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A comparison of the aerodynamic stability limits using three different configurations of a so-called vented or 
dual box girder has been done. The only difference in each configuration is the center-to-center distance 
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A modal approach to solving the equation of motion has been employed where the eigenfrequencies and 
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stability limits as well as dynamic response have been done using self-written MATLAB scripts based on well-
established theory of bridge aerodynamics. Aerodynamic derivatives have been obtained from wind tunnel 
tests on the similar cross section of the proposed Brusymfonien bridge.  
 
The results obtained show an increasing critical mean wind velocity with increasing the center-to-center 
widths between the box sections. For the widest dual box girder, no stability limits were found. The response 
results confirm the stability limits and indicate a stabilization effect of the dual box girders at wind velocities 
below the point of modal coupling. 
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AERODYNAMISK STABILITET AV LANGE SLANKE HENGEBRUER 
 

Aerodynamic stability of slender suspension bridges 
 
I Norge er det for tiden under planlegging og bygging en rekke meget slanke 
brukonstruksjoner, for eksempel Hardangerbroen som er en klassisk hengebro og 
Hålogalandsbroen som er under utredning i to alternative utgaver, ett alternativ som en vanlig 
hengebro og et annet i form av den såkalte ”Brusymfonien”. Begge har hovedspenn på 
betydelig mer enn 1000 m. De er svært utsatt for den dynamiske lastvirkningen fra vind, men 
begge er håndterbare innenfor dagens teknologi. Det er imidlertid også under utredning en 
kryssing av Sognefjorden som innebærer en bro med spenn på opp til tre kilometer, og i dette 
tilfellet er det usikkert i hvilken grad man vil være i stand til å oppnå en konstruktiv utførelse 
med tilfredsstillende aerodynamisk egenskaper. Det har i den forbindelse blitt foreslått å 
undersøke muligheten for addere dempning til systemet ved hjelp av en eller flere 
massedempere. Hensikten med denne oppgaven er nettopp å se på mulige utførelser av 
fjordkryssinger i denne spennvidden, hvor det legges spesiell vekt på å undersøke i hvilken 
grad massedempere (TMD) kan bidra. Arbeidet foreslås lagt opp etter følgende plan: 
 
1. Studenten setter seg inn i teorien for hengebroens virkemåte (men det er ikke hensikten at 

dette skal munne ut i en omfattende utredning). 
2. Studenten setter seg inn i teorien for aerodynamisk stabilitet av slanke broer, spesielt med 

hensyn til koblede vertikal- og torsjonssvingninger, dvs. ”flutter” (se Strømmen: Theory of 
bridge aerodynamics, Springer 2006). 

3. For en eller flere aktuelle utførelser utførelser (avtales med veileder og Sivilingeniør K. 
Berntsen i Vegdirektoratet) skal det foretas en utredning med sikte på å kvantifisere de 
viktigste mekaniske egenskapene (dvs. aktuelle masse- og stivhetsegenskaper). Basert på 
regnemaskinprogrammet Alvsat skal det deretter foretas beregninger av de aktuelle 
egenfrekvensene og tilhørende egensvingeformene som er avgjørende for 
stabilitetsgrensen. (I den grad tiden tillater det skal disse beregningene utføres i form av et 
parameterstudium.) 

4. For tilfellene som er behandlet under punkt 3 skal det foretas beregninger av 
stabilitetsgrensen. Beregningen skal baseres på en mest mulig generell teori (se punkt 2 
ovenfor) og en løsning i Matlab. 

5. For det samme tilfellet skal det foretas en undersøkelse i hvilken grad en eller flere 
massedempere vil kunne forbedre de dynamiske egenskapene til systemet. 

 
Studenten kan selv velge hvilke problemstillinger han ønsker å legge vekt på. Oppgaven skal 
gjennomføres i samarbeid med Siv.ing. Kristian Berntsen og Dr.ing. Bjørn Isaksen i 
Vegdirektoratet. 
 
NTNU, 2013-01-03 
 Einar Strømmen 
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Abstract

This thesis studies the aerodynamic stability of a proposed suspension bridge
crossing the Sognefjord. Such a bridge will require a main span of approximately
3700 m, almost double the span length of the current record holder. For such
a long span and slender suspension bridge its aerodynamic properties becomes
highly important.

A comparison of the aerodynamic stability limits using three different configura-
tions of a so-called vented or dual box girder has been done. The only difference
in each configuration is the center-to-center distance between the individual box
girders. The design of the individual girders and the cable system is kept constant.

A modal approach to solving the equation of motion has been employed where the
eigenfrequencies and eigenmodes have been computed using a computer program
called ALVSAT [1]. The numerical calculations of stability limits as well as dy-
namic response have been done using self-written MATLAB [2] scripts based on
well-established theory of bridge aerodynamics. Aerodynamic derivatives used are
from wind tunnel tests on the similar cross section of the proposed Brusymfonien
bridge [3].

The results obtained show an increasing critical mean wind velocity with increas-
ing the center-to-center widths between the box girders. For the widest dual box
girder, no stability limits were found. The response results confirm the stability
limits and indicate a stabilization effect of the dual box girders at wind velocities
below the point of modal coupling.
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Sammendrag

Denne oppgaven undersøker aerodynamisk stabilitet av en foresl̊att ett-spenns
hengebro over Sognefjorden. Dette vil kreve en spennlengde p̊a omtrent 3700 m,
som er det dobbelte av dagens rekordholder. En hengebro med ett spenn i denne
lengden vil være veldig slank og viktigheten av dens aerodynamiske egenskaper
er derfor stor.

En sammenligning av aerodynamisk stabilitet av tre utførelser av et s̊akalt dobbelt
kassetverrsnitt har blitt gjort. Forskjellen p̊a utførelsene er senteravstanden mel-
lom de to stivhetsbærerne, mens stivhetsbærerne i seg selv og kabelsystemet er
uendret.

Løsningen av svingelingene baserer seg p̊a en modal framgangsm̊ate, hvor egen-
frekvensene og egensvingemodene er beregnet ved hjelp av datamaskinprogram-
met ALVSAT [1]. De numeriske beregningene av stabilitetsgrenser og dynamisk
respons er gjort ved hjelp av selv skrevne MATLAB [2] rutiner og er basert p̊a
godt etablert teori innen bro-aerodynamikk. Aerodynamisk deriverte fra vind-
tunneltester er tatt fra en rapport p̊a det lignende tverrsnittet til den foresl̊atte
broen Brusymfonien [3].

Resultatene viser en økende kritisk middelvindhastighet n̊ar senteravstanden mel-
lom kassetverrsnittene økes. For det dobble tverrsnittet med bredest senteravs-
tand ble det ikke funnet noen stabilitetsgrense. Responsberegningene bekrefter
stabilitetsgrensene i tillegg til å indikere en stabiliserende effekt ved lavere mid-
delvindhastigheter for slike tverrsnitt.
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Notation

Matrices and vectors

Matrices are in general bold upper case Latin or Greek letters, e.g. Q and Φ.
Vectors are in general bold lower case Latin or Greek letters, e.g. q and ϕ
diag[·] is a diagonal matrix whose content is written within the brackets.
det(·) is the determinant of the matrix within the brackets.

Superscript and bars above symbols

Superscript T indicates the transposed of a vector or matrix.
Superscript * indicates the complex conjugate of a quantity.
Dots above symbols indicates its derivative with respect to time.
A prime on a variable indicates its derivative with respect to a relevant variable
except t.
A bar (–) above a symbol indicates its average value, e.g. r̄.
A tilde (˜) above a symbol indicates that it is a modal quantity, e.g. m̃.
A hat (ˆ) above a symbol indicates a normalized quantity, e.g. Ĥ.

The use of indices and superscript

Index x, y, or z refers to corresponding structural axis.
Index xf ,yf or zf refers to corresponding flow axis.
u, v or w refer to flow components.
i and j are mode shape numbers.
n refers to the u, v or w flow component.
D, L, or M refer drag, lift and moment.
tot is short for total.
ae is short for aerodynamic, indicates a flow induced quantity.
cr is short for critical.
max is short for maximum.

xiii
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r is short for response.
sb is short for single box.
tg is short for transverse girder.
hc is short for hanger cable.
c is short for cables indicating main cables.
T is short of traffic.
G is short for self-weight.

Abbreviations

cg is short for center of gravity.
sc is short for shear center.
cc is short for centroid.
c/c is short for center-to-center distance.
exp is short for exposed, meaning flow exposed part, e.g. Lexp.

Latin letters

A Area, cross-sectional area.
An Wind spectrum coefficient (n = u, v, w).
A∗1 −A∗6 Aerodynamic derivatives associated with torsional motion.
a Fourier constant.
ar, aq Fourier coefficient associated with response or load.
aη, aQ̃ Fourier coefficient associated with modal response or load.
B Cross-sectional width.
Bq, B̂q Buffeting dynamic load coefficient matrix at cross-sectional level.
bq, b̂q Mean wind load coefficient vector.
C Matrix containing damping coefficients.
Cae Aerodynamic damping coefficient matrix.
C̄ Force coefficients at mean angle of incidence.
C ′ Slope of load coefficient curves at mean angle of incidence.
Cw Cross sectional warping constant.
Co Co-spectral density.
Covrr Matrix containing covariance of response quantities.
D Cross-sectional depth.
E Modulus of elasticity.
Ê, Ê Impedance, impedance matrix.
e Eccentricity between shear center and center of gravity or centroid.
ec Cable sag.
F Force.
f Frequency in Hertz [Hz].
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fcbu Cable ultimate tensile strength.
g Gravitational constant.
G Shear modulus of elasticity.
H̄ Static horizontal cable force.
H∗1 −H∗6 Aerodynamic derivatives associated with the across-wind motion.
Ĥη, Ĥη Normalized modal frequency response function, normalized modal fre-

quency response matrix.
IT St Venants torsion constant.
Iu, Iw Turbulence intensity of flow components u, w.
Iy, Iz Second moment of area with respect to axis y, z.
I Identity matrix.
i The imaginary unit or index variable.
j Index variable.
K Stiffness matrix.
Kae Aerodynamic stiffness matrix.
kp Peak factor.
kT Terrain roughness factor.
L, Lexp Length, wind exposed length.
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m, M Distributed mass or mass matrix.
m̃i Modally equivalent distributed mass for mode i.
N Number.
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n Index variable.
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q Distributed load.
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t Time.
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Chapter 1

Introduction

As a part of the proposed coastal highway route E39 of the Norwegian public
roads administration (NPRA), several fjords must be crossed. One of the main
objectives of this public transportation project is to replace the numerous ferry
connections along the existing highway with bridges. The widest of the fjords is
the Sognefjord, where a bridge will require to span a distance of about 3700m.
One of the bridge designs in consideration is a single-span suspension bridge. The
design traffic capacity will only require a two lane roadway and two walking/bi-
cycle paths, rendering the required width of the bridge deck quite small. With a
main span of 3700m this proposed bridge will be very slender, making its aero-
dynamic properties very important.

For high wind loads motion induced effects between a bridge girder and the sur-
rounding flow may cause the structure to become unstable and ultimately lead to
structural collapse, see fig. 1.1. Such motion induced effects are more prone to
occur the more slender the bridge. The identification of such stability limits is
therefore crucial when considering bridge designs of slender suspension bridges.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dynamic response with increasing mean wind velocity [4].

The goal of this thesis is to identify the stability limits of a single-span suspension
bridge crossing the Sognefjord, i.e. a main span of 3700 m. The computations
will be based on well established theory of bridge aerodynamics.

The theory of aerodynamics of line-like bridge type structures is the topic of
chapter 2. A short summary on the function of the suspension bridge as a struc-
ture is presented in chapter 3. Chapter 4 contains computations of cross sectional
properties for the chosen cross sections, and chapter 5 presents the numerical re-
sults obtained based on the previous chapters. Finally chapter 6 concludes the
thesis.



Chapter 2

Aerodynamics

2.1 Dynamics of line-like structures

Problems in structural dynamics begin with the well known equation of motion,
which in matrix notation may be written

M · r̈ + C · ṙ + K · r = q (2.1)

where M, C, K are the structural mass, damping and stiffness matrices respec-
tively, and q is the externally applied load. r is the structural displacement, and
ṙ and r̈ are the first and second order derivatives of displacement with respect to
time, namely structural velocity and acceleration.

In this thesis a continuous approach to the structural properties and displace-
ments are employed, i.e. for a line-like bridge type structure the relevant degrees
of freedom are

r = r(x, t) =
[
ry(x, t) rz(x, t) rθ(x, t)

]T
(2.2)

where y, z and θ are lateral, vertical and torsional movement as shown in fig. 2.1.

3



4 CHAPTER 2. AERODYNAMICS

Figure 2.1: Displacement, load and flow axis definition [5].

With this continuous approach to the displacements, and assuming shear center,
centroid and center of gravity coincide, the content of M, C and K are the
distributed mass, damping and stiffness:

M =

my(x) 0 0
0 mz(x) 0
0 0 mθ(x)

 (2.3)

C =

cy(x) 0 0
0 cz(x) 0
0 0 cθ(x)

 (2.4)

K =

ky(x) 0 0
0 kz(x) 0
0 0 kθ(x)

 (2.5)

and q is the externally applied distributed load.

q(x, t) =

qy(x, t)qz(x, t)
qθ(x, t)

 (2.6)

Solving the equation of motion is in the following done by the modal approach.
The assumption of the modal approach is that the displacement solution is a com-
bination some characteristic eigenmodes and time-dependent generalized coordi-
nates, this is a linear approach requiring the assumption of small displacements.
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The solution to equation of motion is then

r(x, t) =
Nmod∑
n=1

ϕi(x)ηi(t) = Φ(x) · η(t) (2.7)

where Φ(x) = [ϕ1(x) · · ·ϕi(x) · · ·ϕNmod(x)] is the eigenmode matrix containing
the eigenmodes ϕi = [φyi φzi φθi ]T and η = [η1(t) · · · ηi(t) · · · ηNmod(t)]T are the
time-dependent generalized coordinates. Nmod is the number of eigenmodes cho-
sen to represent the total response.

The eigenmodes, along with the undamped eigenfrequencies – ωi, are obtained
by solving the general eigenvalue problem of structural dynamics

(K− ω2
iM) ·ϕi = 0 (2.8)

By applying the principal of virtual work and introducing the modal representa-
tion of the displacement and its derivatives, one can deduce the modal equation
of motion given below [5,6].

M̃ · η̈ + C̃ · η̇ + K̃ · η = Q̃ (2.9)

where the matrices are given as

M̃ = diag[M̃i] , M̃i =
∫
L
ϕTi ·M ·ϕi dx (2.10)

C̃ = diag[C̃i] , C̃i = 2M̃iωiζi (2.11)

K̃ = diag[K̃i] , K̃i = ω2
i M̃i (2.12)

where ζi is the modal damping ratio, which is usually chosen based on experience
or given by relevant building regulations.

The modal load-vector is given by

Q̃ = [Q̃1 · · · Q̃i · · · Q̃Nmod ]T , Q̃i =
∫

Lexp

ϕi · q dx (2.13)

Establishing the eigenfrequencies and eigenmodes for a single-span suspension
bridge is discussed in ch. 3. The next section will deal with establishing a load
vector for the aerodynamic case of wind-loading.
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2.2 Wind-load on a line-like structure

2.2.1 Load vector establishment

Wind flow is assumed to consist of a mean time-invariant component in the main
flow direction and a fluctuating (turbulence) component in each of the flow direc-
tions. The wind flow is defined in its own coordinate system (xf , yf , zf ), the com-
ponents of the flow are defined as U(xf , yf , zf , t) = V (xf , yf , zf ) +u(xf , yf , zf , t),
v(xf , yf , zf , t) and w(xf , yf , zf , t), where V (xf , yf , zf ) is the mean time invariant
wind velocity, see fig. 2.1.

Aerodynamic forces acting on a structure are in general split into three parts:
drag, lift and aerodynamic moment. The basic assumption is that these forces
may be calculated from the instantaneous velocity pressure of the flow-structure
system and some load coefficients characteristic for the structure at hand. These
load coefficients are usually determined by experimental testing of model sections.
Another assumption is that sufficient accuracy is retained if we linearize the turbu-
lence components, this requires the turbulence components to be small compared
to V . Structural displacements and rotations are again also assumed small. An
instantaneous ”snap-shot” of the flow-structure system of a bridge-type structure
is shown in the figure below.

Figure 2.2: Instantaneous velocity pressure on a plate [5].

As the wind flow is split into a mean time-invariant and a fluctuating part, so
is the aerodynamic loading of the structure. The mean loading cause the mean
displacements r̄y(x), r̄z(x) and r̄θ(x) and the fluctuating forces causes the struc-
ture to oscillate about this position with the displacements ry(x, t), rz(x, t) and
rθ(x, t). In this configuration the instantaneous flow-incidence dependent cross-
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sectional drag, lift and moment in the flow axes are defined byqD(x, t)
qL(x, t)
qM (x, t)

 = 1
2ρV

2
rel ·

 D · CD(α)
B · CL(α)
B2 · CM (α)

 (2.14)

where Vrel is the relative wind velocity and α is the angle of flow incidence.

In the structural axis system the load is given by

qtot(x, t) =

qyqz
qθ


tot

=

cosβ − sin β 0
sin β cosβ 0

0 0 1

 ·
qDqL
qM

 (2.15)

where
β = arctan

(
w − ṙz

V + u− ṙy

)
(2.16)

By assuming that the fluctuating wind flow components u(x, t) and w(x, t) are
small compared to V , and that the cross sectional rotations are small, one may
linearize to get the following

sin β ≈ tan β ≈ β ≈ w − ṙz
V + u− ṙy

≈ w − ṙz
V

(2.17)

thus

V 2
rel = (V + u− ṙy)2 + (w − ṙz)2 ≈ V 2 + 2V u− 2V ṙy

α = r̄θ + rθ + β ≈ r̄θ + rθ + w

V
− ṙz
V

(2.18)

The non-linear drag, lift and aerodynamic moment coefficients are also linearized
and replaced by CD(α)

CL(α)
CM (α)

 =

C̄D(ᾱ)
C̄L(ᾱ)
C̄M (ᾱ)

+ αf ·

C ′D(ᾱ)
C ′L(ᾱ)
C ′M (ᾱ)

 (2.19)

where ᾱ and αf are the mean and fluctuating angle of incidence, and C ′D, C ′L and
C ′M are the slopes of the coefficient curves at ᾱ.
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From eq. 2.18 it is seen that ᾱ = r̄θ and αf = rθ + w/V − ṙz/V .

Combining the above equations 2.15, 2.18 and 2.19, dropping the use of (ᾱ) for
simplicity and discarding higher order terms the following is obtained

qyqz
qθ


tot

= ρV
(
V
2 + u− ṙy

)
 DC̄DBC̄L
B2C̄M

+
(
rθ + w

V
− ṙz
V

) DC ′DBC ′L
B2C ′M



+w − ṙz
V

−BC̄LDC̄D
0




(2.20)

which in terms of displacements and wind velocity is

qtot(x, t) = q̄ + Bq · v + Cae · ṙ + Kae · r (2.21)

where v(x, t) =
[
u w

]T
and r(x, t) =

[
ry rz rθ

]T
and:

q̄ = ρV 2B

2

(D/B)C̄D
C̄L
BC̄M

 = ρV 2B

2 · b̂q (2.22)

Bq(x) = ρV 2B

2

2(D/B)C̄D ((D/B)C ′D − C̄L)
2C̄L (C ′L + (D/B)C̄D)
2C̄M BC ′M

 = ρV 2B

2 B̂q (2.23)

Cae(x) = −ρV
2B

2

2(D/B)C̄D ((D/B)C ′D − C̄L) 0
2C̄L (C ′L + (D/B)C̄D) 0
2C̄M BC ′M 0

 (2.24)

Kae(x) = ρV 2B

2

0 0 (D/B)C ′D
0 0 C ′L
0 0 BC ′M

 (2.25)

It is apparent that the total loading consists of a mean static part q̄(x) and a
fluctuating part

q(x, t) = Bq · v + Cae · ṙ + Kae · r (2.26)
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where Bq · v is the dynamic loading associated with turbulence in the oncoming
flow, and Cae · ṙ and Kae · r are the motion induced loading. Cae and Kae are
called the aerodynamic damping and stiffness. Note that the aerodynamic mass
Mae is most often considered negligible in wind engineering [4] and is therefore
not included. Since this expression is linear, the theory is applicable in both time
and frequency domain.

2.2.2 Aerodynamic derivatives

Frequency domain versions of Cae and Kae are given by

Cae =

P1 P5 P2
H5 H1 H2
A5 A1 A2

 and Kae =

P4 P6 P3
H6 H4 H3
A6 A4 A3

 (2.27)

where the coefficients are functions of the frequency of motion, the mean wind
velocity and the shape of the cross section. These coefficients may be determined
from wind tunnel testing, generally in three different approaches, see [4]. It has
been considered convenient to normalize the coefficients further, so as

Cae = ρB2

2 · ωi(V ) · Ĉae and Kae = ρB2

2 · [ωi(V )]2 · K̂ae (2.28)

where ωi(V ) is the mean wind velocity dependent resonance frequency of eigen-
mode i and the reduced matrices are given as

Ĉae =

 P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2

 and K̂ae =

 P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3

 (2.29)

These non-dimensional coefficients P ∗k , H∗k , A∗k k = 1− 6 are what are called the
aerodynamic derivatives, and are given in eq. 2.30.



P ∗1 H∗1 A∗1
P ∗2 H∗2 A∗2
P ∗3 H∗3 A∗3
P ∗4 H∗4 A∗4
P ∗5 H∗5 A∗5
P ∗6 H∗6 A∗6


=



−2C̄DD
B V̂i −

(
C ′L + C̄D

D
B

)
V̂i −C ′M V̂i

0 0 0
C ′D

D
B V̂

2
i C ′LV̂

2
i C ′M V̂

2
i

0 0 0(
C̄L − C ′DD

B

)
V̂i −2C̄LV̂i −2C̄M V̂i

0 0 0


(2.30)
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where V̂i = V
Bωi(V ) is the reduced velocity, which is dependent on the in-wind

resonance frequency ωi(V ). This dependency causes the need for some kind of
iteration scheme when solving dynamics problems including these coefficients.

2.3 Aerodynamic stability

2.3.1 Impedance matrix

To find any aerodynamic stability limits one must first look at solving the equation
of motion as discussed in sec. 2.1 with the load-vector being that of wind-load, as
discussed in the previous section.

M0 · r̈tot(x, t) + C0 · ṙtot(x, t) + K0 · rtot(x, t) = qtot(x, t) (2.31)

where the subscript ”0” indicates that this is the property of the structure in still
air (V = 0) and

rtot(x, t) = r̄(x) + r(x, t) and qtot(x, t) = q̄(x) + q(x, t) (2.32)

As is seen the total displacement and wind load both comprise a mean time-
invariant static part and a dynamic part. Computing the static part is considered
trivial, so moving forward only the dynamic part will be the focus, thus

M0 · r̈(x, t) + C0 · ṙ(x, t) + K0 · r(x, t) = q(x, t) (2.33)

By substituting eq. 2.26 into the equation above yields

M0 · r̈(x, t) + C0 · ṙ(x, t) + K0 · r(x, t) = Bq · v + Cae · ṙ + Kae · r (2.34)

which by introducing the modal displacement r(x, t) = Φ · η and employing the
principal of virtual work as discussed earlier, the modal equilibrium is obtained

M̃0 · η̈(t) + C̃0 · η̇(t) + K̃0 · η(t) = Q̃(x, t) + C̃ae · η̇(t) + K̃ae · η(t) (2.35)

where M̃0, C̃0 and K̃0 are given in eq. 2.9-2.11, and C̃ae and K̃ae areNmod byNmod

matrices whose elements are given by

C̃aeij =
∫
Lexp

ϕTi ·Cae ·ϕj dx (2.36)
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and
K̃aeij =

∫
Lexp

ϕTi ·Kae ·ϕj dx (2.37)

where the elements of Cae and Kae are given in sec. 2.2.2. And finally:

Q̃i =
∫
Lexp

ϕTi ·Bq · v dx (2.38)

By moving C̃ae and K̃ae to the left hand side of eq. 2.35 and transitioning to the
frequency domain by taking the Fourier transform of either side, we obtain

[−M̃0ω
2 + (C̃0 − C̃ae)iω + (K̃0 − K̃ae)] · aη(ω) = aQ̃(ω) (2.39)

where
aη = [aη1 · · · aηi · · · aηN ]T

aQ̃ = [aQ̃1
· · · aQ̃i · · · aQ̃N ]T

(2.40)

are the Fourier amplitudes of the N number of frequencies included.

By premultiplying eq. 2.39 by K̃−1
0 the following is obtained

Ĥ−1
η · aη(ω) = aQ̂(ω) (2.41)

where Ĥη is the non-dimensional frequency-response-matrix and aQ̂(ω) is the
reduced modal load vector.

aQ̂(ω) = K̃−1
0 · aQ̃(ω) (2.42)

Ĥη(ω, V ) =
{

I− κae −
(
ω · diag

[ 1
ωi

])2
+ 2iω · diag

[ 1
ωi

]
· (ζ − ζae)

}−1

(2.43)

where I is the Nmod by Nmod identity matrix and

κae = K̃−1
0 · K̃ae

ζ = diag[ζi]

ζae = 1
2 · diag[ωi] ·

(
K̃−1

0 · C̃ae

)


(2.44)
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The inverse of the frequency-response matrix is called the impedance matrix and
denoted Êη(ω, V ). When this matrix approaches singularity, i.e. absolute value
of the determinant goes to zero, the frequency-response matrix and thus the dis-
placement response approaches infinity thereby marking a stability limit. Note
that as the turbulence components are contained in aQ̂, it is the mean wind ve-
locity V which is critical to loss of stability.

The structure approaches these stability limits as the properties of the combined
flow-structure system are greatly altered by motion-induced effects at high flow
velocities, specifically ζae affects the system’s damping and κae affects the sys-
tem’s stiffness.

These stability limits may be found by finding the critical mean wind velocities
V = Vcr at which there is a mean wind velocity dependent resonance frequency
ωi(V ) = ωr, associated with mode i, such that

|det(Êη(ωr, Vcr))| = 0 (2.45)

Since Êη(ω, V ) contains complex quantities, we may split the determinant into a
real and an imaginary part which must both be zero simultaneously at a stability
limit:

Re(det(Êη)) = 0 and Im(det(Êη)) = 0 (2.46)

The roots will contain both a Vcr and an ωr and by inspecting these values the
type of stability problem may be identified. In bridge engineering there are four
types of motion-induced stability problems: a static stability limit in torsion called
static divergence, a dynamic stability limit of vertical movement called galloping,
a dynamic stability limit in torsion, and flutter - which is a stability limit of com-
bined vertical and torsional movement [4].

These stability limits are thus associated with the displacements rz(x, t) and
rθ(x, t). Finding these limits may then be done by identifying two low frequency
mode-shapes, ϕ1 and ϕ2, which are highly influential to the total response. One
of them with a predominant φz component and the other with a predominant φθ
component. For the case of two modes as described above

ϕ1 ≈ [0 φz 0]T and ϕ2 ≈ [0 0 φθ]T (2.47)
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with corresponding eigenfrequencies ω1 = ωz and ω2 = ωθ and damping ratios
ζ1 = ζz and ζ2 = ζθ, the impedance matrix becomes:

Êη(ωr, Vcr) =
{[

1 0
0 1

]
−
[
κaezz κaezθ
κaeθz κaeθθ

]
−
[
(ωr/ωz)2 0

0 (ωr/ωθ)2

]

+2i
[
ωr/ωz 0

0 ωr/ωθ

]
·
[
ζz − ζaezz −ζaezθ
−ζaeθz ζθ − ζaeθθ

]} (2.48)

and

κaezz = ρB2

2m̃z

(
ωz(V )
ωz

)2
H∗4

∫
Lexp

φ2
z dx∫

L
φ2
z dx

κaezθ = ρB3

2m̃z

(
ωz(V )
ωz

)2
H∗3

∫
Lexp

φzφθ dx∫
L
φ2
z dx

(2.49)

κaeθz = ρB3

2m̃θ

(
ωθ(V )
ωθ

)2
A∗4

∫
Lexp

φθφz dx∫
L
φ2
θ dx

κaeθθ = ρB4

2m̃θ

(
ωθ(V )
ωθ

)2
A∗3

∫
Lexp

φ2
θ dx∫

L
φ2
θ dx

(2.50)

ζaezz = ρB2

4m̃z

ωz(V )
ωz

H∗1

∫
Lexp

φ2
z dx∫

L
φ2
z dx

ζaezθ = ρB3

4m̃z

ωz(V )
ωz

H∗2

∫
Lexp

φzφθ dx∫
L
φ2
z dx

(2.51)

ζaeθz = ρB3

4m̃θ

ωθ(V )
ωθ

A∗2

∫
Lexp

φθφz dx∫
L
φ2
θ dx

ζaeθθ = ρB4

4m̃θ

ωθ(V )
ωθ

A∗1

∫
Lexp

φ2
θ dx∫

L
φ2
θ dx

(2.52)

where m̃z and m̃θ are the modally distributed masses, which in the case of constant
mz and mθ along the length of the bridge, then m̃z = mz and m̃θ = mθ. Also,
ρ is the density of air, B is the width of the cross section and Hk, Ak are the
aerodynamic derivatives as described in sec. 2.2.2.
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2.3.2 Static divergence

Static divergence is a stability limit involving loss of torsional stiffness at an in-
wind resonance frequency ωr = 0, i.e. the instability is static and not dynamic.
Assuming a torsional mode of the type given in eq. 2.47, ϕ2 ≈ [0 0 φθ]T , the
impedance matrix reduces to:

Êη(ωr = 0, Vcr) = 1− κaeθθ (2.53)

where κaeθθ is given in eq. 2.50. Since this is a static type of instability the quasi-
static version of the aerodynamic derivative involved may be used, here A∗3 may be
replaced with C ′M V̂ 2 rendering the expression for the critical mean wind velocity
for static divergence:

Vcr = B · ωθ ·

 2m̃θ

ρB4C ′M
·

∫
L
φ2
θ dx∫

Lexp

φ2
θ dx


1/2

(2.54)

we see from eq. 2.54 above that the lowest Vcr will occur for the torsional mode
with the lowest eigenfrequency ωθ.

2.3.3 Galloping

Galloping is a dynamic stability limit involving vertical motion. Let ϕ1 ≈ [0 φz 0]T
be the lowest frequency vertical mode. The in-wind resonance frequency associ-
ated with this mode is ωz(V ), thus:

ωr = ωz(Vcr) (2.55)

and the impedance matrix reduces to

Êη(ωr, Vcr) = 1− κaezz − (ωr/ωz)2 + 2i(ζz − ζaezz) · (ωr/ωz) (2.56)

where κaezz and ζaezz are given in eq. 2.49 and eq. 2.51.

Setting the real and imaginary parts of eq. 2.56 equal to zero, a dynamic sta-
bility limit may be identify at an in-wind resonance frequency:

ωr = ωz

1 + ρB2

2m̃z
·H∗4 ·

∫
Lexp

φ2
z dx∫

L
φ2
z dx


−1/2

(2.57)
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where at the same time the damping properties are:

ζz = ζaezz = ρB2

4m̃z

ωr
ωz
H∗1

∫
Lexp

φ2
z dx∫

L
φ2
z dx

(2.58)

It is evident by eq. 2.58 that H∗1 must attain positive values in order for the
existence of a galloping stability limit.

2.3.4 Dynamic stability limit in torsion

The dynamic stability limit in torsion is the torsional equivalent to galloping.
Let ϕ2 ≈ [0 0 φθ]T be the lowest frequency torsional mode, then the resonance
frequency associated with this mode is given by ωθ(V ) and thus:

ωr = ωθ(Vcr) (2.59)

The impedance matrix reduces to

Êη(ωr, Vcr) = 1− κaeθθ − (ωr/ωθ)2 + 2i(ζθ − ζaeθθ) · (ωr/ωθ) (2.60)

where κaeθθ and ζaeθθ are given in eq. 2.50 and 2.52. Setting the real and imaginary
parts of eq. 2.60, a stability limit in torsion may be identified at an in-wind
resonance frequency:

ωr = ωθ ·

1 + ρB4

2m̃θ
·A∗3 ·

∫
Lexp

φ2
θ dx∫

L
φ2
θ dx


−1/2

(2.61)

where at the same time the damping properties are:

ζθ = ζaeθθ = ρB4

4m̃θ

ωr
ωθ
A∗2

∫
Lexp

φ2
θ dx∫

L
φ2
θ dx

(2.62)

It is seen from eq. 2.62 that any dynamic stability limit in torsion require A∗2 to
attain positive values.
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2.3.5 Flutter

The phenomenon known as flutter is an instability caused by coupling between
vertical and torsional oscillations, rz and rθ. Mathematically this happens through
the off-diagonal terms in the impedance matrix κaezθ and κaeθz and therefore re-
quires shape-wise similar modes ϕ1 and ϕ2 as is evident by eq. 2.49-2.50.

For two-modes, one predominantly being vertical and one predominantly being
torsional (as described in sec. 2.3.1), the flutter stability limit, because of coupling
between rz and rθ, is identified by the case where |det(Êη(ωr, Vcr)| = 0 for a joint
resonance frequency

ωr = ωz(Vcr) = ωθ(Vcr) (2.63)

A solution scheme to this two-mode flutter problem, as described in both [4]
and [7], is given below.

Assuming that Lexp = L, and introducing the following notation:

βz = ρB2

m̃z
βθ = ρB4

m̃θ

(2.64)

γ = ωθ
ωz

ω̂r = ωr
ωθ

(2.65)

ψz =

∫
L
φzφθ dx∫
L
φ2
z dx

ψθ =

∫
L
φθφz dx∫
L
φ2
θ dx

(2.66)

Then the fully expanded real and imaginary parts of the determinant of Êη may
be written

Re(det(Êη)) = R0 +R2ω̂
2
r +R3ω̂

3
r +R4ω̂

4
r = 0 (2.67)

and
Im(det(Êη)) = I0 + I1ω̂r + I2ω̂

2
r + I3ω̂

3
r (2.68)
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where

R0 = 1

R2 = −
(

1 + γ2 + 4ζzζθ + βz
2 γ

2H∗4 + βθ
2 A

∗
3

)

R3 = γ (ζθβzγH∗1 + ζzβθA
∗
2)

R4 = γ2
[
1 + βz

2 H
∗
4 + βθ

2 A
∗
3 + βzβθ

4 (A∗1H∗2ψzψθ −A∗2H∗1 +A∗3H
∗
4 −A∗4H∗3ψzψθ)

]
(2.69)

and where

I0 = 2(ζzγ + ζθ)

I1 = −1
2(βzγ2H∗1 + βθA

∗
2)

I2 = −2
[
ζz

(
βθ
2 A

∗
3 + γ

)
+ ζθγ

2
(
βz
2 H

∗
4 + 1

)]

I3 = γ2
[
βzβθ

4 (H∗1A∗3 −H∗2A∗4ψzψθ −H∗3A∗1ψzψθ +H∗4A
∗
2) + 1

4(βzH∗1 + βθA
∗
2)
]

(2.70)

The scheme here is to find roots of the real and imaginary parts for increasing
values of V̂ = V/(B ·ωr) until a common root ω̂r is found simultaneously, remem-
bering to update the aerodynamic derivatives at each step as they are functions
of V̂ . This may be done in a graphical manner, where the roots of the real and
imaginary parts are plotted for increasing V̂ , and a solution is found at a point
where their lines intersect. The resonance frequency is then given by ωr = ω̂r ·ωθ
and the critical wind velocity is given as Vcr = V̂ ·B · ωr.

The flutter coupling is more prone to occur for shape-wise similar modes, this
is because ψz and ψθ are the coupling terms and shape-wise similarity implies
ψz = ψθ ≈ 1.
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2.4 Buffeting response

2.4.1 Stochastic wind-load

The buffeting response of a structure is the response caused by forces of turbulence
in the oncoming wind flow in addition to forces induced by the interaction between
the flow and the oscillating body itself. The turbulence parts or fluctuating parts
of the wind flow are usually seen as stochastic processes with statistical proper-
ties. The solutions which may be obtained for such processes are consequently
also statistical. An illustration of the wind-flow, structural load and structural
response in the time domain, and their frequency domain counterparts are shown
in fig. 2.3.

Figure 2.3: Time and frequency domain representation of load and response [4].

Where Sn(ω) is the fluctuating wind-flow spectrum for turbulence component
n = u(x, t), v(x, t) or w(x, t), SQ(ω) is the wind-load spectrum, and Sr(ω) is the
response spectrum.

The transfer from a load spectrum to a response spectrum is via a frequency-
response function H(ω) which was found for the modal case in sec. 2.3.1. The
transfer from wind-flow spectrum to the wind-load spectrum is via the theory
discussed in sec 2.2.1. These steps to arrive at the response spectrum is shown in
the next section. When the response spectrum has been determined, the variance
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of response ri at position xr is given as [4]

σ2
ri =

∞∫
0

Sri(xr, ω) dω (2.71)

A typical response variation with mean wind velocity was shown in fig. 1.1 in ch. 1.

When the variance is determined, the maximum response at a location may be
computed by combining the static response and the standard deviation of the
dynamic response multiplied by a peak factor kp.

rmax(xr) = r̄max + kp · σr(xr) (2.72)

For a narrow banded process the peak factor is approximately kp ≈
√

2 [4].

A stochastic description of the wind flow turbulence components is required to
calculate Sq(ω). An expression for the reduced auto spectral density of fluctuating
wind flow components as proposed by Kaimal et. al. [8] is given by

f · Sn(f)
σ2
n

= An · f̂
(1 + 1.5 ·An · f̂)5/3

n = u, v, w (2.73)

where f is the frequency in Hz and f̂ = f · xfLn/V where xfLn is the integral
length scale of the relevant turbulence component, and V is the mean wind ve-
locity.

Also employed in wind engineering is the so-called normalized co-spectrum given
by

Ĉonn(∆s, f) = exp

(
−Cns ·

f ·∆s
V

)
(2.74)

where n = u, v, w, s = xf , yf , zf and ∆s = ∆xf ,∆yf ,∆zf .

As angular frequency – ω is preferred in this thesis, the transition is done us-
ing

Sn(f) = 2π · Sn(ω) and f = ω

2π (2.75)

Another parameter used in wind engineering is the turbulence intensity factor,
defined as

In = σn
V

(2.76)
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The subsequent steps to arrive at Sr(ω) is shown in the next section.

2.4.2 Response calculation

The following elaboration of the response spectrum assumes a general multi-modal
approach, which allows modal coupling to occur and does not require modal eigen-
frequencies to be well separated.

The general solution to the multi-modal approach is the three by three response
variance matrix shown in the equation below.

Covrr(xr) =

 σ2
ryry Covryrz Covryrθ

Covrzry σ2
rzrz Covrzrθ

Covrθry Covrθrz σ2
rθrθ

 (2.77)

This matrix is obtained by frequency domain integration as discussed in the pre-
vious section, the multi-mode equivalent to eq. 2.71 is given as [4]

Covrr(xr) =
∞∫
0

Srr(xr, ω) dω = Φr(xr)

 ∞∫
0

Ĥ∗η(ω)SQ̂(ω)ĤT
η (ω) dω

ΦT (xr)

(2.78)

where Ĥη(ω) and SQ̂ are Nmod by Nmod matrices and Φ(xr) is the three by Nmod

mode matrix discussed in sec. 2.3.4 computed at the response location xr. Ĥη(ω)
is the frequency response matrix given by eq. 2.43 and includes the motion in-
duced aerodynamic stiffness and damping, κae and ζae given by eq. 2.44.

The matrix SQ̂(ω) is what is called the normalized modal load matrix and is
given by the definition of spectra as expressed by the Fourier amplitudes from the
right hand side of eq. 2.41, i.e.

SQ̂(ω) = lim
T→∞

1
πT

(a∗
Q̂

(ω) · aT
Q̂

(ω)) (2.79)

Remembering that aQ̂ = K̃−1
0 · aQ̃ where aQ̃ is the Fourier amplitudes of the

modal load vector Q̃(t), which by combining eq. 2.23 and 2.38 is given by

Q̃i = ρV 2B

2 ·
∫

Lexp

ϕTi · B̂q · v dx (2.80)
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The Fourier transform of this equation yields

aQ̃i = ρV 2B

2 ·
∫

Lexp

ϕTi · B̂q · aυ dx (2.81)

where aυ = [au aw]T contains the Fourier amplitudes of the u and w turbulence
components. It may be shown then that the elements of the SQ̂(ω) is given by

SQ̂iQ̂j (ω) = ρB3

2m̃i
· ρB

3

2m̃j
·
(
V

Bωi

)2
·
(

V

Bωj

)2

· Ĵ2
ij (2.82)

where Ĵ2
ij is the so-called joint acceptance function given by

Ĵ2
ij =

∫
Lexp

∫
ϕTi (x1) ·

{
B̂q ·

[
I2
υ · Ŝυ(∆x, ω)

]
· B̂T

q

}
·ϕj(x2) dx1dx2( ∫

Lexp

ϕTi ·ϕi dx
)
·
( ∫
Lexp

ϕTj ·ϕj dx
) (2.83)

where

Iυ = diag[Iu Iw] (2.84)

and
Ŝυ = diag[Suu/σ2

u Sww/σ
2
w] (2.85)

It is in the above equation assumed that the cross spectra between flow compo-
nents is negligible, that is to say Suw = Swu ≈ 0. A response solution will require
Nmod ·Nmod joint acceptance functions.

For two modes, one predominantly vertical and one predominantly torsional, as
was employed in sec. 2.3, i.e

ϕ1 ≈ [0 φz 0]T and ϕ2 ≈ [0 0 φθ]T (2.86)

the joint acceptance functions become

Ĵ2
zz =

∫
Lexp

∫
φz(x1)φz(x2)

[
(2C̄L)2I2

uŜuu +
(
C ′L + D

B
C̄D

)2
I2
wŜww

]
dx1dx2 (2.87)
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Ĵ2
zθ =

∫
Lexp

∫
φz(x1)φθ(x2)

[
4C̄LBC̄MI2

uŜuu +
(
C ′L + D

B
C̄D

)
BC ′MI

2
wŜww

]
dx1dx2

(2.88)

Ĵ2
θθ =

∫
Lexp

∫
φθ(x1)φθ(x2)

[
(2BC̄M )2I2

uŜuu + (BC ′M )2I2
wŜww

]
dx1dx2 (2.89)

where the reduced cross spectra Ŝnn may be replaced by

Ŝnn = Sn(ω)
σ2
n

· Ĉonn(∆x, ω) n = u,w (2.90)

and Ĵ2
θz = Ĵ2

zθ.

The response spectrum and response variances may now readily be computed
using the above theory.



Chapter 3

The suspension bridge

3.1 General composition

Suspension bridges are distinguished from other bridge-types by their ability to
overcome long spans. Presently the longest bridge span in the world is the main
span of the Akashi Kaikyō bridge in Japan, with a length of 1991 m [9].

Figure 3.1: The Akashi Kaikyō bridge [9].
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The structural system of the suspension bridge can be divided into four main
components [10], shown in fig. 3.2.

• the stiffening girder (or deck)

• the cable system supporting the stiffening girder

• the pylons (or towers)

• the anchor blocks supporting the cable system at the extreme ends

Figure 3.2: Three-span suspension bridge.

3.1.1 Cables and cable system

The cable system of a suspension bridge consists of main cables and hanger ca-
bles. The main cables are the main load-carrying components in the bridge and
are designed to support the loads from the stiffening girder, the hanger cables and
their own self-weight. The advantage of using suspended cables to carry load is
that the large vertical forces from traffic and self-weight of the bridge are trans-
ferred through the main cables as pure tension. Pure tension is arguably the most
efficient way of transferring loads, and thus the needed structural material is far
less in the case of a cable as the main load-carrying element, as opposed to for
instance a beam [10].

An important property of the cable as a load-carrying element is the sag ratio k,
which is the ratio of the sag of the cable to the length of the cable span k = ec/L,
see fig. 3.7. The horizontal force H in the cable is inversely proportional to the
sag ratio k. On the other hand deflections to non-uniform loads increases with
increasing sag ratios and larger sag ratios also means higher pylons. Optimization
may be done to find a suitable compromise between performance and cost when
choosing sag ratio. Usually the main cables of suspension bridges have sag ratios
between 1/9 and 1/11 [10].
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3.1.2 Stiffening girder

The bridge deck, or stiffening girder, is the structural element that is subject to
the majority of external loading. The main reason is that the traffic load is ap-
plied directly onto the deck of the stiffening girder, and also in most cases the
dead load of the stiffening girder itself and its susceptibility to wind-load is larger
than for the cable system.

The stiffening girder itself must be able to carry loads locally as well as transfer
loads to the main cables via the hanger cables. The bridge is usually constructed
in a way such that deck may be considered simply supported with the ability to
move longitudinally at the pylons. The vertical forces at these supports are also
considered to be small because the majority of the vertical force is carried by the
cables.

In the traditional suspension bridge arrangement there are two vertical cable
planes along the stiffening girder edges, see fig. 3.3 and 3.4, supporting the stiff-
ening girder both vertically and torsionally.

Figure 3.3: Box cross section.

As the stiffening girder is more prone to wind-loads than the cable system it
becomes a very important aspect of the bridge with respect to aerodynamics.
The shape and type of stiffening girder cross section determines how it interacts
with airflow from wind-loading. The stiffening girder’s torsional stiffness is also
an important property with respect to aerodynamic stability, as loss of torsional
stiffness is involved in three out of four instability phenomenon.

The cross sections used in existing suspension bridges may generally be split into
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three types: a cross section of trusses, a closed box-type cross section and a dual
box cross section.

Cross section of trusses

Historically the cross sections of long span suspension bridges have been made
with stiffening trusses, e.g. the Golden Gate bridge and also the Akashi bridge
shown in fig. 3.1 have this kind of stiffening girder, see fig. 3.4.

In order to obtain sufficient torsional and bending stiffness, the truss cross sections
are usually large, with depths up to 10m or more. The truss is still sometimes
preferred today however, especially where traffic is designed to run in two stories.

Figure 3.4: Cross section of trusses.

Box cross section

Modern suspension bridges are usually made with box girders. The closed box
cross section may obtain sufficient torsional stiffness with smaller depths than
the truss. With these box-shaped cross sections the aerodynamic behaviour is
important as the bridge may become very slender for long spans. The aerodynamic
properties of a box section may effectively be improved by altering the shape, for
instance streamlining to reduce drag. The addition of guide vanes to reduce the
effect of vortex shedding has also become increasingly popular. An illustration of
a basic box cross section is shown in fig. 3.3.
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Dual box cross section

The newest addition to cross section types is the so-called vented box girder,
or dual box girder. This cross section consists of two box girders connected by
transverse girders incorporated between each pair of hanger cables along the length
of the bridge. This type of stiffening girder has shown very good aerodynamic
properties in wind tunnel tests. The Xihoumen bridge in China, with currently
the second longest main span in the world with a length of 1650 m [11], has a
dual box cross section, see fig. 3.5.

l

Figure 3.5: Xihoumen bridge [12].

3.1.3 Pylons

The function of the pylons is to elevate the main cables, and thus the height of
the pylons will depend on the span length and chosen sag ratio. As opposed to
regular tower structures the main design force for the pylons is not drag from
wind load, but the large axial force caused by the main cables [10]. Pylons are
made with either reinforced concrete or steel sections. Whereas steel was more in
use earlier, modern suspension bridges often have reinforced concrete pylons, as
concrete is a superb material for withstanding large compressive forces.
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3.1.4 Anchor blocks

The anchor blocks are the structural element of the suspension bridge that trans-
fers the large axial forces of the cables to the earth.

3.2 Single-span suspension bridge

3.2.1 Structural system

In the single-span suspension bridge only the main span is supported by the cable
system and the main cables are continued as freely suspended backstays to the
anchor blocks, see fig 3.6. Single-span suspension bridges are often used at bridge
sites where the placement of intermediate pylons is not possible. Such sites may
be for instance a deep body of water or a valley.

Figure 3.6: Single-span suspension bridge.

3.2.2 Dynamics of a single-span suspension bridge

An approach to identify the eigenfrequencies and corresponding vibrational modes
of the single-span suspension bridge is presented thoroughly in [5]. As this ap-
proach is quite mathematical, only the general ideas are reproduced here.

The approach is based on the shallow cable theory, also presented in [5]. The
assumptions are that the bridge behaves as two cables (in two identical cable
planes) and a beam, where the hanger forces are evenly distributed along the
length of the bridge. The flexibility of hangers, pylons and back-stays are for
simplicity ignored, considered to only cause small discrepancies in the calculation
of eigenvalues [5]. Under such circumstances the main girder and the two cable
planes move in perfect harmony and the motion may consequently be split into
three independent components, one out of plane horizontal motion, one in plane
vertical motion and a torsional motion.
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The out of plane horizontal motion includes both a component for the motion
of the main cables and a component for the motion of the bridge deck. For the
vertical and torsional components the bridge deck and the cables are assumed to
move congruently. Thus, the four fundamental vibrational modes found from this
theory are of the type:

ϕi = [φyi 0 0]T ϕi = [φci 0 0]T

ϕi = [0 φzi 0] ϕi = [0 0 φθi ]T
(3.1)

where the subscript c indicate cable mode and the rest are as discussed in ch. 2.

The computer program ALVSAT1 [1] is based on this theory and is used in this
thesis to determine frequencies and vibrational modes.

3.2.3 Cable forces

The overall stiffness properties of a single-span suspension bridge depends greatly
on the axial force in the main cables, the static forces in the cables must therefore
be quantified before a dynamic analysis may be performed. It is assumed that the
construction procedure is such that all the weight of the beam is transferred to
the main cables via the hangers, and further into the earth through the backstays
and pylons. The horizontal force in a single cable is then given by [5]:

H̄ = mzgL
2

16ec

{
1 + 2mc

mz

[
1 + 4

3

(
ec
L

)2
]}

(3.2)

where g, L and ec is the gravitational acceleration, main span length and cable
sag respectively, mz is the total distributed mass of the stiffening girder in the
vertical direction, mc is the distributed mass of a single main cable, see fig. 3.7.
Note that the distributed mass of the hanger cables are included in mz and mc.

1ALVSAT is a computer program developed at SINTEF for calculation of single-span suspen-
sion bridge vibrational modes and wind-load induced static and dynamic response.
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Figure 3.7: Single-span suspension bridge idealized structural system.

The maximum axial force in the cable will be at the pylons and knowing the
horizontal force component it may be calculated using:

N̄max = H̄ cosh
(
qL

2H̄

)
(3.3)

where q is the total static load on a single cable given by:

q = g ·
(
mz

2 +mc

)
(3.4)



Chapter 4

The Sognefjord bridge

4.1 Overview

As a part of the new coastal highway route E39 project of the NPRA, the pos-
sibility of a bridge crossing the Sognefjord is being looked at. Because the fjord
quickly becomes to deep to place intermediate pylons, a single-span suspension
bridge with a main span of 3700m is being considered. This span length ac-
companied by its proposed slenderness means that the design with respect to
aerodynamics is highly important. An illustration of the bridge is shown below.

Figure 4.1: Illustration of the Sognefjord bridge [13].

The proposed bridge, referred to as the Sognefjord bridge, is a single-span sus-
pension bridge with 455m high reinforced concrete pylons placed on either side of
the slopes down towards the fjord. The cable sag is ec = 370m which leads to a
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sag ratio k = 0.1. The free back-stays are lead to anchor blocks embedded within
the rock of the adjacent mountain sides, see fig. 4.2. Design specifics and figures
in this chapter have been provided by the NPRA [14].

Figure 4.2: Sognefjord bridge.

A super long span suspension bridge such as this requires a cross section with great
aerodynamic properties, therefore a dual box section as discussed in sec. 3.1.2 has
been proposed. In this thesis such a cross section has been used to investigate the
aerodynamic stability limits. The cross section is based on two box girders which
are identical to the one used in the Dalsfjord bridge.

Three different configurations with the two box girders at different center-to-
center distances have been investigated, specifically 15m, 20m and 30m. The
cross section with 20 m center-to-center distance (c/c) is shown in fig. 4.3. Hol-
low steel sections are used as transverse girders to join the two box girders, the
transverse girders are incorporated between each pair of hanger cables at every
30m.

Figure 4.3: Dual box cross-section with c/c 20m.
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4.2 Dalsfjord bridge cross-sectional properties

The properties of the stiffening girder of the Sognefjord bridge is calculated from
the properties of the box cross section of Dalsfjord bridge which has been provided
by the NPRA [14] and are given in tables 4.1-4.3 (structural axes are as shown in
fig. 2.1). The cross section width (B) is 12.9m and height (D) is 2.5m, as seen
in fig. 4.4.

Figure 4.4: Dalsfjord bridge cross section.

The centroid, shear center and center of gravity are given in table 4.1 below.

Table 4.1: Cross-sectional centra of single box.

Center y [mm] z [mm]
Centroid (cc) 6450 1589
Shear center (sc) 6450 1436
Center of gravity (cg) 6450 1819

where z is measured from the bottom of the cross section, and y = 6450 mm is in
the center in the y-direction of the cross section. The stiffness properties of the
cross section are given in table 4.2.
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Table 4.2: Cross-sectional properties of a single box section.

Property Unit Value
Asb m2 0.4472
Iy,sb m4 0.4398
Iz,sb m4 6.2420
IT,sb m4 1.0780
Cw,sb m6 0.8698
E N/mm2 210 · 103

G N/mm2 80 · 103

where A is the area, Ii is the second moment of area about axis i, IT is the
torsional constant, Cw is the warping constant and E and G are the modulus of
elasticity and shear modulus respectively.

The individual contributions to the total distributed mass of the cross section
is shown in the table below.

Table 4.3: Distributed mass of a single box section.

Description Distributed mass [kg/m]
Longitudinal steel (ρsteel = 7850 kg/m3) 3511
Guide vanes 112
Bulkheads 603
Lower hanger cable fastening 30
Railing with fastening plates 136
Pavement (membrane and wearing course) 1885
Electrical installations etc. 240
Surface treatment 26
Sum single box (mz,sb) 6543

The distributed rotational mass of the single-box girder is given as:

mθ,sb = 82 505 kgm2/m (4.1)



4.3. DUAL BOX CROSS-SECTIONAL PROPERTIES 35

4.3 Dual box cross-sectional properties

The cross-sectional properties of the different configurations is calculated using
the properties of the single box section and transverse girder.

4.3.1 Transverse girders

The two box girders are connected with a transverse girder between each pair of
hanger cables every 30m along the main span of the bridge. The cross section of
the transverse girder is shown in fig. 4.5.

Figure 4.5: Cross section of transverse girder.

For simplicity the stiffness contribution of the transverse girders are assumed neg-
ligible. Only their mass contribution is accounted for in the following calculations.

With an area of 0.1790m2, the distributed mass of the steel transverse girder is
mtg = 1405 kg/m along its own length. The contribution to the total distributed
mass is calculated simply by

mz,tg = mtg · Ltg/(30m) (4.2)

The contribution to the rotational mass moment of inertia from the transverse
girder is

mθ,tg =
mtg · L3

tg

12 /(30m) (4.3)
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Table 4.4: Mass contribution of transverse girder.

c/c
Property Unit 15 m 20 m 30 m
Ltg m 25 30 40
mz,tg kg/m 1171 1405 1873
mθ,tg kgm2/m 60981 105375 249778

The assumed lengths and computed values for the mass contributions of the trans-
verse girder to the different cross section configurations is presented in table 4.4.

4.3.2 Stiffness

The stiffness of the dual box section is calculated from the stiffness of the single
box, given in sec. 4.2. The stiffness contribution from the transverse girder is as-
sumed to be negligible, and so is the distance from the centroid to the shear center.

With the assumptions above the second moment of area about the y-axis and
the torsional constant may be estimated using

Iy = 2 · Iy,sb (4.4)

and
IT = 2 · IT,sb (4.5)

The second moment of area about the z-axis is estimated using the well known
parallel axis theorem

Iz = Icc +A · r2 (4.6)

where r is the distance from the centroid (cc) to a parallel axis about which Iz is
calculated and A is the area of the section. The bending stiffness about the z-axis
for the dual box section, with r being half the center-to-center distance, is then
found by:

Iz = 2 · (Iz,sb +Asb · r2) (4.7)
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The warping constant may be estimated using the formula [15]:

Cw = If ·
h2

2 (4.8)

where the cross section is seen as an I-section with the two boxes corresponding
to the flanges and the cross beam being the web. Thus If = Iy,sb and h is the
distance center-to-center between the boxes.

The obtained stiffness values for the configurations is shown in table 4.5.

Table 4.5: Stiffness properties of the dual box cross sections.

c/c
Property Unit 15 m 20 m 30 m
Iy m4 0.8796 0.8796 0.8796
Iz m4 62.794 101.924 213.724
IT m4 2.156 2.156 2.156
Cw m6 49.4775 87.96 197.91

4.3.3 Mass

The calculation of the distributed mass in the vertical direction is a simple sum-
mation of the contribution from the box sections and the transverse girders. In
addition, half of the mass of the hanger cables is added to the mass of the girder,
while the other half is added to the mass of the main cables, thus

mz = 2 ·mz,sb +mz,tg +mhc (4.9)

It is here taken for granted that the mass of the hanger cables added to the bridge
girder is mhc = 280 kg/m, the specific calculation is shown in the next section.

The rotational mass may be found using the parallel axis theorem as before,
which for rotational mass moment of inertia is given as

Mθ = Mθ,cg +M · r2 (4.10)
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where Mθ,cg is the rotational mass moment of inertia about the center of gravity
(cg) and Mθ is the inertia about a parallel axis at a distance r from the center of
gravity. M is the total mass of the body.

The rotational mass of the box girder is then

mθ,girder = 2 · (mz,sb · (r2 + e2) +mθ,sb) (4.11)

where r is half the center-to-center distance of the two box sections and e is the
eccentricity between the center of gravity and shear center. For the hanger cables
and main cables, assuming that half of the hanger cable is mass included in the
main cable mass, whereas mhc is the half added to the girder, the cable system
contribution becomes

mθ,c = 2 · (mhc +mc) · r2
c (4.12)

where rc is half the center-to-center distance of the main cables. The total rota-
tional mass of inertia is then given by

mθ = mθ,girder +mθ,tg +mθ,c (4.13)

The distributed masses obtained is shown in table 4.3 below. It has been taken
for granted that the mass of the main cables including the added weight from the
hanger cables is mc = 9677 kg/m. The cable calculations are shown in the next
section.

Table 4.6: Mass properties of dual box girder.

c/c
Property Unit 15 m 20 m 30 m
mz kg/m 14.538 · 103 14.773 · 103 15.241 · 103

mθ kgm2/m 4.3304 · 106 6.3514 · 106 11.676 · 106

4.4 Cable dimensions

The cable system of the Sognefjord bridge is the traditional suspension system
with two main cables connected to the deck by 121 pairs of hanger cables along the
bridge length. The main cables are assumed to have a minimum tensile strength
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of fcbu = 1770N/mm2 and elasticity module of Ec = 200 · 103N/mm2.

Hanger cables of the type Bridon LC100 have been suggested by the NPRA,
and are assumed to meet the necessary requirements. The weight of the hanger
cables are distributed to the main cables and the girder as discussed in sec. 5.2.
The mass contribution of the hanger cables are given in the table below.

Table 4.7: Hanger cable composition and load distribution.

Description Unit Value
Total length of hangers m 32594
Mass per length kg/m 56.2
Total mass hanger cables kg 1832 · 103

Cable socket (per socket) kg 439
Total weight of sockets kg 212 · 103

Mass added to stiffening girder kg/m 280
Mass per cable clamp kg 3000
Total mass upper hanger cable kg 1748 · 103

Mass added to each main cable kg/m 232

The main cable dimensions are chosen to meet the requirements of NPRA given
in [16](5.10.3.2), i.e. maximum cable force should not exceed:

FRd = Fuk
1.5 · γm

(4.14)

where γm = 1.2 and
Fuk = fcbu ·Ac (4.15)

where fcbu is the minimum tensile strength of the cable and Ac is the effective
steel area of the cable. For wire strands with fcbu = 1770N/mm2 and a suggested
effective steel area of Ac = 1.15m2, the allowable force in the a single cable is:

FRd = 1130.83 · 106N (4.16)

The maximum cable force is calculated with a specified traffic-load of 9 kN/m per
roadway lane and 2 kN/m per walking/bicycle path. These loads are specified
in [16] for bridges with main spans less than 500m but will be assumed to be
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the design traffic load for the Sognefjord bridge as well as larger spans are not
specified in [16]. With two roadway lanes and two walking/bicycle paths the total
design traffic load for the Sognefjord bridge is qT = 22 kN/m.

Safety factors specified in [16] are γG = 1.2 for self-weight and γT = 1.3 for
traffic-load. The horizontal force in the main cables may now be calculated using
eq. 3.2, with mz,Ed = γG ·mz + γT · (qT /g) and mc,Ed = γG ·mc. This yields the
horizontal forces as shown in the table below.

Table 4.8: Horizontal force in main cables.

c/c
Description Unit 15 m 20 m 30 m

H̄ MN 995.83 1002.21 1014.96

The maximum axial force may now be calculated with eq. 3.4 where

q = qT
2 + mz · g

2 +mc · g (4.17)

which yields:

Table 4.9: Maximum axial force in main cables.

c/c
Description Unit 15 m 20 m 30 m
N̄max MN 1075.42 1082.31 1096.09
Utilization % 95 96 97

As seen by table 4.9 an effective steel area of 1.15m2 per main cable is sufficient
for all three cross section cases.

4.5 Aerodynamic derivatives

At the time of writing this thesis experimentally found aerodynamic derivatives
for the exact cross sections are not available. The aerodynamic derivatives used
are from wind tunnel tests of different configurations of the proposed bridge called
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Brusymfonien [3], which has a similar dual box bridge girder. The Brusymfonien
bridge however, has a girder width of only B = 7.5m opposed to B = 12.9m
for the Sognefjord bridge. This difference is assumed to be negligible in the
calculations and B = 12.9m is used. An illustration of the configurations for
Brusymfonien is shown below.

Figure 4.6: Dual box configurations of Brusymfonien wind tunnel tests [3].

The static aerodynamic load coefficients from these wind tunnel tests are shown
in the table below.

Table 4.10: Static aerodynamic load coefficients – Brusymfonien wind tunnel
tests [3].

c/c CD CL C ′L CM C ′M

15m 1.523 -0.145 5.46 0.134 0.04
20m 1.754 0.118 6.37 0.185 -0.80
30m 1.819 -0.200 6.96 0.194 -3.24

The experimentally found aerodynamic derivatives are found by curve fitting of
test results, and given by

ADi = p3V̂
3
i + p2V̂

2
i + p1V̂i + p0 (4.18)

where pi are constants and V̂i = V/(B ·ωi(V )). In the case of vertical and torsional
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movement only:

ADi =
[
H∗i
A∗i

]
, i = 1 . . . 4 (4.19)

The figure below shows the aerodynamic derivatives plotted for the different
center-to-center distances.

Figure 4.7: Aerodynamic derivatives, H∗k , k = 1 . . . 4.
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Figure 4.8: Aerodynamic derivatives, A∗k, k = 1 . . . 4.

It should be noted that the wind tunnel tests were only carried out for wind
velocities up to a maximum reduced velocity of V̂ = 16.2, values above these
are thus extrapolated from test data. Full tables containing all coefficients for
aerodynamic derivatives are presented in app. C.

4.6 Wind properties at bridge site

For long span suspension bridges such as the proposed Sognefjord bridge, defined
as class III bridges, the design mean wind velocity should be determined from
measurements as stated in the Norwegian building standard NS-EN 1991-1-4 [17].
The project has not reached a stage where this has been done however, therefore
as a first estimate the design wind velocity is taken from the equations given
by [16,17]
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Vm(z) = cr(z) · c0(z) · Vb (4.20)

where Vm(z) is the mean wind velocity at height z, c0(z) is the orography factor
here taken as 1.0, and cr(z) is the terrain roughness factor given by

cr(z) = kr · ln
(
z

z0

)
(4.21)

where z0 is the roughness length and kr is a roughness factor given by

kr = 0.19 ·
(
z0

0.05

)0.07
(4.22)

The basic wind velocity, Vb, is given as

Vb = cdir · cseason · Vb,0 (4.23)

where the directional and seasonal factors cdir and cseason may be set to 1.0 as
recommended by the standard. Vb,0 is the fundamental value of the basic wind
velocity, which is site specific and found to be

Vb,0 = 29m/s (4.24)

for the proposed bridge site in Gulen municipality [14].

With a roughness length of z0 = 0.01m, kr ≈ 0.17 and the terrain roughness
factor at z = 70m is

cr(70) = 0.17 · ln
( 70

0.01

)
= 1.505 (4.25)

this yields a design mean wind velocity of

Vm(70) = 1.505 · 29m/s = 43.6m/s (4.26)

According to point 2.5.2.5 in [16], the critical mean wind velocity of a class III
bridge should meet the requirement

Vcr
γcr
≥ Vm(z) (4.27)
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where γcr = 1.6. The requirement for the critical mean wind velocity is thus

Vcr ≥ 1.6 · 43.6m/s = 69.8m/s (4.28)

The turbulence intensity is given by [16,17] to be

Iu(z) = k1
c0(z) · ln(z/z0) (4.29)

where the turbulence intensity factor is given as k1 = 1.2 [14], this yields and
intensity

Iu(70) = 1.2
1.0 · ln(70/0.01) ≈ 0.14 (4.30)

also from section 2.5 in [16] the following values are found for the wind turbulence
properties

Iw = 1
2 · Iu = 0.07 (4.31)

and

Au = 6.8 Aw = 9.4
Cux = 10 Cwx = 3 (4.32)

and the integral length scales given by [14]

xfLu = 360m xfLw = 30m (4.33)

are all the values needed for generating a wind spectrum according to eq. 2.73.
The wind spectra are shown in fig. 4.9.



46 CHAPTER 4. THE SOGNEFJORD BRIDGE

Figure 4.9: Kaimal spectra of turbulence components.



Chapter 5

Numerical results

5.1 Introduction

This chapter presents the numerical results found for the three cross sectional con-
figurations discussed in sec. 4.3. The eigenmodes and corresponding mode shapes
have been found using the computer program ALVSAT, which was mentioned in
sec. 3.2.2. See app. A for all the ALVSAT input values as well as an example
output.

The computation of mode shapes (from Fourier coefficients), stability limits and
dynamic response has been done using self written MATLAB [2] scripts, all of
which are given in app. D. The scripts have been verified against examples given
in [4]. The calculations follow the theory given in ch. 2 and focuses only on the
vertical rz and torsional rθ degrees of freedom, since these are the ones associated
with the aerodynamic stability limits.

For the computation of the stability limits and dynamic response, the modally dis-
tributed masses m̃z and m̃θ are needed. The distributed masses of the bridge are
assumed constant over the entire span, rendering the modally distributed masses:

m̃z = mz + 2 ·mc (5.1)

and
m̃θ = mθ (5.2)

where mz, mθ and mc are given in ch. 4.

47
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5.2 Eigenfrequencies and modes of vibration

The eigenfrequencies and the vibrational modes of the bridge has been determined
using the computer program ALVSAT. The program computes the mode shapes
using a Fourier series solution to the eigenvalue problem (eq. 2.8) and consequently
the output is the Fourier coefficients aij,k where i = 1 . . . Nmod is the mode number
j = y, z, θ or c and k = 1 . . . NC is the Fourier coefficients. The vibrational
modes are then generated using a MATLAB script which computes them with
the following expression

φij =
NC∑
k=1

aij ,k · sin(kπx̂) (5.3)

where x̂ = x/L.

As stated in ch. 2 and the previous section only vertical and torsional move-
ment is associated with aerodynamic stability limits, therefore only vertical and
torsional vibrational modes have been determined using ALVSAT. A total of 8
vertical modes and 8 torsional modes have been computed using 8 Fourier coef-
ficients for each mode, in accordance with [1] which states that the number of
Fourier coefficients should be atleast equal to the number of modes in each di-
rection of motion. The number of coefficients has also be deemed sufficient by
observing that the last few of the 8 coefficients are close to or exactly zero.
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The eigenfrequencies found from ALVSAT are shown in table 5.1 for all three
cross section configurations.

Table 5.1: Eigenfrequencies for the Sognefjord bridge.

c/c 15 m 20 m 30 m
Mode ω [rad/s]
VA1 0.3863 0.3865 0.3869
VS1 0.4947 0.4967 0.4936
TA1 0.5629 0.5238 0.4804
TS1 0.6734 0.6466 0.5998
VS2 0.6808 0.6876 0.6766
VA2 0.7412 0.7410 0.7410
TS2 0.9001 0.8584 0.7989
VS3 0.9402 0.9410 0.9396
TA2 1.0963 1.0168 0.9281
VA3 1.1125 1.1125 1.1124
TS3 1.3776 1.2802 1.1706
VS4 1.3022 1.3023 1.3019
VA4 1.4851 1.4850 1.4849
TA3 1.6405 1.5224 1.3907
TS4 1.9160 1.7788 1.6256
TA4 2.1859 2.0290 1.8542

V=Vertical, T=Torsional, S=Symmetric,
A=Asymmetric.

It is seen that the eigenfrequencies of the vertical modes are very similar for all
configurations, as we might expect considering the stiffness and mass in the verti-
cal direction are practically equal. The torsional modes take on slightly different
values due to the changes in rotational mass and bending stiffness about the z-
axis. As ω ∝

√
K/M it is seen by the decrease in ω that the rotational mass

becomes more dominant for larger center-to-center distances.

A plot of the mode shapes corresponding to the 4 lowest eigenfrequencies is shown
in fig. 5.1, note that the normalized mode shapes are nearly identical for the three
configurations. For plots of all 16 mode shapes see app. B.
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Figure 5.1: Four lowest frequency mode shapes.

As stated in sec. 2.3.5, shape-wise similar and low frequency modes in vertical and
torsional movement are prone to coupling in a flutter instability. By inspecting
the four lowest modes it is seen that VA1 and TA1 look identical, and in addition
their frequency ratio is close to 1, these modes are consequently the most likely
modes to couple in a flutter instability. The flutter and response calculations
presented in the next section will therefore focus on these modes. For all three
cross-sectional configurations the shape-wise similarity for these modes are such
that ψz = ψθ ≈ 1.
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5.3 Stability limits

5.3.1 Dual box 15 m c/c

The configuration with 15 m center-to-center distance have the following proper-
ties:

Table 5.2: Structural properties for stability limit calculation 15 m c/c.

ρ [kg/m3] B [m] ζz = ζθ m̃z [kg/m] m̃θ [kgm2/m] C ′M

1.25 12.9 0.005 33893 4.3304 · 106 0.04

Static divergence

The torsional mode with the lowest frequency is TA1 as shown in table 5.1, with
an eigenfrequency of ωθ = 0.5629. Using eq. 2.54 critical mean wind velocity for
static divergence is found to be:

Vcr = 12.9m · 0.5629 rad/s ·
(

2 · 4.3304 · 106 kgm2/m

1.25 kg/m3 · (12.9m)4 · 0.04 · 1
)1/2

≈ 574m/s

(5.4)

which is obviously very high. However solving the general expression given eq. 2.53
with a MATLAB script reveals a stability limit in static divergence far lower at

Vcr = 93.6m/s (5.5)

which is then the critical mean wind velocity for static divergence.

Galloping and dynamic stability limit in torsion

By inspecting the aerodynamic derivatives in fig. 4.7 and fig. 4.8 we see that both
H∗1 and A∗2 are negative for all relevant values of V̂ (it is only positive at V̂ ≈ 0),
thereby rendering any galloping limit and dynamic stability limits in torsion non
existent.

Flutter

For flutter calculation the two low eigenfrequency modes, one vertical and one
torsional, which are the most shape-wise similar are critical. From table 5.1 and
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fig. 5.1 it is seen that this is the first asymmetric vertical mode (VA1) and the
first asymmetric torsional mode (TA1) as stated in the previous section. These
modes have the following frequencies:

Table 5.3: Frequencies VA1/TA1, 15 m c/c.

ωz [rad/s] ωθ [rad/s] γ = ωθ/ωz

0.3863 0.5629 1.457

The solution of the flutter equations is shown in fig. 5.2 below.

Figure 5.2: Development of the flutter equations for increasing V̂ .

The real part and imaginary parts intersect at approximately (V̂ , ω̂r) = (11.1, 0.924)
leading to a resonance frequency:

ωr = ωθ · ω̂r = 0.5629 · 0.924 = 0.520 rad/s (5.6)
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at a critical mean wind velocity of:

Vcr = V̂ ·B · ωr = 11.1 · 12.9 · 0.520 = 74.5m/s (5.7)

which is close to, but above the critical wind speed requirement of 69.8m/s.

5.3.2 Dual box 20 m c/c

The configuration with 20 m center to center distance have the following proper-
ties:

Table 5.4: Structural properties for stability limit calculation 20 m c/c.

ρ [kg/m3] B [m] ζz = ζθ m̃z [kg/m] m̃θ [kgm2/m] C ′M

1.25 12.9 0.005 34128 6.3514 · 106 -0.8

Static divergence

As shown in the table above, the quasi-static aerodynamic property C ′M is neg-
ative. Consequently eq. 2.54 will not yield a real Vcr so it may not identify a
stability limit. A static divergence limit was not found with eq. 2.53 either.

Galloping and dynamic stability limit in torsion

The aerodynamic derivatives H∗1 is negative for all relevant values of V̂ and thus
a galloping stability limit may not be identified.

For the case of dynamic stability in torsion however, it is seen that if the aerody-
namic derivative A∗2 is developed for high V̂ it goes from negative to positive at
around V̂ = 120, see fig. 5.3.
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Figure 5.3: A∗2 - 20 m c/c.

This yields a dynamic stability limit in torsion at V̂ = 121.2 and thus a critical
mean wind velocity and resonance frequency of

Vcr = 109m/s ωr = 0.07 rad/s (5.8)

This stability limit is however questionable as the values of V̂ is extrapolated way
beyond the wind tunnel test results.

Flutter

A flutter calculation for the 20 m c/c configuration has been done for the modes
VA1 and TA1. The frequencies of the modes are presented in table 5.5 below.
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Table 5.5: Frequencies VA1/TA1, 20 m c/c

ωz [rad/s] ωθ [rad/s] γ = ωθ/ωz

0.3865 0.5238 1.355

The solution to the flutter equations is shown in fig. 5.4.

Figure 5.4: Development of the flutter equations for increasing V̂ .

The intersection between the real and the imaginary parts occur at (V̂ , ω̂r) =
(21.9, 0.845). This gives an in-wind resonance frequency:

ωr = ωθ · ω̂r = 0.5238 · 0.845 = 0.443 rad/s (5.9)

at a critical mean wind velocity of:

Vcr = V̂ ·B · ωr = 21.9 · 12.9 · 0.443 = 125m/s (5.10)
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5.3.3 Dual box 30 m c/c

The girder configuration with 30 m center to center distance have the following
properties:

Table 5.6: Structural properties for stability limit calculation 30 m c/c.

ρ [kg/m3] B [m] ζz = ζθ m̃z [kg/m] m̃θ [kgm2/m] C ′M

1.25 12.9 0.005 34596 11.676 · 106 -3.24

Static divergence

The configuration with 30 m c/c also has a negative C ′M , thus a static divergence
stability limit may not be identified.

Galloping and dynamic stability limit in torsion

A dynamic stability limit in torsion may not be identified, as for all practical values
of V̂ , A∗2 is negative. For galloping it is seen that H∗1 is not strictly negative,
however because H∗4 grows negative quickly, the resonance frequencies become
complex values, and thus a stability limit in galloping is not found.

Flutter

A flutter calculation for the 30 m c/c configuration has been done for modes VA1
and TA1, the two modes have the following frequencies:

Table 5.7: Frequencies VA1/TA1, 30 m c/c.

ωz [rad/s] ωθ [rad/s] γ = ωθ/ωz

0.3869 0.4804 1.242

A solution of the flutter equations is not found for the 30 m c/c case. The
development of the real and imaginary parts is shown in fig. 5.5.
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Figure 5.5: Development of the flutter equations for increasing V̂ .

For higher V̂ the real and imaginary roots will just continue to increase in the
same exponential manner as shown in fig. 5.5.
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5.4 Dynamic response

5.4.1 Joint acceptance function

The determination of the joint acceptance functions is the most computation-
ally demanding part of finding the dynamic response. The numerical integration
required to obtain the joint acceptance functions may be done by a double sum-
mation of the form

I(β) = 1
N2

N∑
n=1

N∑
m=1

φi(x̂n)φj(x̂m) · exp {−β ·∆x̂nm} (5.11)

where ∆x̂nm = |x̂n− x̂m| and β = Cnx ·ω ·L/V , n = u,w. Because these integrals
are dependent on the discretization of x̂, i.e. the number N . It was found helpful
to study the convergence rate of the integrals with respect to N as to determine
the needed number of points for a sound solution to the response. A plot of these
integrals for the mode shapes VA1 and TA1 for three cases of N is shown in
fig. 5.6.

Figure 5.6: Joint acceptance integral convergence.

It is seen by the figure that only at large β values do the integrals not converge,
and that at these large values of β the integrals are small. With the resonant
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eigenfrequencies of modes VA1 and TA1 being less than 0.6 the relevant beta
values will only reach the divergence point for wind velocities less than around
5m/s. Based on this a discretization of N = 370 is chosen for computational
efficiency.

5.4.2 Dual box 15 m c/c

The dynamic response for the 15m center-to-center configuration was computed
using a two mode approach with VA1 and TA1 at response location xr/L = 0.25.
The resulting dynamic response variances are shown in fig. 5.7.

Figure 5.7: Top left: dynamic response in the vertical direction. Top right: co-
variance coefficient. Lower left: dynamic response in torsion. Lower right: devel-
opment of in-wind resonance frequencies.

The response calculation for this cross-sectional configuration confirms the exis-
tence the flutter limit in vicinity of the one found in sec. 5.3, the largest standard
deviation was found for 73.4m/s as opposed to the computed flutter limit of
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74.5m/s. The in-wind resonance frequency plot shows that the two modes oscil-
lates at the same frequency at a mean wind velocity of approximately 65m/s. A
comparison of the response spectra at mean wind veloctites of V = 40m/s and
V = 73.4m/s is shown in fig 5.8.

Figure 5.8: Top left: frequency-response spectrum. Top right: response spectrum
in vertical movement. Lower left: cross spectrum between vertical and torsional
movement. Lower right: response spectrum in torsional movement.

The figure shows the coupling effect of the modes in the frequency-response plot
where at V = 40m/s there are two peaks, but for V = 73.4 there is only a
single high peak at the flutter frequency. The response spectrum consequently
also shows a very large peak at the flutter frequency. A time series simulation of
V = 40m/s and V = 73.4m/s is shown in fig. 5.9.
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Figure 5.9: Time series simulation of dynamic response.

The time series simulation shows how the motion induced effect dominates at
flutter velocity, making the response more narrow banded as opposed to the more
broad banded response at 40 m/s.
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5.4.3 Dual box 20 m c/c

The dynamic response for the 20m center to center configuration was also com-
puted using a two mode approach with VA1 and TA1 at response location xr/L =
0.25. The results are shown in fig. 5.10.

Figure 5.10: Top left: dynamic response in the vertical direction. Top right:
covariance coefficient. Lower left: dynamic response in torsion. Lower right:
development of in-wind resonance frequencies.

The response calculation confirms the stability limit in flutter at 125m/s, in this
case equal to the calculated critical velocity in sec. 5.3. The in-wind resonance
frequency development shows a coupled frequency at about 100m/s. The response
spectra for V = 40m/s and V = 125m/s is shown in fig. 5.11.
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Figure 5.11: Top left: frequency-response spectrum. Top right: response spectrum
in vertical movement. Lower left: cross spectrum between vertical and torsional
movement. Lower right: response spectrum in torsional movement.

The different response spectra for this cross-sectional configuration also show a
clear difference from having two peaks and a fairly broad banded response spec-
trum at the lower mean wind velocity, to having a peak at the flutter frequency
for the flutter mean wind velocity. A time series simulation of V = 40m/s and
V = 125m/s is presented in fig. 5.12. The time series simulation plots show
the same effect that the motion induced effects have on the response, making it
more narrow banded whilst at the lower wind velocity the response is more broad
banded.
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Figure 5.12: Time series simulation of dynamic response.
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5.4.4 Dual box 30 m c/c

For the case of 30 m center-to-center configuration no stability limits were found in
sec. 5.3, which is also the case for the response calculation. A response calculation
was done up to V = 140m/s and is shown in fig. 5.13.

Figure 5.13: Top left: dynamic response in the vertical direction. Top right:
covariance coefficient. Lower left: dynamic response in torsion. Lower right:
development of in-wind resonance frequencies.

The response variances for the 30 m c/c configuration show a numerical instability
around V = 70m/s although no flutter limit was identified in sec. 5.3. The in-
wind resonance frequencies show a coupling effect at the same point, however
the convergence of the eigenfrequencies was found to be very unstable around
V = 70m/s. The response spectra for mean wind velocities of V = 40, 70 and
140 m/s is shown in fig. 5.14.
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Figure 5.14: Top left: frequency-response spectrum. Top right: response spectrum
in vertical movement. Lower left: cross spectrum between vertical and torsional
movement. Lower right: response spectrum in torsional movement.

The frequency response spectrum shows a coupling effect for the highest mean
wind velocity, but at the same time the absolute values of the frequency-response
decreases with increasing V . The values of the response spectra are almost un-
changed for the different velocities. A time series simulation was not done as no
stability limits were found.
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5.5 Summary and discussion

A summary of the stability limits found in sec. 5.3 are presented in table 5.8.

Table 5.8: Summary of stability limits.

c/c 15 m 20 m 30 m
Vcr ωr Vcr ωr Vcr ωr

Stability limit m/s rad m/s rad m/s rad

Static divergence 93.6 0 - - - -
Galloping - - - - - -
Dynamic limit in torsion - - 109a 0.07 - -
Flutter 74.5 0.520 125 0.443 - -
”-”: stability limit was not identified.
a: limit found for highly extrapolated V̂ .

It is seen that all the stability limits calculated lie above the requirement of
V = 69.8m/s presented in sec. 4.6. The cross section with 15 m center-to-center
gap is the one with the lowest critical velocities, and the flutter limit is close to
the requirement but still above. When increasing the center-to-center distance
to 20 m the critical velocities increase, and for the 30 m configuration none were
identified at all.

The response results confirm the stability limits in flutter for the 15 m and 20 m
configurations and shows what appears to be a stabilizing effect at lower wind ve-
locities for these configurations. The stabilizing effect is shown in fig. 5.15, which
plots the rate of change of the standard deviation in z-direction. It is seen for the
15 m and 20 m cases that the stabilization ends at the point where the modal
coupling begins at around 60 m/s and 90 m/s. Also the drop at around 70 m/s
for the 30 m c/c configuration is shown in the plot.
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Figure 5.15: Rate of change of vertical dynamic response.

For the two smallest center-to-center configurations the rate of change of the re-
sponse turns at the point of modal coupling. But for the 30 m c/c case the
stabilization effect just continues, this is shown by fig. 5.14 where it is seen that
|detH(ω)| is decreasing with increasing wind loads, as the motion induced effects
stabilizes the structure.

These results are highly governed by the aerodynamic derivatives, and thus they
represent a significant uncertainty in the calculations. This uncertainty is further
strengthened by the fact that the employed aerodynamic derivatives are not for
the exact cross sections used and it is also observed that all stability limits ob-
tained are in an extrapolated domain of the polynomial fits of the wind tunnel
tests. This includes a stability limit found for the 20 m case at V̂ = 121.2 which
is extrapolated far beyond the reduced velocities in the wind tunnel tests. The 30
m c/c case has a pair of aerodynamic derivatives that are very different from the
other two cases, which may cause the numerical instability at around V = 70m/s.



Chapter 6

Conclusions

The numerical results indicate that the dual box girder has the required aerody-
namic properties for slender suspension bridges with spans up to 3700 m. All
identified stability limits were for larger critical mean wind velocity than what is
required by standards.

It has been seen that increasing the center-to-center distance of the box sections
leads to an increase of the critical mean wind velocity of the aerodynamic stability
limits. For the widest dual box no stability limits were found at all.

From an aerodynamic stability point of view, the results suggest that a single-span
suspension bridge with a dual box girder is a viable option for a bridge crossing
the Sognefjord.

To ensure the validity of the stability limits, further work should include cal-
culations using aerodynamic derivatives found by wind tunnel tests for the exact
cross section in consideration.
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Appendix A

ALVSAT

This appendix includes the input data for used to calculate the eigenfrequencies
and eigenmodes in ALVSAT, as well as an example output.
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A.1 ALVSAT input for the different configurations

Table A.1: ALVSAT input

c/c
Input 15 m 20 m 30 m
DG [m] 2.5 2.5 2.5
DC [m] 1.21 1.21 1.21
BG [m] 12.9 12.9 12.9
L [m] 3700 3700 3700
HM [m] 5.0 5.0 5.0
F [m] 370 370 370
NY [m] 34.24 34.24 34.24
{L1} 0 0 0
{L2} 0 0 0
MG [kg/m] 14.54 · 103 14.77 · 103 15.24 · 103

MC [kg/m] 9677 9677 9677
H [N ] 774.8 · 106 780.1 · 106 790.7 · 106

EIZ [Nm2] 13.19 · 1012 21.4 · 1012 44.88 · 1012

G [m/s2] 9.807 9.807 9.807
S0 [N ] 0 0 0
{S0} 0 0 0
{STR} 0 0 0
PI1 [-] 0.1819 0.1819 0.1819
PI2 [-] 0.1819 0.1819 0.1819
FI1 [rad] 0.3805 0.3805 0.3805
FI2 [rad] 0.3805 0.3805 0.3805
HR [m] 0.68 0.68 0.68
BC [m] 13.05 15.55 20.55
M [kgm2/m] 4.33 · 106 6.351 · 106 11.68 · 106

AC [m2] 1.15 1.15 1.15
EIX [Nm2] 0.1847 · 1012 0.1847 · 1012 0.1847 · 1012

EIW [Nm4] 10.39 · 1012 18.47 · 1012 41.56 · 1012

GIT [Nm2] 0.1725 · 1012 0.1725 · 1012 0.1725 · 1012

EC [N/m2] 200 · 109 200 · 109 200 · 109



A.2. EXAMPLE OUTPUT 73

A.2 Example output

0000000000000000000000000000000000000000000000000000000000000000000000000000000
0.0 0.0
0.0 SOGNEFJORDBRUA c/c 15m. rev. 23.05.2013 0.0
0.0 Dempning: 0,5 % strukturell dempning 0.0
0.0 Lastfaktor på vind er 1.0 (r.p. 50 år) 0.0
0.0 0.0
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0.0.........................................................................0.0
0.0.........................................................................0.0
0.0............................... Analysed by .............................0.0
0.0.........................................................................0.0
0.0.........................................................................0.0
0.0.........................................................................0.0
0.0.....000.....0000........000.....000...0000000.......000.....00000000000.0.0
0.0....0 0....0 0........0 0.....0 0..0 0.....0 0....0 0.0.0
0.0...0 0...0 0........0 0.....0 0.0 0...0 0...0 0.0.0
0.0..0 0..0 0........0 0.....0 0.0 0..0 0..0 0.0.0
0.0.0 0 0.0 0........0 0.....0 0.0 000 0.0 0 0.00000 00000.0.0
0.0.0 0.0 0.0 0........0 0.....0 0.0 0...0000.0 0.0 0.....0 0.....0.0
0.0.0 0...0 0.0 0........0 0.....0 0.0 0........0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0........0 0.....0 0.0 0.......0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0........0 0...0 0.0 0......0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0........0 0...0 0..0 0.....0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0........0 0...0 0...0 0....0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0.........0 0.0 0.....0 0...0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0.........0 0.0 0......0 0..0 0...0 0.....0 0.....0.0
0.0.0 00000 0.0 0.........0 0.0 0.......0 0.0 00000 0.....0 0.....0.0
0.0.0 0.0 0..........0 0 0.........0 0.0 0.....0 0.....0.0
0.0.0 0.0 0..........0 0 0..........0 0.0 0.....0 0.....0.0
0.0.0 0.0 0..........0 0..........0 0.0 0.....0 0.....0.0
0.0.0 00000 0.0 0...........0 0...........0 0.0 00000 0.....0 0.....0.0
0.0.0 0...0 0.0 0...........0 0....0000...0 0.0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 00000000....0 0....0 000 0.0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0.....0 0.....0 0.0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0.....0 0.....0 0.0 0...0 0.....0 0.....0.0
0.0.0 0...0 0.0 0.....000......0 0..0 0...0 0.....0 0.....0.0
0.0.0000...0000.00000000000......0........0000000...0000...0000.....000.....0.0
0.0.........................................................................0.0
0.0.........................................................................0.0
0.0..................... ......................0.0
0.0..................... Version 3.7 / 940628 / ......................0.0
0.0..................... ......................0.0
0.0.........................................................................0.0
0.0.........................................................................0.0
0.0...0000000000000000000000000000000000000000000000000000000000000000000...0.0
0.0...0 0...0.0
0.0...0 Developed by: SINTEF div. of Structural Engineering 0...0.0
0.0...0 N-7034 TRONDHEIM NTH 0...0.0
0.0...0 0...0.0
0.0...0 Excecuted 13-05-24 at 10:57:14 0...0.0
0.0...0 0...0.0
0.0...0000000000000000000000000000000000000000000000000000000000000000000...0.0
0.0.........................................................................0.0
0.000000000000000000000000000000000000000000000000000000000000000000000000000.0
0...........................................................................0.0
0000000000000000000000000000000000000000000000000000000000000000000000000000000

1RUN MODES

HOR VER TOR
FRECUENCY ANALYSES: 0 1 1
STATIC ANALYSES: 0 0 0
DYNAMIC ANALYSES: 0 0 0

STRUCTURAL PARAMETERS :

LENGTH OF BRIDGE SPAN L = 3700.
MINIMUM HANGER LENGTH HM = 5.000
SAG OF MAIN CABLES F = 370.0
HOGGING OF THE GIRDER NY = 34.24
LENGTH OF SIDE SPAN SECOND. CABLE L1 = .0000
SAG OF SECONDARY CABLES FS = .0000
MASS OF GIRDER MG = .1454E+05
MASS OF MAIN CABLES (ONE CABLE) MC = 9677.
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TENSION IN MAIN CABLE (ONE CABLE) H = .7748E+09
RIGIDITY OF GIRDER EI = .1319E+14
ACCELERATION OF GRAVITY G = 9.807
TYPICAL DIMENSION OF GIRDER DG = 2.500
TYPICAL DIMENSION OF ONE CABEL DC = 1.210
TYPICAL WIDTH OF THE GIRDER BG = 12.90
TENSION IN GIRDER S0 = .0000
TENSION IN SECOND. CABLES F0 = .0000
INITIAL STRAIN IN SECOND. CABLES STR = .0000
LENGTH OF BACKSTAYS IN % OF PI1 = .1819
THE LENGTH OF THE BRIDGE SPAN PI2 = .1819
CABLE SLOPE OF BACKSTAY 1: FI1 = .3805
CABLE SLOPE OF BACKSTAY 2: FI2 = .3805
DISTANCE BETWEEN POINT OF ATTACHMENT
FOR HANGERS AND THE CENTER OF
GYRATION HR = .6800
HALF THE DISTANCE BETWEEN
THE CABLES BC = 13.0500
MASS MOMENT OF INERTIA M = .4330E+07
HORIZONTAL COMPONENT OF
CROSS SECTION OF EACH CABLE AC = 1.150
BENDING STIFFNESS OF GIRDER EIX = .1847E+12
WARPING RESISTANCE EIW = .1039E+14
TORSIONAL STIFFNESS GIT = .1725E+12
MODULUS OF ELASTICITY OF CABLE EC = .2000E+12

1DATA FOR FREQUENCY ANALYSES

HOR VER TOR
NUMBER OF COEFFICIENTS (NFC): 8 8 8
NUMBER OF NORMAL MODES (NNM): 8 8 8

FREQUENCY RANGE FOR ITERATION SEARCH :

LOWER LIMIT FOR VERTICAL MODE VOMI = .0000
UPPER LIMIT FOR VERTICAL MODE VOMA = .0000
LOWER LIMIT FOR TORSIONAL MODE TOMI = .0000
UPPER LIMIT FOR TORSIONAL MODE TOMA = .0000
MAXIMUM NUMBER OF ITERATIONS NMAX = 30
NO. OF INTERVALS IN
FREQUENCY RANGE IN ASYM ITFR = 50
BRIDGE HELD/FREE AT THE ENDS LC = 1
LC=0 : FREE LC=1 : HELD AT ONE END

ENVIRONMENTAL DATA

ESDU SPECTRUM (ISTYP=2)
-----------------------
WIND SPEED AT THE LEVEL OF THE BRIDGE (UREF) = 38.60
INTEGRAL LENGTH SCALE OF U IN X-DIR (XLU) = 448.2
TURBULENCE INTENSITY U COMPONENT = .1370
CHARACTERISTIC HEIGHT ABOVE THE
GROUND OF THE BRIDGE DECK = 62.00
WIND VELOCITY 10 M ABOVE THE GROUND = 29.16
TURBULENCE INTENSITY OF VERTICAL VELOCITY = .7551E-01
INTEGRAL LENGTH SCALE OF U IN Y-DIR = 127.4
INTEGRAL LENGTH SCALE OF U IN Z-DIR = 81.11
INTEGRAL LENGTH SCALE OF W IN X-DIR = 37.56
INTEGRAL LENGTH SCALE OF W IN Y-DIR = 21.35
INTEGRAL LENGTH SCALE OF W IN Z-DIR = 27.18
ALFA VALUE IN MODIFIED VON KARMAN SPECTRUM = .5884
BETA1 IN MODIFIED VON KARMAN SPECTRUM = .6259
BETA2 IN MODIFIED VON KARMAN SPECTRUM = .3741
TERRAIN ROUGHNESS (Z0) = .2320E-01

ESDU COHERENCE FUNCTION (ICTYP=2)
-----------------------------------
DECAY FACTOR HORIZONTAL SEPARATION (U,W)= 1.000 1.000
DECAY FACTOR VERTICAL SEPARATION (U,W) = 1.000 1.000
AVERAGE CORRELATION BETWEEN LOADS
ON GIRDER AND CABLES = .9000
DENSITY OF AIR: = 1.250

COEFFICIENTS (FORM FACTORS)
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CDG(1:5) : .8260 .0000 .0000 .0000 .8260
CDDG(1:5): .0000 .0000 .0000 .0000 .0000
CDC(1:5) : 1.000 .0000 .0000 .0000 1.000
CLG(1:5) : -.2510 9.700 2.000 1.000 -.2510
CLDG(1:5): 2.401 9.700 2.000 1.000 2.401
CMG(1:5) : .2000E-02 9.700 2.000 1.000 .2000E-02
CMDG(1:5): .7700 9.700 2.000 1.000 .7700

1DATA FOR STATIC ANALYSIS

NUMBER OF INTERVAL FOR RESPONS CALCULATION
HOR VER TOR

10 10 10

DATA FOR DYNAMIC ANALYSES

HOR VER TOR
CROSS TERMS BETWEEN MODES: 1 1 1
IRS : 0 0 0

DURATION OF STORM : 600.

CRITICAL DAMPING RATIOS :

CRDR( 1,1:3) : .5000E-02 -.7400E-02 .1410E-01
CRDR( 2,1:3) : .5000E-02 -.7700E-02 .9600E-02
CRDR( 3,1:3) : .5000E-02 -.6200E-02 .7400E-02
CRDR( 4,1:3) : .5000E-02 -.5900E-02 .6500E-02
CRDR( 5,1:3) : .5000E-02 -.4300E-02 .6100E-02
CRDR( 6,1:3) : .5000E-02 .3100E-02 .5900E-02
CRDR( 7,1:3) : 200.0 200.0 200.0
CRDR( 8,1:3) : 200.0 200.0 200.0

1 ********************************************
********** VERTICAL RESPONSE *************
********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

********** SYMMETRIC MODES **********

MODE PERIOD FREQUENCY
NO: SEC RAD/SEC

1 12.69690 .49486

2 9.22855 .68084

3 6.68290 .94019

4 4.82508 1.30219

FOURIER CONSTANTS :

MODE 1 2 3 4

-.9095E+00 .1000E+01 .1484E+00 .3896E-01
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.1000E+01 .9243E+00 .7306E-01 .1556E-01

.6241E-01 -.2172E+00 .1000E+01 .1547E-01

.1898E-01 -.5015E-01 -.2244E-01 .1000E+01

.8360E-02 -.2046E-01 -.7343E-02 -.6556E-02

.4418E-02 -.1049E-01 -.3470E-02 -.2362E-02

.2618E-02 -.6108E-02 -.1944E-02 -.1192E-02

.1678E-02 -.3873E-02 -.1206E-02 -.7005E-03

MODES OF VIBRATION : 1 2 3 4

OBSERVATION
POINT :

.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00
185.00 .3889E+00 .3390E+00 .7302E+00 .9047E+00
370.00 .6031E+00 .8047E+00 .1088E+01 .8495E+00
555.00 .6053E+00 .1247E+01 .8592E+00 -.1048E+00
740.00 .3986E+00 .1515E+01 .1785E+00 -.9120E+00
925.00 .1241E-01 .1535E+01 -.5401E+00 -.6845E+00
1110.00 -.4793E+00 .1286E+01 -.8681E+00 .3262E+00
1295.00 -.9966E+00 .8613E+00 -.6047E+00 .1012E+01
1480.00 -.1447E+01 .3914E+00 .8981E-01 .6204E+00
1665.00 -.1752E+01 .2849E-01 .7971E+00 -.4198E+00
1850.00 -.1861E+01 -.1036E+00 .1093E+01 -.9658E+00

1 ********** ASYMMETRIC MODES **********/

MODE PERIOD FREQUENCY
NO: SEC RAD/SEC

1 16.26597 .38628

2 8.47854 .74107

3 5.64770 1.11252

4 4.23090 1.48507

FOURIER CONSTANTS :

MODE 1 2 3 4

.1000E+01 .3691E-02 .7302E-03 .2582E-03

-.3691E-02 .1000E+01 .3641E-03 .1030E-03

-.7288E-03 -.3668E-03 .1000E+01 -.2260E-06

-.2578E-03 -.1039E-03 .0000E+00 .1000E+01

-.1190E-03 -.4445E-04 .0000E+00 .0000E+00

-.6405E-04 .0000E+00 .0000E+00 .0000E+00

-.3812E-04 .0000E+00 .0000E+00 .0000E+00

-.2435E-04 .0000E+00 .0000E+00 .0000E+00

MODES OF VIBRATION : 1 2 3 4

OBSERVATION
POINT :

.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00
185.00 .3051E+00 .5878E+00 .8090E+00 .9511E+00
370.00 .5845E+00 .9511E+00 .9511E+00 .5878E+00
555.00 .8085E+00 .9511E+00 .3090E+00 -.5878E+00
740.00 .9531E+00 .5878E+00 -.5878E+00 -.9511E+00
925.00 .1003E+01 -.4551E-07 -.1000E+01 .9103E-07
1110.00 .9531E+00 -.5878E+00 -.5878E+00 .9511E+00
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1295.00 .8085E+00 -.9511E+00 .3090E+00 .5878E+00
1480.00 .5845E+00 -.9511E+00 .9511E+00 -.5878E+00
1665.00 .3051E+00 -.5878E+00 .8090E+00 -.9511E+00
1850.00 -.4464E-07 .9103E-07 -.1365E-06 .1821E-06

ONE START FREQUENCY TRIED IN ASYM
NUMBER OF ITERATIONS NECESSARY: 4

1 ********************************************
********** TORSIONAL RESPONSE *************
********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

********** SYMMETRIC MODES **********

MODE PERIOD FREQUENCY
NO: SEC RAD/SEC

1 9.32999 .67344

2 6.98058 .90009

3 4.56113 1.37755

4 3.27937 1.91598

FOURIER CONSTANTS :

MODE 1 2 3 4

.1000E+01 .5351E+00 .7116E-01 .2148E-01

-.5393E+00 .1000E+01 .3522E-01 .8570E-02

-.5238E-01 -.7354E-01 .1000E+01 .8560E-02

-.1645E-01 -.1947E-01 -.1041E-01 .1000E+01

-.7321E-02 -.8234E-02 -.3434E-02 -.3598E-02

-.3902E-02 -.4288E-02 -.1633E-02 -.1303E-02

-.2327E-02 -.2525E-02 -.9192E-03 -.6604E-03

-.1499E-02 -.1615E-02 -.5725E-03 -.3895E-03

MODES OF VIBRATION : 1 2 3 4

OBSERVATION
POINT :

.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00
185.00 -.1543E+00 .4526E+00 .7187E+00 .8986E+00
370.00 -.1907E+00 .8875E+00 .1043E+01 .8314E+00
555.00 -.1039E+00 .1192E+01 .7801E+00 -.1280E+00
740.00 .9029E-01 .1284E+01 .8541E-01 -.9296E+00
925.00 .3692E+00 .1145E+01 -.6271E+00 -.6946E+00
1110.00 .6861E+00 .8054E+00 -.9365E+00 .3184E+00
1295.00 .1000E+01 .3574E+00 -.6577E+00 .1001E+01
1480.00 .1263E+01 -.8511E-01 .4312E-01 .6058E+00
1665.00 .1437E+01 -.4076E+00 .7500E+00 -.4351E+00
1850.00 .1499E+01 -.5239E+00 .1044E+01 -.9811E+00

1 ********** ASYMMETRIC MODES **********/

MODE PERIOD FREQUENCY
NO: SEC RAD/SEC

1 11.16264 .56288
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2 5.73101 1.09635

3 3.82996 1.64054

4 2.87441 2.18590

FOURIER CONSTANTS :

MODE 1 2 3 4

.1000E+01 .1123E-02 .2240E-03 .7981E-04

-.1123E-02 .1000E+01 .1119E-03 .3190E-04

-.2238E-03 -.1122E-03 .1000E+01 -.2145E-07

-.7977E-04 -.3199E-04 .0000E+00 .1000E+01

-.3714E-04 -.1379E-04 .0000E+00 .0000E+00

-.2020E-04 .0000E+00 .0000E+00 .0000E+00

-.1217E-04 .0000E+00 .0000E+00 .0000E+00

-.7881E-05 .0000E+00 .0000E+00 .0000E+00

MODES OF VIBRATION : 1 2 3 4

OBSERVATION
POINT :

.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00
185.00 .3078E+00 .5878E+00 .8090E+00 .9511E+00
370.00 .5868E+00 .9511E+00 .9511E+00 .5878E+00
555.00 .8089E+00 .9511E+00 .3090E+00 -.5878E+00
740.00 .9517E+00 .5878E+00 -.5878E+00 -.9511E+00
925.00 .1001E+01 -.4551E-07 -.1000E+01 .9103E-07
1110.00 .9517E+00 -.5878E+00 -.5878E+00 .9511E+00
1295.00 .8089E+00 -.9511E+00 .3090E+00 .5878E+00
1480.00 .5868E+00 -.9511E+00 .9511E+00 -.5878E+00
1665.00 .3078E+00 -.5878E+00 .8090E+00 -.9511E+00
1850.00 -.4525E-07 .9103E-07 -.1365E-06 .1821E-06

ONE START FREQUENCY TRIED IN ASYM
NUMBER OF ITERATIONS NECESSARY: 5

***** CPU-TIME USED = 12.1200 *****



Appendix B

Eigenmodes

This appendix contains plots of all 16 mode shapes found with ALVSAT.
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B.1 Mode shape plots

Figure B.1: Vertical eigenmodes. Line colors: blue = 15 m c/c, green = 20 m c/c
and red = 30 m c/c.

Figure B.2: Torsional eigenmodes. Line colors: blue = 15 m c/c, green = 20 m
c/c and red = 30 m c/c.



Appendix C

Aerodynamic derivative
coefficients

This appendix contains tables with coefficients used in the polynomial fit of the
aerodynamic derivatives.
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D.1 Mode shapes

The mode shapes were generated from Fourier coefficient using the script MOD-
EGEN.m, where the Fourier coefficients and eigenfrequencies were loaded from
separate files.

MODEGEN.m

1 %Mode shape generator
2 %This script generates plots of the mode shapes, and also a mode ...

shape
3 %matrices PHI. rev. 2 | 11.04.2013 SLW
4 close all
5 clear all
6 %***USER INPUT***
7 %Inputfiles and current directory
8 cd('C:\Users\Simen\Master 2013\MyFolder');
9 InputFC='FC 15m cc.txt';

10 InputOMEGA='Omega 15m cc.txt';
11

12

13 %MODEGEN Output
14 writeOP=0;
15 Outputname='PHI 15m cc.txt';
16

17 %PLOT OPTIONS
18 plotmode=0;
19 normalize=0;
20 loadPHI=0;
21 twomodeOP=1;
22

23 %Structural properties
24 L=3700;
25 Np=370; %Number of points
26

27 %Specify number of modes (Number of Lateral, Vertical or ...
Torsional modes)

28 NL=0; NV=8; NT=8;
29

30 NFC=8; %Number of fourier coefficients. For computational ...
purposes NFC=NL/V/T.

31

32 %***END USER INPUT***
33 %There are always an even number of modes, where half of them ...

are symmetric
34 %and the other half are antisymmetric.
35 NLS=NL/2; NLA=NLS; NVS=NV/2; NVA=NVS; NTS=NT/2; NTA=NTS;
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36

37 %Total number of modes
38 NMOD=NLS+NLA+NVS+NVA+NTS+NTA;
39

40 %Importing the coefficients from .txt file. The coefficients ...
should be

41 %arranged as in ALVSAT result: VS,VA,TS,TA (provided no ...
horizontal modes).

42 if loadPHI==0;
43

44 FCS=importdata(InputFC);
45

46 FVS=FCS(1:NFC,1:NVS);
47

48 FVA=FCS(NFC+1:2*NFC,1:NVA);
49

50 FTS=FCS(2*NFC+1:3*NFC,1:NTS);
51

52 FTA=FCS(3*NFC+1:4*NFC,1:NTA);
53

54 clear FCS
55 FCS=[FVS,FVA,FTS,FTA];
56

57

58 %Generating mode shapes
59 x=linspace(0,L,Np);
60 xred=x./L;
61

62 %Modeshapes
63 PVS=zeros(Np,NVS);
64 PVA=zeros(Np,NVA);
65 PTS=zeros(Np,NTS);
66 PTA=zeros(Np,NTA);
67

68 for k=1:NFC
69 PVS=PVS + sin((2*k−1)*pi*xred')*FVS(k,:);
70 PVA=PVA + sin((2*k)*pi*xred')*FVA(k,:);
71 PTS=PTS + sin((2*k−1)*pi*xred')*FTS(k,:);
72 PTA=PTA + sin((2*k)*pi*xred')*FTA(k,:);
73 end
74

75 PHI=[PVS,PVA,PTS,PTA];
76

77 if writeOP==1;
78 dlmwrite(Outputname,PHI,'\t');
79 end
80 end
81

82 OMEGA=importdata(InputOMEGA);
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83 OMEGA=OMEGA(:,3);
84

85 %Normalize plots
86 if normalize==1;
87 for n=1:NMOD
88 c=max(abs(PHI(:,n)));
89 PHI(:,n)=(1/c).*PHI(:,n);
90 end
91 end
92

93

94 %Generate plots for all modes
95 if plotmode==1
96 NW=floor(NMOD/4);
97 NPLOT=NMOD;
98 NWEND=0;
99 if rem(NMOD,4)6=0;

100 NWEND=1;
101 NPLOTEND=rem(NMOD,4);
102 end
103

104 %Modenumbers
105 modnum=[1:1:NV,1:1:NT];
106

107

108 for n=1:NW
109 figure
110 for m=1:4;
111 k=(4*(n−1)+m);
112 subplot(4,1,m)
113 plot(xred,PHI(:,k));
114 xlabel('x/L');
115 str0=num2str(modnum(k));
116 if k>NV;
117 str1=strcat('\phi {\theta',str0,'}');
118 else
119 str1=strcat('\phi {z',str0,'}');
120 end
121 ylabel(str1);
122 grid on
123 end
124 end
125

126 if NWEND==1;
127 figure
128 for n=1:NPLOTEND
129 k=4*NW+n;
130 subplot(4,1,m)
131 plot(xred,PHI(:,k));
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132 xlabel('x/L');
133 if k>NV;
134 str1=strcat('\phi {\theta',str0,'}');
135 else
136 str1=strcat('\phi {z',str0,'}');
137 end
138 ylabel(str1);
139 grid on
140 end
141 end
142 end
143

144

145 %Generate two mode output?
146 if twomodeOP==1;
147 modes=input('Which modes?[\phi z \phi {theta}]');
148 opname=input('Output filename?(no extension) ');
149 str1=strcat(opname,'.txt');
150 opPHI=[PHI(:,modes(1)),PHI(:,modes(2))];
151 dlmwrite(str1,opPHI,'\t');
152 str2=strcat(opname,' omega.txt');
153 opOMEGA=[OMEGA(modes(1)),OMEGA(modes(2))];
154 dlmwrite(str2,opOMEGA,'\t');
155 end
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D.2 Flutter

The flutter solutions were calculated using a script Flutter.m shown below, if the
Theodorsen aerodynamic derivatives are used they are generated with the script
aeroplate.m.

Flutter.m

1 %This script computes the critical wind velocity of flutter ...
instability

2 %using two modes.
3 %−Simen L Walbaekken 16.04.2013
4 cd('C:\Users\Simen\Master 2013\MyFolder')
5

6 clear all
7 close all
8

9 %Basic structural properties, options for aerodynamic ...
derivatives and the

10 %two modes including eigenfrequencies are imported from text files.
11 %User input: filenames and wind velocity search
12 Nv=100;
13 Vmin=1;
14 Vmax=130;
15 plotAD=0;
16 ADalt=1;
17

18 Inp=dlmread('Data 15m cc.txt','\t',[2,0,2,9]);
19 OMEGA=importdata('15m cc VA1−TA1(5−13) omega.txt');
20 PHI=dlmread('15m cc VA1−TA1(5−13).txt');
21 ADfile='AD 15m cc.txt';
22

23

24

25 mZ=Inp(1); mT=Inp(2); zetaZ=Inp(3); zetaT=Inp(4); rho=Inp(7);
26 B=Inp(8); L=Inp(9);
27

28 omegaZ=OMEGA(1);
29 omegaT=OMEGA(2);
30

31 betaZ=(rho*Bˆ2)/mZ;
32 betaT=(rho*Bˆ4)/mT;
33 alfa=omegaT/omegaZ;
34

35 %Modeshapes
36 phiZ=PHI(:,1);
37 phiT=PHI(:,2);
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38

39 %Modeshapeintegrals note: Lexp=L
40 gammaZ=(phiT'*phiZ)/(phiZ'*phiZ);
41 gammaT=(phiT'*phiZ)/(phiT'*phiT);
42 gamma=gammaZ*gammaT;
43

44 omegamin=omegaZ;
45 omegamax=omegaT;
46

47 Vredmin=Vmin/(B*omegamax);
48 Vredmax=Vmax/(B*omegamin);
49

50 Vred=linspace(Vredmin,Vredmax,Nv);
51 if ADalt==1;
52 pAD=dlmread(ADfile,'\t',[1,1,8,4]);
53 H1=zeros(1,Nv);
54 H2=zeros(1,Nv);
55 H3=zeros(1,Nv);
56 H4=zeros(1,Nv);
57 A1=zeros(1,Nv);
58 A2=zeros(1,Nv);
59 A3=zeros(1,Nv);
60 A4=zeros(1,Nv);
61 for n=1:4;
62 H1=H1+pAD(1,n)*((2*pi).*Vred).ˆ(4−n);
63 H2=H2+pAD(2,n)*((2*pi).*Vred).ˆ(4−n);
64 H3=H3+pAD(3,n)*((2*pi).*Vred).ˆ(4−n);
65 H4=H4+pAD(4,n)*((2*pi).*Vred).ˆ(4−n);
66 A1=A1+pAD(5,n)*((2*pi).*Vred).ˆ(4−n);
67 A2=A2+pAD(6,n)*((2*pi).*Vred).ˆ(4−n);
68 A3=A3+pAD(7,n)*((2*pi).*Vred).ˆ(4−n);
69 A4=A4+pAD(8,n)*((2*pi).*Vred).ˆ(4−n);
70 end
71 else
72 %Aerodynamic derivatives, from the function aeroplate.m (Theodorsen)
73 [H1,H2,H3,H4,A1,A2,A3,A4]=aeroplate(Vred);
74 end
75

76 if plotAD==1;
77 subplot(2,2,1)
78 plot(Vred,H1)
79 xlabel('V/(B*\omega)')
80 ylabel('Hˆ* 1')
81 xlim([Vredmin,Vredmax])
82 grid on
83

84 subplot(2,2,2)
85 plot(Vred,H2)
86 xlabel('V/(B*\omega)')
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87 ylabel('Hˆ* 2')
88 xlim([Vredmin,Vredmax])
89 grid on
90

91 subplot(2,2,3)
92 plot(Vred,H3)
93 xlabel('V/(B*\omega)')
94 ylabel('Hˆ* 3')
95 xlim([Vredmin,Vredmax])
96 grid on
97

98 subplot(2,2,4)
99 plot(Vred,H4)

100 xlabel('V/(B*\omega)')
101 ylabel('Hˆ* 4')
102 xlim([Vredmin,Vredmax])
103 grid on
104

105 figure
106 subplot(2,2,1)
107 plot(Vred,A1)
108 xlabel('V/(B*\omega)')
109 ylabel('Aˆ* 1')
110 xlim([Vredmin,Vredmax])
111 grid on
112

113 subplot(2,2,2)
114 plot(Vred,A2)
115 xlabel('V/(B*\omega)')
116 ylabel('Aˆ* 2')
117 xlim([Vredmin,Vredmax])
118 grid on
119

120 subplot(2,2,3)
121 plot(Vred,A3)
122 xlabel('V/(B*\omega)')
123 ylabel('Aˆ* 3')
124 xlim([Vredmin,Vredmax])
125 grid on
126

127 subplot(2,2,4)
128 plot(Vred,A4)
129 xlabel('V/(B*\omega)')
130 ylabel('Aˆ* 4')
131 xlim([Vredmin,Vredmax])
132 grid on
133 end
134

135
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136 %Solving for roots
137 ReRoots=zeros(1,Nv);
138 ImRoots=zeros(1,Nv);
139

140

141 for n=1:Nv
142 %Real part
143 R0=1;
144 R1=0;
145

146 R2=−(1+alfaˆ2+4*alfa*zetaZ*zetaT...
147 +(betaZ/2)*alfaˆ2*H4(n)+(betaT/2)*A3(n));
148

149 R3=alfa*(zetaT*betaZ*alfa*H1(n)+zetaZ*betaT*A2(n));
150

151 R4=alfaˆ2*(1+(betaZ/2)*H4(n)+(betaT/2)*A3(n)...
152 +(betaT*betaZ/4)*((A1(n)*H2(n)*gamma)−A2(n)*H1(n)+A3(n)*H4(n)...
153 −(A4(n)*H3(n)*gamma)));
154

155 ReC=[R4,R3,R2,R1,R0];
156 ReS=roots(ReC);
157 ReR=0;
158 j=1;
159

160 for i=1:4;
161 if isreal(ReS(i))==1 && ReS(i)<alfa && ReS(i)>0;
162 ReR(j)=ReS(i);
163 j=j+1;
164 end
165 end
166 ReRoots(n)=max(ReR);
167

168

169 %Imaginary part roots
170 I0=2*(zetaZ*alfa+zetaT);
171

172 I1=−0.5*(betaZ*alfaˆ2*H1(n)+betaT*A2(n));
173

174 I2=−2*(zetaZ*((betaT/2)*A3(n)+alfa)...
175 +zetaT*(alfaˆ2)*((betaZ/2)*H4(n)+1));
176

177 I3=2*alfaˆ2*((betaZ*betaT/8)*(H1(n)*A3(n)−(H2(n)*A4(n)*gamma)...
178 −(H3(n)*A1(n)*gamma)+H4(n)*A2(n))+1/4*(betaZ*H1(n)+betaT*A2(n)));
179

180 ImC=[I3,I2,I1,I0];
181 ImS=roots(ImC);
182 ImR=0;
183 j=1;
184 for i=1:3;
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185 if isreal(ImS(i))==1 && ImS(i) < alfa && ImS(i)>0;
186 ImR(j)=ImS(i);
187 j=j+1;
188 end
189 end
190 ImRoots(n)=max(ImR);
191 end
192

193 set(0,'DefaultTextFontname','Times New Roman')
194 fig1=figure(1);
195 plot(Vred,ReRoots,'bo',Vred,ImRoots,'ro','LineWidth',1.25);
196 title('Solution of flutter equations VA1−TA1, 15m c/c',...
197 'Interpreter','latex')
198 xlabel('$\hat{V}$','Interpreter','latex','Fontsize',11)
199 ylabel('$$\hat{\omega} r$','Interpreter','latex','Fontsize',11)
200 grid on
201 h=legend('RealRoots','ImagRoots');
202

203 set(h,'Interpreter','latex','Location','SouthWest')
204

205 legend('boxoff')
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aeroplate.m

1 function [H1,H2,H3,H4,A1,A2,A3,A4] = aeroplate(Vred)
2 %Function calculates aerodynamic derivatives of a flat plate,
3 %input is reduced velocity Vh.
4 X=0.5.*(1./Vred);
5 J0=besselj(0,X);
6 J1=besselj(1,X);
7 Y0=bessely(0,X);
8 Y1=bessely(1,X);
9

10 %Vh is reduced velocity = V/(B*w(V)) and J n, Y n is the bessel ...
functions

11 %F and G are the real and imaginary parts of the so called ...
Theodorsen's

12 %circulatory function
13

14 F=(J1.*(J1+Y0)+Y1.*(Y1−J0))./((J1+Y0).ˆ2+(Y1−J0).ˆ2);
15

16 G=−((J1.*J0)+(Y1.*Y0))./((J1+Y0).ˆ2+(Y1−J0).ˆ2);
17

18 H1=−2*pi.*F.*Vred;
19 H2=(pi/2).*(1+F+4.*G.*Vred).*Vred;
20 H3=(2*pi).*(F.*Vred−G./4).*Vred;
21 H4=(pi/2).*(1+4.*G.*Vred);
22

23 A1=(−pi/2).*(F.*Vred);
24 A2=(−pi/8).*(1−F−4.*G.*Vred).*Vred;
25 A3=(pi/2).*(F.*Vred−G./4).*Vred;
26 A4=(pi/2).*G.*Vred;
27 end
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The static divergence and dynamic stability limit in torsion were found with
the following script.

StatDiv.m

1 %Static divergence calculation using Aˆ* 3
2

3 cd('C:\Users\Simen\Master NTNU 2013\Beregninger final\20 m ...
cc\Static div')

4

5 clear all
6 close all
7

8 %Basic structural properties, options for aerodynamic ...
derivatives and the

9 %two modes including eigenfrequencies are imported from text files.
10 %User input: filenames and wind velocity range
11 Nv=10000;
12 Vmin=10;
13 Vmax=120;
14 ADalt=1;
15 wMin=1e−2; wMax=1e2; Nw=500;
16

17 Inp=dlmread('Data 15m cc.txt','\t',[2,0,2,9]);
18 OMEGA=importdata('15m cc VA1−TA1 (5−13) omega.txt');
19 PHI=dlmread('15m cc VA1−TA1 (5−13).txt');
20 ADfile='AD 15m cc.txt';
21

22 tol=0.001;
23

24 mZ=Inp(1); mT=Inp(2); zetaZ=Inp(3); zetaT=Inp(4); rho=Inp(7);
25 B=Inp(8); L=Inp(9);
26

27 omegaT=OMEGA(2);
28

29 phiT=PHI(:,2);
30

31 V=linspace(Vmin,Vmax,Nv);
32 OmegaT=zeros(1,Nv+1); OmegaT(1)=omegaT;
33 w=linspace(wMin,wMax,Nw);
34 K=zeros(1,Nv);
35

36 for n=1:Nv
37 Vn=V(n);
38 omegaTn=OmegaT(n);
39 flag=0;
40 while flag==0;
41 Vred=Vn/(B*omegaTn);
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42

43 if ADalt==1;
44 pAD=dlmread(ADfile,'\t',[1,1,8,4]);
45 A2=0;
46 A3=0;
47 for i=1:4;
48 A2=A2+pAD(6,i)*((2*pi).*Vred).ˆ(4−i);
49 A3=A3+pAD(7,i)*((2*pi).*Vred).ˆ(4−i);
50 end
51 else
52 %Aerodynamic derivatives, from the function ...

aeroplate.m (Theodorsen)
53 [H1,H2,H3,H4,A1,A2,A3,A4]=aeroplate(Vred);
54 end
55

56 KaeTT=(rho*Bˆ4)/(2*mT)*(omegaTn/omegaT)ˆ2*A3;
57

58 CaeTT=(rho*Bˆ4)/(4*mT)*(omegaTn/omegaT)*A2;
59

60 E=1−KaeTT−(w./omegaT).ˆ2 + 2*1i*(zetaT−CaeTT).*(w./omegaT);
61

62 H=1./abs(E);
63

64 [¬,Pos1]=max(H);
65

66 omegaTi=w(Pos1);
67

68 if abs(omegaTi−omegaTn)<tol
69 flag=1;
70 else
71 omegaTn=omegaTi;
72 end
73 end
74

75 OmegaT(n+1)=omegaTi;
76 K(n)=KaeTT;
77

78 if abs((1−KaeTT))<tol;
79 Vcr=Vn;
80 fprintf('Static divergence reached at Vcr= %5.2f m/s\n',Vcr)
81 break
82 end
83 end
84

85 plot(V,K,'bo',[0,Vmax],[1,1],'k−−','LineWidth',1.25)
86

87 %%
88 %Dynamic stability limit in torsion
89 for n=1:Nv
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90 Vn=V(n);
91 omegaTn=OmegaT(n);
92 flag=0;
93 while flag==0;
94 Vred=Vn/(B*omegaTn);
95

96 if ADalt==1;
97 pAD=dlmread(ADfile,'\t',[1,1,8,4]);
98 A2=0;
99 A3=0;

100 for i=1:4;
101 A2=A2+pAD(6,i)*((2*pi).*Vred).ˆ(4−i);
102 A3=A3+pAD(7,i)*((2*pi).*Vred).ˆ(4−i);
103 end
104 else
105 %Aerodynamic derivatives, from the function ...

aeroplate.m (Theodorsen)
106 [H1,H2,H3,H4,A1,A2,A3,A4]=aeroplate(Vred);
107 end
108

109 KaeTT=(rho*Bˆ4)/(2*mT)*(omegaTn/omegaT)ˆ2*A3;
110

111 CaeTT=(rho*Bˆ4)/(4*mT)*(omegaTn/omegaT)*A2;
112

113 E=1−KaeTT−(w./omegaT).ˆ2 + 2*1i*(zetaT−CaeTT).*(w./omegaT);
114

115 H=1./E;
116

117 [¬,Pos1]=max(abs(H));
118

119 omegaTi=w(Pos1);
120

121 if abs(omegaTi−omegaTn)<tol
122 flag=1;
123 else
124 omegaTn=omegaTi;
125 end
126 end
127

128 OmegaT(n+1)=omegaTi;
129 K(n)=KaeTT;
130

131 [MinE,PosE]=min(abs(E));
132

133 if abs(MinE)<tol;
134 disp('Dynamic stability limit in torsion found')
135 Ncr=n;
136 omegaR=w(PosE);
137 Vcr=Vn;
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138 break
139 end
140 end
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D.3 Response calculation

The MATLAB scripts response main.m calculates the dynamic response in a two-
modal approach employing the subscripts ModLoad.m, FreqResp.m and JAF.m.

response main.m

1 %Buffeting response calculation with two modes
2 %Main script
3 %By Simen L. W. | 27.05.2013
4 %
5 clear all
6 %*********USER INPUT******************
7 cd('C:\Users\Simen\Master 2013\MyFolder')
8

9 Datafile='Data 15m cc.txt';
10 Modesfile='15m cc VA1−TA1(5−13)'; %no extension
11 ADfile='AD 15m cc.txt';
12 Windfile='Wind data 15m cc.txt';
13

14

15 Freqfile=strcat(Modesfile,' omega.txt');
16 Modesfile=strcat(Modesfile,'.txt');
17

18 %Modes 1=Z, 2=T
19 Mode1=1;
20 Mode2=2;
21

22 %Computational options
23 Vmin=73.4; Vmax=73.4; Nv=1; %Mean−wind velocity
24 OmegaMin=1e−2; OmegaMax=1e1; Nw=1000; %Frequency range
25

26 runplot=1;
27 %Frequency iterations, specify max number of iterations
28 %and tolerance
29 iMax=20; tol=0.001;
30 %Response location
31 Xr=3700/4;
32

33 %**********END USER INPUT***************
34

35 %**********DATA IMPORT******************
36 DAT=dlmread(Datafile,'\t',[2,0,2,10]);
37 OMEGA=importdata(Freqfile);
38 PHI=dlmread(Modesfile);
39 WIND=dlmread(Windfile,'\t',[2,1,9,1]);
40 LC=dlmread(Windfile,'\t',[11,1,16,1]);
41 pAD=dlmread(ADfile,'\t',[1,1,8,4]);
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42

43 m1=DAT(1); m2=DAT(2); zeta1=DAT(3); zeta2=DAT(4); rho=DAT(7); ...
B=DAT(8);

44 D=DAT(9); L=DAT(10);
45

46 omega1=OMEGA(1); omega2=OMEGA(2); phi1=PHI(:,1); phi2=PHI(:,2);
47

48 Nx=length(phi1); x=linspace(0,L,Nx); xh=x./L;
49

50 Iu=WIND(1); Iw=WIND(2); Lu=WIND(3); Lw=WIND(4); Au=WIND(5); ...
Aw=WIND(6);

51 Cux=WIND(7); Cwx=WIND(8);
52

53 CbD=LC(1); CD=LC(2); CbL=LC(3); CL=LC(4); CbM=LC(5); CM=LC(6);
54

55 clear DAT OMEGA PHI WIND LC
56 %********END DATA IMPORT***************
57

58 %********MODE INTEGRALS****************
59 P11=trapz(x,phi1.ˆ2); P22=trapz(x,phi2.ˆ2); P12=trapz(x,phi1.*phi2);
60

61 gamma1=P12/P11; gamma2=P12/P22;
62 %**************************************
63

64 %********WIND SPECTRA******************
65 w=linspace(OmegaMin,OmegaMax,Nw);
66

67 Au=Au/(2*pi); Aw=Aw/(2*pi); %Change to rad/s instead of Hz
68

69 Cux=Cux/(2*pi); Cwx=Cwx/(2*pi); %Change to rad/s instead of Hz
70

71 %*************************************
72

73 %**********Response location*********
74

75 [¬,Xi]=min(abs(x−Xr));
76

77 if Mode1==1 && Mode2==2
78 phiXR=[phi1(Xi),0;0,phi2(Xi)];
79 elseif Mode1==1 && Mode2==1
80 phiXR=[phi1(Xi),phi2(Xi);0,0];
81 elseif Mode1==2 && Mode2==2
82 phiXR=[0,0;phi1(Xi),phi2(Xi)];
83 end
84

85 %********Computation******************
86 V=linspace(Vmin,Vmax,Nv);
87 OM1=zeros(1,Nv+1); OM1(1)=omega1;
88 OM2=zeros(1,Nv+1); OM2(1)=omega2;
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89

90 SQQ11=zeros(Nv,Nw);
91 SQQ12=zeros(Nv,Nw);
92 SQQ22=zeros(Nv,Nw);
93

94 SRR11=zeros(Nv,Nw);
95 SRR12=zeros(Nv,Nw);
96 SRR21=zeros(Nv,Nw);
97 SRR22=zeros(Nv,Nw);
98

99 H11=zeros(Nv,Nw);
100 H12=zeros(Nv,Nw);
101 H21=zeros(Nv,Nw);
102 H22=zeros(Nv,Nw);
103

104 DE=zeros(Nv,Nw);
105 DH=zeros(Nv,Nw);
106

107 sig1=zeros(1,Nv);
108 sig2=zeros(1,Nv);
109 cov12=zeros(1,Nv);
110 cov21=zeros(1,Nv);
111

112 %%
113 tic;
114 for n=1:Nv
115 Vn=V(n);
116 %Normalized modal load matrix
117 run('ModLoad.m');
118

119 %Frequency−response matrix
120 omega1n=OM1(n);
121 omega2n=OM2(n);
122 run('FreqResp.m');
123

124 OM1(n+1)=omega1i;
125 OM2(n+1)=omega2i;
126

127 for k=1:Nw
128 Hk=[H11(n,k),...
129 H12(n,k);....
130 H21(n,k),...
131 H22(n,k)];
132

133 SQQk=[SQQ11(n,k),...
134 SQQ12(n,k);...
135 SQQ12(n,k),...
136 SQQ22(n,k)];
137
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138 SRRk=conj(Hk)*SQQk*Hk';
139

140 SRR11(n,k)=SRRk(1,1);
141 SRR12(n,k)=SRRk(1,2);
142 SRR21(n,k)=SRRk(2,1);
143 SRR22(n,k)=SRRk(2,2);
144 end
145

146 CovRR=[trapz(w,abs(SRR11(n,:))),...
147 trapz(w,abs(SRR12(n,:)));...
148 trapz(w,abs(SRR21(n,:))),...
149 trapz(w,abs(SRR22(n,:)))];
150

151 Cov=phiXR*CovRR*phiXR';
152

153 sig1(n)=sqrt(Cov(1,1));
154 sig2(n)=sqrt(Cov(2,2));
155 cov12(n)=Cov(1,2);
156 cov21(n)=Cov(2,1);
157 end
158

159 runtime=toc;
160 fprintf('Script finished in %5.3f seconds\n',toc)
161 clear tic toc
162

163 if runplot==1
164 run('RespPlot.m')
165 end
166

167 if Nv>1
168 figure
169 plot(V,sig1,'o−')
170 grid on
171 xlabel('$V \, [m/s]$','Interpreter','latex')
172 ylabel('$\sigma {r z \, r z} \,[m]$','Interpreter','latex')
173 else
174 fprintf('Sigma1= %5.4f [m]\n',sig1)
175 fprintf('Sigma2= %5.4f [rad]\n',sig2)
176 end
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ModLoad.m

1 %Modal load part of frequency response
2 %Result is normalized modal load matrix
3

4 %*****WIND LOAD*******
5 %Reduced auto spectral density and beta for coherence function
6 %Coh=exp(−beta*dx).
7

8 Su=((Au.*Lu./Vn)./((1+1.5.*Au.*w.*Lu./Vn).ˆ(5/3)));
9 Sw=((Aw.*Lw./Vn)./((1+1.5.*Aw.*w.*Lw./Vn).ˆ(5/3)));

10

11 Beta un=Cux.*L.*w./Vn;
12 Beta wn=Cwx.*L.*w./Vn;
13

14 %Function JAF is used to calculate the Joint Acceptance function
15 %integrals
16 Iu11=JAF(phi1,phi1,xh,Beta un);
17 Iw11=JAF(phi1,phi1,xh,Beta wn);
18

19 Iu12=JAF(phi1,phi2,xh,Beta un);
20 Iw12=JAF(phi1,phi2,xh,Beta wn);
21

22 Iu22=JAF(phi2,phi2,xh,Beta un);
23 Iw22=JAF(phi2,phi2,xh,Beta wn);
24

25 %Joint Acceptance function Squared (JS)
26 if Mode1==1 && Mode2==2
27 JS11=(Lˆ2).*((2*CbL)ˆ2*Iuˆ2*Iu11.*Su +...
28 (CL+(D/B).*CbD)ˆ2.*Iw.ˆ2.*Iw11.*Sw);
29

30 JS12=(Lˆ2).*((4*CbL*B*CbM*Iu.ˆ2).*Iu12.*Su +...
31 (CL+(D/B)*CbD)*B*CM*Iwˆ2.*Iw12.*Sw);
32

33 JS22=(Lˆ2).*((2*B*CbM)ˆ2*Iuˆ2*Iu22.*Su +...
34 (B*CM)ˆ2*Iwˆ2.*Iw22.*Sw);
35

36 elseif Mode1==1 && Mode2==1
37 JS11=(Lˆ2).*((2*CbL)ˆ2*Iuˆ2*Iu11.*Su +...
38 (CL+(D/B).*CbD)ˆ2.*Iw.ˆ2.*Iw11.*Sw);
39

40 JS12=(Lˆ2).*((2*CbL)ˆ2*Iuˆ2*Iu12.*Su +...
41 (CL+(D/B).*CbD)ˆ2.*Iw.ˆ2.*Iw12.*Sw);
42

43 JS22=(Lˆ2).*((2*CbL)ˆ2*Iuˆ2*Iu22.*Su +...
44 (CL+(D/B).*CbD)ˆ2.*Iw.ˆ2.*Iw22.*Sw);
45

46 elseif Mode1==2 && Mode2==2
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47 JS11=(Lˆ2).*((2*B*CbM)ˆ2*Iuˆ2*Iu11.*Su +...
48 (B*CM)ˆ2*Iwˆ2.*Iw11.*Sw);
49

50 JS12=(Lˆ2).*((2*B*CbM)ˆ2*Iuˆ2*Iu12.*Su +...
51 (B*CM)ˆ2*Iwˆ2.*Iw12.*Sw);
52

53 JS22=(Lˆ2).*((2*B*CbM)ˆ2*Iuˆ2*Iu22.*Su +...
54 (B*CM)ˆ2*Iwˆ2.*Iw22.*Sw);
55 end
56

57 %Reduced Joint Acceptance functions (JSred)
58 JS11red=(JS11)./(P11ˆ2);
59 JS12red=(JS12)./(P11*P22);
60 JS22red=(JS22)./(P22ˆ2);
61

62 for i=1:Nw
63 SQQ11(n,i)=((rho*Bˆ3)/(2*m1))*((rho*Bˆ3)/(2*m1))*(Vn/(B*omega1))ˆ2*...
64 (Vn/(B*omega1))ˆ2*JS11red(i);
65 SQQ12(n,i)=((rho*Bˆ3)/(2*m1))*((rho*Bˆ3)/(2*m2))*(Vn/(B*omega1))ˆ2*...
66 (Vn/(B*omega2))ˆ2*JS12red(i);
67 SQQ22(n,i)=((rho*Bˆ3)/(2*m2))*((rho*Bˆ3)/(2*m2))*(Vn/(B*omega2))ˆ2*...
68 (Vn/(B*omega2))ˆ2*JS22red(i);
69 end
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JAF.m

1 %Joint Acceptance Function
2 %Calculation. x is the reduced length vector. Large Nx/Nf should ...

be used.
3 function [IJ] = JAF(f1,f2,x,beta)
4

5 Nf1=length(f1);
6 %Nf2=length(f2);
7 Nx=length(x);
8 Nb=length(beta);
9

10 if Nf16=Nx
11 disp('Lengths of f(x) and x does not coincide')
12 return
13 end
14

15 S=zeros(1,Nb);
16 for k=1:Nb
17 for n=1:Nx
18 for m=1:Nx
19

20 dx=abs(x(n)−x(m));
21 S(k)=S(k)+f1(n)*f2(m)*exp(−beta(k)*dx);
22

23 end
24 end
25 end
26 IJ=(1/Nxˆ2).*S;
27 end
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FreqResp.m

1 %Frequency response matrix computation which updates resonance ...
frequencies by

2 %iteration. Two modes − vertical and/or torsional.
3 %This is the part of the script response main.m
4

5 Ni=−1; %Iteration counter
6

7 flag=0;
8 while flag==0;
9 if Ni == iMax

10 break
11 end
12 Ni=Ni+1;
13

14 Vred1=Vn/(B*omega1n);
15 Vred2=Vn/(B*omega2n);
16

17 %Calculates relevant aerodynamic stiffness and damping dependent on
18 %input modes.
19

20 %***Z−T modes***
21 if Mode1==1 && Mode2==2
22 H1Z1=0;
23 H2Z1=0;
24 H3Z1=0;
25 H4Z1=0;
26 A1T2=0;
27 A2T2=0;
28 A3T2=0;
29 A4T2=0;
30 %Aerodynamic derivatives
31 for q=1:4;
32 H1Z1=H1Z1+pAD(1,q)*((2*pi).*Vred1).ˆ(4−q);
33 H2Z1=H2Z1+pAD(2,q)*((2*pi).*Vred1).ˆ(4−q);
34 H3Z1=H3Z1+pAD(3,q)*((2*pi).*Vred1).ˆ(4−q);
35 H4Z1=H4Z1+pAD(4,q)*((2*pi).*Vred1).ˆ(4−q);
36 A1T2=A1T2+pAD(5,q)*((2*pi).*Vred2).ˆ(4−q);
37 A2T2=A2T2+pAD(6,q)*((2*pi).*Vred2).ˆ(4−q);
38 A3T2=A3T2+pAD(7,q)*((2*pi).*Vred2).ˆ(4−q);
39 A4T2=A4T2+pAD(8,q)*((2*pi).*Vred2).ˆ(4−q);
40 end
41

42 Cae11=((rho*Bˆ2)/(4*m1*omega1))*H1Z1*omega1n;
43 Cae12=(((rho*Bˆ3)/(4*m1*omega1))*H2Z1*gamma1)*omega1n;
44 Cae21=(((rho*Bˆ3)/(4*m2*omega2))*A1T2*gamma2)*omega2n;
45 Cae22=((rho*Bˆ4)/(4*m2*omega2))*A2T2*omega2n;
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46

47 Kae11=((rho*Bˆ2)/(2*m1*omega1ˆ2))*H4Z1.*(omega1nˆ2);
48 Kae12=((rho*Bˆ3)/(2*m1*omega1ˆ2))*H3Z1*gamma1.*(omega1nˆ2);
49 Kae21=((rho*Bˆ3)/(2*m2*omega2ˆ2))*A4T2*gamma2.*(omega2nˆ2);
50 Kae22=((rho*Bˆ4)/(2*m2*omega2ˆ2))*A3T2.*(omega2nˆ2);
51

52 %***Z−Z modes***
53 elseif Mode1==1 && Mode2==1
54 H1Z1=0;
55 H4Z1=0;
56 H1Z2=0;
57 H4Z2=0;
58

59 for q=1:4;
60 H1Z1=H1Z1+pAD(1,q)*((2*pi).*Vred1).ˆ(4−q);
61 H4Z1=H4Z1+pAD(4,q)*((2*pi).*Vred1).ˆ(4−q);
62 H1Z2=H1Z2+pAD(1,q)*((2*pi).*Vred2).ˆ(4−q);
63 H4Z2=H4Z2+pAD(4,q)*((2*pi).*Vred2).ˆ(4−q);
64 end
65

66 Cae11=((rho*Bˆ2)/(4*m1*omega1))*H1Z1*omega1n;
67 Cae12=((rho*Bˆ2)/(4*m1*omega1))*H1Z1*gamma1*omega1n;
68 Cae21=((rho*Bˆ2)/(4*m2*omega2))*H1Z2*gamma2*omega2n;
69 Cae22=((rho*Bˆ2)/(4*m2*omega2))*H1Z2*omega2n;
70

71 Kae11=((rho*Bˆ2)/(2*m1*omega1ˆ2))*H4Z1.*(omega1nˆ2);
72 Kae12=((rho*Bˆ2)/(2*m1*omega1ˆ2))*H4Z1.*gamma1*(omega1nˆ2);
73 Kae21=((rho*Bˆ2)/(2*m2*omega2ˆ2))*H4Z2.*gamma2*(omega2nˆ2);
74 Kae22=((rho*Bˆ2)/(2*m2*omega2ˆ2))*H4Z2.*(omega2nˆ2);
75

76 %***T−T modes***
77 elseif Mode1==2 && Mode2==2
78 A2T1=0;
79 A2T2=0;
80 A3T1=0;
81 A3T2=0;
82

83 for q=1:4;
84

85 A2T1=A2T1+pAD(6,q)*((2*pi).*Vred1).ˆ(4−q);
86 A3T1=A3T1+pAD(7,q)*((2*pi).*Vred1).ˆ(4−q);
87 A2T2=A2T2+pAD(6,q)*((2*pi).*Vred2).ˆ(4−q);
88 A3T2=A3T2+pAD(7,q)*((2*pi).*Vred2).ˆ(4−q);
89

90 end
91

92 Cae11=((rho*Bˆ4)/(4*m1*omega1))*A2T1*omega1n;
93 Cae12=((rho*Bˆ4)/(4*m1*omega1))*A2T1*gamma1*omega1n;
94 Cae21=((rho*Bˆ4)/(4*m2*omega2))*A2T2*gamma2*omega2n;
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95 Cae22=((rho*Bˆ4)/(4*m2*omega2))*A2T2*omega2n;
96

97 Kae11=((rho*Bˆ4)/(2*m1*omega1ˆ2))*A3T1.*(omega1nˆ2);
98 Kae12=((rho*Bˆ4)/(2*m1*omega1ˆ2))*A3T1.*gamma1*(omega1nˆ2);
99 Kae21=((rho*Bˆ4)/(2*m2*omega2ˆ2))*A3T2.*gamma2*(omega2nˆ2);

100 Kae22=((rho*Bˆ4)/(2*m2*omega2ˆ2))*A3T2.*(omega2nˆ2);
101

102 end
103

104 I=eye(2,2);
105

106

107 for k=1:Nw %Frequency Response for omega k and determinant ...
calculation

108

109 En=I − [Kae11,Kae12;Kae21,Kae22] − ...
110 [(w(k)/omega1)ˆ2,0;0,(w(k)/omega2)ˆ2]...
111 + ...

2*1i*[w(k)/omega1,0;0,w(k)/omega2]*([zeta1,0;0,zeta2]...
112 −[Cae11,Cae12;Cae21,Cae22]);
113

114 Hn=inv(En);
115

116 H11(n,k)=Hn(1,1); H12(n,k)=Hn(1,2);
117 H21(n,k)=Hn(2,1); H22(n,k)=Hn(2,2);
118

119 DE(n,k)=det(En);
120 DH(n,k)=det(Hn);
121

122 end
123

124 %Find new resonance frequencies
125 [¬,Posw1]=max(abs(H11(n,:))); [¬,Posw2]=max(abs(H22(n,:)));
126

127 omega1i=w(Posw1); omega2i=w(Posw2);
128

129 %Control of new resonance frequencies
130 if abs(omega1i−omega1n)≤tol && abs(omega2i−omega2n)≤tol;
131 flag=1;
132 else
133 omega1n=omega1i;
134 omega2n=omega2i;
135 end
136 end
137

138 NI(n)=Ni; %Iterations used
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