MAT_RIGID
1,7850
*PART
2,5
4,1
6,1
8,1
*SET_PART
1
4,6,8
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#Define boundary conditions for the frame
*BC_MOTION
PS,1,XYZ,XYZ

#Particle-blast parameters
#Global domain
*GEOMETRY_BOX
2
0,0,[%standoff+%c4_radius],0.2,0.2,-0.05
#HE Domain
*GEOMETRY_CYLINDER
3
0,[-%c4_length/2],[%standoff],0,[%c4_length/2],[%standoff],[%c4_radius],0
#Define particle-blast simulation
*PBLAST
ALL,0,1,0,c4,[%nParticles/4]
1,0,1,0,0,0
2,0,3,[%d_p_x],[%d_p_y],[%standoff],0,[%analysis_termination_time]
*END
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