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Abstract

Friezes were introduced by Conway and Coxeter. In what is practically a problem sheet,
they imply that there exists a bijection between friezes and triangulated polygons.
SL2-tilings with enough ones were introduced by Holm and Jørgensen, who showed that there
exists a bijection between SL2-tilings with enough ones and good triangulations of the strip.
Their work builds on Conway and Coxeter’s.
In this paper we expand on Conway and Coxeter’s work by explaining the bijection in depth, in
part by defining a sufficient and necessary condition to create a frieze pattern. We then explain
the bijection between SL2-tilings with enough ones and good triangulations of the strip, using
the results on friezes and triangulated polygons. Most of the examples are new.
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Sammendrag

Friezes ble introdusert av Conway og Coxeter. De antyder at det finnes en bijeksjon til
triangulerte polygon i en oppgavesamling.
SL2-tilings med nok enere ble introdusert av Holm og Jørgensen, som viste at det finnes en
bijeksjon til gode trianguleringer av stripen. Deres arbeid bygger p̊a Conway og Coxeters.
I denne artikkelen fortsetter vi det Conway og Coxeter begynte ved å utdype og forklare bi-
jeksjonen mellom friezes og triangulerte polygon. Spesielt introduserer vi et nødvendig og
tilstrekkelig krav for å generere friezes. Videre i oppgaven forklarer vi bijeksjonen, som vist
av Holm og Jørgensen, ved bruke resultatene om friezes og triangulerte polygon. De fleste
eksemplene i oppgaven er nye.
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FRIEZE PATTERNS AND TRIANGULATED POLYGONS

1. Introduction

A frieze pattern consists of finitely many rows of integers with a specific set of restrictions.
Triangulating a polygon is partitioning a polygon by non-intersecting lines so it consists entirely
of triangles. In this paper we show a bijection between frieze patterns and triangulated polygons.
We build on this result by looking at expansions of triangulated polygons and frieze patterns
and showing relations between these objects as well.

SL2-tilings are essentially frieze patterns with infinitely many rows. We show that a subset
of SL2-tilings are in bijection with a subset of what is known as triangulations of the strip.
Triangulations of the strip can be viewed as an infinite number of triangulated polygons in
a row. The bijection is realized by reducing the problem to the case of frieze patterns and
polygons.

Conway and Coxeter introduced friezes and their relation to triangulated polygons in [2] and
[3]. Holm and Jørgensen have shown the bijection between SL2-tilings with enough ones and
good triangulations of the strip.

In the first few sections we will remind the reader what a triangulated polygon is and what
a frieze pattern is, before explaining the bijection between the two. Our notation is also that
used in [4]. Section 5 is dedicated to expand the reader’s understanding of friezes. This
section is inspired by [1]. As we proceed with SL2-tilings and triangulations of the strip we will
continuously use the preceding sections.
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2 FRIEZE PATTERNS AND TRIANGULATED POLYGONS

2. Triangulated polygons

Sections 2 through 4 are based on Conway and Coxeter’s work on the subject, Triangulated
polygons and frieze patterns ([2]) and Triangulated polygons and frieze patterns (continued)
([3]). Their paper is constructed as a problem sheet, and we have expanded a fair bit where
much was left to the imagination. The primary difference is that in our paper we heavily rely
on Theorem 3.15 which is previously glossed over. Our notation is generally that of [4] to keep
the paper readable.

Definition 2.1. A triangulated polygon is a convex polygon partitioned into non-intersecting
triangles. For a polygon with n vertices, a triangulation will create n − 2 triangles by n − 3
non-crossing diagonals.

Example 2.2. Two different triangulations of a hexagon (n = 6).

We will present a way of telling different triangulations apart and present a few results that
will come in handy when proving a bijection to friezes.

Definition 2.3. Given any triangulated polygon with n vertices, label each vertex by how many
triangles share that vertex. Going around the polygon counter clockwise once, the set of these
values is called a quiddity cycle.

Example 2.4. For the two hexagons in Example 2.2 such a numbering would look like this:

3

1

2

3

1

2

4

1

2

2

2

1

The quiddity cycle of the first hexagon is 1, 2, 3, 1, 2, 3, or some cyclic shift of the same
pattern. The second hexagon has quiddity cycle 1, 2, 2, 2, 1, 4.

Definition 2.5. We consider two triangulated polygons with the same number of vertices to
be equal if and only if their quiddity cycle is equal up to a cyclic shift. This corresponds to the
triangulations being identical if we rotate either polygon.
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Definition 2.6. A vertex contained in only one triangle is called a special vertex. All ones
in a quiddity cycle correspond to special vertices.

Proposition 2.7. Any triangulated polygon must have at least 2 special vertices.

Proof. A polygon with 3 vertices, a triangle is triangulated in itself, and all vertices are special.
For a polygon with 4 vertices there are two options for a triangulation, but the number of
special vertices is the same.

1

1

1
2

1 2

1 1

2 1

2

Assume then that our statement holds for all polygon with k or less vertices, and consider a
polygon P with k+ 1 vertices. Any diagonal between any two nodes separates the triangulated
polygon into two smaller triangulated polygons, each with at least 3 and at most k vertices.
Take a diagonal (x, y) and name the two smaller triangulated polygons P1, P2 as illustrated
below. We let P1 be the polygon consisting of vertices x, y, t1, ..., ts, where 1 ≤ s ≤ k − 2.
Similarly P2 has vertices x, q1, ..., qr, y where 1 ≤ r ≤ k − 2.

x

q1 q2

qr−1

qr

t1

ts

y

P2

P1

By our assumption P1 has ≥ 2 special vertices, as does P2. To show that P has at least two
special vertices, we show that P1, P2 each have at least one special vertex other than x, y. Since
the triangulation of P1, P2 is the same as for P , if a vertex in either smaller polygon is special,
it is also special in P unless it is x or y. The argument for P1 and P2 is identical, but we show
it for P2 to make use of the figures. If P2 has 3 vertices, it consists of x, q1, y, all of which are
special. Consider the case that P2 has more than 3 vertices. If x is a special vertex in P2 then y
and q1 must be connected. This makes vertex y not special in P2. Similarly we could say that
if y is special in P2 then x is not.
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x

q1 q2

qr−1

qr

t1

ts

y

In other words, vertices x and y can not both be special vertices in P2, but we know P2 has at
least 2 special vertices. Therefore qi is special in P2 for some i. This vertex will also be special
in P since the triangulation of P2 is in P . So P2 has at least one special vertex other than x, y.
We mirror the argument to say that so too must P1. �

Note that for a polygon with more than 3 vertices, two adjacent vertices may not be special
in a triangulation. If they were, the polygon would not be triangulated. We will now describe
methods that constructs a new triangulated polygon with fewer or more vertices than a given
triangulated polygon.

Construction 2.1. Let n ≥ 3. Given a triangulated polygon TP with n vertices we create a
triangulated polygon with n+1 vertices in the following manner. We add one new triangle to TP
by adding a vertex x between two adjacent vertices pi, pi+1 and adding the edges (pi, x), (x, pi+1),
as illustrated below. The diagonals of TP remains unchanged.

pi−1

pi

pi+2 pi+1

TP

pi−1

pi

x

pi+2 pi+1

Construction 2.2. Let n ≥ 3. Given a triangulated polygon TP with n+1 vertices, we create a
triangulated polygon with n vertices in the following manner. Remove one triangle connected to
a special vertex. This means removing the special vertex, and removing the two edges connecting
it to the polygon. This is illustrated below. By Proposition 2.7 a special vertex is always present
in TP . This construction is therefore always applicable for polygons of n + 1 vertices when
n ≥ 3. We let the triangulated polygon we get by removing vertex x from TP be named TP /x.
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pi−1

pi

x

pi+3 pi+2

TP

pi−1

pi

pi+3 pi+2

TP /x

Theorem 2.8. For n ≥ 3:
i) Any triangulated polygon with n + 1 vertices can be created by applying Construction 2.1 to
a triangulated polygon with n vertices.
ii) Any triangulated polygon with n vertices can be created by applying Construction 2.2 to a
triangulated polygon with n+ 1 vertices.

Proof. i): Let TP be a triangulated polygon with n+ 1 vertices. We apply Construction 2.2 to
TP and remove a special vertex pi, adjacent to some vertices pi−1, pi+1. TP /pi is a triangulated
polygon with n vertices. We apply Construction 2.1 to TP /pi, inserting a vertex between the
vertices pi−1, pi+1 to create TP . The proof for ii) is analogous. �

Let us now explore how our constructions affect the quiddity cycle of a triangulated polygon.

Remark 2.9. Let TP be a triangulated polygon with n ≥ 3 vertices. When we apply Construc-
tion 2.1 to TP , the change to the quiddity cycle is the following. The elements pi, pi+1 between
which we insert a new vertex, have the values u, v in the quiddity cycle a0, a1, ..., u, v, ..., an−1.
When we insert the new vertex x, the vertices pi, pi+1 are now a part of one more triangle each,
namely the triangle with vertices pi, x, pi+1. Their values in the quiddity cycle is therefore in-
cremented by one. The quiddity cycle now reads a0, a1, ..., u+ 1, 1, v+ 1, ..., an−1 which consists
of n+ 1 elements. The 1 between u+ 1, v + 1 represents the special vertex x.

Example 2.10. The procedure of inserting a vertex between two adjacent vertices in a trian-
gulated polygon

3

1

2 4

1

2

2

3

1

2 4

1

3

13

Notice how the adjacent vertices have their value in the quiddity cycle increased by 1 while the
rest of the vertices remain untouched. For the next Remark this illustration may be used from
right to left for a visualization.
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Remark 2.11. Let TP be a triangulated polygon with n + 1 vertices where n ≥ 3. When
we apply Construction 2.2 to TP , the change to the quiddity cycle is the following. Let pi be a
special vertex in TP . Then the value of pi in the quiddity cycle is one. Furthermore the adjacent
elements in the quiddity cycle must have value greater than one. This is because pi−1, pi+1 can
not be special when pi is. This leaves the quiddity cycle reading a0, ..., u + 1, 1, v + 1, ..., an for
u, v > 0. Construction 2.2 removes pi, creating the triangulated polygon TP /pi with n vertices.
Removing pi decreases the number of triangles pi−1 and pi+1 are a part of by one. The quiddity
cycle of TP /pi is a0, ..., u, v, ..., an.
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3. Frieze patterns

In this section we will define frieze patterns. We will show several properties of frieze patterns.
This section differs from [2] and [3] in particular because of Theorem 3.15.

Definition 3.1. A frieze pattern, or a frieze, is a finite set of staggered infinite rows of
positive integers, such that the top and bottom rows are all ones. In addition we require that
each set of elements in a diamond shape

b
a d

c

have the property that ad − bc = 1. We will refer to this as the unimodular rule. A frieze
with n− 1 rows is said to be of order n.

Example 3.2. A frieze pattern of order 6.

... 1 1 1 1 1 1 1 ...
... 1 2 2 2 1 4 1 ...

... 3 1 3 3 1 3 3 ...
... 2 1 4 1 2 2 2 ...

... 1 1 1 1 1 1 1 ...

As fate would have it, a frieze pattern of order n also has the property that row i repeats
itself with a period ki such that ki|n for all 1 ≤ i ≤ n− 1. This is will be proven in Corollary
3.11. This in a way helps with the idea of linking frieze patterns to triangulated polygons, as
going around a polygon more than one round would repeat the same pattern. Note however
that not all rows in a single frieze pattern must share the same period. This is seen in Example
3.2, where the second row has period 6, while the third row has period 3.

Example 3.3. A frieze of order 6, where the second, third and fourth rows have the same
period, 3.

... 1 1 1 1 1 1 1 ...
... 1 2 3 1 2 3 1 ...

... 2 1 5 2 1 5 2 ...
... 1 2 3 1 2 3 1 ...

... 1 1 1 1 1 1 1 ...

Definition 3.4. Two friezes of order n are said to be equal if the are equal up to a cyclic shift.

An interesting problem is characterizing all frieze patterns. To do this, we will give a sufficient
requirement to create a frieze, and show a bijection between triangulated polygons and frieze
patterns. This will give us a description of all valid frieze patterns, as well as several other
interesting results. To show the bijection we will describe a way to relate any frieze pattern to
a triangulated polygon and vice versa, starting with the smallest example and using induction.
When determining the validity of a frieze we will show that looking at diagonals is enough.
This is in part because one can calculate all elements in a frieze if given only a diagonal.
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Remark 3.5. A single diagonal determines the rest of the frieze pattern.

To convince yourself of Remark 3.5, look at the frieze below.

... 1 1 1 1 ...
... 3 x z ...

... 2 y w ...
... 1 1 1 1 ...

the unimodular rule gives us an expression for x:

1
3 x

2

3x− 2 = 1 =⇒ x = 1

Now, knowing the value of x we calculate the value for y, then z and so on. Note that Remark
3.5 does not say that any diagonal determines a valid frieze, but rather that given any diagonal
F in a valid frieze we can recreate the frieze from only F .

So, a frieze is determined by a single diagonal, yet we wish to find a relation to triangulated
polygons. To do that we take a closer look at the second row of friezes. Our next course of
action is to find a close relation between diagonals and the second row, before we show how the
second row relates to triangulated polygons.

Assume that a frieze pattern of positive integers could continue beyond the top and bottom
rows. The unimodular rule would then give us that the whole zeroth row would be all 0, since
1 · 1 − x · ai = 1 =⇒ x = 0 for ai > 0. Furthermore the row two steps away from the first,
the -1st row, would need to satisfy 0 · 0 − 1 · x = 1 =⇒ x = −1 for all elements in the row.
The same argument is mirrored for the two rows below the last row of the frieze as illustrated
below.

Example 3.6. A frieze pattern continued two rows above, and two rows below a normal frieze.

... -1 -1 -1 -1 -1 -1 -1 ...
... 0 0 0 0 0 0 0 ...

... 1 1 1 1 1 1 1 ...
... 1 2 2 2 1 4 1 ...

... 3 1 3 3 1 3 3 ...
... 2 1 4 1 2 2 2 ...

... 1 1 1 1 1 1 1 ...
... 0 0 0 0 0 0 0 ...

... -1 -1 -1 -1 -1 -1 -1 ...

Definition 3.7. Let {ai}n−1i=0 be any n consecutive elements of the second row of a frieze pattern.

Let {fi}n−2i=−1 be the diagonal such that f−1 = 0, f0 = 1, f1 = a0, ... , fn−2 = 1 going from north
west to south east. Let the neighbouring diagonal to the right be g−1 = −1, g0 = 0, g1 = 1, g2 =
a1, ... , gn−1 = 1, such that fi and gi+1 is in line. This is illustrated below.
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... 1 1 1 1 1 1 ...
... f1 g2 a2 a3 a4 ...

... f2 g3 ...
...

gi−1
fi−1 gi

fi
fn−3 fn−3 fn−3 fn−3 fn−3 fn−3 ... fn−3 fn−3 fn−3 fn−3 fn−3

fn−3 gn−2 ...
... 1 1 1 fn−2 1 ...

Definition 3.8. Let the notation (r,s) represent

(r, s) =

∣∣∣∣fr fs
gr gs

∣∣∣∣ = frgs − grfs

where fr, fs, gr, gs is as in Definition 3.7

Proposition 3.9. With the notation above the following holds.
i) (r, r) = 0
ii) (r, s) = −(s, r)
iii) (s− 1, s) = 1
iv) (x, y)(z, w) + (x, z)(w, y) + (x,w)(y, z) = 0
v) ∣∣∣∣ (r − 1, s) (r, s)

(r − 1, s+ 1) (r, s+ 1)

∣∣∣∣ = 1

Proof. i): (r, r) = frgr − grfr = 0

ii): (r, s) = frgs − grfs = −1(fsgr − gsfr) = −1(s, r)

iii): (s− 1, s) = fi−1gi − gi−1fi. For adjacent diagonals f, g in a frieze fi−1gi − gi−1fi = 1 by
the unimodular rule ∀i 0 ≤ i < n− 2.

iv): (x, y)(z, w) + (x, z)(w, y) + (x,w)(y, z)
= (fxgy − fygx)(fzgw − fwgz) + (fxgz − fzgx)(fwgy − fygw) + (fxgw − fwgx)(fygz − fzgy)

We multiply this out and sort the terms alphabetically on the subscript.
= fxfzgwgy−fwfxgygz−fyfzgwgx+fwfygxgz+fwfxgygz−fxfygwgz−fwfzgxgy+fyfzgwgx+
fxfygwgz − fxfzgwgy − fwfygxgz + fwfzgxgy
We color code this to make it readable.

fxfzgwgy − fwfxgygz − fyfzgwgx + fwfygxgz + fwfxgygz − fxfygwgz − fwfzgxgy + fyfzgwgx +
fxfygwgz − fxfzgwgy − fwfygxgz + fwfzgxgy = 0

v): by inserting x = r − 1, y = s, z = r, w = s+ 1 into iv) we get that

(r − 1, s)(r, s+ 1) + (r − 1, r)(s+ 1, s) + (r − 1, s+ 1)(s, r) = 0

wherein (r − 1, r) = 1 , (s+ 1, s) = −1 by iii) and ii). By ii) we also get (s, r)(r − 1, s+ 1) =
−(r, s)(r − 1, s+ 1) all of which we insert in our expression to get
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(r − 1, s)(r, s+ 1) + (s, r)(r − 1, s+ 1) = (r − 1, r)(s, s+ 1) = 1 However

1 = (r − 1, s)(r, s+ 1) + (s, r)(r − 1, s+ 1) =

∣∣∣∣ (r − 1, s) (r, s)
(r − 1, s+ 1) (r, s+ 1)

∣∣∣∣ = 1

�

Having shown that any diagonal determines a frieze, we proceed with a way of expressing
the second row of a frieze as a function of a diagonal.

Theorem 3.10. As in Definition 3.7, let {ai}n−1i=0 be any n consecutive elements of the sec-

ond row of a frieze pattern. Let {fi}n−2i=−1 be the diagonal such that f−1 = 0, f0 = 1, f1 =
a0, ... , fn−2 = 1. Then

as =
fs−1 + fs+1

fs
∀s such that 0 ≤ s ≤ n− 2.

Proof. Consider the grid below, in the shape of a frieze, in which any touple (r, s) is as described
in Definition 3.8.

(-1,0) (0,1) (1,2) (2,3) (3,4)
(-1,1) (0,2) (1,3) (2,4) ...

(-1,2) (0,3) (1,4) (2,5)
... ...
(-1,n-3) (0,n-2) (1,n-1)

(-1,n-2) (0,n-1) (1,n)
(0,n-2) (0,n-2) (0,n-2) (0,n-2) (-1,n-1) (0,n-2) (0,n) (0,n-2) ...

(−1, s) = f−1gs−g−1fs = 0·gs−(−1)·fs = fs so the first diagonal is indeed f0, f1, ..., fn−2 =
1, fn−1 = 0. (0, s) = f0gs − g0fs = gs − 0 · fs = gs. Furthermore any diamond shape in the
pattern is such that

(r,s)
(r-1,s) (r,s+1)

(r-1,s+1)

for some integers r and s. We know from Proposition 3.9 v) however, that (r, s)(r− 1, s+ 1)−
(r − 1, s)(r, s + 1) = 1 which for the pattern above is the unimodular rule. Additionally all
elements in the top row, (i, i + 1) = 1. Now, as we know, a diagonal determines a frieze, and
we have a pattern following the unimodular rule with the diagonal {fi}. This means that the
grid in the figure must indeed be the frieze we began with. In other words all friezes can be
described in the manner of the grid with the notation from Definition 3.8. The second row is
expressed {as} = {(s− 1, s+ 1)}.
For 0 ≤ s ≤ n−2, we get, by substituting x = s−1, y = s+1, z = −1, w = s into Proposition
3.9 iv), that

as = (s− 1, s+ 1) =
(−1, s− 1)(s, s+ 1) + (−1, s+ 1)(s− 1, s)

(−1, s)

where (−1, i) = fi and (i, i+ 1) = 1 by Proposition 3.9 iii).

(−1, s− 1)(s, s+ 1) + (−1, s+ 1)(s− 1, s)

(−1, s)
=
fs−1 · 1 + fs+1 · 1

fs
=
fs−1 + fs+1

fs

�
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Several useful results follow directly from Theorem 3.10 and some are explicitly stated in the
proof of the theorem. We rephrase and state some useful consequences for future use.

Corollary 3.11. All rows in a frieze of order n have periods that divide n. Phrased differently
(r, s) = (r + n, s+ n). Note however that all rows need not have the same period.

Proof. By definition we have (1, n) = (2, n + 1) = ... = (i, n + i) = 1 as it is the bottom row
of a frieze, and the row below that; (0, n) = (1, n + 1) = ... = (j, n + j) = 0. Inserting into
Proposition 3.9 iv): x = r, y = s, z = r + 1, w = r + n, gives us

(1) (r, s)(r + 1, r + n) + (r, r + 1)(r + n, s) + (r, r + n)(s, r + 1) = 0

We use that (r, r + 1) = 1 by Proposition 3.8 iii). Additionally, as stated at the start of the
proof, (r + 1, r + n) = 1 and (r, r + n) = 0. We insert into equation (1) to get

(r, s) + (r + n, s) + 0 = 0

or by Proposition 3.8 ii) (r, s)− (s, r + n) = 0. Adding (s, r + n) to both sides of the equation
gives us

(r, s) = (s, r + n)

Repeating the process above once more, starting with (s, r+n), gives us (s, r+n) = (r+n, s+n)
which means (r, s) = (r + n, s+ n). �

Corollary 3.12. Any element of a frieze pattern divides the sum of its diagonal neighbours.

Proof. By Theorem 3.10 we have as =
fs−1 + fs+1

fs
, where as is an integer ∀s. Now any element

is a part of a diagonal that intersects the second row, it is only a matter of shifting the index

of the set {ai} to get as =
fs−1 + fs+1

fs
for some s. �

Corollary 3.13. The second row of any frieze pattern must have at least one 1.

Proof. By Theorem 3.10 we have that

fs+1 = asfs − fs−1
Now to prove that at least one element is equal to 1 lets assume otherwise, that as ≥ 2 ∀s,
which gives us

asfs − fs−1 ≥ 2fs − fs−1
by inserting this into the first expression we get the inequality

fs+1 ≥ 2fs − fs−1 =⇒ fs+1 − fs ≥ fs − fs−1

fs+1 − fs ≥ fs − fs−1 ≥ ... ≥ f1 − f0 = a0 − 1 ≥ 1

However, this implies that the sequence f0, f1, ..., fn−2 is strictly increasing, while by definition
fn−2 = 1 which is a contradiction. �

Remark 3.14. The neighbouring elements of a 1 in the second row are strictly greater than 1,
in a frieze of order n > 1.

Proof. Assume otherwise, that two adjacent elements in the second row, ai = ai+1 = 1. Name
the element below them bi. Then by the unimodular rule aiai+1 − 1bi = 1 =⇒ bi = 0 which
is a contradiction since the order of the frieze is greater than 1. �



12 FRIEZE PATTERNS AND TRIANGULATED POLYGONS

We have now shown how we calculate the elements in the second row when given a diagonal.
So far, however, we assume we are given a valid frieze. The next theorem states exactly when a
diagonal generates a valid frieze. This result will help us show the continued validity of friezes
when we apply certain maps to valid friezes.

Theorem 3.15. Let F be a sequence of n− 1 positive integers, f0, f1, ..., fn−3, fn−2 with f0 =

1 = fn−2, such that
fs−1 + fs+1

fs
is a positive integer for s ∈ 1, 2, ..., n− 3. Let F be a diagonal

in an empty frieze of order n. Then F generates a valid frieze.

Proof. Let 1 = f0, f1, ..., fn−3, fn−2 = 1 be positive integers such that
fs−1 + fs+1

fs
is a positive

integer for s ∈ 1, 2, ..., n − 3. We let the f -elements be a diagonal in a potential frieze, as
shown below. We compute the next diagonal by the unimodular rule, and name the elements
1 = g1, g2, ..., gn−1 = 1. This setup is depicted below.

... 1 1 1 1 1 1 ...
... f1 g2 ...

... f2 g3 ...
...

gi−1
fi−1 gi

fi ...
fn−3 fn−3 fn−3 fn−3 fn−3 fn−3 ... fn−3 fn−3 fn−3 fn−3 fn−3

fn−3 gn−2 ...
... 1 1 1 fn−2 1 ...

We begin by showing
gi−1 + gi+1

gi
is a positive integer before showing that all gi are positive

integers. By the unimodular rule the way we compute the elements gi is the following.

(2) fi−1gi − figi−1 = 1 =⇒ gi =
1 + figi−1
fi−1

.

We want to show
gi−1 + gi+1

gi
∈ Z+ and in fact more specifically

gi−1 + gi+1

gi
=
fi−1 + fi+1

fi
for i ∈ 2, ..., n− 3

Using equation (2) we have gi =
1 + figi−1
fi−1

, gi+1 =
1 + fi+1gi

fi
=

1 + fi+1(
1 + figi−1
fi−1

)

fi
Inserting these expressions for gi, gi+1 we get

gi−1 + gi+1

gi
=

gi−1 +

1 + fi+1(
1 + figi−1
fi−1

)

fi
1 + figi−1
fi−1
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We multiply the numerator and the denominator by
fi−1

1 + figi−1
to get

(gi−1 +

1 + fi+1(
1 + figi−1
fi−1

)

fi
)(

fi−1
1 + figi−1

) =
fi−1gi−1

1 + figi−1
+

fi−1
fi(1 + figi−1)

+
fi+1

fi

We multiply the first term by
fi
fi

and the third term by
1 + figi−1
1 + figi−1

to have a common denomi-

nator. We get

fi−1figi−1 + fi−1 + fi+1(1 + figi−1)

fi(1 + figi−1)
=

(fi−1 + fi+1)(1 + figi−1)

fi(1 + figi−1)
=
fi−1 + fi+1

fi
∈ Z+

We now want to show gi is a positive integer.

By definition g1 = 1 ∈ Z+. By equation (2) g2 =
1 + f2g1

f1
=

1 + f2 · 1
f1

which is in Z+ since

f0 = 1 and
f0 + f2
f1

∈ Z+.

Furthermore, gi =
1 + figi−1
fi−1

gives us that if gi−1 is positive, so is gi. It remains only to show

gi is an integer. We have shown g1, g2 are both integers. Assume g1, ..., gi are integers. We

have
gi−1 + gi+1

gi
=
fi−1 + fi+1

fi
= r for some integer r. Then

gi+1 = r · gi − gi−1
which is an integer. We have then shown all gi are positive integers.

To sum up, if we start with a sequence beginning and ending with ones, with the property
fs|(fs−1 + fs+1) we can create a valid frieze from that sequence. The sequence g1, g2, ..., gn−1
has the same properties as f0, f1, ..., fn−2, which means it also generates the next diagonal {hi},
and so on.

�

Remark 3.16. Corollary 3.12 is the converse of Theorem 3.15. The requirement that all
elements in a diagonal divide its diagonal neighbours is therefore a necessary and sufficient
requirement to generate a frieze.

Having a sufficient requirement to create a frieze by Theorem 3.15, we can now introduce
methods of creating friezes of greater or lesser rank when given an arbitrary frieze.

Construction 3.1. Given a frieze of order n we create a frieze of order n+ 1 in the following
manner

The frieze is determined by a diagonal f0, f1, ..., T, U, V,W, ..., fn−2 such that each element
in the sequence divides its neighbours. Expand the sequence f0, f1, ..., T, U, V,W, ..., fn−2 to
f0, f1, ..., T, U, U + V, V,W, ..., fn−2 and let this sequence be a diagonal in the new frieze. Note
that the element fn−2 is now the n-th element rather than the n− 1-st

Proposition 3.17. Construction 3.1 gives a valid frieze of order n+1 when applied to a frieze
of order n

Proof. That the order increases by one follows from the altered sequence being one term
longer. The validity of the frieze is seen by direct computation. By Theorem 3.10 we have
fs|(fs−1 + fs+1) for the diagonal in our frieze. This property is kept intact for all elements
before and after the altered elements ...T, U, U + V, V,W, ... in the sequence. We need only
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prove that the property still holds here as well, and by Theorem 3.15 the new sequence then
determines a valid frieze. Since T,U, V,W appears in the original diagonal we know that

U |(V + T ), V |(W + U)

and that T and W divide their neighbours, which remain unaltered by the construction. In the
new sequence, we need to show

U |((U + V ) + T ), (U + V )|(U + V ), V |((U + V ) +W )

First of all, (U + V )|(U + V ) is trivial.

U + V + T

U
=
V + T

U
+
U

U
and U |(V + T )

U + V +W

V
=
U +W

V
+
V

V
and V |(W + U)

We have shown that the sequence f0, f1, ..., T, U, U +V, V,W, ..., fn−2 of n elements, retains the
property that any element divides the sum of its neighbours, other than the elements at either
end. �

Although Construction 3.1 focuses on diagonals, the expansion is in fact equal to inserting a
one anywhere in the second row and incrementing the adjacent elements by one. We see this by
letting a0, ..., t, u, v, w, ..., an−1 be the second row of a frieze with diagonal f0, ..., T, U, V,W, ...,

fn−2 such that
T + V

U
= u,

W + U

V
= v. When we apply Construction 3.1 we get the diagonal

f0, ..., T, U, U+V, V,W, ..., fn−2 which generates the second row a0, ..., t, x, y, z, w, ..., an−1 where

x =
T + (U + V )

U
= u+ 1, y =

U + V

(U + V )
= 1, z =

(U + V ) +W

V
= v + 1

So the second row of the new frieze is a0, ..., t, u+ 1, 1, v + 1, w, ..., an−1

Example 3.18. Construction 3.1 in practice.
Label the green elements in the frieze below as a0, a1, a2, a3... with the corresponding diagonal
f0, f1, f2, f3 starting in the row of ones and passing through the first green element.

... 1 1 1 1 1 1 ...
... 1 2 2 1 3 1 ...

... 2 1 3 1 2 2 ...
... 1 1 1 1 1 1 ...

by considering the 4 green elements as ...t, u, v, w... in Construction 3.1, let’s expand this frieze
of order 5 into one of order 6. The new frieze pattern can then be found by using the unimodular
rule from the first two rows, but notice how the red number in the diagonal is equal to the sum
of its diagonal neighbours. Additionally, the five green numbers below are the expansion of the
green numbers in the frieze above.

... 1 1 1 1 1 1 1 ...
... 1 2 3 1 2 3 1 ...

... 2 1 5 2 1 5 2 ...
... 1 2 3 1 2 3 ...

... 1 1 1 1 1 1 ...
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We will now show a method for creating friezes of lower order than a given frieze. As with
Construction 3.1, this construction has a choice of index as well. There exists choices for both
constructions where the maps are inverses of each other.

Construction 3.2. For n ≥ 3, given a frieze of order n + 1 we create a frieze of order n in
the following manner:
By Corollary 3.13 the second row has at least a one. Strictly speaking we know it has infin-
itely many ones, but the second row has a one within any set of n + 1 consecutive elements.
Additionally the two elements adjacent to the one must be greater than one. We name the
elements a0, ..., t, u + 1, 1, v + 1, w..., an where u, v ≥ 1. We construct the new frieze of or-
der n by letting removing the one, and decrementing u + 1, v + 1 by one, so the second row
is a0, ..., t, u, v, w..., an−1, repeating. This is then expanded by the unimodular rule to find a
diagonal and the rest of the frieze.

Proposition 3.19. Construction 3.2 gives a valid frieze of order n when applied to a frieze of
order n+ 1.

Proof. As in the construction let a0, ..., t, u+1, 1, v+1, w..., an where u, v ≥ 1 be n+1 consecutive
elements in the second row of a frieze of order n + 1. By Theorem 3.10 we have the relation

as =
fs−1 + fs+1

fs
for s ≤ n − 1, where f0 = 1, f1 = a0, ..., fn−1 = 1 is the diagonal passing

through a0. Specifically this means that some consecutive elements in the diagonal f0 = 1, f1 =
a0, f2, ..., T, U, α, V,W, ..., fn−1 = 1 have the property

T + α

U
= u+ 1,

U + V

α
= 1,

α+W

V
= v + 1

However,
U + V

α
= 1 implies α = U+V , so the diagonal is f0, f1, f2, ..., T, U, U+V, V,W, ..., fn−1.

We wish to show that removing the one in the second row corresponds to a change in a diagonal
that still gives a valid frieze, of one order less.
We construct a diagonal for the frieze of order n by removing the element U +V . The diagonal
is then f0 = 1, f1 = a0, f2, ..., T, U, V,W, ..., fn−1 = 1, where fn−1 is the n− 1-st element, as the
sequence was shortened by one element. We show that this diagonal fulfils the requirements of
determining a valid frieze as described in Theorem 3.15. U |(T + (U + V )) implies U |(T + V )
and V |((U +V )+W ) implies V |(U +W ). The elements in f0, f1, ..., T ∪W, ..., fn−1 retain their
values and thus their divisibility. The change to the second row in Construction 3.2 creates a
diagonal of length n− 1 which creates a valid frieze of order n. �

Construction 3.1 is applied to a diagonal while Construction 3.2 focuses on the second row.
Construction 3.2 could strictly speaking also be applied to a diagonal but it is far harder to find
elements in the diagonal such that the element is equal to the sum of its neighbours. Instead
we find a one in the second row. Similarly, expanding a frieze could also be done by focusing
on the second row.

Remark 3.20. Construction 3.1 could be rewritten in the following manner:
Let Fn be a frieze of order n with a diagonal f0, a0, ..., T, U, V,W, ..., fn−2 for some values

T,U, V,W that correspond to the elements ...t, u, v, w, ... in the second row of Fn such that
T + V

U
= u,

U +W

V
= v. We create a frieze Fn+1 of order n + 1 by letting the second row be

a0, ..., t, u+ 1, 1, v + 1, w, ..., an−1 repeating. The sequence has n+ 1 elements, and corresponds
exactly with inserting U + V between elements U, V in the diagonal. The calculations to show
this is similar to those in the proof of Proposition 3.19.
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In Theorem 2.8 we showed that any triangulated polygon can be created by applying a
construction to a polygon with a greater or smaller number of vertices. As our intentions are
to relate triangulated polygons to friezes, it is in our best interest to prove a similar result for
friezes.

Theorem 3.21. For n ≥ 3:
i) Any frieze of order n can be created by applying Construction 3.2 to some frieze of order
n+ 1.
ii) Any frieze of order n+ 1 can be created by applying Construction 3.1 to some frieze of order
n.

Proof. i): Begin with any frieze Fn of order n. We apply Construction 3.1 to the frieze,
expanding the diagonal f0, ..., T, U, V,W, ..., fn−2 to f0, ..., T, U, U + V, V,W, ..., fn−2 which has
n elements, and generates a valid frieze, Fn+1. Fn+1 now has a 1 in the second row by

Theorem 3.10, inserting U,U+V,V into the formula as 1 =
U + V

(U + V )
. Apply Construction 3.2

to Fn+1, removing the specific one corresponding to the diagonal elements ..., U, U + V, V, ....
The diagonal is then reduced back to f0, ..., T, U, V,W, ..., fn−2, generating the frieze we started
with, Fn. Therefore, for any frieze Fn of order n, there exists a frieze of order n+ 1 such that
Construction 3.2 generates Fn. The proof for ii) is analogous. �
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4. Maps between triangulated polygons and friezes

In this section we will present maps from triangulated polygons of n vertices to frieze patterns
of order n and back. We will then show that the maps are inverse bijections. We begin with a
map from any triangulated polygon to a frieze pattern.

Construction 4.1. For a triangulated polygon with n ≥ 3 vertices, let the quiddity cycle as
in Definition 2.3 be n consecutive elements repeating in the second row of the frieze-to-be. The
rest of the frieze is determined by the unimodular rule. Let ωn denote Construction 4.1 for a
polygon with n vertices.

Proposition 4.1. Construction 4.1 gives a valid frieze of order n ≥ 3 when applied to a
triangulated polygon with n vertices.

Proof. We show the statement inductively. For n = 3 there is only one option, a triangle with
quiddity cycle 1, 1, 1. Construction 4.1 creates the frieze below with two rows, the smallest
worthwhile frieze.

1

1

1

... 1 1 1 1 1 1 1 ...
... 1 1 1 1 1 1 1 ...

Assume ωn gives a valid freeze for 3 ≤ n ≤ k. Let TP be a triangulated polygon with k + 1
vertices. TP has a quiddity cycle a0, ..., ai−1, ai, ai+1, ..., ak. By Proposition 2.7 we know ai = 1
for some i as TP has at least 2 special vertices. We apply Construction 2.2 to TP , removing the
special vertex corresponding to ai to create TP /ai, a triangulated polygon with k vertices. By
Remark 2.11 the quiddity cycle of TP /ai is a0, ..., ai−1−1, ai+1−1, ..., ak of length k. By our as-
sumption ωk applied to TP /ai creates a valid frieze of order k with a0, ..., ai−1−1, ai+1−1, ..., ak
repeating as its second row.

By Theorem 3.10 we know a0, ..., ai−1 − 1, ai+1 − 1, ..., ak have the relation to a diagonal

f0, ..., T, U, V,W, ..., fk−1 such that
T + V

U
= ai−1 − 1,

W + U

V
= ai+1 − 1. We apply Construc-

tion 3.1 to the frieze, inserting U +V into the diagonal making it ..., T, U, U +V, V,W, ... which
we know by Proposition 3.17 gives a valid frieze. Moreover we know that such a change to the
diagonal corresponds to altering the second row from a0, ..., ai−2, ai−1 − 1, ai+1 − 1, ai+2, ..., ak
of length k to a0, ..., ai−2, ai−1, 1, ai+1, ai+2, ..., ak of length k+ 1. We have now created a valid
frieze of order k+1 equal to ωk+1(TP ). The commutative diagram below represents the way we
built this proof where χ, γ represent Construction 2.2 and Construction 3.1 respectively, and
Fk,Fk+1 represent the friezes of order k and k + 1.



18 FRIEZE PATTERNS AND TRIANGULATED POLYGONS

TP Fk+1

TP /ai Fk

χ

ωk+1

γ

ωk

Keep in mind that Construction 3.1 and 2.2 leave room for a choice regarding which special
vertices are removed, and where we insert extra elements. To make the maps χ, γ a bit more
precise we may define a specific choice for the maps so that the diagram commutes. We know
that triangulated polygons can be rotated without changing the quiddity cycle. Similarly we
can change the index of the second row in a frieze without altering the frieze. Apply a cyclic
shift to the quiddity cycle of TP such that a1 is a special vertex, and let χ always remove a1,
the second element. The quiddity cycle of TP /ai is then a0 − 1, a2 − 1, a3, ..., ak. ωk sets the
quiddity cycle of TP /ai as the second row of Fk. Let us temporarily let a0 − 1 be defined as
the first element of Fk. We define γ to insert the 1 between the first two elements in the second
row. The maps χ, γ ◦ ωk are then well defined. Now ωk+1 = γ ◦ ωk ◦ χ.

�

Remark 4.2. The quiddity cycle of a triangulated polygon TP with n vertices has period k
such that k|n, and contains at least two ones. The period is straight forward to show since the
quiddity cycle has n elements. It must contain at least two ones because TP has at least two
special vertices by Proposition 2.7.

Below are two short examples showing how we apply Construction 4.1. The two examples
are both hexagons and yet yield different friezes.

Example 4.3. Construction 4.1 applied to a triangulated hexagon with quiddity cycle 1, 2, 3,
1, 2, 3.

3

a0 =1

2

3

1

2

This polygon gives us the second row ...1, 2, 3, 1, 2, 3... repeating. In full frieze form this
expands by the unimodular rule to the order 6 frieze below:

... 1 1 1 1 1 1 1 ...
... 1 2 3 1 2 3 1 ...

... 2 1 5 2 1 5 2 ...
... 1 2 3 1 2 3 2 ...

... 1 1 1 1 1 1 1 ...
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Example 4.4. Construction 4.1 applied to a triangulated hexagon with quiddity cycle 1,2,2,2,1,4.

4

a0 =1

2

2

2

1

The resulting frieze pattern differs from that of Example 4.3, and notice in particular that
although the orders are the same, the periods of the frieze patterns differ in the two examples.

... 1 1 1 1 1 1 1 ...
... 1 2 2 2 1 4 1 ...

... 3 1 3 3 1 3 3 ...
... 2 1 4 1 2 2 2 ...

... 1 1 1 1 1 1 1 ...

Which node you chose as a0 will shift the pattern to the side, but not otherwise alter the
frieze. By Definition 3.4 we know that a different choice of a0 results in the same frieze. Next
let us explain a method to go from any frieze pattern of order n to a triangulated polygon with
n vertices.

Construction 4.2. Take any frieze of order n ≥ 3. Let n consecutive elements in the second
row of the frieze be the quiddity cycle of a polygon P with n vertices. We work out the triangu-
lation in accordance with the quiddity cycle, starting with the special vertices. When removing
a special vertex x we repeat the process by finding a special vertex in P/x and so on. The whole
process is reduced to only separating special vertices one at a time. This is illustrated in an
example below. Let βn denote Construction 4.2 for a frieze of order n.

Proposition 4.5. Let Fn be a frieze of order n ≥ 3. Construction 4.2 gives a valid triangulation
of a polygon with n vertices when applied to Fn.

Proof. We show the claim similarly to the proof of Proposition 4.1, by induction. As before the
case n = 3 holds here as well. The second row in the order 3 frieze is all ones, so we label all
vertices in a triangle with ones, satisfying the definition of a triangulation.

Assume βi gives a valid triangulated polygon for 3 ≤ i ≤ k. We wish to show βk+1 gives
a valid triangulated polygon with k + 1 vertices when applied to a frieze Fk+1 of order k + 1.
We apply Construction 3.2 to Fk+1 to obtain a valid frieze Fk of order k. In the process we
remove a 1 from the second row of the frieze and decrease the neighbours by one. Name the
elements in the second row of Fk that were decremented by the construction u−1, v−1. By our
assumption the new frieze of order k corresponds do a valid triangulation TQ of a polygon Q
with k vertices, such that TQ = βk(Fk). TQ has quiddity cycle a0, ..., u− 1, v − 1, ..., ak−1. We
apply Construction 2.1 to TQ, adding a vertex between the vertices corresponding to u−1, v−1
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in the quiddity cycle to obtain a new polygon P with triangulation TP . TP has quiddity cy-
cle a0, ..., u, 1, v, ..., ak−1 of length k + 1. Note that Q = P/x where x is the special vertex
inserted by Construction 2.1. TP is a valid triangulated polygon, and is equal to βk+1(Fk+1).
Below is a small diagram showing the steps, where χ, γ correspond to Constructions 3.2 and
2.1 respectively.

Fk+1 TP

Fk TQ

χ

βk+1

γ

βk

Note that for this diagram to commute the maps χ, γ require specific choices, but it is always
possible. For example let χ always remove a1 in Fk+1. Then the second row of Fk is a0−1, a2−
1, a3, ..., ak, which βk sets as the quiddity cycle of TQ. Let γ insert a vertex between the vertices
corresponding to the first two elements of the quiddity cycle. Then γ ◦ βk ◦ χ = βk+1. �

Below follows a small yet lengthy example showing how Construction 4.2 is applied in prac-
tice.

Example 4.6. Construction 4.2 applied to a frieze of order 8.

1 1 1 1 1 1 1 1 ...
1 2 2 3 2 1 3 4 ...

3 1 3 5 5 1 2 11
2 1 7 8 2 1 7 8

5 1 2 11 3 1 3 5 ...
2 1 3 4 1 2 2 3 ...

1 1 1 1 1 1 1 1 ...

We focus on the second row, which gives us the quiddity cycle 1, 2, 2, 3, 2, 1, 3, 4. The frieze has
7 rows, so we hope to match this frieze to a triangulated octagon. Starting nowhere in particular
on a convex octagon, number the vertexes in order, as seen below.

4

a0 =1

2 2

3

2

13

From here, we start with the two special vertices, cutting them off from the rest of the polygon.
We do this by inserting a diagonal between the adjacent vertices to each special vertex.
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4

1

2 2

3

2

13

The problem of completing the triangulation can be reduced to triangulating the hexagon created
by lopping off the triangles with special vertexes, and decreasing the number at each connected
vertex by one. This is illustrated below.

3

1 2

3

1

2

Notice how removing a pair of special vertices creates more special vertices. Recall from Propo-
sition 2.7 that while the number of special vertices is not the same for all triangulated polygons,
it is always ≥ 2. Repeating this process another few steps yields:

3

1 2

3

1

2

2

1

2

1

As such we can reduce the problem of creating a triangulation to exclusively creating triangles
around special vertices. Now putting this triangulation back into the octagon yields the full
triangulation:
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4

1

2 2

3

2

13

Theorem 4.7. The maps from Constructions 4.1 and 4.2 are inverse bijections between frieze
patterns of order n and triangulated polygons with n vertices, for n ≥ 3.

Proof. We have shown that both maps are well defined. We let ωk denote Construction 4.1 for
k vertices and βk denote Construction 4.2 for order k.

TP Fk

TQ Fk

ωk

βk

We will show that βk ◦ ωk = Tid, where Tid is the identity on triangulated polygons. We show
this by letting ωk(TP ) = Fk and TQ = βk(Fk) and showing TP = TQ.
TP has quiddity cycle a0, a1, ..., ak−1. ωk constructs Fk by setting the repeating quiddity cycle of
TP as the second row and expanding a frieze from there. The second row of Fk therefore contains
the k consecutive elements a0, a1, ..., ak−1. We construct a triangulated polygon TQ = βk(Fk)
by first creating a polygon Q of k vertices, and setting a0, a1, ..., ak−1 as the quiddity cycle
before completing the triangulation. TQ and TP therefore have the same quiddity cycles which
makes them equal by Definition 2.5. The proof that ωk ◦ βk = Fid is analogous, where Fid is
the identity on friezes. �

Corollary 4.8. We improve a previous result on friezes. For a frieze of order n, it is now clear
that within n consecutive elements of a second row of a frieze, two or more elements must equal
1. This is because the second row corresponds to the quiddity cycle of a triangulated polygon.
By Proposition 2.7, the corresponding polygon must have at least 2 special vertices.

One thing we glossed over before, is that Theorem 3.10 only applies to ai, i ≤ n− 2. While
we know an = a0, what then of an−1? We could use the same theorem and express the element
by the next diagonal instead, but we now have another way of doing it. We have shown that
the second row of a frieze is the same as the quiddity cycle of a triangulated polygon. Since a
triangulated polygon of n vertices has n − 2 triangles, it is clear that the sum of the quiddity
cycle is 3(n−2), as each triangle contains 3 vertices. Expressed differently,

∑n−1
i=0 ai = 3(n−2).

Our n− 1-st term becomes an−1 = 3(n− 2)−
∑n−2
i=0 ai.
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5. Diagonals of friezes

The diagonals of friezes determine validity of frieze patterns. Diagonals also determine the
second row of a frieze which we have linked to triangulated polygons. It is, however, interesting
to explore what the diagonals themselves express. For a better understanding of the diagonals
of friezes we introduce some new notation. This section is inspired by The geometry of frieze
patterns by Broline, Crowe and Isaacs ([1]). In their paper they introduce the notation we
will use. We prove that it relates to the preceding sections. In particular Theorem 5.5 is not
previously shown.

Definition 5.1. In a triangulated polygon TP with vertices {P0, P1, ..., Pn−1}, give vertex Pr
the value 0. Next, label all vertices connected to Pr with 1, including Pr−1 and Pr+1. Next,
for any triangle where two vertices have been assigned a value but not the third, label the third
vertex as the sum of the other two. Continue this way until all vertices have a value. We
let (Pr,Ps) denote the value of vertex Ps when Pr is the initial vertex. We sometimes write
TP(Pr,Ps) instead of (Pr, Ps) to specify which polygon the vertices are a part of.

Example 5.2. Our two favourite hexagons with (P0, Ps) in each vertex Ps for s ∈ 0, 1, ..., 5.

1

P0 0

1

2

5

3

1

P0 0

1

2

3

4

Proposition 5.3. Let TP be a triangulated polygon, with Pi a special vertex in TP . Let TP /Pi
be the triangulated polygon obtained by removing Pi and its connected edges. Let Pr, Ps be
vertices in TP /Pi. Then

(Pr, Ps) = (Pr, Ps)
′

where (Pr, Ps)
′ denotes the value (Pr, Ps) ∈ TP /Pi

Proof. We want to show that a special vertex Pi can never contribute to any value (Pr, Pk) as
it is only a part of one triangle. Pi will get a value in one of three ways:
i) The two vertices adjacent to Pi already have a value.
ii) Pi is adjacent to the starting point, Pr.
iii) Pi is the starting point.
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Pi−1

Pi Pi+1

If Pi = Pr as in iii) then the conditions of the proposition are not met. The other two cases
are illustrated below.
Case ii): If Pi is adjacent to Pr we consider the left figure below. Since Pi is special there exists
an edge (Pi−1, Pi+1). Now, Pi−1 or Pi+1 is the initial vertex with value 0, and the other has
value 1 since they are connected. So although Pi is given a value, it is still cut off from the rest
of the polygon. The remaining values in the triangulated polygon are then calculated using the
values in verticesPi−1 and Pi+1.

1

0

1 1

Pr = Pi−1

Pr

U

U + V V

It remains to consider case i). Since we have shown the claim for case iii) we assume neither
of the vertices adjacent to Pi is the starting point. This case is illustrated in the figure above
to the right. Since Pi is not adjacent to Pr and its only edges are to Pi−1 and Pi+1 the value
(Pr, Pi) will not be set until (Pr, Pi−1) and (Pr, Pi+1) are both determined. Let (Pr, Pi−1) =
U, (Pr, Pi+1) = V . Then (Pr, Pi) = U + V . The special vertex does not affect the rest of the
triangulated polygon, as it ever is determined by Pi−1 and Pi+1. �

Remark 5.4. As all triangulated polygons can be expanded and shortened one special vertex
at a time, Proposition 5.3 can be generalized to removing any number of vertices. Let TP be a
triangulated polygon with Pi special. Furthermore let Pj be special in TP /Pi. Let Pr and Ps be
vertices in TP /Pi, Pj. Then (Pr, Ps) = (Pr, Ps)

′′ where (Pr, Ps)
′′ = (Pr, Ps) ∈ TP /Pi, Pj. The

argument is the same as for removing just one vertex. This argument is analogous for removing
any number of vertices.

In the proof above, we see the relation of consecutive elements U,U+V, V . We have previously
seen this pattern in diagonals of friezes. This is no mere coincidence as the next theorem will
show.
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Theorem 5.5. Let (r, s) be as in Definition 3.8. Let (r, s) describe the elements of a frieze
pattern Fn of order n ≥ 3 and let TP be the corresponding triangulated polygon. Then
TP (Pr, Ps) = (r, s) for r < s and (Pr, Ps) = (s, r) for s < r.

Proof. TP has vertices P0, P1, ..., Pn−1 we wish to show that any sequence (Pi, Pj), j = i +
1, i + 2, ..., i + n − 1 matches a diagonal (i, j), j = i + 1, ..., i + n − 1 in Fn. We show this
by induction. For n = 3 we show that any diagonal is equal to two ones, which matches the
sequences (Pi, Pi + 1), (Pi, Pi + 2) for all three choices of Pi.

Pi 0

1

1

... 1 1 1 1 1 1 1 ...
... 1 1 1 1 1 1 1 ...

For n = 4 we obtain a more interesting example, as shown by the figures below below.

1

P0 0 1

2 1

1 0 P1

1

These are the only two truly different choices. Both quadrangles correspond to the frieze below,
which is the only frieze pattern with 3 rows.

... 1 1 1 1 1 1 1 ...
... 2 1 2 1 2 1 2 ...

... 1 1 1 1 1 1 1 ...

Notice the two different diagonals in the frieze are 1,2,1 and 1,1,1.

Assume that for all orders ≤ k we have (i, j) = TP (Pi, Pj), j = i + 1, ..., i + k − 1 for a
frieze Fk of order k with a corresponding triangulated polygon TP .
This sequence is a diagonal in Fk. The elements of this diagonal are (i, i+1), ..., T, U, V,W, ..., i+
k − 1. The values T,U, V,W correspond to the elements ...t, u, v, w, ... in the second row of Fk
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such that
T + V

U
= u,

U +W

V
= v. The figures below illustrate the quiddity cycle and the

values (Pi, Pj) for TP .

t

u

w v

TP

1

Pi 0

1 T

U

W V

TP

We create a frieze of order k+ 1 by applying Construction 3.1 to Fk. We insert U +V between
the values U, V in the diagonal of Fk and let the diagonal f0, ..., T, U, U + V, V,W, ..., fk−1 de-
termine the new frieze Fk+1. We know that the second row of Fk+1 is ...t, u+ 1, 1, v + 1, w, ....
We can determine which triangulated polygon TQ this corresponds to by Construction 4.2.

t

u+ 1

w v + 1

1

TQ

1

Pi 0

1 T

U

z

W V

TQ

The figure above to the right illustrates the sequence (Pi, Pj) for all vertices Pi 6= Pj as before.
We name the special vertex x such that TQ/x = TP . We let all vertices in both TP ,TQ retain
their notations since we know by Remark 5.4 that TQ(Pi, Pj) = TP (Pi, Pj) for Pi, Pj 6= x.
We calculate (Pi, x) = U + V . The sequence TQ(Pi, y) for all vertices y ∈ TQ such that
y 6= Pi counter-clockwise then reads (Pi, Pi+1), ..., U, U + V, V, ..., 1. This is the diagonal used
to determine the frieze that corresponds to TQ. �

Remark 5.6. This result gives us some understanding of the diagonals of the frieze. Any
diagonal starting at Pr describes how well connected that vertex is. In particular, we have an
edge between Pr and Ps wherever (r, s) = 1. The top and bottom row describe all non-diagonal
edges.

Our new understanding of the elements of a frieze make it easier to draw the triangulated
polygon corresponding to a given frieze, as the diagonal edges need not be drawn by special
vertices as shown before. We only have to find the ones in the diagonals of the frieze and draw
the edges. In Definition 5.7 we describe the region where all elements of the form (r, s) are such
that r < s ≤ n− 1.
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Definition 5.7. The general form of a fundamental region

(0,1) (1,2) (2,3) (3,4) ... (n-2,n-1)
(0,2) (1,3) (2,4) ... (n-3,n-1)

... ... ...
(0,n-2) (1,n-1)

(0,n-1)

Remark 5.8. In a frieze pattern a fundamental region occurs repeatedly alternating being
turned about the middle as illustrated below. The top and bottom borders are the rows of ones
in a frieze.

......

Remark 5.8 follows directly from (r, s) = (s, r + n) (as seen in the proof of Corollary 3.11).
Consider the bottom row. In a frieze the bottom row would continue (0, n− 1), (1, n), (2, n+ 1)
and so on, where (1, n) = (0, 1) and (2, n+ 1) = (1, 2).

Remark 5.9. As a direct result of Remark 5.8, a fundamental region contains all integers that
occur in the frieze.
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6. SL2-tilings

Sections 6 through 12 follow a similar process as Holm and Jørgensen in SL2 − tilings and
triangulations of the strip ([4]) in terms of results and notation. The frieze patterns we have
explored so far are infinite only in one dimension. In this section we will explore different, yet
similar patterns which have infinitely many rows and columns. We intend to show a bijection
between two new sets, both of which contain either triangulated polygons or frieze patterns.

Definition 6.1. An SL2-tiling is a matrix with infinitely many rows and columns, in which
every 2× 2-submatrix has determinant 1.

Example 6.2. An SL2-tiling.

...
61 50 39 28 17 6 7 8 9 10 11
50 41 32 23 14 5 6 7 8 9 10
39 32 25 18 11 4 5 6 7 8 9
28 23 18 13 8 3 4 5 6 7 8
17 14 11 8 5 2 3 4 5 6 7

... 6 5 4 3 2 1 2 3 4 5 6 ...
7 6 5 4 3 2 5 8 11 14 17
8 7 6 5 4 3 8 13 18 23 28
9 8 7 6 5 4 11 18 25 32 39
10 9 8 7 6 5 14 23 32 41 50
11 10 9 8 7 6 17 28 39 50 61

...

We number the elements (x, y) of tilings as we would in a matrix, so that x increases from
top to bottom, and y increases from left to right. It is useful for us to introduce a way of
describing whole quadrants of tilings.

Definition 6.3. We will use the notation

(< i,> j) = {(x, y) ∈ Z× Z| x < i, y > j}

to describe whole quadrants of SL2-tilings. This notation applies for the other inequality signs
making it possible to describe all infinite quadrants from a starting point. Additionally, we let
(< i, j) = {(x, y) ∈ Z × Z| x < i, y = j} and (i, > j) = {(x, y) ∈ Z × Z| x = i, y > j} describe
rays of rows and columns. The figure below illustrates a sample of these notations.
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tij

(i >,> j)

(< i,< j)

(> i,< j)

(< i,> j)

(i, < j) (i, > j)

Definition 6.4. An SL2-tiling has enough ones if each quadrant (> i,< j), (< i,> j) contains
1 for i, j ∈ Z. Expressed differently, an SL2-tiling has enough ones if the top right and bottom
left quadrants contain the value 1 regardless of the starting point.

Example 6.2 does not have enough ones if we continue the middle column and middle row in
the obvious way (1, 2, 3, 4, ..., i, i+1, ...). We are primarily interested in SL2-tilings with enough
ones. Our main goal is to show a bijection between such tilings, and good triangulations of the
strip.

There are similarities between tilings and friezes, but SL2-tilings are drawn without staggering
the rows. The restriction that 2× 2-submatrices have determinant 1 is similar to the unimod-
ular rule but not quite equal. If we look at friezes as diagonal bands of the SL2-tilings the
restrictions coincide. We will return to this point in Section 10.
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7. Triangulations of the strip

In this section we introduce an expansion of triangulated polygons. This is similar to how
SL2-tilings are expanded friezes. Our intention is to eventually prove a bijection between these
new expansions.

Definition 7.1. The strip consists of two disjoint copies of Z, denoted Z◦ and Z◦. Ev-
ery element in either copy of Z is a vertex of the strip. Z◦ = {...,−1◦, 0◦, 1◦, ...},Z◦ =
{...,−1◦, 0◦, 1◦, ...}. A vertex a in the top half of the strip is represented by a◦. A vertex b in
the bottom half of the strip is represented by b◦. Notice in the figure below that the top half
decreases from left to right, while the bottom half increases.

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

The vertices of the strip can be connected either to vertices on the same line, or by a line
crossing between top and bottom. We will use the word arc for any connecting line between
two vertices of the strip.

Definition 7.2. An arc adjoins 2 vertices of the strip. An arc is either internal or connecting.
Internal arcs are arcs (p◦, q◦) ∈ Z◦ × Z◦ or (p◦, q◦) ∈ Z◦ × Z◦ such that |p − q| ≥ 2.
Connecting arcs are arcs (p◦, q◦) ∈ Z◦ × Z◦.

We do not allow internal arcs with |p− q| = 1. This is because adjacent vertices are already
connected by the strip itself.

Example 7.3. Below is a strip with 4 edges. (4◦, 1◦), (0◦, 2◦), (3◦, 5◦), (2◦, 3◦). The first three
are internal and the last is connecting.

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

Definition 7.4. Two arcs that intersect, but not at a vertex, are said to be crossing.
Two internal arcs (i◦, k◦), (j◦, l◦) or (i◦, k◦), (j◦, l◦) cross if i < j < k < l or j < i < l < k.
Two diagonal arcs (i◦, p◦), (j

◦, q◦) cross if both i < j and p < q or both i > j and p > q.
Lastly a diagonal arc may cross an internal arc. If i < j < k, (j◦, a◦) crosses (i◦, k◦) and
(a◦, j◦) crosses (i◦, k◦) for all a ∈ Z.

Note that two arcs that share a vertex do not cross one another. An example of this is the
arcs (3◦, 5◦), (2◦, 3◦) in the example above.
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Definition 7.5. We have a way of expressing when arcs cross, so we can define when an arc
is between two connecting arcs. For non-intersecting connecting arcs (i◦, j◦) and (l◦, k◦) with
i > l, j < k:
i) (p◦, q◦) is between (i◦, j◦) and (l◦, k◦) if l < p, q < i.
ii) (p◦, q◦) is between (i◦, j◦) and (l◦, k◦) if j < p, q < k.
iii) (p◦, q◦) is between (i◦, j◦) and (l◦, k◦) if l < p < i,j < q < k.

Definition 7.6. A triangulation of the strip is a maximal set T of non-crossing arcs in the
strip.

Example 7.7. A triangulation of a small subset of the strip. The subset contains 9 vertices in
Z◦ and 4 vertices in Z◦.

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

Definition 7.8. A triangulation T of the strip is called good if for each connecting arc (p◦, q◦) ∈
T there exists

(p′◦, q′◦) ∈ T, (p′, q′) ∈ (< p,> q) and

(p′′◦, q′′◦ ) ∈ T, (p′′, q′′) ∈ (> p,< q) and

Expressed more simply, a triangulation is good if it has infinitely many connecting arcs in
both directions. We notice how a good triangulation has infinitely many diagonal arcs, and an
SL2-tiling with enough ones has infinitely many ones. The notation (> i,< j), (< i,> j) seems
to occur both places as well.

Remark 7.9. We are well acquainted with triangulated polygons. We may relate finite subsets
of a triangulated strip to triangulated polygons. We illustrate how by a short example.

Example 7.10. 9 vertices bound together by the connecting arcs (1◦, 0◦) and (−1◦, 5◦).

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦
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Within the confines of these two connecting arcs, we consider all other arcs to be diagonals
of the polygon P with vertices {1◦, 0◦, 1◦, 2◦, 3◦, 4◦, 5◦,−1◦, 0◦}. The diagonals of P are given
by the arcs {(0◦, 3◦), (0◦, 5◦), (1◦, 3◦), (3◦, 5◦), (1◦,−1◦), (1◦, 5◦)}. We construct the 9-gon and
draw the diagonals as listed.

0◦

1◦

2◦
3◦

4◦

5◦

−1◦
0◦

1◦

This 9-gon has quiddity cycle 3,2,1,4,1,4,2,1,3 which translates to the frieze below.

... 1 1 1 1 1 1 1 1 1 ...
... 3 2 1 4 1 4 2 1 3 ...

... 8 5 1 3 3 3 7 1 2 ...
... 13 2 2 2 8 5 3 1 5 ...

... 8 5 3 1 5 13 2 2 2 ...
... 3 7 1 2 8 5 1 3 3 ...

... 1 4 2 1 3 3 2 1 4 ...
... 1 1 1 1 1 1 1 1 1 ...
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8. Constructing SL2-tilings from triangulations of the strip

In this section we will describe a map that takes any good triangulation of the strip to an
SL2-tiling with enough ones. We show the validity of the map, and further explain the map
through an example.

Construction 8.1. An SL2-tiling t with enough ones is constructed from a good triangulation
T such that t = Φ(T) in the following manner: Consider a pair of vertices (i◦, j◦) which is not
necessarily an arc. Choose a pair of connecting arcs (p◦, q◦), (r◦, s◦) ∈ T such that p < i < r
and s < j < q. Since T is a good triangulation this can be done for any pair (i◦, j◦).

We view {p◦, ..., r◦, s◦, ..., q◦} as a polygon P of |{p◦, ..., r◦, s◦, ..., q◦}| vertices. The arcs of
T between (r◦, s◦) and (p◦, q◦) are considered diagonals in the triangulation of the polyon (see
Definition 7.5). We denote this triangulation TP .

We define t by

tij = TP (i◦, j◦)

where TP (i◦, j◦) is the value (Pi◦ , Pj◦) in the polygon P in the notation introduced in Definition
5.1.

Remark 8.1. By Remark 5.6, we have that (Pr, Ps) = 1 if and only if there exists an edge
between the two vertices. More specifically, Construction 8.1 gives us tij = 1↔ (i◦, j◦) ∈ T.

Proposition 8.2. Construction 8.1 gives a well defined SL2-tiling, and the tiling t = Φ(T) has
enough ones.

Proof. To show Φ is well defined, we need to show that the tiling is unaffected by our choice of
connecting arcs (p◦, q◦), (r◦, s◦) ∈ T. We show this by choosing two different pairs of diagonal
arcs (p◦, q◦), (r◦, s◦), and (p′◦, q′◦), (r′◦, s′◦). Both pairs of diagonal arcs restrict a finite subset
of the strip which contains (i◦, j◦). The two choices give us two corresponding triangulated
polygons TP and TQ. We wish to show that tij = TP (i◦, j◦) = TQ(i◦, j◦). In the following
figures the choices of connecting arcs are drawn. The dotted line (i◦, j◦) represents that there
will not always be such an arc.

r◦ i◦ p◦

s◦ j◦ q◦
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r◦ i◦ p◦ p
′◦r

′◦

s◦ j◦ q◦s′◦ q′◦

Let P be the smallest subset of the strip containing (i◦, j◦). Then Q becomes an expansion of
P by adding vertices on the outskirts of P by methods seen in Section 4. The triangulation
of the inner polygon remains unchanged. Furthermore, by Remark 5.4 we see that the value
of (i◦, j◦) is the same for any choice of surrounding polygon. In other words, tij remains the
same, regardless which pairs (r◦, s◦), (p

◦, q◦) we choose. Φ is then well defined.

Next, we show that t has enough ones. By Remark 8.1, we get that a good triangulation
gives us infinitely many ones in the tiling, as each diagonal arc corresponds to a 1 ∈ t.

Additionally, we describe where these ones must occur. A diagonal arc (p◦, q◦) has a neigh-
bouring diagonal arc to the left, such that (p′◦, q′◦) ∈ T and p′◦ > p◦, q′◦ < q◦. Because they
correspond to diagonal arcs, tpq = 1 and tp′q′ = 1, (p′, q′) ∈ (> p,< q). The element tp′q′ then
is a 1 in the bottom left quadrant from tpq. Similarly a diagonal to the right of (p◦, q◦), say
(p′′◦, q′′◦ ) gives us tp′′q′′ = 1 with p′′ < p, q′′ > q, so (p′′, q′′) ∈ (< p,> q). Then the element
tp′′q′′ is a 1 in the upper right quadrant from tpq. This means that t = Φ(T) has enough ones,
as for every tij we have 1 ∈ (> i,< j), 1 ∈ (< i,> j).

Lastly, we show that t is an SL2-tiling. tij > 0 ∀ i, j since TP (−,−) are all positive inte-
gers. We only need to show that all adjacent 2 x 2-submatrices have determinant 1.

∣∣∣∣ TP (i◦, j◦) TP (i◦, (j + 1)◦)
TP ((i+ 1)◦, j◦) TP ((i+ 1)◦, (j + 1)◦)

∣∣∣∣ = 1

Here P is bounded by (p◦, q◦), (r
◦, s◦), where p, q, r, s are chosen such that p < i < i + 1 <

r, s < j < j + 1 < q. This is always possible, as we can choose connecting arcs far enough
from (i◦, j◦) for the requirement to hold. The determinant above becomes a description of the
unimodular rule for the frieze of P, as we defined TP (i◦, j◦) to be the value (Pi◦ , Pj◦) in the
polygon P . �

Example 8.3. We illustrate how we can create the start of an SL2-tiling from a triangulated
strip, in practice. Since both figures will be infinite we will illustrate this for [−5◦, 5◦], [−5◦, 5◦]
which will yield an 11× 11-submatrix of an SL2-tiling.
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−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

The nodes included in the green box are considered to be a 12-gon, where the triangulation is
given by the arcs in the strip between those 12 vertices. This is illustrated in the figure below to
the right. The non-green part of the triangulation is illustrated below to the left.

−2◦

−1◦

0◦

0◦ 1◦
2◦

3◦

4◦

5◦

−5◦−4◦

−3◦

−2◦

−1◦

0◦

0◦ 1◦

2◦

3◦

4◦

5◦

−5◦−4◦

−3◦

Using these two figures, we can calculate (0◦, i◦), (i
◦, 0◦) for i ∈ {−5, ..., 5}:

i -5 -4 -3 -2 -1 0 1 2 3 4 5
(i◦, 0◦) 19 8 5 7 2 1 2 3 1 4 3
(0◦, i◦) 7 10 3 2 3 1 2 1 3 2 7

We then insert the middle row and middle column and calculate the remaining elements in the
11× 11-submatrix by using that the determinants of all 2× 2-submatrices are 1. We start this
process at the intersection, moving in either direction from t00.
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...
193 274 81 50 69 19 26 7 9 2 1
81 115 34 21 29 8 11 3 4 1 1
50 71 21 13 18 5 7 2 3 1 2
69 98 29 18 25 7 10 3 5 2 5
19 27 8 5 7 2 3 1 2 1 3

... 7 10 3 2 3 1 2 1 3 2 7 ...
9 13 4 3 5 2 5 3 10 7 25
11 16 5 4 7 3 8 5 17 12 43
2 3 1 1 2 1 3 2 7 5 18
3 5 2 3 7 4 13 9 32 23 83
1 2 1 2 5 3 10 7 25 18 115

...

Should we want to expand the tiling beyond this 11 × 11-submatrix we would need to continue
the triangulation of the strip. It is also worth mentioning that although the set up we used now
helps us compute a partial tiling, it has its limitations. For us to compute tij, we need a polygon
large enough to include both i◦ and j◦. This may end up being very large polygons, and for this
reason we will not show many full examples of this construction.

Notice how even in such a small example, when we model a tiling after a subset of the
triangulated strip, the value 1 seems to occur in the top right and bottom left quadrants, in a
zig-zag pattern, and only in this zig-zag pattern. This could perhaps be special for the example
we chose here, but we will show that it is not. By Remark 8.1 we get that in a tiling t created
through Construction 8.1 all ones must follow a zig-zag path. We wish to show that all SL2-
tilings with enough ones have this property, but in order to do so we need to introduce some
new computational notation.
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9. Computational tools for SL2-tilings

In this section we introduce a new computational notation used to show various results for
SL2-tilings. The notation has a geometrical interpretation which is explored more by Holm and
Jørgensen in SL2 − tilings and triangulations of the strip ([4], section 5). We will in this
paper use it solely as a tool to be used in other results.

Definition 9.1. For an SL2-tiling t let i < j, i, j ∈ Z. Choose a ∈ Z. We define cij,dij as
follows.

cij =

∣∣∣∣tia ti,a+1

tja tj,a+1

∣∣∣∣ , dij =

∣∣∣∣ tai taj
ta+1,i ta+1,j

∣∣∣∣
Remark 9.2. ci,i+1 = di,i+1 = 1 for i ∈ Z.

This follows from t being an SL2-tiling. Below we show the insertion, and the resulting
matrices which describe the demand for an SL2-tiling that all 2×2-submatrices have determinant
1.

ci,i+1 =

∣∣∣∣ tia ti,a+1

ti+1,a ti+1,a+1

∣∣∣∣ , di,i+1 =

∣∣∣∣ tai ta,i+1

ta+1,i ta+1,i+1

∣∣∣∣
Proposition 9.3. Let t be an SL2-tiling, i < j < k < l are integers. Then

cikcjl = cijckl + cilcjk, dikdjl = dijdkl + dildjk

.

Proof. We will prove only cikcjl = cijckl + cilcjk, as dikdjl = dijdkl + dildjk is done the exact
same way, and this is horribly tedious to show.

∣∣∣∣ tia ti,a+1

tk,a tk,a+1

∣∣∣∣ ∣∣∣∣tja tj,a+1

tl,a tl,a+1

∣∣∣∣ =

∣∣∣∣ tia ti,a+1

tj,a tj,a+1

∣∣∣∣ ∣∣∣∣tka tk,a+1

tl,a tl,a+1

∣∣∣∣+

∣∣∣∣tia ti,a+1

tl,a tl,a+1

∣∣∣∣ ∣∣∣∣ tja tj,a+1

tk,a tk,a+1

∣∣∣∣
(tiatk,a+1 − tk,ati,a+1)(tjatl,a+1 − tl,atj,a+1) = (tiatj,a+1 − tj,ati,a+1)(tkatl,a+1 − tl,atk,a+1) +
(tiatl,a+1 − tl,ati,a+1)(tjatk,a+1 − tk,atj,a+1)

tiatk,a+1tjatl,a+1−tk,ati,a+1tjatl,a+1−tiatk,a+1tl,atj,a+1+tk,ati,a+1tl,atj,a+1 = tiatj,a+1tkatl,a+1−
tj,ati,a+1tkatl,a+1−tiatj,a+1tl,atk,a+1+tj,ati,a+1tl,atk,a+1+tiatl,a+1tjatk,a+1−tl,ati,a+1tjatk,a+1−
tiatl,a+1tk,atj,a+1 + tl,ati,a+1tk,atj,a+1

This is quite the mess. We sort the terms alphabetically on the first term in the subscript, and
add a splash of colour to more easily identify equal terms in the equation.

tiatjatk,a+1tl,a+1−ti,a+1tjatk,atl,a+1−tiatj,a+1tk,a+1tl,a+ti,a+1tj,a+1tk,atl,a = tiatj,a+1tkatl,a+1−
ti,a+1tj,atkatl,a+1−tiatj,a+1tk,a+1tl,a+ti,a+1tj,atk,a+1tl,a+tiatjatk,a+1tl,a+1−ti,a+1tjatk,a+1tl,a−
tiatj,a+1tk,atl,a+1 + ti,a+1tj,a+1tk,atl,a

�

Proposition 9.4. Let t,i,j,k be as above, and choose an integer a. Then

tjacik = tiacjk + tkacij , tajdik = taidjk + takdij
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Proof. We again prove this only for the c-terms as the proof for the d-terms is identical.
tjacik = tiacjk + tkacij

tj,a ·
∣∣∣∣ tia ti,a+1

tk,a tk,a+1

∣∣∣∣ = tia ·
∣∣∣∣ tja tj,a+1

tk,a tk,a+1

∣∣∣∣+ tka ·
∣∣∣∣ tia ti,a+1

tj,a tj,a+1

∣∣∣∣
tja(tiatk,a+1 − tk,ati,a+1) = tia(tjatk,a+1 − tk,atj,a+1) + tka(tiatj,a+1 − tj,ati,a+1)
Multiplied and with terms sorted alphabetically
tiatjatk,a+1 − ti,a+1tjatk,a = tiatjatk,a+1 − tiatj,a+1tk,a + tiatj,a+1tka − ti,a+1tj,atka
tiatjatk,a+1 − ti,a+1tjatk,a = tiatjatk,a+1 − tiatj,a+1tk,a + tiatj,a+1tka − ti,a+1tj,atka

�

Remark 9.5. As a consequence of Proposition 9.4 we can show that cij , dij ∈ Z+ for i < j in
an SL2-tiling t and for any a ∈ Z.

Proof. We prove cij > 0 by induction on j. dij > 0 is proven similarly.
For j = i + 1 we have shown ci,i+1 = 1. Assume cij > 0 for i < j ≤ r. Then ci,r+1 =
tiacr,r+1 + tr+1,acir

tra
. Since cr,r+1 = 1 we reduce the expression.

ci,r+1 =
tia + tr+1,acir

tra
> 0, because we know tia > 0 ∀i, a and cir > 0 by our assumption. We

know cij is an integer by its definition because cij is multiplications and subtractions of integers
as tij is always an integer. �

Proposition 9.6. Let t be an SL2-tiling and i < j and p < q integers. Then∣∣∣∣tip tiq
tjp tjq

∣∣∣∣ = cijdpq ∈ Z+

Proof. The expression is clearly a positive integer as Remark 9.5 states both cij and dpq are
positive integers. The remainder of the proof is stated in 5.7 [4] as computational. �

From these results we can show more general results for SL2-tilings. First we can show
restrictions for where ones may occur in a tiling, before we describe accurately where they in
fact must occur.

Proposition 9.7. Let t be an SL2-tiling, and n ∈ Z+. For a fixed i, tij = n finitely many
times. Similarly for a fixed j, tij = n occurs finitely many times. In other words each row and
each column contains any specific number at most a finite number of times.

Proof. Fix j and let k < l < ... be an increasing sequence such that tkj = tlj = ... = n. The
first two terms give us

ckl =

∣∣∣∣tka tk,a+1

tla tl,a+1

∣∣∣∣(3)

By Remark 9.5, we know this to be positive for all a ∈ Z, so we let a = j. Then

0 <

∣∣∣∣tkj tk,j+1

tlj tl,j+1

∣∣∣∣ =

∣∣∣∣n tk,j+1

n tl,j+1

∣∣∣∣ = n(tl,j+1 − tk,j+1) =⇒ tl,j+1 > tk,j+1

Continuing this process for the second and third terms of the sequence, and so forth, we get
that k < l < ... gives us tl,j+1 > tk,j+1 > ..., which must be finite since all tpq > 0. Therefore
k < l < ... must also be finite.
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Next let k > l > ... be a decreasing sequence, still such that tkj = tlj = ... = n. Then

clk =

∣∣∣∣tla tl,a+1

tka tk,a+1

∣∣∣∣ =⇒
∣∣∣∣tlj tl,j+1

tkj tk,j+1

∣∣∣∣ =

∣∣∣∣n tl,j+1

n tk,j+1

∣∣∣∣ > 0 =⇒ tk,j+1 > tl,j+1

As before by continuing this step for the next few terms we get k > l > ... which implies that
tk,j+1 > tl,j+1 > ... > 0 so k > l > ... must be finite.

So far we have shown that tij = n finitely many times in each column, if there exist any at
all. The proof that tij = n finitely many times in each row is analogous using dkl, dlk. �

Recall the notation (< i,> j) from Definition 6.3 to describe quadrants of SL2-tilings.

tij

(i >,> j)

(< i,< j)

(> i,< j)

(< i,> j)

(i, < j) (i, > j)

Proposition 9.8. Let t be an SL2-tiling, and i, j, p, q ∈ Z. If tij = 1 then tpq 6= 1,∀ (p, q) ∈
(< i,< j)∪ (> i,> j). This means the bottom right and top left quadrants may not contain the
value 1, from the starting point tij = 1.

Proof. To prove this we assume otherwise. Let txy = tzw = 1, with x < z, y < w. Then by
Proposition 9.6 we have by inserting x = i, y = j, z = p, w = q

cxzdyw =

∣∣∣∣txy txw
tzy tzw

∣∣∣∣ = txytzw − tzytxw = 1− tzytxw ≤ 0

This is a contradiction to Proposition 9.6 stating that cxzdyw > 0. Therefore we cannot have
txy = tzw = 1, with x < z, y < w. We need not check x > z, y > w, as that is the same case as
above with different names. �
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10. Revisiting friezes

Let us consider friezes as partial tilings, placed as diagonal bands. This way the unimodular
rule is covered by the normal submatrix determinant requirement of a tiling. By considering
diagonal bands friezes, vertical lines in the partial tiling become what we are used to referring
to as diagonals of the frieze. This change in perspective is illustrated below.

1 1 1 1 ...1111...

1 1 1 1 ...1111...

...

...

a

b

d

c

Here, ad−bc = 1 by the unimodular rule. Rotating the frieze 45 degrees clockwise, we obtain
a pattern without staggered rows, like a diagonal band in a matrix.

1

1

1

1

11

1

1

1

1

1

1

11

1

1

a b

dc

ad − bc = 1 is the determinant of a 2 × 2 submatrix in the diagonal band above. In this
section we intend to relate diagonal band friezes to SL2-tilings.

Theorem 10.1. Let t be and SL2-tiling. Let i ≤ j, p ≤ q, (i, j) 6= (p, q) be integers with
tij = tpq = 1. Then there exists a frieze which matches t in the rectangle R = {txy | i ≤ x ≤
j, p ≤ y ≤ q}.

Proof. We begin with restricting t to R, before extending it to a fundamental region within the
potential borders of a frieze. Let us begin with a figure showing the rectangle R.
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tjp tjq

tiqtip

1

1

1

1

1

1

1

1

1

1

1

1

R

Note that a frieze defined on a diagonal band such as this may never occur in an SL2-tiling
with enough ones. The placement of the ones in the border would be contradictory to sev-
eral results. The theorem merely states that between two ones moving diagonally from south
west to north east, there is a whole rectangle which is identical to that of a diagonal band frieze.

Knowing a single diagonal of a frieze allows us to complete it. We wish to extend the rec-
tangle R to a fundamental region, stretching from tiq straight west and straight south until
it reaches the border. This will give us a full diagonal. If we can prove that this region is in
accordance with the rules of a frieze we know that the frieze is then made up of reflections of
that fundamental region, and so we are done. Consider the figure below, in which we have filled
out the fundamental region by adding triangular regions of cxy, dxy in the top left and bottom
corners, respectively.
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tj,p+1

cj−1,j

cj−2,j−1

dp,p+1

dp+1,p+2

tjq

tiq

R

tjp

tip

dq−1,q

dp,p+2 dpq

cj−2,j

cijci,i+1

tj,p+2

dp+1,q

ci,j−1

tj−1,p

tj−2,p

Here we continue the rectangle (i...j, p...q) = {(x, y) ∈ Z× Z | i ≤ x ≤ j, p ≤ y ≤ q} by adding
small triangles to complete a fundamental region. Note here that ci,i+1, ..., cj−1,j , tjp, dp,p+1, ...,
dq−1,q consists only of ones. Note also that this may never be the case in an SL2-tiling with
enough ones, as this will breach several results regarding where ones may be positioned. However
should we consider a partial tiling with a diagonal of ones, the rectangle which agrees with t
may be extended in the manner shown. We will show why the triangles added to the rectangle
are the d and c elements. We will show this only for the bottom triangle as both sides have
similar proofs. Using d-notation we can do the following.∣∣∣∣ tj,p+1 tj,p+2

dp,p+1 dp,p+2

∣∣∣∣ =

∣∣∣∣tp−1,p+1 tp−1,p+2

dp,p+1 dp,p+2

∣∣∣∣ = tp−1,p+1dp,p+2 − tp−1,p+2dp,p+1

Next we apply Proposition 9.4 stating tikdik = taidjk+ takdij , tikdik = taidjk+ takdij rewritten
tikdik− takdij = taidjk. We insert a = p−1, i = p, j = p+1, k = p+2, and get tp−1,p+1dp,p+2−
tp−1,p+2dp,p+1 = tp−1,pdp+1,p+2 = 1 since tp−1,p = tj,p = 1. In other words dp,p+2 must occupy
the space below tj,p+2 for the determinant of the 2× 2-submatrix to be 1. In a similar fashion
it is straight forward to show the whole row dp,p+i, ..., dpq must be as in the figure. The rows
further down we compute using Proposition 9.3.
We insert i = p, j = p+1, k = p+2, l = p+3 into dikdjl = dijdkl+dildjk to get dp,p+2dp+1,p+3−
dp,p+3dp+1,p+2 = dp,p+1dp+2,p+3 = 1 which gives the next term in the second row of d-terms.
We continue this way till the end of the triangle. We continue using the bottom row currently
calculated to calculate the next row, starting at the left most element after the border. For the
very last term in the bottom corner there is no full 2 × 2-submatrix we can use to determine
the final term. However, we already know the value of dq−1,q as all ds,s+1 = 1. Similarly we
use the same propositions to show the top left triangle of c-terms.

�

Incidentally, Theorem 10.1 also implies that in an SL2-tiling, elements will divide the sum of
their horizontal neighbours, and the sum of their vertical neighbours. This will not be needed
for the proofs to come, but it is inarguably amusing.
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11. Zigzag path of ones

In this section we determine how all ones can and must be distributed in an SL2-tiling. This
is necessary before we can find an inverse map of Construction 8.1.

Proposition 11.1. Let t be an SL2-tiling with tjp = 1
i) trs = 1 for (r, s) ∈ (< j,> p) =⇒ either tqs = 1, q < r or trw = 1, w > s but not both.
In other words if a 1 occurs in the top right quadrant it also occurs on one of the half lines
restricting the quadrant but not both.
ii) trs = 1 for (r, s) ∈ (> j,< p) =⇒ either tqs = 1, q > r or trw = 1, w < s but not both.
In other words if a 1 occurs in the bottom left quadrant it also occurs on one of the half lines
restricting the quadrant but not both.

Proof. The proofs for i) and ii) are similar so we show only i).
If a 1 occurs on both half lines it contradicts Proposition 9.8, as one term then is in the top
left quadrant in relation to the other. It then remains to show that if tjp = 1 and a 1 occurs in
the top right quadrant, tiq = 1, (i, q) ∈ (< j,> p), it also occurs on one of the half lines (< j, p)
or (j,> p).

We wish to prove this by contradiction so assume that tjp = 1 = tiq, (i, q) ∈ (< j,> p)
and that txp 6= 1 6= tjy,∀x < j, y > p. Furthermore let (i,q) be the closest term in this quadrant
such that tiq = 1 so that the rectangle R = {txy | i ≤ x ≤ j, p ≤ y ≤ q} has only two ones,
namely tjp, tiq. By Theorem 10.1 the SL2-tiling agrees with a frieze on the rectangle R.

tiq

tjp tjq

tip

The figure above represents in the blue box, the rectangle R, placed within a frieze, here
represented as a diagonal band. The diagonal borders are all ones, and the large triangles
represent the alternating fundamental regions of the frieze. For i < i+ 1 < j we can draw the
following illustration.
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tj,p+1

1

1

1

1

1

1

tjq

ti+1,qti+1,p+1

tiq

1

1

tjp

ti+1,p

tip ti,p+1

1

∗ ∗

∗

∗

∗

∗

1

1 ∗

We draw a polygon corresponding to the rectangle R (not the smaller red box, mind you).

j

p

q

i

i+ 1

The elements in the red box in the figure above correspond to the diagonals between the
diagonals (i + 1, q), (j, p). For R to be a part of a frieze pattern the correlating triangulated
polygon TP must be a maximal triangulation. We also know from Section 5 that in a frieze
(x, y) = 1 ↔ (x, y) ∈ TP . However the whole column of elements (y, q) for i + 1 ≤ y ≤ j
contains no ones by our assumption, and similarly (x, p) for i+ 1 ≤ x ≤ j we have no diagonals
crossing a potential diagonal from i to p. In other words for such a triangulation to be maximal,
(i, p) ∈ T which implies tip = 1. This contradicts our assumption, and we are done. For the
special case where i+ 1 = j we get that the rectangle R is a 2× 2 matrix with∣∣∣∣tip tiq

tjp tjq

∣∣∣∣ =

∣∣∣∣tip 1
1 tjq

∣∣∣∣ = tiptjq − 1 = 1 =⇒ tip = 1, tjq = 2 or tip = 2, tjq = 1

which again contradicts our assumption.
�
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Proposition 11.2. For any SL2-tiling t with enough ones there exists a zigzag pattern of
coordinates (xα, yα) ∈ Z× Z, α ∈ Z with the following properties.
i) txy = 1↔ (x, y) = (xα, yα) for some α
ii) For each α either xα+1 < xα, yα+1 = yα or xα+1 = xα, yα+1 > yα
iii) There are infinitely many twists and turns in the zigzag pattern in both directions.

Proof. iii) is a direct consequence of Proposition 9.7, as otherwise there would be infinitely
many ones in either a row or column since t has enough ones.

ii) follows from the definition, it simply numbers (xα, yα) so that α increases from south west
to north east in t. We need to show → in i), and that such a system exists. Below we show a
figure of what such a zigzag pattern looks like.

1

1 1

1

1

1

1

1

To show that the ones on the path are all possible ones, consider the figure below. Here we
choose an arbitrary element in {(p, q) ∈ Z × Z |tpq = 1}. We mark in red the areas that may
not contain a 1 by Proposition 9.8, in both the top left and bottom right quadrants from tpq.
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tp,q

(< p,< q)

(> p,> q)

1

1 1

1

1

1

1

1

We repeat this process for all ones on the path to reveal a mesh pattern that blots out all of
the tiling that is not on the path.

1

1 1

1

1

1

1

1

We know now that should such a path exist, all ones must be on it. SL2-tiling with enough
ones has infinitely many ones in the top right and bottom left quadrants. By Proposition 11.1
this also guarantees a zigzag path of ones as depicted and described above.

We choose the numbers on the path {(xα, yα)} such that if more than one 1 occurs on the
same half line we choose the closest one as the next element of the sequence. This means that
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for t(xα, yα) = 1, if t has the value 1 on the half line (< xα, yα) let xα+1 be maximal on the
half line such that t(xα+1, yα) = 1 while yα = yα+1.

If a 1 occurs on the half line (xα, > yα) let yα+1 be minimal on the half line, such that
t(xα, yα+1) = 1 and xα = xα+1. With this construction all ones in the tiling must be in the set
{(xα, yα)}. �

Note that since all ones in the tiling must be in this zigzag path it is also unique, although
one may add a constant to α to shift the names of the elements.

Remark 11.3. Filling out the elements in the segments between ones in the zigzag path in
Proposition 11.2 creates a path that determines the whole SL2-tiling. This is realized by starting
at any corner in the path and expanding by the determinant rule for the tiling.
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12. Constructing triangulations of the strip from SL2-tilings

We will now present a way of constructing good triangulations of the strip from SL2-tilings
with enough ones. We can then show that this construction and Construction 8.1 are inverse
bijections.

Construction 12.1. Starting with an SL2-tiling with enough ones, we construct a good trian-
gulation of the strip T = Ψ(t) in the following manner.

We start with drawing all the connecting arcs ((xα)◦, (yα)◦) in T, where xα, yα are from the set
of ones described in Proposition 11.2. This guarantees that the resulting triangulation will be
good, should it be a triangulation at all. Additionally by ii) in Proposition 11.2 these diagonal
arcs must be pairwise non-crossing, illustrated in the figure below. For this figure yα+1 = yα.

(xα)◦ (xα − 1)◦ (xα+1)◦(xα+1 + 1)◦

(yα)◦

We do this for every pair along our zigzag path to create a series of the segments seen above.
Each of these is then viewed as a polygon in the manner we are accustomed to. Since we have
t(xα, yα) = 1 and xα = xα+1 Theorem 10.1 states there exists a freeze which agreed with t on
the area R. However R has width 1 in this case, an it is simply the vertical line depicted below.

1

1

1

1

t(xα+1, yα)

t(xα+1 + 1, yα)

t(xα, yα)

t(xα − 1, yα)

1

1

1

This vertical line defines the whole frieze, as a vertical (or horizontal) line in a diagonal band
corresponds to diagonals in the friezes from Section 3. We construct TP by filling out the
friezes and finding the triangulation of the polygon P = (xα+1, xα+1 +1, ..., xα, yα). We add the
diagonals of TP to T. This completes the triangulation of a subset restricted by the diagonals
((xα)◦, (yα)◦), ((xα+1)◦, (yα+1)◦), for any choice of α.
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Example 12.1. Creating a subset of a triangulation of the strip by applying Construction 12.1
to a 11× 11-submatrix of an SL2-tiling with enough ones.

...
5 12 7 9 2 3 7 11 4 1 2
12 29 17 22 5 8 19 30 11 3 7
19 46 27 35 8 13 31 49 18 5 12
7 17 10 13 3 5 12 19 7 2 5
9 22 13 17 4 7 17 27 10 3 8

... 2 5 3 4 1 2 5 8 3 1 3 ...
3 8 5 7 2 5 13 21 8 3 10
1 3 2 3 1 3 8 13 5 2 7
2 7 5 8 3 10 27 44 17 7 25
3 11 8 13 5 17 46 75 29 12 43
1 4 3 5 2 7 19 31 12 5 18

...

We are most interested in the zigzag path of ones. Let the red number below be t0,0.

...
1 2
3
5
2
3

... 1 2 5 8 3 1 ...
2

1 3 2 3 1
2
3
1

...

We identify that there are ones in the coordinates (5,−5), (2,−5), (2,−1), (0,−1), (0, 4), (−5, 4).
We add the corresponding diagonals to the strip.

−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦
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This gives us a nice pattern of non-crossing arcs, which separate the strip into finite polygons
which we can triangulate with ease.

Consider first the vertical line in the top right corner, 1, 3, 5, 2, 3, 1. By Theorem 10.1 this
line matches a diagonal in a frieze.

... 1 1 1 1 1 1 1 ...
... 3 ...

... 5 ...
... 2 ...

... 3 ...
... 1 1 1 1 1 1 1 ...

We fill out the frieze by the unimodular rule. Keep in mind here that the elements in this
diagonal represent (P−5◦ , P4◦) = 1, (P−4◦ , P4◦) = 3, ..., (P0◦ , P4◦) = 1 for a polygon P with
vertices P−5◦ , P−4◦ , P−3◦ , P−2◦ , P−1◦ , P0◦ , P4◦ .

... 1 1 1 1 1 1 1 ...
... 3 2 1 4 1 3 1 ...

... 5 1 3 3 2 2 ...
... 2 2 2 5 1 3 ...

... 3 1 3 2 1 ...
... 1 1 1 1 1 1 1 ...

We need not fill out the frieze past 7 elements in the second row since the quiddity cycle of a
frieze with 6 rows has order 7. The frieze above has quiddity cycle 3, 2, 1, 4, 1, 3, 1. To find the
triangulation corresponding to this we apply Construction 4.2 to get the polygon.

P4◦

P−5◦
P−4◦

P−3◦

P−2◦

P−1◦
P0◦

To find out how to name the vertices we use the diagonal we started with. Since the diagonal
has only two ones, we know the node 4◦ is a special vertex. We can find the correct vertex by
trial and error, filling out the polygon with the method from Definition 5.1. All the diagonals
in this heptagon are a part of the triangulation of the strip, namely they are all arcs between
(0◦, 4◦), (−5◦, 4◦) ∈ T. We fill out similar diagrams for all other segments on the zigzag path
to obtain the triangulation below.
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−5◦−4◦−3◦−2◦−1◦0◦1◦2◦3◦4◦5◦

−5◦ −4◦ −3◦ −2◦ −1◦ 0◦ 1◦ 2◦ 3◦ 4◦ 5◦

Note that for horizontal lines in the zigzag path in the SL2-tiling you have a bit of a choice.
You may choose to read a horizontal line as a diagonal from south west to north east in a frieze
pattern (as it would appear as such in a diagonal band) or you may treat it exactly the same way
as you would a vertical line. This is because of the properties that frieze patterns are repeated
and mirrored fundamental regions. In other words, a diagonal (a, b, c, ..., r) going from north
west to south east starting with a, will also appear going from south west to north east with a
as the bottom element. We also know that a diagonal going either way in a frieze determines
the whole frieze so it matters not which option we choose.

It then remains only to show this map is the inverse of the map in Construction 8.1 and vice
versa.

Theorem 12.2. The maps Φ and Ψ from Construction 8.1 and Construction 12.1 respectively
are inverse bijections between good triangulations of the strip and SL2-tilings with enough ones.

Proof. We intend to show Ψ ◦ Φ is the identity on the triangulated strip. Let T be a good
triangulation of the strip. Let t = Φ(T),U = Φ(t). We want to show then, that U = T. Note
that t is an SL2-tiling with enough ones by Proposition 8.2. Let ((xα)◦, (yα)◦) be the connecting
arcs in T. Since t was created by Construction 8.1 we have that txy = 1 ↔ (x, y) = (xα, yα)
for some α by Remark 8.1. By Proposition 11.2 we see that the set of ones must be the zigzag
pattern described. Note that the connecting arcs ((xα)◦, (yα)◦) must also be in U as U = Ψ(t),
and Construction 12.1 takes the ones of t to diagonals in U .

We now know that the maps move ones to diagonal arcs and back, and we need only con-
sider the stuffing in between ones, namely the triangulation of finite polygons. Consider the
subset of the strip restricted by ((xα)◦, (yα)◦), ((xα+1)◦, (yα+1)◦) ∈ T. We know that either
xα = xα+1 or yα = yα+1. We show the following only for the case that xα = xα+1 as both
cases are handled similarly.
Now yα < yα+1. Let P be the polygon with r vertices, xα, yα, yα + 1, ..., yα+1. Construction
8.1 defines t by tx,y = TQ(x, y) for some surrounding polygon Q in the strip. More specifically

txα,y = TP (x◦α, y◦), yα ≤ y ≤ yα+1

Next we apply Ψ to txα,y to obtain a triangulation UP for the same polygon P as the vertices
are xα, yα, yα + 1, ..., yα+1. We wish to show that the triangulation is equal, that is, to show
the quiddity cycle is the same. Now

UP (x◦α, y◦), yα ≤ y ≤ yα+1 = txα,y

so
UP (x◦α, y◦) = TP (x◦α, y◦), yα ≤ y ≤ yα+1

which states the friezes corresponding to UP and TP have one equal diagonal. Now by Remark
3.5 a diagonal determines the whole frieze, so the friezes corresponding to UP and TP are
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equal. More specifically the second rows of the friezes are equal. Construction 4.2 creates the
triangulations UP = TP by setting the second row as the quiddity cycle of P . �

13. Appendix

In the first 5 sections we explored the connection between triangulated polygons and friezes.
It would be interesting as further work to look for different patterns in triangulated polygons
and see if they also appear in friezes, and vice versa. A possible next step for further study is to
alter the rules that bind friezes. Friezes follow the unimodular rule. Expanding them to have
infinitely many rows is essentially what SL2-tilings are. This change gave rise to a plethora of
new questions and answers. Should we find another way to change the restrictions on these
patterns, they too might relate to a geometrical or combinatoric object in a similar fashion.
This might also include looking at patterns similar to friezes that do not follow the unimodular
rule.
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