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Abstract

Various types of remotely sensed data and imaging technology will aid the
development of sea-ice observation to, for instance, support estimation of ice
forces critical to Dynamic Positioning (DP) operations in Arctic waters. The
use of cameras as sensors for offshore operations in ice-covered regions will
be explored for measurements of ice statistics and ice properties, as part of a
sea-ice monitoring system. This thesis focuses on the algorithms for image
processing supporting an ice management system to provide useful ice infor-
mation to dynamic ice estimators and for decision support. The ice information
includes ice concentration, ice types, ice floe position and floe size distribution,
and other important factors in the analysis of ice-structure interaction in an ice
field.

The Otsu thresholding and k-means clustering methods are employed to iden-
tify the ice from the water and to calculate ice concentration. Both methods
are effective for model-ice images. However, the k-means method is more ef-
fective than the Otsu method for the sea-ice images with a large amounts of
brash ice and slush.

The derivative edge detection and morphology edge detection methods are
used to try to find the boundaries of the ice floes. Because of the inability
of both methods to separate connected ice floes in the images, the watershed
transform and the gradient vector flow (GVF) snake algorithm are applied.

In the watershed-based method, the grayscale sea-ice image is first converted
into a binary image and the watershed algorithm is carried out to segment the
image. A chain code is then used to check the concavities of floe bound-
aries. The segmented neighboring regions that have no concave corners be-
tween them are merged, and over-segmentation lines are removed automat-
ically. This method is applicable to separate the seemingly connected floes
whose junctions are invisible or lost in the images.

In the GVF snake-based method, the seeds for each ice floe are first obtained
by calculating the distance transform of the binarized image. Based on these
seeds, the snake contours with proper locations and radii are initialized, and
the GVF snakes are then evolved automatically to detect floe boundaries and
separate the connected floes. Because some holes and smaller ice pieces may
be contained inside larger floes, all the segmented ice floes are arranged in
order of increasing size after segmentation. The morphological cleaning is
then performed to the arranged ice floes in sequence to enhance their shapes,
resulting in individual ice floes identification. This method is applicable to
identify non-ridged ice floes, especially in the marginal ice zone and managed
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ice resulting from offshore operations in sea-ice.

For ice engineering, both model-scale and full-scale ice will be discussed. In
the model-scale, the ice floes in the model-ice images are modeled as square
shapes with predefined side lengths. To adopt the GVF snake-based method for
model-ice images, three criteria are proposed to check whether it is necessary
to reinitialize the contours and segment a second time based on the size and
shape of model-ice floe. In the full-scale, sea-ice images are shown to be
more difficult than the model-ice images analyzed. In addition to non-uniform
illumination, shadows and impurities, which are common issues in both sea-ice
and model-ice image processing, various types of ice (e.g., slush, brash, etc.),
irregular floe sizes and shapes, and geometric distortion are challenges in sea-
ice image processing. For sea-ice image processing, the “light ice” and “dark
ice” are first obtained by using the Otsu thresholding and k-means clustering
methods. Then, the “light ice” and “dark ice” are segmented and enhanced
by using the GVF snake-based method. Based on the identification result,
different types of sea-ice are distinguished, and the image is divided into four
layers: ice floes, brash pieces, slush, and water. This then makes it possible
to present a color map of the ice floes and brash pieces based on sizes. It
also makes it possible to present the corresponding ice floe size distribution
histogram.
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Chapter 1

Introduction

1.1 Research Background

In 2008, the U.S. Geological Survey (USGS) estimated that the area north of
the Arctic circle has 90 billion barrels of undiscovered, technically recover-
able oil, 1, 670 trillion cubic feet of technically recoverable natural gas, and 44
billion barrels of technically recoverable natural gas liquids in 25 geologically
defined potential areas. Taken together, these resources account for about 22%
of the undiscovered, technically recoverable resources in the world. Breaking
it down by resource, the Arctic accounts for about 13% of the undiscovered
oil, 30% of the undiscovered natural gas, and 20% of the undiscovered nat-
ural gas liquids in the world (see Figure 1.1). About 84% of the estimated
resources are expected to occur offshore [1]. Moreover, the distance of tra-
ditional sailing routes from northern European to northern Pacific ports can
be reduced by one-third if the Arctic shipping routes are reliable. The sailing
time and costs for transportation will thereby be significantly saved. It will
bring tremendous commercial and economic benefits. The Arctic Human De-
velopment Report (AHDR) stated that oil and gas exploration, production, and
transportation would be the driving force behind the formal development of
the Arctic economy in the coming decades.

However, the exploration of the Arctics is still in the early stages. It is more
technically and physically challenging than for any other environment due to
low temperatures, remoteness, darkness, and the prevalence of ice. Despite
this, with increases in technology and continuing high oil prices, the region is
now receiving the interest of the petroleum industry. The Norwegian petroleum
supplier industry is seeing an increased demand for offshore vessels capable of
performing safe and green dynamic positioning (DP) operations in ice-covered
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Chapter 1. Introduction

Figure 1.1: Arctic oil and gas map, from USGS (2008).

Arctic areas. It is expected that such operations will be more frequent in the
future due to exploration drilling, the possibility for hydrocarbon production,
and other emerging advanced marine operations north of the polar circle. De-
spite a few expeditions involving DP operations in ice conditions, in practice
today, there is no experience with and little knowledge of DP operations in
Arctic ice conditions available, neither in the public domain nor among com-
panies. Therefore, developing new knowledge and insights into technological
methods, operational procedures, and limitations are essential for performing
safe commercial operations in a very harsh and ecologically sensitive Arctic
environment. Many research works on Arctic technology and operations have
been conducted, such as [2, 3, 4, 5].

1.1.1 Arctic DP system

A DP vessel maintains its position and heading (fixed location or pre-determined
track) exclusively by means of active thrusters, as shown in Figure 1.2 [6]. The
environmental forces acting on the vessel directly influence its stationkeep-
ing capability. Position reference systems (e.g., Global Navigation Satellite
Systems, Hydroacoustic Position Reference Systems, Taut Wire) and sensors
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1.1. Research Background

(e.g., gyrocompasses, inertial measurement unit, wind sensors, wave sensors,
and current sensors) provide DP control computer with information about the
vessel’s position and the environmental forces. The computer control system
thereby ensures automatically maintaining a desired position and heading by
giving setpoints to the propellers and thrusters [7, 8].

Figure 1.2: Dynamic positioning (DP) vessel. Courtesy: Kongsberg Maritime.

DP technology has been developed and successfully used for decades in dif-
ferent offshore operations, such as offshore oil drilling, coring, and pipelaying.
The environmental loads usually arise from wind, waves, and current. How-
ever, findings have shown that the conventional DP system is infeasible for
operations in Arctic ice conditions. This is because the nature of ice forces
is highly varying and significantly different from other environmental forces.
Multiple problems will challenge the use of DP operations in ice [9]:

• Forces acting on the vessel.

• Forces caused by ice dynamics.

• Turning yaw moment.

• Changes in ice movement direction.

• Predictability of ice load behaviour.

• New type of thruster control allocation.

• Forbidden or required sectors for ice flow management.

• Specific methods to lower ice loads.

3
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• Ice management and operational risk control.

Ice forces involve a direct interaction with a rigid mass. Ice concentration, ice
thickness, floe size distribution, ice material properties, and relative velocity
between the vessel and ice are important factors affecting the vessel’s station-
keeping capabilities under ice loads. Figure 1.3 shows the topology proposal
of the Arctic DP system [10].

Figure 1.3: Topology of an Arctic DP system. Courtesy: Skjetne et al.. [10]

To determine the appropriate actions for a DP vessel and avoid damage from
ice actions, ice management (IM) is typically employed in the stationary oper-
ations with ice-breaking vessels to cover the approach and for providing safe
operation and safe exit when required [3, 4, 11, 12]. IM ice load reduction
system (ILRS) is the sum of all activities in which the objective is to reduce or
avoid actions from any kind of ice features [13]. This will include, but is not
limited to, the following:

• Detection, tracking, and forecasting of sea-ice, ice ridges and icebergs.

• Threat evaluation.

• Physical ice management, such as ice breaking and iceberg towing.

• Procedures for disconnection of offshore structures applied in search for
or production of hydrocarbons.

An Arctic DP vessel operating in a wide range of ice conditions usually de-
pends on an ice management system where icebreakers manage the incoming
ice into smaller pieces to reduce the ice loads on the ship hull as shown in
Figure 1.4 [14]. By maintaining the heading toward the direction of ice drift
motion, the operating vessel is able to minimize the loads on the hull by only
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letting the smallest projected area of the vessel undergo friction from the bro-
ken ice. The DP controller is constructed for the vessel to cope with the result-
ing large variations in the managed ice loads and to maintain its position and
heading [15, 16, 17].

Figure 1.4: Ice management (IM). The ice breakers break the incoming ice into
smaller pieces to reduce the ice loads on the ship hull. Courtesy: J. Haugen
[14]

To detect, track, and forecast ice features, an ice intelligence system is re-
quired in an IM system. The ice intelligence system, as shown in Figure 1.5,
is the process of collecting and analyzing relevant information about the ice
environment in a region of interest. This includes surface ice intelligence
scouting tools, such as satellites, airborne recognizance, shipbord sensors,
radar systems, drift buoys, and visual observations [18], and subsurface ice
intelligence scouting tools such as sonars and unmanned underwater vehicles
(UUVs) [19, 20]. Thus, a complete ice intelligence system will consist of sev-
eral sensor platforms for obtaining the required ice information. The collected
ice information, as the input to some computer software, will be analyzed to
provide useful output information. The output information constitutes visual-
ization to human operators, suggested operational decisions, and tasks to other
automated systems [21].
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Figure 1.5: Ice intelligence system collects and analyzes the ice environment
information from surface and subsurface scouting tools. Illustration by Bjarne
Stenberg. Copyright: NTNU

1.1.2 Imagery for ice observation

Various types of ice are in the ice-covered regions. Ice concentration, ice floe
size distribution, and ice types are important parameters in the field observa-
tions of sea-ice to estimate ice loads. Because the sizes of the ice floes and
brash ice can range from about one meter to a few kilometers, the temporally
and spatially continuous field observations of sea-ice are necessary for marine
activities. To that end, one of the best ways to observe the ice conditions in the
oceans is by using aerial or nautical imagery and applying the digital visual
image techniques to ice observation.

Various types of remote sensing technologies and corresponding image pro-
cessing algorithms for analysis of sea-ice statistics and ice properties have been
developed. Satellite remote sensing has been widely used to extract ice con-
centration [22], classify ice types [23, 24, 25], and analyze ice floes [26, 27].
Digital visual image techniques are also applied to ice observation. [26] mea-
sured the sea-ice floe size distribution by manually identifying the ice floes
from aerial photographs. In [28], a sea-ice digital image collection and pro-
cessing system was utilized to monitor the ice parameters in the JZ20-2 oil-gas
field of the Liaodong Bay, and ice thickness, ice velocity, and ice concentration
in the Bohai Sea are determined by this system. In the model tests performed
by [29], a machine vision system based on boundary detection and threshold-
ing was used to analyze and record the ice conditions surrounding the vessel
in real time.
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The analysis of image information obtained from cameras can enhance the re-
liability through image correlation and improve definition through image com-
plementation. The reliability and complementation can also help to obtain a
more comprehensive and distinct environment. Image processing can reduce
or suppress the ambiguities, incompleteness, uncertainties, and errors of the
object and the environment by multi-image information extraction and synthe-
sis. Finally, it can make the information of the object and environment more
accurate and reliable by maximizing the use of image information from a vari-
ety of information sources.

Due to those advantages, the use of cameras as sensors on mobile sensor plat-
forms (e.g., unmanned vehicles) in Arctic DP operations will be explored for
ice motion monitoring to characterize ice conditions, as shown in Figure 1.6
[30]. Cameras as sensors have the potential of continuous measurements with
high precision, which is particularly important for providing detailed localized
information of sea-ice to ensure safe operations of structures in ice-covered
regions [21].

Figure 1.6: Image processing system in support to Arctic DP operation. The
cameras are used as sensors on the unmanned aerial vehicle (UAV) to monitor
the conditions of sea-ice.

1.2 Ice Parameter Identification

1.2.1 Ice concentration

Ice concentration (IC) is the ratio of ice on unit area of sea surface. It has
been identified as one of the most influential parameters on the magnitude of
experienced forces during model tests [31, 32]. To obtain IC from a visual ice
image, only the visible ice can be considered, including brash ice and, if visible
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in the image, submerged ice. With the image area, height of image taken above
the ice sheet, and the segmentation, which is the identification of the ice from
water, the actual area of sea-ice and sea surface can be derived. However, the
actual domain area is not necessary for calculating the ice concentration.

In simplified terms, ice concentration from a digital visual image is, in our
research, defined as, as a fraction of the whole sea surface domain area, as the
area of sea surface covered by visible ice observable in the 2D visual image
taken vertically from above. Hence, it is the ratio of the number of pixels of
visible ice to the total number of pixels within the image domain. An image
may contain parts of land or other non-relevant areas. Herein, the domain area
is therefore, an effective area within the image. The ice concentration is then
given by the following:

IC = f(image area, height above ice sheet, segmentation)

=
Area of all visible ice

Actual domain area

=
Number of pixels of visible ice in the image domain

Total number of pixels in the image domain

(1.1)

1.2.2 Ice types

Sea-ice is any form of ice found at sea that has originated from the freezing
of sea water [33]. Different types of sea-ice have different physical properties.
Since one generally assumes that brash ice has a dampening effect in models
for calculating ice pressure and ice forces, it may be more convenient to esti-
mate the distribution between three classes: the ratio of ice floes, the ratio of
brash ice, and the ratio of water.

As defined in [34, 35, 36],

• Floe is any relatively flat piece of sea-ice 20 m or more across. It is
subdivided according to horizontal extent. A giant flow is over 10 km
across; a vast floe is 2 - 10 km across; a big floe is 500 to 2000 m across;
a medium floe is 100 to 500 m across; and a small floe is 20 to 100 m
across.

• Ice cake is any relatively flat piece of sea-ice less than 20 m across.

• Brash ice is accumulations of floating ice made up of fragments not more
than 2 m across and the wreckage of other forms of ice. It is common be-
tween colliding floes or in regions where pressure ridges have collapsed.

• Slush is snow that is saturated and mixed with water on land or ice sur-
faces, or as a viscous floating mass in water after heavy snowfall.
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For simplicity, the size of sea-ice piece is the only criterion to distinguish ice
floe and brash ice in this thesis. That is, any relatively flat piece of sea-ice 2
m or more across is considered as “ice floe”, while any relatively flat piece of
sea-ice less than 2 m across is considered as “brash ice (piece)”. The remaining
of ice pixels are considered to be “slush”.

1.2.3 Ice floe size and floe size distribution

The estimation of ice floe size and floe size distribution among the “ice floes”
gives an important set of parameters from ice images.

In image processing, the ice floe size can be determined by the number of pix-
els in the identified floe. If the focal length f and camera height are available,
the actual size in SI unit of the ice floes and floe size distribution can also be
calculated [37] by converting the image pixel size to its SI unit size.

In practice other parameters are typically used to represent the size of the floes,
such as the “representative diameter”. The algorithms proposed in this thesis
produce a complete database of all floes in the image, where the pixels of each
floe is stored. Hence, any 2D geometric parameter can easily be calculated
from the database. The floe size distribution can thus be easily recalculated
based on the “representative diameter” of the floes.

1.3 Objective, Scope, and Applications

The objective of this thesis is to develop image processing algorithms to ex-
tract useful information from the ice images. This information can supplement
data provided by other sensors onboard the ship or a buoy in form of ice con-
centration, ice floe boundaries, and ice types in the surrounding region. These
methods can be used further to develop tools, based on the processed ice data,
that can be applied for decision support in Arctic offshore operations.

The scope of the present work includes the following:

• Segmenting ice regions from water regions.

• Detecting ice floe boundaries and locating floe positions.

• Classifying different types of sea-ice.

• Estimating ice concentration and floe size distribution.
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This process results in an identified model of broken ice floes that can be used
in several ways:

• To quantify the efficiency of ice management for Arctic offshore drilling
operations and automatically detect hazardous conditions, for example,
by identifying large floes that escape the icebreakers operating upstream
of the stationary drilling vessel. The size and shape of those floes, as
identified by the image processing system, can be compared with the
maximal allowed values, and a warning signal can be sent to the risk
management system. Eventually, a decision to disconnect the floater
might be taken based on the identified operational ice conditions.

• The managed ice concentration and ice floe sizes are essential parame-
ters in the empirical formulas that estimate the ice loads on stationary
Arctic offshore structures [38, 39]. One of the largest concerns of ice
management modeling is accurately predicting not just the mean floe
size resulting from an ice management system, but also the floe size
distribution [40].

• Individual ice floes identified by the image processing system, can be
used to initialize high-fidelity numerical models, such as those in [41,
42, 43, 44, 45, 46]. Individual snapshots of identified ice floes can be
used to validate the numerical models at various moments in time by
matching the simulated ice fields with the actual ones.

• The ice floe size and shape distribution, calculated from an identified ice
field, can be used in synthetic ice field generators. These generators draw
polygons from the distribution and use packing algorithms to place the
polygons on a 2D plane. Such synthetic ice fields may be used to study
various packing configurations with the same ice concentrations and floe
size distributions as well as the variability of the resulting ice loads on
an offshore structure.

• The identification of the ice field may provide early warning of an ice
compaction event, which can be dangerous if the ice-structure interac-
tion mode changes from a “slurry flow”-type to a “pressured ice”-type,
as defined by [47] and discussed in [39].

• Finally, the ice-drift speed and direction (velocity) can be estimated by
applying an image analysis to sequential frames. The ice-drift velocity
is an important parameter for ice management because it poses require-
ments on the speed of icebreaking vessels and may indicate an approach-
ing ice drift reversal scenario (which usually happens when the ice drift
tends to zero velocity).

10



1.4. Ice Image Data Source

In addition to the above application areas, the ice floe identification algorithm
may potentially help to illuminate the momentum exchange from atmosphere
to ice discussed in [48], the melting rate of ice floes discussed in [49], and
the possibly of providing a clue to the understanding of ice-floe formation
processes, as discussed in [27].

1.4 Ice Image Data Source

This thesis focuses on ice information extraction from both model- and sea-ice
images. The model-ice images were obtained from Hamburgische Schiffbau-
Versuchsanstalt (HSVA) Ice Model Basin [50, 31], and the sea-ice images were
obtained from an unmanned aerial vehicle (UAV) mission [30].

1.4.1 Model-ice image data

DP experiments in model ice were carried out in the ice tank at HSVA in the
summer of 2011. In these experiments, the behavior of two different ships in a
broken-ice field were studied.

Experimental setup

In the research project “Dynamic Positioning in Ice Covered Waters (DYPIC)”
[51], two different model ships have been tested at HSVA - an Arctic drillship
and a polar research vessel. Each vessel was tested both in free running and
oblique towing configurations. For image processing, the analysis is limited to
the drillship in the oblique towing mode, based on the test campaign conducted
in May 2011. Different heading and velocity profiles were tested. In the an-
alyzed runs, the heading was constant at 180◦ and the velocity of the towing
carriage with the model was increased halfway. By doing this, the full-scale
ice-drift velocity of 0.25 knots was simulated in the first part of the test and
0.50 knots in the second part.

A managed ice condition was obtained by cutting the level ice layer into prede-
fined ice floe shapes. Four different types of ice fields were tested, varying in
ice concentration and ice floe size distribution, as shown in Table 1.1. The runs
were sequentially executed, starting with run no. 5100. This initial ice field
was prepared by cutting a 54-meter long ice sheet into pieces and distributing
them over 64 meters of the tank length.
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The cutting procedure was as follows. First, several strips of ice were cut in
the longitudinal direction of the ice tank. One strip of 1.50 m width, four strips
of 1.00 m width, and nine strips of 0.50 m width coincide with the percentages
recorded in Table 1.1. Next, these strips were cut off such that the length was
equal to the width of the strip, resulting in square ice floes. For run 5200 a
number of floes were taken out of the basin in order to reduce the ice con-
centration. For run 5300, all present ice floes were cut into half diagonally.
Finally, the removed ice floes were reinserted, but cut in half, in run 5400.

Table 1.1: Managed ice conditions in the test runs, target values (model-scale).

Run no.
Ice Concen-
tration [%]

Floe size 1
(45%) [m]

Floe size 2
(40%) [m]

Floe size 3
(15%) [m]

5100 86 0.50 1.00 1.50
5200 70 0.50 1.00 1.50
5300 70 0.25 0.50 0.75
5400 86 0.25 0.50 0.75

Ice conditions were captured by several means. First, a top-view camera was
used before each test run to take 28 pictures over the total ice-covered basin.
Stitching these photos together resulted in a complete overview of the ice floe
distribution in the ice tank. Second, a top-view video camera moving along
with the carriage and model was used to capture the local conditions around
the model vessel during each run. Other video cameras were installed as well
in order to investigate the behavior of the model ship in the broken ice. Pho-
tographs were also taken manually during the tests.

1.4.2 Sea-ice image data

A remote sensing mission to determine ice conditions was performed by the
Northern Research Institute (NORUT) at 78◦55′N 11◦56′E, Hamnerabben,
Ny-Ålesund (see Figure 1.7) from May 6th to 8th, 2011. The objectives of
this mission were to observe and learn from UAV operation in the Arctic and
obtain remotely sensed data of sea-ice features from a mobile sensor platform.

A CryoWing [52] [53] UAV, as shown in Figure 1.8, was used as a mobile
sensor platform for the mission. This UAV was designed for cryospheric mea-
surements and environmental monitoring. It has flexibility in coverage and in
spatial and temporal resolution, which are three important sensor-platform at-
tributes. The technical specification of CryoWing is found in Table 1.2. The
basic instrumentation of the CryoWing is an onboard computer that controls
the different payload instruments, stores data to a solid-state disk, and relays
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data to the ground. The onboard payload system has a GPS receiver and a
3-axis orientation sensor independent of the avionics system. The sensor de-
vice used in this analysis is a digital visual camera with specifications found in
Table 1.3.

Figure 1.7: Location of site for the remote sensing mission.

The UAV flew in the inner part of Kongsfjorden close to a buoy that had been
deployed on the ice cover (see Figure 1.9) to collect high-resolution images of
sea-ice.

1.5 Thesis Structure, Research Methods, and Contri-
butions

Chapter 1: Introduction. This chapter gives a brief introduction concerning
background, motivation and objectives of this thesis. The definitions of ice
concentration from a digital visual ice image, ice floe, brash ice and slush
for this thesis are also given in this chapter.

Chapter 2: Ice Pixel Detection. This chapter presents the ice pixel detection
methods for the calculation of ice concentration from ice images. The main
contributions in this chapter are as follows:
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Figure 1.8: The CryoWing UAV operation at Ny-Ålesund (Photographer: Qin
Zhang).

Table 1.2: CryoWing technical specifications.

Weight 30 kg max take off weight
Wingspan 3.8 m
Cruise speed 100 - 120 km/h
Range/endurance 500 km / 5 h
Max altitude 2500 m dynamic range, 5000 m absolute
Payload capacity Max 15 kg including fuel load
Engine Two stroke gasoline
Navigation GPS
Ground equipment PC with modem, RC control
Flight Autonomous, but under ground control
Communication GSM or Iridium satellite modem

Table 1.3: Visible spectrum camera specifications.

Camera model Canon EOS 450D
Lens type Canon EF 28 mm f/2.8
Aperture value 11.00
Sensor 22.2 ×14.8 mm CMOS
ISO 200
Dimensions 4290 ×2856
Resolution 960 dpi
Exposure time 1/250 sec
Sampling frequency 0.66 Hz
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Figure 1.9: Executed UAV flight path, from NORUT.

1. Introduce the Otsu thresholding and k-means clustering methods for the
extraction of ice pixels from ice images.

2. Compare these two methods and their applicable scope.

This work was published in [50] and [30].

Chapter 3: Ice Edge Detection. This chapter introduces two common edge
detection methods for the detection of ice floe boundaries. The main con-
tributions in this chapter are as follows:

1. Apply the derivative edge detection and morphology edge detection meth-
ods to detect ice boundaries.

2. Compare and analyze the pros and cons of these two methods.

This work was published in [50] and [30].

Chapter 4: Watershed-based Connected Ice Floe Segmentation. This chap-
ter adopts the watershed transform to separate seemingly connected sea-ice
floes, and proposes a neighboring-region merging algorithm to reduce the
over-segmentation automatically. The main contributions in this chapter
are as follows:

1. Give an assumption of ice floe shapes.

2. Apply chain code to identify the concave corners of the segmented floe
boundaries and automatically remove the over-segmentation lines caused
by watershed.
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3. Discuss the limitations and applicable scope of the method.

This work was published in [54].

Chapter 5: Ice Image Segmentation and Ice Floe Identification. This chap-
ter adopts the gradient vector flow (GVF) snake algorithm to identify ice
floe boundaries, and morphology cleaning algorithm to enhance ice shapes.
The main contributions in this chapter are as follows:

1. Determine the required initial contours for the GVF snake.

2. Propose an automatic initial contours algorithm for the GVF snake based
on the distance transform.

3. Identify ice floe boundaries and separate the connected floes into indi-
vidual ones.

4. Enhance ice shapes and identify individual ice floes based on the mor-
phology cleaning algorithm.

This work was published in [55, 56, 57].

Chapter 6: Model-ice Image Processing. This chapter presents the methods
to process model-ice images. The main contributions in this chapter are as
follows:

1. Propose three criteria to determine the seeds for crowed model-ice floes
based on their characters.

2. Identify the individual model-ice floes from crowed model-ice images
based on the proposed criteria and the method proposed in Chapter 5.

3. Obtain model-ice floe position, area, and size distribution.

4. Propose a model of the managed ice field’s configuration.

This work was published in [55].

Chapter 7: Sea-ice Image Processing. This chapter presents the methods for
the analysis of sea-ice images. The main contributions in this chapter are
as follows:

1. Derive “light ice” and “dark ice” from the sea-ice image by using both
Otsu thresholding and k-means clustering methods, and identify indi-
vidual ice pieces.

2. Derive four different layers - ice floes, brash pieces, slush, and water -
from the sea-ice image based on the identification result, and derive the
floe (brash) size distribution.

16



1.6. Publications

3. Give case studies to illustrate the sea-ice image processing procedure,
including local processing and geometric calibration.

4. Propose a model of sea-ice field’s configuration.

5. Give applications on ice engineering.

This work was published in [56, 57].

Chapter 8: Conclusion. This chapter summarizes the thesis work, and pro-
vides suggestions for future work.

Appendix A: Geometric Orthorectification. This chapter gives a geomet-
ric orthorectification method for calibrating the distortion caused by the
oblique angle in the sea-ice image in Chapter 7.

Appendix B: Fisheye calibration. This chapter gives a geometric method for
calibrating the fisheye distortion caused by the GoPro camera in the sea-ice
image in Chapter 7.
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Ice Pixel Detection

Ice concentration, as defined, is a binary decision of each pixel to determine
whether it belongs to the class “ice” or to the class “water”. From Equation 1.1,
it is clear that, the identification of the ice pixels from water pixels is crucial to
obtain the ice concentration from an ice image.

A digital visual image is a numeric representation of a two-dimensional pic-
ture, and it is composed of pixels, which are the smallest individual elements in
the image. A pixel holds quantized values that represent the color or gray level
of the image at a particular point. Based on that, ice is whiter than water, and
the pixel values are different between ice and water in normal conditions. In
this chapter, Otsu thresholding and k-means clustering methods are introduced
to extract the ice pixels from open water in ice images. The work presented in
this chapter was published in [30, 50].

2.1 Thresholding

The pixels in the same region have similar intensity, and thresholding is a
natural way to segment such regions. The thresholding method is based on the
pixel’s gray-level. Assuming that an object is brighter than the background, the
object and background pixels have intensity levels grouped into two dominant
modes. The threshold T is selected to extract the objects from the background.
Individual pixels are marked as “object” pixels if their value is greater than the
threshold value and as “background” pixels otherwise, that is:

g(x, y) =

{
1 if f(x, y) ≥ T,
0 if f(x, y) < T.

(2.1)
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where g(x, y) and f(x, y) are the pixel values located in the xth column, yth

row of the binary and grayscale image, respectively. Then, the grayscale image
is turned into a binary image. The key to using the thresholding method is in
how to select the threshold value, for which there are several different methods.

2.1.1 The Otsu thresholding method

The Otsu thresholding method [58] is one of the most common threshold seg-
mentation algorithms. It is used to automatically perform histogram shape-
based image thresholding. The assumptions of the Otsu thresholding method
are as follows:

• The histogram (the distribution of gray value) is bimodal (see Figure
2.1).

• The illumination is uniform.

Figure 2.1: Bimodal histogram.

The histogram is divided into two classes (i.e., the pixels are identified as either
foreground or background), and the goal is to find the threshold value that
minimizes the within-class variance [58], given by:

σ2w(T ) = ω1(T )σ
2
1(T ) + ω2(T )σ

2
2(T ), (2.2)

where ω1 and ω2 are the probabilities of the two classes separated by a thresh-
old T and σ1 and σ2 are the variances of these two classes. The threshold
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with the maximum between-class variance also has the minimum within-class
variance. According to [58], the between-class variance is given by:

σ2b (T ) = ω1(T )(µ1(T )− µ(T ))2 + ω2(T )(µ2(T )− µ(T ))2

∼= ω1(T )ω2(T )(µ1(T )− µ2(T ))2
(2.3)

where µ1 and µ2 are the means of these two classes and where µ(T ) =
ω1(T )µ1(T ) + ω2(T )µ2(T ). This expression can also be used to find the best
threshold and to update the threshold value iteratively.

2.1.2 Local thresholding

When a constant threshold value is used over the image, it is called global
thresholding. Global threshold segmentation is simple, but it may fail if parts
of the image are brighter (e.g., under the light) and parts are darker (e.g., under
the shadow); these variations caused by changes in illumination across the
scene.

Instead of using a single global threshold value, the local thresholding, which
determines the thresholds locally, is typically required to handle uneven illumi-
nation problems. This method allows the threshold to continuously vary across
the image. A common way is to divide the original image into sub-images and
use different threshold values to segment each sub-image [59]. Local adaptive
thresholding has a better performance for images with uneven illumination, but
this method induces difficulties, such as subdivision and subsequent threshold
estimation [59].

2.2 Clustering

Clustering is a technique for statistical data analysis. It is trying to find hidden
structures in unlabeled data and assigning the unlabeled data into groups so
that the data in one group are more similar to each other than to those in other
groups. Several clustering algorithms exist [60]:

• Hierarchical: find successive clusters by using previously established
clusters.

• Partitional: determine all clusters at once.

• Subspace: look for clusters that can only be seen in a particular projec-
tion of the data.
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A distance measure is important in most clustering. This will determine the
similarity of two calculated elements and affect the shape of the clusters. Whether
the distance is symmetric or asymmetric, that is, whether the distance from Ob-
ject 1 to Object 2 is the same as the distance from Object 2 to Object 1, is also
important. Some common symmetric distance functions include the following
[60]:

• The Euclidean distance.

• The maximum norm.

• The Mahalanobis distance.

• The angle between two vectors.

• The Hamming distance.

Clustering analysis is a good way for a quick review of data, especially if the
objects are classified into many groups [61]. Clustering is widely used, for
instance, in machine learning, pattern recognition, image processing, informa-
tion retrieval, and bioinformatics. In image processing, clustering is always
applied for image segmentation.

2.2.1 The k-means clustering

K-means clustering is a widely used clustering method. It minimizes the
within-cluster sum of distance to partition a set of data into k clusters. The
step-by-step algorithm for this method is described below [62]:

Step 1: For image processing, a set of gray-levels is given:

f(x1, y1), f(x2, y2), · · · , f(xn, yn). (2.4)

Step 2: Partition this set into k clusters:

fi(x1, y1), fi(x2, y2), · · · , fi(xni , yni) i = 1, 2, · · · , k. (2.5)

Step 3: Calculate the local means of each cluster:

ci =
1

ni

ni∑
m=1

fi(xm, ym) i = 1, 2, · · · , k. (2.6)
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Step 4: Gray level f(xj , yj) (j = 1, 2, · · · , n) belongs to set p (p = 1, 2, · · · , k)
if it has the shortest distance to set p than any other sets:

|f(xj , yj)− cp| ≤ |f(xj , yj)− ci| i = 1, 2, · · · , k. (2.7)

Iterate Steps 3 and 4 until the local means are unchanged.

2.3 Experimental Results and Discussion

2.3.1 Model-ice image test

HSVA provided the image data from the performed tests. The data included
two complete overview pictures from run nos. 5100 and 5200 (Table 1.1) and
the videos of each of the four model test runs. One of the main parameters
characterizing a broken-ice field is the ice concentration, defined as the frac-
tion of the total water area covered by ice. In this section, image processing
techniques are applied to derive the ice concentration in the model basin. Sev-
eral points in time are analyzed in order to describe the evolution of the ice
field. The Otsu thresholding and k-means clustering methods are applied for
calculating the ice concentration in the vicinity of the model ship.

Overall tank image processing

The overall tank images were retrieved by stitching 28 top-view pictures taken
before execution of the model tests. The total images in Figure 2.2 and Figure
2.7 show the distribution of ice floes over the tank length in run no. 5100 and
run no. 5200, and Figure 2.3 and Figure 2.3 show their grayscale histograms.

Figure 2.2: Overall tank image for run no. 5100. Target ice concentration
86%.
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Figure 2.3: Histogram of the overall tank image for run no. 5100.

Figure 2.4: Run no. 5100. Global Otsu method, IC = 83.17%, threshold
= 84.
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Figure 2.5: Run no. 5100. Local Otsu method, average IC = 83.14%, average
threshold = 84.

24



2.3. Experimental Results and Discussion

Figure 2.6: Run no. 5100. K-means method, 2 clusters, IC = 82.86%.

Figure 2.7: Overall tank image for run no. 5200. Target ice concentration
70%.
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Figure 2.8: Histogram of the overall tank image for run no. 5200.

25



Chapter 2. Ice Pixel Detection

Figure 2.9: Run no. 5200. Global Otsu method, IC = 62.51%, threshold
= 91.
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Figure 2.10: Run no. 5200. Local Otsu method, average IC = 62.15%,
average threshold = 91.

Figure 2.11: Run no. 5200. K-means method, 2 clusters, IC = 62.00%.

26



2.3. Experimental Results and Discussion

The ice floes were segmented from the water by applying the global Otsu, local
Otsu, and k-means methods. The ice concentrations were calculated individ-
ually based on these three methods. The results can be found in Figures 2.4 -
2.6 for run no. 5100 and in Figures 2.9 - 2.11 for run no. 5200.

The grayscale histograms of the overall tank images are clearly bimodal (see
Figures 2.3 and 2.8 and compare with Figure 2.1). Moreover, the illumination
of the overall tank image is almost uniform and only one type of ice existed
in the tank. It means that both assumptions of the global Otsu thresholding
method hold true. Hence, the differences in the calculated results between the
global and local Otsu methods are small. Furthermore, the k-means method
demonstrates results that are very close to the Otsu thresholding methods. Both
of the methods are effective.

The results of the ice concentration analysis were compared with the target ice
concentration values. The results are presented in Table 2.1. The ice concen-
trations derived from the different methods are approximately 3− 8% smaller
than the targeted value. A source of error is the upper right corner of the image
that sits outside the tank. However, the main reason is believed to be imperfect
ice sheet preparation, where a portion of the ice sheet was lost during the ice
redistribution. This led to decreased ice concentration compared to the target
values.

Table 2.1: Ice concentrations derived from different methods.
Methods Target Value Global Otsu Local Otsu K-means

Run no. 5100 86% 83.17% 83.14% 82.86%
Run no. 5200 70% 62.50% 62.51% 62.00%

Model-ice video processing

A video is composed from a sequence of frames. The motions captured by the
video are retrieved by analyzing a number of frames. The time variation of the
ice concentration can be evaluated by plotting the individual frame analysis
results over time.

The four videos supplied by HSVA are more than 24 minutes long with a frame
rate of 25 fps. Before applying the algorithms to these videos, one frame per
second is found sufficient, and each frame was fed to the program for further
processing.

The distortion in the videos, caused by the fisheye camera, has not been cal-
ibrated. Therefore, the scale in the middle of the videos is larger than the
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circumambience. This phenomenon has an insignificant effect on the bound-
ary detection. However, it may have some influence on the analyses of the ice
concentration and ice floe sizes.

The light sources in the ice tank were reflected by the water and the ice. Due to
the bright characteristics of the lights, they may be identified as ice floes by the
algorithm, and consequently, the ice concentration may be estimated slightly
too high.

The impediments around the tank are removed, and the vessel in the middle
bottom of the tank is eliminated by a black rectangle (see Figure 2.12). The
vessel box removed from the images may slightly decrease the quality of the
results for ice concentration.

(a) One frame in the original video. (b) Domain image.

Figure 2.12: Original frame in the video and pre-processed frame. Run no.
5400.

The global Otsu and the k-means clustering methods were applied in the video
processing to calculate the ice concentration as a function of time. The results
are presented in Figures 2.13 - 2.21.

The analysis of the test run no. 5100 indicates that the ice concentration
reached a limiting value of around 89% at approximately 200 s after the start of
the test. This value is only 3% higher than the target value, and it is, therefore,
concluded that the ice sheet was prepared well in this test run.

In the 5200 test run, the ice concentration reached a limit value of around 80%
at approximately 300 s after the start of the test. This value is 10% higher than
the target value, which is a large deviation. It is, therefore, concluded that the
ice sheet should have been prepared better in this test run.
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(a) Run no. 5100: Time=816s.

(b) Otsu, IC = 87.26%, threshold =
100.

(c) K-means, IC = 86.91%.

Figure 2.13: Frames of run no. 5100 at 816s and ice detection.
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Figure 2.14: Time-varying IC of run no. 5100 based on Otsu and k-means.
Target IC = 86%.
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Figure 2.15: Time-varying IC of run no. 5100 based on Otsu and k-means at
801-851s. Target IC = 86%.

(a) Run no. 5200: Time=600s.

(b) Otsu, IC = 80.79%, threshold =
108.

(c) K-means, IC = 80.55%.

Figure 2.16: Frames of run no. 5200 at 600s and ice detection.
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Figure 2.17: Time-varying IC of run no. 5200 based on Otsu and k-means.
Target IC = 70%.

(a) Run no. 5300: Time=700s.

(b) Otsu, IC = 85.33%, threshold =
104.

(c) K-means, IC = 85.06%.

Figure 2.18: Frames of run no. 5300 at 700s and ice detection.

31



Chapter 2. Ice Pixel Detection

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 201 401 601 801 1001 1201 1401

Ic
e

 C
o

n
ce

n
tr

a
!

o
n

Time (s)

Otsu K-means Target IC

Figure 2.19: Time-varying IC of run no. 5300 based on Otsu and k-means.
Target IC = 70%.

(a) Run no. 5400: Time=1400s.

(b) Otsu, IC = 90.00%, threshold =
98.

(c) K-means, IC = 89.81%.

Figure 2.20: Frames of run no. 5400 at 1400s and ice detection.
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Figure 2.21: Time-varying IC of run no. 5400 based on Otsu and k-means.
Target IC = 86%.

In the 5300 test run, the ice concentration reached a limit value of around 82%
at approximately 600 s after the start of the test. This value is 12% higher
than the target value. Moreover, the effective length of the ice tank is almost
halved due to the ice concentration buildup in the beginning of the test. Based
on these two observations, it is possible to conclude that the ice sheet was not
prepared correctly in this test run.

Finally, in test run no. 5400, the ice concentration reached a steady value of
around 84% at approximately 300 s after the start of the test. However, in
the end of the test, the ice concentration goes up to 90%, which is 4% higher
than the target value. These deviations are considered relatively small, and it
is concluded that the ice sheet was prepared properly in this test run.

Figure 2.22 shows the variation of the Otsu method’s threshold in time for all
test runs. The average ice concentrations after reaching the limiting values in
all test runs are summarized in Table 2.2.

Table 2.2: Average IC after reaching saturation in all test runs.
Run no. 5100 5200 5300 5400

Start time (s) 200 300 600 300
Average IC 88.93% 80.39% 81.69% 84.83%

Reduced ice concentration in the initial part of the test runs (before conver-
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Figure 2.22: Time-varying IC of run no. 5100-5400 based on Otsu threshold-
ing.

gence) is related to the model ship positioning. It is an unwanted phenomenon,
since it reduces the effective length of the ice tank. It is recommended to de-
velop mitigation procedures in the future to help avoid this issue.

In all test runs, it was observed that the ice concentration in the near vicinity
of the model was reaching a limiting value of approximately 80 − 89%, irre-
spective of the starting ice concentrations and floe sizes. This phenomenon can
be explained by the tank’s wall effect. That is, the ice floes were compacted
by the model ship toward the end of the basin, such that the ice concentration
asymptotically approached a limiting value.

The results of the video processing confirm that the difference between the
Otsu and the k-means methods is quite small. The differences between the tar-
get ice concentration and the actual values obtained from the image processing
indicate that the broken ice sheet preparation procedures could be improved.
Specifically, more attention could be paid to preparing ice sheets with low ice
concentrations (< 80%). By comparing the original images to the processed
ones, both of these methods are effective if there is only one type of ice on the
water.
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2.3.2 Sea-ice image test

The results obtained from applying the Otsu thresholding and the k-means
clustering methods to calculate the ice concentration for the model-scale ex-
perimental data can be considered satisfactory. In order to test the applicability
of these methods for full-scale sea-ice observation, they are also applied to im-
age data derived from the remote sensing mission at Ny-Ålesund in early May
2011 [30]. In k-means clustering, we divide the image into only two clusters.
The first group represents sea-ice, and the other group represents water. Parts
of the processed images and ice concentration results are presented in Figures
2.23 - 2.25. The calculated ice concentrations are summarized in Table 2.3.

Table 2.3: Ice concentrations of sea-ice images.
Image no. 1 2 3

Otsu 15.37% 32.84% 73.73%
K-means 15.65% 32.49% 96.50%

Figures 2.23 and 2.24, and their calculated ice concentrations in Table 2.3,
show that the ice pixel detection using the Otsu thresholding method is similar
to the detection using the k-means method by dividing the image into two
clusters when the intensity values of all the ice pixels are significantly higher
than water pixels. However, the Otsu thresholding method can only find “light
ice” pixels. The “dark ice” (e.g., ice that is submerged in water, brash ice,
slush), whose pixel intensity values are close to water pixels, may be lost.
However, both “light ice” and “dark ice” are required to further identify the
different types of sea-ice (the details are described in Chapter 7).

In order to identify more ice pixels, the k-means clustering method can be ap-
plied to divide the image into three or more clusters [62] [60]. In this research,
we divided the image into three groups, which we roughly interpret as “ice
cluster 1” with the highest average pixel grayscale in red regions, water with
the lowest average pixel grayscale in blue regions, and “ice cluster 2” with the
average pixel grayscale between in yellow regions. The “ice cluster 1” region
contains most of the ice floes in the image, and the “ice cluster 2” region con-
tains most of brash ice and slush in the image. The coverage of each cluster
was also calculated. The result is presented in Figure 2.26.

By comparing the calculated results for Figure 2.25(a) based on Otsu (Fig-
ure 2.25(b)), k-means clustering method with 2 clusters (Figure 2.25(c)), and
k-means clustering method with 3 clusters (Figure 2.26), it is the rather large
content of brash ice and slush that results in the large difference between the ice
concentration from Otsu and ice concentration calculated by k-means. Since
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(a) Original sea-ice Image 1.

(b) Otsu thresholding method, IC = 15.37%.

(c) K-means clustering method with 2 clusters, IC =
15.65%.

Figure 2.23: Sea-ice image 1 and ice detection.
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(a) Original sea-ice Image 2.

(b) Otsu thresholding method, IC = 42.19%.

(c) K-means clustering method with 2 clusters, IC =
42.29%.

Figure 2.24: Sea-ice image 2 and ice detection.
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(a) Original sea-ice Image 3.

(b) Otsu thresholding method, IC = 73.73%.

(c) K-means clustering method with 2 clusters, IC =
96.50%.

Figure 2.25: Sea-ice image 3 and ice detection.
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Figure 2.26: Ice identification of Figure 2.25(a) by k-means with 3 clusters.
IC = 97.11%, “ice cluster 1” in red: 77.91%, , “ice cluster 2” in yellow:
19.20%, water in blue: 2.89%.

brash ice and slush are parts of the ice cover in the definition of ice concentra-
tion, we can then assume that an IC value of approximately 96 − 97% is the
more correct number. The k-means clustering method, on the other hand, has
a better detection by dividing the image into three or more clusters, as shown
in Figure 2.26. Additionally, it is found that the Otsu method is less effective
than the k-means methods for the identification of the ice from the water when
the image has a high ice concentration with a large amount of brash ice and
slush.
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Chapter 3

Ice Edge Detection

The ice floe size distribution plays an important role in ice-structure analyses,
the dynamic and thermodynamic processes. In image processing, the detection
of individual ice floe boundaries is a key tool for extracting information of floe
size distribution from ice images. A common approach for detecting object
boundaries is to use edge detection. Edge detection can be used in feature
detection and feature extraction, object location, and some properties such as
area, perimeter, and shape measurements. This means that, with this technique,
ice floe boundaries may be obtained to distinguish individual ice floes, and the
properties of ice floes together with the floe size distribution can thereby be
estimated.

This chapter introduces two common edge detection methods - derivative edge
detection and morphology edge detection. These methods are applied to both
model-ice and sea-ice images to try to extract ice floe boundaries and distin-
guish individual floes. The advantages and disadvantage of these two meth-
ods are also discussed. The work presented in this chapter was published in
[30, 50].

3.1 Derivative Edge Detection

Derivative edge detection is one of the most popular techniques in image pro-
cessing. Edges characterize object (or surface) boundaries that represent the
change from one object (or surface) to another. This gives a rapid change in
image brightness between neighboring pixels, which is useful for segmenta-
tion, registration, and identification of objects in a scene.
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In image processing, we identify the edges by identifying the difference be-
tween regions, and this is measured by the gradient vector (first-order deriva-
tive) of a digital image with pixel value f(x, y) [59],

5
−→
f =

[
Gx
Gy

]
=

[
∂f
∂x
∂f
∂y

]
, (3.1)

The gradient vector has a direction toward the most rapid change in intensity.
The magnitude is given by:

5f =
[
G2
x +G2

y

] 1
2 =

[(
∂f

∂x

)2

+

(
∂f

∂y

)2
] 1

2

, (3.2)

while the direction is given by:

θ = tan−1
(
Gx
Gy

)
. (3.3)

The discrete derivative can be approximated by:

∂f

∂x
(x, y) ≈ f(x+ 1, y)− f(x, y), (3.4a)

∂f

∂y
(x, y) ≈ f(x, y + 1)− f(x, y). (3.4b)

Many discrete differentiation operators are used for computing an approxima-
tion of the gradient of the image intensity function, such as Sobel and Prewitt,
and Figure 3.1 shows their edge detector masks and the first-order derivatives
they implement [59].

Similarly, the second-order derivative (the Laplacian of an image) is defined
as:

52f =
∂2f

∂x2
+
∂2f

∂y2
, (3.5)

Using the discrete approximations:

∂2f

∂x2
(x, y) ≈ f(x+ 1, y) + f(x− 1, y)− 2f(x, y), (3.6a)

∂2f

∂y2
(x, y) ≈ f(x, y + 1) + f(x, y − 1)− 2f(x, y), (3.6b)

this gives:

52f(x, y) ≈ f(x−1, y)+f(x+1, y)+f(x, y−1)+f(x, y+1)−4f(x, y).
(3.7)
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(a) Image neighborhood.
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(b) Sobel edge detector.
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(c) Prewitt edge detector.

Figure 3.1: Examples of the edge detector masks and the first-order derivatives
they implement.
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(b) 8-neighbor.

Figure 3.2: Examples of the edge detector masks and the second-order deriva-
tives they implement.

For a rapid change, the first-order derivative has a large magnitude and the
second-order derivative crosses zero, which are the two criteria that can be
used to identify which pixels in an image may belong to an edge. However,
the second-order derivative is seldom used by itself for edge detection because
it is sensitive to noise, unable to detect edge direction, and produces double
edges [63]. A common method to detect edges is by estimating the gradient of
the image at every point to generate a “gradient” image, and then thresholding
the gradient image.

3.2 Morphology Edge Detection

Morphology refers to geometrical characteristics related to the form and struc-
ture of objects, such as size, shape, and orientation. In image processing, math-
ematical morphology is used to extract image components based on shapes that
are useful in representation and description of region shapes, such as bound-
aries, skeletons, and the convex hull [63].

Morphological operations create an output image of the same size as the input
image by applying a structuring element, such as disk, rectangle, ring, etc.
The structuring element is a shape that is used to probe an input image and
draw conclusions on how the structuring element fits or misses the shapes in
the input image. In a morphological operation, the value of each pixel in the
output image is based on a comparison of the corresponding pixel in the input
image with its neighbors, i.e., the structuring element is translated to each
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pixel’s position, and the points within the translated structuring element are
compared with the pixels of the input image. By choosing the size and shape
of the neighborhood, it is possible to construct a morphological operation that
is sensitive to specific shapes in the input image.

3.2.1 Erosion and dilation

The number of pixels added or removed from the objects in an image depends
on the size and shape of the structuring element used to process the image. The
state of any given pixel in the output image is determined by applying the rule
to the corresponding pixel and its neighbors in the input image. The operations
of erosion and dilation are fundamental to morphological image processing.

An erosion operation “shrinks” or “thins” objects by removing pixels on object
boundaries. The value of the output pixel is the minimum value of all the
pixels in the input pixel’s neighborhood for the erosion operator. If A is a
binary image (1-valued pixels indicate object, while 0-valued pixels indicate
background), B is a chosen structuring element, according to [63], the erosion
of A by B, denoted by A 	 B, is the set of all structuring element origin
locations where the translated B has no overlap with the background of A.
The mathematical definition of erosion is defined as follow [63]:

A	B = {z|(B)z ∩Ac 6= ∅} (3.8)

where (B)z is the translation of B by the point z = (z1, z2), defined as

(B)z = {b+ z|b ∈ B}, (3.9)

and Ac is the complement of A (0-valued pixels set to 1-valued and 1-valued
pixels set to 0-valued, for a binary image) defined as

Ac = {w|w /∈ A}. (3.10)

The structuring element translates the origin throughout the domain of the im-
age and checks to see where it fits entirely within the foreground of the image.
The output image has a value of 1 at each location of the origin of the structur-
ing element, such that the element overlaps only 1-valued pixels of the input
image (i.e., it does not overlap any of the image background) [63]. The process
of erosion is shown in Figure 3.3.

A dilation operation “grows” or “thickens” objects by adding pixels to the
objects boundaries. The value of the output pixel is the maximum value of
all the pixels in the input pixel’s neighborhood for the dilation operator. The
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(a) Binary image with rectangular object.
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(b) Structuring element with three pixels
arranged in a vertical line. The origin of the
structuring element is shown in red.
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Figure 3.3: The process of erosion. Courtesy: [63].
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3.2. Morphology Edge Detection

dilation ofA byB, denoted byA⊕B, is the set consisting of all the structuring
element origin locations where the reflected and translated B overlaps at least
some portion of A [63]. The mathematical definition of dilation is defined as
follows [63]:

A⊕B = {z|(B̂)z ∩A 6= ∅} (3.11)

where B̂ is the reflection of B, defined as

B̂ = {w| − w ∈ B}. (3.12)

The structuring element translates the origin throughout the domain of the im-
age and checks to see where it overlaps with 1-valued pixels. The output image
is 1 at each location of the origin, such that the structuring element overlaps
at least one 1-valued pixel in the input image [63]. The process of dilation is
shown in Figure 3.4.

3.2.2 Morphological gradient

Morphological gradients are based on the difference between extensive and
anti-extensive transformations [64]. Erosion and dilation can be used to extract
edge information from images.

The Beucher gradient (the basic morphological gradient), defined as the dif-
ference between the dilated and the eroded of the image A with the structuring
element B, is given by:

ρ = (A⊕B)− (A	B), (3.13)

Similarly, the internal gradient, defined as the difference between the original
image and the eroded image, is given by:

ρint = A− (A	B), (3.14)

and the external gradient, defined as the difference between the dilated image
and the original image, is given by:

ρext = (A⊕B)−A. (3.15)

From Equation 3.13 - 3.15, we obtained:

ρint + ρext = ρ. (3.16)

The internal and external gradients are “half gradients” and "thinner" than the
Beucher gradient. The internal gradient generates internal edges of the object,
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(a) Binary image with rectangular object.
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(b) Structuring element with five pixels ar-
ranged in a diagonal line. The origin of the
structuring element is shown in red.
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(d) Output image matrix.

Figure 3.4: The process of dilation. Courtesy: [63].
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and the external gradient generates external edges, while the Beucher gradient
generates both internal and external edges. The internal and external gradi-
ents are used when thin contours are needed. The choice between internal or
external gradient depends on the nature of the objects to be extracted [64].

3.3 Experimental Results and Discussion

The derivative and morphology edge detection methods are applied to extract
the boundaries of both model- and sea-ice floes. Parts of results are shown in
Figure 3.5 - 3.7.

(a) Overall model-ice tank image for run no. 5200.

(b) Edge detection of (a) - Derivative method (Sobel edge detector, threshold = 0.02).

(c) Edge detection of (a) - Morphology method (the internal gradient using a disk structural
element with 1-pixel radius).

Figure 3.5: Edge detections of overall tank image for run no. 5200.

Both derivative and morphology methods can extract the floe boundaries cor-
rectly when ice floes are far away from others, as seen the sea-ice floes on the
right part in Figure 3.7. However, when the ice floes are close or connecting to
each other, as seen in the model-ice floes in Figure 3.5, Figure 3.6, and sea-ice
floes on the left part in Figure 3.7, neither methods can completely find the
edges between those floes. Thus, those floes will be miskatenly considered as
one big floe, and this will affect later size distribution and ice force estimations.

49



Chapter 3. Ice Edge Detection

(a) Run no. 5100: Time=816s.

(b) Edge detection of (a) - Derivative
method (Sobel edge detector, threshold
= 0.05).

(c) Edge detection of (a) - Morphology
method (the internal gradient using a disk
structural element with 1-pixel radius).

Figure 3.6: Edge detections of frames for run no. 5100 at 816s.

Because the derivative method is to identify the rapid intensity changes in the
image, more weak edge pixels between the connected floes can be detected by
the derivative method, as seen in Figure 3.5. However, the derivative method is
more sensitive to the noise than the morphology method. As shown in Figure
3.8, when decreasing the threshold for the derivative gradient, the derivative
method can find more edges, but at the cost of more noise. Moreover, the
derivative method also produces more non-closed boundaries (especially the
detected weak boundaries between connected floes). Such non-closed bound-
aries indicate the loss of boundary information, and cannot separate the con-
nected floes.

Since the morphology method is to identify the difference between extension
and anti-extension of region’s shape, a good description of the object’s shape is
given by this method. The morphology method is better in closing the bound-
aries than the derivative method. Moreover, since the erosion operation is to
shrink objects, the thin connections between floes can be broken when using
internal or Beucher gradient with a proper structuring element, and the weakly
connected ice floes are thereby separated.

Figure 3.9 shows an example of the weakly connected sea-ice floes separa-
tion by the morphology method using the internal gradient. As shown in Fig-
ure 3.9(b), the detected boundaries are thin, and the connected ice floes can-
not be separated when using a 5-pixel-radius disk-structuring element. When
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(a) Sea-ice image.

(b) Edge detection of (a) - Derivative (Sobel edge detector,
threshold = 0.05).

(c) Edge detection of (a) - Morphology method (the internal
gradient using a disk structural element with 5-pixel radius).

Figure 3.7: Edge detections of sea-ice image.
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(a) A sample of con-
nected model-ice floes
from Figure 3.5(a).

(b) Edge detection of
(a) by the morphology
method. The detected
boundaries are closed,
but the weak edges
between the connected
floes are lost.

(c) Edge detection of
(a) by the derivative us-
ing Sobel edge detec-
tor with the threshold
of 0.02. Part of the
weak edges (non-closed)
between the connected
floes are found.

(d) Edge detection of (a)
by the derivative using
Sobel edge detector with
the threshold of 0.01.
More weak edges (non-
closed) between the con-
nected floes are found at
the cost of more noise.

Figure 3.8: Comparison of the derivative and the morphology methods.
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enlarging the structuring element to a 16-pixel-radius disk, the detected floe
boundaries become thick enough to break the connections between the floes
and separate the connected floes. However, because of the various sizes and
shapes of the ice floes (especially sea-ice floes), it is difficult to find a proper
structuring element for an ice image. Furthermore, the size of ice floe will
decease when the detected floe boundaries become thicker. Therefore, this
method only works when separating the weakly connected ice floes, and will
fail in the separation of the strongly connected ice floes, such as the connected
model-ice floes in Figure 3.8(a).

(a) A sample of connected sea-ice floes
from Figure 3.7(a).

(b) Edge detection of (a) by the morphol-
ogy method using the internal gradient
with a 5-pixel-radius disk-structuring el-
ement. The detected floe boundaries are
thin, and ice floes are connected.

(c) Edge detection of (a) by the morphol-
ogy method using the internal gradient
with a 16-pixel-radius disk-structuring
element. The detected floe boundaries
become thicker, and the weakly con-
nected ice floes are separated.

Figure 3.9: Weakly connected ice floes separation.
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Chapter 3. Ice Edge Detection

Our experimental results show that, individual ice floes cannot be distinguished
well by neither derivative nor morphology methods when the floes are too close
to each other with possible touching. The inaccuracy of the ice floe boundary
detection will result in missing boundary information or non-closed bound-
aries, and these failures will affect the statistical ice floe size distribution re-
sult. Therefore, in order to derive the precise ice floe size distribution, the
development of an effective algorithm for ice floe boundary detection, espe-
cially the connected floes separation, is a main topic in this thesis, and this will
be addressed in the following chapters.
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Chapter 4

Watershed-based Connected Ice
Floe Segmentation

In the actual sea-ice covered environment, ice floes typically touch each other
and possibly overlap, and the junctions are usually difficult to detect in the
digital images. A remedy to this problem is to use the watershed transform to
separate the connected ice floes.

The watershed transform and its improvements have been widely used to sep-
arate connected objects with acceptable results in several research areas, such
as grain [65] and cell nuclei images [66]. [67] also adopted the watershed
transform to separate the connected sea-ice floes into individual floes. They
removed brash ice by using image opening and erosion operators literally
and then used the watershed transform to segment the connected ice floes.
However, over- and under-segmentation of the ice floes are the major issues
in watershed-based segmentation. Due to an ineluctable over-segmentation
problem, [67] manually removed these over-segmented lines. To remove the
over-segmentation automatically, the combination of concave detection and
neighboring-region merging is proposed in this chapter. The work presented
in this chapter was published in [54].

4.1 Watershed transform

The watershed transform is a morphological-based algorithm used to segment
images. The pixel values are interpreted as heights, and a grayscale image
is considered as a topological surface. Water falling on this topological sur-
face flows toward the “nearest” minimum, which lies at the end of the path of
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Chapter 4. Watershed-based Connected Ice Floe Segmentation

steepest descent and would collect in the areas called catchment basins. Ad-
ditionally, water falling exactly on the called watershed ridge line would be
equally likely to collect in either of the two catchment basins [59]. Figure 4.1
shows the topological surface of a complemented grayscale ice image.

(a) Gray scale image. (b) Complement of (a).

(c) Topological surface of (a).

Figure 4.1: The topological surface of a complemented grayscale ice image.

The watershed-based segmentation could be used to solve a connected objects
division problem. The watershed will first check the local minima in the image
and then perform the transformation based on these. The number of segmented
regions depends on local minima in the image. Usually, there is more than one
minimum for each object, and this will induce over-segmentation (e.g., see
Figure 4.2). Over-segmentation is a major problem of this watershed. Re-
finements, such as minima-combination [68], mark-controlled [59] [69], and
H-dome transform [70] were adopted to improve the over-segmentation. How-
ever, due to varieties of sea-ice floe shapes and sizes, it is hard to automatically
locate the correct local minima or markers for each ice floe. In this chapter,
all the ice floes in the image are first identified by the Otsu threshold or k-
means clustering algorithm [30, 50], and the grayscale image is converted into
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4.2. Neighboring-region Merging

a binary image. Then, the seed points for the individual ice floes are located,
and the watershed algorithm is carried out to segment the image. Finally a
neighboring-region merging method is proposed to reduce over-segmentation
after the watershed-based sea-ice image segmentation.

(a) Local minima superimposed
in binary image.

(b) Over-segmented image.

Figure 4.2: Watershed-based segmentation.

4.2 Neighboring-region Merging

In this method, it is assumed that each ice floe has a convex boundary and
that the junction line between two connected ice floes has at least one con-
cave ending point. Based on this assumption, the junction lines obtained from
the watershed-based segmentation are filtered by deleting those that have two
convex ending points.

Figure 4.3 shows a flow chart of the watershed-based segmentation and the
neighboring-region merging algorithm.

The differential chain code method [71] is applied to check the concavity of
the two ending points of a proposed junction line between two connected ice
floes, where the junction lines and the corresponding ice floes are obtained
from the watershed-based segmentation.

4.3 Concave detection by chain code

Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction [72]. Typically, this
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Start

Convert into 

binary image

Watershed 

transform

Discover neighboring -

regions and their 

junction lines
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of ending points 

of junction line

Check the 

concavity of 

ending points

At least one 

concave point?

Merge the 

neighboring-regions

End

Yes

No

Figure 4.3: Flow chart of the watershed-based segmentation and neighboring-
region merging.
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4.3. Concave detection by chain code

representation is based on 4 or 8-connectivity of the segments. The direction
of each segment is coded by using a numbering scheme, as shown in Figure
4.4. The chain code of a boundary depends on the stating point. However, it
can be normalized with respect to the starting point by treating it as a circular
sequence of direction numbers and redefining the starting point so that the
resulting sequence of numbers forms an integer of minimum magnitude.
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2 4 6

4 3 5

4 4 6

Figure 4.4: Numbering scheme of the chain code.

The first difference of the chain code reflects the spatial relationships between
boundary segments, which are independent of rotation. This is obtained by
counting the number of direction changes that separate two adjacent elements
of the code. If the difference is less than 0, the difference should be modulo 8.
Figure 4.5 gives an example of a boundary’s chain code and its first difference.

Changes in the code direction indicate a corner on the boundary. By analyzing
the direction changes as we travel in a clockwise direction along the boundary,
we can determine and mark the convex and concave corners. However, the
chain code has a low accuracy since it only represents 8 directions. Therefore,
we use absolute chain code sum [71] to increase the accuracy.
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starting point

Chain code (original):

1 2 2 1 2 1 1 2 2 2 2 2 …

First difference:

1 0 7 1 7 0 1 0 0 0 0 0 …

Figure 4.5: A boundary’s chain code and its first difference.

Assume C(i) and C(i − 1) is the chain code of current Node i and former
Node i− 1, R(i) is the relative chain code, given by:

R(i) = [C(i)− C(i− 1) + 8]MOD 8, (4.1)

IF (R(i) > 4) THEN R(i) = R(i)− 8. (4.2)

The relative chain code indicates that Node i has rotated R(i)× 45◦ counter-
clockwise (the negative value indicates the clockwise direction) toNode i−1.

The absolute chain codeA(i) is the sum of relative chain code from the starting
node toNode i, and the absolute chain code of the starting node is 0, therefore,

A(0) = 0, (4.3)

A(i) = A(i− 1) +R(i). (4.4)

When the total number of boundary nodes is N with the notation from 0 to
N − 1, clockwise, it should be noted that the ending node is denoted as N ,
which is actually the starting node 0, and the difference of absolute chain codes
between the starting node and the ending node is 8, that is,

A(0)−A(N) = 8. (4.5)

The absolute chain code sum of three sequential nodes is

S(i) = A(i) +A(i− 1) +A(i− 2), (4.6)

When calculating the starting two nodes, the former absolute chain code should
be shifted to the ends of the sequence and adjusted accordingly since the
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4.3. Concave detection by chain code

boundary is closed, that is,

S(0) = A(0) +A(N − 1) +A(N − 2) + 16, (4.7)

S(1) = A(1) +A(0) +A(N − 1) + 8. (4.8)

Similar to Equation 4.5, we have

S(0)− S(N) = 24. (4.9)

The absolute chain code sum has 24 directions, which is more accurate than
the original 8-direction chain code, and can be used to represent the tangent
direction (slope) of the edge points instead.

Then, the differential chain code, which is the difference of the absolute chain
code sum, is given by:

D(i) = S(i+ 3)− S(i), (4.10)

Similarly, when calculating the last 3 nodes, the latter absolute chain code sum
should start at the starting nodes and be adjusted accordingly, that is,

D(N − j) = S(N − j + 3)− S(N − j) (4.11)

= S(3− j)− 24− S(N − j). (4.12)

where j = 1, 2, 3.

The differential chain code is proportional to the curvature of the edges, and
defines the change of direction between two neighboring boundary segments:

θ = D(i)× 15◦. (4.13)

Therefore, Node i is identified as a concave point if the differential chain code,
D(i), is positive when tracing clockwise along the boundary. Considering the
rough of the boundary, the nodes with the differential chain code between 3
and 10 are detected as concave points in this research, that is,

Node i is a concave point if 3 ≤ D(i) ≤ 10. (4.14)

The detection result is shown in Figure 4.6.
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Chapter 4. Watershed-based Connected Ice Floe Segmentation

Figure 4.6: Concave detection by chain code. The detected concave points are
denoted by red dots.

4.4 Experimental Results and Discussion

Image segmentation by using the watershed transform is powerful for con-
nected object segmentation. However, there is a problem with over- and under-
segmentation with this transform that must be overcome. As mentioned in
[59], the over-segmentation problem can be serious enough to render the seg-
mented result useless. Therefore, a neighboring-region merging algorithm is
applied in this chapter to improve the ice image segmentation.

A few sea-ice images obtained from a remote sensing mission of ice conditions
carried out at Ny-Ålesund in early May 2011 [30] are applied in a case study.
It should be noted that the brash ice has been removed manually from the
images before segmentation. Some examples of the experimental results are
then shown in Figure 4.7. Based on the segmented ice image, the floe size can
be calculated by the number of pixels within each ice floe. Figure 4.8 shows an
example of the segmented ice image and the calculated floe size distribution
(grouped by pixel numbers that can be scaled to real size).

As seen from Figure 4.7, most of the over-segmented lines have been removed,
but some lines still exist. This is because the applied neighboring-region merg-
ing algorithm is based on a very simple assumption, namely that the watershed-
segmented line is taken as a correct junction line if it has one or two concave
ending points, an assumption that is not always correct since a real ice floe is
typically not a perfect convex shape. As shown in Figure 4.9(b), the segmented
line highlighted by red has a concave ending point, which is just a concave cor-
ner of the floe boundary, but it is not a real junction concave corner between
two floes. Even if one or both of its ending points are real junction concave
corners, the segmented line obtained by using the watershed transform is still
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(a) (b) (c) (d)

1

2

3

4

Figure 4.7: Watershed-based connected ice floe segmentation: (a) Original ice
images. (b) Binary images with manually identified segmented lines between
connected ice floes. (c) Segmented images based on the watershed transform.
(d) Segmented images after neighboring-region merging.
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(a) Segmented image with floe
center superimposed.
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(b) Calculated floe size distribution.

Figure 4.8: Segmented floes and floe size distribution.

probably not a correct junction line (e.g., see the segmented line highlighted
by green in Figure 4.9(b)).

(a) Manually identi-
fied segmentation.

(b) Segmentation by
the established algo-
rithm.

Figure 4.9: Examples of over- and under-segmentation.

Under-segmentation is another problem of the watershed-based segmentation,
and this cannot be improved by the neighboring-region merging algorithm.
As shown in Figure 4.9(a), there should be a segmented line in the region
highlighted by yellow, but it is not detected by the watershed transform.

Table 4.1 lists the number of over- and under-segmented lines when compared
to segmentation by manual inspection in Figure 4.7. It is found that the over-
segmented lines are significantly reduced by the neighboring-region merging
algorithm, while the under-segmentation is still a problem. Note, however,
that when we apply the estimated floe size distribution in ice-structure inter-
action analysis, the under-segmentation of ice floes will typically lead to an
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overestimation of ice forces, meaning a conservative estimate.

Table 4.1: Number of over- and under-segmented lines compared with manual
inspection.

Image

Manual
in-
spec-
tion

Watershed-based segmen-
tation

Watershed-based segmen-
tation and neighboring re-
gion merging

No.
of
floes

No.
of
floes

Over
seg-
ment

Under
seg-
ment

No.
of
floes

Over
seg-
ment

Under
seg-
ment

1 5 12 7 0 5 0 0
2 12 16 5 1 11 0 1
3 20 25 7 2 17 0 3
4 38 60 26 5 37 4 6

Besides the over- and under-segmentation problems, ambiguously segmented
lines are another problem. Figure 4.10 shows an example of this problem.
By looking at Figure 4.10(b) it is difficult to say whether the segmented line
highlighted exists. Figure 4.10(c) shows the original image of the same sea-ice
floes taken under a different reflection condition, featuring the same ice floes
with more details. By looking at this image it seems as if there is a boundary in
the highlighted region, but it is still difficult to identify the exact location of this
segmented line. Therefore, high-resolution images would definitely provide a
more accurate ice floe segmentation.

It also should be noted that the real boundary information between the con-
nected floes are actually lost when using watershed transform. This occurs
because the watershed transform operates on binary images and focuses on
the morphological characteristics of ice floes. Therefore, the watershed-based
method is limited by crowded ice floe images in which the ice floes in the mass
are connected to each other and no “hole” or concave regions could be found
after binarization. Therefore, this method should only be applicable to the ice
floe images with invisible the floe junctions (such as the binary ice images).
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(a) Original ice image. (b) Segmentation by the established al-
gorithm.

(c) Original ice image with more details. (d) Manually identified segmentation.

Figure 4.10: An example of the ambiguously segmented lines.

66



Chapter 5

Ice Image Segmentation and Ice
Floe Identification

The size, shape, and location of the ice floes give important clues to their phys-
ical structures. Automatic identification of individual floe boundaries is crucial
in obtaining such information of ice floes from ice images. Chapter 3 applied
and compared derivative and morphology boundary detection algorithms in
both model-ice and sea-ice images [30, 50]. Derivative edge detection is sen-
sitive to weak boundaries and noise, and it often produces non-closed bound-
aries, meaning that junctions between ice floes may be difficult to identify
when the floes are seemingly connected in the ice images. In contrast, mor-
phology boundary detection results in a good description of the object shape,
generates closed boundaries, and could separate weakly connected ice floes.
However, some boundary information is still lost and strongly connected ice
floes cannot be separated.

Traditional boundary detection algorithms cannot easily detect the boundary
between connected floes. This issue challenges the boundary detection of in-
dividual ice floes and significantly affects ice floe size analysis. Therefore,
the boundary hidden by an apparent connection between ice floes should be
identified.

To mitigate this issue, [73, 74] separated closely distributed ice floes by set-
ting a threshold higher than the ice-water segmentation threshold. However,
this threshold did not work well when the ice floes were connected. Conse-
quently, they manually separated the connected ice floes. [67] and Chapter
4 adopted the watershed transform to segment sea-ice images. Due to an
ineluctable over-segmentation problem, [67] manually removed these over-
segmented lines. In Chapter 4, we assumed that each ice floe had a convex
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boundary and that the junction line between two connected ice floes had at
least one concave ending point. After the watershed transform, the convexity
of each pair of ending points was checked, and two neighboring floes whose
junction line ending points were both convex were merged to automatically
remove the over-segmentation [54].

The authors of [75] and [76] introduced a mathematical morphology together
with principal curve clustering to identify ice floes and their boundaries in a
near fully automated manner. First, the image is binarized using the threshold-
ing method. The erosion-propagation algorithm (EP) is then used to provide
a preliminary clustering of the boundary pixels and to produce a collection
of objects as floe candidates. To remove subdivisions caused by the EP al-
gorithm, they developed a method based on an algorithm for clustering about
closed principal curves to determine which floes should be merged. However,
both methods in Chapter 4 and [76] operated on the binary images, their meth-
ods focusing on the morphological characteristics of ice floes rather than on
the real boundaries, and they were limited by crowded ice floe images where
the mass of ice floes were connected to each other and no “hole” or concave
regions could be found after binarization.

In this chapter, a gradient vector flow (GVF) snake algorithm is adopted to
separate seemingly connected floes into individual ones. To avoid user inter-
action and to reduce the time required to run the GVF snake algorithm, an
automatic contour initialization is proposed based on the distance transform.
After that, an ice shape enhancement algorithm is proposed to enhance ice floe
shapes and accomplish the identification of individual ice floes. Once the floe
boundaries have been obtained, individual ice floes are identified, and the floe
size distribution can be calculated from the resulting data. The work presented
in this chapter was published in [55, 56, 57].

5.1 Snake Models

Snakes, or active contours defined as an energy-minimizing spline [77], cor-
respond to a powerful method used to locate object boundaries. The initial
curves can move under the influence of internal forces from the curve itself
and under the influence of external forces computed from the image data. The
algorithm stops when the internal and external forces reach equilibrium. The
internal and external forces are defined such that the snake will conform to
an object boundary or other desired features within an image. There are two
types of active contour models: parametric active contours and geometric ac-
tive contours. This study considered the parametric active contour model due
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to its superior detection capability of “weak”-boundaries.

5.1.1 Parametric Snake Model

A typical snake is a curve C(s) = (x(s), y(s)) with the normalized arc length
s ∈ [0, 1]. It moves through the spatial domain of an image to minimize the
sum of the internal and external energy, given by:

E =

∫ 1

0
(Eint(C(s)) +Eext(C(s)))ds, (5.1)

where Eint is the internal energy

Eint =
1

2
(α|C′(s)|2 + β|C′′(s)|2), (5.2)

where α and β are weight parameters that control the snake’s tension and rigid-
ity, respectively. C

′
(s) denotes the first derivatives of C(s) with respect to s,

making the snake act as a membrane, and C
′′
(s) denotes the second deriva-

tives, making the snake act as a thin plate.

Eext is the external energy defined in the image domain. It attracts snakes
to salient features in the image, such as boundaries. To find boundaries in a
grayscale image, I(x, y), the image gradient is typically chosen as the external
energy [77]:

Eext = −|∇I(x, y)|2, (5.3)

where ∇I(x, y) =
(
∂I
∂x ,

∂I
∂y

)
is the image gradient that represents a direc-

tional change in the brightness of the image with the gradient angle θ =

arctan
(
∂I
∂y/

∂I
∂x

)
. When also considering the image noise, the external energy

is defined as [77]

Eext = −|∇Gσ(x, y) ∗ I(x, y)|2, (5.4)

where∇Gσ(x, y) is a two-dimensional Gaussian function with a standard de-
viation σ and ‘∗’ denotes convolution.

To minimize the energy E, a snake must satisfy the Euler equation

αC
′′
(s)− βC′′′′(s)−∇Eext = 0. (5.5)

Let Fint = αC
′′
(s)− βC′′′′(s) denote the internal force and Fext = −∇Eext

denote the external force. Then Equation 5.5 can be written as the force bal-
ance

Fint + Fext = 0. (5.6)
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The internal force Fint discourages stretching and bending, while the external
potential force Fext pulls the snake toward the desired image boundaries.

To find a solution for Equation 5.5, C(s) is treated as a discrete system of
normalized arc length s and time t:

∂C(s, t)

∂t
= αC

′′
(s, t)− βC′′′′(s, t)−∇Eext. (5.7)

When the solution C(s, t) becomes stationary, ∂C(s,t)
∂t tends to zero, the energy

E reaches a minimum, and the curve converges toward the target boundary.

5.1.2 Gradient Vector Flow Snake

The traditional snake algorithm can solve a number of image segmentation
problems effectively, particularly in detection of “weak”-boundaries. How-
ever, there are two key limitations. First, the capture range of the external
force fields is limited, as seen in Figure 5.1(b). The external forces Fext have
large values near the boundaries and small values in the homogeneous regions.
Consequently, it is difficult for a curve to converge in regions of low variations
in intensity. The traditional snake algorithm is, therefore, sensitive to the initial
contour, and the initial contour should be somewhat close to the true boundary.
Otherwise, the curve will likely converge to an incorrect result. Second, it is
difficult to progress into boundary concavities. According to these limitations,
[78] introduced the gradient vector flow (GVF) snake to expand the capture
range of the external force fields from the boundary regions to the homoge-
neous regions, as seen Figure 5.1(c).

(a) Original image (b) Traditional external force (c) GVF external force

Figure 5.1: External forces.

The GVF, “computed as a spatial diffusion of the gradient of an edge map
derived from the image” [79], is defined to be the vector field v(x, y) =
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(u(x, y), v(x, y)) that minimizes the energy functional:

ε =

∫∫
[µ(u2x + u2y + v2x + v2y) + |∇f |2|v −∇f |2]dxdy, (5.8)

where ux, uy, vx, vy are the derivatives of the vector field, µ is a parameter that
controls the balance between the first and second term in the integrand, and f
is an edge map (which could be the image gradient |∇I(x, y)|2) that is larger
near the edges of objects in the image.

In Equation 5.8, |∇f | becomes large close to the object boundaries; in which
case, the second term dominates the integrand and is minimized by v = ∇f .
Otherwise, |∇f | is small, and the first term dominates the integrand to ensure
that the external force field varies slowly and still acts in the homogeneous
regions.

The GVF field can be found by solving the Euler equations:

µ∇2u− (u− fx)(f2x + f2y ) = 0, (5.9a)

µ∇2v − (v − fy)(f2x + f2y ) = 0. (5.9b)

A solution to Equation5.9a and Equation 5.9b can be obtained by introducing
a time variable, t, and finding the steady-state solution of the following partial
differential equations:

ut(x, y, t) = µ∇2u(x, y, t)− (u(x, y, t)− fx(x, y))(fx(x, y)2 + fy(x, y)
2),

(5.10a)

vt(x, y, t) = µ∇2v(x, y, t)− (v(x, y, t)− fy(x, y))(fx(x, y)2 + fy(x, y)
2).

(5.10b)

Compared to the external force field in the traditional snake model having
only fx and fy, the new vector fields, u and v in the GVF, are derived using an
iterative method to find a solution for fx and fy. The result is that the capture
range is effectively enlarged, and the initial contour no longer needs to be as
close to the true boundary.

5.2 Contours Initialization for the GVF Snake

The GVF snake algorithm [78] is able to detect the weak connections between
floes and ensures that the detected boundary is closed. As an example, shown
in Figure 5.2(b), given an initial contour (red curve), the snake finds the floe
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boundary (green curve) after a few iterations (yellow curves). The GVF snake
is faster and less restricted by the initial contour. However, a proper initial
contour is still necessary because the snake deforms itself to conform with the
nearest salient contour.

5.2.1 The location of initial contour

An example is given in Figure 5.2 to illustrate the floe boundary detection
results affected by initializing the contour at different locations. In Figure
5.2(a), the initial contour is located at the water, close to the ice boundaries.
The snake rapidly detects the boundaries however, not the ice but the bound-
aries of the water region. When initializing the contour at the center of an ice
floe, as shown in Figure 5.2(b), the snake accurately finds the boundary after
a few iterations even if the initial contour is some distance away from the floe
boundary.

A weak connection will also be detected if the initial contour is located on it, as
shown in Figure 5.2(c). However, when the initial contour is located near the
floe boundary inside the floe, as shown in Figure 5.2(d), the snake may only
find a part of the floe boundary near the initial contour. It should be noted that
the curve is always closed regardless of how it deforms, even in the cases of
Figures 5.2(c) and 5.2(d), which appear to be non-closed curves. This behavior
occurs because the area bounded by the closed curve tends toward zero.

Figure 5.2 illustrates that, with proper parameters, the snake will find a bound-
ary regardless of where the initial contour is located. This fact is beneficial
for connected floe segmentation. By comparing the results of Figure 5.2, the
results where the initial contours are located inside of the floes are more effec-
tive, whereas the most efficient case is the one in which the initial contour is in
the center of the ice floe. Thus, the initial contour should be located as close
to the floe center as possible.

5.2.2 The shape and size of the initial contour

In the GVF snake algorithm, the initial contour does not need to be as close to
the true boundary as for in the traditional snake algorithm. However, if the ini-
tial contour is too small, it will be slightly “far away” from the floe boundary
and will need more iterations to find the boundary if the initial contour is fur-
ther distanced from the floe boundary, and it may also converge to an incorrect
result [78] (particularly when the grayscale of floe is uneven).
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(a) Initial contour 1 located at the water, and
the water region boundary is found.

(b) Initial contour 2 located at the center of
an ice floe, and the whole floe boundary is
found.

(c) Initial contour 3 located at a weak con-
nection, and the weak connection is found.

(d) Initial contour 4 located near the floe
boundary inside the floe, and only a part of
floe boundary is found.

Figure 5.2: Initial contours located at different positions and their correspond-
ing curve evolutions. The red curves are the initial contours, the yellow curves
are iterative runs of the GVF snake algorithm, and the green curves are the
final detected boundaries.
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Figure 5.3 serves as an example. Figure 5.3(a) contains some light reflection
in the middle of a model-ice floe where the pixels that belong to the reflection
are lighter than the other pixels of the floe. And Figure 5.3(d) contains speckle
inside of a sea-ice floe where the pixels of the speckle are darker. These phe-
nomenons will affect the boundary detection when the initial contour (the red
curves in Figures 5.3(b) and 5.3(e)) is too small and not close to the actual
boundary. The snake uses many steps (the yellow curves in Figures 5.3(b) and
5.3(e)) and find a part of floe boundary (the green curve in Figure 5.3(b)), or
does not find the complete boundary being blocked by the speckle (the green
curve in Figure 5.3(e)). If we enlarge the initial contour, as shown in Figures
5.3(c) and 5.3(f), the initial contour allows for a faster determination of the en-
tire floe boundary. Therefore, the initial contour should still be set as possible
as close to the actual floe boundary.

5.2.3 Automatic contour installation based on the distance trans-
form

The GVF snake operates on the grayscale image in which the real boundary
information, particularly “weak”-boundaries, has been preserved. Moreover,
the GVF snake will ensure that the detected boundary is a closed curve. To
separate seemingly connected floes into individual ones, the GVF snake algo-
rithm is applied in this chapter. However, to start the algorithm, many initial
contours are required when performing the GVF snake algorithm to identify all
individual ice floes, and these should have proper locations, shapes, and sizes.
Otherwise, the snake may evolve incorrectly. Therefore, a manual initialization
is required in some cases, particularly in crowded floes segmentation. To solve
this problem, an automatic contour installation algorithm is devised to avoid
manual interaction and increase the efficiency of the ice image segmentation
method based on the GVF snake algorithm.

As discussed in Section 5.2.1, the initial contours should be located inside the
floes to increase the algorithm’s effectiveness. In ice image analyses, the ice
floes can be separated from water and converted into a binary image by using
a thresholding method or k-means clustering method [30, 50]. These methods
make it easy to locate the initial contours inside of the ice floes. We propose
to use the distance transform [80, 81] and its local maxima to locate the initial
contours as close as possible to the floe centers.

Given a binary image f(x, y), whose elements only have values of ‘0’ and ‘1’,
the pixels with a value of ‘0’ indicate the background, while the pixels with a
value of ‘1’ indicate the object. Let B = {(x, y)|f(x, y) = 0} be the set of
background pixels and O = {(x, y)|f(x, y) = 1} be the set of object pixels.
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(a) Model-ice floe image with
light reflection.

(b) A small contour initial-
ized at the model-ice floe cen-
ter, giving convergence of the
snake to the incomplete bound-
ary.

(c) A large contour initial-
ized at the model-ice floe cen-
ter, giving convergence of the
snake to the correct boundary.

(d) Sea-ice floe image with
speckle.

(e) A small contour initialized
at the sea-ice floe center, giv-
ing erroneous evolutions of the
snake.

(f) A large contour initialized
at the sea-ice floe center, giv-
ing convergence of the snake to
the correct boundary.

Figure 5.3: Initial circles with different radii and their curve evolutions. The
red curves are the initial contours, the yellow curves are iterative runs of the
GVF snake algorithm, and the green curves are the final detected boundaries.
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The distance transform of a binary image f , D(x, y), is the minimum distance
from each pixel in f to the background B, that is,

D(x, y) =

{
0 if (x, y) ∈ B
minb∈B d[(x, y), b] if (x, y) ∈ O,

(5.11)

where d[(x, y), b] is some distance measure between pixel (x, y) and b [81].

For example, Figure 5.4(a) shows a small binary image matrix for a simple
shape, and the matrix in Figure 5.4(b) shows the corresponding distance trans-
form (using ‘city block’ distance metrics). The local maximum is the pixel
whose value is greater or equal to any of its neighbors, as shown by the green
numerals in Figure 5.4(b). A local maximum of the distance transform ideally
corresponds to the center of an object, but more than one local maximum is
detected in many cases. Thus, a dilation operator [63] is used to merge the
local maximum within a short distance (within as a threshold Tseed) of each
other. The centers of the dilated regions (red ‘+’ in Figure 5.4(b)), which are
called ‘seeds’, are chosen as the locations of the initial contours.

0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

(a) Binary image matrix.

0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0

0 1 2 2 2 2 1 0

0 1 2 3 3 2 1 0

0 0 1 2 3 2 1 0

0 0 1 1 2 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

(b) Distance transform of Figure 5.4(a),
local maximum, seed, and initial contour.

Figure 5.4: Contour initialization algorithm based on distance transform.

Moreover, to efficiently approach the floe boundary, as discussed in Section
5.2.2, the initial contours should be adapted to the floe sizes. Being unaware
of the floe’s irregular shape and orientation, the circular shape is chosen as
the shape of the initial contour since this shape deforms to the floe boundary
more uniformly than other shapes. The radius of the circle is then chosen
according to the pixel value at the seed in the distance map. This ensures that
the initial circle is inside the floe as shown, as blue circles in Figure 5.4(b),
and will iteratively approach the floe boundary using adaptive initial circles
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(Note: since the ‘city block’ distance is used to decrease the number of local
maximum, the pixel values at seeds must be divided by

√
2 to obtain the circle

radii).

After initializing the contours, the GVF snake algorithm is run on each con-
tour to identify the floe boundary. Superimposing all the boundaries over the
binarized ice image results in separation of the connected ice floes. The final
segmentation result of Figure 5.5(e) is shown in Figure 5.5(f). Note that the
boundary pixels are specifically labeled as “residue ice” for special handling
in subsequent use.

5.3 Ice Image Segmentation

According to Section 5.2, we propose the following algorithm to segment the
ice image. First, the GVF is derived from the grayscale input image. Then,
the ice pixels are separated from water pixels, and the image is converted into
a binary one. Next, the distance transform is applied to the binary image, and
the seeds and radii are found. Finally, based on the seeds and radii, the circles
are initialized and the snake algorithm is run. The pseudocode of the proposed
algorithm is given in Algorithm 1, and its procedure carried out on a sea-ice
floe image is shown in Figure 5.5.

Algorithm 1 Ice image segmentation.
Input: Ice image
Start algorithm:

1: GV F ← GVF derived from grayscale of input image
2: SEGMENTATION ← binary ice image
3: D ← distance map of SEGMENTATION
4: M ← local maximum of D
5: S ← Seeds of SEGMENTATION found by merging the local maxi-

mum in M within a short distance (Tseed)
6: for each seed s∈S do
7: r ← local maxima values at s
8: c← initial contours locate at s with its radius r
9: B ← boundary detected by performing the snake algorithm on c

10: SEGMENTATION ← SEGMENTATION with B superim-
posed

11: end for
12: return SEGMENTATION
Output: Segmented ice image
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(a) Sea-ice floe image. (b) Binary image. The ice floes are con-
nected.

(c) Distance transform. (d) Binary image with local maxima
(green ‘+’).

(e) Binary image with seeds (red ‘+’)
and initial contours (blue circles).

(f) Segmentation result. The connected
ice floes are separated.

Figure 5.5: The procedure of ice segmentation algorithm.
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It should be noted that the local maximum whose distance is larger than the
given threshold Tseed will not be merged into one seed. This means that some
floes may have more than one seed. However, two or more seeds for one ice
floe will not affect its boundary detection, but it may increase the computa-
tional time.

5.4 Ice Shape Enhancement

After segmentation, some segmented ice floes may contain holes or smaller ice
pieces inside because of the noise, as shown in Figure 5.6, and the shape of the
detected ice floe is rough. To smoothen the shape of the ice floe, morphological
cleaning [82] is used after ice floe segmentation.

(a) Ice floe image with speckle. (b) Segmentation result of (a).

Figure 5.6: The segmentation of ice floe image with speckle. The segmented
floes contain holes and smaller ice pieces inside.

Morphological cleaning is a combination of first morphological closing and
then morphological opening [63] on an image. The morphological closing of
A by B, denoted A •B, is a dilation followed by an erosion:

A •B = (A⊕B)	B (5.12)

where A is the image, B is the structuring element, “⊕” is the dilation op-
eration, and “	” is the erosion operation (the details of dilation and erosion
operations can be found in Chapter 3). It is the complement of the union of all
translations of B that do not overlap A.

The morphological opening of A by B, denoted A ◦B, is an erosion followed
by a dilation:

A ◦B = (A	B)⊕B (5.13)

It is the union of all the translations of B that fit entirely within A.
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The morphological closing tends to smooth the contours of objects, generally
joins narrow breaks, fills long thin gulfs, and fills holes smaller than the struc-
turing element, while the morphological opening removes complete regions of
an object that cannot contain the structuring element, smooths object contours,
breaks thin connections, and removes thin protrusions. Figure 5.7 illustrates
the morphological cleaning and shows the effects of closing and opening.
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(a) Binary image.
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(b) Closing of (a).
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(c) Opening of (b).

Figure 5.7: Morphological cleaning by using a 2 × 2 square structuring ele-
ment.

Using the morphological cleaning, all the segmented ice pieces derived from
the ice floe segmentation result of Algorithm 1 are first arranged from small
to large. Then, morphological cleaning with a proper structuring element is
performed and holes are filled to the arranged ice pieces in sequence. The
pseudocode of the proposed ice shape enhancement algorithm is concluded in
Algorithm 2, and the ice shape enhancement result of Figure 5.6(b) is shown
in Figure 5.8.

Algorithm 2 Ice shape enhancement.
Input: Ice segmentation from Algorithm 1.
Start algorithm:

1: PIECES ← labeled regions in SEGMENTATION arranged from
small to large.

2: BW ← empty black image.
3: for each labeled region piece∈PIECES do
4: piece← morphological clean and fill hole.
5: BW ← BW with piece superimposed and labeled.
6: end for
7: IDENTIFICATION ← labeled regions in BW .
8: return IDENTIFICATION .

Output: Individual ice piece identification.
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Figure 5.8: Ice shape enhancement result of Figure 5.6(b). The holes and
smaller ice pieces inside larger floes are removed.

It should be noted that the arrangement of ice pieces in order of increasing size
is required for the morphological cleaning. Otherwise, the smaller ice piece
contained in a larger ice floe may not be removed.

5.5 Discussion

In this chapter, we have proposed an automatic contour initialization procedure
based on the distance transform for the GVF snake algorithm to separate seem-
ingly connected ice floes into individual ones and an ice shape enhancement
algorithm based on the morphological cleaning for segmented ice image to ac-
complish the identification of individual ice floes. The proposed methods are
applicable for non-ridged ice floe segmentation. Additionally the implementa-
tions on sea-ice images, which contain multiple ice floes connected together,
produce acceptable segmentation results and demonstrate that the proposed al-
gorithms are effective for individual ice floe identification. The further appli-
cations and discussions of the methods are presented in Chapter 6 and Chapter
7.
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Chapter 6

Model Ice Image Processing

An image processing method based on a GVF snake and a distance transform
was proposed to identify ice floe boundaries in Chapter 5. Ice floe charac-
teristics, such as position, area, and size distribution, which are important ice
parameters in ice-structure analyses, can then be obtained. Before perform-
ing an analysis at full-scale, the DP experiments in model ice at the Hamburg
Ship Model Basin (HSVA) allow for the testing of relevant image processing
algorithms. A complete overview image of the ice floe distribution in the ice
tank was generated from the experiments. The main focus of this chapter is
on model-ice images in model-scale. Based on the characters of the model-ice
floes, a model of the managed ice field’s configuration, including identification
of overlapping floes, is proposed in this chapter for further studies in ice-force
numerical simulations. Finally, the proposed algorithm is applied to an ice
surveillance video to further illustrate its applicability to ice management. The
work presented in this chapter was published in [55].

6.1 Locating Initial Contours for Crowded Model-ice
Floes

Figure 5.5 in Chapter 5 presents an acceptable result of the proposed algorithm
applied in a case with only two or three connected ice floes. However, in a
complex case (e.g., Figure 6.1), when multiple model-ice floes are crowded
together, it then becomes more difficult to locate the seeds for each ice floe (as
shown in Figure 6.1(b)) with the result that some connected ice floes could not
be separated (as shown in Figure 6.1(c)). It follows that an additional round of
contour initialization and segmentation is necessary.
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(a) Model-ice image with crowded floes.

(b) Initializing the contours once. (c) Results after first round.

(d) Initializing the contours twice. (e) Final result.

Figure 6.1: Crowded model-ice floes segmentation.
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6.2. Algorithm Overview

In this model-ice test, the ice floes were modeled square shapes with prede-
fined side lengths. Hence, the largest floe has an area less than a predefined
value. Although they are not perfect squares, most of the floes could be approx-
imated as rectangles with a length-to-width ratio less than the given threshold.
Based on these characteristics, we use three criteria to determine whether it is
necessary to initialize the contours and conduct a second segmentation:

• The ice floe area is less than the given threshold.

• The ice floe has a convex shape (the ratio between the floe area and its
minimum bounding polygon area is larger than the threshold).

• The length-to-width ratio of the minimum bounding rectangle of the ice
floe is less than the threshold.

After a segmentation step, the algorithm will stop if all the identified floes sat-
isfy these criteria. Otherwise, the algorithm must find the floes that do not
satisfy any of these criteria, calculate their distances, find the new seeds, ini-
tialize new contours, and perform the segmentation again. Some boundaries
may exist that are too weak to be detected, and there may be some floes that do
not satisfy the criteria after a new step. However, the total number of identified
floes will converge to a final solution. Therefore, the algorithm is made to stop
if the total number of floes identified after step N and N + 1 are equal, in
combination with an absolute stop criterion.

6.2 Algorithm Overview

According to Section 6.1, we propose the following algorithm to segment the
model-ice floe image. First, the GVF is derived from the grayscale input im-
age. Then, the ice floes are separated from water by using the thresholding
method, and the floes are labeled. Each labeled floe should then be checked to
determine whether it satisfies all of the criteria in Section 6.1. Next, the seeds
and radii of the floes that do not satisfy any of the criteria are found. Based on
the seeds and radii, the circles are initialized and the snake algorithm is run.
The algorithm will stop when meet the maximum iteration time, or the total
number of floes identified after step N and N + 1 are equal. The pseudocode
of the proposed algorithm, as well as a maximum iteration time, is given in
Algorithm 3.
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Algorithm 3 Model ice floe segmentation.
Input: Model ice image
Start algorithm:

1: T ← max iteration time
2: N0 ← 0
3: GV F ← GVF derived from gray-scale of input image
4: BW ← binary image
5: FLOE ← labeled ice floes in BW
6: N1 ← total number of ice floes in BW
7: if N0 6= N1 && T 6= 0 then
8: for each labeled floe∈FLOE do
9: f ← floes that do not satisfy any of the criteria

10: end for
11: k ← number of f
12: if k 6= 0 then
13: S ← Seeds of f found by local maxima of distance transform
14: for each seed s∈S do
15: r ← local maxima values at s
16: ic← initial contours locate at s with its radius r
17: B ← boundary detected by performing the snake algorithm on ic
18: BW ← BW with B superimposed
19: end for
20: end if
21: N0 ← N1

22: T ← T − 1
23: go back to 4
24: end if
25: return BW
Output: Segmented image
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6.3 Experimental Results and Discussions

In the model ice test carried out at the ice model basin of the HSVA in the
summer of 2011 [50], a managed ice condition was obtained by cutting a man-
ufactured level ice layer into square pieces with specific dimensions and dis-
tributing them over a specific testing area. After preparing the ice field and
before the test run started, a top-view camera was positioned over the total
ice-covered basin to produce an overall image of the complete ice field.

To validate the proposed algorithm, it has been tested on both sub-images and
an overall ice tank image. In these tests, the segmented ice pieces with the
area less than 20 pixels were taken as brash ice and removed from the ice floe
segmentation results. However, the removed pixels can be presented in another
separated layer for further use.

6.3.1 Sub-image tests

The sub-images were manually extracted from the overall ice tank image, and
the algorithm was tested on both the simple and complex cases.

Figure 6.2 presents the simplest case, that is, only two or three ice floes con-
nected with clear boundaries. The proposed algorithm found all of the seeds in
the first iteration and rapidly located the boundaries. In the case illustrated in
Figure 6.3, many ice floes are crowded in the image. After several iterations of
seed locating, the algorithm produced satisfactory results in the high-density
part of the image while failing to find a few weak boundaries.

(a) Model-ice image 1. (b) Segmentation 1.

Figure 6.2: Segmentation result 1.

The junctions between a number of ice floes and ice rubble were also too weak
to be detected, as shown in Figure 6.4(b). Because the area of the ice rubble
is too small relative to the area of its connected ice floe, the snake was rapidly
attracted to the rubble boundaries when it deformed at the junction.
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(a) Model-ice image 2. (b) Segmentation 2.

Figure 6.3: Segmentation result 2.

(a) Model-ice image 3. (b) Segmentation 3.

Figure 6.4: Segmentation result 3.

The most complex case is shown in Figure 6.5, where the crowded ice floes
were aligned in the image. The segmentation result indicates that the proposed
algorithm still performs well with the exception of a number of border effects.

(a) Model-ice image 4. (b) Segmentation 4.

Figure 6.5: Segmentation result 4.

The segmentation of the floes situated at the border of the analyzed image
is more prone to error. The algorithm failed to detect a number of ice floe
boundaries connected to the border of the image, as shown in Figures 6.4(b)
and6.5(b). This occurred not only because these floes were being “cut” by the
image border and do not fulfill the criteria formulated in Section 6.1, but also
because the incompleteness of the floe influences the GVF field and makes
some boundary information weaker. As shown in Figure 6.6, the GVF field of
a complete floe radiates from the floe center to its boundaries. The proposed
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algorithm then successfully finds all the boundary pixels. Contrary to this, if
some of the floe boundary is lost due to an image border, the GVF field of this
incomplete floe will radiate from the image border to the floe boundaries, with
the result that the segmentation by the snake algorithm fails.

(a) Model-ice image con-
tained a complete floe.

(b) The GVF field of (a) ra-
diates from the floe center
to its boundaries.

(c) Segmentation result of
(a). All the boundary pixels
are found.

(d) Model-ice im-
age contained an
incomplete floe.

(e) The GVF field
of (d) radiates
from the image
border to the floe
boundaries.

(f) Segmentation
result of (d).
Some of the floe
boundary is lost.

Figure 6.6: Image border effects.

6.3.2 Overall ice tank image

The overall ice tank image, obtained by a top-view camera, provides a com-
plete overview of the ice floe distribution in the ice tank (see Figure 6.7). The
lightness of the image is rather uneven, and the nonuniform illumination will
affect the segmentation result. An illumination correction, such as homomor-
phic filtering [59] that normalizes the brightness across an image, is adopted to
preprocess the image. After performing the proposed segmentation algorithm,
the black spots inside the segmented ice floes caused by noise will be filled in
the ice shape enhancement step. The identification result is shown in Figure
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6.8(a).

The floes are labeled using different colors based on their areas (calculated by
counting the pixel number of the floe) according to

Color(p) =

{
0 if p /∈ FLOE
(1− exp(−area(i)/1000)) ∗ 10000 if p ∈ floe(i),

(6.1)

where FLOE = {floe(1), f loe(2), f loe(3), · · · } is a set of identified floes,
floe(i) ∈ FLOE, and area(i) is the area of floe(i). Smaller floes are blue,
and larger floes are red. The floe positions, found by averaging the positions of
the pixels of each floe, are denoted using black dots. The corresponding size
distribution histogram is presented in Figure 6.8(b).

Figure 6.7: Overall model-ice tank image.

However, the identification result shown in Figure 6.8(a) is not ideal. A number
of over- and under-segmentations still exist because a uniform parameter for
the GVF field cannot represent the overall ice image. For instance, if we switch
the GVF capture ranges of Figure 6.4 and Figure 6.5, then error segmentations
will occur (see Figure 6.9).

When using the same GVF parameter, which controls the capture range of the
GVF, the external forces near weak connections are weaker than those near
strong boundaries. If the GVF capture range is too strong, the capture range
of the strong boundaries will dominate the entire external force field while the
external force near the weak connections will be too weak to pull the snake
toward the desired boundaries. Usually, weak connections tend to be more
difficult to detect when increasing the GVF capture range, which results in
under-segmentation. In contrast, if the capture range is decreased, the noise is
enhanced and leads to over-segmentation.

In an image containing overlapping ice floes, as shown in Figure 6.10(a), the
overlapping part is brighter than the rest of the floe. When segmenting the
image using a low GVF capture range, boundaries are extracted, but the two
overlapped floes are identified as three individual floes (Figure 6.10(b)). When
increasing the GVF capture range, the weaker boundary is lost, and the two
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(a) Segmentation result after illumination correction.
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(b) Ice floe size distribution histogram of (a).

Figure 6.8: Ice floe identification after illumination correction and floe size
distribution.
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overlapped floes are divided. However, one of the floes loses half of its area.
Thus, processing the local sub-images of the overall ice image locally is rec-
ommended in order to identify all of the boundaries.

Figure 6.9: Error segmentation by using improper parameters.

(a) Overlapping
floes image.

(b) Segmentation
result via low
GVF capture range
(100 iterations for
GVF).

(c) Segmentation
result via high
GVF capture range
(150 iterations for
GVF).

Figure 6.10: Overlapping floes image segmentation.

To derive a more precise result, the overall image is first divided into several
smaller, overlapping (to avoid image border effects) sub-images, and we per-
form the proposed algorithm locally on each sub-image. The parameter values
of the GVF field for each sub-image are listed in Table 6.1. The final seg-
mentation result and its floe size distribution histogram are shown in Figures
6.11(a) and 6.11(b), respectively.

By comparing the color distribution in Figures 6.8(a) and 6.11(a) and their
histograms, one can see that there are more blue ice floes and fewer red floes in
Figure 6.11(a) than in Figure 6.8(a). This result indicates that a greater number
of connected floes have been separated and that under-segmentation has been
reduced in Figure 6.11(a). The minor under- and over-segmentation that still
exists in Figure 6.11(a) is due to “overly weak” boundaries and a lingering
border effect. This issue can be improved by adjusting the number, position,
and size of the sub-images. These parameters were found by trial-and-error in
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Table 6.1: The parameter values of the GVF field for each sub-image.
Sub-image no. 1 2 3 4 5 6 7

The GVF iteration number 150 65 65 65 160 60 110
Sub-image no. 8 9 10 11 12 13 14

The GVF iteration number 130 90 130 170 160 100 90
Sub-image no. 15 16 17 18 19 20

The GVF iteration number 90 100 90 80 90 80
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(a) Final segmentation result.
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(b) Ice floe size distribution histogram of (a).

Figure 6.11: Final model-ice floe identification result and floe size distribution.
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this case. The investigation on how to optimally choose these parameters is
left for future research.

Light reflection also affects the segmentation results. Several lights were in-
stalled at the bottom of the ice tank to supply a sufficient brightness for the ice
observation. However, these lights are detrimental to the ice image analysis
because they can be identified as ice floes due to their brightness, and the light
reflection on the ice floe may induce erroneous segmentation. As shown in
Figure 6.12, the initial circle meets a strong light reflection when deforming,
and some boundaries around the reflection become too weak to be detected.
Hence, a part of the circle deformed toward the reflection rather than toward
the true floe boundary. Fortunately, the light reflection did not significantly af-
fect our result, but we still suggest that the lights be disabled or that a polarizer
be placed in front of camera before taking the picture.

Figure 6.12: Light reflection impact, which may induce erroneous segmenta-
tion.

6.3.3 Model-ice floe modeling

In the numerical simulation of the ice-structure interaction, all of the ice floes
are modeled as rectangular floes, and the positions of the vertices are impor-
tant to an ice-structure analysis. Therefore, we proposed to perform ice floe
rectangularization. Ice floe rectangularization was achieved by assigning the
minimum area-bounding rectangle to each ice floe. Due to under- and over-
segmentation, the rectangles with a length-to-width ratio less than the given
threshold were removed. The final rectangularization result is shown in Fig-
ure 6.13(a). If the floes are not segmented well, the rectangularized floes will
be smaller or larger than the actual segmented floes. Furthermore, because of
the rectangularization, some rectangularized floes will overlap, as seen in Fig-
ure 6.13(b). To indicate overlaps, a “flag” was added to each rectangular floe
to record the serial number of the floes with which the current floe overlaps.
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Identifying the overlap between ice floes is important when using the resulting
image analysis and identified ice floes as a starting condition for the validation
of a numerical simulation with a 3D capacity against a real test and data set.

(a) Rectangularization of Figure 6.11(a).

 

 

(b) Comparison between identification and rectangularization re-
sults. The blue rectangles are the boundaries of the modified floes.
The black ‘.’ are the centers of identified ice floes (brash ice pieces),
and the red ‘.’ are the centers of rectangularized floes.

Figure 6.13: Ice floe rectangularization.

The colorized histogram of the rectangular floe size distribution is presented
in Figure 6.14(a). Under-segmentation could induce a large area difference as
well as overlapping, which explains why the largest floe in Figure 6.13(a) is
much larger than the largest identified floe in Figure 6.11(a), as seen in Figure
6.14(b) by comparing Figures 6.14(a) and 6.11(b).

6.3.4 Ice concentration

The target ice concentration in this test was 90%. The ice concentration de-
rived from Figure 6.11(a) is 76.96%, while it is 83.17% when calculated using
the threshold method [50] (estimated by counting the number of pixels for
each respective area in the image). In the proposed algorithm, the ice pixels
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(a) Ice floe size distribution histogram of Figure 6.13(a).
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(b) Error differences between the resulting floe size distributions from Figures 6.14(a) and
6.11(b).

Figure 6.14: Rectangular floe size distribution and its error differences.
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detected as a boundary were changed to water pixels (e.g., Figure 6.10), so the
calculated ice concentration was reduced in Figure 6.11(a).

The ice concentration calculated by summing all the areas of the rectangular
floes in Figure 6.13(a) over the image domain is 87.75%. This value is slightly
higher than the thresholding result because the overlapping parts have been
identified and considered. The overlapping parts compensate for the loss of
ice concentration, and increase the calculated ice concentration closer to the
target value.

6.4 Application: Monitoring Maximum Floe Size

An example of the proposed algorithm is to monitor the maximum floe size
entering the protected vessel from a physical ice management operation. In
the analyzed runs, the heading of the Arctic drillship [50] was constant at 180◦

and the velocity of the towing carriage with the model was increased halfway
during the run. From the full-scale, velocity of 0.25 to 0.50 knots was simu-
lated. The motion captured by the video is retrieved by analyzing at one frame
per second.The impediments around the tank were removed first (as shown in
Figure 6.15(a)) [50], the proposed algorithm was applied to segment the con-
nected ice floe (Figure 6.15(b)), and the maximum floe area for each frame was
calculated. Figure 6.16 presents the maximum floe size entering the protected
vessel as a function of time. Based on this result, a warning can be sent to the
risk management system if the estimated risk based on the maximum floe size
is too large.

(a) Pre-processed frame at 965s. (b) Segmentation result of (a).

Figure 6.15: Model-ice video processing.
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Figure 6.16: Maximum floe size entering the protected vessel.
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Chapter 7

Sea-ice Image Processing

Several image processing algorithms have been applied to sea-ice images to
extract useful information of sea-ice. Sea-ice, defined as any form of ice that
forms as a result of sea water freezing [33, 34, 35], covers approximately 7%
of the total area of the world’s oceans [83]. This ice is turbulent because of
wind, wave, and temperature fluctuations. Various types of ice are found in
ice-covered regions. Ice floes and brash ice can range from approximately one
meter to kilometers in size. The size distribution of ice floes is a basic param-
eter of sea-ice that affects the behavior of sea-ice extent both dynamically and
thermodynamically. Particularly for relatively small ice floes, the ice floe size
distribution is critical to the estimation of melting rate [27]. Hence, estimating
floe size distributions contributes to the understanding of the behavior of the
sea-ice extent on a global scale.

Chapter 5 proposes a method based on the GVF snake algorithm to separate
seemingly connected ice floes into individual ones. This method is adopted for
processing model-ice images in Chapter 6 to obtain the floe size distributions
and give acceptable results. Processing a sea-ice image, however, is more
challenging than a model-ice image. Sea-ice typically has a greater variability
of ice floe sizes, together with a larger content of brash ice/slush and possibly
a snow cover, than it has for more deterministic model-ice. On the other hand,
this means that it is possible to extract the desired ice data quite accurately
based on the presented methods in model-ice image processing. The main
focus of this chapter is on identifying the non-ridged ice floe in the marginal
ice zone and the managed ice resulting from offshore operations in sea-ice. The
discussion and suggested procedure of the proposed method for processing a
larger area covered and geometric distorted sea-ice image are given in the case
studies. Moreover, the applications of the proposed method for ice engineering
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conclude the chapter. The work presented in this chapter was published in
[56, 57].

7.1 Ice Image Processing Methods

7.1.1 Sea-ice pixel extraction

Because sea-ice is whiter than water, the pixel values differ under normal con-
ditions. Ice pixels have higher intensity values than those belonging to water
in a uniform illumination ice image. Therefore, ice pixels can be extracted by
using the thresholding method [58]. Most of the ice in Figure 7.1 can then
be identified, as shown in Figure 7.2. Of the ice pixels identified, however,
only “light ice” has larger pixel intensity values than the threshold. “Dark ice”
with pixel intensity values between the threshold and water, such as ice pieces
under the water surface, may not be identified, are considered to be water ac-
cording to the thresholding method. Both “light ice” and “dark ice” pixels are
required for an accurate analysis. To distinguish “dark ice” from open water,
the k-means clustering algorithm [62] can be applied.

Figure 7.1: Original sea-ice image.

The image is then divided into three or more clusters using the k-means algo-
rithm. The cluster with the lowest average intensity value is considered to be
water, while the other clusters are considered to be ice, as shown in Figure 7.3.
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Figure 7.2: “Light ice” extracted by the thresholding method.

The “dark ice” is then obtained by comparing the difference between Figure
7.2 and 7.3, as shown in Figure 7.4.

7.1.2 Sea-ice edge detection

Chapter 6 and [55] discuss three criteria to check whether it is necessary to
reinitialize the contours and segment a second time based on the size and shape
of model ice floe. However, this is not necessary for the sea-ice image because
of the irregular floe sizes and shapes. To obtain a more accurate result and
reduce the computational time, the contours are initialized in both the “light
ice” image (Figure 7.2) and “dark ice” image (Figure 7.4). The GVF snake
algorithm is then run to individually derive “light ice” segmentation (the white
ice pieces in Figure 7.5) and “dark ice” segmentation (the gray ice pieces in
Figure 7.5). Collecting all the ice pieces in both “light ice” and “dark ice” seg-
mentation images resulted in the segmented image, as shown in Figure 7.5. It
should be noted that the “light ice” and “dark ice” should be labeled differently
in the segmentation result. Otherwise, it may be impossible to separate some
“light ice” and “dark ice”.

The pseudocode of the proposed ice edge detection algorithm is concluded in
Algorithm 4.
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Figure 7.3: Ice extraction using the k-means method.

Figure 7.4: “Dark ice” found by subtracting Figure 7.2 from Figure 7.3.
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Figure 7.5: Sea-ice segmentation image. The white ice is the segmentation
result from the “light ice” in Figure 7.2, and the gray ice is the segmentation
result from the “dark ice” in Figure 7.4.

Algorithm 4 Sea-ice edge detection.
Input: Sea-ice image
Start algorithm:

1: GV F ← GVF derived from greyscale of input image
2: ICE ← binary ice image by the K-means method
3: LIGHT ← binary “light” ice image by the thresholding method
4: DARK ← ICE − LIGHT
5: SEGL ← ice floe segmentation (Algorithm 1) on LIGHT
6: SEGD ← ice floe segmentation (Algorithm 1) on DARK
7: SEGMENTATIONsea−ice ← SEGL + SEGL (SEGL and SEGD

are marked differently in PIECES)
8: return SEGMENTATIONsea−ice

Output: Sea-ice segmentation
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7.1.3 Sea-ice shape enhancement

Figure 7.6(a), which is extracted from Figure 7.1, shows an ice floe with
speckle. Because of uneven grayscale of the ice floe, the lighter part of the
floe is considered as “light ice” (the white pixels in Figures 7.6(b) and 7.6(c)),
while the darker part is considered as “dark ice” (the gray pixels in Figures
7.6(b) and 7.6(c)) by the k-means and threshold method. This means the ice
floe, as shown in Figure 7.6(b), cannot be completely identified when it has
both “light ice” pixels and “dark ice” pixels. Therefore, the ice shape enhance-
ment is particularly important for sea-ice image processing.

If we perform the ice shape enhancement to the “light ice” segmentation and
“dark ice” segmentation independently, there will be overlap between the re-
sulted “individual light ice piece identification” and “individual dark ice piece
identification”. This means some ice pixels are identified as belonging to dif-
ferent ice floes at the same time, and large ice floes are still at risk of incom-
pleteness.

To perform the ice shape enhancement algorithm to the sea-ice segmentation
image, all the collected ice pieces, including both segmented “light ice” and
“dark ice” pieces, should be labeled as an input to the step of ice shape en-
hancement. A disk-shaped structuring element is chosen for the ice shape
enhancement, and the radius of disk-shaped structuring element can be auto-
matically adapted to the size of each ice piece according to some rules, such
as Equation 7.1.

r =

{
r1 if sizeice < sizeth

r2 if sizeice ≥ sizeth,
(7.1)

where r is the radius of disk-shaped structuring element. It is equal to r1 when
the size of ice piece sizeice is less than a thresholding sizeth. Otherwise it is
equal to r2.

The pseudocode of the sea-ice shape enhancement algorithm is concluded in
Algorithm 5. This process will ensure the completeness of the ice floe and that
smaller ice floes or brash pieces contained in a lager ice floe are removed, as
shown in the shape enhancement result in Figure 7.6(c).

After shape enhancement, collecting and labeling all the cleaned ice pieces in
different colors based on the Equation 6.1, results in Figure 7.7.
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Algorithm 5 Sea-ice shape enhancement.
Input: Sea-ice segmentation from Algorithm 4.
Start algorithm:

1: PIECESsea−ice ← labeled regions in SEGMENTATIONsea−ice.
2: IDENTIFICATIONsea−ice ← ice shape enhancement (Algorithm 2).

3: return IDENTIFICATIONsea−ice.
Output: Individual sea-ice piece identification.

(a) Ice floe image extracted
from Figure 7.1.

(b) Segmentation result of Fig-
ure 7.6(a).

(c) Shape enhancement result
of 7.6(b).

Figure 7.6: Sea-ice shape enhancement. The white pixels are “light ice” pixels,
and the gray pixels are “dark ice” pixels.
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Figure 7.7: Labeled and colorized ice pieces.
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7.1.4 Ice types classification and floe size distribution

According to [84], brash ice is considered as floating ice fragments no more
than 2 m across. To distinguish brash ice from ice floes in our algorithm,
we define a brash-ice threshold parameter (pixel number or area) that can be
tuned for each application. The ice pieces with sizes larger than the threshold
are considered to be ice floes, while smaller pieces are considered to be brash
ice. The remaining ice pixels in Figure 7.3 are labeled as slush. The result is
four layers of a sea-ice image (using Figure 7.1 as an example): ice floe (Fig-
ure 7.8(a)), brash ice (Figure 7.8(b)), slush (Figure 7.8(c)), and water (Figure
7.8(d)). Based on the four layers, a total of 154 ice floes and 189 brash ice
pieces are identified from Figure 7.1. The coverage percentages are 60.52%
ice floe, 3.34% brash ice, 16.03% slush, and 20.11% water. The ice floe size
distribution histogram is shown in Figure 7.9.

The residue ice, which is the detected boundary pixels between the connected
floes, was above considered as slush (since there often is a boundary layer of
slush ice between two ice floes) and is included in Figure 7.8(c). However, the
residue ice, as shown in Figure 7.10, can also be handled specifically according
to the applied subsequent processing by the user.

7.2 Case Studies and Discussions

To test the validity of the algorithms, the aerial sea-ice images obtained from
the remote sensing mission at Ny-Ålesund in early May 2011 are used as the
case studies.

7.2.1 Simple sea-ice image case

Figure 7.11 shows an aerial image of the marginal ice zone without distortion.
Since part of the ice pixels have intensity values close to water, both the “light
ice” image and the “dark ice” image are used to obtain an accurate result. The
procedure is as follows:

Step 1: Derive the “light ice” image and “dark ice” image from Figure 7.11
by the method mentioned in Section 7.1.1.

Step 2: Initialize the contours in both “light ice” image and “dark ice” image
by the method mentioned in Section 7.1.2.
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(a) Layer showing the “ice floes” of Figure
7.1

(b) Layer showing the “brash ice” of Figure
7.1

(c) Layer showing the “slush” of Figure 7.1 (d) Layer showing the “water” of Figure 7.1

Figure 7.8: Sea-ice image classification.
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Figure 7.9: Floe size distribution histogram of Figure 7.8(a).

Figure 7.10: Residue ice (boundary pixels).
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Step 3: Run the GVF snake algorithm on the initial contours to individually
derive “light ice” segmentation and “dark ice” segmentation.

Step 4: Collect all the ice pieces in both “light ice” and “dark ice” segmen-
tations, and perform the shape enhancement algorithm mentioned in
Section 7.1.3.

Figure 7.11: Aerial image of the marginal ice zone.

The resulting four layers of a sea-ice image and their coverage percentages
are 76.73% ice floe shown in Figure 7.12(a), 0.46% brash ice shown in Figure
7.12(b), 9.05% slush shown in Figure 7.12(c), and 13.17% water shown in
Figure 7.12(d). Based on the four layers, a total of 498 ice floes and 201 brash
ice pieces are identified from Figure 7.11.

The ice floe (brash) size can be determined by the number of pixels in the
identified floe (brash). The ice floe and brash ice are labeled in different colors
based on their sizes with ‘∗’ and ‘.’ at their centers, as shown in Figure 7.13.
The resulting ice floe size distribution histogram is then shown in Figure 7.14.

7.2.2 Complex sea-ice image case

Section 7.2.1 gives a case study of processing the sea-ice image with uniform
illumination and without any distortion problem. Most of the time, however,
the aerial sea-ice images usually cover a large area, and the illumination of
the images is often non-uniform. Besides this, perspective distortion may also
exist in the image data because of the shooting angle of the camera. Perspec-
tive distortion usually exists when an aerial vehicle orbits the observation field.
Both of these issues will affect the final ice floe identification and size distri-
bution results. This case study illustrates how to apply the proposed algorithm
to process the sea-ice image, shown in Figure 7.15, covering a large area with
perspective distortion.
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(a) Layer showing the “ice floes” of Figure 7.11

(b) Layer showing the “brash ice” of Figure 7.11

(c) Layer showing the “slush ice” of Figure 7.11

(d) Layer showing the “water” of Figure 7.11.

Figure 7.12: Identification result producing four layers for Figure 7.11.
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Figure 7.13: Floe and brash ice size distribution for Figure 7.11.
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Figure 7.14: Floe size distribution histogram obtained from Figure 7.13.
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Figure 7.15: Sea-ice image with perspective distortion.

Local processing

Some ice information can be lost when globally extracting “light ice” and
“dark ice” from a sea-ice image when non-uniform illumination or shadow
problems exist in the sea-ice image. Moreover, a sea-ice image typically con-
tains multiple ice floes that crowd together, as shown in Figure 7.15, where
parts of floe boundaries become weaker than others. As discussed in Chapter
6, the GVF capture range cannot represent an overall ice image and should
be adjusted according to each sub-image. Therefore, processing the local sub-
images of the large-area covered sea-ice image is recommended to obtain an
accurate segmentation result (but at the expense of more processing time and
manual intervention).

The image is first divided into smaller, overlapping regions such that each re-
gion can be analyzed locally [82]. The ice edge detection algorithm (Algorithm
4) is performed on each region to obtain a sub-segmentation image. Then we
remove the overlapping part and superimpose the sub-segmentation images
into their locations (by stitching the sub-segmentation images), resulting in an
overall segmentation image. This procedure is shown in Figure 7.16.

112



7.2. Case Studies and Discussions

Overall sea-ice image Overall segmentation image

Smaller, overlapping region Sub segmentation image 

Ice edge 

detection

Divide

Superimpose

Figure 7.16: Local segmentation procedure. The white pixels are “light”ice
pixels, and the gray pixels are “dark” ice pixels.

113



Chapter 7. Sea-ice Image Processing

Geometric calibration

When the perspective distortion exists in the image data, the final identification
result, as illustrated in Figure 7.17, is not adequate for the calculation of size
distribution statistics. The ice floes in the far range of the image will seem
smaller than those in the near range. This distortion will, therefore, induce
errors in further analyses.
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Figure 7.17: Ice floe and brash size distribution without orthorectification.

According to [37, 85] and Appendix A, the image can be orthorectified when
the values of the shooting angle and the field of view of the camera are known,
thus requiring a sensor to measure the camera’s shooting angle. However, the
actual parameters of the camera were not measured in this mission. Hence,
to give an example to illustrate the overall algorithm, we have estimated the
shooting angle to be approximately 20◦ and the field of view to be 46◦ (using
the statistical similarities between the size distributions of near and far range
of the image). Using this, we can orthorectify the overall segmentation image.

For non-ridged and non-shielded image, the geometric calibration should be
performed on the segmented sea-ice image (after Algorithm 4) before sea-ice
shape enhancement (Algorithm 5). Otherwise, the small ice floes located at
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the far end of the image could be still considered to be brash ice. Furthermore,
to reduce the visual distortion caused by the fractional zoom calculation, the
image will be enlarged, and the total number of pixels will increase after or-
thorectification. The points between the pixels in the orthorectification coordi-
nates that are mapped from the image coordinates must be interpolated. Each
pixel holds quantized values that represent the color or gray level of the image
at a particular point. Image interpolation [86], therefore, plays an important
role in filling the values in those interpolated pixels by using known data to
estimate values at unknown points.

The calibrated image, however, may be blurred because the values of the in-
terpolated pixels are not the real values captured from the objects; as the num-
ber of interpolated pixels increase, the objects in the calibrated image become
more blurry. The ice floe boundaries may become weaker or even be lost. The
floe boundaries will become more difficult to detect. If the geometric calibra-
tion is performed before the ice floe identification, the proposed algorithm may
fail to detect the ice floes in the far range of the image because of their blurred
boundaries.

Results

After orthorectification, we enhance the shapes of all the ice pieces (Algorithm
5), and finally, we obtain the ice floe and brash ice size distribution, as shown in
Figure 7.18. Brash ice is dark blue, smaller floes are light blue, and larger floes
are red. Brash positions are not shown, while the floe positions are denoted
using a black dot.

A total of 2511 ice floes and 2624 brash ice are identified from Figure 7.15.
The coverage percentages are 65.98% ice floe, 5.03% brash ice, 17.52% slush,
and 11.47% water. Instead of actual size of ice floe and brash (since we do
not have the height above sea-level for the camera), the ice floe (brash) size is
calculated by the number of pixels in the identified floe (brash). The relative
ice floe distribution histogram is derived and shown in Figure 7.19, and the
overall algorithm of the case study is concluded in Algorithm 6.

7.2.3 Sea-ice modeling

To modify the sea-ice floes and brash ice for the numerical simulation of the
ice-structure interaction, the sea-ice floes were simplified by assigning the
minimum-area-polygon to each floe, and the brash ice were reshaped by as-
signing the same-area-circle to each brash ice piece.
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Figure 7.18: Ice floe and brash size distribution after orthorectification.
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Figure 7.19: Ice floe size distribution histogram of Figure 7.18.
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Algorithm 6 Overall sea-ice floe and brash identification algorithm.
Input: Sea-ice image.
Start algorithm:

1: SUB ← sub-images divided from the input image.
2: for each sub-image sub∈SUB do
3: seg ← ice edge detection (Algorithm 4) on sub.
4: end for
5: SEG← overall segmentation image with all seg stitched.
6: SEG← geometric calibrated SEG.
7: ID ← sea-ice shape enhancement (Algorithm 5) on SEG.
8: FLOE ← labeled regions in ID with large sizes.
9: BRASH ← labeled regions in ID with small sizes.

10: DISTRIBUTION ← floe size distribution.
11: return FLOE, BRASH , DISTRIBUTION .
Output: Segmented layers and Floe size distribution.

Figure 7.20 shows an example of sea-ice modeling for Figure 7.13. A close-up
view of a few ice floes and brash ice in the middle of Figure 7.13 is given in
Figure 7.21, with the blue boundaries of the polygons (circles) in Figure 7.20
superimposed on top of it. The centers of identified ice floes (brash ice) are
marked with black ‘∗ (.)’, while the centers of polygonized floes (circularized
brash ice) are marked with red ‘+ (.)’.

Figure 7.21 shows how the polygonization (circularization) modifies the floes
(brash ice). It is obviously to see that, the polygonized floes will not be smaller
than the actual identified floes, and may overlap with other floes and brash ice
pieces. Therefore, similar to the model-ice floe modeling, the “overlap flags”
of floe-floe and floe-brash were added to each polygonized floe besides its
position, area, perimeter, and vertices. Moreover, the position, area, radius of
each circularized brash ice, and the “overlap flags” of brash-brash and brash-
floe were also registered in this modeling.

Figure 7.22(a) presents the colorized histogram of the polygonized floe size
distribution of Figure 7.20(a), and Figure 7.22(b) subtracts the histograms of
Figure 7.20(a) from Figure 7.13, so that we can see the “error differences”
between the resulting floe size distributions.

The sea-ice modeling results have been used to generate a sea-ice field for nu-
merical simulation of ice-structure interaction. Further applications are under
consideration.
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(a) Polygon fitting to ice floes in Figure 7.13.

(b) Circle fitting to brash ice in Figure 7.13.

Figure 7.20: Sea-ice modeling for Figure 7.13.

 

 

Figure 7.21: Comparison between identification and modification results. The
blue closed curves are the boundaries of the modified floes (brash ice). The
black ‘∗ (.)’ are the centers of identified ice floes (brash ice pieces), and the
red ‘+ (.)’ are the centers of polygonized floes (circularized brash ice).
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(a) Ice floe size distribution after polygon fitting.
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(b) Error differences between the resulting floe size distributions from Figure 7.14 and Figure
7.22(a).

Figure 7.22: Polygonized floe size distribution and its error differences.

119



Chapter 7. Sea-ice Image Processing

7.3 Applications on Ice Engineering

7.3.1 Application 1: Processing of shipboard sea-ice image with
fisheye distortion

The performance of KV Svalbard (a Norwegian Coast Guard icebreaker that
operates in the Norwegian Arctic) in ice was studied by SAMCoT researchers,
and a set of full-scale experimental data was collected in the Fram Strait from
the 8th to the 18th of March in 2012. In this cruise, GoPro HD HERO2 cameras
were employed and mounted out of the hatch to capture the ice condition in
front of KV Svalbard’s bow during the experiments. Figure 7.23(a) shows
a sample image of the downward looking camera (the perspective distortion
can be ignored), and Figure 7.23(b) is its corresponding segmentation result of
both “light” and “dark” ice by using Step 1 - 3 in Section 7.2.1.

The camera provided 170◦ field of view (FOV) angle [87] to give a wide view
of the sea-ice at the expense of obtaining distorted images. The apparent effect
of ice floes in the image is mapped around a sphere. The image magnification
decreases with the distance from the optical axis. Besides the deformation,
the size of the floe located in the center of the image is larger than it is closer
to the image border. This affects the further ice floe size distribution results.
To remove the fisheye distortion, the FOV angle is required by the calibration
method, as illustrated in Appendix B.

The “wide” FOV angle was measured approximately to 119◦ (see Figure B.2 in
Appendix B) by image width as opposed to the claimed 170◦. The calibration
should be performed after the detection of the floe boundaries (Section 7.1.2)
since the calibrated image becomes enlarged and part of the image may be
blurred. This may induce errors in the detection of the floe boundaries, as
discussed in Section 7.2.2.

After that, we perform the sea-ice shape enhancement (Algorithm 5, Step 4 in
Section 7.2.1) to the calibrated image to obtain the final floe size distribution
result, as shown in Figure 7.24. All floes in Figure 7.24 are actually found from
Figure 7.23(a), although some large floes have odd shapes. This is because
their distorted shapes in Figure 7.23(a) are corrected by the fisheye calibration
algorithm. About 29 ice floes and 9 brash ice pieces are found, and the ice
concentration is calculated as 74.17%.
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(a) Shipboard sea-ice image with fisheye distortion.

(b) Segmentation result of (a). The white pixels are “light
ice” pixels, and the gray pixels are “dark ice pixels.

Figure 7.23: Shipboard sea-ice image with fisheye distortion and its segmen-
tation result.
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Figure 7.24: Floe and brash ice size distribution of Figure 7.23(b).

7.3.2 Application 2: The 360-degree camera system and ice image
processing

A 360-degree camera system was used in the Oden Arctic Technology Re-
search Cruise (OATRC 2013) to monitor the ice condition around the vessel.
This system consisted of two 360◦ Arecont Vision 20365DN-HB video cam-
era units, a 20 megapixel camera unit that includes a set of four independent
cameras (four objectives) with heater and blower housing option to provide
normal camera functioning in cold and wet conditions. The system was in-
stalled on the helicopter deck of icebreaker Oden, allowing the construction of
360◦ panorama images of ice conditions around the vessel [88].

In order to stitch together the individual camera images into a single panorama,
[88] used the commercial software PTGui Pro v9.1.8. A set of pictures with
clearly visible ice structures was selected and stitched together manually to
create the template. Based on this template, batches of images may then be au-
tomatically stitched together. To estimate the ice concentration around the ice-
breaker based on the panorama images, rectilinear (flat) projection that projects
the image onto a plane is chosen to remove the geometric distortion.
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In OATRC 2013, a pushing test was conducted, where the icebreaker slowly
pushed the ice floes aside, instead of simply breaking them. An advantage of
pushing an ice floe away is that a larger wake region can be created behind the
floe, and less ice breaking is needed. Figure 7.25 shows a resulting panorama
image from the pushing test. When applying the algorithms to these panorama
images, one image per minute was found sufficient. Each image was then fed
to the program for processing.

Figure 7.25: 360 degree panorama image.

Significant distortion exists in the resulting panorama images as a result of
camera vibration and influence of the pitch and roll of the icebreaker during
maneuvers. The images are stitched from a single template created from a
particularly clear set of images. The resulting images are also highly blurred
because of the occasional icing/fogging on the camera dome due to insufficient
heating, as shown in Figure 7.25. The ice pixel detection by Otsu thresholding
method is insufficient since the occasional icing/fogging parts are considered
as ice pixels because of their high intensity. This will increase the manual work
for the local processing.

Instead, the k-means method is used and divides the image into three clusters.
Only the cluster with the highest average intensity value is considered to be
ice, and the other clusters are considered to be water. Then, manual local
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processing is done using the methods in Section 7.1.1 and 7.1.2 to identify all
the missing ice and floe boundaries, resulting in a segmented image. After
performing the shape enhancement method (Section 7.1.3) to the segmented
image, 128 ice floes and brash ice pieces are identified. The ice concentration
is calculated to 41.79%, as presented in Figure 7.26.
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Figure 7.26: Identified ice floe distribution of Figure 7.25.

By processing the sequence of panorama images obtained from the pushing
test experiment, the ice concentration was calculated as a function of time and
presented in Figure 7.27.
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Figure 7.27: Time-varying ice concentration of pushing test.
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Chapter 8

Conclusion

This thesis is about image processing for ice observations. Various image tech-
niques have been developed and applied to the collected ice images for analy-
ses to give some results applicable to ice engineering and ice management.

The ice concentration from a digital visual ice image is defined in Chapter 1
and indicates that the extraction of ice pixels from ice image is required for
calculating ice concentration. To accomplish this, Chapter 2 first adopts the
Otsu thresholding to divide the ice image into “ice region” and “water region”.
This works well in model-ice images and part of sea-ice images when all the
ice pixels are significantly brighter than water. However, the ice pixels with
the intensity values close to water cannot be detected by this method when
the sea-ice images contain brash ice, slush, or the ice submerged in the water.
Therefore, the k-means clustering method is used to detect more ice pixels
from such images by dividing the image into three or more clusters, where the
cluster with the lowest average intensity value is considered as “water region”
while the others are considered as “ice regions”.

Ice boundaries are important for obtaining the ice floe size distribution from
ice images. Two common edge detection methods - the derivative edge de-
tection and morphology edge detection - are introduced in Chapter 3 to try
to detect ice boundaries. Compared with the morphology method, the deriva-
tive method is more sensitive to the differences between regions, and more
weak-boundaries between the connected floes are found. The downside of this
method, on the other hand, is that it will produce more non-closed boundaries,
which are unable to separate the connected floes. Instead, the morphology
method can close the floe boundaries and break the thin connections between
floes, which is beneficial for the separation of the connected floes. However,
only weakly connected ice floes can be separated by the morphology method.
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Neither method can separate strongly connected ice floes, and the connected
floes will be considered as a big floe.

The separation of seemingly connected floes into individual ones challenges
ice floe size distribution analysis due to their weak boundaries. To solve this
problem, the watershed transform, which is the state-of-art method for separat-
ing connected objects, is adopted in Chapter 4. Due to the over-segmentation
caused by the watershed transform, each ice floe is first assumed to have
a convex boundary. Then, the chain code is used to find the concave cor-
ners of floe boundaries, and a neighboring-region merging algorithm based on
those detected concave corners is proposed to automatically remove the over-
segmentation. However, the watershed-based method should only be used for
separating the connected ice floe with invisible junctions because the actual
boundary information is lost when using the watershed transform.

To operate on the actual ice floe boundaries, Chapter 5 introduces the gradi-
ent vectorfFlow (GVF) snake algorithm, which has a good ability for detecting
weak boundaries and identifying individual ice floes. To evolve the GVF snake
correctly for ice floe boundary detection, a proper initial contour is required.
Chapter 5 shows that the initial contour close to the actual floe boundary, lo-
cated inside the floe and centered as close as possible to the ice floe center,
is most effective. To accomplish the requirements of the initial contour with-
out manual interaction, an automatic contour initialization algorithm based on
the distance transform and its local maxima is proposed. After initializing the
contours, the GVF snake algorithm is run on each contour to identify the floe
boundary. Superimposing all the boundaries over the binarized ice image then
results in separation of the connected ice floes. Furthermore, to effectively
enhance the shape of the ice floe, the ice shape enhancement algorithm is per-
formed after segmentation.

When ice floes crowd together, some connected ice floes may not be separated
by the method proposed in Chapter 5 because of the loss of the seeds found by
the proposed contour initialization algorithm. Additional efforts are required
for such issues. For the model-ice images, the ice floes are modeled as square
shapes with predefined side lengths. Chapter 6 proposes three criteria based
on the characteristics of the model-ice floes. The algorithm will determine
whether it is necessary to initialize the contours and conduct a second segmen-
tation after each segmentation step. The floes that do not satisfy any of these
criteria and new seeds will be found. Then we initialize new contours based
on the new seeds and perform another round of segmentations.

For the sea-ice images where the ice are of various types, sizes, and shapes,
Chapter 7 first derives a “light ice” image and a “dark ice” image based on
the thresholding and k-means clustering methods. Then, the contours are ini-
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tialized in both the “light ice” image and the “dark ice” image, and the GVF
snake algorithm is run on the initial contours to individually derive “light ice”
segmentation and “dark ice” segmentation. Finally, the ice shape enhancement
is performed on the collection of all the segmented ice pieces from both “light
ice” and “dark ice” segmentations, resulting in the sea-ice floe identification.

Our experiments on both model- and sea-ice images show that the proposed
algorithms are effective for identifying individual ice floes. The colorized ice
floe maps and the corresponding ice floe size distribution histograms are ob-
tained thereafter. Besides, Chapter 6 rectangularizes the identified model-ice
floes for the validation of a numerical simulation and monitors the maximum
floe size entering the protected vessel from a physical ice management oper-
ation. Chapter 7 distinguishes the different types of sea-ice and, based on the
identification result, divides the image into four layers: ice floes, brash ice,
slush, and water. Chapter 7 also draws on case studies to illustrate a proce-
dure for processing the sea-ice image covering a large area with geometric
distortion, and modifies identified sea-ice floes and brash ice for the numerical
simulation.

Future Work

To calculate ice concentration, the Otsu thresholding and k-means clustering
methods were adopted in this thesis to divide an image into two or more classes
in a mandatory manner. This will fail in the boundary conditions when ice
concentration is 0% or 100%, which have to be dealt with as particular cases.
Furthermore, these two methods do not include detailed ice physics except the
grayscale value of the image. Therefore, the “learning-based object detection”,
such as machine learning (e.g., support vector machine, deep learning, etc.)
[89] and texture feature descriptors [63], could be a future research direction.

The GVF-snake based ice floe identification algorithm proposed in this thesis
performs well in ice floe identification and presentation of the floe size dis-
tribution of model-ice images and marginal ice zone images. However, man-
ual intervention may be necessary for processing other sea-ice images. The
main limitation of this method is that the parameters for the GVF field are,
unfortunately, tuned manually, which is a limitation to the applicability of the
algorithm in real-world situations, especially when a large number of images
must be analyzed. As of now, no explicit performance criterion exist for when
reasonable identification is achieved other than the operator’s own judgment,
and it is, therefore, very difficult to optimize the value of the parameters. Thus,
further sensitivity studies are needed to focus on the automatic optimization of
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the critical parameters for a given image or image fragment. This is a topic
of ongoing research, with the expectation of more results and better informa-
tion of sea-ice from visual images by the further development of these image
processing methods for real-time applications.

Statistical analysis on the floe size distribution is another topic of ongoing
research. The cumulative distribution can be calculated following some prob-
abilistic models and compared with previous studies [26]. The applicability of
the proposed methods for generating a statistical data set for ice engineering
should be studied.
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Appendix A

Geometric Orthorectification

The location of any object in the image is a function of the spatial orientation
of the camera in relation to ground topography. Figure A.1 illustrates the rela-
tionship between the image coordinates and the orthorectification coordinates.

The image coordinates lay in the focal plane and are denoted with small letters
(x, y). The orthorectification plane coordinates are parallel to the ground and
are denoted with capital letters (X,Y ). The optic center of the camera is S.
The camera nadirline intersects the orthorectification plane at the nadir T .
The optic axis is perpendicular to the focal plane and intersects the center of
the focal plane at principal point r, forming the shooting angle ϕ with the
vertical nadir line. The optic axis extends to the orthorectification plane at
point R. The principal line passes through point R (r) and the image border
at O (or o), and it bisects the orthorectification (focal) plane. The point O (or
o) acts as the origin for the image coordinate system, with the y-axis as the
principal line, and the origin for the orthorectification coordinate system with
the principal line in the orthorectification plane defining the positive Y -axis.
p(x, y) is any point on the image plane. P (X,Y ) is the corresponding point
on the orthorectification plane.

From Figure A.1, we obtain:

TO = SO sin(ϕ− θ) = f sec θ sin(ϕ− θ) (A.1)

TQ = ST tan(ϕ+ ~α) = f sec θ cos(ϕ− θ) tan(ϕ+ ~α) (A.2)

SQ = ST sec(ϕ+ ~α) = f sec θ cos(ϕ− θ) sec(ϕ+ ~α) (A.3)
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Figure A.1: Geometric orthorectification.

~γ = arctan(qp/Sq) = arctan
qp cos ~α

f
, (A.4)

where θ is half of the len’s vertical field of view angle, f is the focal length,
and ~α = arctan( ~qr/f).

According to equations (A.1)-(A.4), we derive

OQ = TQ− TO

= f sec θ[cos(ϕ− θ) tan(ϕ+ arctan
~qr

f
)− sin(ϕ− θ)]

(A.5)

QP = SQ tan γ = qp
cos ~α cos(ϕ− θ)
cos θ cos(ϕ+ ~α)

= qp
f√

f2 + ~qr2
cos(ϕ− θ)

cos θ cos(ϕ+ arctan ~qr
f )
.

(A.6)

A digital image is a numeric representation of a two-dimensional picture and
is composed of pixels that are the smallest individual elements of the image.
We assume that the pixel magnification of the image is µ, yielding{

oq = y · µ
qp = x · µ

(A.7)
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{
OQ = Y · µ
QP = X · µ

(A.8)

Therefore,
~qr =~(oq)−~(or) = (y − ny

2
) · µ (A.9)

where ny is the number of pixels in image length. Instead of working from
a 1 : 1 positive, we counted image pixels on a computer screen. Hence, the
apparent focal length of the image is altered by

f
′
=

ye
tan θ

=
µ · ny/2
tan θ

, (A.10)

where ye is the half-length of the image. Substituting Equations A.7 - A.10 into
Equations A.5 and A.6, the location of any point, P (X,Y ), in the orthorectifi-
cation coordinates can be determined from its image coordinates, p(x, y), by:


Y =

ny
2

csc θ{cos(ϕ− θ) tan[ϕ+ arctan(
y − ny/2
ny/2

tan θ)]

− sin(ϕ− θ)}

X = x ·
ny
2

csc θ cos(ϕ−θ) sec[ϕ+arctan(
y−ny/2
ny/2

tan θ)]√
(
ny/2

tan θ
)2+(y−ny

2
)2

,

(A.11)

and the image is orthorectified.

From Equation A.11, we can find that, although µ varies with the magnifica-
tion ratio of the image, the relationship between different coordinates will not
change. This is because the influence of µ is counteracted based on Equations
A.7 - A.10. Consequently, the relationship between the image coordinates and
the orthorectification coordinates is a function of the shooting angle ϕ and the
camera’s (vertical) field of view 2θ. An example of orthorectification result is
shown in Figure A.2.

133



Appendix A. Geometric Orthorectification

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

1000

2000

3000

4000

5000

6000

7000

8000

Figure A.2: Orthorectification result.
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Appendix B

Fisheye Calibration

The location of any object in the image is a function of the field of view (FOV)
angle of the camera in relation to its calibrated flat surface. Figure B.1 illus-
trates the mapping between fisheye image coordinates and the corresponding
calibration coordinates.

The fisheye image coordinates, denoted with small letters (x, y), is located at
the bottom of the fisheye sphere and is perpendicular to the Z-axis (the opti-
cal axis of the lens). The calibration coordinates, denoted with capital letters
(X,Y ), are on the top of the fisheye sphere parallel to the image coordinates.
The center of the fisheye image, ‘o’, located in the Z-axis, acts as the origin
of the image coordinates. The intersection point O of the calibration plane
and Z-axis acts as the origin of the calibration coordinates. ϕ is half the lens
FOV angle, which is known. For any point, p(x, y), on the image plane and
its corresponding point, P (X,Y ), on the calibration plane, the radial distance,
| ~OP |, in the distorted fisheye image plane, | ~op|, is equivalent to the length of
the arc segment, r, between the Z-axis and P0, which is the intersection point
of the projection ray of the point P and the fisheye sphere. Therefore,

| ~op| = r = R · α (B.1)

= R · arctan |
~OP |
R

,

where R is the radius of the fisheye sphere, obtained by:

R =
rmax
ϕ

=
rm · µ
ϕ

, (B.2)

and rmax is half the capture range of the fisheye image in length, rm is the pixel
number in maximum semidiameter, obtained by counting half the number of
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Figure B.1: Fisheye calibration.

pixels in the image length, and µ is the pixel magnification of the image. From
Figure B.1(a), we also find that

| ~op| =
√
x2 + y2 · µ (B.3)

| ~OP | =
√
X2 + Y 2 · µ (B.4)

x

y
=
X

Y
(B.5)

Substituting Equations B.2 - B.5 into B.1, the location of any point, P (X,Y ),
in the calibration coordinates can be determined from its fisheye image coor-
dinates, p(x, y), by:

X =
x√

x2 + y2
·
rm tan

ϕ
√
x2+y2

rm

ϕ
, (B.6)

Y =
y√

x2 + y2
·
rm tan

ϕ
√
x2+y2

rm

ϕ
.

From Equation B.6, we find that the relationship between the fisheye image
coordinates and its calibration coordinates only depend on the camera’s FOV
angle 2ϕ. The magnification µ will not affect the relationship since it is coun-
teracted based on Equations B.2 - B.4. The calibration result is illustrated in
Figure B.2.
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Figure B.2: Fisheye calibration result.

137



Appendix B. Fisheye Calibration

138



Bibliography

[1] K. J. Bird, Circum-Arctic resource appraisal: Estimates of undiscovered
oil and gas north of the Arctic Circle. US Department of the Interior, US
Geological Survey, 2008.

[2] A. Gürtner, Experimental and numerical investigations of ice-structure
interaction. PhD thesis, Norwegian University of Science and Technol-
ogy, 2009.

[3] A. Keinonen, H. Wells, P. Dunderdale, R. Pilkington, G. Miller, and
A. Brovin, “Dynamic positioning operation in ice, offshore sakhalin,
may-june 1999,” in The Proceedings of the International Offshore and
Polar Engineering Conference, vol. 1, pp. 683–690, International Soci-
ety of Offshore and Polar Engineers, 2000.

[4] K. Moran, J. Backman, and J. W. Farrell, “Deepwater drilling in the arctic
ocean’s permanent sea ice,” in Proc. IODP| Volume, vol. 302, p. 2, 2006.

[5] D. T. Nguyen, A. Sørbø, and A. Soerensen, “Modelling and control for
dynamic positioned vessels in level ice,” in Manoeuvring and Control of
Marine Craft, pp. 229–236, 2009.

[6] K. R. Simmonds, The International Maritime Organization. Simmonds
& Hill Pub, 1994.

[7] T. I. Fossen, Handbook of marine craft hydrodynamics and motion con-
trol. John Wiley & Sons, 2011.

[8] A. J. Sørensen, “Marine control systems propulsion and motion control
of ships and ocean structures lecture notes,” 2011.

[9] G. Wilkman, R.-A. Suojanen, S. Saarinen, T. Mattsson, and T. Leiviskä,
“Dp in ice conditions’ challenges and opportunities,” in Dynamic posi-
tioning conference, Houston, 2009.

139



Bibliography

[10] R. Skjetne, L. Imsland, and S. Løset, “The arctic dp research project:
Effective stationkeeping in ice,” Modeling, Identification and Control,
vol. 35, no. 4, p. 191, 2014.

[11] A. Keinonen, “Ice management for ice offshore operations,” in Proceed-
ings of the Offshore Technology Conference. Houston, TX, 2008.

[12] R. Skjetne, L. Imsland, and S. Løset, “The Arctic DP research project:
Effective stationkeeping in ice,” Modeling, Identification and Control,
vol. 35, no. 4, pp. 191–210, 2014.

[13] K. Eik, “Review of experiences within ice and iceberg management,”
Journal of Navigation, vol. 61, no. 04, pp. 557–572, 2008.

[14] J. Haugen, Autonomous Aerial Ice Observation. PhD thesis, Norwegian
University of Science and Technology, 2014.

[15] A. Makrygiannis, “Design and simulation of an ice-capable dp system,”
Master’s thesis, Norwegian University of Science and Technology, The
address of the publisher, 2012.

[16] Ø. K. Kjerstad, I. Metrikin, S. Løset, and R. Skjetne, “Experimental and
phenomenological investigation of dynamic positioning in managed ice,”
Cold Regions Science and Technology, vol. 111, pp. 67–79, 2015.

[17] I. Metrikin, Experimental and Numerical Investigations of Dynamic Posi-
tions in Discontinuous Ice. PhD thesis, Norwegian University of Science
and Technology, 2014.

[18] G. Timco, B. Gorman, and J. Falkingham, “Scoping study: Ice infor-
mation requirements for marine transportation of natural gas from the
high arctic,” tech. rep., NRC Report CHC-TR-020, Ottawa, Ont., Canada,
2005.

[19] K. Eik and S. Løset, “Specifications for a subsurface ice intelligence sys-
tem,” in ASME 2009 28th International Conference on Ocean, Offshore
and Arctic Engineering, pp. 103–109, American Society of Mechanical
Engineers, 2009.

[20] U. Jørgensen and R. Skjetne, “Online reconstruction of drifting underwa-
ter ice topography: The 2d case,” Asian Journal of Control, 2016.

[21] J. Haugen, L. Imsland, S. Løset, and R. Skjetne, “Ice observer system
for ice management operations,” in Proceeding of the 21st International
Ocean and Polar Engineering Conference, (Maui, Hawaii, USA), 2011.

[22] C. Gignac, Y. Gauthier, J.-S. Bédard, M. Bernier, and D. Clausi, “High
resolution radarsat-2 SAR data for sea-ice classification in the neighbour-

140



Bibliography

hood of Nunavik’s marine infrastructures,” in Proceedings of the 21st
International Conference on Port and Ocean Engineering under Arctic
Conditions, (Montréal, Canada), 2011.

[23] A. V. Bogdanov, S. Sandven, O. M. Johannessen, V. Y. Alexandrov, and
L. P. Bobylev, “Multisensor approach to automated classification of sea
ice image data,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 43, no. 7, pp. 1648–1664, 2005.

[24] L.-K. Soh, C. Tsatsoulis, D. Gineris, and C. Bertoia, “ARKTOS: An in-
telligent system for SAR sea ice image classification,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 42, no. 1, pp. 229–248, 2004.

[25] D. Haverkamp and C. Tsatsoulis, “Information fusion for estimation of
summer MIZ ice concentration from SAR imagery,” IEEE Transactions
onGeoscience and Remote Sensing, vol. 37, no. 3, pp. 1278–1291, 1999.

[26] D. Rothrock and A. Thorndike, “Measuring the sea ice floe size distribu-
tion,” Journal of Geophysical Research: Oceans (1978–2012), vol. 89,
no. C4, pp. 6477–6486, 1984.

[27] T. Toyota and H. Enomoto, “Analysis of sea ice floes in the sea of okhotsk
using ADEOS/AVNIR images,” in Proceedings of the 16th IAHR Inter-
national Symposium on Ice, Dunedin, New Zealand, pp. 211–217, 2002.

[28] S. Ji, H. Li, A. Wang, and Q. Yue, “Digital image techniques of sea
ice field observation in the bohai sea,” in POAC11-077, Proceedings of
the 21st International Conference on Port and Ocean Engineering under
Arctic Conditions (POAC’11), Montréal, Canada, 2011.

[29] J. Millan and J. Wang, “Ice force modeling for DP control systems,” in
Proceedings of the Dynamic Positioning Conference, (Houston, Texas,
USA), 2011.

[30] Q. Zhang, R. Skjetne, S. Løset, and A. Marchenko, “Digital image pro-
cessing for sea ice observations in support to Arctic DP operations,” in
ASME 2012 31st International Conference on Ocean, Offshore and Arctic
Engineering, pp. 555–561, American Society of Mechanical Engineers,
2012.

[31] S. van der Werff, A. Haase, R. Huijsmans, and Q. Zhang, “Influence of
the ice concentration on the ice loads on the hull of a ship in a man-
aged ice field,” in ASME 2012 31st International Conference on Ocean,
Offshore and Arctic Engineering, pp. 563–569, American Society of Me-
chanical Engineers, 2012.

141



Bibliography

[32] G. Comfort, S. Singh, and D. Spencer, “Evaluation of ice model test data
for moored structures,” tech. rep., PERD/CHC, 1999.

[33] Common terms used in sea ice research, accessed 2015-03-09. http:
//seaiceatlas.snap.uaf.edu/glossary.

[34] W. M. Organization, WMO Sea-ice Nomenclature: Terminology, Codes,
Illustrated Glossary and Symbols. No. 259, Secretariat of the World Me-
teorological Organization Geneva, 1970.

[35] S. Løset, K. N. Shkhinek, O. T. Gudmestad, and K. V. Høyland, Actions
from Ice on Arctic Offshore and Coastal Structures. St. Petersburg, Rus-
sia, 2006.

[36] Sea ice types, accessed 2015-03-09. http://www.
antarctica.gov.au/about-antarctica/environment/
icebergs-and-ice/sea-ice.

[37] P. Lu and Z. Li, “A method of obtaining ice concentration and floe size
from shipboard oblique sea ice images,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 48, no. 7, pp. 2771–2780, 2010.

[38] A. Keinonen and I. Robbins, “Icebreaker characteristics synthesis, ice-
breaker performance models, seakeeping, icebreaker escort,” Icebreaker
Escort Model User’s Guide: Report prepared for Transport Development
Centre Canada (TP12812E), vol. 3, p. 49, 1998.

[39] A. Palmer and K. Croasdale, Arctic Offshore Enginnering. World Scien-
tific Publishing Company, 2012.

[40] J. S. Brown, E. H. Martin, and A. Keinonen, “Ice management numeri-
cal modeling and modern data sources,” in The International Conference
and Exhibition on Performance of Ships and Structures in Ice (ICETECH
2012), (Banff, Alberta, Canada), 2012.

[41] C. Daley, S. Alawneh, D. Peters, B. Quinton, and B. Colbourne, “GPU
modeling of ship operations in pack ice,” in The International Conference
and Exhibition on Performance of Ships and Structures in Ice (ICETECH
2012), (Banff, Alberta, Canada), 2012.

[42] G. Vachon, M. Sayed, and I. Kubat, “Methodology for determination of
ice management efficiency,” in The International Conference and Exhi-
bition on Performance of Ships and Structures in Ice (ICETECH 2012),
(Banff, Alberta, Canada), 2012.

[43] M. Sayed, I. Kubat, B. Wright, A. Iyerusalimskiy, A. Phadke, and
B. Hall, “Numerical simulations of ice interaction with a moored struc-

142

http://seaiceatlas.snap.uaf.edu/glossary
http://seaiceatlas.snap.uaf.edu/glossary
http://www.antarctica.gov.au/about-antarctica/environment/icebergs-and-ice/sea-ice
http://www.antarctica.gov.au/about-antarctica/environment/icebergs-and-ice/sea-ice
http://www.antarctica.gov.au/about-antarctica/environment/icebergs-and-ice/sea-ice


Bibliography

ture,” in The International Conference and Exhibition on Performance of
Ships and Structures in Ice (ICETECH 2012), (Banff, Alberta, Canada),
2012.

[44] M. Sayed, I. K. Kubat, and B. Wright, “Numerical simulations of ice
forces on the kulluk: the role of ice confinement, ice pressure and ice
management,” in Proceedings of OTC Arctic Technology Conference,
(Houston, Texas, USA), 2012.

[45] A. Gürtner, B. Bjørnsen, T. H. Amdahl, S. R. Søberg, and S. H. Teigen,
“Numerical simulations of managed ice loads on a moored Arctic drill-
ship,” in Proceedings of OTC Arctic Technology Conference, (Houston,
Texas, USA), 2012.

[46] I. Metrikin, S. Løset, N. A. Jenssen, and S. Kerkeni, “Numerical simula-
tion of dynamic positioning in ice,” Marine Technology Society Journal,
vol. 47, no. 2, pp. 14–30, 2013.

[47] B. Wright et al., “Evaluation of full scale data for moored vessel station-
keeping in pack ice,” PERD/CHC Report, pp. 26–200, 1999.

[48] M. Steele, J. H. Morison, and N. Untersteiner, “The partition of air-
ice-ocean momentum exchange as a function of ice concentration, floe
size, and draft,” Journal of Geophysical Research: Oceans (1978–2012),
vol. 94, no. C9, pp. 12739–12750, 1989.

[49] M. Steele, “Sea ice melting and floe geometry in a simple ice-ocean
model,” Journal of Geophysical Research: Oceans (1978–2012), vol. 97,
no. C11, pp. 17729–17738, 1992.

[50] Q. Zhang, S. van der Werff, I. Metrikin, S. Løset, and R. Skjetne, “Image
processing for the analysis of an evolving broken-ice field in model test-
ing,” in ASME 2012 31st International Conference on Ocean, Offshore
and Arctic Engineering, pp. 597–605, American Society of Mechanical
Engineers, 2012.

[51] A. Haase, S. van der Werff, and P. Jochmann, “Dypic-dynamic position-
ing in ice: First phase of model testing,” in ASME 2012 31st International
Conference on Ocean, Offshore and Arctic Engineering, pp. 487–494,
American Society of Mechanical Engineers, 2012.

[52] CryoWing technical specifications, accessed 2012-03-30. http://
uas.norut.no/UAV_Remote_Sensing/CryoWing.html.

[53] CryoWing unmanned aerial system, accessed 2012-03-30. http://
uas.norut.no/UAV_Remote_Sensing/Welcome.html.

143

http://uas.norut.no/UAV_Remote_Sensing/CryoWing.html
http://uas.norut.no/UAV_Remote_Sensing/CryoWing.html
http://uas.norut.no/UAV_Remote_Sensing/Welcome.html
http://uas.norut.no/UAV_Remote_Sensing/Welcome.html


Bibliography

[54] Q. Zhang, R. Skjetne, and B. Su, “Automatic image segmentation for
boundary detection of apparently connected sea-ice floes,” in Proceed-
ings of the 22nd International Conference on Port and Ocean Engineer-
ing under Arctic Conditions, (Espoo, Finland), 2013.

[55] Q. Zhang, R. Skjetne, I. Metrikin, and S. Løset, “Image processing for
ice floe analyses in broken-ice model testing,” Cold Regions Science and
Technology, vol. 111, pp. 27–38, 2015.

[56] Q. Zhang and R. Skjetne, “Image processing for identification of sea-ice
floes and the floe size distributions,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 5, pp. 2913–2924, 2015.

[57] Q. Zhang and R. Skjetne, “Image techniques for identifying sea-ice pa-
rameters,” Modeling, Identification and Control, vol. 35, no. 4, pp. 293–
301, 2014.

[58] N. Otsu, “A threshold selection method from gray-level histograms,” Au-
tomatica, vol. 11, no. 285-296, pp. 23–27, 1975.

[59] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2nd ed., 2001.

[60] M. R. Anderberg, “Cluster analysis for applications,” tech. rep., DTIC
Document, 1973.

[61] S. C. Basak, V. Magnuson, G. Niemi, and R. Regal, “Determining struc-
tural similarity of chemicals using graph-theoretic indices,” Discrete Ap-
plied Mathematics, vol. 19, no. 1, pp. 17–44, 1988.

[62] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, p. 14, California,
USA, 1967.

[63] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Process-
ing Using MATLAB. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
2003.

[64] J.-F. Rivest, P. Soille, and S. Beucher, “Morphological gradients,” Jour-
nal of Electronic Imaging, vol. 2, no. 4, pp. 326–336, 1993.

[65] A. Talukder, D. P. Casasent, H.-W. Lee, P. M. Keagy, and T. F. Schatzki,
“Modified binary watershed transform for segmentation of agricultural
products,” in Photonics East (ISAM, VVDC, IEMB), pp. 53–64, Interna-
tional Society for Optics and Photonics, 1999.

144



Bibliography

[66] X. Chen, X. Zhou, and S. T. Wong, “Automated segmentation, classifica-
tion, and tracking of cancer cell nuclei in time-lapse microscopy,” IEEE
Transactions on Biomedical Engineering, vol. 53, no. 4, pp. 762–766,
2006.

[67] J. Blunt, V. Garas, D. Matskevitch, J. Hamilton, and K. Kumaran, “Im-
age analysis techniques for high Arctic, deepwater operation support,” in
OTC Arctic Technology Conference, (Houston, Texas, USA), 2012.

[68] A. M. Ghalib and R. D. Hryciw, “Soil particle size distribution by mosaic
imaging and watershed analysis,” Journal of Computing in Civil Engi-
neering, vol. 13, no. 2, pp. 80–87, 1999.

[69] X. Yang, H. Li, and X. Zhou, “Nuclei segmentation using marker-
controlled watershed, tracking using mean-shift, and kalman filter in
time-lapse microscopy,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 53, no. 11, pp. 2405–2414, 2006.

[70] N. Malpica, C. Ortiz de Solorzano, J. J. Vaquero, A. Santos, I. Vallcorba,
J. M. Garcia-Sagredo, and F. d. Pozo, “Applying watershed algorithms to
the segmentation of clustered nuclei,” Cytometry, vol. 28, pp. 289–297,
1997.

[71] Z. Lu and T. Tong, “The application of chain code sum in the edge form
analysis,” China Journal of Image and Graphics, vol. 7, no. 12, pp. 1323–
1328, 2002. in Chinese.

[72] H. Freeman and L. S. Davis, “A corner-finding algorithm for chain-coded
curves,” IEEE Transactions on Computers, vol. 26, no. 3, pp. 297–303,
1977.

[73] T. Toyota, S. Takatsuji, and M. Nakayama, “Characteristics of sea ice floe
size distribution in the seasonal ice zone,” Geophysical research letters,
vol. 33, no. 2, p. L02616, 2006.

[74] T. Toyota, C. Haas, and T. Tamura, “Size distribution and shape proper-
ties of relatively small sea-ice floes in the Antarctic marginal ice zone in
late winter,” Deep Sea Research Part II: Topical Studies in Oceanogra-
phy, vol. 58, no. 9, pp. 1182–1193, 2011.

[75] J. Banfield, “Automated tracking of ice floes: A stochastic approach,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 29, no. 6,
pp. 905–911, 1991.

[76] J. D. Banfield and A. E. Raftery, “Ice floe identification in satellite images
using mathematical morphology and clustering about principal curves,”

145



Bibliography

Journal of the American Statistical Association, vol. 87, no. 417, pp. 7–
16, 1992.

[77] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour mod-
els,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331,
1988.

[78] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE
Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, 1998.

[79] C. Xu and J. L. Prince, accessed 2014-09-23. http://www.iacl.
ece.jhu.edu/static/gvf/.

[80] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the ACM (JACM), vol. 13, no. 4, pp. 471–494,
1966.

[81] A. Rosenfeld and J. L. Pfaltz, “Distance functions on digital pictures,”
Pattern Recognition, vol. 1, no. 1, pp. 33–61, 1968.

[82] L.-K. Soh, C. Tsatsoulis, and B. Holt, “Identifying ice floes and comput-
ing ice floe distributions in SAR images,” in Analysis of SAR Data of the
Polar Oceans, pp. 9–34, Springer, 1998.

[83] P. Wadhams, Ice in the Ocean. Taylor & Francis, 2000.

[84] WMO SEA-ICE NOMENCLATURE, accessed 2014-08-31.
http://www.aari.ru/gdsidb/XML/volume1.php?lang1=
0&arrange=4.

[85] T. Lippmann and R. A. Holman, “Quantification of sand bar morphology:
A video technique based on wave dissipation,” Journal of Geophysical
Research: Oceans (1978–2012), vol. 94, no. C1, pp. 995–1011, 1989.

[86] P. Smith, “Bilinear interpolation of digital images,” Ultramicroscopy,
vol. 6, no. 2, pp. 201–204, 1981.

[87] GoPro, “HD HERO2 PROFESSIONAL,” ac-
cessed 2014-11-22. http://gopro.com/
product-comparison-hd-hero2-hd-hero-cameras.

[88] H. Bjørklund, A. Prusakov, and A. Sinitsyn, “360 degree camera system,”
tech. rep., Department of Civil and Transport Engineering, Norwegian
University of Science and Technology, 2013.

[89] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

146

http://www.iacl.ece.jhu.edu/static/gvf/
http://www.iacl.ece.jhu.edu/static/gvf/
http://www.aari.ru/gdsidb/XML/volume1.php?lang1=0&arrange=4
http://www.aari.ru/gdsidb/XML/volume1.php?lang1=0&arrange=4
http://gopro.com/product-comparison-hd-hero2-hd-hero-cameras
http://gopro.com/product-comparison-hd-hero2-hd-hero-cameras


 

 
Previous PhD theses published at the Departement of Marine Technology 

(earlier: Faculty of Marine Technology) 
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 
1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods 
applied to nonlinear analysis of plated structures. 
(Dr.Ing. Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses 
due to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing 
systems. (Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 



 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened 
cylindrical Shells primarily subjected to axial 
Compression 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity 
of Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles 
as determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional 
Separated Flow Past Bluff Bodies at Moderate 
KC-Numbers. (Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 



 

Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 
Floating Body. (Dr.Ing. Thesis) 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a 
Two-Stroke Diesel Engine with Thermal Barriers 
(in Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. 
(Dr.Ing. Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. 
Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. 
(Dr.Ing. Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 



 

(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-
Dimensional Body in Irregular Waves. (Dr.Ing. 
Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90-
75 

Torbjørn Sotberg, MK Application of Reliability Methods for Safety 
Assessment of Submarine Pipelines. (Dr.Ing. 
Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible 
Risers. (Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue 
Degradation. (Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 



 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities 
in Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response 
of Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of 
offshore platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 



 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-
Volume Bodies in Water of Finite Depth. (Dr.Ing. 
Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions 
on Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 



 

Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder 
Subjected to Vortex Shedding and Support 
Motions. (Dr.Ing. Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in 
Design of Aluminium Structures Exposed to Fire. 
(Dr.Ing. Thesis) 

MTA-99-
129 

Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
(Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. 
Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. 
(Dr.Ing. Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With 



 

Sharp Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. 
(Dr.Ing. Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 



 

Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe 
wet deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. 
(Dr.Ing. Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. 
(Dr.Ing. Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-
2003-6 

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 



 

Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves 
and Synthetic Aperture Radar Wave 
Measurements. (Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of 
Occupational Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue 
Loading of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 



 

(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 



 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining 
Useful Life of Aggregated Systems. PhD thesis, 
IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global 
and Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model 
for Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 



 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin 
a Two-Dimensional Constrained Interpolation 
Profile Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a 
Sekwed Three-Dimensional Channel Flow, Ph.d.-
thesis, IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 

IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in 
a Reliability Framework. Ph.d. Thesis, IMT/ 
CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with 
Emphasis on the Faroe Bank Channel Overflow. 
Ph.d.thesis, IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships 
in a Collission Risk Analysis Perspective. 
Ph.d.thesis CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 



 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 

Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from 
Stochastic Vortex Induced Vibration Experiments 
with Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling 
Risers with Heave Compensating System, IMT. 



 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, 
CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis 
on welded tubular joints and gear components, 
CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of 
Combined In-line and Cross-flow Vortex Induced 
Vibrations, CeSOS 

IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-
Displacement Vessel Including Applications to 
Calm Water Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 



 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of 
technical systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of 
Speed Loss due to Seakeeping and Maneuvering. 
IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime 
CO2 emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, 
IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency 
of Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 

IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 



 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- 
mode icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, 
IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 

IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 



 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

                         
 
           
             
        


	document
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Background
	Arctic DP system
	Imagery for ice observation

	Ice Parameter Identification
	Ice concentration
	Ice types
	Ice floe size and floe size distribution

	Objective, Scope, and Applications
	Ice Image Data Source
	Model-ice image data
	Sea-ice image data

	Thesis Structure, Research Methods, and Contributions
	Publications

	Ice Pixel Detection
	Thresholding
	The Otsu thresholding method
	Local thresholding

	Clustering
	The k-means clustering

	Experimental Results and Discussion
	Model-ice image test
	Sea-ice image test


	Ice Edge Detection
	Derivative Edge Detection
	Morphology Edge Detection
	Erosion and dilation
	Morphological gradient

	Experimental Results and Discussion

	Watershed-based Connected Ice Floe Segmentation
	Watershed transform
	Neighboring-region Merging
	Concave detection by chain code
	Experimental Results and Discussion

	Ice Image Segmentation and Ice Floe Identification
	Snake Models
	Parametric Snake Model
	Gradient Vector Flow Snake

	Contours Initialization for the GVF Snake
	The location of initial contour
	The shape and size of the initial contour
	Automatic contour installation based on the distance transform

	Ice Image Segmentation
	Ice Shape Enhancement
	Discussion

	Model Ice Image Processing
	Locating Initial Contours for Crowded Model-ice Floes
	Algorithm Overview
	Experimental Results and Discussions
	Sub-image tests
	Overall ice tank image
	Model-ice floe modeling
	Ice concentration

	Application: Monitoring Maximum Floe Size

	Sea-ice Image Processing
	Ice Image Processing Methods
	Sea-ice pixel extraction
	Sea-ice edge detection
	Sea-ice shape enhancement
	Ice types classification and floe size distribution

	Case Studies and Discussions
	Simple sea-ice image case
	Complex sea-ice image case
	Sea-ice modeling

	Applications on Ice Engineering
	Application 1: Processing of shipboard sea-ice image with fisheye distortion
	Application 2: The 360-degree camera system and ice image processing


	Conclusion
	Geometric Orthorectification
	Fisheye Calibration
	References

	Previous_PhD-thesis liste (Repaired)
	131496_Qin_Zhang_Omslag.pdf
	document
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Background
	Arctic DP system
	Imagery for ice observation

	Ice Parameter Identification
	Ice concentration
	Ice types
	Ice floe size and floe size distribution

	Objective, Scope, and Applications
	Ice Image Data Source
	Model-ice image data
	Sea-ice image data

	Thesis Structure, Research Methods, and Contributions
	Publications

	Ice Pixel Detection
	Thresholding
	The Otsu thresholding method
	Local thresholding

	Clustering
	The k-means clustering

	Experimental Results and Discussion
	Model-ice image test
	Sea-ice image test


	Ice Edge Detection
	Derivative Edge Detection
	Morphology Edge Detection
	Erosion and dilation
	Morphological gradient

	Experimental Results and Discussion

	Watershed-based Connected Ice Floe Segmentation
	Watershed transform
	Neighboring-region Merging
	Concave detection by chain code
	Experimental Results and Discussion

	Ice Image Segmentation and Ice Floe Identification
	Snake Models
	Parametric Snake Model
	Gradient Vector Flow Snake

	Contours Initialization for the GVF Snake
	The location of initial contour
	The shape and size of the initial contour
	Automatic contour installation based on the distance transform

	Ice Image Segmentation
	Ice Shape Enhancement
	Discussion

	Model Ice Image Processing
	Locating Initial Contours for Crowded Model-ice Floes
	Algorithm Overview
	Experimental Results and Discussions
	Sub-image tests
	Overall ice tank image
	Model-ice floe modeling
	Ice concentration

	Application: Monitoring Maximum Floe Size

	Sea-ice Image Processing
	Ice Image Processing Methods
	Sea-ice pixel extraction
	Sea-ice edge detection
	Sea-ice shape enhancement
	Ice types classification and floe size distribution

	Case Studies and Discussions
	Simple sea-ice image case
	Complex sea-ice image case
	Sea-ice modeling

	Applications on Ice Engineering
	Application 1: Processing of shipboard sea-ice image with fisheye distortion
	Application 2: The 360-degree camera system and ice image processing


	Conclusion
	Geometric Orthorectification
	Fisheye Calibration
	References

	Previous_PhD-thesis liste (Repaired)




