
Large-Deformation Behaviour 
of Thermoplastics at Various 
Stress States 

An experimental and numerical study

 

 
Thesis for the degree of Philosophiae Doctor

Trondheim, October 2012

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Structural Engineering

Anne Serine Ognedal



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering Science and Technology
Department of Structural Engineering

© Anne Serine Ognedal

ISBN 978-82-471-3913-4 (printed ver.)
ISBN 978-82-471-3914-1 (electronic ver.)
ISSN 1503-8181 

Doctoral theses at NTNU, 2012:298 

Printed by NTNU-trykk



i

The large-deformation behaviour of thermoplastics has been studied by 
experimental tests and numerical simulations. The work herein is a part of a larger 
research project concerning constitutive modelling of polymers. A constitutive 
model for thermoplastics with structural applications has earlier been proposed in 
the research project. The work presented in this thesis concerns exploration of the 
capability of the constitutive model to capture the large-deformation behaviour of 
polymers at various stress states. In addition, some deformation mechanisms are 
investigated. Two different thermoplastics are addressed: PVC and HDPE. The 
PVC is an amorphous thermoplastic filled with a volume fraction of particles of 
about 0.2. The HDPE is a semicrystalline thermoplastic that contains fewer 
particles. All test specimens are taken from 5 mm and 10 mm thick extruded plates 
of these two materials.  

From uniaxial tension and compression tests it is found that the yield stress of the 
PVC is pressure sensitive while that of HDPE is not. Furthermore, the stress-strain 
curve of PVC, in opposite to HDPE, has a peak stress followed by stress-softening 
and subsequent strain hardening. Reloading of already deformed tensile specimens, 
does not recall this local stress maximum. This observation is interpreted as a sign 
of damage rather than physical aging in the material. Reloading of HDPE, on the 
other hand, recalls the shape of the initial stress-strain curve of the material. During 
plastic deformation in uniaxial tension the volume change in the PVC is notable 
while it in the HDPE is almost zero.  

Addressing the volume change in PVC, specimens deformed in uniaxial tension are 
studied in a scanning electron microscope. It is found that the mineral particles 
have debonded from the PVC matrix and that microscopic voids are formed around 
the mineral particles in the deformed material. Thus, debonding and void growth 
are identified as two damage mechanisms in the PVC. Moreover, it is found that 
the volume change on the macroscale is caused by the void growth on the 
microscale. Results from numerical unit cell analyses, simulating the interaction 
between a mineral particle and surrounding polymer matrix, suggest that 
debonding and void growth can be the cause for the stress drop and the volume 
change observed in the laboratory tests. 

Tensile tests of axisymmetric tensile specimens with notch are carried out on both 
materials to study the behaviour at presence of a triaxial stress field. Again, it is 
demonstrated that the yield stress of PVC is pressure dependent while the yield 
stress of HDPE is not, or at least very little, pressure sensitive. However, during 
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plastic deformation of the notched tensile bars, the volume change is significant for 
both materials. The dilation increases with the stress triaxiality. Fracture surfaces 
of fractured specimens clearly suggest that the increase of volume both in the PVC 
and the HDPE has its origin in void growth. 

Biaxial tests are carried out on the PVC and HDPE materials to serve as a basis for 
validation of the constitutive model. The parameters of the model are determined 
from uniaxial tension and compression tests. In order to check how this model is 
applicable for describing other stress states, the biaxial tension tests were subject 
for numerical simulations. Comparison of the force-displacement curves and the 
strain fields from the simulations and the laboratory tests show that the model is 
capable of capturing the large-deformation behaviour. 

The test results from the axisymmetric tensile bars with notch were also used for 
validation of the constitutive model. Comparison of force-displacement curves 
from laboratory tests and numerical simulations showed that numerical simulations 
overestimated the maximum force. The overestimation increased with the stress 
triaxiality, and it was higher for the PVC than for the HDPE. The stress triaxiality 
seems to enhance some damage that is not captured by the numerical model. 
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In a long term view, the world production of plastics has increased since 1950 [1]. 
A variety of processing techniques for these materials makes it possible to produce 
components with a complex geometry at a low cost. By addition of additives and 
fillers, the material properties can be modified and customized to fit both esthetical 
and mechanical requirements. Today thermoplastics are commonly used in a lot of 
products within a wide spectre of fields: Packaging, construction, transport 
industry, medical applications etc. In example, the weight proportion of polymer 
materials in the Audi A6 is almost 20% [2]. Especially the parts in the front section 
of the car are made of polymers. The use of polymers in such applications 
increases the request of numerical models that can predict the mechanical 
behaviour of the materials. Engineers employ finite element analysis (FEA) as a 
tool in the design process to reduce development time, cost and technical risk. 
However, reliable and precise material models implemented in the FEA-software 
are demanded. A material model that covers all effects in large deformations of 
thermoplastic polymers (e.g. necking, damage, different behaviour under 
compression and tension, strain rate sensitivity) is not yet available in commercial 
FEA-codes [3].  

The work presented in this monograph is a part of a larger research project 
concerning constitutive modelling of polymers at SIMLab, NTNU. The polymer 
research group at SIMLab has earlier proposed a hyperelastic-viscoplastic 
constitutive model for thermoplastics [4], which is implemented as a user-defined 
model in the non-linear FEA-code LS-DYNA [5]. Results from numerical 
simulations compared with results from simple laboratory tests reveal that the 
constitutive model is promising in describing the mechanical response even for 
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large deformations [6]. However, further validation of the model at various stress 
states is identified as an important task by the research group. 

The materials concerned in the PhD study presented in this monograph are PVC 
and HDPE. These two materials have been chosen by the SIMLab polymer group 
to serve as bench-mark materials. It is believed that studying only two well-known 
materials through several tests will accumulate some general knowledge that can 
be carried forward to other polymers at a later stage. The two materials are rather 
different in nature. The PVC is an amorphous thermoplastic containing a mineral 
filler volume fraction of about 0.2, while the HDPE is a semicrystalline 
thermoplastic containing minor amounts of filler. The fundamental behaviour of 
these materials has already been studied by the research group [6]. However, the 
behaviour at more complex stress states has been paid little attention to. In the long 
term it may be interesting to include prediction of damage and fracture in the 
constitutive model. It is therefore relevant to study damage mechanisms in the 
materials. The addressed PVC and HDPE were acquired in form as extruded plates 
of 10 mm and 5 mm thickness. Both materials were acquired directly from a 
wholesaler. All laboratory tests have been carried out on specimens from these 
plates. All tests are carried out at room temperature and at moderate strain rates. 

It is in the objectives of this study to define test setups that capture the large-
deformation behaviour of the thermoplastics at 2D and 3D stress states. Interesting 
properties are the stress-strain relationships, the yield stress, the pressure sensitivity 
and the volume change. Methods for testing the desired properties have been 
determined, involving various shapes of the test specimens and loading patterns. 
Different measurement techniques have been employed. In particular, digital image 
analysis techniques have been widely used in order to determine the deformation of 
the materials. In addition, a scanning electron microscope has been used to 
investigate the mechanisms behind the volume change. The experimental 
programme also involves some uniaxial material tests in tension and compression 
in order to obtain information for determination of the coefficients of the material 
model [4]. 

The numerical simulations are carried out as explicit analyses in the finite element 
software LS-DYNA. A numerical study of a unit cell model representing a soft 
polymer matrix containing stiff particles has been performed. This was done to 
investigate the effect of the mineral filler in the PVC. The constitutive model [4] 
has been validated  by comparing results from numerical simulations employing 
the material model with results from the laboratory tests.  
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This thesis concerns experimental and numerical studies on the large-deformation 
behaviour of polymers. The objectives of the research are: 

To define and to carry out experimental tests to serve as basis for 
validation of the constitutive model at various stress states. 

To explore the capabilities and limitations of the constitutive model by 
numerical simulations of the validation tests. 

To define and to carry out experimental tests that capture the large-
deformation behaviour of thermoplastics at various stress states. 

To identify and investigate damage mechanisms. 

The intention of this study is to explore capabilities and the limitations of 
the existing constitutive model rather than to propose a new. 

The work involves two materials: PVC and HDPE.  

All tests are carried out at room temperature. No temperature effects are 
included. 

All tests are carried out at low strain rates. 

The experimental and numerical exploration of damage is restricted to 
tension stress modes. 

The monograph is divided into an experimental and a numerical part. All 
experimental tests and their results are described in Part I. Part II presents the 
numerical simulations.  

First, Chapter 2 introduces and discusses some concepts that explain the behaviour 
of polymers.  
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Part I first addresses uniaxial tension tests of specimens from the 5 mm sheets of 
PVC and HDPE in Chapter 3. The same materials are tested in uniaxial 
compression in Chapter 4. The results from the tests in Chapter 3 and Chapter 4 
will be used for determination of material parameters in Chapter 10. The behaviour 
during loading and reloading, as well as possible effects of physical aging is 
investigated in Chapter 5. Chapter 6 addresses the plastic dilation in the PVC. 
Deformed tensile specimens are observed in a scanning electron microscope, and 
the void growth on the microscale is compared with the volume change on the 
macroscale. In Chapter 7 the 5 mm sheets of PVC and HDPE are deformed in 
biaxial tension. These tests are primarily meant to serve as a basis for validation of 
the constitutive model.  Chapter 8 presents tensile tests of axisymmetric tensile 
bars with notch. These tests will be used as validation of the constitutive model and 
as material tests for investigating deformation mechanisms at high stress 
triaxialities. 

Part II concerns the numerical part of the study. First in Part II, in Chapter 9, a unit 
cell study is presented. This study was carried out to achieve a better understanding 
of the matrix-particle interaction in a mineral filled polymer. The constitutive 
model proposed by Polanco-Loria et al. [4] is introduced in Chapter 10 which also 
includes identification of the material parameters for the materials from the 5 mm 
thick plates of PVC and HDPE. The parameters for the 10 mm plates of both 
materials are already determined by Hovden [6]. Employing the material 
parameters, numerical simulations of the uniaxial tension and compression tests are 
carried out in Chapter 11. The biaxial tests are simulated in Chapter 12. Chapter 13 
addresses numerical simulations of the axisymmetric notched tensile bars.  

The monograph is rounded off with final discussions, conclusions and suggestions 
for further work in Chapter 14. 
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This chapter introduces some of the fundamental concepts that explain the 
deformation mechanisms in thermoplastics. 

The word polymer origins from the Greek ‘poly’, meaning many, and ‘meros’, 
meaning part [1]. The name reflects that a polymer molecule is an assembly of 
many monomers. One group in the polymer family is the thermoplastics. A 
thermoplastic molecule is a long chain of many small sub-units that are joined 
together. Most commonly the sub-units are linked together in such way that they 
form a chain with a strong continuous backbone of carbon atoms with different 
kinds of side groups. The carbon atoms in the backbone are connected by strong 
covalent bonds. Between the different polymer chains weaker van der Waals bonds 
or hydrogen bonds are present. These bonds are also called secondary bonds as 
they are a result from interaction of side atoms along the chain. Different kinds of 
side groups can be attached to the polymer chain.  These side groups can be other 
atoms or groups of atoms. Other polymer chains can also be connected to the main 
chain, this is called chain branching. The number of different combination 
possibilities is vast, and so is the variety of different polymer types. 

Polymer chains with high molecular regularity can be arranged into a crystal 
structure. The crystals are formed radially out from initial nucleation centres and 
form spherulitic formations with lamellar structure. Polymers with such 
morphology are called crystalline polymers. If there is no regular arrangement the 
polymer is considered as amorphous. In an amorphous polymer the polymer chains 
are randomly distributed in space. A result from the random distribution is that 
some chains tangles together. The entanglements may cause the polymer to behave 
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molecule. Turning attention to large strains, the entropy-elastic contribution 
becomes dominant. This is an intramolecular response involving the whole 
assembly of molecules. If one looks upon the polymer structure as a network of 
polymer chains tied together by entanglements, the intramolecular elastic 
contribution can be considered as network stretching.  In an un-stretched state the 
flexible chains occur randomly coiled between the tie points. This is the state of 
highest entropy. According to statistical theory of rubber elasticity there is a very 
high number of possible configurations at this state [8]. As the chains are extended 
the number of possible configurations decreases, and so does the entropy. By 
removal of the load, the polymer chains randomly coil back to a state that 
maximizes the number of possible conformations and also the entropy. 

2.2.2 PLASTIC DEFORMATION OF THERMOPLASTICS
Plastic deformation of polymers concerns permanent relocations of 
macromolecules, or of segments of the macromolecules. In thermoplastics it is 
expected that plasticity primarily concern breaking of the van der Waal bonds, as 
they are much weaker than the covalent bonds in the carbon backbone [9]. On the 
somewhat larger scale, yielding mechanisms mentioned in the literature are 
cleavage of crystallites, lamellar slip, and amorphous mobility [5]. Plastic 
deformation may impose drastic reorganization at the morphological level where 
the structure may change from a spherulitic to a fibrillar type [5]. According to 
several authors [1, 10, 11] yielding is caused either by crazing or by shear yielding. 
Crazes are highly localized zones of plastic dilational deformation that appear like 
small crack-shaped regions. They mostly occur in the deformation of amorphous 
polymers. In many cases crazes can be observed as stress whitening of the material. 
Shear yielding, or shear banding, occurs without any volume change in the 
material. It can be considered as irreversible slip of molecular chains. In semi-
crystalline polymers the plastic deformation involves both the crystalline and the 
amorphous phases. Galeski [10] discusses plastic deformation in crystalline 
polymer systems in terms of crystalline plasticity. The theory involves 
crystallographic slips controlled by the generation and propagation of 
crystallographic dislocations. Deformation of the amorphous phase between the 
crystallites occurs in form of intralamellar slip, lamellar separation or rotation of 
stacks of lamellae [10].   

A required condition for obtaining large plastic deformations is the possibility of 
molecular motions on a time scale similar to the deformation rate [10]. This 
explains why polymers have a strain rate dependent, i.e. viscoplastic, behaviour. 
Moreover, the plasticity in polymers is temperature dependent: An increase in 



11 

temperature leads to an increase in chain mobility. It should be kept in mind that 
yielding is a dissipative process that leads to adiabatic heating. Self heating of a 
tensile specimen may affect its tensile behaviour at large deformation. 

Detailed knowledge about the molecular mechanisms of plasticity in polymers are 
at time being not very well established because of the complex microstructure [9]. 
However, from an engineering point of view the yield stress can be regarded as the 
minimum stress that produces permanent deformation when the stress is 
subsequently removed. The case is then reduced to a matter of choice. There are 
various ways to define the yield stress. However, all methods are related to a 
change in slope in the stress-strain curve. For polymers it is common to choose the 
yield stress as the first local stress maximum. If no such maximum exists, the use 
of an offset strain, e.g. at 0.2%, and the Considère construction [1] are typical 
methods to define the yield stress.  

Necking is a type of deformation where strain localizes in a region of the material. 
The location for onset of necking may be determined by a local increase in 
temperature, or by a structural or material imperfection. A necessary, but not 
sufficient, condition for necking is the existence of a local maximum point on the 
nominal stress-strain curve [12]. This is equivalent with a local maximum of the 
force-displacement curve. The condition necessary for necking can for uniaxial 
tension be described as [1] 

d 0
d

n  (2.1) 

where n  is the nominal stress and  is the stretch defined as the change of the 
length of a small line segment L , 0/L L . By assuming deformation at constant 
volume, the condition above can be expressed in terms of Cauchy stress  as [1] 

d
d

 (2.2) 

Equation (2.2)  is also called the Considère construction [1] . It can be employed to 
determine onset of necking and it can be used as a definition of yield stress. 
However, the Considère construction requires deformation at a constant volume. 
This is an assumption that is not always valid for polymers. 



12 

With further deformation after onset of necking, the neck in some cases stabilizes 
and begins to extend by drawing fresh material from the surrounding regions into 
the neck. This is often referred to as cold drawing. Figure 2.3 schematically 
describes this process. As illustrated in the figure, drawing of the material in the 
neck may impose high degree of orientation of the polymer chains.  

Figure 2.3 Schematic figure of the drawing of a polymer [13].

It is observed that storage at constant temperature and at zero stress affects the 
properties of polymer materials. This phenomenon is called aging. Aging referring 
to changes in properties that are reversible and without any permanent modification 
of the structure is often called physical aging. The term “physical” is commonly 
used to distinguish the phenomenon from irreversible types of aging, like chemical 
or biological aging. It follows that it is possible to reduce or remove this aging 
effect by some suitable treatment of the material.  

Physical aging takes place in both amorphous and crystalline polymers. For both 
polymer types the potential for aging is created from a small decrease in the 
specific volume during cooling [1]. Within this context, physical aging can be 
related to the concept of free volume. The free volume is the volume of the vacant 
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sites in the material that is not occupied by molecules [11]. When the material is 
rapidly cooled down, i.e. quenched, without being able to contract sufficiently, it 
ends up in a non-equilibrium state. After quenching, the molecular mobility is not 
zero. Because of the molecular mobility, there will be a slow and gradual evolution 
towards equilibrium during time [14], see Figure 2.4. This  slow change of the 
thermodynamic state is referred to as structural recovery [15]. It occurs at 
temperatures T  between the glass transition temperature gT  and a secondary 

transition temperature T  [14]. 

Figure 2.4 The origin of aging in amorphous polymers. The specific volume is 
plotted against temperature T . Between gT  and T  there is an internal movement 

towards the equilibrium [14]. 

Thus, physical aging can be regarded as a process where the polymer contracts 
towards its equilibrium state. It is an internal process that affects the macroscopic 
properties of the material. A typical effect of physical aging on the stress-strain 
curve is an increase in yield stress followed by stress softening [16-18], see Figure 
2.5 a). The physical aging can be “erased” by rejuvenation of the material, see 
Figure 2.5 b). The purpose of rejuvenation is to bring the material back to its 
freshly quenched state.  It can be done by heat treatment [14], i.e. by heating the 
material above the glass transition temperature followed by rapid cooling. It can 
also be done mechanically [18] by deforming the material by e.g. twisting or 
rolling. The material is then mechanically pushed back to its original state. The 
difference between thermal and mechanical rejuvenation is discussed in the 
literature [15, 16, 18]. Even though the rejuvenation immediately brings the 
material to its original state, physical aging will re-occur with time. It should be 
noted that, as illustrated by Figure 2.5, physical aging has no effect in the large 
strain domain [16]. 



14 

Figure 2.
consequenc

The proper
kinds. Suc
plastics we
particle co
properties
size, shape 

Concerning
are both kn
is that the 
while the r
Mineral pa
decrease t
retardance,
properties.
industry. C
polymers [
[26]. This s

Fillers with
deformatio
behaves lik
debond fro
reduced, re

a)
5 Schemati
ce of aging a

rties of poly
h fillers are

e refer to in t
omposites. E
that are infl
and surface 

g the type of
nown to have

soft rubber 
relatively stif
articles are a
the cost of 
, and to redu

Therefore t
Calcium car
[25, 26], wh
section will f

h proper adhe
on levels. Sti
ke a compo
om the matr
esulting in a 

c represent
and b) the eff

ymers can ea
e small-sized
he everyday 
Each type 
uenced by v
treatment of

f fillers, rubb
e a toughenin

particles de
ff mineral pa
also cheaper

the polyme
uce thermal 
they are oft
rbonate (CaC
ile titanium 
focus on min

esion to the m
ff particles t
site. When 

rix. Thus the
softening eff

tation of a)
ffect of rejuve

asily be mod
d particles a
y language ar

of polymer
volume fract
f the filler.

ber and mine
ng effect [19
ecrease You
articles have
r than those 
er. They ar
expansion an

ften called “
CO3) is by 
dioxide (TiO

neral fillers.

matrix stay b
then act as re
reaching a c
e load bearin

ffect on the st

) increase 
enation and a

dified by ad
dded to the 

re in fact diff
r-particle co
tion, mechan

eral particles 
9-21]. A diff
ung’s modulu
 the opposite
of rubber, a

re also kno
nd heat cond

“functional f
far the m

O2) is the se

bonded to the
einforcemen
certain level
ng cross sec
tress-strain c

b)
in yield st

aging [16].

ding fillers 
material. M

ferent kinds o
omposite ha
nical properti

are common
ference betw
us of the bu
e effect [19, 
and may the

own to imp
ductivity am
fillers” by th
ost common
econd most a

e polymer m
nt, and the bu
l of stress th
ction of the 
curve. At the

tress as a 

of different 
Many of the 

of polymer-
as its own 
ties, particle 

n since they 
ween the two 
ulk material 

20, 22-24]. 
erefore also 

prove flame 
mongst other 

he polymer 
n filler for 
applied one 

matrix at low 
ulk material 
he particles 
material is 

e same time, 



15 

the debonding process results in formation of voids which is the main feature in the 
toughening process. The voids are smaller than what a human eye can observe. 
However, at a macroscopic scale the voids can be observed as stress whitening. 
The reason for the white appearance is that small voids reflect the light due to 
refractive index differences between the components. This is known as the Fresnel 
effect [26]. 

It has already been mentioned that stiff particles work as reinforcement, i.e. the 
elastic modulus of the polymer increases with addition of CaCO3 particles [19, 20, 
22-24]. On the other hand, several authors report that addition of such particles also 
decreases the plastic resistance [20, 27]. This observation, however, depend on 
how well the particles are bonded to the matrix material [23]. The matrix-particle 
bonding strength can be altered by surface treatment of the particles [25, 28]. 
Stearic acid (CH3(CH2)16CO2H) is typically used for this purpose [25]. Surface 
treatment improves also the dispersion of the filler. Any type of particles added to 
the polymer should be well dispersed through the material. With poor dispersion 
there will be less uniform zones of matrix between the particles. The thinnest 
matrix zones between closely located particles may then act as a weakest link and 
initiate fracture.

The size of the particles affects the interfacial interaction between the matrix and 
the particle. For a given particle volume fraction, the total surface area of smaller 
sized particles will be larger than the surface area of larger particles. Small 
particles therefore tend to have a better adhesion to the polymer matrix [28, 29]. 
Addition of small sized mineral particles can improve the impact strength and 
fracture toughness [22, 25, 28, 29]. The strains are reported to have a more 
favourable distribution at low filler concentrations and with fine particle size 
because the stress field around smaller particles is more uniform than around larger 
ones [26]. The argument for this is that the matrix must stretch over the entire 
surface of large particles, while smaller particles more easily move with an 
elongating matrix [26]. Moreover, larger particles are more irregular than smaller 
particles and may thus prevent a uniform strain pattern [26]. It follows that larger 
particles may act as a material defect. This also regards particles with a high aspect 
ratio, where the longer dimension is much larger than the shorter dimension. 
Particles made of CaCO3 have a rather nodular shape with a low aspect ratio.  

The toughening effect of rubber and mineral particles can be explained by initiation 
of void growth, and therefore reduction of the plastic resistance [20]. In this way 
brittle behaviour is avoided. Indeed, Argon and Cohen [21] argue that the most 
effective way to avoid a ductile to brittle transition is to lower the plastic 
resistance. For polymers, the easiest way to do this is by the addition of particles 
that can cavitate or debond and, as Argon and Cohen say, “convert the polymer in 
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to a cellular solid” [21]. Socrate and Boyce [30] showed in a numerical study that 
the presence of voids in polycarbonate (PC) gives stress fields that favour shear 
yielding over brittle fracture mechanisms even for triaxial stress states. The 
toughening effect is reported for both semi-crystalline and amorphous polymers, 
and even for epoxies [31], containing any kind of voids. The voids can be present 
in form of pre-existing voids, self-cavitating rubber particles or debonding stiff 
mineral particles. Also the processes of debonding and void growth promote 
dissipation of energy and distribution of strain throughout the material so the 
deformation takes place over a larger volume.

Wu [32] studied the effect of adding rubber particles to a nylon. It was found that a 
sharp brittle-to-tough transition occurs when the average thickness of the matrix 
ligament between the particles is reduced below a critical value. He claimed that 
this critical interparticle distance is a material property of the matrix material. This 
means, according to Wu [32], that it is not the particle size or volume fraction that 
controls the toughening effect. Bartczak et al. [20] support this observation. They 
found that the source of toughness is a result of plastic extensibility of the matrix 
material [19, 20]. Thus, they further suggest that the properties of the filler are of 
little relevance. They demonstrate this by investigation of HDPE filled with stiff 
and soft particles [19, 20] and it was found true under the requirement that the 
particles debond from the matrix and initiate voids.  

The explanation of the effect of the interparticle distance on the toughening of 
semicrystalline polymers is that the presence of particles alters the microstructural 
morphology. Addegio et al. [24] report that CaCO3 particles reduce the crystallinity 
of HDPE,  while Bartczak et al. [20] report that such particles affect the orientation 
of the crystals in the same material. The same effect is observed for rubber 
particles [19]. Interparticle ligaments of thickness below the critical distance 
possess a structure of highly ordered lamellar crystallites having reduced plastic 
resistance in certain directions [20]. The local anisotropy at microscale reduces the 
overall plastic resistance of the blend [20] and increases plastic yielding leading to 
a tougher response of the polymer [32]. It should be noted that these considerations 
regard the morphology of semicrystalline polymers.  

For obtaining the best result by adding mineral filler, the particles should be well 
dispersed in the polymer matrix. Moreover, the matrix-particle interface strength 
should be strong enough to stay attached during the initial deformation and weak 
enough to debond for larger strains. If these requirements are fulfilled, it can be 
concluded that the particles have the following effects on the polymer: 

Young’s modulus increases because the particles have a reinforcing effect. 
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Debonding of particles reduces stiffness and gives rise to void growth. The 
void growth is required to obtain the desired toughening effect. 
The overall yield stress is reduced leading to a tougher response of the 
polymer. 

The methods relating 3D quantities to 2D images can be referred to as stereology. 
Thus, stereological methods can be used to say something about the 3D 
morphology of a material or tissue just by looking at a 2D section of it. One of the 
basic principles of stereology was formulated in 1847 by the French geologist A. 
Delesse [33]. He stated that the area fraction of a rock component in a random 
cross section of a rock is equal to the volume fraction of the component in the 
whole rock. This principle is now called the principle of Delesse and it applies for 
all materials containing objects of any size or shape, connected or separated, 
isotropic or anisotropic [33, 34]. The “random cross section” statement implies that 
the principle even holds for an arbitrary cutting direction. The sectioning angle will 
affect both the profile area of the anisotropic objects and the surrounding object in 
a proportional way [33]. The only requirements are that the cross section is typical 
and that it is selected at random. 

The area fraction A of some component in a cross section of a body represents the 
ratio of the area covered by the component compA  to the total cross sectional area A

comp
A

A
A

 (2.3) 

In the same manner, the component volume fraction V  is the volume of a certain 
component compV  in an object divided by the total volume V  of the object 

comp
V

V
V

 (2.4) 

If we slice a body in thin slices with area a  and take an image of each slice we 
expect to find about the same area fraction of the component compa  in each image. 

By giving each slice an infinitesimal thickness dy  the volume of the slice v
becomes 
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v a dy  (2.5) 

The volume of the component compv  in the slice is 

comp compv a dy  (2.6) 

If we sum up the volume of the component and divide it by the total volume of the 
object at hand we get the

comp compv a dy
v a dy

 (2.7) 

The thickness dy cancels out and we get  [33] 

comp compV A
V A

 (2.8) 

This gives that the volume fraction equals the area fraction. 

V A  (2.9) 

The principle of Delesse can also be proved more rigorously by geometrical 
probability theory [35]. 

A version of the Delesse principle for two dimensions was some years later 
suggested by A. Rosiwal, who also was a geologist. He proposed a way to estimate 
the area fraction A by “linear integration” [33]. The procedure is to lay out a test 
line onto the section of the body and to measure the fractional length L  of the line 
intersecting the components of the body. The ratio between the length of the line 
section cutting through the component compL  and the total length L  of the line is 

comp
L

L
L

 (2.10) 

The procedure can be justified in similar manner as the principle of Delesse: To 
measure the plane area of an object, it can be divided in to thin strips, or test lines, 
each with a small thickness dy . The component area fraction compa  of each strip can 

be estimated from the fractional length L  of the test line multiplied by its 
thickness dy . By summing up the strips, the area fraction A  for the whole area 
can be found. According to Rosiwal we get 
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A L  (2.11) 

A consequence of these principles is that if you follow any path through the 
specimen, the relative partition of a component you meet will be the same.  

As geologists, Delesse and Rosiwal were interested in the fraction of a certain 
component in a rock sample. However, the principle of Delesse is also valid for 
quantification of the fraction of voids in a solid material. It has also been used on 
polymers [24]. It should be noted that principle of Delesse can only give an 
estimate of the fraction of a component. To pose assumptions on shape, 
distribution, orientation or density of the considered component, other stereological 
approaches are needed.  

In a cut through an object containing oblong voids, the relative area of voids will 
remain the same, independent of the cutting angle. This can be demonstrated as 
follows.  Figure 2.6 a) shows a micrograph of mineral filled PVC stretched in the 
vertical direction. The image is taken from the test PVC-8 from the Chapter 6. It 
shows the grey PVC matrix containing particles and oblong voids. The areas 
containing voids or particles are identified and marked black in Figure 2.6 b), while 
the remaining parts of the object, i.e. the matrix, are represented in white.  Digital 
image analysis performed with the software ImageJ [36] reveals that the area in 
black covers 32% of the total surface area, i.e. A = 0.32. 

Figure 2.7 displays horizontal blue and vertical red test lines intersecting the black 
regions at arbitrary locations. It can be seen from Figure 2.7 that the horizontal 
lines intercept smaller black areas rather frequently, while the vertical lines cut 
through fewer and larger black areas. Beside each line the fractional length L is
given, addressing the black region fraction cut through by the line at hand. The 
average value of the five blue horizontal length fractions is L = 0.32 and the 
average value of the five red vertical length fractions is L = 0.30. 

Hereafter the volume fraction V  will be referred to as .
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The void growth rate  in a material can be decomposed into a term for growth of 
existing voids g and a term for nucleation of new voids n  [37] 

g n (2.12) 

Assuming an incompressible matrix, the expression for void growth g can be 

formulated in terms of the plastic rate-of-deformation-tensor pD  [37] 

(1 ) tr( )p
g D  (2.13) 

It can alternatively be expressed as [8] 

(1 )
p

g p

J
J

 (2.14) 

where the plastic part of the Jacobian pJ  is the determinant of the plastic part of 
the deformation gradient pF , detp pJ F . In some cases the nucleation of voids 
can be neglected, while in other cases this is considered as unrealistic. A material 
containing particles which debond after certain deformation is one case where the 
nucleation term should be considered. Different formulations describing the 
nucleation process, driven either by stress or by strain, are suggested in the 
literature [38, 39].  

Formation of voids is a damage process that causes a reduction of strength.  This is 
due to a reduction of the load carrying cross section. The area of the real load 
carrying cross section is called the effective area effA . It is equal to the matrix cross 

section between the voids and it is, obviously, smaller than the total area A  of the 
cross section. The total area is then referred to as the total cross section area 
observed macroscopically.  The effective area can therefore be expressed as the 
difference between the total area A  and the voided area vA

eff vA A A  (2.15) 

Since the void area fraction is equal to the void volume fraction, i.e.  A , as 
explained by the principle of Delesse in Chapter 2.6, the voided area vA is

vA A  (2.16) 
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Thus the effective area can be expressed in terms of the void volume fraction 

 (1 )effA A  (2.17) 

An estimate of the effective stress in the polymer matrix eff  can be found as the 

applied load F  divided by the effective area effA , i.e. the solid ligaments between 

the voids [40]  

eff
eff

F
A

 (2.18) 

With Cauchy stress defined as the applied load F  divided by the total area A  of 
the cross section 

F
A

 (2.19)  

the effective stress can be expressed as 

(1 )eff  (2.20) 

The study presented in this monograph is a part of a larger research project about 
constitutive modelling of the mechanical behaviour of thermoplastics. It involves 
material testing and validation of the constitutive model in terms of benchmark 
tests. In this context, 5 mm and 10 mm thick extruded sheets of PVC and HDPE 
were bought from the supplier SIMONA. The in-plane dimensions of the sheets 
were 2 1 m2. According to SIMONA, the 5 mm and the 10 mm plates consist of the 
same materials. The intention by the choice of these particular materials was to 
cover two different types of thermoplastics: The PVC is amorphous and the HDPE 
is semicrystalline. The fundamental behaviour of the materials has earlier been 
investigated [41, 42]. All tests in this monograph have been performed on these 
materials.
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2.8.1 PVC
The PVC is by the supplier denoted SIMONA®PVC-TF [43]. SIMONA reports 
that it has excellent formability, high weather ability, high rigidity, increased 
impact strength and a low coefficient of thermal expansion. Typical material data 
provided by SIMONA is listed in Table 2.1. 

Table 2.1 Material data for SIMONA®PVC-TF as provided by SIMONA [43].

Density  Yield 
stress

E-modulus Elongation 
at break

Application
temperature 
range

Thermal 
coefficient of 
elongation 

[kg/m3] [MPa] [MPa] [%] [ C] [K-1]

1430 53 3000 20 10 to +60 0.8 10-4

Moura et al. [41] found that there were some minor direction dependency in the 10 
mm thick extruded plates of PVC. This was done by employing tensile tests 
machined out at 0 , 45 , and 90  to the extrusion direction, and compression tests 
from the in-plane and the out-of-plane directions. For modelling purposes however, 
the material has been treated as isotropic, with good results [42]. Moreover, 
transverse isotropy has been confirmed to be a good assumption regarding the 
strain in the width- and thickness-direction [41].  

Hovden [42] carried out an experimental test programme involving tension and 
compression tests of the 10 mm thick extruded plates of PVC. Stress-strain curves 
and evolution of volume strain from these tests are presented in Figure 2.8 and 
Figure 2.9. The figures include results from different strain rates. All specimens 
were taken from the extrusion direction of the plate, except from the compression 
specimen deformed at a nominal strain rate 10 2 s 1 which was taken from the out-
of-plane direction. The strains in the tension tests and the compression tests 
deformed at nominal strain rate 10 2 s 1 were determined by digital image 
correlation (DIC). The strains in the other compression tests were determined from 
diameter and height measurements. 

According to Figure 2.8 the response of the PVC is linear elastic before a local 
stress maximum is reached. The local maximum on is interpreted as the yield stress 
[42]. Stress softening follows after the peak stress before strain re-hardening sets in 
when the strain gets larger. It is seen that the yield stress increases with increasing 
strain rate. Moreover, the yield stress is higher in compression than in tension. 
Addressing the volume strains in Figure 2.9, it is interesting to see that the volume 
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increases for plastic deformation in uniaxial tension. The volume strains in 
compression remain close to zero. 

a) b)
Figure 2.8 Stress-strain curves for material from the 10 mm thick plates of mineral 
filled PVC at three different nominal strain rates. a) Uniaxial tension. b) Uniaxial 
compression. The data is taken from Hovden [42]. 

a) b)
Figure 2.9 Logarithmic volume strain plotted against logarithmic longitudinal 
strain for material from the 10 mm thick plates of mineral filled PVC at three 
different nominal strain rates. a) Uniaxial tension. b) Uniaxial compression. The 
data is taken from Hovden [42]. 

In the technical data sheet provided by SIMONA it was not found information 
about any filler added to the PVC. However, investigation of the material from a 10 
mm plate in a scanning electron microscope (SEM) revealed that it contained some 
particles, as seen in Figure 2.10. The 5 mm plate appeared similarly in the SEM. 

0 0.5 1
0

20

40

60

80

Logarithmic strain

C
au

ch
y 

st
re

ss
 [M

Pa
]

10-1

10-2

10-3

0 0.5 1
0

20

40

60

80

Logarithmic strain
C

au
ch

y 
St

re
ss

 [M
Pa

]

10-1

10-2

10-3

0 0.5 1
0

0.2

0.4

0.6

Logarithmic strain

V
ol

um
e 

st
ra

in

10-1

10-2

10-3

0 0.5 1
-0.2

-0.1

0

0.1

Logartithmic strain

V
ol

um
e 

st
ra

in

10-1

10-2

10-3



Figure 2.1
of the mine

0 SEM micr
eral filled PV

ograph of a 
VC at a) mod

a)

b)
cryogenic fr

derate and b)
racture surfa
 high magnif

ace of 10 mm
fication.

25 

m thick sheet 



26 

Prior to the SEM investigations, the material was stored in liquid nitrogen for 30 
minutes before it was split in two. This was done to obtain brittle fracture, without 
introducing any plastic deformation. The fracture surface was prepared by carbon 
sputtering before it was investigated in the SEM. SEM micrographs of deformed 
PVC revealed voids had formed around the particles. This will be further discussed 
in Chapter 6.  

By identifying the area covered by particles in Figure 2.10 a) and employing the 
principle of Delesse, the particle volume fraction  was estimated to be around 
0.2.  The particle identification process will be presented in Chapter 6.

One of the larger particles in Figure 2.10 was analysed by energy dispersive 
spectroscopy (EDS), which is a built-in tool of the SEM. The EDS resulted in the 
spectrogram presented in Figure 2.11 a).  Both Ca and Ti have numerous counts, 
suggesting particles made out of calcium carbonate (CaCO3), which is the most 
common filler in PVC  [25], and  titanium dioxide (TiO2), the second most 
common filler. A high peak for Cl is also observed. The EDS does not provide 
information from exactly one point, it also includes some information from the 
surrounding matrix, thereby hitting some Cl atoms. A spectrogram presenting the 
contents of the matrix is shown in Figure 2.11 b). From the results of EDS 
spectroscopy we can expect that the particles have a rather stiff mechanical 
response compared to the PVC matrix. 

a) b)
Figure 2.11 EDS spectrums of a) a 2 m particle and b) the matrix material. 

Results from a termograviometric analysis (TGA) performed at Eindhoven 
University of Technology state that the PVC contains around 45 wt% solid filler.  

0 1 2 3 4 5
0

1

2

3

4 x 104

C
Ti

Cl

Ca

keV

C
ou

nt
s

0 1 2 3 4 5
0

1

2

3

4 x 104

C

Ti
Cl

Ca

keV

C
ou

nt
s



27 

2.8.2 HDPE
The HDPE employed in this study is denoted SIMONA®PE-HWU by the supplier 
[44].  It is reported to be very tough even at low temperatures and to have good 
sliding properties and good processing and machining characteristics. In addition, 
the black polymer has a high UV-protection. The crystalline melting range for the 
polymer is 126-130 C. Additional data for the material is listed in Table 2.2. 

Table 2.2 Material data for SIMONA®PE-HWU as provided by SIMONA [44]. 

Density  Yield 
stress

E-modulus Elongation 
at tear  

Application
temperature 
range

Thermal 
coefficient of 
elongation 

[kg/m3] [MPa] [MPa] [%] [ C] [K-1]

950 22 800 300 50 to +70 1.8 10-4

According to Moura et al. [41], tests performed on specimens the 10 mm thick 
plates of HDPE cut out at 0 , 45 , and 90  to the extrusion direction revealed 
almost no direction dependency of the material. They also showed that there was 
no difference between the transverse strains, and therefore concluded that 
transverse deformation isotropy was a sound assumption also for this material.   

Figure 2.12 and Figure 2.13 show the response of specimens cut from the 10 mm 
thick plates of HDPE in tension and compression. The data is collected from 
Hovden [42]. All specimens were taken from the extrusion direction of the 
material. DIC was employed to collect the strains in the tension tests, while the 
strains in the compression tests were calculated from height and diameter 
measurements. 

In Figure 2.12 it is seen that after yielding, progressive strain hardening is present. 
There is no stress softening, thus no peak stress. Also, the yield stress increases 
with increasing strain rate. There seems to be no difference in the yield stress in 
tension and compression. The volume strains plotted in Figure 2.13 reveal that 
there is hardly any volume change when the HDPE is deformed at moderate strain 
rates. However, from the figure, it appears as if the volume change increases with 
increasing strain rate. It is uncertain whether this can be an artefact from poor test 
data.



28 

a) b)
Figure 2.12 Stress strain curves for material from the 10 mm thick plates of HDPE 
at three different nominal strain rates. a) Uniaxial tension. b) Uniaxial 
compression. The data is taken from Hovden [42]. 

a) b)
Figure 2.13 Logarithmic volume strain plotted against logarithmic longitudinal 
strain for material from the 10 mm thick plates of HDPE at three different nominal 
strain rates. a) Uniaxial tension. b) Uniaxial compression. The data is taken from 
Hovden [42]. 

Scanning electron micrographs of a fracture surface of the 10 mm thick sheet of 
HDPE is shown in Figure 2.14. The 5 mm sheet appeared similarly in the SEM. 
The fracture was imposed after storing the polymer in liquid nitrogen for 30 
minutes. The fracture surface has been coated by carbon dust. It can be seen that 
some particles have been added also to this material. However, they were too small 
for characterization by EDS. 

TGA measurements performed at Eindhoven University of technology state that 
the weight percent of solid filler in the HDPE is around 10 wt%. 
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Typical observations found in the literature for the macroscopic deformation of 
some thermoplastic polymer materials are: 

Macroscopic pressure sensitivity, i.e. a higher yield stress in compression 
than in tension. 
Stress softening. 
Plastic dilation. 
Void growth. 
Crazing.
Strain rate sensitivity. 
Temperature sensitivity. 

The four first bullet points will be further discussed in the following chapters.

Turning attention to the PVC and the HDPE materials addressed in this 
monograph, typical characteristics are: 

The PVC: 

Amorphous thermoplastic. 
Contains a volume fraction of about 0.2 of mineral filler, primarily CaCO3.
Exhibits a higher yield stress in compression than tension. 
Dilation in plastic deformation. 
Stress softening. 
Void growth. 

The HDPE: 

Semicrystalline thermoplastic. 
Contains minor amounts of solid filler. 
The yield stress is not pressure sensitive. 
Hardly any plastic dilation in uniaxial tension (at a strain rate of 10 3 s 1)
No stress softening. 
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Uniaxial tensile tests were carried out to achieve basic information about the 
behaviour of the 5 mm plates of PVC and HDPE.  

The uniaxial tensile test is probably the most common material test. From 
laboratory tests on a simple standard “dog bone” shaped test specimen, as the one 
in Figure 3.1, basic information about the material behaviour is disclosed. This 
study addresses the mechanical response of a mineral filled PVC and HDPE from 
extruded plates of 5 mm thickness. As mentioned in Chapter 2, similar tests have 
earlier been performed by Hovden [1] on the same material types, but from 
extruded plates of 10 mm thickness. It has turned out that although the 5 mm and 
10 mm plates, according to the producer, are made of the same materials their 
mechanical responses are somewhat different. Results from tension tests from the 
10 mm plates of these materials are also reported by Moura et al. [2]. However, 
Moura et al. used tensile specimen with a small pre-machined imperfection. In our 
study it was chosen to employ specimens without any imperfection to avoid any 
undesirable effects. Results from the tests in this chapter will later, in Chapter 10, 
be used in identification of parameters for the material model of Polanco-Loria et 
al. [3]. 
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Figure 3.1 Geometry of tensile test specimen. Measures are given in mm. 

 

Test specimens according to Figure 3.1 were cut from larger plates of 5 mm 
thickness both parallel and normal to the extrusion direction. Two materials were 
addressed. The first material was a mineral filled PVC. The particle volume 
fraction  was assumed to be equal to that in the 10 mm thick PVC plates, i.e.  
~ 0.2. The second material was a HDPE. It also contains some fillers, but in a much 
less amount. Both materials are further described in Chapter 2.8.  

A servo-hydraulic Dartec machine with a 20 kN load cell connected to an Instron 
controller was employed to carry out the tests. The specimens were clamped at 
both ends. One end was fixed while the other was displaced at a pre-defined 
velocity of 0.033 mm/s, which corresponds to a nominal strain rate nom  10 3 s 1. 
The deformation was monitored by a charge-coupled device (CCD) camera. The 
CCD camera captured images of the deformation at 0.1 Hz. It has earlier been 
shown that transverse isotropy is a good approximation for these materials [1, 2]. 
Therefore the in-plane stress field was adequate for establishing stress-strain curves 
so only one camera was employed in the tests. Also, any stress triaxiality caused by 
necking was neglected. All tests were carried out in room temperature.  

The width and thickness of all specimens were measured with a sliding calliper 
prior to the testing. In general, two parallel tests were performed for specimens of 
each material and machining direction, and the force-displacement curves were 
compared to ensure repeatability of the results. The scatter between the replicates 
was small. 
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between the deformed length L and the undeformed length 0L  of a material line 
element in the principal directions of U , 0/i i iL L . 

The Green-Lagrange strain tensor, or Green strain tensor, E  is calculated from 

 1
2

TF F I  (3.2) 

Applying the principal stretches, the Green strains in the principal directions are  

 21 1
2i iE  (3.3) 

The logarithmic strain tensor is defined as 

 ln U  (3.4) 

The principal logarithmic strains can also be found directly from the principal 
stretches 

 
0

ln ln i
i i

i

L
L

 (3.5) 

In this study the major and minor logarithmic strain fields were exported from 7D 
to MATLAB where the rest of the test post processing was carried out. 

In the following, it is assumed that the direction of the major principal strain is 
aligned with the longitudinal direction of the specimen. This means that the major 
principal strain is taken as the longitudinal strain and the minor principal strain is 
taken as the transverse strain. The validity of this assumption will be discussed 
later.  

Further, the stress and strain calculations in the following are based on the major 
principal strain 1  and the minor principal strain 2  from the cross section first 
experiencing necking, i.e. where strain localization was first observed. Figure 3.3 
shows an example of the major logarithmic strain field in a uniaxial tensile test of 
PVC during onset of strain localization. The black square indicates the element 
used for extracting strains in this chapter. When the representative grid element 
was chosen, the entire strain history was taken from this grid element.  
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The strains in this grid element, see Figure 3.3, are assumed to be representative for 
the strain through the cross section of the specimen. This means that the strain field 
is assumed to be homogenous through the cross section. By assuming transverse 
isotropy [1, 2] , i.e. that the two transverse strains 2  and 3  are equal 

 2 3  (3.6) 

the Cauchy stress  can be determined. 

The width w  of the test specimen during the deformation is 

 0 2exp( )w w  (3.7) 

and the thickness t  of the specimen is 

 0 2exp( )t t  (3.8) 

where 0w  and 0t  are the width and thickness measured on the sample before the 
test. 

This gives the current cross section area A  

 0 0 2exp 2A t w w t  (3.9) 

and the Cauchy stress 
 

 F
A

 (3.10) 

Still assuming transverse isotropy, we get the volume strain v  

 1 22v  (3.11) 
 

Typical force-displacement relationships for two representative specimens of PVC 
are shown in Figure 3.4. One of the specimens was cut out parallel, 0 , to the 
extrusion direction while the other was cut out normal, 90 , to the extrusion 
direction.  The test data reveal some anisotropy of the material. There is about 6% 
difference in the maximum force level obtained from the two directions.  
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At maximum force it was observed that the PVC specimens gradually started to 
whiten. As the deformation continued, the stress whitening became clearer. Also a 
neck started to form at the same location as onset of stress whitening. The stress 
whitening zone and the neck propagated through the parallel section of the 
specimen during the deformation. Inspection of a test specimen from an interrupted 
test indicated that the stress whitening zone is somewhat longer than the necked 
zone with reduced cross section area. This suggests that the stress whitening zone 
has propagated slightly in front of the neck. When the neck covered the total 
parallel section, the specimens in the two tests addressed in Figure 3.4 fractured.  

 

 

Figure 3.4 Force-displacement curves for PVC specimens in uniaxial tension. The 
solid line represents specimens taken out at 0  to the extrusion direction of the 
plates. The dashed line represents specimen taken out at 90  to the extrusion 
direction of the plates. 

 

Figure 3.5 shows typical force-displacement relationships for HDPE specimens. In 
a similar way as in Figure 3.4, results from one specimen cut out parallel, 0 , to the 
extrusion direction and one cut out normal, 90 , to the extrusion direction are 
included in the figure. The difference in maximum force between the two samples 
is less than 1 %. 
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Also in the HDPE specimens necking occurred. However, no stress whitening was 
observed in any of these samples. Moreover, the HDPE specimens appeared rather 
ductile. All tests were aborted after some deformation because the maximum stroke 
length of the testing machine was 100 mm, which was insufficient to fracture the 
HDPE samples. Therefore none of these specimens were deformed until fracture.  

 

 

Figure 3.5 Force-displacement curves for HDPE specimens in uniaxial tension. 
The solid lines represent specimens taken out at 0  to the extrusion direction of the 
plates. The dashed lines represent specimen taken out at 90  to the extrusion 
direction of the plates. 

 
From this point the specimens cut in the extrusion direction, i.e. 0 , will be 
regarded. These data will later be used as basis for determination of parameters for 
the material model proposed by Polanco-Loria et al. [3]. 

The grid used by the DIC software to obtain the strain fields in the representative 
PVC specimen is shown in Figure 3.6 a). The field of major principal logarithmic 
strain for the PVC specimen at different deformation levels is shown in Figure 3.6 
b) to f). It is seen that after a certain deformation, the strain localizes and a neck is 
formed. With further deformation the neck propagates through the parallel section 
of the specimen.  
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The grid used by the DIC software to obtain the strain fields in the HDPE specimen 
is shown in Figure 3.7 a). Sub-figures b) to f) show the major principal logarithmic 
strain at different strain levels. Although not as distinct as in PVC, the strain also 
localizes in HDPE. A neck is formed, and it propagates through the parallel section 
of the specimen when further deformation is applied.  

 
 

1 = 0.00 1 = 0.025 1 = 0.048 1 = 0.14 1 = 0.36 
1 = 0.85 

a) b) c) d) e) f) 
Figure 3.6 Major principal logarithmic strain field in PVC at different strain 
levels. a) The grid employed by the DIC software to calculate the strains. b) Elastic 
regime. c)  Peak stress. d) Local stress minimum. e)  The state of highest strain rate 
in the minimum cross section.  f) With propagated neck. 
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1 = 0.00 1 = 0.040 1 = 0.10 1 = 0.24 1 = 0.86 1 = 1.46 
a) b) c) d) e) f) 

Figure 3.7 Major principal logarithmic strain field in HDPE at different strain 
levels. a) The grid employed by the DIC software to calculate the strains. b) Elastic 
regime. c) Close to onset of yielding. d) Close to onset of strain hardening. e) 
During strain rehardening. f) With propagated neck. 
 

The stress-strain curve for the PVC is presented in Figure 3.8. In the figure, the 
Cauchy stress is plotted against logarithmic strain in the longitudinal direction, i.e. 
the major principal strain 1 . Unless other is specified, the term logarithmic strain 
will in the following refer to logarithmic strain in the longitudinal direction. The 
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stress-strain curve in Figure 3.8 shows a linear response before peak stress, i.e. a 
local stress maximum, is reached. The local stress maximum coincides with the 
local force maximum seen in Figure 3.4, and also with the visually observed onset 
of stress whitening. After the local stress maximum some stress softening sets in 
before the stress level increases again. This subsequent rise in stress may be elastic, 
caused by stretching of the polymer chain network. Nevertheless, the phenomenon 
will be denoted strain rehardening hereafter. It is seen that strain rehardening 
dominates until the end of the curve. Due to distortion of the speckle pattern the 
DIC software could not follow the deformation until fracture.   

The strain field in the PVC specimen is rather uniform in the elastic domain. This 
is seen in Figure 3.6 b), displaying the field of major principal logarithmic strain at 

1 = 0.025. The strain field at peak stress, i.e. 1 = 0.048, is seen in Figure 3.6 c). 
At this strain level it is possible to see that the strain starts to localize. From Figure 
3.6 d) it is seen that the strain localization is even stronger in the strain field at the 
state of the stress minimum, at 1 = 0. 14. In sub-figure e), at 1 = 0.36 it is possible 
to see the neck as a local contraction of the width of the specimen. With further 
deformation, the neck has propagated as seen in Figure 3.6 f) showing the major 
principal strain field at 1 = 0.85. 

 

 

Figure 3.8 Cauchy stress vs. logarithmic strain in a PVC specimen machined out 
in the extrusion direction and deformed at a nominal strain rate of 10 3s 1.
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The stress-strain curve from HDPE is displayed in Figure 3.9. The response is 
initially linear before it bends off to a lower slope at longitudinal strain around 1 = 
0.1. Thereafter the stress increases progressively with strain. Although this 
behaviour may origin from an elastic contribution, the stress increase is hereafter 
denoted strain hardening. Since the HPDE test was aborted before fracture, the last 
logging point in Figure 3.9 does not represent the fracture strain. 

The major logarithmic strain field in HDPE at different strain levels was displayed 
in Figure 3.7. Figure 3.7 b) shows the strain field in the elastic domain of Figure 
3.9, at 1 = 0.040. The strain field at the strain level 1 = 0.10, where the stress-
strain curve bends off, is depicted in Figure 3.7 c). Sub figures d), e) and f) 
represent in turn strain levels of 1 = 0.24, 1 = 0.86 and 1 = 1.46. These are all 
addressing the strain hardening part of the deformation, as seen in the stress – 
strain curve in Figure 3.9. 

 

 

Figure 3.9 Cauchy stress vs. logarithmic strain in a HDPE specimen machined out 
in the extrusion direction and deformed at a nominal strain rate of 10 3 s 1.

 

Figure 3.10 and Figure 3.11 display the longitudinal and the transverse strain, 1  
and 2 , in the PVC and the HDPE tests plotted against time. In particular, the 
strain rate increases at the onset of yielding. 
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Figure 3.10 Longitudinal and transverse strain, both taken from a grid element in 
the cross section first experiencing strain localization, plotted against time for the 
PVC.

 

 

Figure 3.11 Longitudinal and transverse strain, both taken from a grid element the 
cross section first experiencing strain localization, plotted against time for the 
HDPE. 
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The slope of the curves in Figure 3.10 and Figure 3.11 represent the strain rate. 
Therefore the strain rate could be found by numerical differentiation. The strain 
rates 1d / d t  and 2d / d t  are plotted against longitudinal strain for PVC in Figure 
3.12 and for HDPE in Figure 3.13. Differentiation of data with a moderate noise 
level give results with large fluctuations. Therefore the strain-time curves were 
smoothed before the differentiation. 

Although the applied deformation rate from the Instron testing machine was 
constant, the cross section used for extracting strains did not experience a constant 
strain rate. It is seen that the strain rate in the cross section varies during the 
deformation. As the strain localizes and a neck is formed, the strain rate in the 
actual cross section is increasing. When the neck propagates, and the shoulder of 
the neck moves away from the cross section, the strain rate decreases. The 
maximum strain rate in PVC, both in longitudinal and transverse direction, occurs 
at a longitudinal strain of 1 = 0.36. This corresponds to a point in the strain 
rehardening region of the stress-strain curve in Figure 3.8 and to the strain level 
displayed in Figure 3.6 e). The maximum strain rate is in HDPE at a longitudinal 
strain of 1 = 0.86. This is the deformation stage addressed in Figure 3.7 e). Also 
this strain corresponds to a point in the strain hardening region, as seen in Figure 
3.9.  

The volume strains v  found from Equation (3.11) for PVC and HDPE are plotted 
in Figure 3.14 and Figure 3.15. It is clearly seen that PVC dilates during plastic 
deformation while the volume in HDPE remains almost constant. The variations 
we see in the volume strain for HDPE is, except at high deformation levels where 
the precision of the DIC measurements is reduced, within 0.005, and can most 
likely be regarded as measurement noise. 
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Figure 3.12 Logarithmic strain rate plotted against longitudinal logarithmic strain 
for the PVC. 

 

 

Figure 3.13 Logarithmic strain rate plotted against longitudinal logarithmic strain 
for the HDPE. 
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Figure 3.14 Logarithmic volume strain in the PVC. 

 

 

 

Figure 3.15 Logarithmic volume strain in the HDPE. 
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Uniaxial tension tests were used to acquire basic information of the deformation 
behaviour of a mineral filled PVC and HDPE. The specimens were cut out from 
extruded plates of 5 mm thickness both in and normal to the extrusion direction. 
Little difference was seen between the force-displacement relationships in the two 
directions, shown in Figure 3.4 and Figure 3.5. Therefore it was decided to treat 
both materials as isotropic. This has also been regarded as a good approximation by 
others [1, 2]. During machining of the specimens no reduction of the thickness 
direction was performed. Therefore possible effects of skin layers originating from 
the extrusion process are included in the responses reported in this study. This 
might be a feasible explanation why the behaviour of the 5 mm sheets of PVC and 
HDPE appears somewhat different from the behaviour of the 10 mm sheets [1] as 
reported in Chapter 2.8. 

The 7D software can provide information of the strain fields in terms of Green 
strain or logarithmic strain. The logarithmic strains are provided in the principal 
directions only. The Green strains, however, are provided both in the direction 
defined by the coordinate axes as well as in the principal directions. In the 
beginning of this chapter, it was assumed that direction of the major principal strain 
is aligned with the longitudinal direction of the specimen, i.e. that the principal 
directions are equal to the directions defined by the coordinate axes. To check the 
validity of this assumption, the Green strains in the principal directions and in the 
directions of the coordinate axes were plotted in Figure 3.16 for the PVC test and 
in Figure 3.17 for the HDPE test. It is seen that the two strain measurements give 
the same results. Thus, it is reasonable to conclude that the major and minor 
logarithmic strains, 1  and 2 , can be employed as longitudinal  and transverse  
strains. 
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Figure 3.16 Green strains in the principal directions and along the directions 
defined by the coordinate axes, i.e. the longitudinal and the transverse direction of 
the specimen. The data is taken from the PVC test. 

 

 

Figure 3.17 Green strains in the principal directions and along the directions 
defined by the coordinate axes, i.e. the longitudinal and the transverse direction of 
the specimen. The data is taken from the HDPE test. 
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By DIC it was possible to acquire the in-plane principal logarithmic strain fields 
even though the strains were rather large and inhomogeneous as seen in Figure 3.6 
and Figure 3.7. The geometry of the specimen in the neck produces transverse 
components of the stress tensor [7]. Therefore, the stress state changes from a 
uniaxial state to a triaxial state at necking. After the neck has propagated away 
from this location and the stress state is again uniaxial. The effect of the neck is 
neglected in this study.  

The mineral filled PVC started to stress whiten when reaching the maximum force 
and the peak stress around 1 = 0.048. After this point material experienced plastic 
volume change, even though it was in the plastic regime. However, in the HDPE, 
no stress whitening and almost no volume change in the plastic regime was 
observed. 

Figure 3.12 and Figure 3.13 show the longitudinal and the transverse strain rate in 
the sections where the strains for the stress and strain computations are collected. 
Even though the specimens were deformed by a constant rate, it can be seen that 
the local strain rate varies throughout the deformation. Strain localization and neck 
formation lead to an increase in strain rate. When the neck propagates the strain 
rate decreases. Comparing the strain rate of PVC with that of HDPE, it is seen that 
the strain rate is somewhat more constant in HDPE than in PVC. From the strain 
fields of the two materials in Figure 3.6 and Figure 3.7, it also appears that there is 
a stronger localization in the PVC specimens before the neck propagates. The 
strong localization of strain in the PVC specimen may be related to the softening 
behaviour of the material. Propagation of the neck, indicated by a decrease in the 
strain rate, can be linked to the strain rehardening effect of the material. HDPE, 
having no stress softening and a weaker strain hardening, shows less variation in 
strain rate during the deformation. In other words, the PVC seems to be more 
exposed to strain localization than HDPE. On the other hand, the PVC also seems 
to redistribute the strain, and therefore propagate the neck, better due to more 
pronounced strain rehardening.  
 
The increase in strain rate may lead to an increase in temperature. However, 
unpublished temperature measurements of similar mineral filled PVC and HDPE 
materials deformed at room temperature at the same strain rate reveals that the 
temperature increase in the specimens was about 5 C. The temperature effect is 
therefore not regarded as important for the tension test results reported in this 
section. 
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With the test setup and post processing method employed in this study, it is not 
possible to obtain stress-strain curves at a constant strain rate. G’Sell et al. [8] have 
developed a video-controlled tensile testing method allowing for continuous 
adjustment of the deformation velocity based on real time strain computations. The 
strain measurement in the method is based on the displacement between seven ink 
markers printed on the surface of a specimen with a pre-machined imperfection. 
With such a system the local strain rate can be kept constant during the test. The 
method employed in this study and the method of G’Sell et al. produce similar 
results for the stress – strain curve at quasi-static strain rate [9]. Lauro et al. [10] 
developed the SEE  technique that employs results from DIC to construct a surface 
in a 3D space spanned by stress, strain and strain rate. By cutting this surface at one 
strain rate, they obtained a stress – strain curve for a constant strain rate. 

Only one strain rate was tested in this work. For test results at other strain rates, 
and a more comprehensive test programme in general, the reader is referred to 
Hovden [1] or Moura et al. [2]. 
 

The behaviour of the 5 mm sheets of PVC and HDPE is somewhat 
different from the behaviour of the 10 mm sheets. This may be related to 
skin-layer effects. 
 
The 5 mm extruded plates of PVC and HDPE can be regarded as isotropic 
in tension. 

 
The stress-strain curve from the mineral filled PVC shows a peak stress, 
stress softening and subsequent strain rehardening. Stress whitening sets in 
at peak stress. Moreover, dilation during plastic deformation was found. 
The specimen was deformed until fracture. 
 
The stress-strain curve of the HDPE has no stress peak. Strain hardening is 
dominant in the material at large strains. The HDPE has a nearly isochoric 
plastic deformation. Due to ductile behaviour, the test was aborted before 
fracture occurred in the specimen. 
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Uniaxial compression tests of specimens from the 5 mm extruded plates of 
PVC and HDPE were carried out to study the pressure sensitivity of the two 
materials.  

The basic response of the 5 mm thick extruded sheets of PVC and HDPE in 
uniaxial tension was disclosed in Chapter 3. However, it is well known that 
the mechanical response of polymers is sensitive to pressure. Therefore, also 
testing of these materials’ compressive behaviour is of great interest. In this 
chapter compression tests on cylindrical specimens as outlined in Figure 4.1 
are presented. Results from these test will be used in calibration of the 
material model of Polanco-Loria et al. [1] in Chapter 10. 

Figure 4.1 Geometry of compression test specimen. Measures are given in 
mm. 

5

5
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The compressive test coupons were machined with nominal dimensions 
according to Figure 4.1. They were cut out from 5 mm thick extruded plates 
of mineral filled PVC and HDPE. These were the same plates that were 
used in the uniaxial tensile test in Chapter 2. Specimens were cut with three 
different orientations: The longitudinal axis in the extrusion direction, 0 , in 
the in-plane transverse direction, 90 , and in the out-of-plane direction of 
the sheets. Two tests of each material and machining direction were carried 
out in order to check the repeatability which turned out to be good. 

The tests were carried out under displacement control in a servo-hydraulic 
Dartec machine with a 20 kN load cell connected to an Instron controller. 
The loading rate was kept constant at 0.005 mm/s, corresponding to a 
nominal strain rate of 10 3 s 1. The friction between the sample and the steel 
platen of the test machine was minimized by applying a lubricant to the 
contact surfaces. The deformation of the specimens was monitored by a 
charge-coupled device (CCD) camera taking digital images at a frequency 
of 0.2 Hz. The initial diameter and height of each sample were measured 
before the tests. 

The CCD camera monitoring the deformation had its focus at the edge of 
the test specimens. After testing, the diameter d  of the mid cross section as 
well as the height h  of the cylinder was measured on the images as 
illustrated in Figure 4.2. This data were used for the calculation of Cauchy 
stress and logarithmic strain. The strains were assumed to be homogenously 
distributed in the test coupon. 
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2v z r  (4.4) 

Representative force-displacement relationships for compression coupons of 
PVC from the different directions of the plate are plotted in Figure 4.3. The 
difference in the peak force is 12% between the out-of-plane specimen and 
the specimen cut in the extrusion direction, 0o.  It is also observed that the 
peak force differs with less than 4% between the samples in the 0  and 90
directions. These differences are regarded as small enough to consider the 
material as isotropic. Similarly Figure 4.4 shows representative force-
displacement curves for HDPE. Also this material is regarded as isotropic. 
Transverse isotropy has earlier been demonstrated for similar materials [2, 
3]. From this point onwards, only results from representative specimens 
machined in the extrusion direction will be treated. 

Figure 4.3 Force-displacement curves measured during compression of the 
PVC coupons. 
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Figure 4.4 Force-displacement curves measured during compression of the 
HDPE coupons.

Figure 4.5 and Figure 4.6 show photos of test specimens of PVC and HDPE 
at different stages during compression. From the figure it can be seen that 
bulging, or “barrelling”, started after some deformation. This was probably 
due to friction between the steel platens and the top and bottom surfaces of 
the test coupons. 

a) b) c)
Figure 4.5 Compression coupon of PVC a) before deformation b) at onset 
of barrelling and c) at the last logging point used for stress and strain 
calculations.
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a) b) c)
Figure 4.6 Compression coupon of HDPE a) before deformation b) at onset 
of barrelling and c) at the last logging point used for stress and strain 
calculations.

Applying Equations (4.1) and (4.2), the Cauchy stress – logarithmic strain 
curve from a representative compressive test of mineral filled PVC was 
found. It is shown in Figure 4.7. The response is linear up to a local stress 
maximum. Thereafter, the stress-strain curve drops markedly. The stress-
strain curve before barrelling of the test coupon is plotted with a solid line. 
Onset of barrelling is marked with a circle. After this point the stress state is 
no longer uniaxial, and the curve therefrom has to be considered with less 
confidence. The following response is therefore represented by a dashed 
line. The onset of barrelling is somewhat unclear. However, the first clear 
sign of barrelling was observed after the peak stress was reached.  

Figure 4.8 displays the Cauchy stress against logarithmic strain for the 
representative HDPE compression test. Also here, barrelling is marked with 
a circle, and the subsequent response is represented by a dashed line. 
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Figure 4.7 Cauchy stress vs. logarithmic strain curve for PVC in uniaxial 
compression. The circle represents onset of barrelling, and the dashed line 
represent the stress-strain curve after barrelling. 

Figure 4.8 Cauchy stress vs. logarithmic strain curve for HDPE in uniaxial 
compression. The circle represents onset of barrelling, and the dashed line 
represent the stress-strain curve after barrelling. 
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The volume strains, found from Equation (4.4), are for the two materials 
presented in Figure 4.9 and Figure 4.10. Also here onset of barrelling is 
marked by a circle and the response thereafter by dashed lines. It is seen that 
the volume diminishes during elastic loading. In PVC it seems that the 
volume increases after reaching plasticity. However, it is again emphasised 
that the results must be regarded with care after onset of barrelling. 
Barrelling of the test coupon exaggerate the transverse expansion and leads 
to overestimation of the radial strain and also the volumetric strain. In 
HDPE the volume remains about constant for large deformation. Some 
small increase in volume strain is observed, but this may also be related to 
barrelling of the specimen. 

Figure 4.9 Logarithmic volume strain in PVC in compression. The circle 
represents onset of barrelling, and the dashed line represent the volume 
strain after barrelling. 
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Figure 4.10 Logarithmic volume strain in HDPE in compression. The circle 
represents onset of barrelling, and the dashed line represent the volume 
strain after barrelling. 

Small cylinders of mineral filled PVC and HDPE were tested in uniaxial 
compression. The strains were determined from measurements of the height 
and the diameter of the cylinder during deformation. By combining this data 
with the force recorded by the tensile machine the stress-strain relationships 
presented in Figure 4.7 and Figure 4.8 were established. After some 
deformation the test coupon started to bulge, or “barrel”. The onset of 
barrelling was somewhat unclear since it appeared gradually. Nevertheless, 
the first clear visual evidence of barrelling is marked with a circle. To 
indicate that the results may be inadequate after this point the response is 
plotted by dashed lines in Figure 4.7 and Figure 4.8. 

In Figure 4.11 the stress-strain curves from the compression tests are plotted 
together with those found from uniaxial tension in Chapter 2. For PVC the 
peak stress in compression is about 1.3 times higher than that in uniaxial 
tension. It is interesting that not only in tension but also in compression the 
peak stress in PVC is followed by stress softening. Moreover, the stress 
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softening appears even stronger in compression. The stress-strain response 
of HDPE in uniaxial compression is very similar to that in tension, see 
Chapter 2.

Figure 4.11 Stress-strain curves for PVC and HDPE in tension and 
compression. 

The Cauchy stress was computed by employing the mid section of the 
compression coupons. This is where the cross area is at its largest after 
barrelling. The difference between the maximum (mid) cross section 
diameter and the minimum (upper and lower) cross section diameter was 
about 4% in the compression coupons at the stage defined as onset of 
barrelling, see Figure 4.5 b) and Figure 4.6 b). It means that the barrelling 
actually started at some earlier stage. This leads to an underestimation of 
Cauchy stress already at the point marked with a circle in Figure 4.7 and 
Figure 4.8. Further deformation of the specimen, and therefore more 
barrelling, increases the error. 

The volume change in the two materials is presented in Figure 4.9 and 
Figure 4.10. Initial elastic deformation of both materials leads to 
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increase can be observed in Figure 4.9. However, most of the dilation 
emerges after onset of barrelling. The computed volume strain includes the 
radial strain as according to Equation (4.4). The radial strain was found 
from measurement of the mid cross section of the specimen, i.e. the cross 
section with the largest diameter after barrelling as seen in Figure 4.5 c). 
The result is an overestimation of the radial strain and therefore also volume 
strain. The data provided by these tests are not sufficient for drawing 
conclusions about the volume change of mineral filled PVC and HDPE in 
compression. In order to do this, new and better compression tests are 
needed. Some improvements for future compression tests are suggested in 
the following. 

Better quality of the images can improve the measurement of the evolution 
of the diameter. As seen in Figure 4.5 and Figure 4.6 the images used in the 
post processing in this study are somewhat unclear. By increasing the 
contrast between the test coupon and the background, the diameter 
measurement can be done by an automatic script. Such a script could also be 
coded to trace the boundary of the specimen and compute the total volume 
of the specimen in each image by for instance solving a disk integral. 
Moreover, one should also take care to focus at the edge of the specimen in 
order to get a sharp contour. To reduce measurement noise, the specimen 
should cover a sufficient part of the photograph. If the specimen is 
represented by too few pixels in the picture, measurement noise in the order 
of just one pixel can have a great impact on the strain results.  

Lubricant was added to the top and bottom surfaces of the test coupon. Yet, 
the barrelling of the specimens indicates that some friction is present 
between the specimen and the compression platens. This friction should be 
reduced further. Van Melick et al. [4] reduced the friction by using a PTFE 
film and soap water. By this procedure, they reported true strains up to 1.5
without observing any bulging or buckling of the sample.  

The strains could also have been measured by digital image correlation 
(DIC). Moura et al. [3] and Delhaye [5] report results from compression test 
on cubical specimens. The advantage of cubical test coupons is that 2D-DIC 
can be used to measure the full in-plane strain field on one of the flat sides. 
The disadvantage is undesirable effects produced by the corners of the 
specimen, causing a non-homonegeous strain field in a transverse section of 
the sample. 3D-DIC has been performed on test coupons of cylindrical 
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shape by Hovden [2]. The results from 3D-DIC were compared with results 
from employing measurement of the diameter expansion. Even though the 
3D-DIC produced a high level of noise in the measurement, the main results 
were similar. 

Even though some of the test results from this study are regarded as 
inadequate, the main objective was to acquire data for determination of the 
material parameters for the constitutive model by Polanco-Loria et al. [1]. 
The results herein are considered suitable for this purpose because only the 
compression yield stress is involved in the parameter identification 
procedure.

The 5 mm thick extruded plates of PVC and HDPE can be regarded 
as isotropic in compression. 

The PVC has a higher yield stress in compression than in tension. 
Moreover, the stress softening is more pronounced in compression 
than in tension.

The stress-strain curve of the HDPE in compression is similar to that 
in tension. The yield stress of the material is regarded as insensitive 
to pressure. 

Plastic dilation is observed in compression of PVC. However, it is 
suspected that this is an effect from undesired friction between the 
test specimen and the compression platens. New and better tests 
results are needed.  
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Tensile specimens of mineral filled PVC and HDPE were loaded to different 
elongations and unloaded to zero force. The specimens were then stored for 
different periods of time before they were reloaded. The purpose of these tests is to 
study whether physical aging, as an effect of storage, affect the mechanical 
response of the polymers. In particular, it is paid attention to whether the peak 
stress in the mineral filled PVC could be recalled by storage. 

The shape of the stress-strain curves presented in Chapter 2.8 and in Chapter 3
generated curiosity regarding the characteristics of the behaviour of the mineral 
filled PVC and the HDPE. The PVC showed a stress peak followed by softening 
before subsequent rehardening, while the stress of the HDPE increased during the 
whole test. It is generally known that time affects polymer materials in terms of 
physical aging, as discussed in Chapter 2.4. A shape of the stress-strain curve 
similar to that of the PVC is familiar also for physically aged polymers [1]. Rolling 
of polystyrene tensile specimens was shown by Govaert et al. [2] to rejuvenate the 
material by decreasing both the maximum stress and the subsequent stress 
softening. The effect was temporary, after 20 minutes a clear recovery of the 
softening was observed and after 30 minutes the effect from the rejuvenation had 
vanished.

It was of interest to see how storage time affects the mechanical response of the 
two materials in this study. This was done by first applying a loading cycle to 
tensile specimens. Thereafter, the specimens were stored for a certain time before 
they were reloaded.  
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Fifteen uniaxial tensile test specimens were machined from 10 mm thick extruded 
sheets of mineral filled PVC and HDPE according to Figure 5.1. The thickness was 
reduced to 4 mm by removing material from both sides of the plates. The 
specimens were divided into three groups to create three test series denoted I, II, 
and III from both materials. Each test series represented one loading cycle 
consisting of loading until a particular elongation level followed by unloading. The 
test series and associated elongation levels are listed in Table 5.1 and Table 5.2 for 
specimens of mineral filled PVC and HDPE in turn. On the first test day all 
specimens were subjected to the first load cycle particular for the respective test 
series. The five specimens belonging to each series were then stored for five 
different periods of time and reloaded according to the same loading cycle. In total 
15 different tests from each material were carried out with this test setup.  

Figure 5.1 The geometry of the tensile test specimens. Measures are given in mm. 

A speckle pattern was painted on the surface of the specimens, and the deformation 
was monitored by a CCD camera during the test with an image frequency of 0.5 
Hz. DIC was subsequently used to find the strain fields as in Chapter 3. Stress and 
strain calculations were also carried as described in Chapter 3.The strains were 
taken as an average from five grid elements to reduce noise, see Figure 3.3. To 
ensure that all specimens were unloaded at the same deformation level, an MTS 
634.31F-25 extensometer with 30 mm gauge length was clamped to the specimens 
to measure the elongation of the parallel area. When the elongation had reached a 
certain level, as listed in Table 5.1 and Table 5.2, the testing machine was 
programmed to start the unloading stage. To avoid compression of the specimens 
the unloading was carefully stopped when the testing machine measured zero force. 
Both the loading and the unloading processes were displacement controlled with a 
deformation speed of 0.033 mm/s.  
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Table 5.1 Test programme for loading, storage and reloading of PVC specimens. 

Test number Test series Elongation level 
(extensometer) 

Storage time before 
reloading

1 I 1 mm 5 min 
2 I 1 mm 24 hours 
3 I 1 mm 9 days 
4 I 1 mm 80 days 
5 I 1 mm 33 weeks 
6 II 1.5 mm 5 min 
7 II 1.5 mm 24 hours 
8 II 1.5 mm 9 days 
9 II 1.5 mm 80 days 
10 II 1.5 mm 33 weeks 
11 III 2 mm 5 min 
12 III 2 mm 24 hours 
13 III 2 mm 9 days 
14 III 2 mm 80 days 
15 III 2 mm 33 weeks 

Table 5.2 Test programme for loading, storage and reloading of HDPE specimens. 

Test number Test series Elongation level 
(extensometer) 

Storage time before 
reloading

16 I 1.5 mm 5 min 
17 I 1.5 mm 24 hours 
18 I 1.5 mm 9 days 
19 I 1.5 mm 80 days 
20 I 1.5 mm 33 weeks 
21 II 2.5 mm 5 min 
22 II 2.5 mm 24 hours 
23 II 2.5 mm 9 days 
24 II 2.5 mm 80 days 
25 II 2.5 mm 33 weeks 
26 III 4 mm 5 min 
27 III 4 mm 24 hours 
28 III 4 mm 9 days 
29 III 4 mm 80 days 
30 III 4 mm 33 weeks 
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The loading paths for all tests can be seen in Figure 5.2 in terms of load-
extensometer displacement curves. The dotted lines represent the first load cycle 
and the continuous lines represent the reloading cycle of the same specimens after 
different storage times. 

Separating the results into the three series I, II and III, Figure 5.3 and Figure 5.4 
display stress-strain curves and volume strain plots. The stress-strain curves of the 
first load cycles are plotted as dashed lines. The stress-strain curves of the 
reloading, after storage for different periods of time, are plotted as solid lines. 
Colours are used to distinguish the different test specimens. Note that the scales for 
the x-axes are changing between the test series, while the y-axes remain the same 
for each material. 

The response from the first loading cycle is initially linear elastic with local stress 
maxima followed by stress softening. This is similar to the response the material 
from 10 mm sheets reported in Chapter 2.8 and also to that of 5mm sheets 
addressed in Chapter 3. The PVC-I-test specimens, see Figure 5.3 a), were 
unloaded at the local stress maximum, while the PVC-II- and PVC-III-test 
specimens, see Figure 5.3 c) and e), were unloaded at two different stages of the 
softening process. The test results reveal that the second loading cycle has a 
response quite different from the first. The slope of the stress-strain curve during 
reloading is gradually decaying. The stress is at its maximum at the end of the 
reloading stage, no stress softening is observed for any of the reloading cycles. The 
stress level during the reloading cycle is approaching the response of the first 
loading cycle at the end of the softening regime. This applies also for the 
specimens stored for the longest period. However, these specimens, stored for 33 
weeks before reloading, reach slightly higher values of stress than the other 
specimens when reloaded. 

The volume strain observed in the PVC specimens during the experiment is plotted 
in Figure 5.3 b), d) and f). Both for the first and the second loading cycles the 
volume strain increases during the entire loading stage.  

In contrast to the PVC specimens, the HDPE specimens show the same stress-
strain relationship in the first and the second load cycles. It is seen in Figure 5.4 a), 
c) and e) that the response of the second loading cycle is equal to that of the first 
loading cycle. This behaviour does not seem to change with storage time.   

Hardly any volume change is observed for the HDPE specimens. The volume 
strains during both load cycles is around zero in Figure 5.4 b), d) and f). 
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a)

b)
Figure 5.2 Force – extensometer displacement measured for all tests of a) PVC 
and b) HDPE.
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a) b)

c) d)

e) f)
Figure 5.3 Cauchy stress  logarithmic strain curves and logarithmic volume 
strain plotted against logarithmic longitudinal strain from tensile tests of PVC. a) 
and b): I-series. c) and  d):  II-series. e) and f): III-series.  
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a) b)

c) d)

e) f)
Figure 5.4 Cauchy stress  logarithmic strain curves and logarithmic volume 
strain plotted against logarithmic longitudinal strain from tensile tests of HDPE. a) 
and b): I-series. c) and  d):  II-series. e) and f): III-series.  
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There is a pronounced difference in the stress-strain curves of the first and the 
second load cycle for all specimens of the mineral filled PVC. This is clearly seen 
in Figure 5.3 a), c) and e) where the first load cycle is plotted as dashed lines and 
the reloading cycle as solid lines. While the specimens during the first load cycle 
show a linear elastic response up to a local stress maximum followed by a stress 
drop, the stress drop is absent in the second load cycle. The peak stress followed by 
stress softening did not reappear. Moreover, the reloading response is initially 
softer. Storage within the time scale of this study did not seem to give any dramatic 
change in the reloading response of this particular PVC. Therefore it seems 
reasonable to suspect that other irreversible mechanisms such as damage occur 
during the first load cycle. However, it should be noted that the specimens with the 
longest storage time before reloading reached a slightly higher stress level than the 
other specimens. This can be an indication of some physical aging. 

For the specimens made of HDPE no significant difference was observed in the 
stress-strain relationships from the first to the second loading cycle, see Figure 5.4  
a), c) and e). The response also seemed to be insensitive to storage time. 

In these tests, an extensometer was used to control that every specimen in all of the 
test series was deformed to the pre-defined elongation level. However, the 
extensometer was so loosely attached that it slipped from the surfaces of some of 
the specimens. As a result, these specimens were elongated to a higher level than 
intended. This explains the high strain levels for some of the curves in Figure 5.3 
and Figure 5.4. This could have been avoided by using the cross-head 
displacement, rather than an extensometer, to control the elongation level. Even so, 
since the strains were rendered from DIC and not from the extensometer, the stress-
strain curves are still correct. 

The mineral filled PVC in these tests shows different stress-strain 
relationships during the first and the second load cycle: during the second 
load cycle the response is softer and without the characteristic peak stress 
and stress softening. This characteristic behaviour in the PVC is not 
recalled by storage. It is therefore suspected that some damage 
mechanisms occurred in the material during the first load cycle. 
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Some minor indication of physical aging can be observed for the mineral 
filled PVC specimens with the longest storage time. 

The HDPE material in these tests does not show any signs of damage or 
aging. 

Storage does not alter the evolution of volume strain. In the mineral filled 
PVC the volume increases with the deformation during both loading 
cycles. In the HDPE the volume change is approximately zero. 



80 

[1]  H.E.H. Meijer, L.E. Govaert. Mechanical performance of polymer 
systems: The relation between structure and properties. Progress in 
Polymer Science, 30 (2005), 915-938. 

[2]  L.E. Govaert, H.G.H. van Melick, H.E.H. Meijer. Temporary toughening 
of polystyrene through mechanical pre-conditioning. Polymer, 42 (2001), 
1271-1274. 



81 

Tensile test specimens of mineral filled PVC were deformed in tension to different 
elongations and then unloaded. The specimens were thereafter split in two and 
investigated in a scanning electron microscope. The void growth on the microscale 
was then compared with the dilation of the material on the microscale. The 
intention of the study is to investigate the mechanisms behind the plastic dilation 
observed in experimental tests.  

Stress whitening and volume change during plastic deformation were observed in 
uniaxial tension of mineral filled PVC as reported in Chapter 2.8 and Chapter 3. 
Plastic dilation in polymers can be assumed to be related to damage. Such damage 
can be voids that grow from local irregularities of the molecular packing [1], from 
cavitation of rubber particles or from debonding of particles made of rubbers or 
minerals [2, 3] as discussed in Chapter 2.5. By the use of a scanning electron 
microscope (SEM), the voids in the damaged material can be investigated. It this 
study, SEM micrographs have been used to quantify the void growth on the 
microscopic scale. These results were subsequently compared it with the volume 
change on the macroscopic scale. 

The polymer-particle composite material investigated in this study is taken from 
the 10 mm thick extruded PVC plates produced by SIMONA. Ten tensile test 
specimens with geometry according to Figure 6.1 were machined from the 
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extrusion direction of the plates. The thickness was reduced to 4 mm by removing 
3 mm material from each side of the plates. 

Figure 6.1 The geometry of the tensile test specimens. Measures are given in mm. 

The loading of the specimens was displacement controlled with a deformation rate 
of 0.033 mm/s, giving an initial nominal strain rate nom 10 3s 1. Each specimen 
was loaded until a certain deformation was achieved. The specimens were then 
unloaded to zero force at a load rate corresponding to the deformation rate. Load 
control was chosen for the unloading to avoid that any compression occurred in the 
specimens. 

The tests were instrumented with a CCD camera acquiring digital pictures at a 
frequency of 0.5 Hz. The specimens were left in the testing machine for 10 minutes 
after unloading. At the end of this period, a new digital image was taken and added 
to the subset of images from the test. This was done to capture any possible stress 
relaxation causing volume change. The strain history from the start of the test until 
the end of the 10 min relaxation period could then be found by using digital image 
correlation (DIC) as described in Chapter 3. The width and the thickness of the 
specimens were again measured by a sliding calliper about a week after testing. No 
further shrinkage was then found. By using the results from strain measurements 
and assuming transverse isotropic deformation, the Cauchy stresses were found as 
described in Chapter 3. 

The force-displacement curves for all eight samples addressed in this study are 
shown in Figure 6.2. In addition, two tensile specimens were deformed until 
fracture, but they are not reported herein. 
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Figure 6.2 Force-displacement curves for 8 PVC tension test samples with 
unloading at different deformation levels.

The Cauchy stress – logarithmic strain curves for all eight specimens are shown 
Figure 6.3. The results are in accordance with the observations reported earlier in 
this thesis: All stress-strain curves show a linear elastic response up to a local stress 
maximum. The peak stress is followed by a load drop and subsequent strain 
rehardening. Defining the local stress maximum as the yield stress, plasticity sets in 
at 48-50 MPa, with little variation between the tests. This corresponds to a 
longitudinal logarithmic strain around 0.035. After onset of yielding a gradual 
increase of stress whitening could be observed visually during the test.

The logarithmic volume strains are plotted against logarithmic strains in the 
longitudinal direction in Figure 6.4. There is some variation between the curves in 
the figure. However, plastic dilation is clearly characterized in the tests. From the 
figure it can be seen that the volume strain does not increase linearly with the 
longitudinal strain. The curves have a slight convex shape. 
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Figure 6.3 Cauchy stress vs. logarithmic strain for all tests. The plot includes the 
loading and unloading stages as well as the relaxation after the test.

Figure 6.4 Logarithmic volume strain plotted against logarithmic longitudinal 
strain for all tests. The plot includes the loading and unloading stages as well as 
the relaxation after the test.
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The nonlinearity in the dilation becomes clearer when looking at Figure 6.5, 
representing the retraction ratio defined as  2 1/ , i.e. the ratio of transverse 
strain to longitudinal strain, plotted against plastic longitudinal strain. The 
retraction ratio in Figure 6.5 can be regarded as a kind of a Poisson’s ratio during 
the plastic deformation, and describes the trend in the dilation. Since noise in the 
strain measurements causes fluctuations in the retraction ratio, the smoothing 
function in Matlab was used to obtain a better representation. It is seen that the 
retraction ratio has a minimum at a plastic strain of 0.04-0.06, corresponding to 
longitudinal strain of 1 0.07-0.095. The retraction ratio increases, i.e. the 
increase in dilation decays, when the longitudinal strain exceeds about 0.1. At 
unloading, there is a difference in the evolution of the retraction ratio between the 
different tests. The retraction ratio remains almost constant, or exhibits a slight 
increase, during unloading of the highly stretched specimens, i.e. PVC-6 to PVC-8, 
while it has a significant decrease while unloading of the other specimens.  

Figure 6.5 Retraction ratio plotted against plastic logarithmic longitudinal strain. 
The plot includes the loading and unloading stages as well as the relaxation after 
the test. 
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In Figure 6.6, the Cauchy stress-logarithmic strain curve is plotted together with 
the retraction ratio for the first part of test PVC-8. Here, no smoothing function is 
used for the retraction ratio. Therefore the initial fluctuations due to measurement 
noise are easy noticeable. It is seen that peak stress is reached before the retraction 
ratio approaches its lowest value. The minimum value of the retraction ratio is 
reached when the stress-strain curve flattens out. 

Figure 6.6 Stress and retraction ratio plotted against strain for the first part of test 
PVC-8.

Two additional tests specimens were deformed until fracture. Before onset of 
fracture they reached logarithmic strains of 0.80 and 0.56, respectively. This was at 
stress levels of 68.8 MPa and 51.8 MPa, and at logarithmic volume strains of 0.17 
and 0.14. The latter of these two specimens fractured at a considerably lower 
deformation than any of the other specimens in this study. 
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Supra 55VP SEM, as described in Chapter 2.8. The contents of one of the larger 
particles were identified by energy dispersive spectroscopy (EDS), which is a built-
in tool of the SEM.  

The contours of the areas containing particles and voids in the SEM micrographs 
were traced manually. It was in many cases hard to distinguish particles from 
voids. Moreover, it was impossible to determine whether a void used to contain a 
particle before the specimen was split in two. Therefore, particles and voids, 
together, were identified as one object type. The area fraction of particles and voids 

A  was determined from the manually traced boundaries by using the open-source 
image processing and analyzing program ImageJ [4]. The principle of Delesse, 
stating that the area fraction A  of a component in a random cross section is equal 
to the volume fraction of the component in the entire material, was then used. 
The principle is described closer in Chapter 2.6. The particle content of the 
material was found in following way. It was assumed that the undeformed PVC 
contained no voids, only particles. The fraction of objects observed in the SEM of 
the undeformed material, 0 , was therefore interpreted as the particle content of 
the material. To ensure representative results, two micrographs from each test 
specimen were investigated, each covering an area of 38.6 m 26.0 m. 

A section from a scanning electron micrograph of undeformed PVC is displayed in 
Figure 6.8. As always, it was cooled in liquid nitrogen before it was split in two to 
ensure that undesired deformations did not occur during the fracture process. Image 
analysis suggests that the material contains particle volume fraction 0 around 
0.24. Judged from their visual appearance, two kinds of particles might be present. 
There are some rather spherical particles that are comparatively small, having 
diameter around 0.2-0.4 μm, and some larger particles having a more irregular 
shape. The dispersion of particles in the matrix material appears to be good. Both 
kinds of particles exhibit a distribution of size. The smallest particles were hard to 
observe in the SEM, so no exact size distribution can be determined. Still, some 
general reflections can be made. Although not present in Figure 6.8, particles up to 
18 μm were found, but they were very few. Most of the particles were considerably 
smaller. A common particle size appeared to be from 2 μm and smaller with a 
higher incidence of particles sized 0.5 μm and smaller. The smallest particle 
observed at the magnification level used in the SEM was 0.06 μm. Smaller 
particles might exist even though they were not discovered. 
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not very clear at this stage. Between the tests PVC-4 in Figure 6.10 b) and PVC-5 
Figure 6.11 a) there is a markedly difference in the appearance of the voids, even 
though the difference in strain level, see Figure 6.3, between these two tests is 
moderate. In PVC-5 many of the particles have clearly debonded from the matrix, 
and it is apparent that the void size has increased around the particles. Also in the 
micrographs of specimen PVC-6 in Figure 6.11 b) we can clearly see how the 
voids have grown around the particles. In the two most deformed specimens, PVC-
7 and PVC-8, shown in Figure 6.12, a larger amount of the particles has debonded 
from the matrix and the voids are considerably larger than in the other 
micrographs.
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Figure 6.15 Particle and void volume fractions estimated from scanning 
electron micrographs. Two micrographs were considered for each test. The colour 
used for each test corresponds with the colour in the previous plots.   

It can be assumed that particle debonding is the only source of void nucleation, 
meaning that all void growth happens around the already present particles. Ignoring 
other sources of nucleation, the evolution of the particle and void volume fraction 

 can be written 

g  (6.1) 

where g  is the growth of particle and void volume fraction.  

The evolution in the particle and void volume fraction g  can, as described in 

Chapter 2.7, be expressed through the plastic part of the Jacobian pJ

(1 )
p

g pJ
J  (6.2) 

By integrating this differential equation and using that ln( )p p
v J , we can 

describe the plastic volume strain in terms of 
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01ln
1

p
v  (6.3) 

From a micrograph of an undeformed sample, the initial void and particle fraction 

0 was found to be 0.24. Equation (6.3) was used to calculate values of p
v  from 

the estimates of . The results are plotted with triangles in Figure 6.16. In the 
same figure, the volume strains measured by DIC at the end of 10 minutes of 
relaxation after the test are plotted with crosses. Each of the colours represents the 
results from one test. Moreover, two straight lines were fitted to the two data sets to 
better show the results. It is seen that the volume strains predicted by the SEM 
data, i.e. the estimated values of  and Equation (6.3), are rather close to the 
volume strains measured by DIC. In particular, it is noted that the slopes of the two 
lines are almost identical. The deviation may be related to some inaccuracies in the 
SEM data, especially for the undeformed sample. It is estimated that the 
undeformed sample has a higher value of  than some of the deformed specimens. 
Thus, some faulty negative volume strains are predicted from the SEM data. 

Figure 6.16 Plastic logarithmic volume strain plotted against plastic longitudinal 
strain. The triangles represent plastic volume strain estimated from SEM and the 
crosses refer to plastic volume strain at the end of the test measured by DIC. The 
colour used for each test corresponds with the colour in the previous plots.   
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To investigate the damage effect in terms of loss of strength of the composite 
material, it is interesting to establish an expression for the void volume fraction. In 
that context we first denote the volume fraction of what is considered as damaged 
material as D . This parameter represents the volume fraction of debonded 
particles and the voids around them. In other words, the volume occupied by a 
debonded particle is included in D . Volume occupied by particles that are still 
attached to the matrix is not included in D  since these particles still carry load. 
Since the particles seem to have a good initial bonding to the matrix, the initial 
volume fraction of damaged material can be regarded to be D = 0.  We then 
assume that when a critical stress is reached the particles act as nucleation sites for 
voids, and D  rapidly starts to increase. The volume fraction of material that is 
damaged by nucleated voids is denoted ,D n . If we assume that all particles are 

debonded after a certain deformation, and that particle debonding is the only 
nucleation process, we get an upper limit of  ,D n  that is determined by the particle 

content of the material. In addition to the nucleation, the already nucleated voids 
grow. This gives rise to another contribution to the damage volume fraction that is 
denoted ,D g . The total increase of void volume fraction D  is then therefore sum 

of two contributions 

, ,D D n D g  (6.4) 

During the tests, it was visually observed that stress whitening gradually started at 
peak stress. This indicates that the particle debonding also is initiated at this stage. 
We therefore assume that nucleation of voids occurs between plastic strains of p =
0 and p 0.1. Thus, the following simple model for volume fraction of nucleated 
voids can be formulated 

, 0 1 exp 50 p
D n  (6.5) 

The particles volume fraction 0 = 0.24 is considered as the upper limit for the 
void nucleation process.  The factor 50 is has no other interpretation than to control 
the termination of the nucleation process at around p = 0.1. Differentiating 
Equation (6.5)  gives the following expression for void nucleation on rate form  

, 050 exp( 50 )p p
D n  (6.6) 
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The expression for void growth is, similar to Equation (6.2),  

, (1 )
p

D g v pJ
J  (6.7) 

Employing Equation (6.4) with Equations (6.6) and (6.7) on test data from 
specimen PVC-8, we obtain the evolution of void volume fraction D  presented in 
Figure 6.17 a). As described in Equation (6.6), the nucleation process ceases at a 
strain around 0.1. The contribution from the void growth term increases 
continuously during the test. 

Debonding and void growth can be interpreted as damage since the section 
occupied by voids and debonded particles does not carry load. Reaching the 
deformation that initiates particle-matrix separation will cause a sudden reduction 
of the load bearing cross section even though no such sudden volume change can 
be observed macroscopically. b). An estimation of the effective stress eff  , 

regarded as the average stress in the ligaments between the debonded particles and 
the voids [5], can be expressed as 

(1 )eff
D

 (6.8) 

By using the test PVC-8 as an example, the effective stress-strain curve is 
represented in Figure 6.17 b). The dashed line in the figure represents the effective 
stress of the damaged composite, i.e. the stress carried by the matrix between the 
voids as the particles gradually separate from the matrix. It is seen that there is no 
stress drop in the effective stress. The solid line in Figure 6.17 b) represents the 
stress-strain curve from the test without taking damage into account.  

a) b)
Figure 6.17 a) Estimation of the evolution of void volume fraction of debonded 
particles and the voids around them for test PVC-8.  b) Estimation of effective 
stress in the matrix ligaments between the voids. 
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Eight uniaxial tensile specimens of CaCO3 filled PVC were loaded to different 
elongations and thereafter unloaded. The most deformed zones of the specimens 
were investigated in SEM after testing to study how the morphology of the 
composite change with the deformation.  Initially the CaCO3 particles appear to be 
well bonded to the PVC matrix. The material then acts like a composite where the 
particles serve as reinforcement. At larger deformations it is clearly seen that the 
particles debond from the matrix. The particles act as nucleation sites for voids that 
continue growing as the material deforms, causing a volume change. 

Volume fractions of particles and voids , found from analyzing two micrographs 
from each test specimen, were employed to produce an estimation of plastic 
volume strain. The plastic volume strain estimated from the microscopic 
measurements is, according to Figure 6.16, in good agreement with the volume 
increase at the macroscopic scale measured by DIC.  It is therefore reasonable to 
conclude that the macroscopic dilation is caused by void growth on the 
microscopic scale.  The difference between the two data sets may be related to 
viscous effects, poor quality of SEM micrographs or by inaccurate estimation of 
particle and void area fractions from the micrographs. 

The volume strains plotted in Figure 6.4 and the retraction ratio plotted in Figure 
6.5 show that the dilation changes during the deformation. Initially, when the 
particles are well attached to the matrix, the retraction ratio of the composite is 
determined by the Poisson’s ratio of each of the components. When debonding sets 
in, growth of voids causes dilation at the macroscale, observed as a reduction in the 
retraction ratio. The retraction ratio has the lowest value at longitudinal strain of 1

= 0.07-0.095. Figure 6.6 shows both the Cauchy stress and the retraction ratio 
plotted against logarithmic strain for the specimen PVC-8. It is interesting to note 
that the minimum value of the retraction ratio occurs after peak stress.  This means 
that the volume change is at its largest somewhat after onset of plasticity. It could 
be an indication of a sudden debonding process at this stage. Subsequently, in the 
large strain regime, the retraction ratio increases. In other words the increase of 
dilation decays. This might be related to that the void growth is limited when the 
strain hardening in the matrix material around the voids sets in. Additional aspects, 
such as molecular packing caused by orientation of amorphous chain segments [6] 
or nucleation of new voids in lesser dense packed areas [1], might affect the 
volume change. These are assumed to be minor effects and will not be further 
discussed here. 
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In Figure 6.11  it can be seen that particles lying close to each other tend to impose 
some linkage of void growth in, or with a small angle to, the transverse direction. 
This might be an indication of formation of dilational bands, similar to what is 
observed in rubber toughened polymers [7, 8]. From the micrographs, the dilational 
bands seem to form where the particles are located close to each other or where a 
large particle is present as in Figure 6.13. According to Chapter 2.5 small particles 
follow the flow of the matrix material. Larger particles, with less mobility, separate 
from the matrix. The random position of the smaller and larger particles determines 
how the dilation bands spread through the material. The dilational band formation 
is in general not very clear in these tests. In the micrographs of more deformed 
specimens in Figure 6.12, there is no indication of such dilational bands at all. This 
is might be related to the strain hardening property of the matrix, the stretched 
material between the voids exhibits higher stiffness than the surrounding matrix 
material due to network stretching and molecular orientation. Therefore, the 
deformation is subsequently redistributed to the surrounding, and more deformable, 
material. In this way the deformation is stabilized. Moreover, the stretched fibrils 
between the voids may hinder coalescence of voids. No coalescence is observed in 
any of the micrographs even though some of the specimens were deformed close to 
the fracture strain.  

Particle debonding and void growth can be regarded as damage mechanisms. When 
a particle debonds from the matrix, the load bearing cross section of the specimen 
is reduced. Simple expressions for particle debonding and void growth were used 
to estimate an effective stress in the damaged material. This was done to check 
whether the stress drop can be explained by damage. Figure 6.17 b) shows that the 
macroscopic stress softening disappeared when the void nucleation and growth was 
taken into account. However, in Chapter 2.5 and Chapter 4 it was reported that 
such a stress drop also occurs in compression. The reason for this is still left to 
explain. It could mean that the stress drop has other causes than debonding and 
void growth. 

A consequence from the principle of Delesse, discussed in Chapter 2.6, is that the 
cross section area reduction due to the voids is independent of the cutting direction. 
This also holds for anisotropic voids. The damage, in terms of area reduction, is 
therefore assumed to be isotropic. Nevertheless, the oblong voids bring along 
geometrical and material anisotropy that is not taken into account in this study. The 
elliptic voids cause local stress concentrations in the material that vary with the 
direction of the applied load. This is referred to as geometrical anisotropy. The 
material anisotropy refers to fibril stretching and orientation of polymer chains in 
the PVC matrix in the ligaments between the voids.  
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The initial particle volume fraction was only determined from one SEM 
micrograph. It was estimated to be  = 0.24. This might be a too high estimate 
since it is higher than particle and void volume fractions estimated for the 
somewhat more deformed specimens. A volume fraction of ~ 0.2 is assumed to 
be more realistic. 

There are several possible sources of error in the particle and void identification 
process. The micrographs were recorded some time after the experimental test. The 
specimens might have contracted due to relaxation in this time period, even though 
new measurements done a week after the testing did not indicate so. Another 
source of error is that the regions investigated in the SEM may contain more 
particles than the other regions of the test specimen. It is reasonable to believe that 
a local high density of particles is the reason for the onset of a neck. Thus, the 
investigated section might contain a local high density of particles. For the less 
deformed specimens, PVC-1 and PVC-2, where no neck had occurred yet, the 
choice of what section to observe was more or less arbitrary. This would lead to a 
lower estimate of particle and void fractions  for these two tests. Further, the 
splitting of the specimens does not create an entirely plane surface. The fracture 
imposed during splitting follows the “easiest way” through the specimen. The 
surface investigated in the SEM may therefore have contained a higher density of 
voids than what is representative for the whole specimen. Moreover, splitting of the 
specimens during the SEM preparation might have caused a stress release of 
residual stress around the voids and in next turn a change of the geometry of the 
void.  

A relatively low accelerating voltage, 5 keV, was used in the SEM to limit the 
penetration depth of the electron beam. Still, some penetration should be accounted 
for. This may lead to overestimation of the particle content. The quality of the SEM 
micrographs is another source of error. With a poor focus, fewer particles are 
visible at the micrograph. If too much time was used to focus at one point, the 
material was heated and cracked. Therefore, the SEM process had to be performed 
rather quickly. The applied zooming level might cause the smallest particles not to 
appear in the micrographs. Moreover, the considered micrographs had to be 
sufficiently large in order to depict a realistic area fraction of particles and voids. 
As an extreme, Figure 6.13 would produce an unrealistic high estimate of the 
particle content. This micrograph was therefore not included in the estimation of  
volume fraction . Two micrographs were considered for each specimen during 
the counting process. These might not have been recorded at an area that was 
representative, or they might not have been located exactly at the root of the notch.  

It was challenging to determine from the micrographs whether the observed objects 
were particles, voids or just material irregularities. Different automatic techniques 
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to trace the outlines of the particles and the voids were evaluated [9].  Comparison 
of the outlines found by the various techniques demonstrated that manual 
identification was the most accurate one. An alternative method for determination 
of the void volume fraction could have been to use X-ray tomography [10]. 

The investigated material is a composite of a PVC matrix containing 
comparably stiff mineral particles, mainly CaCO3.

Debonding of the mineral particles seems to initiate when a certain stress is 
reached. After this, void growth is a dominating mechanism on the 
microscale. 

The observed plastic dilation on the macroscale is in good agreement with 
the estimated void growth on the microscale. Void growth is therefore 
assumed to be the reason for the plastic dilation. 

Particle debonding and void growth are two damage mechanisms. Thus, 
the damage cannot be estimated from the volume change alone. The 
volume occupied by particles that have debonded should be taken into 
account when estimating the damage.   

The stress drop on the Cauchy stress – logarithmic strain curve of the 
mineral filled PVC may be related to debonding and void growth. 
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This chapter presents and discusses a set of biaxial tests performed on specimens 
from the 5 mm plates of PVC and HDPE. Addressing the pressure sensitivity of the 
yield stress, it is interesting to investigate the mechanical response at more 
complex stress states than uniaxial tension and compression. The main purpose of 
these tests is to serve as a basis for validation of a constitutive model that will be 
presented in Chapter 10.  

Tensile biaxial load cases occur in several practical applications of thin-walled 
polymer components. It is therefore important that the material model represents 
such stress states properly. Within this context, it is relevant to evaluate the 
capability of the Raghava yield function to describe large deformations in a biaxial 
loading mode. This chapter presents and discusses a set of laboratory tests for this 
purpose. 

Some investigations on the mechanical response of different polymers in biaxial 
deformation have been reported in the literature [1-8]. The studies on biaxial 
deformation found in the literature often concern manufacturing conditions 
involving high strain rates and high temperatures or the behaviour of polymer 
films. Paying attention to validation of material models, Chevalier and co-workers 
[9, 10] have shown that by using a multiaxial testing machine, a charge-coupled 
device (CCD) camera and digital image correlation (DIC) software, biaxial 
displacement and strain fields from such tests can be evaluated for rubber-like 
materials. By assuming incompressibility they derived the stress evolution in the 
test specimen during deformation and compared this with the stress calculated by 
different rubber material models.  
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Cross-shaped test specimens, see Figure 7.1, were cut out from the 5 mm thick 
extruded PVC and HDPE plates. At the centre of the samples, the thickness was 
gradually reduced to 1 mm. This was done to control the location of the initial 
strain localization.  

Figure 7.1 Sketch of the biaxial test specimen including some relevant measures 
(in mm). 

All experiments were performed in the Astree triaxial testing machine [9, 11] at 
LMT-Cachan in France. Two of the three axes of this machine were employed 
using displacement controlled loading. The software LabView was used for 
computer control of the test and data acquisition. Each test specimen was mounted 
in the testing machine, according to Figure 7.2, with the extrusion direction parallel 
to the horizontal x-axis and the transverse direction parallel to the vertical y-axis.
The deformation was surveyed by a CCD-camera taking pictures at frequencies 
according to Table 7.1. All specimens were painted with a speckled pattern before 
testing, facilitating post-test analysis with the DIC program 7D [12] to find the in-
plane Green strain fields xE , yE   and xyE at the surface of the biaxial test 

samples. 
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Table 7.1 Biaxial test programme. 

Material B xv
[mm/s] 

yv
[mm/s] 

Initial
strain rate 
[s-1]

Sequence CCD-camera 
frequency
[s-1]

PVC – 0.05  4.1  10-4 Uniaxial 0.50 
PVC ¼ 0.035 0.0086 2.3  10-4 Biaxial 0.90 
PVC ½ 0.035 0.017 2.3  10-4 Biaxial 0.90 
PVC 1 0.035 0.035 2.3  10-4 Equibiaxial 0.90 
HDPE – 0.05  4.1  10-4 Uniaxial 0.50 
HDPE ¼ 0.045 0.011 3.7  10-4 Biaxial 0.23 
HDPE ½ 0.045 0.022 3.7  10-4 Biaxial 0.23 
HDPE 1 0.045 0.045 3.7  10-4 Equibiaxial 0.23 

Figure 7.3 shows the force-displacement curves for PVC for the four different 
extension ratios. With the exception of the specimen loaded in the x-direction only, 
see Figure 7.3 a), results from both directions x and y are included. All PVC load 
curves show a rather linear behaviour up to maximum load, corresponding to the 
onset of yielding. After the point of maximum load a softening effect can be 
observed before cold-drawing and failure. All samples of PVC were deformed until 
failure.

Also Figure 7.4 represents force-displacement relationships for the biaxial PVC 
specimens. In this figure, only the response in the x-direction is included. This 
means that the figure expresses how the response in the x-direction is affected by 
the deformation in y-direction. It is seen that yielding starts at the same force level 
in the tests loaded in uniaxial and the equibiaxial tension. The two tests with 
extension ratios B ½ and B ¼ reach the same force at yielding, at a higher 
level than the other tests.
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a) b)

c) d)
Figure 7.3 Force-displacement curves for PVC.  a) Uniaxial test on biaxial 
sample. The biaxial tests b) B = ¼ , c) B = ½ and d) B =1. 

Figure 7.4 Force-displacement curves in x-direction for biaxial samples of PVC 
loaded at various extension ratios. 
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Figure 7.5 shows force-displacement curves for the HDPE specimens deformed at 
the different biaxial extension ratios. Also the HDPE samples experienced a load 
drop after reaching the maximum force. Holes started to grow in the centre of all 
HDPE specimens deformed in biaxial tension. The first appearances of the holes 
are marked with a circle in the figure. With further deformation the holes kept on 
growing larger. Due to the ductile behaviour of the material, these holes continued 
to grow, without causing cracking and global failure of the test specimens, until the 
test was aborted. 

The responses of the HDPE specimens in the x-direction are presented in Figure 
7.6.  The force level reached in the uniaxial test is about the same as in the 
equibiaxial test. The tests deformed at B = ½  and B = ¼ reach higher force values. 

a) b)

c) d)
Figure 7.5 Force-displacement curves for HDPE.  a) Uniaxial test on biaxial 
sample. The biaxial tests b) B = ¼ , c) B = ½ and d) B =1. 
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Figure 7.6 Force-displacement curves in x-direction for biaxial samples of HDPE 
loaded at various extension ratios.

Figure 7.7 shows photos of the PVC specimens at certain deformation stages. The 
displacement in the x-direction is addressed under each picture. The first row 
displays the specimen deformed uniaxially in the MTS testing machine. The three 
next rows show the specimens deformed in biaxial tension in the Astree testing 
machine. For all specimens sub-figure a) shows the specimens at peak force. In 
some of the images, stress whitening can be seen at centre of the specimen at this 
stage. The next column of pictures, see sub-figure b), is captured during the load 
drop. It is now seen that the stress whitening zone has evolved to an X-shape. At 
this stage, an X-shaped neck was also present in this region. The three first rows of 
sub-figure c) show the specimen after fracture. Also the equibiaxial specimen 
fractured in similar manner, however, it was not captured by the CCD-camera.  

Figure 7.8 displays the deformed HDPE specimens at different deformation stages. 
Also here, the specimen subjected to uniaxial deformation is displayed in the first 
row and the biaxial tests are shown in the three subsequent rows. Sub-figure a) 
shows the specimens at peak force. A hole appeared at the centre point of each of 
the biaxially loaded HDPE specimens after some deformation. Sub-figure b) 
displays the last images captured before the hole was observed. The holes kept on 
growing during the deformation until the test was aborted. Distinct X-shaped necks 
had evolved in the centre region of all specimens at the deformation stage in sub-
figure b). Sub-figure c) shows the specimens towards the end of the deformation.  

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Displacement in x-direction [mm]

Fo
rc

e 
in 

x -
di

re
ct

io
n 

[k
N

]

Uniaxial
B = 1/4
B = 1/2
B = 1



114 

U
ni

ax
ia

l

x-displ. = 3.5 mm x-displ. = 15.0 mm After test

B
= 

¼

x-displ. = 2.8 mm x-displ. = 5.1 mm After test 

B
=

½

x-displ. = 2.8 mm x-displ. = 4.6 mm After test 

B
= 

1 

x-displ. = 2.2 mm x-displ. = 3 mm x-displ. = 12.5 mm
 a) b) c) 

Figure 7.7 Biaxial test specimens of PVC. The images are taken a) at peak force b) 
during deformation c) after fracture, or the last image before fracture. 
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Figure 7.8 Biaxial test specimens of HDPE. The images are taken a) at peak force 
b) during deformation c) towards the end of test. 
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After the tests, all digital pictures were processed with the DIC software 7D. The 
Green strain fields xE and yE   from the PVC specimen deformed at B = ½ are 

shown in Figure 7.9. The Green shear strain field xyE  from the same specimen, but 

applying a different colour bar, is shown in Figure 7.10. Sub-figure a) in Figure 7.9 
and Figure 7.10 represents the strain state at maximum force. Strain localization 
can be seen in the xE strain field. In sub-figure b) the strain localization becomes 
clearer. This can be seen for all three strain components. The strain localization is 
even stronger in sub-figure c). The same X-shape as earlier observed for the neck 
and the stress whitening zone can be recognized. In the last sub-figure, c), some 
information is missing in the strain field. At this stage, the speckle pattern used for 
correlation was so distorted in the centre point that the DIC software could not 
follow the deformation here. There are some fluctuations in the strain level. This is 
due to measurement noise. Also, close to the edge there is some noise from the 
correlation process. 
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 a) b) c) 
Figure 7.9 Green strain fields xE  and yE  in the centre region of the PVC 

specimen deformed at B = ½ , at a) 2.8 mm b) 5.9 mm and c) 8.3 mm deformation 
in the x-direction . 



118 

E x
y

a) b) c) 
Figure 7.10 Green shear strain field xyE  in the centre region of the PVC specimen 

deformed at B = ½ , at a) 2.8 mm b) 5.9 mm and c) 8.3 mm deformation in the x-
direction . 

The Green strain fields xE and yE   from the HDPE specimen deformed at B = ½ 

are shown in Figure 7.11. The Green shear strain field xyE  is presented in Figure 

7.12. It is seen that in sub-figure a) of Figure 7.11 and Figure 7.12, representing the 
specimen at peak force, there is some strain localization. The strain localization 
becomes stronger as the specimen is deformed.  The earlier observed characteristic 
X-shape can be recognized as the zone with the largest strains. This is seen in sub-
figure b) and c). In the last sub-figures some information about the strain is 
missing. This is a result of distortion and cracking of the speckle pattern due to 
large deformations in this region.  It can be assumed that the missing values exceed 
the maximum value indicated by the corresponding colour bars. 
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 a) b) c) 
Figure 7.11 Green strain fields xE  and yE  in the centre region of the HDPE 

specimen deformed at B = ½, at a) 8.7 mm b) 10.8 mm and c) 13.6 mm 
deformation in the x -direction . 
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a) b) c) 
Figure 7.12 Green shear strain field xyE  in the centre region of the HDPE 

specimen deformed at B = ½, at a) 8.7 mm b) 10.8 mm and c) 13.6 mm 
deformation in the x -direction . 

The strain fields are inhomogeneous for all tests. Therefore only the centre point is 
chosen to show how the extension ratio B  affects the evolution of the strains with 
increasing deformation. The strain components xE  and yE  at this location are 

plotted in Figure 7.13 and Figure 7.14 for PVC.  Figure 7.15 and Figure 7.16 show 
the same for HDPE. As seen from Figure 7.10 and Figure 7.12, the shear strains are 
small at this location and are therefore not included in the figures. The large 
deformations at the centre point caused distortion of the speckle pattern, so it was 
not possible to follow the strains towards the end of the experiments. Therefore, the 
plots of the curves are aborted when the DIC software was unable to determine the 
strain.
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Figure 7.13 Green strain xE  at the centre point of all PVC tests plotted against 
displacement in the x-direction. 

Figure 7.14 Green strain yE  at the centre point of all PVC tests plotted against 

displacement in the x-direction. 
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Figure 7.15 Green strain xE  at the centre point of all HDPE tests plotted against 
deformation in the x-direction. 

Figure 7.16 Green strain yE  at the centre point of all HDPE tests plotted against 

displacement in the x-direction. 
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From Figure 7.14 and Figure 7.16 it is seen that uniaxial tension of the cross-
formed specimen produces negative yE , indicating compression, for both 

materials. The Poisson effect causes the upper and lower free parts to move closer 
in the y-direction when the left and right parts are pulled away from each other in 
the x-direction. Therefore a state of compression is created. Towards the end of the 
deformation of these specimens, the centre region started to buckle, as a 
consequence of the contraction. With respect to the strains in the biaxial specimens, 
it can be seen that the higher the biaxial extension ratio B  is, the larger is the strain 
component yE .

The biaxial tension specimens were machined from 5 mm thick extruded plates of 
mineral filled PVC and HDPE. Except from some thinning of the centre region, no 
reduction of the thickness was done during the machining process. This means that 
eventual skin layers from the extruding process are left in the specimens, and will 
affect the test results.  

For the specimens deformed at B = ½ and B = ¼, there is a difference between the 
two materials. For PVC, the tests at B = ½ and B = ¼ reach about the same force 
level. For HDPE, the test at B = ¼ reaches a somewhat higher level. From uniaxial 
tension and compression tests in Chapter 3 and Chapter 4 it was observed that the 
yield stress of the PVC is sensitive to pressure while that of the HDPE is not. The 
peak force in this study is also linked to the yield stress. The observations 
regarding the maximum force levels may therefore be related to differences in 
pressure sensitivity in PVC and HDPE.  

The strain field plots in Figure 7.9 to Figure 7.12 indicate that strain localisation 
occurs at an earlier deformation stage in PVC than in HDPE. However in both 
materials strain localization sets in when maximum force is obtained. Further 
deformation lead to X-shaped necks in the centre region of the specimens. In the 
HDPE specimens, extensive drawing of the necked region made the centre region 
very thin. When the cross section thickness decreases, less material is left to restrict 
the deformation, and a softer response is observed. This geometrical effect might 
explain why the load drop seems to increase slightly with the biaxial extension 
ratio B . The thinning in the X-shaped neck in the centre of the test specimens was 
more pronounced for the HDPE specimens than for the PVC specimens. The 
drawing of the centre region in the three biaxial samples of HDPE resulted in 
creation of holes. Due to the ductile behaviour of the material, these holes 



124 

continued to grow, without causing cracking and global failure of the test 
specimens, until the tests were aborted. All PVC specimens were deformed until 
fracture. 

During uniaxial tension of the cross-shaped test specimens the left and right parts 
are pulled away from each other in the x-axis direction causing the upper and lower 
free parts to move closer in the y direction. This Poisson effect is clearly visible in 
the centre region of the specimen. By examination of the strain curves for the 
uniaxial test in Figure 7.13 and Figure 7.14 for PVC, and in Figure 7.15 and Figure 
7.16 for HDPE, it can be seen that yE  becomes negative.  This indicates that some 

compression is present. In PVC the ratio /x yE E  in the centre of the specimen at 10 

mm deformation can roughly be estimated to –6.3. In HDPE the ratio /x yE E  at the 

same deformation is around –3.8. After applying some additional deformation, 
buckling could also be observed at the centre of the specimen. Due to the 
comprehensive thinning of this section, the load-bearing capacity might be reduced 
so much that the global response of the specimen is not affected by the transverse 
compression in the same manner as in the case of PVC. 

With respect to the strains, it can be seen that the higher the biaxial extension ratio 
B ,  the larger  the strain component yE . However, due to the geometry of the 

cross-shaped test specimen, the ratio /x yE E  in the specimens is not directly linked 

to the extension ratio B . Moreover, it is not obtained one single deformation state 
in the specimen as seen from the inhomogeneous strain fields in Figure 7.9 to 
Figure 7.12. This means that these laboratory tests are not suitable for material tests 
with the purpose to test the material response at one specific stress state. Also, with 
the employed test setup employing only one CCD camera only the in-plane strains 
could be determined. This means that the volume strains are unknown. Therefore, 
such tests alone are not very well suited for investigation of mechanisms of biaxial 
deformation. However, since these laboratory tests involve various strain states as 
biaxial tension, compression and shear, they are considered as suitable for 
constitutive model validation. Such validation is performed in Chapter 12. 
Different other tests are present to test the biaxial behaviour, for instance 
formability tests. An advantage of the test setup presented in this chapter is that it 
allows for testing under controlled deformation without any unwanted effects from 
contact and friction. 
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From the biaxial tension tests, it can be observed that there is some 
difference in the pressure sensitivity of the yield stress of the tested PVC 
and HDPE.

All the PVC specimens fractured during testing. The HDPE specimens 
showed a ductile behaviour. A hole appeared in the centre of all HDPE 
specimens tested in biaxial tension. The hole grew larger throughout the 
test without causing global failure of the specimens. 

The specimen geometry applied in this study produces inhomogeneous 
strain fields and are therefore not suitable as material tests where the 
purpose is to investigate the material response at one specific stress state. 

The tests results presented in this chapter are regarded as a good basis for 
validation of a constitutive model for polymers. 
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Tensile tests of axisymmetric bars with notch were carried out on specimens of 
mineral filled PVC and HDPE. The effect of stress triaxiality on the yield stress 
and the volume change is studied in particular. 

The geometry of axisymmetric tensile bars with notch is known to induce 
transverse components to the stress tensor and thereby create a triaxial stress state 
in the minimum cross section of the specimen. The relationship between the 
curvature and the stress triaxiality in necked metal specimens with circular cross 
section has been expressed by Bridgman  [1]. Bridgman’s formulas involve the 
relationship between the smallest cross section radius a  and the neck radius R .
They enable estimation of the average axial yield stress by compensating for 
transverse stresses produced by the geometry of the neck. In his work, Bridgman 
made some assumptions with respect to geometry, namely that the contour of the 
neck could be approximated by the arc of a circle with radius R  and that the 
minimum cross section of the neck remained circular during the test [2]. Further, 
he assumed the strains to be constant over the cross section of the neck [2].  And, at 
last, he assumed 2J  flow theory.  

The theory derived by Bridgman has been criticized in the literature [3] especially 
for its lack of ability to handle large strains. Nevertheless, it is still the most often 
used theory for treating the effect of stress triaxiality in a neck. Even though the 
work was derived for smooth axisymmetric specimens [3], the formulas of 
Bridgman have later widely been employed to describe the stress state in 
axisymmetric tensile metal bars with a pre-machined notch [4-6].   
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During experimental testing of metallic samples it is common to work under the 
assumption of isochoric plastic deformations. In the case of metallic axisymmetric 
specimens it is therefore adequate to measure the contraction of the minimum cross 
section of the notch to determine the axial strain. In polymers with plastic dilation 
another test setup is needed because measurements of both the volume change and 
the axial strain are required. A new test setup was applied in this study to measure 
the deformation of the notch as the specimen is extended. 

Experiments on notched circular tensile bars made of polymers are found in the 
literature [7-10]. Castagnet and Deburck [7] measure the actual cross section area 
by employing a DCC camera followed by image analyses. By plotting the radial 
strain against axial strain of the gauge length for specimens with different radii, 
they showed that the change of the diameter (radial strain) was lower for higher 
triaxialities. Measurement of the reduction of the minimum diameter of polymer 
specimens has also been performed by applying a strain gage at the root of the 
notch [8-10]. To express how the volume change was affected by stress triaxiality, 
also Boisot et al. [8] plotted radial strain against axial strain. Moreover, Boisot et 
al. [8] used a scanning electron microscope (SEM) to observe test specimens from 
interrupted tests and to determine the porosity of the deformed material in the 
notch.  They used the data to calibrate parameters in a modified Gurson-Tvergaard-
Needleman material model. They compared numerical results from finite element 
simulations with the predictions from the Bridgman theory and found that the 
Bridgman theory over-predicted the yield stress. They addressed this discrepancy 
to viscous effects and volume change effects [8]. Still, they consider the approach 
to be relevant for describing distribution of stress. As a support to this 
consideration, they showed by the SEM investigation and also with finite element 
analyses that the void growth was greatest in the specimen centre.  

Even though the assumptions for the Bridgman framework are questionable for 
polymers it is considered as reasonable to expect that the stress triaxiality in the 
polymeric test specimens increases with decreasing notch radius. This is in 
accordance with the Bridgman theory. 
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The stress triaxiality is often represented as the dimensionless stress triaxiality ratio  
* . It is defined as [11] 

1

*

2

3
3

I

J
 (8.1) 

The definition involves the first principal stress invariant, 1 tr( )I ,  and the 

second deviatoric stress invariant, 1
2 2 ( : )dev devJ . The deviatoric stress tensor is 

1
3 tr( )dev I .

According to the above definition a uniaxial stress state in tension gives * 1 / 3
while a pure hydrostatic stress state gives an infinitely high, or low, stress 
triaxiality ratio.  

The stress state in the cross section of the notched samples is inhomogeneous. The 
average axial stress z can be defined as the applied force F  over the cross section 
A :

z
F
A

 (8.2) 

For an axisymmetric specimen with notch radius R  and minimum cross section 
radius a ,  Bridgman expressed the axial stress z  normalized by the yield stress 
Y  at the distance r  from the centre axis as follows [3]  

2 2

1 ln 1
2

z a r
Y aR

 (8.3) 

Integration over the minimum cross section area gives the total applied force. By 
using that [0, ]r a , where a  is the current minimum radius, we get 

2 21 ln 1
2

F R aa
Y a R

 (8.4) 

The current area of the minimum cross section is 2A a . Equation (8.4) can 
therefore be expressed in terms of the averaged normalized axial stress z
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The different test specimens will be denoted by the material and the initial notch 
radius 0R , e.g. PVC-08 and HDPE-20. All specimens were deformed by the same 
cross-head speed of v = 0.04 mm/s. The deformation of the notch was surveyed by 
a CCD-camera. 

Each test was carried out with three replicates. The reproducibility of the force-
displacement response turned out to be good. For each geometry and material, the 
test having the highest image quality from the CCD-camera was chosen to 
represent all replicates. All specimens made of PVC were deformed until fracture. 
Regarding the specimens of HDPE, only the samples with the smallest initial notch 
radii 0R , i.e. HDPE-2 and HDPE-08, fractured during testing. 

Prior to the tests all specimens were marked with small spots on each side of the 
root of the notch, see Figure 8.2 a). The distance between the marks was initially 

0L ~ 2 mm. During the tests the deformation of the specimens was monitored by a 
CCD-camera. The marks were captured by the camera, facilitating an optical 
extensometer so that the longitudinal deformation could be followed, see Figure 
8.2 b). The specimens were placed in front of a background in a contrasting colour 
and the focus of the camera was at the outer edge of the notch so that the contour 
clearly was depicted in the images. This was important in order to obtain good 
measurements of the local notch radius R  and the specimen radius a  by image 
processing after the test.
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MATLAB code also traced the distance L  between the two extensometer marks 
closest to the root of the notch. Subsequently the volume V  between the two 
extensometer marks was found from revolving a curve describing the left contour 
around the specimen axis and thereafter calculating the volume of the solid of 
revolution by disk integration. 

From Figure 8.2  was seen that the cross section of the specimen varies over the 
distance L  . Also the strains are not homogenous distributed over L .The average 
axial strain z  over the notch was computed as 

0

lnz
L
L

 (8.6) 

The average radial strain r  was calculated from the change of the radius a

0

lnr
a
a

 (8.7) 

The averaged axial stress was found by dividing the applied force F by the current 
minimum cross section area A , recall Equation (8.2). 

The average volume strain v  between the two marks was be expressed as  

0

lnv
V
V

 (8.8) 

where 0V  is the volume between the two marks for the undeformed sample. 

Force-displacement plots for all specimen geometries are shown in Figure 8.3 and 
Figure 8.4 for PVC and HDPE. Black open circles are used to indicate the peak of 
the force-displacement curve. The state of maximum force will be addressed 
similarly in the following figures in this section.  
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Figure 8.3 Force-displacement curves for representative PVC specimens. The 
circles indicate the maximum force. 

Figure 8.4 Force-displacement curves for representative HDPE specimens. The 
circles indicate the maximum force.
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Paying attention to the pre-notched samples, photos of the PVC specimens at 
certain deformations are shown in Figure 8.5. The upper row shows specimen 
PVC-20, the second row PVC-5, the third row PVC-2 and the last and fourth row 
PVC-08. Each of the four columns represents a sub-figure and a deformation state. 
The undeformed specimens are depicted in sub-figure a). Sub-figure b) shows the 
specimens at the instant where maximum force is reached, i.e. at the state marked 
with an open circle in the previous figures. At this state stress whitening gradually 
sets in. In sub-figure c) the specimens are at a local stress minimum. Now, the 
stress whitening is more distinct. At this point, it is also possible to see that small 
necks have been formed in the pre-machined notch of the specimens PVC-20 and 
PVC-5. The last sub-figure d) shows the last image before fracture, i.e. the 
specimens at their most deformed state. It is seen that PVC-20 experienced cold-
drawing towards the end of the deformation. 

The notched HDPE specimens are depicted during testing in Figure 8.6.  Also here, 
the four rows from the top show the specimens in the order: HDPE-20, HDPE-5, 
HDPE-2 and HDPE-08.  The four columns are divided in four different sub-figures 
and represent four different deformation states. Sub-figure a) shows un-deformed 
specimens and sub-figure b) displays the specimens when the maximum force is 
reached. After some deformation a local neck forms inside the pre-machined notch. 
It appears as a change in the curvature of the notch resulting in a reduction of the 
notch radius R . It is particular distinct for HDPE-20 and HDPE-5. Further 
deformation leads to cold drawing of the material observed as an increase of R .
Sub-figure c) depicts the specimens when the notch radius starts to increase. The 
last sub-figure, d), shows the specimens at the last sampled points in the graphs. 
For HDPE-2 and HDPE-08, sub-figure d) is the last captured photo of the specimen 
before fracture. Cold-drawing can be seen in sub-figure d) for all HDPE specimens. 
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Figure 8.5 Photos of PVC specimens at different stages of deformation. The first 
row from the top shows PVC-20, the second row PVC-5, the third row PVC-2 and 
the bottom row PVC-08. The photos were captured a) before deformation, b) at 
maximum force, c) at local minimum of average axial stress – average axial strain 
curve and d) just before fracture. 
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Figure 8.6 Photos of HDPE specimens at different stages of deformation. The first 
row show HDPE-20, the second row HDPE-5, the third row HDPE-2 and the 
fourth row HDPE-08. The photos were captured a) before deformation, b) at 
maximum force, c) when the notch radius starts to increase and d) just before 
fracture or as the last photo that was captured. 
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The averaged axial stress /z F A  is plotted against averaged axial strain 

0ln( / )z L L  in Figure 8.7 for the PVC specimens and in Figure 8.8 for the 
HDPE specimens. Also results from the smooth specimens are included to serve as 
a reference. Again, black open circles are used to mark the state where maximum 
force is reached, see Figure 8.3 and Figure 8.4.  

All stress-strain curves for the PVC specimens, plotted in Figure 8.7, have a 
familiar response including a local stress maximum before softening followed by 
strain re-hardening. The position of the black open circles demonstrates that the 
peak stress coincides with the peak of the force-displacement curve. Further, it is 
seen that the notched specimens obtain a higher stress maximum than the smooth 
specimen.  

As seen in Figure 8.8, the two HDPE specimens with the smallest notch radius, i.e. 
HDPE-2 and HDPE-08, have a softening behaviour after a peak stress is reached. 
These specimens also fractured during testing. The other HDPE specimens strain-
harden monotonically throughout the deformation and the tests were aborted before 
fracture. The black open circle coincides with peak stress for the HDPE-08 
specimen. 

Figure 8.7 Averaged axial stress plotted against averaged axial strain for 
representative PVC specimens. The circles indicate the state at maximum force.  
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Figure 8.8 Averaged axial stress plotted against averaged axial strain for 
representative HDPE specimens. The circles indicate the state at maximum force. 

The average axial strain is plotted against time in Figure 8.9 and Figure 8.10 for the 
first part of the deformation. The state of maximum force is again marked with 
open circles. Results from the smooth specimens are plotted for reference also in 
these plots. In the figures it is seen that after some deformation, there is an increase 
in the slope of the curves, representing the rate of the axial strain averaged over the 
notch. It can be noted that this average strain rate, from a time of 20 s onwards, is 
higher for the notched specimens than for the smooth one. This difference is more 
evident for PVC than for HDPE. Further, it is seen that between the notched 
specimens, there is no large variation in strain rate. The rates of average strain, i.e. 
the slopes of the curves, at maximum force are listed in Table 8.1 and Table 8.2. 

Table 8.1 Rate of average axial strain at maximum force in the PVC specimens. 

 PVC smooth PVC-20 PVC-5 PVC-2 PVC-08 

Z  [ 1s ] 0.0015 0.012 0.018 0.018 0.021 
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Table 8.2 Rate of average axial strain at maximum force in the HDPE specimens. 

 HDPE smooth HDPE-20 HDPE-5 HDPE-2 HDPE-08 

Z  [ 1s ] 0.0024 0.0059 0.0070 0.012 0.013 

The test and post-processing method used in this study was found suitable for the 
notched bars, where the onset of necking is given by the specimen geometry. 
However, the method produced poor results for the smooth specimens since onset 
of necking could not be controlled to occur exactly between two optical 
extensometer markings. The smooth specimens will not be included in the results 
hereafter. 

Figure 8.9 Average axial strain plotted against time for representative PVC 
specimens. The circles indicate the state at maximum force. 
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Figure 8.10 Average axial strain plotted against time for representative HDPE 
specimens. The circles indicate the state at maximum force. 

The evolution of the notch radii R  during the experiments are plotted for all 
specimens in Figure 8.11 and Figure 8.12, addressing respectively PVC and HDPE. 
In similar way as in the previous figures, the black open circles indicate the notch 
radius at maximum force. Thereafter the notch radius R  remains nearly constant. 
During the test, the deformation localizes and a neck forms inside the pre-
machined notch. This can be seen as a decrease of R . It is more distinct for the 
specimens with a large notch. For some of the tests this neck stabilizes and cold 
drawing sets in. These are the tests where an increase in R can be observed 
towards the end of the test; PVC-20 and all HDPE tests. This was in fact already 
seen in Figure 8.5 d) and in Figure 8.6 d). When the radius of the notch increases, 
the noise in the data also increases due to the fitting of the circle to find R  in the 
image post processing. Therefore the parts of the curves in Figure 8.11 and Figure 
8.12 with increasing R  are smoothed by a MATLAB function.  

Assuming that the notch radius R  affects the stress state in the specimen, it can be 
interpreted from Figure 8.11 and Figure 8.12 that the stress state changes quite 
radically during deformation. Following Bridgman, a decrease of the notch radius 
R  is expected to lead to an increase of the hydrostatic stress in the notch.  
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Figure 8.11 The notch radius R against average axial strain for representative 
PVC specimens. The circles indicate the state at maximum force. 

Figure 8.12 The notch radius  against average axial strain for representative 
HDPE specimens. The circles indicate the state at maximum force. 
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The net volume strains 0ln( / )v V V , as defined in Equation  (8.8), are plotted in 
Figure 8.13 and Figure 8.14 for PVC and HDPE respectively. Also here, the states 
of maximum force are marked by black open circles. The general observation is 
that the volume change is larger for the specimens with sharper initial notch radius 

0R . Assuming that a small notch radius produces a high triaxial stress state, the 
volume change can be observed to increase quite radically with the stress 
triaxiality. 

Plastic dilation in the PVC was already reported in Chapter 2.8.  Hardly any 
volume change has been observed in the HDPE during plastic deformation in 
uniaxial tension at moderate strain rates, see Chapter 2.8. However, Figure 8.14 
reveals that the HDPE experiences a significant increase of volume when subjected 
to a triaxial stress state. Indeed, the net volume strain is only slightly lower than for 
PVC at equal levels of average axial strain 0ln( / )z L L .

Figure 8.13 Volume strain in the PVC specimens, calculated from the change of 
the volume in the notch between the two extensometer markings, plotted against 
average axial strain. The circles indicate the state at maximum force.
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Figure 8.14 Volume strain in the HDPE specimens, calculated from the change of 
the volume in the notch between the two extensometer markings, plotted against 
average axial strain. The circles indicate the state at maximum force. 

The plots of average radial strain 0ln( / )r a a  in Figure 8.15 and Figure 8.16 
once again demonstrate the increase in volume strain with decrease of R . The 
results show that a sharp initial notch radius 0R causes less contraction of the 
specimen than a large initial notch radius does. Reduced contraction can be 
interpreted as higher dilation.  
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Figure 8.15 Average radial strain plotted against average axial strain for all PVC 
specimens. The circles indicate the state at maximum force. 

 

Figure 8.16 Average radial strain plotted against average axial strain for all 
HDPE specimens. The circles indicate the state at maximum force. 
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In order to show how the specimen geometry and thereby the stress triaxiality 
affects the yield stress, the averaged axial stress at maximum force is plotted 
against the notch radius R  in Figure 8.17. The stresses are normalized by the stress  
Y , which is the stress in the smooth test specimens at maximum force.  

According to the Bridgman theory, the axial yield stress increases with increasing 
triaxiality. Figure 8.17 includes a plot of the Bridgman prediction expressed by 
Equation (8.5). The fixed value of the Bridgman curve represents an estimate of the 
relationship between the normalized averaged yield stress and the notch radius for 
test specimens of a perfect plastic material at small strains without any pressure 
sensitivity, dilational or viscous effects. It shows that in such a material the average 
axial yield stress is higher when the notch radius is smaller. This means that higher 
stress triaxialities increase the average axial peak stress. 

For the PVC specimens there is a clear mismatch with the Bridgman prediction. 
Higher stress triaxialities do not increase the axial net peak stress of the PVC. This 
was also observed in the stress-strain curves in Figure 8.7. For HDPE the general 
trend is similar to that of the Bridgman prediction; smaller R  leads to higher 
normalized average axial stress max( / )F A  at maximum force. 

Figure 8.17 Variation in normalized average stress at peak force with the notch 
radius R .
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This chapter is based on the assumption that the geometrical conditions from the 
notch produce a triaxial stress field in the minimum cross section of the 
axisymmetric test specimen. However, we do not know the value of the stress 
triaxiality ratio.  To investigate this, finite element simulations were used to 
provide an estimate of the stress triaxiality in the elastic regime, before onset of 
yielding. Axisymmetric meshes representing the geometries of the different tensile 
specimens were used in the analyses. The meshes will be further introduced in 
Chapter 8, addressing finite element analyses of the notched tensile specimens. The 
simulations were carried out employing elastic material models with Young’s 
modulus and Poisson’s ratios for the two materials; E = 3000 MPa and = 0.3 for 
PVC, and  E = 800 MPa and = 0.4 for HDPE [13]. The results were taken out 
from 20 elements that define the minimum cross sections of the axisymmetric 
mesh. The axial stress in the element in the minimum cross section located closest 
to the centre axis, at r  0 mm, is used as a reference for the stress state. The 
results from each simulation are normalized by the axial stress of this centre 
element. Figure 8.18 to Figure 8.20 represent the axial, radial and hoop stress 
normalized with respect to the axial stress at the centre axis. All the figures are 
plotted as radial distributions i.e. from r = 0 to 0r a = 3 mm. 

The radial distribution of the normalized axial stress in the minimum cross section 
is plotted in Figure 8.18. Because the stress at the centre axis of the specimen is 
selected as reference stress and therefore equal to 1 all normalized stresses are 
equal to 1 at r = 0 mm. For larger  r , towards the root of the notch, the axial stress 
increases. The increase depends on the specimen geometry. In particular, is seen 
that the specimens with the smallest notch radius, 0R = 0.8 mm, has a less 
homogenous stress distribution than the other specimens. The normalized axial 
stress is almost constant in the sample with the highest notch radius of 0R = 20 
mm.  
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Figure 8.18 Variation of axial stress in the minimum cross section of the test 
specimens from the FE simulations of elastic deformation. The stresses are 
normalized by the axial stress in the element closest to the centre axis. Solid lines 
are applied for PVC and dashed lines for HDPE. 

Figure 8.19 shows the radial distribution of normalized radial stress in the 
minimum cross section for elastic deformation. Again, the curves are determined 
from the elastic numerical simulations of PVC and HDPE specimens.  Also here 
the stress is normalized by the axial stress in the element closest to the centre axis. 
It is seen that the smaller the notch radius is the higher is the stress component in 
the radial direction. For specimens with 0R = 0.8 mm the maximum value is about 
40-50% of the reference axial stress while it in specimens with 0R = 20 mm is less 
than 10% of the reference axial stress. 
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Figure 8.19 Variation of radial stress in the minimum cross section of the test 
specimens from the FE simulations of elastic deformation. The stresses are 
normalized by the axial stress in the element closest to the centre axis. Solid lines 
are applied for PVC and dashed lines for HDPE. 

The radial distribution of the hoop stress is plotted in Figure 8.20. As in the two 
previous figures, it is normalized by the axial stress in the centre element for each 
of the specimens. Also for this case, the stress is higher in the specimens with 
lower 0R . Like the other stress components, the homogeneity of the stress field 
reduces with decreasing 0R . For the specimens with 0R = 0.8 mm, the normalized 
hoop stress varies from about 0.4 to 1. 
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Figure 8.20 Variation of hoop stress in the minimum cross section of the test 
specimens from the FE simulations of elastic deformation. The stresses are 
normalized by the axial stress in the element closest to the centre axis. Solid lines 
are applied for PVC and dashed lines for HDPE. 

By combining the three stress components, the stress triaxiality ratio *  defined in 
Equation (8.1) are found for each of the numerical models. Their radial 
distributions are plotted in Figure 8.21. It is seen that the smaller the notch radius 

0R  is, the higher is the stress triaxiality and so is the variation in the radial 
distribution. 
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Figure 8.21 Variation of the stress triaxiality ratio, * , stress in the minimum cross 
section of the test specimens from the  FE simulations of elastic deformation..  
Solid lines are applied for PVC and dashed lines for HDPE. 

In order to get a better impression of the stress state in the specimens just before 
yielding, the stress states from the numerical simulations of the elastic deformation 
of both PVC and HDPE are plotted in a stress invariant space in Figure 8.22, 
applying the hydrostatic stress invariant 1 / 3I  and the deviatoric stress invariant 

23J  as axes. This is done to show how the two invariants are present in the 

different test specimens before onset of plasticity. Figure 8.22 applies sectors to 
show the variation of stress states that occur in each of the specimen geometries. 
Moreover, the stress states of the PVC specimens lie within the solid lines and 
stress states for the HDPE specimens lie within the dashed lines. The specimens 
with the largest notch ( 0R = 20 mm), see sub-figure a), have a quite narrow sector 

in the 1 2/ 3 3I J  stress space. As seen in Figure 8.18 - Figure 8.20, there is little 

variation in the radial distribution of stress in these specimens. The sector in sub-
figure b) representing the stress state in the specimens with 0R = 5 mm is 
somewhat wider. The stress states in the specimens with 0R = 2 mm and 0R = 0.8 
mm are displayed by sectors in sub-figures c) and d). Again, it is seen that the 
variation in stress state in the specimens with low 0R  is larger than for the other 
specimens. 
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All PVC specimens fractured during testing. Fracture surfaces of representative 
samples of each of the specimen geometries are displayed in Figure 8.23 to Figure 
8.26. Only the two HDPE specimens with lowest 0R ruptured in the tests. Their 
fracture surfaces are presented in Figure 8.27 and Figure 8.28. All fracture surfaces 
indicate that the failure is dominated by void growth: Small holes can be seen at 
the PVC fracture surface and traces after large voids are present at the HDPE 
fracture surfaces. For both materials, and especially for the HDPE, a fibrillar 
structure oriented radially out from the voids is observed. 

Visual observation of the fracture surfaces of the PVC specimens reveals a rough 
topography. An impression from comparing the different PVC specimens is that a 
higher 0R  caused a rougher fracture surface. Moreover, the fracture surfaces of 
PVC in general appear more uneven than the fracture surfaces of HDPE. 

Comparison of the fracture surfaces of HDPE-2 and HDPE-08, see Figure 8.27 and 
Figure 8.28 respectively, reveals that the void size is largest in the first case. The 
fracture surfaces of the other two specimens of the same material and geometry 
indicate the same. Assuming that the voids initially were small and of equal size in 
the two specimens, and taking into account that the HDPE-2 specimen fractured at 
a larger strain than HDPE-08, this observation indicates that the voids coalesce 
during deformation. HDPE-2 is deformed more than HDPE-08, therefore more of 
the voids have coalesced. The voids located close to, but not at, the rim of the 
fracture surface of HDPE-08 also appear somewhat larger than those in the centre 
and those at the rim. The comparatively large voids are thus in the region of highest 
triaxiality in the elastic domain, as reported in Figure 8.27. Comparing the strains 
at fracture, the fracture strains are much lower for PVC than for HDPE.  

It was also noted that some kind of a thin skin layer was formed around the fracture 
surface of the HDPE specimens. Whether this was a structural or damage effect, or 
if it originated from changes in the surface material during machining of the 
specimens is not known. 
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a) b)
Figure 8.23 Fracture surface of a PVC-20 specimen. a) Upper part. b) Lower part. 

a) b)
Figure 8.24 Fracture surface of a PVC-5 specimen. a) Upper part. b) Lower part. 
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a) b)
Figure 8.25 Fracture surface of a PVC-2 specimen. a) Upper part. b) Lower part.

a) b)
Figure 8.26 Fracture surface of a PVC-08 specimen. a) Upper part. b) Lower part. 
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a) b)
Figure 8.27 Fracture surface of a HDPE-2 specimen. a) Upper part. b) Lower 
part. 

a) b)
Figure 8.28 Fracture surface of a HDPE-08 specimen. a) Upper part. b) Lower 
part. 
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Axisymmetric tensile bars with and without notch were machined from the 
extruded plates of mineral filled PVC and HDPE. Different notch radii were 
employed to create different stress triaxialities. In this work it is assumed that 
smaller notch radii produce higher stress triaxialities, in accordance with Bridgman 
[1]. The assumption is supported by results from the numerical simulations of 
elastic deformation of notched axisymmetric tensile bars presented in Figure 8.21.  

Each of the test specimens was marked with small spots prior to the test and the 
specimens were deformed in front of a contrast background as seen in Figure 8.2. 
The deformation was surveyed by a CCD camera so that the curvature of the 
specimen and the distance between the marks could be traced after testing by a 
image post-processing code made in MATLAB [12]. This method allowed for 
measurement of the minimum radius a , notch radius R , optical extensometer 
length L , and  volume V  for the entire deformation process. This test data created 
a comprehensive basis for studying the effect of the changes in stress triaxiality on 
the mechanical response of the two materials. 

All force-displacement curves in Figure 8.3 and Figure 8.4 reach a peak in terms of 
a maximum force followed by a drop in the force level. The averaged axial stress-
strain curves plotted in Figure 8.7 and Figure 8.8 account for reduction of the 
minimum cross section due to necking by defining the net stress as the applied 
force divided by the current minimum cross section area in accordance with 
Equation (8.2). Yet, a local maximum followed by a drop can also be observed in 
the stress-strain curves for all PVC specimens and for HDPE-2 and HDPE-08. 
These peaks may be related to internal damage: If void growth sets in at this stage, 
the effective load bearing cross section is reduced. The area reduction from an 
increasing void volume fraction cannot be measured by the test setup employed 
here. By interrupting the deformation and splitting the specimens, as done for 
uniaxial tensile specimens in Chapter 6 and by Boisot et al. [8] for axisymmetric 
specimens with notch, estimates of the void volume fraction could have been found 
by using SEM. X-ray tomography is an alternative method that also could have 
been applied [14, 15].

In Chapter 6 it was shown that void growth on the microscale can be linked to 
volume strain on the macroscale. The change of volume in the notch can be 
presented in terms of volume strain, as in Figure 8.13 and Figure 8.14, or in terms 
of radial strain [7, 8], see Figure 8.15 and Figure 8.16. One major difference 
between the two measures is that the volume strain is calculated for a larger zone, 
while the radial strain is measured in the minimum cross section where the strain is 
localized. However, the same trend is seen in the two ways of presenting volume 
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change: The dilation increases with decreasing 0R . Comparing with the volume 
strains in uniaxial tension in Chapter 2.8, the volume changes are quite dramatic 
when the materials are subjected to a triaxial stress field. Especially for the HDPE, 
behaving almost isochoric in uniaxial tension, the difference is significant. It is 
reasonable to assume that the volume change, both in PVC and HDPE, is linked to 
void growth. Voids in the PVC specimens can be observed in terms of stress 
whitening in Figure 8.5. No stress whitening is observed for the HDPE. Still, the 
volume change evident from Figure 8.14 suggests that growth of voids occurs. The 
presence of voids, in both materials, is further confirmed by examining the fracture 
surfaces as demonstrated in Figure 8.23 to Figure 8.27. 

The average stress-strain responses of the PVC specimens are plotted in Figure 8.7. 
It is seen that all the notched specimens have a higher yield stress than the smooth 
specimen. Further, it is seen that there is little variation between the responses of 
the notched PVC specimens. Figure 8.9 and Table 8.1 reveal that there is some 
difference in the strain rate in the smooth and the notched specimens, while the 
difference in the strain rate between the notched specimens is less. The average 
stress-strain curves from the HDPE specimens are plotted in Figure 8.8. The figure 
shows that also for HDPE there is a difference in the responses between the smooth 
and the notched specimens. Moreover, the stress-strain curves differ for HDPE 
samples with different notch radii. Between the HDPE specimens, there are no 
considerable differences in the strain rates. According to the slopes of the curves in 
Figure 8.10 and the data in Table 8.2 the rates of average strain of HDPE is less 
influenced by 0R  than they are for PVC. 

For a material without pressure sensitivity, the axial net stress which the material 
can sustain before yielding is higher when a stress component of hydrostatic 
tension is present. This means that the presence of a notch producing a triaxial 
stress field increases the observed averaged axial yield stress in testing of such 
materials. This is in accordance with the theory of Bridgman and the relationship is 
plotted by a solid line in Figure 8.17. In a pressure sensitive material, like many 
polymers, also the hydrostatic stress component contributes to reach the onset of 
yielding. This is seen in Figure 8.17 where the axial net stress is plotted against the 
notch radius, both taken at maximum force, for the experimental test results. Since 
PVC does not obey the Bridgman prediction, it is suggested that the yield stress of 
PVC is pressure sensitive. HDPE followed the Bridgman prediction better, and is 
therefore likely to be less pressure sensitive. This is in accordance to what is 
observed in the tension and compression of PVC and HDPE, see Chapter 2.8. The
discrepancy from the Bridgman prediction might to some degree relate to the 
viscous effects seen in Figure 8.9 and Figure 8.10.   However, Table 8.1 reveals 
that the rate of average axial strain in PVC-20 is 8 times the rate in the smooth 
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PVC specimen while it from Table 8.2 is seen that the rate of average axial strain 
in HDPE-20 is 2.5 times the rate in the smooth HDPE specimen. Moreover, as will 
be seen in Chapter 10, the magnitude of strain rate dependency C  is higher for 
PVC than for HDPE. Therefore one should expect that the PVC-20 should deviate 
more from the Bridgman prediction than HDPE-20. It is not so. Another point 
worth noticing in this relation is that the Bridgman prediction should regard the 
yield stress of the two materials. Here, the axial average stress is determined at 
maximum force, and this may not be a proper way to consider the yield stress for 
HDPE. 

In order to gain information of the stress triaxiality *  in the different test 
specimens in this study, a numerical study of the elastic deformation of the two 
materials was carried out for the different specimen geometries. The stress 
components found from the numerical simulations are plotted in Figure 8.18 to 
Figure 8.20. It is seen that the stress components vary a lot over the cross section. 
In general, the normalized value of each of the stress components seem to increase 
with decreasing 0R . Consequently, a large variation occurs in the stress triaxiality 
ratio, see Figure 8.21. The range of stress triaxialities are plotted in the 

1 2/ 3 3I J principal stress space in Figure 8.22. Again the variation in the stress 
field is demonstrated. From Figure 8.18 to Figure 8.22 it is obvious that one test 
specimen does not evaluate a single stress state, but a combination of stress states. 
Without knowing the yield criterion, we do not know when plasticity sets in. 

The radial distribution of stress triaxiality in the numerical simulation of elastic 
deformation of specimens with 0R = 0.8 mm in Figure 8.21 reveals that the stress 
triaxiality is not at its maximum in the centre of the specimen, but at a location 
closer to the root of the notch. The increased void size at positions approaching the 
boundary of the fracture surface of HDPE-08, see Figure 8.28, indicates that void 
growth and coalescence have been more pronounced in this zone. For a similar test 
specimen, also with a low value of 0 / 2R a , Laiarinandrasana et al. [15]  identified 
the same zone as the location of maximum damage. This was done for polyamide 6 
both by finite element modelling and by experimental tests employing X-ray 
tomography. If the minimum diameter 2a  is considerably larger than R , the stress 
triaxiality does not increase monotonically towards the specimen centre. 

In addition to HDPE-2 and HDPE-08 all PVC specimens fractured during testing. 
The fracture surfaces, depicted in Figure 8.23 to Figure 8.28, suggest that the 
fractures were induced by void growth. The surfaces of the PVC specimens have a 
rather rough topography. An impression from comparing the different PVC 
specimens is that a higher 0R  caused a rougher fracture surface. This fits with the 
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observation from Figure 8.5 that the stress whitened zone of these specimens 
ranges over a larger extent in the longitudinal direction than for the specimens with 
a lower 0R . It may indicate coalescence of voids in longitudinal and lateral 
directions in PVC for the largest 0R . The fracture surfaces of the two HDPE 
specimens are more planar, oriented transverse to the loading direction. A possible 
interpretation is that the void growth of the HDPE occurs on a more local level and 
that the voids coalesce in the transverse direction. The shape of the stress-strain 
curves in Chapter 2.8 suggests that the strain hardening is less in HDPE than in 
PVC. Thus the ability to redistribute strain is less in HDPE. The voids are able to 
coalesce and form fracture in the transverse direction. It is also worth noticing that 
the two HDPE specimens that did fracture, HDPE-2 and HDPE-08, have a 
noticeable dilation compared to HDPE-20 and HDPE-5. This is clearly seen in 
Figure 8.14 and Figure 8.16. 

Laiarinandrasana et al. [10] discussed the effect of strain rate, temperature and 
stress triaxiality on the fracture surface on polyvinylidene fluoride. They showed 
that more ductile fracture surfaces were present for circular notched tensile 
specimens with larger notch radii, i.e. lower triaxialities. They also showed that 
higher strain rate and high stress triaxialities gave more brittle fracture. This is in 
accordance with the experience from our study. The HDPE specimens with large 

0R  were too ductile to fracture, while the specimens with lower 0R  fractured. 

It should be emphasized that several of the entities presented in the results are 
averaged over a length, an area or a volume. Except the cross section radius a , the 
deformations are not measured locally. Local values of axial strain in the minimum 
cross section is probably higher in the averaged axial strain 0ln( / )L L . Also the 
local strain rate in the minimum cross section is likely to be higher in the minimum 
cross section than what we have measured. The rates of average axial strain are 
represented by the slopes of the curves in Figure 8.9 and Figure 8.10. Since PVC 
and HDPE are viscoplastic materials, this may have affected the maximum force 
level more than what first appears. As an effect of this also the temperature might 
have been higher in the notched specimens.  

The comparatively small radial strains ln( / )oa a  in Figure 8.15 and Figure 8.16 are 
a sign of little contraction of the minimum cross section and therefore much 
dilation. The slopes of HDPE-20 and HDPE-5 in Figure 8.15 are steeper than –0.5. 
This is an effect of 0ln( / )a a  being a measure over the localized zone while 

0ln( / )L L  is not. None of the PVC specimens have a slope close to –0.5. 
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An approach to get the local strains, instead of net strains, could be to use DIC. In 
fact, some introductory tests on axisymmetric notched tensile bars were carried out 
using 3D DIC employing two CCD-cameras. The small size of the notch combined 
with the large local deformations and the double-curved surface caused difficulties 
with the image quality and also so much noise that the test results were poor. 
Therefore, the simple test setup described in this section, involving one camera 
focusing on the rim of the test specimen so that its curvature could be traced, was 
chosen. To obtain reliable results with the test setup in general, the image 
resolution for the images taken by the CCD-camera should be good. If the 
resolution is poor, the relative size of one pixel is large. Thus, inaccuracy or noise 
from one pixel can have a large influence on the result. 

The yield stress of mineral the filled PVC does not follow the formulas of 
Bridgman and is therefore likely to be is sensitive to stress triaxiality. Also 
the plastic dilation of the material is sensitive to stress triaxiality: higher 
stress triaxialities leads to more volume increase in the PVC. 

The yield stress of the HDPE does hardly show any sensitivity to stress 
triaxiality. However, the change of volume at higher stress triaxialities is 
evident: higher stress triaxialities leads to more volume increase in the 
HDPE. 

Void growth is assumed to be the reason for the plastic dilation in both 
materials. Also the fracture of both materials is assumed to be related to 
voids. 

From the numerical simulations it is observed that the geometry of the 
axisymmetric specimens with notch creates a stress field with that 
increasing triaxiality with decreasing notch radius R .

When the notch radius R  is small relative to the minimum diameter 2a ,
the value of maximum triaxiality is not located in the specimen centre, but 
closer to the root of the notch. The photos of the fractured surfaces of the 
two HDPE samples with the smallest 0R  support this prediction. 



164 

[1]  P.W. Bridgman. Studies in large plastic flow and fracture. Harvard 
University Press,  (1952). 

[2]  G.E. Dieter. Mechanical Metallurgy. McGraw-Hill Book Company,  
(1988). 

[3]  M. Gromada, G. Mishuris, A. Öchsner. Correction formulae for the Stress 
Distribution in Round Tensile Specimens at Neck Presence. Springer,  
(2011). 

[4]  A.H. Clausen, T. Børvik, O.S. Hopperstad, A. Benallal. Flow and fracture 
characteristics of aluminium alloy AA5083-H116 as function of strain rate, 
temperature and triaxiality. Materials Science & Engineering, 364 (2004), 
260-272. 

[5]  T. Børvik, O.S. Hopperstad, T. Berstad, M. Langseth. A computational 
model of viscoplasticity and ductile damage for impact and penetration. 
European Journal of Mechanics A/Solids, 20 (2001), 685-712. 

[6]  J.S. Olsen, Z.L. Zhang, H. Lu, C. van der Eijk. Fracture of notched round-
bar NiTi-specimens. Engineering Fracture Mechanics, 84 (2012), 1-14. 

[7]  S. Castagnet, Y. Deburck. Relative influence of microstructure and 
macroscopic triaxiality on cavitation damage in a semi-crystalline polymer. 
Materials Science and Engineering: A, 448 (2007), 56-66. 

[8]  G. Boisot, L. Laiarinandrasana, J. Besson, C. Fond, G. Hochstetter. 
Experimental investigations and modeling of volume change induced by 
void growth in polyamide 11. International Journal of Solids and 
Structures, 48 (2011), 2642-2654. 

[9]  M. Challier, J. Besson, L. Laiarinandrasana, R. Piques. Damage and 
fracture of polyvinylidene fluoride (PVDF) at 20 degrees C: Experiments 
and modelling. Engineering Fracture Mechanics, 73 (2006), 79-90. 



165 

[10]  L. Laiarinandrasana, J. Besson, M. Lafarge, G. Hochstetter. Temperature 
dependent mechanical behaviour of PVDF: Experiments and numerical 
modelling. International Journal of Plasticity, 25 (2009), 1301-1324. 

[11]  J.W. Hancock, A.C. Mackenzie. Mechanisms of ductile failure in high-
strength steels subjected to multi-axial stress states. Journal of the 
Mechanics and Physics of Solids, 24 (1976), 147-169. 

[12]  A. Dahlen. Plastic deformation and fracture of polymer materials. Master 
thesis, Department of Structural Engineering, NTNU, (2011). 

[13]  M.T. Hovden. Test and numerical simulations of polymer components. 
Master thesis, Department of Structural Engineering, NTNU, (2010). 

[14]  L. Laiarinandrasana, T.F. Morgeneyer, H. Proudhon, C. Regrain. Damage 
of semicrystalline polyamide 6 assessed by 3D X-ray tomography: From 
microstructural evolution to constitutive modeling. Journal of Polymer 
Science Part B: Polymer Physics, 48 (2010), 1516-1525. 

[15]  L. Laiarinandrasana, H.A. Cayzac, T.F. Morgeneyer, H. Prudhorn. 
Modelling of damage distribution and orientation assessed by X-ray 
tomography technique on semi-crystalline polymers. 15th International 
Conference on Deformation, Yield and Fracture of Polymers, Rolduc 
Abbey, Kerkrade, The Netherlands, 1-5 April, (2012). 



166 







167 

This chapter deals with a numerical study of the matrix-particle interaction in a 
composite material subjected to uniaxial tension. The study employs unit cell 
models representing soft polymer matrix containing stiff particles with idealized 
arrangements and geometries. The study was carried out to achieve a better 
understanding of the effect of the filler on the PVC. In particular, the macroscopic 
response of the unit cell in terms of stress-strain relationship and volume change is 
investigated. 
 

Finite element analysis on simplified micromechanical models have been used by 
many researchers [1-8] to achieve a better understanding of the macromechanical 
response of polymer materials containing second phase particles. It is challenging 
to reconstruct the complex microstructure of a polymer-particle composite exact in 
a finite element mesh. Also, to run simulations on a “geometrical perfect” model 
would be rather computationally expensive. It is therefore attractive to represent 
the real microstructure by geometrically simpler structures in terms of unit cell 
models. Real particles might have rather irregular shapes. The particle size might 
also be quite diverse. In unit cell models it is common to idealize the particle 
shapes as perfect spheres of identical size. Their arrangement is often idealized as 
well. Real particles are normally distributed randomly in the matrix. A unit cell 
model, on the other hand, usually contains particles of equal size in periodic 
patterns. Such simplifications can affect the results. The arrangement of the 
particles influences how the matrix flows between them. Also, a stress field around 
one particle may overlap the stress field of its neighbour. Socrate and Boyce [1] 
report that if the interparticle distance approaches the average particle diameter, 
such interactions between particles become important. In that case a more 
advanced micromechanical model as a ‘representative volume elements’ (RVE) 
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can be used. In such a model particles can be organized in a more irregular pattern 
with a larger variety of particle sizes than possible in a simple unit cell model [2]. 
Still, some homogenization assumptions are required also for these models. 

Many of the micromechanical unit cell models found in the literature concern self-
cavitation of rubber particles and void growth. These phenomena are often 
modelled simply by a matrix material containing initial voids [1, 3, 4]. In some 
cases actual rubber particles are modelled with a proper constitutive model [2, 5, 
6]. Some studies are also performed on polymers containing stiff particles [5, 7-9]. 
Van Dommelen et al. [9] present a study of a two dimensional (plane strain) as well 
as an axisymmetric RVE representing a semicrystalline polymer containing both 
soft and stiff particles with different particle-matrix interface strengths. Their 
models included local anisotropy of the matrix material around the particles and 
their work is mainly focused on the effect of this. Kemal et al. [8] have studied the 
toughening of PVC through the addition of CaCO3 nano-particles. They presented 
a unit cell model of spherical particles in a stacked array with weak bonding 
between the particle and the matrix [8]. Another two dimensional unit cell model 
representing polypropylene (PP) containing stiff mineral particles in a periodic 
stacked array and plane strain condition was developed by Delhaye [5]. In this 
model, the matrix-particle interface was modelled without any bonding. The effect 
of different matrix-particle interface strengths was investigated by Hempel et al. 
[7]. They created a three dimensional unit cell model representing a PP matrix 
containing platelet-like talc particles.  

The unit cell models in this study represent the microstructure as a periodic 
distribution of rather stiff linear elastic particles surrounded by a soft elastic-plastic 
matrix of PVC.  Four parameters have been varied. They are the:  

particle volume fraction 
particle shape
particle arrangement  
particle-matrix interface strength  

Two particle volume fractions, = 0.1 and = 0.2, are represented in the models. 
Meshes with both cubical and spherical particles were created to study the effect of 
the particle shape. The particles are organized in both a stacked and a staggered  
array. The four combinations of shape and arrangement of particles are illustrated 
in Figure 9.1. Particle-matrix debonding was modelled by using a contact 
algorithm that allows for failure when a critical stress criterion is met. This is 
similar to what is done in the study of Hempel et al. [7]. By setting different critical 
stresses, the effect of the particle-matrix interface strength is investigated. 
Although only these four parameters have been varied one should keep in mind 
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that any change of these parameters has influence on other parameters such as the 
distance between particles and the area of the matrix-particle interface.  
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Figure 9.1 Sketches of eight unit cell models assembled into a) stacked array of 
cubical particles, b) stacked array of spherical particles, c) staggered array of 
cubical particles and d) staggered array of spherical particles. These unit cell 
models contain a particle volume fraction of  =  0.1.  

Eight different unit cell meshes were defined. Each unit cell has a total volume of 1 
and it contains the particle volume fraction . Meshes of unit cells containing 
cubical and spherical particles organized in stacked and staggered arrays were 
constructed as explained in the following. Eight node solid elements with reduced 
integration were used in all meshes. Stiffness based hourglass control was 
employed to avoid nonphysical hourglass modes. Rather extensive mass scaling, by 
a factor of 108, was employed to make the simulations run faster. Also, additional 
simulations with less mass scaling were carried out on a test mesh of a unit cell 
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model with cubical particles. They showed that the mass scaling did not alter the 
numerical results. After the simulations it was controlled that the kinetic, the 
sliding and the hourglass energy did not exceed 1% of the total energy in the 
simulations.  

9.2.1 STACKED ARRAY OF CUBICAL PARTICLES
The arrangement of cubical particles in a stacked array is shown in Figure 9.1 a). 
Figure 9.2 a) shows the mesh used in the simulations. It contains a total of 283

equally sized cubical elements whereof 133 are modelled as particles. This give a 
particle volume fraction of = 0.1.  The mesh in Figure 9.2 b) consists of 243

equally sized elements whereof 143 are modelled as particles. This gives a volume 
of particles equal to = 0.19, a number that is regarded as adequate for 
representing a material with a particle volume fraction of = 0.2. 

a) b)
Figure 9.2 Unit cell models representing a stacked array of cubical particles with 
particle volume fractions of a) = 0.1 and b) = 0.2. 

9.2.2 STAGGERED ARRAY OF CUBICAL PARTICLES
Figure 9.1 c) shows cubical particles organized in a staggered BCC-array. The 
mesh containing particle volume fraction = 0.1, see Figure 9.3 a), was made as a 
model of 193 equally sized cubical elements whereof 2 73 were modelled as 
particles. This means that 10% of the volume is occupied by particles. The mesh 
with = 0.2 was modelled with 283 equal-sized elements whereof 2 133 were 
modelled as particles. It is displayed in Figure 9.3 b). 
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a) b)
Figure 9.3 Unit cell models representing a staggered array of cubical particles 
with particle volume fractions of a) = 0.1 and b) = 0.2.

 

9.2.3 STACKED ARRAY OF SPHERICAL PARTICLES
The total volume of the unit cell is still 1, the volume fraction is  and the radius 
of the particles is r . The volume of an entire spherical particle is 34 / 3 r . A 
unit cell model contains 1/8 of a spherical particle. It is placed in one corner of the 
unit cell as shown in Figure 9.1 b). The particle volume fraction is then 

31 4
8 3

r  (9.1) 

which gives the radius 

3
6r   (9.2) 

Particle volume fractions of = 0.1 and = 0.2 results in r = 0.576 and r =
0.726, shown in Figure 9.4 a) and b), respectively. 
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a) b)
Figure 9.4 Unit cell models representing a stacked array of spherical particles 
with particle volume fractions of a) = 0.1 and b) = 0.2.

9.2.4 STAGGERED ARRAY OF SPHERICAL PARTICLES
The staggered BCC array of spherical particles is shown in Figure 9.1 d). One such 
unit cell contains two times an 1/8 part of a spherical particle placed in opposite 
corners. The particle volume fraction is  

32 4
8 3

r  (9.3) 

Solved for the radius r

3
3r  (9.4) 

This gives r = 0.457 and r = 0.576 for = 0.1 and = 0.2. The meshes created 
for these unit cells are shown in Figure 9.5 a) and b). 

a) b)
Figure 9.5 Unit cell models representing a staggered array of spherical particles 
with particle volume fractions of a) = 0.1 and b) = 0.2.
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The material of the PVC matrix was modelled as linear elastic-plastic with a strain 
hardening effect being characteristic for the response of neat PVC. The simple 
elasto-plastic *MAT_024 material model in LS-DYNA with a pre-defined stress-
strain response was used [10]. The matrix yield stress and Young’s modulus were 
respectively T  = 50 MPa and E = 2000 MPa. Poisson’s ratio was set to = 0.3. 
The shape of the curve after yielding was adapted from stress-strain data from 
G’Sell et al. [11] valid for pure PVC. The curve was shifted to fit the applied yield 
stress of 50 MPa. The stress-train curve can be seen in Figure 9.6. The calcium 
carbonate particles were modelled as elastic with the properties  E = 35000 MPa 
and = 0.2 [12]. The stress-strain curve of the mineral filled test specimen PVC-8 
from Chapter 6 is also included in Figure 9.6 for comparison. 

Figure 9.6 Stress-strain relationships for the components of the unit cell model and 
also for experimental test specimen PVC-8 from Chapter 6.  
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Debonding of particles was implemented through the contact-automatic-surface-to-
surface-tiebreak formulation, which was used with failure law option 2 in LS-
DYNA [10]. This means that tying of the nodes breaks when the normal stress n

and the shear stress s   meet the following criterion: 

2 2

, ,

1n s

n crit s crit

 (9.5) 

The critical normal stress ,n crit  and the critical shear stress ,s crit were assumed to 

be equal, i.e. ,n crit = ,s crit . In order to study how the voids are formed around 
particles without any bonding to the matrix the critical stresses were as one case set 
to zero. Different matrix-particle interface strengths were modelled by setting the 
critical stress to 40 MPa, 50 MPa, 60 MPa and 500 MPa. The critical stress of 500 
MPa is a value higher than what would occur in the simulation. It is set 
unrealistically high in order to study how the response would be for a perfectly 
bonded material. In addition, simulations without any matrix-particle interface 
strength were carried out in order to study the effect of unbounded particles. 

Boundary prescribed motion was defined for the side of the unit cell cube facing 
the positive x-direction. All nodes on this side, see Figure 9.7 a), were restricted to 
move equally in the x-direction. The nodes of two other sides, one facing the 
positive y-direction and one facing the positive z-direction, see Figure 9.7 b), were 
constrained to planar movement.  The remaining three orthogonal faces, facing the 
negative x-, y- and z-directions, were constrained against translations in the 
direction they were facing [7]. These planes are addressed in Figure 9.7 c).  
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a) b) c)

Figure 9.7 Boundary conditions. a) The displacement is applied in x-direction to 
nodes on one side of the unit cell. b) The nodes on the two sides of the unit cell 
constrained to planar movement. c) The nodes on three of the sides of the unit cell 
constrained against out-of-plane motions.

In order to express the joint behaviour of the unit cells, the terms macroscopic 
stress and macroscopic strain are used. They differ in general from the local 
stresses and strains within a unit cell. The macroscopic stress for each unit cell 
cube is a “macroscopic Cauchy stress” calculated by dividing the force acting 
through the cross section of the unit cell by the area of the cross section at the 
corresponding time step.  The macroscopic strains are calculated as the logarithmic 
strains computed from the lengths of the edges of the cube. Macroscopic stress-
strain curves of the different unit cells containing particles of = 0.1 are presented 
in Figure 9.8. Figure 9.9 shows the same for a particle fraction of = 0.2.  

The response is dependent on the volume fraction, shape and arrangement of the 
particles, but some generalities are observed for all unit cell models. The unit cells 
representing particles without any bonding between the particles and the matrix 
show the softest behaviour. The other models have higher initial stiffness. The 
bonded particles carry load and therefore add stiffness to the unit cell. When the 
tiebreak criterion is fulfilled for the first node, the total stiffness of the unit cells 
instantly decreases and they tend to act more like the unit cells without bonding 
strength. Some of the unit cell models show a drop in the stress-strain curve. These 
drops are more sudden for the cubical than for the spherical particles, and they are 
greater for the highest volume fraction. A possible explanation for the sudden 
drops, observed in e.g. Figure 9.9 c), is that a large number of nodes break 
simultaneously. The unit cell models representing perfectly bonded particles show, 
naturally, the stiffest behaviour in all cases. 
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It is common to define the first local stress maximum of the stress-strain curve as 
the yield stress for polymers. This can be adapted to the macroscopic stress-strain 
curves for the unit cell models plotted in Figure 9.8  and Figure 9.9. By comparing 
the macroscopic responses from the unit cell models with the response of the 
material used to model the PVC matrix, see Figure 9.6, it can be seen that the 
response is different in the polymer-particle composite. The yield stress of the 
matrix was set to 50 MPa. Still, it can be seen in Figure 9.8 and Figure 9.9 that the 
peak stress is somewhat lower in the unit cell models with low or intermediate 
interface strengths. On the other hand, perfectly bonded particles increase the yield 
stress of the composite material. This tendency is stronger for the highest particle 
volume fraction. 

If we leave the perfectly bonded particles out of the picture, it can be seen that the 
strain rehardening is independent on the particle-matrix bonding. It is determined 
by the geometry of the unit cell, and it is barely stronger for the lowest particle 
volume fractions. It is more pronounced for spherical particles than for cubical. 
Also the stacked array seems to increase the rehardening effect. This may be 
explained by how the particles affect the flow of the matrix, but one should keep in 
mind that the macroscopic Cauchy stress is also coupled with the volume change of 
the unit cells. 
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Figure 9.8 Macroscopic stress-strain curves for the unit cell models with particle 
volume fraction = 0.1. a) Cubical particles in a stacked array. b) Spherical 
particles in a stacked array. c) Cubical particles in a staggered array.  d) 
Spherical particles in a staggered array. 
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Figure 9.9 Macroscopic stress-strain curves for the unit cell models with particle 
volume fraction = 0.2. a) Cubical particles in a stacked array. b) Spherical 
particles in a stacked array. c) Cubical particles in a staggered array.  d) 
Spherical particles in a staggered array. 

Contour plots of equivalent plastic strain and pressure, as provided by LS-DYNA, 
from a selection of unit cell models are displayed in Figure 9.10 to Figure 9.14. In 
these plots the particles are blanked. Thus, the plots address the surface of the 
matrix material adjacent to the particle. Further, the unit cells are mirrored four 
times in order to give a better visualization of the strain and stress fields in the 
matrix around the void.   

Plasticity in the matrix can occur locally around the particle before the macroscopic 
yield stress is reached. This can be seen in the sub-figure a) in Figure 9.11, Figure 
9.12 and Figure 9.13, which all are plotted just before reaching the maximum of 
the macroscopic stress-strain curve. Sub-figure c) in the same figures shows that 
only local plasticity is observed also some time after the stress peak is passed.  
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Both the unbonded and the bonded particles induce localization of plastic strain in 
the unit cell models. Plasticity sets in at equator for the spherical particles not 
bonded to the matrix, see Figure 9.10. Particles with stronger particle-matrix 
interface strengths, which are shown in Figure 9.11 to Figure 9.14, initiate plastic 
strain somewhat closer to the pole. The cubical particles initiate plastic strain in the 
matrix around the sharp edge of the particle. 

There seems to be a gradual debonding process of the spherical particles. 
Debonding always starts at the pole of the particle. It is initiated due to high normal 
stress. As the deformation proceeds a “debonding zone” moves towards equator 
and the failure becomes more characterized by shear. As the particles debond from 
the matrix, a relocation of negative pressure (stress triaxiality) happens. The 
maximum negative pressure is located around the equator of the unbonded 
particles, see Figure 9.10. A zone of maximum negative pressure moves from the 
pole towards the equator of the bonded particles in Figure 9.11, Figure 9.12 and 
Figure 9.13. 

The cubical particles, see Figure 14, experience a more sudden debonding; their 
two planes orthogonal to the loading direction lose their contact with the matrix 
almost simultaneously. The four other surfaces of the cube fail in shear 
subsequently. 
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Figure 9.10 Contour plots of plastic strain and pressure in the matrix around 
spherical particles organized in a stacked array without any particle-matrix 
interface strength. The particle volume fraction is = 0.2. The unit cell is 
mirrored four times to better show the result.  
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Figure 9.11 Contour plots of plastic strain and pressure in the matrix around 
spherical particles organized in a stacked array with particle-matrix interface 
strength of 60 MPa. The particle volume fraction is = 0.2. The unit cell is 
mirrored four times to better show the result.  
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Figure 9.12 Contour plots of plastic strain and pressure in the matrix around 
spherical particles organized in a staggered array with particle-matrix interface 
strength of 60 MPa. The particle volume fraction is = 0.2. The unit cell is 
mirrored four times to better show the result.  
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Figure 9.13 Contour plots of plastic strain and pressure in the matrix around 
spherical particles organized in a stacked array with particle-matrix interface 
strength of 60 MPa. The particle volume fraction is = 0.1. The unit cell is 
mirrored four times to better show the result.  
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Figure 9.14 Contour plots of plastic strain and pressure in the matrix around 
cubical particles organized in a stacked array with particle-matrix interface 
strength of 60 MPa. The particle volume fraction is = 0.2. The unit cell is 
mirrored four times to better show the result.
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Figure 9.15 shows the void growth around a spherical particle with volume fraction 
of = 0.2 in a stacked array. This unit cell model represented in this picture was 
modelled without any interface strength between the particle and the matrix. The 
other unit cells with initially debonded particles showed similar behaviour. Void 
growth around a cubical particle is displayed in Figure 9.16. Also this figure 
represents a unit cell with particle volume fraction of =0.2, a staggered array and 
no particle-matrix interface strength. Both Figure 9.15 and Figure 9.16 clearly 
show how voids grow around the particles. The void growth leads to increase of 
volume strain on the macroscale also in the plastic regime. 

a) b) c) d)
Figure 9.15 Outline of void growth around a spherical particle of = 0.2 in a 
staggered array without any interface strength to the matrix at different 
macroscopic logarithmic strains: a) 0, b) 0.049, c) 0.27 and, d) 0.41. 

a) b) c) d)
Figure 9.16 Outline of void growth around a cubical particle of = 0.2 in a 
staggered array without any interface strength to the matrix at different 
macroscopic logarithmic strains: a) 0, b) 0.04, c) 0.27, and d) 0.41. 

The macroscopic volume strains from the unit cell simulations are plotted in Figure 
9.17 and Figure 9.18 representing particle volume fractions = 0.1 and = 0.2, 
respectively. Note that towards the end of the deformations some penetration is 
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observed in the numerical simulations causing the volume strain to decline. The 
highest content of particles leads to the highest volume strains. Also the cubical 
particle shape and the staggered arrangement seem to cause most macroscopic 
dilation. These figures further suggest that the increase of particle volume fraction 
from = 0.1 to = 0.2 affects the void growth around cubical particles more than 
the spherical ones.
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Figure 9.17 Macroscopic volume strain for the unit cell models with particle 
volume fraction = 0.1. a) Cubical particles in a stacked array. b) Spherical 
particles in a stacked array. c) Cubical particles in a staggered array.  d) 
Spherical particles in a staggered array.
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Figure 9.18 Macroscopic volume strain for the unit cell models with particle 
volume fraction = 0.2. a) Cubical particles in a stacked array. b) Spherical 
particles in a stacked array. c) Cubical particles in a staggered array.  d) 
Spherical particles in a staggered array. 

Figure 9.19 and Figure 9.20 display the volume change in terms of the retraction 
ratio 2 1/ . This quotient corresponds to Poisson’s ratio in the elastic 
domain. It provides an alternative representation of the dilation process.  

Voids are growing around the unbonded particles from the very beginning of the 
deformation, therefore the retraction ratio for these models initially have a low 
value. On the contrary, no voids are allowed to form around the perfectly bonded 
particles. The initial value of  lies in between the elastic Poisson’s ratios for the 
matrix and the particles. At the onset of yielding, the retraction ratio increases 
radically since the only contribution then is from the Poisson’s ratio of the 
particles. 

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

Macroscopic strain

M
ac

ro
sc

op
ic

 v
ol

um
e 

st
ra

in

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

Macroscopic strain

M
ac

ro
sc

op
ic

 v
ol

um
e 

st
ra

in

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

Macroscopic strain

M
ac

ro
sc

op
ic

 v
ol

um
e 

st
ra

in

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

Macroscopic strain

M
ac

ro
sc

op
ic

 v
ol

um
e 

st
ra

in

00 20 4hy
s

0 MPa 40 MPa 50 MPa 60 MPa 500 MPa



188 

For the models with intermediate interface strengths it is seen that when a particle 
debonds from the matrix, there is a drop in the retraction ratio, i.e. an increase of 
volume. During plastic deformation there is some increase in the retraction ratio. 
Owing to the void growth, however, it is still far below 0.5, which corresponds to 
an isochoric response. 
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Figure 9.19 Retraction ratio for the unit cell models with particle volume fraction 
= 0.1. a) Cubical particles in a stacked array. b) Spherical particles in a stacked 

array. c) Cubical particles in a staggered array.  d) Spherical particles in a 
staggered array. 
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Figure 9.20 Retraction ratio for the unit cell models with particle volume fraction 
= 0.2. a) Cubical particles in a stacked array. b) Spherical particles in a stacked 

array. c) Cubical particles in a staggered array.  d) Spherical particles in a 
staggered array.

Figure 9.21 and Figure 9.22 seek to provide an improved impression of the physics 
in the debonding process. These figures pay attention to the beginning of the 
deformation process, and show the macroscopic Cauchy stress together with the 
retraction ratio.  

The initiation of the debonding process can be observed as softening of the stress-
strain curve and a decline of the retraction ratio curve. The onset of softening is 
observed at the same time that LS-DYNA reports activation of the first tiebreak, 
meaning that the debonding process has begun. This occurs at relatively small 
strains. It is also seen that when the stress-strain curve passes its local maximum 
value, the retraction ratio starts to increase. 
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Figure 9.21 Stress-strain curves (continuous lines) plotted together with retraction 
ratios (dashed lines) of models of particle volume fraction =0.1. a) Cubical 
particles in a stacked array. b) Spherical particles in a stacked array. c) Cubical 
particles in a staggered array.  d) Spherical particles in a staggered array.
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Figure 9.22 Stress-strain curves (continuous lines) plotted together with retraction 
ratios (dashed lines) of models of particle volume fraction =0.2. a) Cubical 
particles in a stacked array. b) Spherical particles in a stacked array. c) Cubical 
particles in a staggered array.  d) Spherical particles in a staggered array. 

Despite the simplifications regarding constitutive modelling and geometric 
representation, several of the characteristics observed in the experimental tests of 
the mineral filled PVC, see Chapter 6, can also be found in the results from these 
unit cell simulations. Similar to the PVC in the experiments some of the unit cell 
models show a rather linear behaviour up to a stress maximum. The stress 
maximum is, in both cases, followed by a drop and subsequently by a plateau with 
almost constant stress. Plastic dilation of about the same order is observed both in 
laboratory tests, as seen in Chapter 6 and in this micromechanical numerical study. 
Moreover, SEM study of the microstructure of the laboratory test specimens in 
Chapter 6 and the contour plots of the deformation of the unit cell models, see 
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Figure 9.10 to Figure 9.14, both conclude that the volume change is related to void 
growth.

The first softening of the stress-strain curve appears simultaneously with the 
breaking of the first of the tied nodes in the contact formulation. A similar 
observation is reported by van Dommelen et al. [9] in their numerical study. This 
suggests that the softening effect may be a result of particle debonding., also in the 
laboratory tests. 

In many cases, the particle debonds before the macroscopic stress in the unit cell 
model has reached 50 MPa, i.e. the yield stress of the matrix material. Thus, the 
composite material has a lower yield stress than in the matrix material. This is seen 
from comparing the macroscopic stress-strain curves from the unit cell models in 
Figure 9.8 and Figure 9.9 with the stress-strain curve used to model the PVC 
matrix in Figure 9.6. Moreover it is seen that presence of particles that debond 
from the matrix reduces the macroscopic strain hardening effect of the composite. 
The reduction of strain hardening seems to increase with the particle volume 
fraction.

Comparison of the results from unit cells containing 10% and 20% particles shows 
that a higher content of particles increases the initial stiffness of all the unit cells 
containing bonded particles. At the same time, the highest fraction of particles 
decreases the stiffness for unit cells with unbonded particles. The stress plateaus 
observed after debonding are at a lower stress level for the unit cell models with 
high particle volume fraction. Hence, the load drop appears more dramatic. 

The cubical particles seem to provoke a sudden debonding compared to the 
spherical particles. They also seem to induce more plastic dilation. Also particles 
organized in a staggered array seem to promote marginally higher dilation than 
particles in a stacked array. This might be because the voids in the staggered array 
are organized in such way that they can grow easier without influence from the 
neighbouring particles. The staggered arrangement causes a larger distance 
between the particles, a property pointed out to be important for the deformation 
[1, 8]. 

The decreasing tendency of the retraction ratio  in the beginning of the 
deformation is assumed to be an effect of debonding and void growth. When the 
particle in the model is completely debonded, the retraction ratio is not further 
reduced. The local minimum value in the retraction ratio plots occurs at a lower 
strain than observed in the experiments reported in Chapter 6. In the unit cell 
models discussed in this chapter the minimum value of the retraction ratio occurs at 
the onset of macroscopic yielding while it in the laboratory tests is observed some 
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time after macroscopic yielding. An important difference between the numerical 
and the laboratory tests is that in the numerical unit cell model, the particle 
geometry and arrangement is crudely idealized by a part of a particle. When this 
part of the particle has debonded, the whole debonding process is over. The 
retraction ratio of the real composite is in the experiment measured for a volume 
containing a lot of particles of different sizes and shapes dispersed randomly 
through the material. As a consequence, the debonding process in the real material 
can be in progress over a longer period of time. 

It is seen from the contour plots in Figure 9.10 to Figure 9.14 that even though the 
macroscopic strain level is relatively low, comparably high local plastic strains 
develop between the particles.

Figure 9.10 to Figure 9.14 also reveal that the stress field of the matrix is highly 
triaxial. It shows that even if the applied load is uniaxial, a triaxial stress field rises 
on the microscale. The PVC composite in this study has a pressure sensitive 
behaviour, see Chapter 2.8. We do not know whether the pressure sensitivity is 
affected by the presence of particles, or if it is a material property of the matrix 
material only. Therefore, the pressure sensitivity of the matrix was omitted in this 
study.  

The constitutive behaviour of the matrix material is very simplified in this unit cell 
study.  PVC is known to be a material sensitive to strain rate. In the unit cell 
models, the flow around the particles is not uniform. Some locations in the material 
are deformed faster than others. This might affect the results. Also, the matrix 
enclosing the particles may have another morphology and different mechanical 
behaviour than the rest of the matrix. Van Dommelen el al. [9] included such an 
effect in terms of local anisotropy in their RVE model representing a 
semicrystalline polymer with stiff particles. In this study it is not taken into 
account.

Smit et al. [13] studied the mechanical response of a polycarbonate (PC) matrix 
possessing stress softening constitutive response containing voids in regular and 
irregular arrays. They showed that while voids organized in a regular pattern 
caused a stress softening effect also for the macroscopic level, the stress softening 
disappeared in the more complex unit cell representing voids in an irregular array. 
Even though the fundamentals of the study performed by Smit et al. [13] are very 
different from ours, and the results can therefore not be directly transferred, it is 
worth to note how the arrangement can alter the macroscopic response. In 
particular, it should be noted that the periodic arrangements of particles in this 
study induce layers of yielded and easier deformable material in a regular pattern 
that is unrealistic for a real composite. 
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Despite crude idealizations, several of the mechanical characteristics 
observed in experimental tests are observed in the results from the 
numerical study. 

The numerical simulations result in macroscopic dilation as a result of void 
growth. The dilation in the unit cell model is in the same order as measured 
in uniaxial tension of mineral filled PVC in Chapter 6.  

Stress softening is observed even though none of the materials in the 
composite is modelled with such behaviour. The stress softening is related 
to loss of material strength in the composite due to debonding of particles. 

Matrix-particle debonding in the numerical model leads to the presence of 
a peak stress in the macroscopic stress-strain curve. The local maximum of 
the stress-strain curve observed in laboratory tests may also be imposed by 
debonding of particles. 



195 

[1]  S. Socrate, M.C. Boyce. Micromechanics of toughened polycarbonate. 
Journal of the Mechanics and Physics of Solids, 48 (2000), 233-273.

[2]  T. Seelig, E. van der Giessen. Localized plastic deformation in ternary 
polymer blends. International Journal of Solids and Structures, 39 (2002), 
3505-3522.

[3]  K.G.W. Pijnenburg, E. van der Giessen. Macroscopic yield in cavitated 
polymer blends. International Journal of Solids and Structures, 38 (2001), 
3575-3598.

[4]  A.C. Steenbrink, E. van der Giessen, P.D. Wu. Void growth in glassy 
polymers. Journal of the Mechanics and Physics of Solids, 45 (1997), 405-
437.

[5]  V. Delhaye. Behaviour and modelling of polymers for crash applications. 
Doctoral thesis, Department of Structural Engineering, NTNU, (2010).

[6]  A.C. Steenbrink, E. van der Giessen. On cavitation, post-cavitation and 
yield in amorphous polymer–rubber blends. Journal of the Mechanics and 
Physics of Solids, 47 (1999), 843-876.

[7]  P. Hempel, A. Hillenberg, T. Seelig. Micromechanical modeling of talc 
particle reinforced thermoplastic polymers. Proceedings in Applied 
Mathematics and Mechanics (PAMM), 10 (2010), 293-294.

[8]  I. Kemal, A. Whittle, R. Burford, T. Vodenitcharova, M. Hoffman. 
Toughening of unmodified polyvinylchloride through the addition of 
nanoparticulate calcium carbonate. Polymer, 50 (2009), 4066-4079.

[9]  J.A.W. van Dommelen, W.A.M. Brekelmans, F.P.T. Baaijens. A numerical 
investigation of the potential of rubber and mineral particles for toughening 
of semicrystalline polymers. Computational Materials Science, 27 (2003), 
480-492.

[10]  LS-DYNA. LS-DYNA Keyword User's Manual. Version 971, Livermore 
Software Technology Corporation (LSTC), 2007.

[11]  C. G'Sell, J.M. Hiver, A. Dahoun, A. Souahi. Video-controlled tensile 
testing of polymers and metals beyond the necking point. Journal of 
Materials Science, 27 (1992), 5031-5039.



196 

[12]  P.H.T. Vollenberg, D. Heikens. The mechanical properties of chalk-filled 
polypropylene: a preliminary investigation. Journal of Materials Science,
25 (1990), 3089-3095.

[13]  R.J.M. Smit, W.A.M. Brekelmans, H.E.H. Meijer. Prediction of the large-
strain mechanical response of heterogeneous polymer systems: local and 
global deformation behaviour of a representative volume element of 
voided polycarbonate. Journal of the Mechanics and Physics of Solids, 47
(1999), 201-221.



197 

In order to carry out realistic numerical simulations of the behaviour of polymer 
components, a constitutive model that captures the main deformation features is 
required. Yet, a material model for industrial use has to be “user friendly” without 
too demanding calibration procedures. This chapter presents a constitutive model 
for polymer materials proposed by Polanco-Loria et al. [1]. The model is intended 
for industrial use, involving large scale finite element analysis of polymer 
components undergoing large deformations. This chapter also addresses 
identification of material parameters from the uniaxial tension and compression 
tests of the 5 mm plates of PVC and HDPE presented in Chapter 3 and Chapter 4.  

The deformation of thermoplastic polymers commonly involves large elastic and 
plastic deformations. Their mechanical response is in general sensitive to strain rate 
and temperature. Polymers are often regarded as pressure sensitive materials; a 
higher yield strength in compression than in tension is commonly observed. 
Another feature is that the volume changes during plastic deformation [2-6]. 
Moreover, some polymers have a stress softening behaviour after the yield limit, 
while others experience monotonic hardening [6, 7]. These are some characteristics 
a material model for thermoplastics should allow for. Based on the original idea of 
Haward and Thackray [8], Polanco-Loria et al. [1] presented a constitutive model 
separating the response in two parts describing the intermolecular resistance and 
the molecular network resistance. The constitutive model includes the pressure 
dependent Raghava yield criterion [9, 10].  
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A procedure for determination of the parameters of the constitutive model has been 
developed and performed by Hovden [11]. Hovden determined the parameters for 
the 10 mm thick extruded plates of PVC and HDPE. According to the producer, the 
plates of the two thicknesses, 10 mm and 5 mm, are made of the same materials. 
However, experimental tests showed some minor difference in the response 
between the plates. Therefore, a new determination of the material parameters for 
the 5 mm thick plates is required, calling for some extra material tests. The material 
tests used for the parameter identification were presented in Chapter 3 and Chapter 
4. 

The hyperelastic-viscoplastic material model presented by Polanco-Loria et al. [1] 
consists of two parts coupled in parallel. Part A represents an intermolecular barrier 
to deformation while Part B represents the network stretching. An outline of the 
model is shown in Figure 10.1. 

a) b) 
Figure 10.1 a) Rheological representation of the constitutive model with inter-
molecular (A) and network (B) contributions, and b) stress contributions from Part 
A and Part B. 

The main kinematic variable in the model is the deformation gradient F . It is equal 
for Part A and Part B: A BF F F . This means also the volume change, the 
determinant of the deformation gradient, is the same for the two parts: 
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detA BJ J J F . The total Cauchy stress  is taken as the sum of the stress 
contributions from the two parts 

A B  (10.1) 

Part A describes a hyperelastic-viscoplastic response due to intermolecular 
resistance.  A multiplicative split is used to decompose the deformation gradient of 
Part A into elastic and plastic components: e p

A A AF F F . The decomposition 
produces three configurations: the reference configuration 0 , the virtual, 

intermediate configuration, A , and the current configuration . An illustration of 
the kinematics is given in Figure 10.2. 

Figure 10.2 Conceptual illustration of the kinematics of the constitutive model. It 
shows the decomposition of the deformation gradient F  in the reference 
configuration 0 , the intermediate configuration A  and the current 
configuration is [1]. 

The intermediate configuration, defined by the plastic part of the deformation 
gradient, p

AF , is invariant to the rigid body rotations of the current configuration. 
The evolution of the intermediate configuration is defined by the differential 
equation p p p

A A AF L F , where p
AL  is the plastic velocity gradient with respect to 

the intermediate configuration.  

A Neo-Hookean model is used to allow for large elastic deformations  
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0 0ln [ ]e e
A A AJ I B I  (10.2) 

where e
A A AJ  is the Kirchhoff stress, dete e

A AJ F  is the elastic part of the 

Jacobian, I is the second-order unit tensor, and ( )e e e T
A A AB F F is the elastic left 

Cauchy-Green deformation tensor. The Lamé constants 0  and 0 are used to 
define the elastic response. They can also be expressed by Young’s modulus E
and Poisson’s ratio 

0 0 0 0

0 0 0 0

3 2
,

2 2
E  (10.3) 

The viscoplastic contribution of Part A is computed on the intermediate 
configuration, applying the Mandel stress tensor A . The relationships between the 

Kirchhoff and Mandel stress tensors read ( ) ( )e T e T
A A A AF F  and 

( ) ( )e T e T
A A A AF F . Note that the Mandel stress tensor is symmetric due to the 

assumed isotropy of the material.  The yield criterion is formulated as 
0A A Tf R . The Raghava equivalent stress A   is used to express 

pressure dependency [9] 

2 2
1 1 2( 1) ( 1) 12

2
A A A

A

I I J  (10.4) 

where 1 trA AI  and 1
2 2 :dev dev

A A AJ  are invariants of respectively the Mandel 

stress tensor and the deviatoric part. The deviatoric part of the Mandel stress is 
defined by 1

3 trdev
A A A I  . 

The parameter /C T  in Equation (10.4) represents the ratio between the 
yield stresses in compression and tension. These two stress data provide sufficient 
information to define the shape of the yield surface. By setting 1 we get the 
von Mises yield surface as a special case of the Raghava function. Further, the 
isotropic strain hardening or softening R  of Part A, see Figure 10.1 b), is a 
function of the accumulated plastic strain p

A  , and it is controlled by the saturation 
stress S  and the hardening/softening parameter H , viz. 

1 expp p
A S T AR H  (10.5) 
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A non-associated viscoplastic flow rule is assumed to define the plastic velocity 
gradient on the intermediate configuration as 

p p A
A A

A

gL  (10.6) 

where the plastic potential Ag  is defined in the form 

2 2
1 1 2( 1) ( 1) 12

0
2

A A A
A

I I J
g  (10.7) 

Here,  is the plastic dilation parameter, determining the increase of volume 
during plastic flow.  

The equivalent plastic strain rate p
A  of Equation (10.6)  is defined by the 

constitutive relation 

0

0 if   0

1exp 1 1 if   > 0

A

p
A A

A A
T

f

f
C R

 (10.8) 

In this expression, two rate-sensitivity parameters, 0  and C , are introduced. 

Part B of the material model describes a hyperelastic entropic resistance originally 
proposed by Arruda and Boyce [12]   

1 * 2( )
3

R L
B B

B L

C
J

B I  (10.9) 

where RC  is the initial elastic modulus of Part B, L  is the locking stretch, 1  is 
the inverse function of the Langevin function which is defined as 

( ) coth 1/x x x . The Jacobian BJ  is detB BJ F  (recall that BF F ). The 

average total stretch ratio  is calculated as 

*1 tr
3 BB  (10.10) 
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where * * * T( )B B BB F F  is the distortional left Cauchy-Green deformation 
tensor, and * 1/3

B B BJF F  denotes the distortional part of BF .

The model involves 11 coefficients to be determined from uniaxial tension and 
compression tests. The parameters are listed in Table 10.1. Neither thermal effects 
or a fracture criterion is incorporated in the model. For further details about the 
model it is referred to Polanco-Loria et al. [1].  

Table 10.1 Material parameters. 

E Young’s modulus [MPa] 

v Poisson’s ratio 

T Yield stress in uniaxial tension [MPa] 

s Saturation stress  [MPa] 

Pressure sensitivity parameter 

Plastic dilation parameter 

0 A Reference strain rate [s 1]

C Strain rate dependency 

H Hardening/softening parameter 

RC Initial elastic modulus of Part B  [MPa] 

L
Locking stretch  

As already mentioned, the parameters of the 5 mm plates of PVC and HDPE have 
to be identified. To limit the extent of the identification process the Poisson’s ratio 

, the pressure sensitivity , the plastic dilation parameter  and the strain rate 
dependency C are assumed to be the same as for the 10 mm thick plates and as 
determined by Hovden [11]. Therefore one tensile test and one compression test of 
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each material are sufficient to determine the remaining parameters: Young’s 
modulus E , the yield stress T , the saturation stress S , the ramping parameter 
H of the isotropic hardening/softening function, the reference strain rate 0 A , the 

initial elastic modulus of Part B RC  and the locking stretch L . The tensile and 
compression tests presented in Chapter 3 and Chapter 4 are used as a basis for the 
parameter identification. 

Starting with Part A, the Young’s modulus E  for both materials is defined as the 
initial slope of the stress-strain curve. Since the stress state of Part A is affected by 
strain rate and also the stress of Part B, the yield stress T  and the saturation stress 

S  cannot be taken directly from the stress-strain curves in Chapter 3. Therefore a 
preliminary yield stress 0T  and a preliminary saturation stress 0S  are determined 
first. The preliminary values, denoted with a sub-script ‘0’, represent the stress at 
the reference strain rate 0 A  without any correction from the stress contribution of 
Part B. The preliminary yield stress 0T  for PVC is taken as the first local 
maximum of the stress-strain curve. The HDPE material does not show any 
obvious maximum point. Therefore, the 0.2% offset from the initial slope is used to 
define 0T . Further, the local stress minimum on the true stress-strain curve for 
PVC is taken as a preliminary saturation stress, 0S . Since HDPE have no 
softening, the Considère construction [13] is used for determining 0S for this 
material. 

The reference strain rate 0 A  represents the local strain rate present in the sample 
when the stress approaches 0T . It is for both materials set equal to the slope of the 
strain-time curve, determined by digital image correlation, at the instant where the 
stress is equal to 0T .

At onset of plasticity the hardening/softening term in Equation (10.5) is R = 0. 
Equation (10.8) can then be re-arranged into 

0

1 ln 1
p

A
A T

A

C  (10.11) 

Disregarding the contribution from Part B, the preliminary yield stress 0T

measured in the material test is equal to the Raghava equivalent stress A  at the 

reference strain rate 0 A . In other words A = 0T when 0 A = p
A . This means that, 

at the reference strain rate, Equation (10.11) can be expressed as 



204 

0

1 ln(2)
T

T C
 (10.12) 

Now the yield stress T at a fictitious strain rate equal to zero can be found. Also 
the saturation stress for the hypothetical case of zero strain rate can be found from 
Equation (10.11) employing the strain rate present at 0S . Subsequently, T  and 

S   also have to be adjusted by the stress contribution of Part B. 

The ramping parameter H controls the stress evolution towards the saturation 
stress. It defines the slope between T  and S , see Equation (10.5) 

According to Equation (10.5) the exact saturation stress will only be approached, 
never fully reached. Defining a target plastic strain p

S  that is equal to the plastic 
strain at the saturation stress and demanding a 95% attainment of the saturation can 
be a first step in the determination of H . In other words, we require an amount of 
softening R   equal to 95% of the difference between S  and T .

( ) 0.95( )p
S S TR  (10.13) 

Combining Equation (10.5) and Equation (10.13) H  can then be determined from 

1 exp( ) 0.05p
SH  (10.14) 

The result is

ln(0.05)
p
S

H  (10.15) 

Turning the attention to Part B, it is first convenient to isolate the Part B stress 
from the stress strain curve obtained in the laboratory test. Equation (10.9) 
produces a deviatoric stress state with the transverse stresses 1

2 3 12B B B

even for uniaxial deformation [11]. However, in uniaxial tension the total 
transverse stress should be zero, i.e 2 2 0A B .The transverse stresses in Part B 
must thus be counteracted by Part A 

2 3 2 1
1
2A A B B  (10.16) 
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This again leads to a change in 1A , which in next turn affects the Raghava 
equivalent stress A  of Equation (10.4). In the elastic regime, the counteracting 
stress from Part B is neglected. Taking the yield criterion into account in the plastic 
regime, Hovden [11] expressed the stress in Part A as 

2
1 1

1 1

1
2A B

k
k k

 (10.17) 

where 1k  and 2k  are functions of 

1 2
1 1 1 1,

2
k k  (10.18) 

Hovden further assumed  in Equation (10.17) to be defined by the previously 
identified parameters. This stress can be denoted par

A . The observed stress test  in 
the uniaxial tension test can then be expressed as the sum of the longitudinal Part A 
and Part B stresses [11] 

2
1 1 1

1 1

1
2

par
test A

A B B
k

k k
 (10.19) 

From Equation (10.19) the Part B stress can be isolated and employed for 
determination of the Part B parameters [11] 

1
1

1 2 1

2
2

par
test A

B
k

k k k
 (10.20) 

There is no analytical expression of the inverse Langevin function of Part B. An 
approximation proposed by Padé [14] reads 

2
1

2

3( )
1

xx x
x

L  (10.21) 

By using Equation (10.21) and assuming a uniaxial stress state and transverse 
isotropy, the longitudinal stress 1B  of Part B can be expressed by the initial 

stiffness RC   of Part B and the locking stretch L  [11]. 

5 2 2
2 23

1 1 22 2

32
9

L
B R

L

J C  (10.22) 
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In this expression J  is the Jacobian determinant det( )J F  and 1  and 2  are the 
stretch ratios in the longitudinal and transverse directions respectively. The 

effective distortional stretch is 
2
3 2 21

1 23 ( 2 )J .

The locking stretch L  can also be expressed by a locking strain L   [11]  

1 4 2exp (1 ) 2exp (1 )
3 3 3L L L  (10.23) 

The retraction ratio  represents the average value of the ratio between 
longitudinal and transverse strain 2 1/  in the plastic domain. The locking strain 

L   represents the upper limit strain of the progressive strain hardening of the 
polymer. It is not straightforward to determine. However, from examination of the 
stress-strain curves a trial value of L  can be found. Then, by Equation (10.23) also 

a trial value for L  is found. The retraction ratios found by Hovden [11] of  = 
0.32 and  = 0.47 are used in turn for PVC and HDPE. Applying the trial values, 

both RC  and L  are found by curve fitting.  

The material parameters determined for the 5 mm plates of mineral filled PVC are 
listed in Table 10.2 while the parameters for 5 mm plates of HDPE are given in 
Table 10.3. Both tables present all 11 material parameters for each material, 
including those found by Hovden [11]. 

Table 10.2 Material parameters for 5 mm thick extruded plates of mineral filled 
PVC.

E [MPa] 0 A [s-1] C T  [MPa] RC [MPa]

1800 0.3 0.00100 0.0700 47.3 4.40 

L S  [MPa] H
1.87 1.3 1.27 38.0 16.0  
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Table 10.3 Material parameters for 5 mm thick extruded plates of HDPE. 

E [MPa] 0 A [s-1] C T  [MPa] RC [MPa]

450 0.4 0.00045 0.1080 12.1 1.20 

L S  [MPa] H
3.00 1.0 1.04 19.0 24.0  

The material parameters found by Hovden [11] for the 10 mm plates of mineral 
filled PVC and HDPE are listed in Table 10.4 and Table 10.5. 

Table 10.4 Material parameters for 10 mm thick extruded plates of mineral filled 
PVC.  The parameters are determined by Hovden [11].

E [MPa] 0 A [s-1] C T  [MPa] RC [MPa]

3000 0.3 0.00100 0.0700 46.8 5.50 

L S  [MPa] H
1.92 1.3 1.27 37.8 15.0  

Table 10.5 Material parameters for 10 mm thick extruded plates of HDPE.  The 
parameters are determined by Hovden [11]. 

E [MPa] 0 A [s-1] C T  [MPa] RC [MPa]

800 0.4 0.00070 0.1080 13.0 1.74 

L S  [MPa] H
7.75 1.0 1.04 23.9 39.6  

The pressure sensitivity  and the plastic dilation parameter  determined for 
materials in the 10 mm plates are chosen also for the 5 mm plates.  The Raghava 
functions defined by  and  are plotted in Figure 10.3  and Figure 10.4. Figure 
10.3  shows the yield surface Af  and the flow potential Ag  of PVC and HDPE in a 
stress space defined by the stress invariants 1I  and 2J . Figure 10.4 represents the 
same functions, but in a principal stress space normalized with respect to T . It is 
clearly seen that PVC requires a higher stress to reach the yield limit in 
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compression than in tension. This is not the case for HDPE. Also in the plastic 
potential there is a clear difference between the two materials. During plastic 
deformation, this leads to different responses of PVC and HDPE because the 
gradients of the potential functions do not have the same directions in stress space. 

Figure 10.3 Raghava yield function Af (solid lines) and potential function Ag
(dotted lines) for PVC and HDPE in the stress space defined by the invariants. 
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Figure 10.4 Raghava yield function Af (solid lines) and potential function Ag
(dotted lines) for PVC and HDPE in a normalized principal stress space. 

A constitutive model for thermoplastics [1] has been introduced. The material 
parameters of the model can be found from uniaxial tension and compression tests. 
Some of the parameters for the 5 mm plates of PVC and HDPE have been 
identified in this chapter. The remaining parameters are taken from Hovden [11] . 
By comparing the stress-strain curves from the tension tests in Chapter 3 with the 
stress-strain curves from the compression tests in Chapter 4, this was done in figure 
4.11, it is seen that the pressure sensitivity coefficients determined by Hovden [11], 
i.e.  = 1.3 for PVC and  = 1.0 for HDPE, fit the two materials well.  

The plastic flow is determined from the gradient of the flow potential Ag . From the 
flow potentials plotted in Figure 10.3, it is seen that also for stress states of 
compression, the direction of the gradient indicates positive volume change. 
However, recall from Chapter 4 that the determination of volume change in the 
compression samples is rather uncertain. New and better compression tests should 
be performed before drawing any conclusions of the accuracy of the prediction of 
volume strain in compression. 
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The calibration method presented herein involves some trial and error when the 
curve fitting was used to find the parameters of Part B. Also, since the choice of 
material parameters of Part A affects the parameters of Part B, some iterations of 
correcting of the parameters of both parts had to be carried out. Different choices in 
the parameter identification process can lead to different combinations that produce 
similar results.  

Another source of error in the calibration is that a uniaxial stress state is assumed. 
The experimental results used for the calibration are not representing a true 
uniaxial stress state since necking occurred during testing. However, the effect of 
this stress triaxiality is assumed to be of minor importance.  

Delhaye [15] proposed a similar analytical procedure of parameter identification as 
done by Hovden [11].  An alternative method is by inverse modelling. Such a 
method has been applied by Polanco-Loria et al. [16].
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The material parameters determined in Chapter 10 for the 5mm thick plates of 
PVC and HDPE are verified by employing the parameters on meshes of simple 
uniaxial tension and compression test specimens. In other words, it is checked 
whether the laboratory tests used for the parameter identification could be 
reproduced by numerical simulations. 

The constitutive model described in Chapter 10 has been confirmed to predict the 
behaviour of uniaxial tension  and compression tests of polymer materials in a 
good way [1, 2]. The uniaxial deformation of specimens cut out from 10 mm thick 
sheets of mineral filled PVC and HDPE was predicted by numerical simulations by 
Hovden [1] by employing the material parameters determined for these materials, 
listed in Table 10.4 and Table 10.5.  Delhaye [2] also achieved good results when 
using the same constitutive model, though with different material parameters, in 
the prediction of uniaxial response of particle-reinforced polypropylene. This 
chapter aims to check whether the material parameters for the 5 mm plates of PVC 
and HDPE, determined in Chapter 10, can reproduce the response of the uniaxial 
tensile tests from Chapter 3 and the uniaxial compression tests in Chapter 4.  
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11.2.1MESH
The finite element model of the uniaxial tensile specimen is shown in Figure 11.1. 
It was created to represent the tensile specimens used in the experimental tests 
presented in Chapter 3. The left and the right ends were modelled as rigid bodies. 
The mesh consists of 5 elements over the thickness, 12 elements in the width 
direction and 52 elements along the gauge part. Eight node solid elements with 
reduced integration [3] were used in the numerical simulations. To avoid 
unphysical energies from hourglass modes, a stiffness based hourglass control was 
employed. Mass scaling by a factor of 103 was used in the simulations in order to 
reduce the computation time. The elements marked in grey in Figure 11.1 were 
modelled as rigid material. After the simulations it was checked that the kinetic 
energy and the hourglass energy was much less than 1% of the total energy in the 
simulation. 

Figure 11.1 Finite element mesh of the uniaxial tensile specimen. 

11.2.2MATERIAL MODEL
The constitutive model proposed by Polanco-Loria et al. [4], as presented in 
Chapter 10 was employed for the materials.  The parameters, determined from the 
response of 5 mm thick extruded sheets of mineral filled PVC and HDPE, are listed 
in Table 10.2 and Table 10.3. 

11.2.3BOUNDARY CONDITIONS
A motion corresponding to 3.3 10 2 mm/s was applied to the right part of the finite 
element mesh modelled as a rigid body. This motion gives the same strain rate as in 
the experiments. The rigid body at the opposite end of the specimen was fixed. 
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11.2.4RESULTS
The force-displacement relationships from the numerical simulations are compared 
with results from experiments in Figure 11.2.  The solid lines represent numerical 
results while the dashed lines represent the results from the laboratory tests. The 
numerical simulation captures the initial stiffness and the peak force for PVC. The 
softening, however, occurs more sudden in the laboratory test than in the numerical 
simulation. Regarding the HDPE, the initial stiffness is somewhat softer in the 
experimental test than what is predicted by the simulation. The peak force is well 
captured also for the HPDE. During cold-drawing of HDPE there is some increase 
in the force level predicted by the numerical model while that from the experiment 
remains constant.  

Figure 11.2 Force-displacement curves from finite element simulations and 
experimental tests. 
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11.3.3BOUNDARY CONDITIONS
A velocity corresponding to 5 10 3 mm/s was applied the upper compression 
platen while the lower platen was fixed. This was to recreate the deformation 
imposed to the test coupon in the test. The contact formulation contact-automatic-
one-way-surface-to-surface in LS-DYNA [3] was used to model the contact 
between the compression platens and the test specimen. Static and dynamic friction 
coefficients  of 0.1, 0.05 and 0.01 were used in the contact formulation between 
the platens and the test coupon. After the simulations it was checked that the 
sliding energy remained positive during the simulations. 

11.3.4RESULTS
The force-displacement curves from the numerical simulations of PVC are 
compared with results from experiments in Figure 11.4. The initial response is 
reasonable well predicted. However, the post-yield response is overestimated. 

Figure 11.4 Force-displacement curves from finite element simulations and 
experimental test of PVC in compression. 
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Figure 11.5 shows the force-displacement curves from the HDPE simulations 
together with the response from the experimental test. The initial response is well 
captured by the numerical model. For large deformations there is some deviation. 

Figure 11.5 Force-displacement curves from finite element simulations and 
experimental tests of HDPE in compression.

The constitutive model [6] is well capable of predicting the main features of the 
response in uniaxial tension of both the mineral filled PVC and the HDPE. This 
can be seen in Figure 11.2. Also in compression, the response of HDPE is well 
described. For PVC, the initial response is reasonably well captured. However, we 
see a clear overestimation of the force in the plastic domain.  

The mineral filled PVC is modelled with a plastic dilation coefficient of = 1.27. 
This gives the plastic flow potential shown in Figure 10.3. The predicted flow 
direction is normal to the plastic potential function. From the figure it is seen that 
in any case, also in compression, the constitutive model predicts positive volume 
change. To check whether the overestimation of the force level in the compression 
of PVC, see Figure 11.4, was related to incorrect dilation, additional simulations 
were carried out with = 1. This eliminates any volume change in the numerical 
model. The results from these simulations are plotted in Figure 11.6. Although the 
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post-yield response is better reproduced in Figure 11.6 than in Figure 11.4, it is still 
somewhat overestimated. 

Figure 11.6 Force-displacement curves from numerical simulations of 
compression of PVC without plastic dilation, i.e. = 1. 

The shape of the stress-strain curve in the numerical model is determined from 
tension. In Chapter 4 it was observed that the stress-strain curve for compression 
exhibited a larger stress drop than what occurs in the stress-strain curve for tension. 
To check whether this was caused by the geometrical conditions, from the 
barrelling due to friction between the test coupon and the compression platens, 
Cauchy stress – logarithmic strain curves were computed from the numerical 
results in similar ways as for the test results in Chapter 4. The numerical 
simulations for PVC without plastic dilation, i.e. = 1, were used for this purpose 
to exclude any effects from artificial volume change. The results plotted in Figure 
11.7 show stress-strain curves for PVC modelled with different friction coefficients 

 between the test coupon and the compression platen. The numerical model is 
not able to predict the same stress drop in compression that is observed in 
experimental test, not even with the higher friction coefficients . In fact, the 
stress-strain curve is almost unaffected by .
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Figure 11.7 Cauchy stress vs. logarithmic strain from numerical simulations of 
compression of PVC without plastic dilation, i.e. = 1. Onset of barrelling is 
marked by circles.

The simulations of compression of PVC without any plastic dilation, i.e.  = 1, 
were also used to calculate volume strains in the same manner as in the numerical 
tests in Chapter 4. These volume strains are plotted in Figure 11.8, and they clearly 
show the necessity of reducing the friction between the test coupon and the 
compression platens.  

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

C
au

ch
y 

st
re

ss
 [M

Pa
]

Logarithmic strain

 = 0.1
 = 0.05
 = 0.01

Experiment



221 

Figure 11.8 Logarithmic volume strain from numerical simulations of compression 
of PVC without plastic dilation, i.e. = 1. Onset of barrelling is marked by circles. 

The constitutive model with the parameters determined for 5 mm thick 
plates of mineral filled PVC and HDPE are well able to predict the 
mechanical response in uniaxial tension. 

The material model is well capable of predicting the initial response in 
compression tests of the mineral filled PVC and the HDPE. The post-yield 
behaviour in the mineral filled PVC subjected to compression is somewhat 
overestimated. In the HDPE, it is better captured.  

The stress softening in compression of PVC is not captured by the 
numerical model. Eliminating plastic dilation in the constitutive model or 
reducing friction coefficients does not account for this. 

Numerical simulations of PVC without any plastic dilation shows that the 
volume increase observed in the compression tests in Chapter 4 might be 
due to friction between the test coupon and the compression platens. 
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Numerical simulations of the deformation of biaxial test specimens are carried out 
to check whether the material parameters determined from uniaxial tension and 
compression tests are adequate in a more complex stress state. Force-displacement 
curves and strain fields from the simulations are compared with those from the 
laboratory tests. Thus, the capability of the constitutive model presented in Chapter 
10 is explored through nonlinear finite element analyses of the biaxial tests 
presented in Chapter 7.   

In Chapter 11 it was shown that the constitutive model described in Chapter 10 was 
able to represent the force-displacement curves obtained in uniaxial tension and 
compression tests rather well. This chapter aims to explore whether the material 
model is able to predict the behaviour observed in a biaxial loading case. The 
intended use of this particular constitutive model is for simulations of polymeric 
components for industrial applications. In this perspective, the biaxial tension tests 
are believed to represent realistic loading cases. The tests in Chapter 7 are therefore 
applied in this validation study of the constitutive model. 

The geometry of the mesh, displayed in Figure 12.1, was defined in order to 
describe the geometry of the biaxial tension test specimens presented in Chapter 7. 
Two meshes with three and five elements through the thickness were considered 
for the finite element simulations of equibiaxial loading of cross shaped biaxial test 
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Figure 12.2 Results from numerical simulations of equibiaxial tension tests 
employing meshes with three and five elements through the thickness. 

The material model of Polanco-Loria et al. [1], see Chapter 10, has been employed 
to model the material. The parameters, displayed in Table 10.2 and Table 10.3, 
were determined from the response of 5 mm thick extruded sheets of the mineral 
filled PVC and HDPE. Addressing the pressure sensitivity of the yield surface, it 
should be noted that the mineral filled PVC is modelled with = 1.27 while the 
HDPE is modelled with =1. The yield stress of the PVC is in other words 
pressure sensitive in the material model and the yield stress in HDPE is insensitive 
to pressure. The four clamping areas of the specimen, addressed in dark grey in 
Figure 12.1, were idealized as a rigid material. 

Different biaxial extension ratios B  were simulated by applying different 
velocities yv  and xv  to each of the four rigid clamping areas. The biaxial extension 

ratio is defined as /y xB v v . It is the ratio between the deformation velocities yv

and xv  in the y- and x-directions, i.e. the vertical and the horizontal directions. The 
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values of yv  and xv  used in the simulation corresponded to the velocities from the 

laboratory tests, as listed in Table 7.1. The addressed biaxial extension ratios were 
B = ¼, B = ½, and B = 1. As in the experimental tests yv  varied between the 

different tests while xv  was fixed. Moreover, one of the numerical models was 
deformed in uniaxial tension.  

Figure 12.3 shows results from the simulations together with the tests results 
obtained in Chapter 7 for PVC. Solid lines represent the numerical results while the 
dotted lines address test results. Figure 12.4 expresses the effect of biaxial loading 
mode on the force-displacement curve, in other words how the response in the x-
direction is affected by a change of the deformation in the y-direction. The sub-
figure a) and b) represent the numerical predictions and the laboratory tests in turn. 

It can be seen both from Figure 12.3 a) and from Figure 12.4 that the finite element 
model underestimates the maximum force for the cross-shaped test specimen of 
PVC loaded in uniaxial tension. For the biaxial loading cases, the maximum force 
predicted from the simulation is somewhat higher than the experimental results. 
The model captures that the maximum force is largest when the extension ratio B
is equal to ½ or ¼.

In similar manner as for PVC, numerical and test results for HDPE are displayed in 
Figure 12.5 and Figure 12.6. Again the solid lines in Figure 12.5  represent the 
numerical predictions and the dashed lines refer to the test results from Chapter 7. 
In Figure 12.6, sub-figures a) and b) show numerical and test results in turn. It can 
be seen from the figures that the numerical model underestimates the maximum 
force in all load cases of the HDPE specimens. However, it is captured that the 
specimen loaded with biaxial extension ratio B  = ¼ reaches the highest maximum 
force while the specimen with B  = ½ reaches the second highest one. As 
mentioned in Chapter 7 a hole appeared in the centre of each of the biaxially 
loaded HDPE test specimens in the laboratory tests after some deformation. The 
first visual appearances of the holes in the test specimen centres are marked with 
circles in Figure 12.5 and Figure 12.6 b). These holes were not included in the 
numerical model. However, at this stage the elements in the centre region of the 
model were very thin. The rehardening seen in the numerical simulations and not in 
the laboratory tests might be related to the absent holes. 
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a) b)

c) d)
Figure 12.3 Force-displacement curves for PVC.  a) Uniaxial test on biaxial 
sample. Biaxial tests with b) B = ¼ , c) B = ½ and d) B =1. Solid lines represent 
results from simulations while the dashed lines represent the results from the tests. 

a) b)
Figure 12.4 Force-displacement displacement curves in x-direction for biaxial 
samples of PVC loaded at various extension ratios. a) Numerical simulations. b) 
Experimental tests.
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a) b)

c) d)
Figure 12.5 Force-displacement curves for HDPE.  a) Uniaxial test on biaxial 
sample. Biaxial tests with b) B = ¼, c) B = ½ and d) B =1. Solid lines represent 
results from simulations while the dashed lines represent the results from the tests. 
The appearances of holes in the tests are marked with circles.

a) b)
Figure 12.6  Force-displacement curves in x-direction for biaxial samples of 
HDPE loaded at various extension ratios. a) Numerical simulations. b) 
Experimental tests. The appearances of holes in the tests are marked with circles.
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The Green strain fields xE and yE  from numerical simulation of the PVC 

specimen loaded in equibiaxial tension, i.e. B = 1, are plotted in Figure 12.7. 
Similar strain fields, xE and yE , from laboratory tests are shown in Figure 12.8. 

The laboratory test data was obtained by digital image correlation (DIC). The 
agreement between the numerical predictions and the laboratory tests seem to be 
good apart from the somewhat stronger strain localization in the centre region of 
the test specimens seen in sub-figures b) and c). As in the laboratory tests, large 
deformations in the finite element model lead to strain localization and necking of 
the X-shaped centre region.  The strain levels are captured reasonably well. 
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 a) b) c) 
Figure 12.7 Green strain fields xE and yE  obtained from numerical simulation of 

PVC subjected to equibiaxial tension at a) 2.4 mm , b) 3.1 mm and c) 5.9 mm 
deformation in the x- and y-direction 
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 a) b) c) 
Figure 12.8 Green strain fields xE  and yE  obtained from test of  PVC subjected to 

equibiaxial extension, i.e. B = 1, at a) 2.2 mm b) 3.0 mm and c) 5.7 mm 
deformation in the x- and  y-direction . 

The Green shear strain field xyE , also from the simulation of the biaxial sample 

with B = 1,  is plotted in Figure 12.9. Corresponding strain fields from the 
laboratory test are plotted in Figure 12.10. The shear strains seem to be in the same 
order in the two figures. Again, the X-shape of the localized zone can be 
recognized, and the width of this zone is approximately the same in both figures. 
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 a)  b)  c)
Figure 12.9 Green shear strain fields xyE  obtained from numerical simulation of 

PVC subjected to equibiaxial tension at a) 2.4 mm , b) 3.1 mm and c) 5.9 mm 
deformation in the x- and y-direction. 
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a) b) c) 
Figure 12.10 Green shear strain field xyE  obtained from test of  PVC subjected to 

equibiaxial extension, i.e. B = 1,at a) 2.2 mm b) 3.0 mm and c) 5.7 mm 
deformation in the x- and  y-direction . 

Figure 12.11 displays the Green strain fields xE and yE  obtained from numerical 

simulation of the HDPE specimen loaded with B = 1. Strain fields of from the 
corresponding laboratory test are shown in Figure 12.12.  In the numerical model 
of HDPE as well as in the laboratory tests, the characteristic X-shaped region of 
strain localization can be recognized. Note that the last strain field of HDPE in 
Figure 12.11  c) the strain field at 12.5 mm deformation in x- and y-direction is 
plotted with a colour bar with a higher span in values than used in the strain field in 
Figure 12.12. Due to distortion of the speckle pattern, the DIC software could not 
track the information at all points in the laboratory test specimen. Therefore some 
information is missing. It can be assumed that the lacking strain values are 
somewhat higher than indicated by the corresponding colour bar. 
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 a) b) c) 
Figure 12.11 Green strain fields xE and yE  obtained from numerical simulation of 

HDPE subjected to equibiaxial tension at a) 7.1 mm, b) 9.3 mm and c) 12.5 mm 
deformation in the x- and y-direction. 
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 a) b) c) 
Figure 12.12 Green strain fields xE  and yE  obtained from test of  HDPE 

subjected to equibiaxial extension, i.e. B = 1,at a) 6.8 mm b) 9.0 mm and c) 12.8 
mm deformation in the x- and  y-direction . 

Figure 12.13 displays the Green strain fields xyE from the numerical simulation of 

the biaxial HDPE specimen deformed with B = 1. The corresponding experimental 
strain fields are shown in Figure 12.14. There is a good agreement between the two 
figures. Note that the colour bars in Figure 12.15 c) and Figure 12.16 c) are 
different.
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 a) b) c) 
Figure 12.13 Green strain fields xyE  obtained from numerical simulation of 

HDPE subjected to equibiaxial tension at a) 7.1 mm, b) 9.3 mm and c) 12.5 mm 
deformation in the x- and y-direction. 
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a) b) c) 
Figure 12.14 Green shear strain field xyE  obtained from test of  HDPE subjected 

to equibiaxial extension, i.e. B = 1, at a) 6.8 mm b) 9.0 mm and c) 12.8 mm 
deformation in the x- and  y-direction . 

The Green strains xE  and yE taken from the centre point are chosen to represent 

how the evolution of strains is affected by the biaxial extension ratio B . The shear 
strains are small at this location, and are therefore not plotted in these figures. 
Figure 12.15 represents the strains in the PVC specimens. Numerical results are 
plotted on the left hand side in sub-figure a) and c). For comparison, the test results 
from Chapter 7 are plotted on the right hand side in sub-figure b) and d). For values 
of xE  below 1, the numerical and the experimental results are comparable. For 
larger strains, the deviation is larger. This may be related to the distortion of the 
speckle pattern in the laboratory test causing difficulties for the DIC-software. An 
up-turn in xE  is seen at about 3 mm deformation in the x -direction both in the 
numerical simulations and the laboratory tests. The strains yE  are reasonably well 

predicted by the numerical simulation. The negative yE produced in the uniaxial 

tests, as discussed in Chapter 7, is also captured by the numerical simulations. 
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a) b)

c) d)

Figure 12.15 Green strain xE  and  yE  taken from the centre point of the biaxial 

specimens of PVC as function of displacement in x-direction: a) xE  from 
numerical simulation, b) xE  from the test, c) yE  from numerical simulation and d) 

yE  from the test. 

Figure 12.16 displays the Green strains xE  and yE taken from the centre point of 

the HDPE specimens. Again, numerical results are displayed on left hand side in 
sub-figures a) and c). The test results from Chapter 7 are displayed on the right 
hand side in sub-figure b) and d) for comparison. As mentioned before, the DIC-
software could not follow the strains for large deformations because of distortion of 
the speckle pattern. For deformations in the x -direction lower than 8 mm, the 
strains in the centre point are captured in a relatively good way by the numerical 
model. Also for the uniaxial deformation of HDPE it is captured that negative yE

is produced. Moreover, in the laboratory tests it was seen that the uniaxially 
deformed specimens of both PVC and HDPE started to buckle after some 
deformation. The same could be observed in the numerical models.  
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a) b)

c) d)

Figure 12.16 Green strain xE  and  yE  taken from the centre point of the biaxial 

specimens of HDPE as function of displacement in x-direction: a) xE  from 
numerical simulation, b) xE  from the test, c) yE  from numerical simulation and d) 

yE  from the test.

The constitutive model [1] described in Chapter 10 with parameters determined 
from uniaxial tension and compression tests was employed to predict the 
mechanical response of PVC and HDPE in biaxial tension. The purpose was to 
evaluate the material model in a deformation state different from those used as a 
basis for the parameter identification. The biaxial tests presented in Chapter 7 are 
relevant for such a validation.  

In particular, validation of the pressure-dependent Raghava yield criterion was 
addressed in this study. In that perspective, the main difference between the two 
materials is the pressure sensitivity.  The mineral filled PVC was modelled with 
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= 1.3 in the yield function to incorporate pressure sensitivity of the yield surface.  
HDPE, on the other hand, was modelled with = 1.0, which corresponds to the 
von Mises yield criterion. Another main difference between the two materials is 
that the PVC exhibits stress softening after reaching the yield stress while HDPE 
does not. The numerical analyses of the biaxial tests slightly overestimate the force 
level for PVC, while for HDPE the force level is somewhat lower in the 
simulations than in the tests. However, the main features of the behaviour observed 
in the test seem to be captured by the numerical model.  

The model predicts that the specimens deformed at B  = ½ and B  = ¼ reach about 
the same force level in PVC. With respect to the strain state at the centre point, this 
prediction is in accordance with the shape of the yield surface employed for this 
material, see Figure 12.17. According to the yield surface, a higher value of the x-
direction stress can be obtained in uniaxial tension (corresponding to the horizontal 
axis) than for equibiaxial tension (corresponding to the dashed line in the figure).  

Figure 12.17 Yield surface Af  and plastic potential Ag ,  plotted in the principal 
stress space, employed for the PVC and the HDPE in the numerical model.  

The maximum force in the equibiaxial test of PVC is overestimated by the 
numerical model. The reason may be that there seem to be some strain localization 
in the experimental test that is not captured by the numerical simulation. This can 
be seen by comparing the strain field from the simulations of PVC, see Figure 12.7, 
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with the strain fields from experimental tests shown in Figure 12.8.  By 
examination of the yield surface used for modelling of PVC, see Figure 12.17, it 
would be expected that the peak load in uniaxial tension is higher than the one in 
equibiaxial tension. Due to the transverse compression at the centre of specimen 
subjected to uniaxial loading, however, the stress state in this specimen is not 
uniaxial. Thus, the location on the yield surface corresponding to this stress state is 
not on the x-axis of the yield surface in the principal stress space but slightly 
below. Figure 12.15 shows that at the centre of the specimen, the ratio /x yE E  at 

10 mm deformation can roughly be estimated to –6.3 and –5.9 for the experiments 
and simulations, respectively. This also suggests that the corresponding stress state 
is somewhere within the fourth quadrant of the yield surface in the principal stress 
space. The ultimate rupture of the specimens was not captured in the simulation 
because no failure criterion was employed in the numerical model. 

Figure 12.6 b) shows that there is not much difference in the maximum force level 
reached in the uniaxial test and the equibiaxial test of HDPE. This is captured well 
by the numerical model, see Figure 12.6 a). Also for HDPE the intermediate 
extension ratios result in a larger maximum force in the x-direction in the tests as 
well as in the numerical analyses. In particular, the test deformed at B  = ¼ reaches 
the highest force level both in the test and the analyses. The drawing of the centre 
region of the HDPE specimens makes the specimens very thin. In the laboratory 
tests, this thinning leads to creation of holes in the three biaxial tests on HDPE. 
This hole-growth is not included in the model. However, the elements in the 
numerical model in this region are extremely thin at this stage. Even though some 
rehardening is observed in the global response of the numerical simulations, the 
response is still quite similar to the one observed in the experiments some time 
after the hole initiation. Compression could be observed also at the centre of the 
HDPE specimen tested in uniaxial tension, see Figure 12.16. It is seen that the ratio 

/x yE E  at 10 mm deformation is around –3.8 for both experiment and simulation. 

Due to the comprehensive thinning of this section, the load-bearing capacity might 
be reduced so much that the global response of the specimen is not affected by the 
transverse compression in the same manner as in the case of PVC. Modelling this 
particular HDPE with a von Mises yield criterion seems to be in reasonable 
accordance with the experimental results. 

Comparing the strain fields from the simulations of both materials with the strain 
fields from the tests, see Figure 12.7 to Figure 12.14, it is seen that there is a 
reasonably good agreement between the experimentally and numerically obtained 
strain fields. Some information is lost in the strain fields from the laboratory test of 
HDPE due to large deformations and distortion of the speckle pattern used for 
digital image correlation. However, the blank spots in the plots indicate that the 
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local strain values are rather high. This is confirmed in the strain fields obtained 
from the numerical simulations. 

From Figure 12.15 and Figure 12.16 it can be seen that the Green strains at the 
centre points of the specimens found from the experiments and the numerical 
simulations are comparable. These plots also show that the model is able to predict 
the earlier localization of strains for PVC compared with HDPE.   

Addressing the post yield behaviour, it can be seen from Figure 12.3 and Figure 
12.4 that there is some mismatch between experiments and simulations after onset 
of yielding in PVC, especially for the uniaxially loaded specimen. In the 
simulations, the load drop is less pronounced than in the experiments. This might 
be related to the plastic potential Ag . If the plastic dilation is overestimated, the 
load drop will be too small. 

It is found that the constitutive model proposed by Polanco-Loria et al. [1]  
is capable of describing the response of the mineral filled PVC and the 
HDPE in biaxial tension with good accuracy.  

The 11 parameters in the material model determined from uniaxial tension 
and compression tests are adequate for describing a biaxial load case. This 
facilitates an industrial use of the model. 
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[1]  M. Polanco-Loria, A.H. Clausen, T. Berstad, O.S. Hopperstad. Constitutive 
model for thermoplastics with structural applications. International
Journal of Impact Engineering, 37 (2010), 1207-1219. 
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This chapter presents results from numerical simulations of the behaviour of the 
axisymmetric notched tensile bars from Chapter 8. This numerical study is carried 
out to check whether the constitutive model, employing a Raghava yield surface 
and flow potential, can predict the response of the polymers under triaxial stress 
state. In particular, the prediction of yield stress and volume change is discussed. 

The previous chapters have shown that the material model of Polanco-Loria et al. 
[1] with parameters calibrated from uniaxial tension and compression tests is 
capable of describing the behaviour of the polymers under uniaxial and biaxial 
stress states. This chapter is concerned with how the material model represents 
triaxial stress states. As described in Chapter 8, experimental tests have been 
performed on axisymmetric notched tensile bars with notches of different sizes. 
The current chapter employs the material model in numerical simulations of the 
behaviour of the test specimens to see how well the response is captured. The 
results from the numerical simulations are compared with the experimental results 
to check the agreement. 

Figure 13.1 shows outlines of the five mesh geometries employed in this study. 
The figure displays the sketches used to create an axisymmetric solid from 2D 
elements. Four node axisymmetric elements with reduced integration together with 
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a stiffness based hourglass control were employed to carry out the simulations [2]. 
Mass scaling of a factor of 106 was used to decrease the simulation time. After the 
simulations it was controlled that the hourglass energy and the kinetic energy were 
much less than 1% of the total energy. Since large deformations were expected in 
the notch, this region was defined by smaller elements, as seen in Figure 13.2. 
Across the minimum cross section 20 elements were used. This corresponds to the 
distance 0a  in Figure 13.2. The part of the sample located 1 mm to each side of the 
minimum cross section was divided into 40 elements in the longitudinal direction. 
This corresponds to the distance 0L  in Figure 13.2 and the distance used for axial 
strain measurements in the laboratory tests in Chapter 8. 

a) b) c) d) e) 
Figure 13.1 The geometries of a) the smooth test specimen, and test specimens 
with initial notch radii 0R  equal to b) 20 mm, c) 5 mm, d) 2 mm and e) 0.8 mm. 



Figure 13.
0R = 5 mm

The materi
describing
determined
mineral fil
respectively
dilation, it 
The pressu
introduces
sensitivity 
yield surfa
which is c
respectively
both mater
change of v

2 Example o
m. The height 

ial model o
the materi

d from uniax
lled PVC an
y. Since thi
is worth pa

ure sensitivit
pressure sen
is excluded 

ace. The plas
controlled b
y. This mean

rials. Howev
volume is mi

of mesh refin
of the area w

f Polanco-L
ial behaviou
xial tension 
nd HDPE [
is study foc
aying attentio
ty parameter

nsitivity in PV
by setting 
stic dilation 

by . For 
ns that the m

ver, for HDP
inor.

nement in the
with the fines

Loria et al. 
ur in this 
and compre
[3] are give
cuses on the
on to the va
r , definin
VC by havin
 equal to 1.
is given by
PVC and H

material mod
PE  is clos

e notch of an
st mesh is 0L

[1], see Cha
study. The

ssion tests o
en in Table 
e onset of y
alues of the 
ng the shap
ng a value of
.0 and thereb

y the shape o
HDPE is
del predicts 
se to unity a

n axisymmetr
0 = 2 mm.

apter 10, wa
e material 
of the 10 mm

10.4 and T
yielding and 

- and -
pe of the yie
f 1.3. In HDP
by defining a
of the plasti
set to 1.27

some plastic
and therefore

247 

ric bar with 

as used for 
parameters, 
m sheets of 
Table 10.5, 

the plastic 
-parameters. 
eld surface, 
PE pressure 
a von Mises 
ic potential, 
7 and 1.04, 
c dilation in 
e the plastic 



248 

The nodes facing the positive and negative z-direction at each end of the mesh were 
applied a prescribed motion of 0.02 mm/s in the direction they were facing. When 
the global displacement in the numerical simulations has passed about 1/3 of the 
global displacement at fracture in the experiments, the simulations were stopped. 
Numerical simulations of the specimen that did not fracture were carried out to 
approximately the same global deformation level as in the experiments.  

With the purpose of comparing the results from the numerical simulations with the 
results from the experimental tests in Chapter 8, some of the same measures were 
extracted. These measures were the length L  spanning over the root of the notch, 
the minimum cross section radius a  and the global displacement and force. Like in 
the experimental tests, the initial values of L  and a  are 0L = 2 mm and 0a = 3 mm. 
Further average stresses and strains were computed in similar manner as for the 
experimental tests. Thus, the average axial strain from the simulation was 
calculated by  

0

lnz
L
L

 (13.1) 

The average radial strain was calculated from the radius a  as 

0

lnr
a
a

 (13.2) 

The net axial stress was found from dividing the applied force F by the actual 
cross section area 

2z
F
a

 (13.3) 

The plastic deformation gradient pF was extracted from the 20 elements defining 
the minimum cross section.  It was used to find the plastic volume strain p

v  over 
the cross section 
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ln detp p
v F  (13.4) 

This made it possible to plot the radial distribution of plastic volume strain p
v   for 

several deformation levels.  

Finally, the stress triaxiality ratio * , as defined as in Chapter 8, is 

* 1

2

/ 3
3

I
J

 (13.5) 

The data required to plot *  over the cross section was extracted in terms of 
pressure, 1 / 3I , and von Mises stress, 23J , as provided by LS-DYNA from the 

20 elements in the minimum cross section. 

In the following, results from the numerical simulations will be presented together 
with experimental results from Chapter 8. Results from the numerical simulations 
will be displayed on the left hand side in sub-figures a) and the laboratory test 
results will be included on the right hand side in sub-figures b). 

The force-displacement curves from simulations and laboratory tests are plotted in 
Figure 13.3 for PVC and Figure 13.4 for HDPE. The response of the smooth PVC 
specimen and the specimen with 0R = 20 mm seems to be well captured by the 
finite element models. For the specimens with smaller notch radius, on the other 
hand, it is seen that the maximum force level in PVC is overestimated. The PVC 
specimens from the tests all reach about the same maximum force level. The 
numerical simulations, on the other hand, predict a higher maximum force for the 
specimens with smaller notch radius. For the HDPE the numerical model generally 
overestimates the maximum force. However it is captured that the specimen with 
smallest notch radius reaches the highest maximum force while the smooth 
specimen reaches the lowest. 
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a) b) 

Figure 13.3 Force-displacement curves for PVC from a) numerical simulations 
and b) experimental tests. 

a) b) 

Figure 13.4 Force-displacement curves for HDPE from a) numerical simulations 
and b) experimental tests. 
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of the notch radius. The experimental test results are different; all notched 
specimens reach about the same peak stress independent on the notch size. 

In the experimental test, the smooth HDPE specimen experienced severe strain 
localization, maybe due to an uneven lathe surface finish. This strain localization is 
not captured in the numerical model. Therefore, the local strains in the numerical 
model ceases at a lower level than in the experiment, even though they had the 
same global displacement. The response of the HDPE specimen with 0R = 20 mm 
in Figure 13.6 a) seems to reproduce the experimental observations in sub-figure b) 
rather well, although both the stress and the strain level are somewhat 
overestimated. Worse is the response estimation of the two specimens with the 
smallest notch radii; 0R = 2 mm and 0R = 0.8 mm. Both specimens show a 
softening behaviour in the experimental test that is not captured by the numerical 
simulations. 

a) b) 

Figure 13.5 Net axial stress-strain curves for PVC from a) numerical simulations 
and b) experimental tests. 
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a) b) 

Figure 13.6 Net axial stress-strain curves for HDPE from a) numerical simulations 
and b) experimental tests. 
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Chapter 8.  

Table 13.1 Rate of average axial strain at maximum force in simulations of PVC 
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 PVC smooth PVC-20 PVC-5 PVC-2 PVC-08 

Z  [ 1s ] 0.00096 0.0087 0.015 0.019 0.017 

Table 13.2 Rate of average axial strain at maximum force in simulations of HDPE 
specimens.

 HDPE smooth HDPE-20 HDPE-5 HDPE-2 HDPE-08 

Z  [ 1s ] 0.0091 0.0068 0.010 0.012 0.011 
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Figure 13.7 and Figure 13.8 display contour plots of the equivalent plastic strain as 
provided by LS-DYNA in the notch in PVC and HDPE specimens from numerical 
simulations. The plots are captured at net axial strain levels 0ln( / )L L  similar to 
the strain levels in the experimental tests displayed in Figure 9 and Figure 10 in 
Chapter 8. The contour plots have been mirrored about the symmetry axis for better 
visualization.

From the contour of the specimens it can be seen that some of the main 
characteristics of the deformation are captured. Both in the numerical simulations 
and the experimental tests, a local neck in some cases appeared inside the pre-
machined neck. Also the cold-drawing seen in the experimental test as elongation 
of the most central region of the neck can be observed in the numerical results. 
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a) b) c) 
Figure 13.7 Contour plots of plastic strain from simulations of the PVC specimens. 
The columns a), b) and c) refer to different deformation levels. 
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Figure 13.8 Contour plots of plastic strain from simulations of the HDPE 
specimens. The columns a), b) and c) refer to different deformation levels. 



256 

The axial force is plotted against the average radial strain from both numerical 
simulations and experiments in Figure 13.9 and Figure 13.10. These figures 
provide a more precise representation of the difference between the numerical and 
the experimental data, since these quantities are more directly comparable. The 
force is taken directly from the numerical simulations and the tensile testing 
machine without any kind of conversion. The average radial strain is determined 
from the radius measured exactly in the minimum cross section of both the 
numerical models and the test specimens. It becomes clear also here that the 
material model is better for HDPE than for PVC at predicting the behaviour before 
localization.

a) b) 

Figure 13.9 Force against average radial strain for PVC in a) numerical 
simulations and b) experimental tests. 
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a) b) 

Figure 13.10 Force against average radial strain for HDPE in a) numerical 
simulations and b) experimental tests. 

Figure 13.11 and Figure 13.12 show average radial strain against average axial 
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the experiments. This means that the estimated increase of volume is too small in 
the finite element analyses. 

a) b) 

Figure 13.11 Average radial strain against average axial strain for PVC in a) 
numerical simulations and b) experimental tests. 
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a) b) 

Figure 13.12 Average radial strain against average axial strain for HDPE in a) 
numerical simulations and b) experimental tests. 
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For all specimens, except those with the smallest notch, both the stress triaxiality 
*  and the plastic volume strain p

v  have their largest value in the centre of the 
specimen. In the specimens with 0R = 0.8 mm the maximum values occur closer to 
the root of the notch. 

In the numerical simulations, the plastic dilation parameter is  = 1.27 for PVC 
and  = 1.04 for PVC. As a result, the volume strain in the simulations of PVC is 
in general higher than in the simulations of HDPE even though the level of average 
axial strain z  is higher in HDPE. 

a) b) 
Figure 13.13 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of PVC model with 0R = 20 mm. The solid 
lines represent z = 0.040, the dashed lines z =0.13 and the dotted lines z =0.99. 

a) b) 
Figure 13.14 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of PVC model with 0R = 5 mm. The solid lines 
represent z = 0.054, the dashed lines z =0.18 and the dotted lines z =0.47. 
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a) b) 
Figure 13.15 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of PVC model with 0R = 2 mm. The solid lines 
represent z = 0.038, the dashed lines z =0.18 and the dotted lines z =0.47. 

a) b) 
Figure 13.16 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of PVC model with 0R = 0.8 mm. The solid 
lines represent z = 0.054, the dashed lines z =0.18 and the dotted lines z =0.47. 
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a) b) 
Figure 13.17 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of  HDPE model with 0R = 20 mm. The solid 
lines represent z = 0.15, the dashed lines z =0.79 and the dotted lines z =1.6.

a) b) 
Figure 13.18 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of  HDPE model with 0R = 5 mm. The solid 
lines represent z = 0.13, the dashed lines z =0.52 and the dotted lines z =1.6.

5 10 15 20
0

0.5

1

Element number from centre axis

*

5 10 15 20
0

0.05

0.1

0.15

0.2

Element number from centre axis

vp

5 10 15 20
0

0.5

1

Element number from centre axis

*

5 10 15 20
0

0.05

0.1

0.15

0.2

Element number from centre axis

vp



262 

a) b) 
Figure 13.19 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of  HDPE model with 0R = 2 mm. The solid 
lines represent z = 0.24, the dashed lines z =0.75 and the dotted lines z =1.5.

a) b) 
Figure 13.20 Radial distribution of a) stress triaxiality ratio and b) plastic volume 
strain in the minimum cross section of  HDPE model with 0R = 0.8 mm. The solid 
lines represent z = 0.23, the dashed lines z =0.38 and the dotted lines z =0.95.   
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Employing the material model of Polanco-Loria et al. [1], the deformation of 
axisymmetric notched tensile bars was studied numerically. The results from the 
simulations were compared with the experimental results presented in Chapter 8. 
The stress triaxiality factor *  in the axisymmetric notched tensile bars is shown to 
increase with the reduction of notch radius R , see Figure 13.13 to Figure 13.20.  

The numerical simulations predict an increase in maximum average axial stress for 
specimens with higher triaxialities, see Figure 13.5 a) and Figure 13.6 a). This is 
not in accordance with the results from the experiments presented in the 
corresponding sub-figures b). It seems that a pressure sensitivity parameter of =
1.3 for PVC does not reduce the yield stress in the constitutive model sufficiently. 
For HDPE, the choice of = 1 seems to fit better. However, in both materials the 
stress triaxiality that increases with decreasing notch radius R  appears to introduce 
some damage effect that is not captured in the constitutive model.  For the PVC the 
damage might affect the value of obtained maximum force, while for HDPE it 
becomes important after the maximum force level is reached. Also Figure 13.9 and 
Figure 13.10, representing the axial force plotted against average radial strain, 
support the impression that there might be some damage in the experiments that is 
not taken into account in the numerical simulations.  

To check whether the differences observed in the maximum force level might be 
related so strain rate, the net strain rate z  at the point of maximum force was 
found for the numerical simulation of each test. The values presented in Table 13.1
and Table 13.2 are similar to those found in the experimental tests, as seen in 
Chapter 8. Therefore, the mismatch in the maximum force level can probably not 
be ascribed to differences in strain rate. 

The experimental tests show that the plastic dilation increases with the stress 
triaxiality in both materials. This is not well captured in the numerical simulations, 
as seen from the contraction of the minimum cross section plotted in terms of radial 
strain in Figure 13.11 and Figure 13.12. 

The material model used in the simulations [1] employs the pressure dependent 
Raghava yield criterion. It is a function of the first principal stress invariant 1I  and 
the second deviatoric stress invariant 2J , where the shape is controlled by the 

pressure dependency parameter . Since the stress triaxiality *  is the ratio 
between the two invariants it serves as an indication of the location on the yield 
surface. For PVC, modelled with = 1.3, a stress state of high triaxiality reduces 



265 

the yield stress measured in terms of the peak of average axial stress z . For 
HDPE with = 1, the value of 1I  does not affect yielding. 

In Chapter 6 it was suggested that the peak stress in the mineral filled PVC can be 
interpreted as a “matrix - particle debonding stress” rather than a “yield stress of 
the PVC matrix”.  Micrographs of HDPE reveal that also this material contains 
some amount of particles, although it is much less than the PVC. In this perspective 
it is possible to imagine that a high triaxial stress state stimulates the process of 
particle debonding. Moreover, such a stress state most probably enhances the void 
growth around the debonded particles. Therefore, the numerical results might have 
been better by using a yield criterion and a plastic potential with blunter shape in 
the domain of hydrostatic tension. Then the yield stress would have been lower for 
higher stress triaxialities. Also, the gradient of the plastic potential would produce 
higher volume strains. 

For the modelling of the mineral filled PVC material, a softening function was 
employed by using that T S . This softening can be interpreted as the reduction 
of strength in the material due to damage. It might have been an interesting 
modification of the material model to control, or just scale, the softening by the 
volumetric strain instead of the equivalent plastic strain. However, this would not 
affect the prediction of the yield stress, i.e. the debonding stress, only the 
subsequent behaviour.  

Another approach of modelling the behaviour of these materials subjected to 
triaxial stress could have been to use a material model based on the mechanisms of 
void growth. Boisot et al. [4] report good numerical results from employing a 
modified Gurson-Needleman-Tvergaard model on axisymmetric notched 
specimens of polyamide 11 with an initial porosity of 1%. Especially when it 
comes to peak stress, stress softening and the stress plateau, they state that their 
results are in good agreement with experimental data. However, such a material 
model requires a more complicated calibration process including determination of 
the initial porosity. The model is therefore considered as less attractive for 
industrial applications. 

In the experimental tests there seem to be some increasing damage with 
stress triaxiality that affects the volume change and the maximum force 
level. This is not captured by the numerical simulations. 
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Experimental and numerical studies of the large-deformation behaviour of 
thermoplastics have been addressed in this thesis. The work is a part of a more 
comprehensive research project about constitutive modelling of thermoplastics for 
industrial applications.   

Within the framework of the polymer research project, two types of thermoplastic 
polymers, a PVC and a HDPE, are addressed. These two materials were chosen 
because they are fundamentally different. The PVC is an amorphous polymer filled 
with mineral fillers by a volume fraction of about 0.2. The HDPE is semicrystalline 
and contains much less particle fillers.  

Through the research project, the behaviour in uniaxial tension and compression 
has already been well studied and reported for the PVC and the HDPE [1, 2]. The 
two materials have different mechanical behaviour. The Young’s modulus and the 
yield stress for the PVC are somewhat higher than for the HDPE. From tension and 
compression tests it has been found that the yield stress of PVC is pressure 
sensitive, while that of HDPE is not. Moreover, the PVC dilates markedly during 
uniaxial tension, while the dilation in the HDPE is almost zero. After the onset of 
yielding a stress drop is observed on the stress-strain curve of the PVC. The HDPE 
has no such stress drop. Even though the fundamental behaviour of the two 
materials is well known, little has been done to study the behaviour at more 
complex stress states. Furthermore, the mechanisms behind the deformation have 
been paid little attention to.  
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The research group has proposed a constitutive model for thermoplastics for 
industrial applications [3]. In this monograph, the capabilities and the limitations of 
this constitutive model at different stress states have been explored. Moreover, the 
mechanisms behind the deformation characteristics, that are not yet fully 
understood, have been studied. 

It was considered relevant to check how the constitutive model, with parameters 
determined from uniaxial tension and compression tests, was applicable for other 
stress states. To serve as validation, biaxial tension tests of specimens of the PVC 
and the HDPE were carried out, as described in Chapter 7. These tests produced a 
complex biaxial stress state in the centre part of the samples without any distortion 
from contact or friction. Numerical simulations of the behaviour, presented in 
Chapter 12, show that the constitutive model is well capable of predicting the 
maximum level of the force-displacement curves from the experiments. Thus, the 
pressure sensitivity of the onset of yield in the biaxial test specimens is captured by 
the model. Moreover, the strain fields produced in the numerical simulations seem 
to be comparable with those from the laboratory tests. The capability of the 
constitutive model was also checked for triaxial stress states in Chapter 13. This 
was done through numerical simulations of the tests on axisymmetric tensile bars 
with notch reported in Chapter 8. At high stress triaxialities there seem to be some 
damage in the tests that is not captured by the constitutive model. The numerical 
model overestimates the yield stress in the PVC at high stress triaxialities. For 
HDPE the result is somewhat better. However, the volume change observed in both 
materials at high stress triaxialities is not well captured by the numerical model. To 
sum up, it can be concluded that the constitutive model works well for biaxial 
tension while it is less accurate for higher triaxialities. Since polymer components 
are often injection moulded into components with maximum wall thickness up to 3 
mm, it can be argued that the biaxial load case is more relevant. However, it is 
important to know that the constitutive model can have some limitations at highly 
triaxial stress states. 

By employing various experimental test setups and different measurement 
techniques the deformation mechanisms of the PVC and HDPE have been 
investigated. In Chapter 5, addressing loading, storage and reloading of uniaxial 
tension specimens, it was found that the shape of the initial stress-strain curve of 
HDPE is recalled during the second loading cycle. Moreover, the volume change 
remains close to zero. The response of PVC, on the other hand, is softer and the 
stress-softening effect vanishes during the second loading cycle. This result, 
together with the observed plastic dilation and the stress whitening, was interpreted 
as a sign of damage occurring in the material. The damage in PVC was 
investigated on a microscopic level in Chapter 6. It was concluded that debonding 
of mineral particles and subsequent void growth are two damage mechanisms in 



269 

the PVC. This means that the damage cannot be determined by volume strains 
alone. At a certain stress level, the particles detach from the matrix, and the 
material consequently loses 20% of its load carrying cross section. It was further 
suggested that the stress softening effect in the PVC could be a consequence of 
damage. Damage and void growth was also investigated in a numerical study of the 
matrix-particle interaction by the use of unit cell models in Chapter 9. The 
numerical simulations confirmed that debonding and void growth can cause 
volume changes and a stress-drop similar to what is seen in laboratory tests of the 
PVC. In the unit cell study, the macroscopic peak stress of the composite was 
lower than the yield stress of the matrix material. This means that the peak stress 
observed in laboratory test of PVC might be related to debonding of particles. The 
unit cell study confirmed that the subsequent stress drop may be related to the loss 
of strength due to debonding. However, the peak stress and stress drop observed in 
compression call for further investigation. In fact, the stress drop is more intense in 
compression than in tension. The reason for this observation remains to be 
explained. 

It is shown in Chapter 8 that the volume change in both the PVC and the HDPE 
increase with the degree of triaxiality in the stress state. From investigation of 
fractured specimens, it was concluded that void growth had been a comprehensive 
mechanism in both materials. 

Biaxial tension test has been proposed as a validation for the constitutive model. 
Further validation has been carried out on simulations of axisymmetric tensile bars 
with notch. It can be concluded that: 

The constitutive model is well capable of describing the behaviour of the 
PVC and the HDPE in biaxial tension. 

The numerical model does not capture the behaviour of PVC or HDPE at 
high stress triaxialities. This may be related to the enhancement of damage 
in the material at high stress triaxialities. 

Several material test setups for investigation of the large-deformation behaviour of 
polymers have been presented. From the test results, it can be concluded that: 

Damage mechanisms observed in uniaxial tension of the PVC are 
debonding of mineral particles and void growth. These mechanisms lead to 
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volume change. The damage may also contribute to the stress drop on the 
stress-strain curve of the material. 

Void growth is a damage mechanism both in the PVC and the HDPE at 
high stress triaxialities. The volume change in both materials increases 
with the stress triaxiality. Fracture surfaces of the axisymmetric test 
specimens with notch further suggest that void growth and coalescence are 
factors determining the fracture. 

The damage mechanisms in the PVC have been identified as debonding of mineral 
particles and subsequent growth of voids. Thus, it seems reasonable to assume that 
the particle content is a determining factor for the void growth.  It is tempting to 
suggest including the particle volume fraction as a parameter in a constitutive 
model. However, the particle volume fraction can be hard to determine. Material 
parameters that cannot be determined from stress and strain measurements are 
undesirable in a constitutive model for industrial applications. It may therefore be 
relevant to include a failure criterion simply based on a critical volume strain in the 
existing constitutive model. Another, more comprehensive, suggestion is to employ 
a flow potential formulated to consider porous materials, like the Gurson model or 
similar.  

Turning attention to experimental work, it is recommended to carry out new 
compression tests. An attempt should be made to reduce the friction between the 
specimen and the compression platen, for instance by using some PTFE-film. 
Moreover, the volume change during deformation should be investigated in more 
depth. Addressing the stress-drop, it would have been interesting to study 
compressed specimens in a scanning electron microscope (SEM) to see whether 
any signs of damage could be observed on the microscopic level. Simulations of 
unit-cell models in compression could also be carried out at the same time to study 
the matrix-particle interaction. In addition, loading and reloading in compression 
could be performed to investigate the effect of a second load cycle on the peak 
stress. 

It would have been interesting to study the effect of the mineral particles closer.  
For instance, the matrix-particle interaction in other materials than PVC can be 
studied. As a start, a SEM study of the deformation of HDPE can be performed. 
Moreover, it is suggested to employ specimens made of the same type of polymer 
but with different volume fractions of particles added. Comparison of stress-strain 
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curves in tension and compression, as well as volume strain curves, might give 
deeper insight in how the particles affect the mechanical response. In particular, it 
would be interesting to see how different particle volume fractions affect the 
damage.  

Another relevant topic concerning material modelling of thermoplastics for 
industrial applications is the material behaviour at various temperatures and at 
higher strain rates. At other temperatures or at higher strain rates, the debonding 
and void growth may act differently.  
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