
Centralised versus Decentralised Control
Reconfiguration for Collaborating

Underwater Robots

Lidia Furno ∗ Mikkel Cornelius Nielsen ∗∗ Mogens Blanke ∗,∗∗

∗Automation and Control Group, Department of Electrical
Engineering, Technical University of Denmark, Kgs.Lyngby, Denmark

(e-mail: {furno,mb}@elektro.dtu.dk)
∗∗AMOS CoE, Institute of Technical Cybernetics, Norwegian

University of Science and Technology, Trondheim, Norway
(e-mail:mikkel.cornelius.nielsen@itk.ntnu.no)

Abstract: The present paper introduces an approach to fault-tolerant reconfiguration for
collaborating underwater robots. Fault-tolerant reconfiguration is obtained using the virtual
actuator approach (Steffen, 2005). The paper investigates properties of a centralised versus
a decentralised implementation and assesses the capabilities under communication constraints
between the individual robots. In the centralised case, each robot sends information related
to its own status to a unique virtual actuator that computes the necessary reconfiguration.
In the decentralised case, each robot is equipped with its own virtual actuator that is able
to accommodate both local faults and faults within a collaborating unit. The paper discusses
how this is done through exploiting structural information (e.g. thruster configuration) for each
participant in the cooperation. A test scenario is presented as a case in which an underwater
drill need be transported and positioned by three collaborating robots as part of an underwater
autonomous operation.

Keywords: Collaborating robots, underwater robotics, fault tolerance control, actuator fault,
reconfiguration, distributed system.

1. INTRODUCTION

In recent years, the interest in collective robotics, which
provides a new perspective based on cooperation between
multiple robots, has grown significantly. The gain is that
tasks can be performed in a more efficient and faster
way compared to a single robot. In order to accomplish
a specific goal, the interaction of robots working together
has to be controlled through a centralised unit that takes
over the individual local controllers to ensure optimal
coordination and synchronization or through decentralised
units to have low impact on communication.

In underwater environments, robots are subject to failures
during their mission, so it is fundamental to examine the
fault-tolerant aspects. Fault-tolerance is the property that
enables the system to continue operating properly in case
of non functional elements. A common source of failures
are thrusters, due to their duct that can be easily blocked
by seaweed or underwater life that can be sucked into the
water flow.

The fault reconfiguration problem is a very active research
topic, hence many different solutions have been proposed.

Yang et al. (1998, 1999) proposed a method for fault-
tolerant reconfiguration where a failure of a thruster meant
eliminating a thruster entirely from the equation to make
the thruster configuration matrix invertible if sufficient
redundancy remained in the system. The method con-

sidered complete thruster failures only. This problem was
further addressed in Podder et al. (2000), where a weighted
pseudo-inverse was introduced to optimize the thruster
force distribution. The principle of reconfiguration through
optimization of the control allocation gained interest over
the last decade as the computational power increased
(Indiveri and Parlangeli, 2006). Sarkar et al. (2002) used
the pseudo-inverse method to obtain fault accommodation,
and it is noted that in case the faulty thruster configura-
tion matrix does not contain full rank, the pseudo-inverse
method cannot fulfil the reconfiguration goal. Omerdic and
Roberts (2004) introduced a fault-tolerant control system
using the pseudo-inverse method and to avoid infeasible
solutions performed approximations through truncation
and scaling to achieve an optimal feasible allocation. The
method considered three types of faults: jammed propeller,
heavily-jammed propeller and broken propeller. Zhu et al.
(2008) employed a paradigm that considered faults to
develop gradually and used fault magnitude estimation to
compensate for thruster loss of efficiency. Sliding mode
control was employed in (Corradini et al., 2011), where
the inherent robustness of the sliding mode controller was
shown to be able to account for a range of thruster faults.

The present paper adopts a reconfiguration block (virtual
actuator) to accommodate faults in a cluster of multiple
underwater robots who collaborate to perform a task. A
centralised and a decentralised implementation of a virtual
actuator are presented. The former reconfigures the par-

Fig. 1. OpenROV, an open source underwater robot for
educational purposes.

ticipating robots which inform the unique virtual actuator
about the status of their thrusters. The latter exploits
structural information (e.g., where each robot is located in
the cluster) to accommodate faults through a local virtual
actuator. Choosing one implementation over the other
is shown to depend on requirements and capabilities of
the system (e.g., available communication channels). The
faulty system together with the virtual actuator is shown
to provide approximately the same output as the nominal
system. It is demonstrated that almost the same path
following capability is achieved in case of actuator faults,
for both centralised and decentralised implementations,
even if the control performance may be degraded (less agile
as less thrust being available).

The paper is organised as follows. An example scenario
is first introduced to motivate the concept of collabo-
rating UAVs. UAV dynamics and kinematics is then re-
visited and a conventional path control is selected as a
standard controller for both centralised and individual
UAV robot control. Handling of thruster faults is then
discussed selecting a model matching technique and the
virtual actuator approach for reconfiguration. Centralised
and decentralised control and reconfiguration architectures
are then analysed in view of the limited communication
channel capabilities under water. The main result is to
show that an architecture for distributed reconfiguration
with limited inter-robot communication is feasible.

2. EXAMPLE SCENARIO

A test scenario has been created to expose the properties of
a centralised versus decentralised control reconfiguration
for collaborating underwater robots. The scenario has a
background in a real life case where cracks occur in the
structure of oil platforms due to severe weather, constant
presence of extreme stresses and design flaws (e.g.,the
North Sea Oil platform, Siri). We focus on the transporta-
tion phase in which a drill is carried through a cut-out in
the wall of the chamber in which repair service is needed.
The drill is supported by three identical AUVs that are
envisaged to have an attachment system that allows au-
tonomous pick up and connection. Each robot has similar
chassis and thruster configuration as an OpenROV (see
Fig. 1). Each robot is equipped with three fixed direction
(pitch) thrusters: two are mounted in parallel in a rear-
facing configuration and one is transversal. This thruster
configuration allows the robots to move in three dimen-
sions but the single robot is under-actuated by having only

Fig. 2. The cluster comprising three AUVs (S1, S2 and S3
are the robot on the left, right and back, respectively)
attached to the drill. The earth reference frame is
NED.

3 Degrees of Freedom (3DOF): surge, yaw and heave. It
follows that the single robot lacks manoeuvrability in sway,
roll and pitch.

If a tool needs to be carried to a desired position, the
robots attach to the tool in defined positions. A config-
uration is shown in Fig. 2: the robots on the left, right
and in back are referred to as S1, S2 and S3. When
firmly engaged, the cluster has nine thrusters: five are
”horizontal”; four are ”vertical”, seen in body coordinates.
The robot that comprises the cluster of the tool and three
robots is over-actuated and is able to move in 6DOF, (see
Table 1).

Table 1. SNAME notation for marine crafts

DOF τ ν η

Translation along x-axis (surge) X u x
Translation along y-axis (sway) Y v y
Translation along z-axis (heave) Z w z
Rotation about x-axis (roll) K p φ
Rotation about y-axis (pitch) M q θ
Rotation about z-axis (yaw) N r ψ

3. DYNAMICS

The dynamics of an individual robot follows its’ own equa-
tions of motion while free, but follows the dynamics of the
cluster after attachment. Following Fossen (1994), the non-
linear equations of motion are, in body-fixed coordinates,

η̇ = J(η)ν (1)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (2)

η = [x, y, z, φ, θ, ψ]T refers to the position and orientation
vector with coordinates in the North-East-Down(NED)
earth-fixed frame. Orientation is represented by Euler
angles: roll(φ), pitch(θ) and yaw(ψ).

ν = [u, v, w, p, q, r]T refers to the linear and angular
velocity vector with coordinates in the body-fixed frame,
which centre overlaps with the centre of gravity of the
robot.

M is the inertia matrix which consists of the rigid-body
mass matrix MRB and the added mass matrix MA due

to the inertia of the surrounding fluid and can be written
as:

M = MRB +MA (3)

C(ν) is the matrix of Coriolis and centripetal terms
(comprising added mass). Due to the low velocity at which
the robots move, its effect on the dynamics is not worthy
of being considered.

D(ν) is the damping matrix that has the general form:

D(ν) = DP (ν) +DV (ν) +DN(ν), (4)

where DP (ν) is damping due to the lost energy generated
by surface waves (neglected for an AUV), DV (ν) and
DN(ν) denote, respectively, the linear and nonlinear
viscous damping caused by skin friction, vortex shedding
and lift/drag effects, Fossen (2011).

g(η) is the vector of buoyant and gravitational forces
(restoring forces) that, respectively, act through the centre
of gravity and centre of buoyancy of the vehicle.

J(η) is a transformation matrix which is related through
the functions of Euler angles. It allows to change reference
frames easily.

τ = [X,Y, Z,K,M,N]T refers to forces and moments
influencing the vehicle in the body-fixed frame used to
achieve the desired motion.

T ∈ <d×h is the thrust configuration matrix that repre-
sents the position and orientation of each thruster in the
system. T is defined as (Omerdic and Roberts, 2004):

T =

1ex
jex

hex
1ey . . . jey . . . hey
1ez

jez
hez

(1l× 1e)x (jl× je)x (hl× he)x
(1l× 1e)y . . . (jl× je)y . . . (hl× he)y
(1l× 1e)z (jl× je)z (hl× he)z

 (5)

where d is the number of DOF, h is the number of
thrusters, e = [ex ey ez]

T is a unit vector that defines the
orientation of a thruster and l = [lx ly lz]

T is the position
vector of a thruster with respect to the centre of gravity.
τ is obtained by exploiting T as shown in sub-section 4.3.

Table 1 shows the SNAME notation used in this paper.
Appendix A provides matrices and parameters used to
simulate the example scenario in section 2.

4. NOMINAL CONTROLLER ARCHITECTURE

The standard control structure is shown in Fig. 3. The
output of the controller is the desired vector of forces and
moments τd. Then, the control allocation block maps τd
into a vector control inputs uc with as many elements
as the actual number of thrusters. Control inputs are
exploited to generates a vector of propulsion forces and
moments τ that is the input to the dynamics of the robot.
The main objective of the control allocation is to ensure
that the condition τd = τ is satisfied for all attainable τd,
Omerdic and Roberts (2004).

The system comprises an heading controller, a forward
speed controller and a vertical controller. In the present
paper, a 2D path control is used for simplification.

Plant
Control

Allocation
Control+Guidance

η, ν

−

ηd, νd e τ uWP

Fig. 3. The structure comprises a guidance block generat-
ing the path following, a control block that regulates
the outputs to the desired values and a control allo-
cator block for obtaining the vector of control input
u to feed the plant.

4.1 Heading controller

The controller acts on the vehicle in order to perform
path tracking. In our scenario, the robot has to reach the
given waypoints (provided by a human or another robot)
in order to get as close as possible to the crack that must be
prevented from extending further. It is supposed that an
inspection robot has been sent before the transportation
mission to identify the exact position of the crack.

The LOS guidance look ahead approach in Breivik and
Fossen (2011) exploits the specified waypoints and the
current positions in the earth fixed-frame in order to
generate a reference ψr. Afterwards, a low pass filter
(LP) is used as a linear reference model for trajectory
generation, defined as follows:

ψd(s) = hLP (s)ψr(s) (6)

A PID is used to compare the desired heading with the
measured heading and to provide the yaw moment τN .

According to Fossen (2011), a feed-forward term τFF
should be determined such that perfect tracking during
course-changing manoeuvres is obtained and it is imple-
mented according to:

τFF = mPID(ṙd +
1

TPID
rd), (7)

where mPID = Iz −Nṙ and TPID = −mPID

Nr
.

The controller for the yaw moment τN is defined as:

τN (s) = τFF (s)−KP (1 + TDs+
1

TIs
)eψ(s), (8)

where eψ = ψ − ψd is the heading error, KP > 0 is
the PID proportional gain constant, TD > 0 is the PID
derivative time constant and TI > 0 is the PID integral
time constant.

When a decentralised controller is used, just one robot uses
the PID control law previously explained. The other robots
use a PD type control law with a droop switch around the
integrator term in the PID that was active before physical
connection of the robots was activated.

4.2 Control allocation

The input to the control allocation block is the vector
of desired forces and moments τd, in which τN is the
controlled moment. The control allocator maps τd into
control inputs uc that indicates the number of revolutions
(rpm) that each thruster have to perform to achieve the
desired forces and moments. It is defined as:

uc = K−1T †τd = Hτd (9)

T is the thrust configuration matrix defined in (5). K
∈ <h×h is the force coefficient matrix:

K =

k11 · · · 0
...

. . .
...

0 · · · khh

 (10)

and:

kjj =
Tjmax

ρD4 |njmax
|njmax

j = 1, . . . , h (11)

where Tjmax
is the maximum thrust provided, ρ is the

water density, D is the propeller diameter, ujmax
=

|njmax
|njmax

is the maximum thruster revolution (rpm)
and h is the number of thrusters. The force coefficients are
shown in Appendix A.3. A general overview of approaches
used in thruster allocation is available in Johansen and
Fossen (2013).

4.3 Computation of τ

The vector of propulsion forces and moments τ is defined
as:

τ = TKuc = Buc, (12)
which is the input to the dynamics of the system.

Both centralised and decentralised controllers utilize the
methods previously explained. Regarding the example
scenario in section 2, the former considers all the thrusters
of the system (i.e., nine) and the latter comprises the local
thrusters of the individual robots (i.e., three).

5. RECONFIGURATION BY MEANS OF A VIRTUAL
ACTUATOR

A fault causes a variation in the characteristics of a com-
ponent such that the mode of operation or performance
is changed in an undesired way. It has to be well dis-
tinguished from a failure that describes the inability of
a system or a component to accomplish its function. A
fault-tolerant control has to prevent a fault from causing
a failure at the system level, Blanke et al. (2006).

In our scenario, a robot is most likely to have faults in
actuators because of seaweed that can be stuck into the
propeller’s duct or sea life that can be sucked into the
water flow. An actuator fault changes or interrupt the
effect of the controller on the plant which laws remain
intact.

This paper explores a reconfiguration method, the virtual
actuator approach, illustrated in Fig. 4. The figure shows
a nominal controller with input ηc and output uc, a plant
with input uf and measured output ηf . A reconfiguration
block constitutes the virtual actuator. Finally, ηref is the
reference signal. In the nominal case, the I/O relations are:

uc = uf
ηc = ηf

(13)

5.1 Centralised reconfiguration

A virtual actuator replaces the effect of the faulty actuator
by exploiting the other control inputs and it implicates the
use of diverse I/O relations between the nominal controller
and the plant.

The idea of reconfiguration is to build a unit for handling
faults in the already existing control structure. The nomi-
nal controller is part of the reconfigured control. Thus, the

Fig. 4. Virtual Actuator for actuator faults.

controller that has been specifically designed to ensure the
desired goals can still be used when needed. Finally, the
purpose of the virtual actuator approach is to satisfy the
fault hiding goal, which hides faults from the controller.
Other actuator reconfiguration approaches are available
that aim at model matching, including Yang and Blanke
(2000) and Yang et al. (2007), but this paper will focus on
the virtual actuator approach Steffen (2005).

The virtual actuator is described as the following state
space system, Steffen (2005):

ν̇∆ = A∆ν∆ +B∆uc, ν∆(0) = ν∆0 (14)

uf = C∆ν∆ +D∆uc (15)
ηc = Cν∆ + ηf (16)

with matrices:
A∆ = A−BfMs (17)
B∆ = B −BfN (18)
C∆ = Ms (19)
D∆ = N (20)
A = D (21)

D is the damping matrix (see appendix A.2).

A is the state matrix in which the restoring terms are not
considered because of the stability of roll and pitch.

The matrixB maps the actuators’ inputs to the forces and
moments to be used in the plant (see section 4.3).

The matrix Bf is constructed in case of a total fault
(failure) in the jth actuator. Bf is the same as B besides
the jth column that is deleted.

The matrix Ms has to be chosen so that the matrix A−
BfMs has eigenvalues with negative real parts in order to
ensure the stability of the reconfigured closed loop system,
Blanke et al. (2006). Thus, the pair (A,Bf) is stabilizable.

The matrix N can be chosen such as:

N = (BTf Bf)
−1BTf B (22)

In order to ensure that the I/O relations are the same as
(13), it is preferred to choose N such as:

B∆ = B −BfN = O (23)

The condition (23) is satisfied when:

rank Bf = rank ([B,Bf]) (24)

In this case, the virtual actuator can be reduced to a static
reconfiguration block:

uf = Nuc (25)

ηf = ηc (26)

and the matrix N satisfies the property:
h∑
j=1

njw = 1 w = 1, . . . , h (27)

where h is the number of thrusters. The property (27)
produces uf = uc.

In the present paper, the measurement compensation in
(16) is not considered since the controller should refer to
the actual position and orientation.

A virtual actuator ensures the same (or approximately the
same) performance to the system. By having a centralised
controller and a virtual actuator, sharing information re-
lated to the status of each thruster is essential. The virtual
actuator assumes that each thruster is completely func-
tional unless it receives a message stating the contrary. The
message consists in the contribution of the faulty robot to
the matrixN in (22). Afterwards, the virtual actuator asks
for the contribution of the other robots participating in the
cooperation. Once it collects their status, it constructs the
N matrix by joining the information, computes the new
inputs uf and sends them to the robots.

Algorithm Centralised reconfiguration

Given:

o robots named Si, i = 1, . . . , o,

hSi thrusters corresponding to robot Si and h =
∑o
i=1 hSi,

fSi actuator faults in robot Si, fSi ≤ hSi, f =
∑o
i=1 fSi,

matrices BSi and BfSi defined in (12) and subsection 5.1,

a centralised controller (see section 4) and a virtual actu-
ator located in one of the robots.

Problem:

Find uf defined in (25) such that the fault hiding
goal (see subsection 5.1) and the performance indicator
(‖η − ηf‖ ' 0) is satisfied.

Solution:

• The faulty robot Si sends a triangular matrix tSfSi

to the virtual actuator, obtained by the symmetric
property of SfSi ,which is a part of N:

SfSi = BTfSi
BSi (28)

tSfSi is sent in order to reduce the use of the
communication channel.
• The virtual actuator asks the other robots for their

local contribution as in (28).
• The robots receiving the request construct their local

contribution and send it to the virtual actuator. In
case of a fault-free robot, theBSi has to be considered
instead of BfSi .
• Once the virtual actuator obtains the information

needed, it constructs the matrix S as:

S = SS1 ◦ · · · ◦ SSo (29)

• The virtual actuator computes the global matrix
BTf Bf by deleting the f columns of S corresponding
to actuator faults.

• The virtual actuator computes N as in (22) and finds
uf .

Example scenario: Fault on S1’s vertical thruster

Contribution from S1:

BTfS1
BS1 = tSfS1 =

[
sS11 1 0 0
sS11 1 1 0
sS11 1 1 1

]
Contribution from S2:

BTS2BS2 = tSS2 =

 1 0 0 0
sS21 s

2
S21 0 0

1 sS21 1 0
1 sS21 1 1

Contribution from S3:

BTS3BS3 = tSS3 =

1 0 0 0
1 1 0 0

sS31 sS31 s2S31 0
sS32 sS32 sS31sS32 s

2
S32

Note that subscripts identify thrusters in the same robot.
Finally, horizontal thrusters are omitted for clarity.

5.2 Decentralised reconfiguration

Communication is one of the most challenging aspect in
underwater environments and, when it is possible, sharing
modest information is a key rule. It might be possible to
use a dedicated optical underwater communication system
could reach a bandwidth of 10 Mbit/s, Hanson and Radic
(2008), over short ranges, but the bandwidth available
with off the shelf acoustic modems is in the 1-5 kBaud
range. With readily available equipment, bandwidth is
hence a serious concern.

To reduce even more the information to be shared to have
a satisfactory fault-tolerant system, a decentralised con-
troller and a decentralised virtual actuator are considered.
It is assumed that robots store information related to force
coefficients in (11), thruster configuration, position and
orientation of each team member during the cooperation.

The inputs to the thrusters utfSi
are defined as:

utfSi
= ufSi +NfSiuc (30)

ufSi represents the inputs of robot Si as defined in
(15). Note that just local thrusters are considered for its
computation in order to satisfy the fault hiding goal. If
there are no local faults, ufSi = ucSi .

NfSi ∈ <hSi×h comprises the additional contribution
of robot Si to the faulty robots. Each robot is able
to construct its own copy of matrix N as in (22) by
considering the thrusters of the whole system. Finally,
NfSi is obtained by selecting in N the contribution to
be provided by Si in order to accommodate the fault.

uc refers to the nominal inputs of the whole system.

The decentralised virtual actuator decreases communica-
tion conspicuously, but the computational load on individ-
ual robots is increased.

Algorithm Decentralised reconfiguration

Given:

o robots named Si, i = 1, . . . , o,

hSi thrusters corresponding to robot Si, h =
∑o
i=1 hSi,

fSi actuator faults in robot Si, fSi ≤ hSi, f =
∑o
i=1 fSi,

matrices BSi and BfSi defined in (12) and subsection 5.1,

a local controller (see section 4) and a local virtual actua-
tor.

Problem:

Find utfSi
defined in (25) such that the fault hiding

goal (see subsection 5.1) and the performance indicator
(‖η − ηf‖ ' 0) is satisfied.

Solution:

• The faulty robot Si activates its local virtual actua-
tor.
• Si warns the other robots by communicating its

actual status (i.e., fault identification).
• The robot Sj (i 6= j) receives the message.
• Sj computes NfSj and finds utfSj

as in (30).

Example scenario: Fault on S1’s vertical thruster

Inputs to be sent to S1’s thrusters:

utfS1
= NS1ucS1

NS1 =

[
1 0 0
0 1 0

]
Inputs to be sent to S2’s thrusters:

utfS2
= ucS2 +NfS2uc

NfS2 =

[
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 n63 0 0 0 0 0 0

]

Inputs to be sent to S3’s thrusters:

utfS3
= ucS3 +NfS3uc

NfS3 =

[
0 0 n73 0 0 0 0 0 0
0 0 n83 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
Note that n73 and n83 have opposite sign to avoid the
whole system to rotate about the y-axis (pitch).

6. RESULTS

A static reconfiguration of the controller is possible for
single faults (except for the horizontal thruster of S3),
because the condition (24) is satisfied due to redundant
thrusters with a similar effect as the faulty one. For the
same reason, the static reconfiguration block defined in
(25, 26) can be used in case of two faults (e.g., a fault in
an horizontal thruster of S1 and another one in a vertical
thruster of S3) or even three faults (e.g., a whole robot
breaks down).

Fig. 5. Fault handling capability of the centralised (in
violet) versus decentralised (in green) control reconfig-
uration in case of a failure of robot S1. The robot fol-
lows a trajectory passing through ten waypoints (red
circles). The annotations indicate the time elapsed to
reach a waypoint.

If a redundant thruster is not available for the reconfigu-
ration, a dynamical block has to be used. This is the case
for more than one fault in vertical thrusters. A fault in the
horizontal thruster of robot S3 causes loss of controllabil-
ity since this is the only thruster in the system to provide
heave (see Table 1).

In our example, the virtual actuator is able to ensure the
same performance in case of single fault or almost the same
performance up to two faults for vertical thrusters and two
faults for horizontal thrusters, excluding the horizontal
thruster of S3 (e.g., two horizontal faults in S1 and one
horizontal fault in S2 cannot be handled).

If simultaneous vertical faults occurs in S1 and S2, the
controllability requirement is not satisfied and the virtual
actuator is not a solution to the problem.

Both the centralised and decentralised reconfigurations are
able to accommodate the same combinations of faults,
within the capabilities of thrust available in the two
conditions. Since knowledge of the global system (i.e.,
thruster configuration and force coefficients) is exploited in
both cases, performance requirements (i.e., ‖η − ηf‖ ' 0)
can be made the same independent of the implementation.

Fig. 5 compares the performance of the centralised with
the decentralised solutions when robot S1 fails. Differences
in the path are due to the nominal controllers (see section
4).

Fig. 6 shows a comparison between the nominal force Xn

(torqueNn) and the faulty forceXf (torqueNf) (see Table
1) in case of the total failure of robot S1 provided by the
centralised system. Fig. 7 compares the nominal force Xn

(torque Nn) and the the faulty force Xf (faulty torque
Nf) (see Table 1) in case of the total failure of robot S1
provided by the decentralised system. Each change in force
and torque corresponds to a new waypoint that has to be
reached, so the robot adjusts according to it. Note that
responses are time shifted due to the lower magnitude of
total thrust available for propelling underwater robots.

Fig. 8 shows the sensitivity to output disturbances in surge
speed u, depth z and heading angle ψ. The controllers
are designed to suppress disturbances up to 0.05rad/s

Fig. 6. The nominal force Xn and torque Nn are shown in
black. The force Xf and torque Nf for a total failure
of robot S1 are shown in red. Case: centralised control.

Fig. 7. The nominal force Xn and torque Nn are shown
in black. The faulty force Xf and torque Nf for
a total failure of robot S1 are shown in red. Case:
decentralised control.

Fig. 8. The output disturbance sensitivity for surge speed,
z-position and heading. Disturbance rejection band-
with is chosen to be 0.07rad/s in u, 5 rad/s in yaw.

in speed, 0.3rad/s in heave and 3rad/s in yaw with no
amplification of disturbances at any frequency.

7. CONCLUSIONS

This paper focused on actuator faults as these are quite
frequent in underwater missions, often due to seaweed,
marine life or wires that block a thruster. Centralised
and decentralised reconfiguration methods were compared
in a scenario where three robots perform the task of

carrying a drill. Using a conventional line of sight control
for path following, the solution comprised path control
and control allocator. Faults were handled by means
of a virtual actuator. The virtual actuator was shown
to provide approximately unchanged performance as the
nominal case for the majority of thruster fault cases.

In the centralised approach, one of the robots acted
as a leader and coordinated the actions of the team.
While allowing for global optimization and completeness,
the central unit could fail or communication channel
difficulties could prevent timely sharing of information at
the sampling frequency.

The distributed version was based on every robot being
autonomous and taking its own decisions. An algorithm
was presented where only fault-status was communicated
between robots.

As a future work, sensor faults and parameters uncertainty
will be considered and a proof of equation (27) will be
provided. Finally, a distributed algorithm which does not
rely on global structural information will be proposed. It
should guarantee fault-handling capability even in case of
flexible configurations among robots.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from DTU and from
the NTNU Centre for Autonomous Marine Operations
and Systems (AMOS), to which the Research Council of
Norway is the main sponsor (grant 223254).

REFERENCES

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2006). Diagnosis and Fault-Tolerant Control. Springer,
2nd edition.

Breivik, M. and Fossen, T.I. (2011). Guidance Laws
for Autonomous Underwater Vehicles, chapter 4 in:
Underwater Vehicles (ed: A. V. Inzartsev), pp 51–76.
Intech.

Corradini, M.L., Monteri, A., and Orlando, G. (2011). An
actuator failure tolerant control scheme for an under-
water remotely operated vehicle. IEEE Transactions on
Control Systems Technology, 19(5), 1036 – 1046.

Fossen, T.I. (1994). Guidance and Control of Ocean
Vehicles. John Wiley & Sons.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrodyn-
mics and Motion Control. John Wiley & Sons.

Hanson, F. and Radic, S. (2008). High bandwidth un-
derwater optical communication. Applied Optics, 47(2),
277–283.

Indiveri, G. and Parlangeli, G. (2006). On thruster
allocation, fault detection and accommodation issues for
underwater robotic vehicles. In Proc. IEEE ISCCSP
2006 Second Int. Symp. on Communications, Control,
and Signal Processing.

Johansen, T.A. and Fossen, T.I. (2013). Control Allocation
- A Survey. Automatica, 49, 1087–1103.

Omerdic, E. and Roberts, G. (2004). Thruster fault
diagnosis and accomodation for open-frame underwater
vehicles. Control Engineering Practice, 12, 1575 – 1598.

Podder, T., Antonelli, G., and Sarkar, N. (2000). Fault tol-
erant control of an autonomous underwater vehicle un-
der thruster redundancy: simulations and experiments.

In Proc. ICRA’2000, IEEE Int. Conf. on Robotics and
Automation, volume 2.

Sarkar, N., Podder, T., and Antonelli, G. (2002). Fault-
accommodating thruster force allocation of an AUV
considering thruster redundancy and saturation. IEEE
Transactions on Robotics and Automation, 18, 223–233.

Steffen, T. (2005). Control Reconfiguration of Dynamical
Systems. Springer.

Yang, K., Yuh, J., and Choi, S. (1998). Experimental study
of fault-tolerant system design for underwater robots. In
Proc. IEEE International Conference on Robotics and
Automation, volume 2, 1015–1056.

Yang, K., Yuh, J., and Choi, S. (1999). Fault-tolerant
system design of an autonomous underwater vehicle
ODIN: An experimental study. Int. Journal of Systems
Science, 30(9), 1011–1019.

Yang, Z., Blanke, M., and Verhagen, M. (2007). Robust
control mixer method for reconfigurable control design
using model matching. IET Control Theory & Applica-
tions, 1(1), 349–357.

Yang, Z. and Blanke, M. (2000). The robust control
mixer module method for control reconfiguration. In
Proc. American Control Conference, 3407–3411. IEEE
Explore.

Zhu, D., Liu, Q., and Yang, Y. (2008). An Active Fault-
Tolerant Control Method Of Unmanned Underwater
Vehicles with Continuous and Uncertain Faults. Inter-
national Journal of Advanced Robotic Systems, 5, 411–
418.

Appendix A. MATRICES AND PARAMETERS USED
TO SIMULATE THE EXAMPLE SCENARIO

The inertia matrix M and damping matrix D are not full
because the number of parameters can be severely reduced
by exploiting body symmetry conditions. In particular, the
configuration in which the robots assemble is symmetrical
on the xy plane(bottom/top symmetry) and on the xz
plane (port/starboard symmetry).

A.1 Inertia Matrix:

MRB =

m 0 0 0 0 0
0 m 0 0 0 mxg
0 0 m 0 −mxg 0
0 0 0 Ix 0 0
0 0 −mxg 0 Iy 0
0 mxg 0 0 0 Iz

 (A.1)

MA = −

Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 Yṙ
0 0 Zẇ 0 Zq̇ 0
0 0 0 Kṗ 0 0
0 0 Mẇ 0 Mq̇ 0
0 Nv̇ 0 0 0 Nṙ

 (A.2)

where m is the total mass of the robot, Ix, Iy and Iz are
the moments of inertia around xb, yb and zb (body fixed
coordinate system), respectively, and xg is the position of
the centre of gravity around xb.

Table A.1. MRB parameters

m Ix Iy Iz xg
47.5 1.7 3.5 2.3 0

Table A.2. MA parameters

Xu̇ Yv̇ Yṙ Zẇ Zq̇ Kṗ Mẇ Mq̇ Nv̇ Nṙ

92.9 78.9 0.8 236.1 1.2 1.2 1.2 2.5 0.8 1.6

A.2 Damping Matrix:

DV (ν) = −

Xu 0 0 0 0 0
0 Yv 0 0 0 Yr
0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr

 (A.3)

DN(ν) = −

X|u|u|u| 0 0 0 0 0

0 Y|v|v|v| 0 0 0 Y|r|rr
0 0 Z|w|w|w| 0 Z|q|q|q| 0
0 0 0 K|p|p|p| 0 0
0 0 M|w|w|w| 0 M|q|q|q| 0
0 N|v|v|v| 0 0 0 N|r|r|r|

 (A.4)

Table A.3. DV (ν) parameters

Xu Yv Yr Zw Zq Kp Mw Mq Nv Nr

-11.5 -13.4 -1.7 -7.45 -0.7 -2 -0.3 -2 -0.3 -2

Table A.4. DN(ν) parameters

X|u|u|u| Y|v|v |v| Y|r|rr Z|w|w|w| Z|q|q |q|
-29.04 -44.73 -6.6 -72.36 -7.1

K|p|p|p| M|w|w|w| M|q|q |q| N|v|v |v| N|r|r|r|
-14.8 -0.3 -16.9 -1.1 -18.9

A.3 Force coefficients

Table A.5. Force coefficients for Graupner
2310.60 propellers

Horizontal k (S1,S2) Horizontal k (S3) Vertical k

7.7 26.1 27.4

A.4 Thrust configuration matrix

T =

1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 1 1 0
0 0 −0.25 0 0 0.25 0 0 0
0 0 −0.02 0 0 −0.02 0.33 0.23 0

0.3 0.22 0 −0.2 −0.3 0 0 0 0.28

 (A.5)

The first three columns refer to robot S1. The following
three to S2 and the final three to S3. If robots are in a
non-cluster configuration, each one has its T reduced to a
3×3 matrix representing its own thruster configuration.

