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ABSTRACT

The large-deformation behaviour of thermoplastics has been studied by
experimental tests and numerical simulations. The work herein is a part of a larger
research project concerning constitutive modelling of polymers. A constitutive
model for thermoplastics with structural applications has earlier been proposed in
the research project. The work presented in this thesis concerns exploration of the
capability of the constitutive model to capture the large-deformation behaviour of
polymers at various stress states. In addition, some deformation mechanisms are
investigated. Two different thermoplastics are addressed: PVC and HDPE. The
PVC is an amorphous thermoplastic filled with a volume fraction of particles of
about 0.2. The HDPE is a semicrystalline thermoplastic that contains fewer
particles. All test specimens are taken from 5 mm and 10 mm thick extruded plates
of these two materials.

From uniaxial tension and compression tests it is found that the yield stress of the
PVC is pressure sensitive while that of HDPE is not. Furthermore, the stress-strain
curve of PVC, in opposite to HDPE, has a peak stress followed by stress-softening
and subsequent strain hardening. Reloading of already deformed tensile specimens,
does not recall this local stress maximum. This observation is interpreted as a sign
of damage rather than physical aging in the material. Reloading of HDPE, on the
other hand, recalls the shape of the initial stress-strain curve of the material. During
plastic deformation in uniaxial tension the volume change in the PVC is notable
while it in the HDPE is almost zero.

Addressing the volume change in PVC, specimens deformed in uniaxial tension are
studied in a scanning electron microscope. It is found that the mineral particles
have debonded from the PVC matrix and that microscopic voids are formed around
the mineral particles in the deformed material. Thus, debonding and void growth
are identified as two damage mechanisms in the PVC. Moreover, it is found that
the volume change on the macroscale is caused by the void growth on the
microscale. Results from numerical unit cell analyses, simulating the interaction
between a mineral particle and surrounding polymer matrix, suggest that
debonding and void growth can be the cause for the stress drop and the volume
change observed in the laboratory tests.

Tensile tests of axisymmetric tensile specimens with notch are carried out on both
materials to study the behaviour at presence of a triaxial stress field. Again, it is
demonstrated that the yield stress of PVC is pressure dependent while the yield
stress of HDPE is not, or at least very little, pressure sensitive. However, during



plastic deformation of the notched tensile bars, the volume change is significant for
both materials. The dilation increases with the stress triaxiality. Fracture surfaces
of fractured specimens clearly suggest that the increase of volume both in the PVC
and the HDPE has its origin in void growth.

Biaxial tests are carried out on the PVC and HDPE materials to serve as a basis for
validation of the constitutive model. The parameters of the model are determined
from uniaxial tension and compression tests. In order to check how this model is
applicable for describing other stress states, the biaxial tension tests were subject
for numerical simulations. Comparison of the force-displacement curves and the
strain fields from the simulations and the laboratory tests show that the model is
capable of capturing the large-deformation behaviour.

The test results from the axisymmetric tensile bars with notch were also used for
validation of the constitutive model. Comparison of force-displacement curves
from laboratory tests and numerical simulations showed that numerical simulations
overestimated the maximum force. The overestimation increased with the stress
triaxiality, and it was higher for the PVC than for the HDPE. The stress triaxiality
seems to enhance some damage that is not captured by the numerical model.

il
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In a long term view, the world production of plastics has increased since 1950 [1].
A variety of processing techniques for these materials makes it possible to produce
components with a complex geometry at a low cost. By addition of additives and
fillers, the material properties can be modified and customized to fit both esthetical
and mechanical requirements. Today thermoplastics are commonly used in a lot of
products within a wide spectre of fields: Packaging, construction, transport
industry, medical applications etc. In example, the weight proportion of polymer
materials in the Audi A6 is almost 20% [2]. Especially the parts in the front section
of the car are made of polymers. The use of polymers in such applications
increases the request of numerical models that can predict the mechanical
behaviour of the materials. Engineers employ finite element analysis (FEA) as a
tool in the design process to reduce development time, cost and technical risk.
However, reliable and precise material models implemented in the FEA-software
are demanded. A material model that covers all effects in large deformations of
thermoplastic polymers (e.g. necking, damage, different behaviour under
compression and tension, strain rate sensitivity) is not yet available in commercial
FEA-codes [3].

The work presented in this monograph is a part of a larger research project
concerning constitutive modelling of polymers at SIMLab, NTNU. The polymer
research group at SIMLab has earlier proposed a hyperelastic-viscoplastic
constitutive model for thermoplastics [4], which is implemented as a user-defined
model in the non-linear FEA-code LS-DYNA [5]. Results from numerical
simulations compared with results from simple laboratory tests reveal that the
constitutive model is promising in describing the mechanical response even for



large deformations [6]. However, further validation of the model at various stress
states is identified as an important task by the research group.

The materials concerned in the PhD study presented in this monograph are PVC
and HDPE. These two materials have been chosen by the SIMLab polymer group
to serve as bench-mark materials. It is believed that studying only two well-known
materials through several tests will accumulate some general knowledge that can
be carried forward to other polymers at a later stage. The two materials are rather
different in nature. The PVC is an amorphous thermoplastic containing a mineral
filler volume fraction of about 0.2, while the HDPE is a semicrystalline
thermoplastic containing minor amounts of filler. The fundamental behaviour of
these materials has already been studied by the research group [6]. However, the
behaviour at more complex stress states has been paid little attention to. In the long
term it may be interesting to include prediction of damage and fracture in the
constitutive model. It is therefore relevant to study damage mechanisms in the
materials. The addressed PVC and HDPE were acquired in form as extruded plates
of 10 mm and 5 mm thickness. Both materials were acquired directly from a
wholesaler. All laboratory tests have been carried out on specimens from these
plates. All tests are carried out at room temperature and at moderate strain rates.

It is in the objectives of this study to define test setups that capture the large-
deformation behaviour of the thermoplastics at 2D and 3D stress states. Interesting
properties are the stress-strain relationships, the yield stress, the pressure sensitivity
and the volume change. Methods for testing the desired properties have been
determined, involving various shapes of the test specimens and loading patterns.
Different measurement techniques have been employed. In particular, digital image
analysis techniques have been widely used in order to determine the deformation of
the materials. In addition, a scanning electron microscope has been used to
investigate the mechanisms behind the volume change. The experimental
programme also involves some uniaxial material tests in tension and compression
in order to obtain information for determination of the coefficients of the material
model [4].

The numerical simulations are carried out as explicit analyses in the finite element
software LS-DYNA. A numerical study of a unit cell model representing a soft
polymer matrix containing stiff particles has been performed. This was done to
investigate the effect of the mineral filler in the PVC. The constitutive model [4]
has been validated by comparing results from numerical simulations employing
the material model with results from the laboratory tests.



1.2

OBJECTIVES

This thesis concerns experimental and numerical studies on the large-deformation
behaviour of polymers. The objectives of the research are:

1.3

1.4

To define and to carry out experimental tests to serve as basis for
validation of the constitutive model at various stress states.

To explore the capabilities and limitations of the constitutive model by
numerical simulations of the validation tests.

To define and to carry out experimental tests that capture the large-
deformation behaviour of thermoplastics at various stress states.

To identify and investigate damage mechanisms.

SCOPE

The intention of this study is to explore capabilities and the limitations of
the existing constitutive model rather than to propose a new.

The work involves two materials: PVC and HDPE.

All tests are carried out at room temperature. No temperature effects are
included.

All tests are carried out at low strain rates.

The experimental and numerical exploration of damage is restricted to
tension stress modes.

OUTLINE OF THESIS

The monograph is divided into an experimental and a numerical part. All
experimental tests and their results are described in Part I. Part II presents the
numerical simulations.

First, Chapter 2 introduces and discusses some concepts that explain the behaviour
of polymers.



Part I first addresses uniaxial tension tests of specimens from the 5 mm sheets of
PVC and HDPE in Chapter 3. The same materials are tested in uniaxial
compression in Chapter 4. The results from the tests in Chapter 3 and Chapter 4
will be used for determination of material parameters in Chapter 10. The behaviour
during loading and reloading, as well as possible effects of physical aging is
investigated in Chapter 5. Chapter 6 addresses the plastic dilation in the PVC.
Deformed tensile specimens are observed in a scanning electron microscope, and
the void growth on the microscale is compared with the volume change on the
macroscale. In Chapter 7 the 5 mm sheets of PVC and HDPE are deformed in
biaxial tension. These tests are primarily meant to serve as a basis for validation of
the constitutive model. Chapter 8 presents tensile tests of axisymmetric tensile
bars with notch. These tests will be used as validation of the constitutive model and
as material tests for investigating deformation mechanisms at high stress
triaxialities.

Part II concerns the numerical part of the study. First in Part I, in Chapter 9, a unit
cell study is presented. This study was carried out to achieve a better understanding
of the matrix-particle interaction in a mineral filled polymer. The constitutive
model proposed by Polanco-Loria et al. [4] is introduced in Chapter 10 which also
includes identification of the material parameters for the materials from the 5 mm
thick plates of PVC and HDPE. The parameters for the 10 mm plates of both
materials are already determined by Hovden [6]. Employing the material
parameters, numerical simulations of the uniaxial tension and compression tests are
carried out in Chapter 11. The biaxial tests are simulated in Chapter 12. Chapter 13
addresses numerical simulations of the axisymmetric notched tensile bars.

The monograph is rounded off with final discussions, conclusions and suggestions
for further work in Chapter 14.
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CHAPTER 2

BEHAVIOUR OF THERMOPLASTICS

This chapter introduces some of the fundamental concepts that explain the
deformation mechanisms in thermoplastics.

2.1  STRUCTURE OF THERMOPLASTIC POLYMERS

The word polymer origins from the Greek ‘poly’, meaning many, and ‘meros’,
meaning part [1]. The name reflects that a polymer molecule is an assembly of
many monomers. One group in the polymer family is the thermoplastics. A
thermoplastic molecule is a long chain of many small sub-units that are joined
together. Most commonly the sub-units are linked together in such way that they
form a chain with a strong continuous backbone of carbon atoms with different
kinds of side groups. The carbon atoms in the backbone are connected by strong
covalent bonds. Between the different polymer chains weaker van der Waals bonds
or hydrogen bonds are present. These bonds are also called secondary bonds as
they are a result from interaction of side atoms along the chain. Different kinds of
side groups can be attached to the polymer chain. These side groups can be other
atoms or groups of atoms. Other polymer chains can also be connected to the main
chain, this is called chain branching. The number of different combination
possibilities is vast, and so is the variety of different polymer types.

Polymer chains with high molecular regularity can be arranged into a crystal
structure. The crystals are formed radially out from initial nucleation centres and
form spherulitic formations with lamellar structure. Polymers with such
morphology are called crystalline polymers. If there is no regular arrangement the
polymer is considered as amorphous. In an amorphous polymer the polymer chains
are randomly distributed in space. A result from the random distribution is that
some chains tangles together. The entanglements may cause the polymer to behave



like a network. Also the crystalline polymers contain some amorphous regions [1].
They are therefore often referred to as semi-crystalline. The crystal regions are
smaller than the total length of the molecule. One polymer chain is long enough to
pass through both crystals and amorphous regions. In this way the crystals and the
amorphous regions are woven together by long polymer chains [1]. Due to the
regular packing of the chains, crystalline regions of the polymer have higher
density than the amorphous.

The simplest thermoplastic polymer is polyethylene (PE). A schematic
representation of the structure of PE is shown in Figure 2.1. The figure illustrates
that the PE macromolecule is build up by many ethylene monomers. The number »
of monomers joined together to form a molecule is typically around 10 but it may
vary between 10’ and 10°. Due to the regular shape of the chain, PE can easily be
arranged into crystals and is therefore regarded as a semi-crystalline material. A
variety of different PE grades can be composed, e.g. by chain branching or by
taking advantage of the strong covalent bonds by highly oriented fibre stretching.
Most common are the low-density polyethylene (LDPE) and the high-density
polyethylene (HDPE). The difference in density reflects that the molecular packing
is denser, i.e. the crystallinity is higher, in HDPE than in LDPE. Depending on the
molecular structure, application of PE varies from plastic bags and cling-wrap
(LDPE) [2] to high performance fishing lines and ballistic protection (ultra high
molecular weight polyethylene UHMWPE) [3].
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Figure 2.1 Schematic description of polyethylene (PE).

Figure 2.2 represents the molecular structure polyvinyl chloride (PVC). In the
representation it is similar to the PE, with one of the hydrogen atoms replaced by a
chloride atom. This seemingly small difference has a great impact on the
mechanical behaviour of the polymer. The comparably large chloride atom
prevents packing of the polymer chains into regular arrangements and hinders
crystallization. The polymer may contain up to 10% crystallinity and still be
considered as an amorphous polymer. Plasticizers may be added to the PVC to
increase the flexibility of the polymer. About half of the produced PVC is used as
rigid, unplasticized, PVC and the other half as plasticized PVC [4].
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Figure 2.2 Schematic description of polyvinyl chloride (PVC).

2.2  DEFORMATION OF THERMOPLASTICS

Macroscopic deformation of thermoplastics is a result of movement of polymer
chains, or segments of chains. Such movement can be either intermolecular, for
instance by chain sliding, or intramolecular, for instance by a change in the
conformation of the chain [5]. The chain segments’ freedom to move arises from
the ability of a chain segment to rotate about the single bonds in the structure and
from the arrangement of the chain with respect to other chains [5].

The deformation is dependent on applied stress, temperature, strain rate and
pressure. Thermoplastic polymers are viscoelastic materials. It can be questioned
whether the concept of plasticity, in the same sense as metal plasticity, is valid for
polymers. However, for modelling purposes it is convenient to divide the
deformation into elastic and plastic parts. A phenomenological approach is
attractive for the modelling. Examples of constitutive models that combine
elasticity, viscoelasticity and viscoplasticity are proposed in the literature [6]. In
the scope of this monograph the viscoelastic effects are not discussed. Only the
elastic and viscoplastic deformations are considered. They are characterized as
follows: Purely elastic deformations are reversible. The initial configuration of the
atoms is restored when the load is removed [7]. Plastic deformations are permanent
deformations that do not vanish. The relative displacement of atoms remains with
removal of load [7]. The time needed for the polymer chains to move makes
response viscoplastic.

2.2.1 ELASTIC DEFORMATION OF THERMOPLASTICS

Elastic deformation of thermoplastics is often regarded to consist of an energy-
elastic and an entropy-elastic contribution. At small strains the energy-elastic
contribution is the dominant. This response can be regarded as an intermolecular
phenomenon originating from attraction and repulsive forces between atoms and
rotation about the covalent bonds between the carbon atoms in the backbone of the



molecule. Turning attention to large strains, the entropy-elastic contribution
becomes dominant. This is an intramolecular response involving the whole
assembly of molecules. If one looks upon the polymer structure as a network of
polymer chains tied together by entanglements, the intramolecular elastic
contribution can be considered as network stretching. In an un-stretched state the
flexible chains occur randomly coiled between the tie points. This is the state of
highest entropy. According to statistical theory of rubber elasticity there is a very
high number of possible configurations at this state [8]. As the chains are extended
the number of possible configurations decreases, and so does the entropy. By
removal of the load, the polymer chains randomly coil back to a state that
maximizes the number of possible conformations and also the entropy.

2.2.2 PLASTIC DEFORMATION OF THERMOPLASTICS

Plastic deformation of polymers concerns permanent relocations of
macromolecules, or of segments of the macromolecules. In thermoplastics it is
expected that plasticity primarily concern breaking of the van der Waal bonds, as
they are much weaker than the covalent bonds in the carbon backbone [9]. On the
somewhat larger scale, yielding mechanisms mentioned in the literature are
cleavage of crystallites, lamellar slip, and amorphous mobility [5]. Plastic
deformation may impose drastic reorganization at the morphological level where
the structure may change from a spherulitic to a fibrillar type [5]. According to
several authors [1, 10, 11] yielding is caused either by crazing or by shear yielding.
Crazes are highly localized zones of plastic dilational deformation that appear like
small crack-shaped regions. They mostly occur in the deformation of amorphous
polymers. In many cases crazes can be observed as stress whitening of the material.
Shear yielding, or shear banding, occurs without any volume change in the
material. It can be considered as irreversible slip of molecular chains. In semi-
crystalline polymers the plastic deformation involves both the crystalline and the
amorphous phases. Galeski [10] discusses plastic deformation in crystalline
polymer systems in terms of crystalline plasticity. The theory involves
crystallographic slips controlled by the generation and propagation of
crystallographic dislocations. Deformation of the amorphous phase between the
crystallites occurs in form of intralamellar slip, lamellar separation or rotation of
stacks of lamellae [10].

A required condition for obtaining large plastic deformations is the possibility of
molecular motions on a time scale similar to the deformation rate [10]. This
explains why polymers have a strain rate dependent, i.e. viscoplastic, behaviour.
Moreover, the plasticity in polymers is temperature dependent: An increase in
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temperature leads to an increase in chain mobility. It should be kept in mind that
yielding is a dissipative process that leads to adiabatic heating. Self heating of a
tensile specimen may affect its tensile behaviour at large deformation.

Detailed knowledge about the molecular mechanisms of plasticity in polymers are
at time being not very well established because of the complex microstructure [9].
However, from an engineering point of view the yield stress can be regarded as the
minimum stress that produces permanent deformation when the stress is
subsequently removed. The case is then reduced to a matter of choice. There are
various ways to define the yield stress. However, all methods are related to a
change in slope in the stress-strain curve. For polymers it is common to choose the
yield stress as the first local stress maximum. If no such maximum exists, the use
of an offset strain, e.g. at 0.2%, and the Considére construction [1] are typical
methods to define the yield stress.

2.3 NECKING AND COLD DRAWING

Necking is a type of deformation where strain localizes in a region of the material.
The location for onset of necking may be determined by a local increase in
temperature, or by a structural or material imperfection. A necessary, but not
sufficient, condition for necking is the existence of a local maximum point on the
nominal stress-strain curve [12]. This is equivalent with a local maximum of the
force-displacement curve. The condition necessary for necking can for uniaxial
tension be described as [1]

n =) 2.1
dA @D

where o, is the nominal stress and A is the stretch defined as the change of the

length of a small line segment L, A =L/ L,. By assuming deformation at constant

volume, the condition above can be expressed in terms of Cauchy stress o as [1]

do_o (2.2)
di 1

Equation (2.2) is also called the Considere construction [1] . It can be employed to
determine onset of necking and it can be used as a definition of yield stress.
However, the Considére construction requires deformation at a constant volume.
This is an assumption that is not always valid for polymers.
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With further deformation after onset of necking, the neck in some cases stabilizes
and begins to extend by drawing fresh material from the surrounding regions into
the neck. This is often referred to as cold drawing. Figure 2.3 schematically
describes this process. As illustrated in the figure, drawing of the material in the
neck may impose high degree of orientation of the polymer chains.
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Figure 2.3 Schematic figure of the drawing of a polymer [13].

2.4  PHYSICAL AGING

It is observed that storage at constant temperature and at zero stress affects the
properties of polymer materials. This phenomenon is called aging. Aging referring
to changes in properties that are reversible and without any permanent modification
of the structure is often called physical aging. The term “physical” is commonly
used to distinguish the phenomenon from irreversible types of aging, like chemical
or biological aging. It follows that it is possible to reduce or remove this aging
effect by some suitable treatment of the material.

Physical aging takes place in both amorphous and crystalline polymers. For both
polymer types the potential for aging is created from a small decrease in the
specific volume during cooling [1]. Within this context, physical aging can be
related to the concept of free volume. The free volume is the volume of the vacant
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sites in the material that is not occupied by molecules [11]. When the material is
rapidly cooled down, i.e. quenched, without being able to contract sufficiently, it
ends up in a non-equilibrium state. After quenching, the molecular mobility is not
zero. Because of the molecular mobility, there will be a slow and gradual evolution
towards equilibrium during time [14], see Figure 2.4. This slow change of the
thermodynamic state is referred to as structural recovery [15]. It occurs at
temperatures 7 between the glass transition temperature 7, and a secondary

transition temperature 7, [14].
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Figure 2.4 The origin of aging in amorphous polymers. The specific volume is
plotted against temperature T . Between T, and T, there is an internal movement

towards the equilibrium [14].

Thus, physical aging can be regarded as a process where the polymer contracts
towards its equilibrium state. It is an internal process that affects the macroscopic
properties of the material. A typical effect of physical aging on the stress-strain
curve is an increase in yield stress followed by stress softening [16-18], see Figure
2.5 a). The physical aging can be “erased” by rejuvenation of the material, see
Figure 2.5 b). The purpose of rejuvenation is to bring the material back to its
freshly quenched state. It can be done by heat treatment [14], i.e. by heating the
material above the glass transition temperature followed by rapid cooling. It can
also be done mechanically [18] by deforming the material by e.g. twisting or
rolling. The material is then mechanically pushed back to its original state. The
difference between thermal and mechanical rejuvenation is discussed in the
literature [15, 16, 18]. Even though the rejuvenation immediately brings the
material to its original state, physical aging will re-occur with time. It should be
noted that, as illustrated by Figure 2.5, physical aging has no effect in the large
strain domain [16].
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Figure 2.5 Schematic representation of a) increase in yield stress as a
consequence of aging and b) the effect of rejuvenation and aging [16].

2.5  MINERAL FILLERS

The properties of polymers can easily be modified by adding fillers of different
kinds. Such fillers are small-sized particles added to the material. Many of the
plastics we refer to in the everyday language are in fact different kinds of polymer-
particle composites. Each type of polymer-particle composite has its own
properties that are influenced by volume fraction, mechanical properties, particle
size, shape and surface treatment of the filler.

Concerning the type of fillers, rubber and mineral particles are common since they
are both known to have a toughening effect [19-21]. A difference between the two
is that the soft rubber particles decrease Young’s modulus of the bulk material
while the relatively stiff mineral particles have the opposite effect [19, 20, 22-24].
Mineral particles are also cheaper than those of rubber, and may therefore also
decrease the cost of the polymer. They are also known to improve flame
retardance, and to reduce thermal expansion and heat conductivity amongst other
properties. Therefore they are often called “functional fillers” by the polymer
industry. Calcium carbonate (CaCO;) is by far the most common filler for
polymers [25, 26], while titanium dioxide (TiO,) is the second most applied one
[26]. This section will focus on mineral fillers.

Fillers with proper adhesion to the matrix stay bonded to the polymer matrix at low
deformation levels. Stiff particles then act as reinforcement, and the bulk material
behaves like a composite. When reaching a certain level of stress the particles
debond from the matrix. Thus the load bearing cross section of the material is
reduced, resulting in a softening effect on the stress-strain curve. At the same time,
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the debonding process results in formation of voids which is the main feature in the
toughening process. The voids are smaller than what a human eye can observe.
However, at a macroscopic scale the voids can be observed as stress whitening.
The reason for the white appearance is that small voids reflect the light due to
refractive index differences between the components. This is known as the Fresnel
effect [26].

It has already been mentioned that stiff particles work as reinforcement, i.e. the
elastic modulus of the polymer increases with addition of CaCOj particles [19, 20,
22-24]. On the other hand, several authors report that addition of such particles also
decreases the plastic resistance [20, 27]. This observation, however, depend on
how well the particles are bonded to the matrix material [23]. The matrix-particle
bonding strength can be altered by surface treatment of the particles [25, 28].
Stearic acid (CH3(CH,);sCO,H) is typically used for this purpose [25]. Surface
treatment improves also the dispersion of the filler. Any type of particles added to
the polymer should be well dispersed through the material. With poor dispersion
there will be less uniform zones of matrix between the particles. The thinnest
matrix zones between closely located particles may then act as a weakest link and
initiate fracture.

The size of the particles affects the interfacial interaction between the matrix and
the particle. For a given particle volume fraction, the total surface area of smaller
sized particles will be larger than the surface area of larger particles. Small
particles therefore tend to have a better adhesion to the polymer matrix [28, 29].
Addition of small sized mineral particles can improve the impact strength and
fracture toughness [22, 25, 28, 29]. The strains are reported to have a more
favourable distribution at low filler concentrations and with fine particle size
because the stress field around smaller particles is more uniform than around larger
ones [26]. The argument for this is that the matrix must stretch over the entire
surface of large particles, while smaller particles more easily move with an
elongating matrix [26]. Moreover, larger particles are more irregular than smaller
particles and may thus prevent a uniform strain pattern [26]. It follows that larger
particles may act as a material defect. This also regards particles with a high aspect
ratio, where the longer dimension is much larger than the shorter dimension.
Particles made of CaCO; have a rather nodular shape with a low aspect ratio.

The toughening effect of rubber and mineral particles can be explained by initiation
of void growth, and therefore reduction of the plastic resistance [20]. In this way
brittle behaviour is avoided. Indeed, Argon and Cohen [21] argue that the most
effective way to avoid a ductile to brittle transition is to lower the plastic
resistance. For polymers, the easiest way to do this is by the addition of particles
that can cavitate or debond and, as Argon and Cohen say, “convert the polymer in
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to a cellular solid” [21]. Socrate and Boyce [30] showed in a numerical study that
the presence of voids in polycarbonate (PC) gives stress fields that favour shear
yielding over brittle fracture mechanisms even for triaxial stress states. The
toughening effect is reported for both semi-crystalline and amorphous polymers,
and even for epoxies [31], containing any kind of voids. The voids can be present
in form of pre-existing voids, self-cavitating rubber particles or debonding stiff
mineral particles. Also the processes of debonding and void growth promote
dissipation of energy and distribution of strain throughout the material so the
deformation takes place over a larger volume.

Wu [32] studied the effect of adding rubber particles to a nylon. It was found that a
sharp brittle-to-tough transition occurs when the average thickness of the matrix
ligament between the particles is reduced below a critical value. He claimed that
this critical interparticle distance is a material property of the matrix material. This
means, according to Wu [32], that it is not the particle size or volume fraction that
controls the toughening effect. Bartczak et al. [20] support this observation. They
found that the source of toughness is a result of plastic extensibility of the matrix
material [19, 20]. Thus, they further suggest that the properties of the filler are of
little relevance. They demonstrate this by investigation of HDPE filled with stiff
and soft particles [19, 20] and it was found true under the requirement that the
particles debond from the matrix and initiate voids.

The explanation of the effect of the interparticle distance on the toughening of
semicrystalline polymers is that the presence of particles alters the microstructural
morphology. Addegio et al. [24] report that CaCOs particles reduce the crystallinity
of HDPE, while Bartczak et al. [20] report that such particles affect the orientation
of the crystals in the same material. The same effect is observed for rubber
particles [19]. Interparticle ligaments of thickness below the critical distance
possess a structure of highly ordered lamellar crystallites having reduced plastic
resistance in certain directions [20]. The local anisotropy at microscale reduces the
overall plastic resistance of the blend [20] and increases plastic yielding leading to
a tougher response of the polymer [32]. It should be noted that these considerations
regard the morphology of semicrystalline polymers.

For obtaining the best result by adding mineral filler, the particles should be well
dispersed in the polymer matrix. Moreover, the matrix-particle interface strength
should be strong enough to stay attached during the initial deformation and weak
enough to debond for larger strains. If these requirements are fulfilled, it can be
concluded that the particles have the following effects on the polymer:

e Young’s modulus increases because the particles have a reinforcing effect.
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e Debonding of particles reduces stiffness and gives rise to void growth. The
void growth is required to obtain the desired toughening effect.

e The overall yield stress is reduced leading to a tougher response of the
polymer.

2.6 THE PRINCIPLE OF DELESSE

The methods relating 3D quantities to 2D images can be referred to as stereology.
Thus, stereological methods can be used to say something about the 3D
morphology of a material or tissue just by looking at a 2D section of it. One of the
basic principles of stereology was formulated in 1847 by the French geologist A.
Delesse [33]. He stated that the area fraction of a rock component in a random
cross section of a rock is equal to the volume fraction of the component in the
whole rock. This principle is now called the principle of Delesse and it applies for
all materials containing objects of any size or shape, connected or separated,
isotropic or anisotropic [33, 34]. The “random cross section” statement implies that
the principle even holds for an arbitrary cutting direction. The sectioning angle will
affect both the profile area of the anisotropic objects and the surrounding object in
a proportional way [33]. The only requirements are that the cross section is typical
and that it is selected at random.

The area fraction w, of some component in a cross section of a body represents the

ratio of the area covered by the component 4 to the total cross sectional area A

comp

A,
w, = (2.3)

In the same manner, the component volume fraction @, is the volume of a certain

component V.

comp

in an object divided by the total volume ¥ of the object

K‘(]m
W, = (2.4)

If we slice a body in thin slices with area @ and take an image of each slice we

expect to find about the same area fraction of the component a,_  in each image.

comp
By giving each slice an infinitesimal thickness dy the volume of the slice v

becomes
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v=a-dy (2.5)

The volume of the component v_  in the slice is

comp

v =a dy (2.6)

comp comp

If we sum up the volume of the component and divide it by the total volume of the
object at hand we get the

Zvcomp — zacomp : dy (2 7)
Z % z a-dy '

The thickness dy cancels out and we get [33]

V A
comp __ ““comp 2 ) 8
14 A (2-8)

This gives that the volume fraction equals the area fraction.
w, =0, 2.9

The principle of Delesse can also be proved more rigorously by geometrical
probability theory [35].

A version of the Delesse principle for two dimensions was some years later
suggested by A. Rosiwal, who also was a geologist. He proposed a way to estimate
the area fraction w, by “linear integration” [33]. The procedure is to lay out a test
line onto the section of the body and to measure the fractional length @, of the line

intersecting the components of the body. The ratio between the length of the line
section cutting through the component L, and the total length L of the line is

Lcom
w, = (2.10)

The procedure can be justified in similar manner as the principle of Delesse: To
measure the plane area of an object, it can be divided in to thin strips, or test lines,

each with a small thickness dy . The component area fraction @, of each strip can

comp
be estimated from the fractional length @, of the test line multiplied by its
thickness dy . By summing up the strips, the area fraction @, for the whole area

can be found. According to Rosiwal we get
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w,=w, (2.11)

A consequence of these principles is that if you follow any path through the
specimen, the relative partition of a component you meet will be the same.

As geologists, Delesse and Rosiwal were interested in the fraction of a certain
component in a rock sample. However, the principle of Delesse is also valid for
quantification of the fraction of voids in a solid material. It has also been used on
polymers [24]. It should be noted that principle of Delesse can only give an
estimate of the fraction of a component. To pose assumptions on shape,
distribution, orientation or density of the considered component, other stereological
approaches are needed.

In a cut through an object containing oblong voids, the relative area of voids will
remain the same, independent of the cutting angle. This can be demonstrated as
follows. Figure 2.6 a) shows a micrograph of mineral filled PVC stretched in the
vertical direction. The image is taken from the test PVC-8 from the Chapter 6. It
shows the grey PVC matrix containing particles and oblong voids. The areas
containing voids or particles are identified and marked black in Figure 2.6 b), while
the remaining parts of the object, i.e. the matrix, are represented in white. Digital
image analysis performed with the software ImagelJ [36] reveals that the area in
black covers 32% of the total surface area, i.e. w,=0.32.

Figure 2.7 displays horizontal blue and vertical red test lines intersecting the black
regions at arbitrary locations. It can be seen from Figure 2.7 that the horizontal
lines intercept smaller black areas rather frequently, while the vertical lines cut
through fewer and larger black areas. Beside each line the fractional length w, is

given, addressing the black region fraction cut through by the line at hand. The
average value of the five blue horizontal length fractions is @, = 0.32 and the

average value of the five red vertical length fractions is w, = 0.30.

Hereafter the volume fraction @, will be referred to as @.
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Figure 2.6 a) SEM micrograph of deformed PVC containing mmeml particles and
voids. b) Particles and voids are identified and marked black. The area fraction of
the black component is @, = 0.32.

Figure 2.7 Length fractions @, of the black component estimated from horizontal

and vertical test lines located at arbitrary positions.

20



2.7 DAMAGE BY VOID GROWTH

The void growth rate @ in a material can be decomposed into a term for growth of
existing voids @, and a term for nucleation of new voids @, [37]

o=, +, (2.12)

Assuming an incompressible matrix, the expression for void growth @, can be

formulated in terms of the plastic rate-of-deformation-tensor D” [37]
@, =(1-w)t(D") (2.13)

It can alternatively be expressed as [§]
o, =(1-0)— (2.14)

where the plastic part of the Jacobian J” is the determinant of the plastic part of

the deformation gradient F”, J” =detF”. In some cases the nucleation of voids
can be neglected, while in other cases this is considered as unrealistic. A material
containing particles which debond after certain deformation is one case where the
nucleation term should be considered. Different formulations describing the
nucleation process, driven either by stress or by strain, are suggested in the
literature [38, 39].

Formation of voids is a damage process that causes a reduction of strength. This is
due to a reduction of the load carrying cross section. The area of the real load
carrying cross section is called the effective area A4, . It is equal to the matrix cross

section between the voids and it is, obviously, smaller than the total area 4 of the
cross section. The total area is then referred to as the total cross section area
observed macroscopically. The effective area can therefore be expressed as the
difference between the total area 4 and the voided area 4,

=A4-4 (2.15)

Since the void area fraction is equal to the void volume fraction, i.e. w,=®, as

explained by the principle of Delesse in Chapter 2.6, the voided area 4, is

A =wd (2.16)

v
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Thus the effective area can be expressed in terms of the void volume fraction

A, = A(l- o) 2.17)

An estimate of the effective stress in the polymer matrix o, can be found as the
applied load F divided by the effective area A4 ., i.e. the solid ligaments between
the voids [40]

Oy = (2.18)

F
Acf/]

With Cauchy stress defined as the applied load F divided by the total area 4 of
the cross section

o= (2.19)

F
A
the effective stress can be expressed as

o = (o}
7 (1-w)

(2.20)

2.8 THE MATERIALS IN THIS STUDY

The study presented in this monograph is a part of a larger research project about
constitutive modelling of the mechanical behaviour of thermoplastics. It involves
material testing and validation of the constitutive model in terms of benchmark
tests. In this context, 5 mm and 10 mm thick extruded sheets of PVC and HDPE
were bought from the supplier SIMONA. The in-plane dimensions of the sheets
were 2-1 m?. According to SIMONA, the 5 mm and the 10 mm plates consist of the
same materials. The intention by the choice of these particular materials was to
cover two different types of thermoplastics: The PVC is amorphous and the HDPE
is semicrystalline. The fundamental behaviour of the materials has earlier been
investigated [41, 42]. All tests in this monograph have been performed on these
materials.
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2.8.1 PVC

The PVC is by the supplier denoted SIMONA®PVC-TF [43]. SIMONA reports
that it has excellent formability, high weather ability, high rigidity, increased
impact strength and a low coefficient of thermal expansion. Typical material data
provided by SIMONA is listed in Table 2.1.

Table 2.1 Material data for SIMONA®PVC-TF as provided by SIMONA [43].

Density Yield E-modulus Elongation Application  Thermal

stress at break temperature  coefficient of
range elongation
[ke/m’] [MPa] [MPa] (%] [°C] K]
1430 53 3000 20 —10 to +60 0.8-10

Moura et al. [41] found that there were some minor direction dependency in the 10
mm thick extruded plates of PVC. This was done by employing tensile tests
machined out at 0°, 45°, and 90° to the extrusion direction, and compression tests
from the in-plane and the out-of-plane directions. For modelling purposes however,
the material has been treated as isotropic, with good results [42]. Moreover,
transverse isotropy has been confirmed to be a good assumption regarding the
strain in the width- and thickness-direction [41].

Hovden [42] carried out an experimental test programme involving tension and
compression tests of the 10 mm thick extruded plates of PVC. Stress-strain curves
and evolution of volume strain from these tests are presented in Figure 2.8 and
Figure 2.9. The figures include results from different strain rates. All specimens
were taken from the extrusion direction of the plate, except from the compression
specimen deformed at a nominal strain rate 10 s~ which was taken from the out-
of-plane direction. The strains in the tension tests and the compression tests

deformed at nominal strain rate 10 s were determined by digital image
correlation (DIC). The strains in the other compression tests were determined from

diameter and height measurements.

According to Figure 2.8 the response of the PVC is linear elastic before a local
stress maximum is reached. The local maximum on is interpreted as the yield stress
[42]. Stress softening follows after the peak stress before strain re-hardening sets in
when the strain gets larger. It is seen that the yield stress increases with increasing
strain rate. Moreover, the yield stress is higher in compression than in tension.
Addressing the volume strains in Figure 2.9, it is interesting to see that the volume
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increases for plastic deformation in uniaxial tension. The volume strains in
compression remain close to zero.
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Figure 2.8 Stress-strain curves for material from the 10 mm thick plates of mineral
filled PVC at three different nominal strain rates. a) Uniaxial tension. b) Uniaxial
compression. The data is taken from Hovden [42].
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Figure 2.9 Logarithmic volume strain plotted against logarithmic longitudinal
strain for material from the 10 mm thick plates of mineral filled PVC at three
different nominal strain rates. a) Uniaxial tension. b) Uniaxial compression. The
data is taken from Hovden [42].

In the technical data sheet provided by SIMONA it was not found information
about any filler added to the PVC. However, investigation of the material from a 10
mm plate in a scanning electron microscope (SEM) revealed that it contained some
particles, as seen in Figure 2.10. The 5 mm plate appeared similarly in the SEM.
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Figure 2.10 SEM micrograph of a cryogenic fracture surface of 10 mm thick sheet
of the mineral filled PVC at a) moderate and b) high magnification.
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Prior to the SEM investigations, the material was stored in liquid nitrogen for 30
minutes before it was split in two. This was done to obtain brittle fracture, without
introducing any plastic deformation. The fracture surface was prepared by carbon
sputtering before it was investigated in the SEM. SEM micrographs of deformed
PVC revealed voids had formed around the particles. This will be further discussed
in Chapter 6.

By identifying the area covered by particles in Figure 2.10 a) and employing the
principle of Delesse, the particle volume fraction @ was estimated to be around
0.2. The particle identification process will be presented in Chapter 6.

One of the larger particles in Figure 2.10 was analysed by energy dispersive
spectroscopy (EDS), which is a built-in tool of the SEM. The EDS resulted in the
spectrogram presented in Figure 2.11 a). Both Ca and Ti have numerous counts,
suggesting particles made out of calcium carbonate (CaCOs3), which is the most
common filler in PVC [25], and titanium dioxide (TiO,), the second most
common filler. A high peak for ClI is also observed. The EDS does not provide
information from exactly one point, it also includes some information from the
surrounding matrix, thereby hitting some Cl atoms. A spectrogram presenting the
contents of the matrix is shown in Figure 2.11 b). From the results of EDS
spectroscopy we can expect that the particles have a rather stiff mechanical
response compared to the PVC matrix.
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Figure 2.11 EDS spectrums of a) a 2um particle and b) the matrix material.

Results from a termograviometric analysis (TGA) performed at Eindhoven
University of Technology state that the PVC contains around 45 wt% solid filler.
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2.8.2 HDPE

The HDPE employed in this study is denoted SIMONA®PE-HWU by the supplier
[44]. It is reported to be very tough even at low temperatures and to have good
sliding properties and good processing and machining characteristics. In addition,
the black polymer has a high UV-protection. The crystalline melting range for the
polymer is 126-130 °C. Additional data for the material is listed in Table 2.2.

Table 2.2 Material data for SIMONA®PE-HWU as provided by SIMONA [44].

Density Yield E-modulus Elongation Application  Thermal

stress at tear temperature  coefficient of
range elongation
[keg/m’] [MPa] [MPa] [%] °C] K]
950 22 800 300 50 to +70 1.8-10*

According to Moura et al. [41], tests performed on specimens the 10 mm thick
plates of HDPE cut out at 0°, 45°, and 90° to the extrusion direction revealed
almost no direction dependency of the material. They also showed that there was
no difference between the transverse strains, and therefore concluded that
transverse deformation isotropy was a sound assumption also for this material.

Figure 2.12 and Figure 2.13 show the response of specimens cut from the 10 mm
thick plates of HDPE in tension and compression. The data is collected from
Hovden [42]. All specimens were taken from the extrusion direction of the
material. DIC was employed to collect the strains in the tension tests, while the
strains in the compression tests were calculated from height and diameter
measurements.

In Figure 2.12 it is seen that after yielding, progressive strain hardening is present.
There is no stress softening, thus no peak stress. Also, the yield stress increases
with increasing strain rate. There seems to be no difference in the yield stress in
tension and compression. The volume strains plotted in Figure 2.13 reveal that
there is hardly any volume change when the HDPE is deformed at moderate strain
rates. However, from the figure, it appears as if the volume change increases with
increasing strain rate. It is uncertain whether this can be an artefact from poor test
data.
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Figure 2.12 Stress strain curves for material from the 10 mm thick plates of HDPE
at three different nominal strain rates. a) Uniaxial tension. b) Uniaxial
compression. The data is taken from Hovden [42].
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Figure 2.13 Logarithmic volume strain plotted against logarithmic longitudinal
strain for material from the 10 mm thick plates of HDPE at three different nominal

strain rates. a) Uniaxial tension. b) Uniaxial compression. The data is taken from
Hovden [42].

Scanning electron micrographs of a fracture surface of the 10 mm thick sheet of
HDPE is shown in Figure 2.14. The 5 mm sheet appeared similarly in the SEM.
The fracture was imposed after storing the polymer in liquid nitrogen for 30
minutes. The fracture surface has been coated by carbon dust. It can be seen that
some particles have been added also to this material. However, they were too small
for characterization by EDS.

TGA measurements performed at Eindhoven University of technology state that
the weight percent of solid filler in the HDPE is around 10 wt%.
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Figure 2.14 SEM micrograph of a cryogenic fracture surface of Smm thick sheet of
HDPE at a) moderate and b) high magnification.
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2.9 SUMMARY

Typical observations found in the literature for the macroscopic deformation of
some thermoplastic polymer materials are:

e Macroscopic pressure sensitivity, i.e. a higher yield stress in compression
than in tension.

e  Stress softening.

e Plastic dilation.

e Void growth.

e (Crazing.

e Strain rate sensitivity.

e Temperature sensitivity.

The four first bullet points will be further discussed in the following chapters.

Turning attention to the PVC and the HDPE materials addressed in this
monograph, typical characteristics are:

The PVC:

e Amorphous thermoplastic.

e Contains a volume fraction of about 0.2 of mineral filler, primarily CaCOs.
e Exhibits a higher yield stress in compression than tension.

e Dilation in plastic deformation.

e Stress softening.

e Void growth.

The HDPE:

e Semicrystalline thermoplastic.

e Contains minor amounts of solid filler.

e The yield stress is not pressure sensitive.

e Hardly any plastic dilation in uniaxial tension (at a strain rate of 10 s ")
e No stress softening.
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PART I

EXPERIMENTAL STUDY






CHAPTER 3

UNIAXIAL TENSION

Uniaxial tensile tests were carried out to achieve basic information about the
behaviour of the 5 mm plates of PVC and HDPE.

3.1 INTRODUCTION

The uniaxial tensile test is probably the most common material test. From
laboratory tests on a simple standard “dog bone” shaped test specimen, as the one
in Figure 3.1, basic information about the material behaviour is disclosed. This
study addresses the mechanical response of a mineral filled PVC and HDPE from
extruded plates of 5 mm thickness. As mentioned in Chapter 2, similar tests have
earlier been performed by Hovden [1] on the same material types, but from
extruded plates of 10 mm thickness. It has turned out that although the 5 mm and
10 mm plates, according to the producer, are made of the same materials their
mechanical responses are somewhat different. Results from tension tests from the
10 mm plates of these materials are also reported by Moura et al. [2]. However,
Moura et al. used tensile specimen with a small pre-machined imperfection. In our
study it was chosen to employ specimens without any imperfection to avoid any
undesirable effects. Results from the tests in this chapter will later, in Chapter 10,
be used in identification of parameters for the material model of Polanco-Loria et
al. [3].
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Figure 3.1 Geometry of tensile test specimen. Measures are given in mm.

3.2 TEST SETUP

Test specimens according to Figure 3.1 were cut from larger plates of 5 mm
thickness both parallel and normal to the extrusion direction. Two materials were
addressed. The first material was a mineral filled PVC. The particle volume
fraction @ was assumed to be equal to that in the 10 mm thick PVC plates, i.e. @
~ 0.2. The second material was a HDPE. It also contains some fillers, but in a much
less amount. Both materials are further described in Chapter 2.8.

A servo-hydraulic Dartec machine with a 20 kN load cell connected to an Instron
controller was employed to carry out the tests. The specimens were clamped at
both ends. One end was fixed while the other was displaced at a pre-defined
velocity of 0.033 mm/s, which corresponds to a nominal strain rate ¢, = 107 s,

The deformation was monitored by a charge-coupled device (CCD) camera. The
CCD camera captured images of the deformation at 0.1 Hz. It has earlier been
shown that transverse isotropy is a good approximation for these materials [1, 2].
Therefore the in-plane stress field was adequate for establishing stress-strain curves
so only one camera was employed in the tests. Also, any stress triaxiality caused by
necking was neglected. All tests were carried out in room temperature.

The width and thickness of all specimens were measured with a sliding calliper
prior to the testing. In general, two parallel tests were performed for specimens of
each material and machining direction, and the force-displacement curves were
compared to ensure repeatability of the results. The scatter between the replicates
was small.
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Figure 3.2 Test setup for uniaxial tensile test. The specimens were clamped at both
ends. A CCD-camera was used to monitor the deformation.

3.3  STRAIN MEASUREMENT

The digital image correlation (DIC) software 7D [4] was used after the tests to
obtain the in-plane principal logarithmic strain fields from the images captured by
the CCD camera during testing. Before testing a random black and white speckle
pattern was applied to each specimen. After the test, the images captured by the
CCD camera were loaded into 7D. The displacement field is determined by using
grey level correlation of each image with the initial reference image. Prior to this
process a grid is defined with a certain number of grid elements. Each grid element
refers to the same material point during the entire deformation. The software also
provides the option to trace displacements by comparing two and two subsequent
images. However, this option was not employed in this study.

From the displacement of each node in the grid element, the software calculates the
deformation gradient F . The deformation gradient can be decomposed into pure
rotation and pure stretch by polar decomposition [5]

F=R-U (3.1)

The rotation is represented by the rotation tensor R . The right stretch tensor U
expresses the stretch. The eigenvalues of the stretch tensor are called the principal
stretches A, ,1=1,2,3. The principal stretches found from U represent the ratio
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between the deformed length L and the undeformed length L, of a material line

element in the principal directions of U, 4, =L,/ L,,.

The Green-Lagrange strain tensor, or Green strain tensor, E is calculated from
E:l(FTF—I) (3.2)
5 .
Applying the principal stretches, the Green strains in the principal directions are

i

L/
E, :5(/11. -1) (3.3)

The logarithmic strain tensor is defined as
g=In(U) (3.4)

The principal logarithmic strains can also be found directly from the principal
stretches

& =ln(/1i)=ln[ij (3.5)

i0

In this study the major and minor logarithmic strain fields were exported from 7D
to MATLAB where the rest of the test post processing was carried out.

In the following, it is assumed that the direction of the major principal strain is
aligned with the longitudinal direction of the specimen. This means that the major
principal strain is taken as the longitudinal strain and the minor principal strain is
taken as the transverse strain. The validity of this assumption will be discussed
later.

Further, the stress and strain calculations in the following are based on the major
principal strain ¢, and the minor principal strain &, from the cross section first

experiencing necking, i.e. where strain localization was first observed. Figure 3.3
shows an example of the major logarithmic strain field in a uniaxial tensile test of
PVC during onset of strain localization. The black square indicates the element
used for extracting strains in this chapter. When the representative grid element
was chosen, the entire strain history was taken from this grid element.
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Figure 3.3 Example of strain localization in the major principal logarithmic strain
field in a uniaxial PVC tensile test.

Similar to other measurement techniques also DIC involves some degree of
measurement noise. This can be seen as variation in the strain field in Figure 3.3.
The noise originates from noise in the grey level images captured by the camera. It
appears as high frequent spatial noise in the displacement field. The relationship
between strain and displacement is obtained by numerical differentiation. When the
strains are computed, the numerical differentiation can amplify the noise in the
displacement field [6]. Also, a poor speckle pattern with low contrast can reduce
the quality of the DIC results. A solution for post processing of tests with
measurement noise is to average the strains from some grid elements over the cross
section as indicated by the blue rectangle in Figure 3.3.

3.4  STRESS AND STRAIN CALCULATIONS

The applied force F° was recorded by the Instron controller. In this chapter, the
strains are taken from one grid element from the DIC process of PVC and HDPE.
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The strains in this grid element, see Figure 3.3, are assumed to be representative for
the strain through the cross section of the specimen. This means that the strain field
is assumed to be homogenous through the cross section. By assuming transverse
isotropy [1, 2], i.e. that the two transverse strains &, and &, are equal

g =¢, (3.6)
the Cauchy stress o can be determined.
The width w of the test specimen during the deformation is
w=w, exp(&,) (3.7)
and the thickness ¢ of the specimen is
t=t,exp(e,) (3.8)

where w, and #, are the width and thickness measured on the sample before the

test.

This gives the current cross section area A
A=t-w=wy, exp(2¢, ) (3.9)
and the Cauchy stress

F
o=—
A

(3.10)

Still assuming transverse isotropy, we get the volume strain ¢,

g, =& +2¢, (3.11)

3.5 RESULTS

Typical force-displacement relationships for two representative specimens of PVC
are shown in Figure 3.4. One of the specimens was cut out parallel, 0°, to the
extrusion direction while the other was cut out normal, 90°, to the extrusion
direction. The test data reveal some anisotropy of the material. There is about 6%
difference in the maximum force level obtained from the two directions.
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At maximum force it was observed that the PVC specimens gradually started to
whiten. As the deformation continued, the stress whitening became clearer. Also a
neck started to form at the same location as onset of stress whitening. The stress
whitening zone and the neck propagated through the parallel section of the
specimen during the deformation. Inspection of a test specimen from an interrupted
test indicated that the stress whitening zone is somewhat longer than the necked
zone with reduced cross section area. This suggests that the stress whitening zone
has propagated slightly in front of the neck. When the neck covered the total
parallel section, the specimens in the two tests addressed in Figure 3.4 fractured.

-

Force [kN]

0.5 0

0 1 1 1
0 20 40 60 80

Displacement [mm]

Figure 3.4 Force-displacement curves for PVC specimens in uniaxial tension. The
solid line represents specimens taken out at 0° to the extrusion direction of the
plates. The dashed line represents specimen taken out at 90° to the extrusion
direction of the plates.

Figure 3.5 shows typical force-displacement relationships for HDPE specimens. In
a similar way as in Figure 3.4, results from one specimen cut out parallel, 0°, to the
extrusion direction and one cut out normal, 90°, to the extrusion direction are
included in the figure. The difference in maximum force between the two samples
is less than 1 %.
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Also in the HDPE specimens necking occurred. However, no stress whitening was
observed in any of these samples. Moreover, the HDPE specimens appeared rather
ductile. All tests were aborted after some deformation because the maximum stroke
length of the testing machine was 100 mm, which was insufficient to fracture the
HDPE samples. Therefore none of these specimens were deformed until fracture.
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Figure 3.5 Force-displacement curves for HDPE specimens in uniaxial tension.
The solid lines represent specimens taken out at 0°to the extrusion direction of the
plates. The dashed lines represent specimen taken out at 90° to the extrusion
direction of the plates.

From this point the specimens cut in the extrusion direction, i.e. 0°, will be
regarded. These data will later be used as basis for determination of parameters for
the material model proposed by Polanco-Loria et al. [3].

The grid used by the DIC software to obtain the strain fields in the representative
PVC specimen is shown in Figure 3.6 a). The field of major principal logarithmic
strain for the PVC specimen at different deformation levels is shown in Figure 3.6
b) to f). It is seen that after a certain deformation, the strain localizes and a neck is
formed. With further deformation the neck propagates through the parallel section
of the specimen.
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The grid used by the DIC software to obtain the strain fields in the HDPE specimen
is shown in Figure 3.7 a). Sub-figures b) to f) show the major principal logarithmic

strain at different strain levels. Although not as distinct as in PVC, the strain also
localizes in HDPE. A neck is formed, and it propagates through the parallel section

of the specimen when further deformation is applied.
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Figure 3.6 Major principal logarithmic strain field in PVC at different strain
levels. a) The grid employed by the DIC software to calculate the strains. b) Elastic
regime. ¢) Peak stress. d) Local stress minimum. e) The state of highest strain rate
in the minimum cross section. f) With propagated neck.
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Figure 3.7 Major principal logarithmic strain field in HDPE at different strain
levels. a) The grid employed by the DIC software to calculate the strains. b) Elastic
regime. c) Close to onset of yielding. d) Close to onset of strain hardening. e)

During strain rehardening. f) With propagated neck.

The stress-strain curve for the PVC is presented in Figure 3.8. In the figure, the
Cauchy stress is plotted against logarithmic strain in the longitudinal direction, i.e.
the major principal strain &,. Unless other is specified, the term logarithmic strain

will in the following refer to logarithmic strain in the longitudinal direction. The
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stress-strain curve in Figure 3.8 shows a linear response before peak stress, i.e. a
local stress maximum, is reached. The local stress maximum coincides with the
local force maximum seen in Figure 3.4, and also with the visually observed onset
of stress whitening. After the local stress maximum some stress softening sets in
before the stress level increases again. This subsequent rise in stress may be elastic,
caused by stretching of the polymer chain network. Nevertheless, the phenomenon
will be denoted strain rehardening hereafter. It is seen that strain rehardening
dominates until the end of the curve. Due to distortion of the speckle pattern the
DIC software could not follow the deformation until fracture.

The strain field in the PVC specimen is rather uniform in the elastic domain. This
is seen in Figure 3.6 b), displaying the field of major principal logarithmic strain at
g,= 0.025. The strain field at peak stress, i.e. & = 0.048, is seen in Figure 3.6 c).
At this strain level it is possible to see that the strain starts to localize. From Figure
3.6 d) it is seen that the strain localization is even stronger in the strain field at the
state of the stress minimum, at ¢, = 0. 14. In sub-figure e), at &, =0.36 it is possible
to see the neck as a local contraction of the width of the specimen. With further
deformation, the neck has propagated as seen in Figure 3.6 f) showing the major
principal strain field at & = 0.85.

70

Cauchy stress [MPa]
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Figure 3.8 Cauchy stress vs. logarithmic strain in a PVC specimen machined out
in the extrusion direction and deformed at a nominal strain rate of 1075
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The stress-strain curve from HDPE is displayed in Figure 3.9. The response is
initially linear before it bends off to a lower slope at longitudinal strain around &, =
0.1. Thereafter the stress increases progressively with strain. Although this
behaviour may origin from an elastic contribution, the stress increase is hereafter
denoted strain hardening. Since the HPDE test was aborted before fracture, the last
logging point in Figure 3.9 does not represent the fracture strain.

The major logarithmic strain field in HDPE at different strain levels was displayed
in Figure 3.7. Figure 3.7 b) shows the strain field in the elastic domain of Figure
3.9, at ¢, = 0.040. The strain field at the strain level & = 0.10, where the stress-

strain curve bends off, is depicted in Figure 3.7 c). Sub figures d), e) and f)
represent in turn strain levels of &= 0.24, & = 0.86 and & = 1.46. These are all
addressing the strain hardening part of the deformation, as seen in the stress —
strain curve in Figure 3.9.
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Figure 3.9 Cauchy stress vs. logarithmic strain in a HDPE specimen machined out
in the extrusion direction and deformed at a nominal strain rate of 107 s™.

Figure 3.10 and Figure 3.11 display the longitudinal and the transverse strain, &
and ¢,, in the PVC and the HDPE tests plotted against time. In particular, the

strain rate increases at the onset of yielding.
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Figure 3.10 Longitudinal and transverse strain, both taken from a grid element in
the cross section first experiencing strain localization, plotted against time for the

PVC.
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Figure 3.11 Longitudinal and transverse strain, both taken from a grid element the
cross section first experiencing strain localization, plotted against time for the
HDPE.
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The slope of the curves in Figure 3.10 and Figure 3.11 represent the strain rate.
Therefore the strain rate could be found by numerical differentiation. The strain
rates dg, /d¢ and de, /d¢ are plotted against longitudinal strain for PVC in Figure

3.12 and for HDPE in Figure 3.13. Differentiation of data with a moderate noise
level give results with large fluctuations. Therefore the strain-time curves were
smoothed before the differentiation.

Although the applied deformation rate from the Instron testing machine was
constant, the cross section used for extracting strains did not experience a constant
strain rate. It is seen that the strain rate in the cross section varies during the
deformation. As the strain localizes and a neck is formed, the strain rate in the
actual cross section is increasing. When the neck propagates, and the shoulder of
the neck moves away from the cross section, the strain rate decreases. The
maximum strain rate in PVC, both in longitudinal and transverse direction, occurs
at a longitudinal strain of & = 0.36. This corresponds to a point in the strain
rehardening region of the stress-strain curve in Figure 3.8 and to the strain level
displayed in Figure 3.6 e). The maximum strain rate is in HDPE at a longitudinal
strain of & = 0.86. This is the deformation stage addressed in Figure 3.7 e). Also

this strain corresponds to a point in the strain hardening region, as seen in Figure
3.9.

The volume strains ¢, found from Equation (3.11) for PVC and HDPE are plotted
in Figure 3.14 and Figure 3.15. It is clearly seen that PVC dilates during plastic
deformation while the volume in HDPE remains almost constant. The variations
we see in the volume strain for HDPE is, except at high deformation levels where
the precision of the DIC measurements is reduced, within £0.005, and can most
likely be regarded as measurement noise.
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Figure 3.12 Logarithmic strain rate plotted against longitudinal logarithmic strain
for the PVC.
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Figure 3.13 Logarithmic strain rate plotted against longitudinal logarithmic strain
for the HDPE.
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Figure 3.14 Logarithmic volume strain in the PVC.
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Figure 3.15 Logarithmic volume strain in the HDPE.
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3.6  DISCUSSION

Uniaxial tension tests were used to acquire basic information of the deformation
behaviour of a mineral filled PVC and HDPE. The specimens were cut out from
extruded plates of 5 mm thickness both in and normal to the extrusion direction.
Little difference was seen between the force-displacement relationships in the two
directions, shown in Figure 3.4 and Figure 3.5. Therefore it was decided to treat
both materials as isotropic. This has also been regarded as a good approximation by
others [1, 2]. During machining of the specimens no reduction of the thickness
direction was performed. Therefore possible effects of skin layers originating from
the extrusion process are included in the responses reported in this study. This
might be a feasible explanation why the behaviour of the 5 mm sheets of PVC and
HDPE appears somewhat different from the behaviour of the 10 mm sheets [1] as
reported in Chapter 2.8.

The 7D software can provide information of the strain fields in terms of Green
strain or logarithmic strain. The logarithmic strains are provided in the principal
directions only. The Green strains, however, are provided both in the direction
defined by the coordinate axes as well as in the principal directions. In the
beginning of this chapter, it was assumed that direction of the major principal strain
is aligned with the longitudinal direction of the specimen, i.e. that the principal
directions are equal to the directions defined by the coordinate axes. To check the
validity of this assumption, the Green strains in the principal directions and in the
directions of the coordinate axes were plotted in Figure 3.16 for the PVC test and
in Figure 3.17 for the HDPE test. It is seen that the two strain measurements give
the same results. Thus, it is reasonable to conclude that the major and minor
logarithmic strains, & and &,, can be employed as longitudinal and transverse

strains.
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Figure 3.16 Green strains in the principal directions and along the directions
defined by the coordinate axes, i.e. the longitudinal and the transverse direction of
the specimen. The data is taken from the PVC test.
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Figure 3.17 Green strains in the principal directions and along the directions
defined by the coordinate axes, i.e. the longitudinal and the transverse direction of
the specimen. The data is taken from the HDPE test.
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By DIC it was possible to acquire the in-plane principal logarithmic strain fields
even though the strains were rather large and inhomogeneous as seen in Figure 3.6
and Figure 3.7. The geometry of the specimen in the neck produces transverse
components of the stress tensor [7]. Therefore, the stress state changes from a
uniaxial state to a triaxial state at necking. After the neck has propagated away
from this location and the stress state is again uniaxial. The effect of the neck is
neglected in this study.

The mineral filled PVC started to stress whiten when reaching the maximum force
and the peak stress around ¢, = 0.048. After this point material experienced plastic

volume change, even though it was in the plastic regime. However, in the HDPE,
no stress whitening and almost no volume change in the plastic regime was
observed.

Figure 3.12 and Figure 3.13 show the longitudinal and the transverse strain rate in
the sections where the strains for the stress and strain computations are collected.
Even though the specimens were deformed by a constant rate, it can be seen that
the local strain rate varies throughout the deformation. Strain localization and neck
formation lead to an increase in strain rate. When the neck propagates the strain
rate decreases. Comparing the strain rate of PVC with that of HDPE, it is seen that
the strain rate is somewhat more constant in HDPE than in PVC. From the strain
fields of the two materials in Figure 3.6 and Figure 3.7, it also appears that there is
a stronger localization in the PVC specimens before the neck propagates. The
strong localization of strain in the PVC specimen may be related to the softening
behaviour of the material. Propagation of the neck, indicated by a decrease in the
strain rate, can be linked to the strain rehardening effect of the material. HDPE,
having no stress softening and a weaker strain hardening, shows less variation in
strain rate during the deformation. In other words, the PVC seems to be more
exposed to strain localization than HDPE. On the other hand, the PVC also seems
to redistribute the strain, and therefore propagate the neck, better due to more
pronounced strain rehardening.

The increase in strain rate may lead to an increase in temperature. However,
unpublished temperature measurements of similar mineral filled PVC and HDPE
materials deformed at room temperature at the same strain rate reveals that the
temperature increase in the specimens was about 5°C. The temperature effect is
therefore not regarded as important for the tension test results reported in this
section.
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With the test setup and post processing method employed in this study, it is not
possible to obtain stress-strain curves at a constant strain rate. G’Sell et al. [8] have
developed a video-controlled tensile testing method allowing for continuous
adjustment of the deformation velocity based on real time strain computations. The
strain measurement in the method is based on the displacement between seven ink
markers printed on the surface of a specimen with a pre-machined imperfection.
With such a system the local strain rate can be kept constant during the test. The
method employed in this study and the method of G’Sell et al. produce similar
results for the stress — strain curve at quasi-static strain rate [9]. Lauro et al. [10]
developed the SEE technique that employs results from DIC to construct a surface
in a 3D space spanned by stress, strain and strain rate. By cutting this surface at one
strain rate, they obtained a stress — strain curve for a constant strain rate.

Only one strain rate was tested in this work. For test results at other strain rates,
and a more comprehensive test programme in general, the reader is referred to
Hovden [1] or Moura et al. [2].

3.7 CONCLUDING REMARKS

e The behaviour of the 5 mm sheets of PVC and HDPE is somewhat
different from the behaviour of the 10 mm sheets. This may be related to
skin-layer effects.

e The 5 mm extruded plates of PVC and HDPE can be regarded as isotropic
in tension.

e The stress-strain curve from the mineral filled PVC shows a peak stress,
stress softening and subsequent strain rehardening. Stress whitening sets in
at peak stress. Moreover, dilation during plastic deformation was found.
The specimen was deformed until fracture.

e The stress-strain curve of the HDPE has no stress peak. Strain hardening is
dominant in the material at large strains. The HDPE has a nearly isochoric
plastic deformation. Due to ductile behaviour, the test was aborted before
fracture occurred in the specimen.
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CHAPTER 4

UNIAXIAL COMPRESSION

Uniaxial compression tests of specimens from the 5 mm extruded plates of
PVC and HDPE were carried out to study the pressure sensitivity of the two
materials.

4.1 INTRODUCTION

The basic response of the 5 mm thick extruded sheets of PVC and HDPE in
uniaxial tension was disclosed in Chapter 3. However, it is well known that
the mechanical response of polymers is sensitive to pressure. Therefore, also
testing of these materials’ compressive behaviour is of great interest. In this
chapter compression tests on cylindrical specimens as outlined in Figure 4.1
are presented. Results from these test will be used in calibration of the
material model of Polanco-Loria et al. [1] in Chapter 10.

=i
-2

Figure 4.1 Geometry of compression test specimen. Measures are given in
mm.
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4.2 TEST SETUP

The compressive test coupons were machined with nominal dimensions
according to Figure 4.1. They were cut out from 5 mm thick extruded plates
of mineral filled PVC and HDPE. These were the same plates that were
used in the uniaxial tensile test in Chapter 2. Specimens were cut with three
different orientations: The longitudinal axis in the extrusion direction, 0°, in
the in-plane transverse direction, 90°, and in the out-of-plane direction of
the sheets. Two tests of each material and machining direction were carried
out in order to check the repeatability which turned out to be good.

The tests were carried out under displacement control in a servo-hydraulic
Dartec machine with a 20 kN load cell connected to an Instron controller.
The loading rate was kept constant at 0.005 mm/s, corresponding to a
nominal strain rate of 10 s™'. The friction between the sample and the steel
platen of the test machine was minimized by applying a lubricant to the
contact surfaces. The deformation of the specimens was monitored by a
charge-coupled device (CCD) camera taking digital images at a frequency
of 0.2 Hz. The initial diameter and height of each sample were measured
before the tests.

4.3 DEFORMATION MEASUREMENT

The CCD camera monitoring the deformation had its focus at the edge of
the test specimens. After testing, the diameter ¢ of the mid cross section as
well as the height % of the cylinder was measured on the images as
illustrated in Figure 4.2. This data were used for the calculation of Cauchy
stress and logarithmic strain. The strains were assumed to be homogenously
distributed in the test coupon.
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b)

Figure 4.2 A PVC compression specimen. After the test the measurements
shown were measured on the images. a) The coupon before deformation
showing the initial measurements. b) The specimen after some deformation.

4.4  STRESS AND STRAIN CALCULATIONS

The Cauchy stress was defined as the applied force F divided by the actual
cross section area

F

= Tad -

The longitudinal logarithmic strain & was computed from the current height

h of the specimen and the initial height 7,

£ =In [1] (42)
hy
The radial strain was found from the current diameter 4 and the initial
diameter d,
e =In [i] (4.3)
d,

Transverse isotropy was assumed, implying that any ovalization of the cross
section was not taken into account. Thus, &, represents the strain in both the
radial and the circumferential directions of the sample. This assumption is
supported by earlier investigations. [2, 3]. Hence, the volume strain was
expressed as
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4.5 RESULTS

Representative force-displacement relationships for compression coupons of
PVC from the different directions of the plate are plotted in Figure 4.3. The
difference in the peak force is 12% between the out-of-plane specimen and
the specimen cut in the extrusion direction, 0°. It is also observed that the
peak force differs with less than 4% between the samples in the 0° and 90°
directions. These differences are regarded as small enough to consider the
material as isotropic. Similarly Figure 4.4 shows representative force-
displacement curves for HDPE. Also this material is regarded as isotropic.
Transverse isotropy has earlier been demonstrated for similar materials [2,
3]. From this point onwards, only results from representative specimens
machined in the extrusion direction will be treated.

0 1 1 1
0 1 2 3 4

Displacement [mm]

Figure 4.3 Force-displacement curves measured during compression of the
PVC coupons.
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Figure 4.4 Force-displacement curves measured during compression of the
HDPE coupons.

Figure 4.5 and Figure 4.6 show photos of test specimens of PVC and HDPE
at different stages during compression. From the figure it can be seen that
bulging, or “barrelling”, started after some deformation. This was probably
due to friction between the steel platens and the top and bottom surfaces of
the test coupons.

a) b) c)
Figure 4.5 Compression coupon of PVC a) before deformation b) at onset
of barrelling and c) at the last logging point used for stress and strain
calculations.
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a) b) c)
Figure 4.6 Compression coupon of HDPE a) before deformation b) at onset
of barrelling and c) at the last logging point used for stress and strain
calculations.

Applying Equations (4.1) and (4.2), the Cauchy stress — logarithmic strain
curve from a representative compressive test of mineral filled PVC was
found. It is shown in Figure 4.7. The response is linear up to a local stress
maximum. Thereafter, the stress-strain curve drops markedly. The stress-
strain curve before barrelling of the test coupon is plotted with a solid line.
Onset of barrelling is marked with a circle. After this point the stress state is
no longer uniaxial, and the curve therefrom has to be considered with less
confidence. The following response is therefore represented by a dashed
line. The onset of barrelling is somewhat unclear. However, the first clear
sign of barrelling was observed after the peak stress was reached.

Figure 4.8 displays the Cauchy stress against logarithmic strain for the
representative HDPE compression test. Also here, barrelling is marked with
a circle, and the subsequent response is represented by a dashed line.
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Figure 4.7 Cauchy stress vs. logarithmic strain curve for PVC in uniaxial
compression. The circle represents onset of barrelling, and the dashed line
represent the stress-strain curve after barrelling.
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Figure 4.8 Cauchy stress vs. logarithmic strain curve for HDPE in uniaxial
compression. The circle represents onset of barrelling, and the dashed line
represent the stress-strain curve after barrelling.
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The volume strains, found from Equation (4.4), are for the two materials
presented in Figure 4.9 and Figure 4.10. Also here onset of barrelling is
marked by a circle and the response thereafter by dashed lines. It is seen that
the volume diminishes during elastic loading. In PVC it seems that the
volume increases after reaching plasticity. However, it is again emphasised
that the results must be regarded with care after onset of barrelling.
Barrelling of the test coupon exaggerate the transverse expansion and leads
to overestimation of the radial strain and also the volumetric strain. In
HDPE the volume remains about constant for large deformation. Some
small increase in volume strain is observed, but this may also be related to
barrelling of the specimen.
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Figure 4.9 Logarithmic volume strain in PVC in compression. The circle
represents onset of barrelling, and the dashed line represent the volume
strain after barrelling.
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Figure 4.10 Logarithmic volume strain in HDPE in compression. The circle
represents onset of barrelling, and the dashed line represent the volume
strain after barrelling.

4.6 DISCUSSION

Small cylinders of mineral filled PVC and HDPE were tested in uniaxial
compression. The strains were determined from measurements of the height
and the diameter of the cylinder during deformation. By combining this data
with the force recorded by the tensile machine the stress-strain relationships
presented in Figure 4.7 and Figure 4.8 were established. After some
deformation the test coupon started to bulge, or “barrel”. The onset of
barrelling was somewhat unclear since it appeared gradually. Nevertheless,
the first clear visual evidence of barrelling is marked with a circle. To
indicate that the results may be inadequate after this point the response is
plotted by dashed lines in Figure 4.7 and Figure 4.8.

In Figure 4.11 the stress-strain curves from the compression tests are plotted
together with those found from uniaxial tension in Chapter 2. For PVC the
peak stress in compression is about 1.3 times higher than that in uniaxial
tension. It is interesting that not only in tension but also in compression the
peak stress in PVC is followed by stress softening. Moreover, the stress
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softening appears even stronger in compression. The stress-strain response
of HDPE in uniaxial compression is very similar to that in tension, see
Chapter 2.

Cauchy stress [MPa]

10 Tension

N Compression |
(O Onset of barrelling
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0 0.5 1 1.5

Logarithmic strain

Figure 4.11 Stress-strain curves for PVC and HDPE in tension and
COmpression.

The Cauchy stress was computed by employing the mid section of the
compression coupons. This is where the cross area is at its largest after
barrelling. The difference between the maximum (mid) cross section
diameter and the minimum (upper and lower) cross section diameter was
about 4% in the compression coupons at the stage defined as onset of
barrelling, see Figure 4.5 b) and Figure 4.6 b). It means that the barrelling
actually started at some earlier stage. This leads to an underestimation of
Cauchy stress already at the point marked with a circle in Figure 4.7 and
Figure 4.8. Further deformation of the specimen, and therefore more
barrelling, increases the error.

The volume change in the two materials is presented in Figure 4.9 and
Figure 4.10. Initial elastic deformation of both materials leads to
compaction of the test coupon. When the PVC reaches peak stress, a volume
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increase can be observed in Figure 4.9. However, most of the dilation
emerges after onset of barrelling. The computed volume strain includes the
radial strain as according to Equation (4.4). The radial strain was found
from measurement of the mid cross section of the specimen, i.e. the cross
section with the largest diameter after barrelling as seen in Figure 4.5 c¢).
The result is an overestimation of the radial strain and therefore also volume
strain. The data provided by these tests are not sufficient for drawing
conclusions about the volume change of mineral filled PVC and HDPE in
compression. In order to do this, new and better compression tests are
needed. Some improvements for future compression tests are suggested in
the following.

Better quality of the images can improve the measurement of the evolution
of the diameter. As seen in Figure 4.5 and Figure 4.6 the images used in the
post processing in this study are somewhat unclear. By increasing the
contrast between the test coupon and the background, the diameter
measurement can be done by an automatic script. Such a script could also be
coded to trace the boundary of the specimen and compute the total volume
of the specimen in each image by for instance solving a disk integral.
Moreover, one should also take care to focus at the edge of the specimen in
order to get a sharp contour. To reduce measurement noise, the specimen
should cover a sufficient part of the photograph. If the specimen is
represented by too few pixels in the picture, measurement noise in the order
of just one pixel can have a great impact on the strain results.

Lubricant was added to the top and bottom surfaces of the test coupon. Yet,
the barrelling of the specimens indicates that some friction is present
between the specimen and the compression platens. This friction should be
reduced further. Van Melick et al. [4] reduced the friction by using a PTFE
film and soap water. By this procedure, they reported true strains up to —1.5
without observing any bulging or buckling of the sample.

The strains could also have been measured by digital image correlation
(DIC). Moura et al. [3] and Delhaye [5] report results from compression test
on cubical specimens. The advantage of cubical test coupons is that 2D-DIC
can be used to measure the full in-plane strain field on one of the flat sides.
The disadvantage is undesirable effects produced by the corners of the
specimen, causing a non-homonegeous strain field in a transverse section of
the sample. 3D-DIC has been performed on test coupons of cylindrical
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shape by Hovden [2]. The results from 3D-DIC were compared with results
from employing measurement of the diameter expansion. Even though the
3D-DIC produced a high level of noise in the measurement, the main results

were similar.

Even though some of the test results from this study are regarded as
inadequate, the main objective was to acquire data for determination of the
material parameters for the constitutive model by Polanco-Loria et al. [1].
The results herein are considered suitable for this purpose because only the
compression yield stress is involved in the parameter identification
procedure.

4.7

68

CONCLUDING REMARKS

The 5 mm thick extruded plates of PVC and HDPE can be regarded
as isotropic in compression.

The PVC has a higher yield stress in compression than in tension.
Moreover, the stress softening is more pronounced in compression
than in tension.

The stress-strain curve of the HDPE in compression is similar to that
in tension. The yield stress of the material is regarded as insensitive
to pressure.

Plastic dilation is observed in compression of PVC. However, it is
suspected that this is an effect from undesired friction between the
test specimen and the compression platens. New and better tests
results are needed.



REFERENCES

[1]

M. Polanco-Loria, A.H. Clausen, T. Berstad, O.S. Hopperstad. Constitutive
model for thermoplastics with structural applications. [International
Journal of Impact Engineering, 37 (2010), 1207-1219.

M.T. Hovden. Test and numerical simulations of polymer components.
Master thesis, Department of Structural Engineering, NTNU, (2010).

R.T. Moura, A.H. Clausen, E. Fagerholt, M. Alves, M. Langseth. Impact
on HDPE and PVC plates - Experimental tests and numerical simulations.
International Journal of Impact Engineering, 37 (2010), 580-598.

H.G.H. van Melick, L.E. Govaert, H.E.H. Meijer. On the origin of strain
hardening in glassy polymers. Polymer, 44 (2003), 2493-2502.

V. Delhaye. Behaviour and modelling of polymers for crash applications.
Doctoral thesis, Department of Structural Engineering, NTNU, (2010).

69



70



CHAPTER 5

LOADING, STORAGE AND RELOADING

Tensile specimens of mineral filled PVC and HDPE were loaded to different
elongations and unloaded to zero force. The specimens were then stored for
different periods of time before they were reloaded. The purpose of these tests is to
study whether physical aging, as an effect of storage, affect the mechanical
response of the polymers. In particular, it is paid attention to whether the peak
stress in the mineral filled PVC could be recalled by storage.

5.1 INTRODUCTION

The shape of the stress-strain curves presented in Chapter 2.8 and in Chapter 3
generated curiosity regarding the characteristics of the behaviour of the mineral
filled PVC and the HDPE. The PVC showed a stress peak followed by softening
before subsequent rehardening, while the stress of the HDPE increased during the
whole test. It is generally known that time affects polymer materials in terms of
physical aging, as discussed in Chapter 2.4. A shape of the stress-strain curve
similar to that of the PVC is familiar also for physically aged polymers [1]. Rolling
of polystyrene tensile specimens was shown by Govaert et al. [2] to rejuvenate the
material by decreasing both the maximum stress and the subsequent stress
softening. The effect was temporary, after 20 minutes a clear recovery of the
softening was observed and after 30 minutes the effect from the rejuvenation had
vanished.

It was of interest to see how storage time affects the mechanical response of the
two materials in this study. This was done by first applying a loading cycle to
tensile specimens. Thereafter, the specimens were stored for a certain time before
they were reloaded.
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5.2 TEST SETUP

Fifteen uniaxial tensile test specimens were machined from 10 mm thick extruded
sheets of mineral filled PVC and HDPE according to Figure 5.1. The thickness was
reduced to 4 mm by removing material from both sides of the plates. The
specimens were divided into three groups to create three test series denoted I, II,
and III from both materials. Each test series represented one loading cycle
consisting of loading until a particular elongation level followed by unloading. The
test series and associated elongation levels are listed in Table 5.1 and Table 5.2 for
specimens of mineral filled PVC and HDPE in turn. On the first test day all
specimens were subjected to the first load cycle particular for the respective test
series. The five specimens belonging to each series were then stored for five
different periods of time and reloaded according to the same loading cycle. In total
15 different tests from each material were carried out with this test setup.
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Figure 5.1 The geometry of the tensile test specimens. Measures are given in mm.

A speckle pattern was painted on the surface of the specimens, and the deformation
was monitored by a CCD camera during the test with an image frequency of 0.5
Hz. DIC was subsequently used to find the strain fields as in Chapter 3. Stress and
strain calculations were also carried as described in Chapter 3.The strains were
taken as an average from five grid elements to reduce noise, see Figure 3.3. To
ensure that all specimens were unloaded at the same deformation level, an MTS
634.31F-25 extensometer with 30 mm gauge length was clamped to the specimens
to measure the elongation of the parallel area. When the elongation had reached a
certain level, as listed in Table 5.1 and Table 5.2, the testing machine was
programmed to start the unloading stage. To avoid compression of the specimens
the unloading was carefully stopped when the testing machine measured zero force.
Both the loading and the unloading processes were displacement controlled with a
deformation speed of 0.033 mm/s.
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Table 5.1 Test programme for loading, storage and reloading of PVC specimens.

Test number  Test series  Elongation level Storage time before
(extensometer) reloading

1 I 1 mm 5 min

2 I 1 mm 24 hours

3 I 1 mm 9 days

4 I 1 mm 80 days

5 I 1 mm 33 weeks

6 II 1.5 mm 5 min

7 II 1.5 mm 24 hours

8 II 1.5 mm 9 days

9 II 1.5 mm 80 days

10 II 1.5 mm 33 weeks

11 I 2 mm 5 min

12 111 2 mm 24 hours

13 m 2 mm 9 days

14 111 2 mm 80 days

15 I 2 mm 33 weeks

Table 5.2 Test programme for loading, storage and reloading of HDPE specimens.

Test number  Test series  Elongation level Storage time before
(extensometer) reloading

16 I 1.5 mm 5 min

17 I 1.5 mm 24 hours

18 I 1.5 mm 9 days

19 I 1.5 mm 80 days

20 I 1.5 mm 33 weeks

21 II 2.5 mm 5 min

22 II 2.5 mm 24 hours

23 II 2.5 mm 9 days

24 II 2.5 mm 80 days

25 II 2.5 mm 33 weeks

26 i 4 mm 5 min

27 1 4 mm 24 hours

28 1 4 mm 9 days

29 I 4 mm 80 days

30 1 4 mm 33 weeks
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5.3 RESULTS

The loading paths for all tests can be seen in Figure 5.2 in terms of load-
extensometer displacement curves. The dotted lines represent the first load cycle
and the continuous lines represent the reloading cycle of the same specimens after
different storage times.

Separating the results into the three series I, II and III, Figure 5.3 and Figure 5.4
display stress-strain curves and volume strain plots. The stress-strain curves of the
first load cycles are plotted as dashed lines. The stress-strain curves of the
reloading, after storage for different periods of time, are plotted as solid lines.
Colours are used to distinguish the different test specimens. Note that the scales for
the x-axes are changing between the test series, while the y-axes remain the same
for each material.

The response from the first loading cycle is initially linear elastic with local stress
maxima followed by stress softening. This is similar to the response the material
from 10 mm sheets reported in Chapter 2.8 and also to that of Smm sheets
addressed in Chapter 3. The PVC-I-test specimens, see Figure 5.3 a), were
unloaded at the local stress maximum, while the PVC-II- and PVC-III-test
specimens, see Figure 5.3 ¢) and e¢), were unloaded at two different stages of the
softening process. The test results reveal that the second loading cycle has a
response quite different from the first. The slope of the stress-strain curve during
reloading is gradually decaying. The stress is at its maximum at the end of the
reloading stage, no stress softening is observed for any of the reloading cycles. The
stress level during the reloading cycle is approaching the response of the first
loading cycle at the end of the softening regime. This applies also for the
specimens stored for the longest period. However, these specimens, stored for 33
weeks before reloading, reach slightly higher values of stress than the other
specimens when reloaded.

The volume strain observed in the PVC specimens during the experiment is plotted
in Figure 5.3 b), d) and f). Both for the first and the second loading cycles the
volume strain increases during the entire loading stage.

In contrast to the PVC specimens, the HDPE specimens show the same stress-
strain relationship in the first and the second load cycles. It is seen in Figure 5.4 a),
¢) and e) that the response of the second loading cycle is equal to that of the first
loading cycle. This behaviour does not seem to change with storage time.

Hardly any volume change is observed for the HDPE specimens. The volume
strains during both load cycles is around zero in Figure 5.4 b), d) and ).
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Figure 5.2 Force — extensometer displacement measured for all tests of a) PVC
and b) HDPE.
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Figure 5.3 Cauchy stress — logarithmic strain curves and logarithmic volume
strain plotted against logarithmic longitudinal strain from tensile tests of PVC. a)
and b): I-series. c) and d): Il-series. e) and f): lll-series.
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Figure 5.4 Cauchy stress — logarithmic strain curves and logarithmic volume
strain plotted against logarithmic longitudinal strain from tensile tests of HDPE. a)
and b): I-series. c) and d): Il-series. e) and f): lll-series.
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5.4  DISCUSSION

There is a pronounced difference in the stress-strain curves of the first and the
second load cycle for all specimens of the mineral filled PVC. This is clearly seen
in Figure 5.3 a), ¢) and e) where the first load cycle is plotted as dashed lines and
the reloading cycle as solid lines. While the specimens during the first load cycle
show a linear elastic response up to a local stress maximum followed by a stress
drop, the stress drop is absent in the second load cycle. The peak stress followed by
stress softening did not reappear. Moreover, the reloading response is initially
softer. Storage within the time scale of this study did not seem to give any dramatic
change in the reloading response of this particular PVC. Therefore it seems
reasonable to suspect that other irreversible mechanisms such as damage occur
during the first load cycle. However, it should be noted that the specimens with the
longest storage time before reloading reached a slightly higher stress level than the
other specimens. This can be an indication of some physical aging.

For the specimens made of HDPE no significant difference was observed in the
stress-strain relationships from the first to the second loading cycle, see Figure 5.4
a), ¢) and e). The response also seemed to be insensitive to storage time.

In these tests, an extensometer was used to control that every specimen in all of the
test series was deformed to the pre-defined elongation level. However, the
extensometer was so loosely attached that it slipped from the surfaces of some of
the specimens. As a result, these specimens were elongated to a higher level than
intended. This explains the high strain levels for some of the curves in Figure 5.3
and Figure 5.4. This could have been avoided by using the cross-head
displacement, rather than an extensometer, to control the elongation level. Even so,
since the strains were rendered from DIC and not from the extensometer, the stress-
strain curves are still correct.

5.5 CONCLUDING REMARKS

e The mineral filled PVC in these tests shows different stress-strain
relationships during the first and the second load cycle: during the second
load cycle the response is softer and without the characteristic peak stress
and stress softening. This characteristic behaviour in the PVC is not
recalled by storage. It is therefore suspected that some damage
mechanisms occurred in the material during the first load cycle.
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Some minor indication of physical aging can be observed for the mineral
filled PVC specimens with the longest storage time.

The HDPE material in these tests does not show any signs of damage or
aging.

Storage does not alter the evolution of volume strain. In the mineral filled
PVC the volume increases with the deformation during both loading
cycles. In the HDPE the volume change is approximately zero.
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CHAPTER 6

VOID GROWTH IN PVC

Tensile test specimens of mineral filled PVC were deformed in tension to different
elongations and then unloaded. The specimens were thereafter split in two and
investigated in a scanning electron microscope. The void growth on the microscale
was then compared with the dilation of the material on the microscale. The
intention of the study is to investigate the mechanisms behind the plastic dilation
observed in experimental tests.

6.1 INTRODUCTION

Stress whitening and volume change during plastic deformation were observed in
uniaxial tension of mineral filled PVC as reported in Chapter 2.8 and Chapter 3.
Plastic dilation in polymers can be assumed to be related to damage. Such damage
can be voids that grow from local irregularities of the molecular packing [1], from
cavitation of rubber particles or from debonding of particles made of rubbers or
minerals [2, 3] as discussed in Chapter 2.5. By the use of a scanning electron
microscope (SEM), the voids in the damaged material can be investigated. It this
study, SEM micrographs have been used to quantify the void growth on the
microscopic scale. These results were subsequently compared it with the volume
change on the macroscopic scale.

6.2  TEST SETUP
The polymer-particle composite material investigated in this study is taken from

the 10 mm thick extruded PVC plates produced by SIMONA. Ten tensile test
specimens with geometry according to Figure 6.1 were machined from the
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extrusion direction of the plates. The thickness was reduced to 4 mm by removing
3 mm material from each side of the plates.

\.R14
\——
12 25
=
KA 33
t=4
/II/ 115 /IV

Figure 6.1 The geometry of the tensile test specimens. Measures are given in mm.

The loading of the specimens was displacement controlled with a deformation rate

of 0.033 mm/s, giving an initial nominal strain rate ¢ _=107s"". Each specimen

was loaded until a certain deformation was achieved. The specimens were then
unloaded to zero force at a load rate corresponding to the deformation rate. Load
control was chosen for the unloading to avoid that any compression occurred in the
specimens.

The tests were instrumented with a CCD camera acquiring digital pictures at a
frequency of 0.5 Hz. The specimens were left in the testing machine for 10 minutes
after unloading. At the end of this period, a new digital image was taken and added
to the subset of images from the test. This was done to capture any possible stress
relaxation causing volume change. The strain history from the start of the test until
the end of the 10 min relaxation period could then be found by using digital image
correlation (DIC) as described in Chapter 3. The width and the thickness of the
specimens were again measured by a sliding calliper about a week after testing. No
further shrinkage was then found. By using the results from strain measurements
and assuming transverse isotropic deformation, the Cauchy stresses were found as
described in Chapter 3.

6.3  TENSION TEST RESULTS

The force-displacement curves for all eight samples addressed in this study are
shown in Figure 6.2. In addition, two tensile specimens were deformed until
fracture, but they are not reported herein.
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Figure 6.2 Force-displacement curves for 8 PVC tension test samples with
unloading at different deformation levels.

The Cauchy stress — logarithmic strain curves for all eight specimens are shown
Figure 6.3. The results are in accordance with the observations reported earlier in
this thesis: All stress-strain curves show a linear elastic response up to a local stress
maximum. The peak stress is followed by a load drop and subsequent strain
rehardening. Defining the local stress maximum as the yield stress, plasticity sets in
at 48-50 MPa, with little variation between the tests. This corresponds to a
longitudinal logarithmic strain around 0.035. After onset of yielding a gradual
increase of stress whitening could be observed visually during the test.

The logarithmic volume strains are plotted against logarithmic strains in the
longitudinal direction in Figure 6.4. There is some variation between the curves in
the figure. However, plastic dilation is clearly characterized in the tests. From the
figure it can be seen that the volume strain does not increase linearly with the
longitudinal strain. The curves have a slight convex shape.
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Figure 6.3 Cauchy stress vs. logarithmic strain for all tests. The plot includes the
loading and unloading stages as well as the relaxation after the test.
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Figure 6.4 Logarithmic volume strain plotted against logarithmic longitudinal
strain for all tests. The plot includes the loading and unloading stages as well as

the relaxation after the test.
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The nonlinearity in the dilation becomes clearer when looking at Figure 6.5,
representing the retraction ratio defined as p=-¢, /¢, i.e. the ratio of transverse

strain to longitudinal strain, plotted against plastic longitudinal strain. The
retraction ratio in Figure 6.5 can be regarded as a kind of a Poisson’s ratio during
the plastic deformation, and describes the trend in the dilation. Since noise in the
strain measurements causes fluctuations in the retraction ratio, the smoothing
function in Matlab was used to obtain a better representation. It is seen that the
retraction ratio has a minimum at a plastic strain of 0.04-0.06, corresponding to
longitudinal strain of & = 0.07-0.095. The retraction ratio increases, i.e. the

increase in dilation decays, when the longitudinal strain exceeds about 0.1. At
unloading, there is a difference in the evolution of the retraction ratio between the
different tests. The retraction ratio remains almost constant, or exhibits a slight
increase, during unloading of the highly stretched specimens, i.e. PVC-6 to PVC-8,
while it has a significant decrease while unloading of the other specimens.

0.4
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i
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% PVC-4
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0.25 PVC-6
PVC-7
PVC-8
0'2 Il Il Il
0 0.2 0.4 0.6 0.8

Plastic strain

Figure 6.5 Retraction ratio plotted against plastic logarithmic longitudinal strain.
The plot includes the loading and unloading stages as well as the relaxation after
the test.
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In Figure 6.6, the Cauchy stress-logarithmic strain curve is plotted together with
the retraction ratio for the first part of test PVC-8. Here, no smoothing function is
used for the retraction ratio. Therefore the initial fluctuations due to measurement
noise are easy noticeable. It is seen that peak stress is reached before the retraction
ratio approaches its lowest value. The minimum value of the retraction ratio is
reached when the stress-strain curve flattens out.
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Figure 6.6 Stress and retraction ratio plotted against strain for the first part of test
PVC-8.

Two additional tests specimens were deformed until fracture. Before onset of
fracture they reached logarithmic strains of 0.80 and 0.56, respectively. This was at
stress levels of 68.8 MPa and 51.8 MPa, and at logarithmic volume strains of 0.17
and 0.14. The latter of these two specimens fractured at a considerably lower
deformation than any of the other specimens in this study.
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6.4  SPECIMEN PREPARATION FOR SEM

The cross sections where the strains were extracted by DIC for stress and strain
computations, i.e. the location for the first occurrence of necking, were marked on
the test specimens. Small pieces containing these cross sections were thereafter cut
out, see Figure 6.7. After storing these pieces in liquid nitrogen at —196°C for 30
minutes, they were split in two in the longitudinal direction. This created two
longitudinal sections as seen in Figure 6.7. The fracture surface of one section from
each test specimen was chosen for microscopic examination.

First occurrence
of necking

Figure 6.7 Picture of a specimen after deformation. The red square shows the
region cut out from the sample. The red dashed line indicates the longitudinal
section investigated in the SEM.

Prior to the SEM investigation the fracture surface of one of the split longitudinal
sections from each specimen was coated with carbon dust by an Agar Turbo
Carbon Coater. Then the location for onset of necking was investigated in a Zeiss
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Supra 55VP SEM, as described in Chapter 2.8. The contents of one of the larger
particles were identified by energy dispersive spectroscopy (EDS), which is a built-
in tool of the SEM.

The contours of the areas containing particles and voids in the SEM micrographs
were traced manually. It was in many cases hard to distinguish particles from
voids. Moreover, it was impossible to determine whether a void used to contain a
particle before the specimen was split in two. Therefore, particles and voids,
together, were identified as one object type. The area fraction of particles and voids
®, was determined from the manually traced boundaries by using the open-source

image processing and analyzing program Imagel] [4]. The principle of Delesse,
stating that the area fraction @, of a component in a random cross section is equal

to the volume fraction @ of the component in the entire material, was then used.
The principle is described closer in Chapter 2.6. The particle content of the
material was found in following way. It was assumed that the undeformed PVC
contained no voids, only particles. The fraction of objects observed in the SEM of
the undeformed material, @,, was therefore interpreted as the particle content of

the material. To ensure representative results, two micrographs from each test
specimen were investigated, each covering an area of 38.6pum-26.0um.

6.5 SEM RESULTS

A section from a scanning electron micrograph of undeformed PVC is displayed in
Figure 6.8. As always, it was cooled in liquid nitrogen before it was split in two to
ensure that undesired deformations did not occur during the fracture process. Image
analysis suggests that the material contains particle volume fraction @, around

0.24. Judged from their visual appearance, two kinds of particles might be present.
There are some rather spherical particles that are comparatively small, having
diameter around 0.2-0.4 pm, and some larger particles having a more irregular
shape. The dispersion of particles in the matrix material appears to be good. Both
kinds of particles exhibit a distribution of size. The smallest particles were hard to
observe in the SEM, so no exact size distribution can be determined. Still, some
general reflections can be made. Although not present in Figure 6.8, particles up to
18 um were found, but they were very few. Most of the particles were considerably
smaller. A common particle size appeared to be from 2 um and smaller with a
higher incidence of particles sized 0.5 pm and smaller. The smallest particle
observed at the magnification level used in the SEM was 0.06 pm. Smaller
particles might exist even though they were not discovered.
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Figure 6.8 SEM micrograph of cryo-fractured undeformed mineral filled PVC.

The smallest spherical particle type was too small for energy dispersive
spectroscopy. As presented in Chapter 2.8 EDS on the larger irregular particles
suggest that the filler is made of calcium carbonate (CaCO;). We can therefore
expect that the particles have a rather stiff mechanical response compared to the
PVC matrix.

Representative micrographs for all deformed test specimens are presented in Figure
6.9 to Figure 6.12. The vertical direction represents the tensile direction in all
cases. The micrographs were recorded from the cross sections where necking was
initiated. It was clearly seen in the SEM that the region for onset of necking
contained more voids than the surrounding regions.

Figure 6.9 shows the two least deformed specimens. Sample PVC-1 was only
deformed elastically while PVC-2 was unloaded at peak stress, in other words at
onset of yielding from a macroscopic point of view. Still, some plastic deformation
might have occurred locally in the PVC matrix. No voids are observed around any
of the particles in Figure 6.9. Nevertheless, the particles might have debonded from
the matrix. If debonding takes place before the material yields, the void growth is
elastic and the void might just enclose the particle during unloading. Also in the
micrograph of PVC-3, in Figure 6.10 a), no clear sign of void growth can be seen.
In the micrograph of PVC-4 in Figure 6.10 b) we can vaguely see the first evidence
of particle-matrix separation causing formation of voids around some particles. The
debonding seems to occur around the large particles first. However, the voids are
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not very clear at this stage. Between the tests PVC-4 in Figure 6.10 b) and PVC-5
Figure 6.11 a) there is a markedly difference in the appearance of the voids, even
though the difference in strain level, see Figure 6.3, between these two tests is
moderate. In PVC-5 many of the particles have clearly debonded from the matrix,
and it is apparent that the void size has increased around the particles. Also in the
micrographs of specimen PVC-6 in Figure 6.11 b) we can clearly see how the
voids have grown around the particles. In the two most deformed specimens, PVC-
7 and PVC-8, shown in Figure 6.12, a larger amount of the particles has debonded
from the matrix and the voids are considerably larger than in the other
micrographs.
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b)
Figure 6.9 SEM micrograph of deformed samples a) PVC-1 and b) PVC-2. The
specimens were loaded in the vertical direction.
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Figure 6.10 SEM micrograph of deformed samples a) PVC-3 and b) PVC-4. The
specimens were loaded in the vertical direction.
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Figure 6.11 SEM micrograph of deformed samples a) PVC-5 and b) PVC-6. The
specimens were loaded in the vertical direction.
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Figure 6.12 SEM micrograph of deformed samples a) PVC-7 and b) PVC-8. The
specimens were loaded in the vertical direction.
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Large particles, and cavities obviously formed by large particles that fell out during
the splitting process, could be observed in some of the micrographs. One example
is shown in Figure 6.13. This micrograph is recorded from specimen PVC-4, which
is a specimen without particularly large deformations. Still it can be seen that the
presence of one large particle causes local deformations so large that many smaller
particles in the vicinity debond from the matrix. Very few such large cavities and
particles were observed during the microscopic examination, indicating that the
amount of such large particles is limited in this particular PVC.

Figure 6.13 SEM micrograph of specimen PVC-4 showing a cavity, probably after
a large particle of high aspect ratio. The particle is assumed to have fallen out
during splitting of the specimen. It can be seen that some smaller particles near the
large cavity have debonded from the matrix material. The specimen was loaded in
the vertical direction.

6.6 ESTIMATION OF VOID VOLUME FRACTIONS

The contours of the particles and voids were traced manually before their volume
fraction @ , which was assumed to be equal to the area fraction w,, was

determined in the software ImageJ. An example image displaying a micrograph
with the traced contours is shown for specimen PVC-8§ in Figure 6.14. Particle and
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void volume fractions @ were estimated from exploring two such micrographs
from each of the eight tests.

Figure 6.14 SEM micrograph of PVC-8. The outlines of areas containing particles
and voids are marked in red. The specimen was deformed in the vertical direction.

The particle and void volume fractions @ are plotted against the plastic strain at
the end of the respective test in Figure 6.15. It clearly seen that @ increases with
the plastic strain. Each colour in the plot represents the results from one test, and
the colours correspond to those used for the different tests earlier in this section,
see Figure 6.2 to Figure 6.4.

96



g
= 04 i
2
= v
o v
£ 03 v :
E v
s ¥iVv v
202 8
o
=i
[a+]
o
S 0.1] .
5
=W
O L | L
0 0.2 0.4 0.6 0.8

Plastic strain

Figure 6.15 Particle and void volume fractions @ estimated from scanning
electron micrographs. Two micrographs were considered for each test. The colour
used for each test corresponds with the colour in the previous plots.

It can be assumed that particle debonding is the only source of void nucleation,
meaning that all void growth happens around the already present particles. Ignoring
other sources of nucleation, the evolution of the particle and void volume fraction
@ can be written

D=0 (6.1)
where @, is the growth of particle and void volume fraction.

The evolution in the particle and void volume fraction @, can, as described in

Chapter 2.7, be expressed through the plastic part of the Jacobian J”
o, =(1-0)— (6.2)

By integrating this differential equation and using that &” =In(J”), we can

describe the plastic volume strain in terms of @

97



& = h{l_a’OJ (6.3)

l-w

From a micrograph of an undeformed sample, the initial void and particle fraction
w, was found to be 0.24. Equation (6.3) was used to calculate values of &” from

the estimates of @. The results are plotted with triangles in Figure 6.16. In the
same figure, the volume strains measured by DIC at the end of 10 minutes of
relaxation after the test are plotted with crosses. Each of the colours represents the
results from one test. Moreover, two straight lines were fitted to the two data sets to
better show the results. It is seen that the volume strains predicted by the SEM
data, i.e. the estimated values of @ and Equation (6.3), are rather close to the
volume strains measured by DIC. In particular, it is noted that the slopes of the two
lines are almost identical. The deviation may be related to some inaccuracies in the
SEM data, especially for the undeformed sample. It is estimated that the
undeformed sample has a higher value of @ than some of the deformed specimens.
Thus, some faulty negative volume strains are predicted from the SEM data.
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Figure 6.16 Plastic logarithmic volume strain plotted against plastic longitudinal
strain. The triangles represent plastic volume strain estimated from SEM and the
crosses refer to plastic volume strain at the end of the test measured by DIC. The
colour used for each test corresponds with the colour in the previous plots.
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6.7  ESTIMATION OF EFFECTIVE STRESS

To investigate the damage effect in terms of loss of strength of the composite
material, it is interesting to establish an expression for the void volume fraction. In
that context we first denote the volume fraction of what is considered as damaged
material as w, . This parameter represents the volume fraction of debonded

particles and the voids around them. In other words, the volume occupied by a
debonded particle is included in @, . Volume occupied by particles that are still

attached to the matrix is not included in w,, since these particles still carry load.

Since the particles seem to have a good initial bonding to the matrix, the initial
volume fraction of damaged material can be regarded to be w,= 0. We then

assume that when a critical stress is reached the particles act as nucleation sites for
voids, and w,, rapidly starts to increase. The volume fraction of material that is

damaged by nucleated voids is denoted @, ,. If we assume that all particles are

debonded after a certain deformation, and that particle debonding is the only
nucleation process, we get an upper limit of @), that is determined by the particle

content of the material. In addition to the nucleation, the already nucleated voids
grow. This gives rise to another contribution to the damage volume fraction that is
denoted ), , . The total increase of void volume fraction @), is then therefore sum

of two contributions
oy =w,, + a')D’g (6.4)

During the tests, it was visually observed that stress whitening gradually started at
peak stress. This indicates that the particle debonding also is initiated at this stage.

We therefore assume that nucleation of voids occurs between plastic strains of 7=

0 and ¢”= 0.1. Thus, the following simple model for volume fraction of nucleated
voids can be formulated

), =0, [1 - exp(—SO -g? )] (6.5)

The particles volume fraction @,= 0.24 is considered as the upper limit for the
void nucleation process. The factor 50 is has no other interpretation than to control

the termination of the nucleation process at around &’ = 0.1. Differentiating
Equation (6.5) gives the following expression for void nucleation on rate form

@p, =500, exp(=50&”)&” (6.6)
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The expression for void growth is, similar to Equation (6.2),
: J?
a)D,g :(1_60‘/)7 (6‘7)

Employing Equation (6.4) with Equations (6.6) and (6.7) on test data from
specimen PVC-8, we obtain the evolution of void volume fraction @, presented in

Figure 6.17 a). As described in Equation (6.6), the nucleation process ceases at a
strain around 0.1. The contribution from the void growth term increases
continuously during the test.

Debonding and void growth can be interpreted as damage since the section
occupied by voids and debonded particles does not carry load. Reaching the
deformation that initiates particle-matrix separation will cause a sudden reduction
of the load bearing cross section even though no such sudden volume change can
be observed macroscopically. b). An estimation of the effective stress o, ,

regarded as the average stress in the ligaments between the debonded particles and
the voids [5], can be expressed as

o
o I~ (6.8)
By using the test PVC-8 as an example, the effective stress-strain curve is
represented in Figure 6.17 b). The dashed line in the figure represents the effective
stress of the damaged composite, i.e. the stress carried by the matrix between the
voids as the particles gradually separate from the matrix. It is seen that there is no
stress drop in the effective stress. The solid line in Figure 6.17 b) represents the
stress-strain curve from the test without taking damage into account.
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Figure 6.17 a) Estimation of the evolution of void volume fraction of debonded
particles and the voids around them for test PVC-8. b) Estimation of effective
stress in the matrix ligaments between the voids.
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6.8  DISCUSSION

Eight uniaxial tensile specimens of CaCO; filled PVC were loaded to different
elongations and thereafter unloaded. The most deformed zones of the specimens
were investigated in SEM after testing to study how the morphology of the
composite change with the deformation. Initially the CaCO; particles appear to be
well bonded to the PVC matrix. The material then acts like a composite where the
particles serve as reinforcement. At larger deformations it is clearly seen that the
particles debond from the matrix. The particles act as nucleation sites for voids that
continue growing as the material deforms, causing a volume change.

Volume fractions of particles and voids @, found from analyzing two micrographs
from each test specimen, were employed to produce an estimation of plastic
volume strain. The plastic volume strain estimated from the microscopic
measurements is, according to Figure 6.16, in good agreement with the volume
increase at the macroscopic scale measured by DIC. It is therefore reasonable to
conclude that the macroscopic dilation is caused by void growth on the
microscopic scale. The difference between the two data sets may be related to
viscous effects, poor quality of SEM micrographs or by inaccurate estimation of
particle and void area fractions from the micrographs.

The volume strains plotted in Figure 6.4 and the retraction ratio plotted in Figure
6.5 show that the dilation changes during the deformation. Initially, when the
particles are well attached to the matrix, the retraction ratio of the composite is
determined by the Poisson’s ratio of each of the components. When debonding sets
in, growth of voids causes dilation at the macroscale, observed as a reduction in the
retraction ratio. The retraction ratio has the lowest value at longitudinal strain of ¢

= 0.07-0.095. Figure 6.6 shows both the Cauchy stress and the retraction ratio
plotted against logarithmic strain for the specimen PVC-8. It is interesting to note
that the minimum value of the retraction ratio occurs after peak stress. This means
that the volume change is at its largest somewhat after onset of plasticity. It could
be an indication of a sudden debonding process at this stage. Subsequently, in the
large strain regime, the retraction ratio increases. In other words the increase of
dilation decays. This might be related to that the void growth is limited when the
strain hardening in the matrix material around the voids sets in. Additional aspects,
such as molecular packing caused by orientation of amorphous chain segments [6]
or nucleation of new voids in lesser dense packed areas [1], might affect the
volume change. These are assumed to be minor effects and will not be further
discussed here.
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In Figure 6.11 it can be seen that particles lying close to each other tend to impose
some linkage of void growth in, or with a small angle to, the transverse direction.
This might be an indication of formation of dilational bands, similar to what is
observed in rubber toughened polymers [7, 8]. From the micrographs, the dilational
bands seem to form where the particles are located close to each other or where a
large particle is present as in Figure 6.13. According to Chapter 2.5 small particles
follow the flow of the matrix material. Larger particles, with less mobility, separate
from the matrix. The random position of the smaller and larger particles determines
how the dilation bands spread through the material. The dilational band formation
is in general not very clear in these tests. In the micrographs of more deformed
specimens in Figure 6.12, there is no indication of such dilational bands at all. This
is might be related to the strain hardening property of the matrix, the stretched
material between the voids exhibits higher stiffness than the surrounding matrix
material due to network stretching and molecular orientation. Therefore, the
deformation is subsequently redistributed to the surrounding, and more deformable,
material. In this way the deformation is stabilized. Moreover, the stretched fibrils
between the voids may hinder coalescence of voids. No coalescence is observed in
any of the micrographs even though some of the specimens were deformed close to
the fracture strain.

Particle debonding and void growth can be regarded as damage mechanisms. When
a particle debonds from the matrix, the load bearing cross section of the specimen
is reduced. Simple expressions for particle debonding and void growth were used
to estimate an effective stress in the damaged material. This was done to check
whether the stress drop can be explained by damage. Figure 6.17 b) shows that the
macroscopic stress softening disappeared when the void nucleation and growth was
taken into account. However, in Chapter 2.5 and Chapter 4 it was reported that
such a stress drop also occurs in compression. The reason for this is still left to
explain. It could mean that the stress drop has other causes than debonding and
void growth.

A consequence from the principle of Delesse, discussed in Chapter 2.6, is that the
cross section area reduction due to the voids is independent of the cutting direction.
This also holds for anisotropic voids. The damage, in terms of area reduction, is
therefore assumed to be isotropic. Nevertheless, the oblong voids bring along
geometrical and material anisotropy that is not taken into account in this study. The
elliptic voids cause local stress concentrations in the material that vary with the
direction of the applied load. This is referred to as geometrical anisotropy. The
material anisotropy refers to fibril stretching and orientation of polymer chains in
the PVC matrix in the ligaments between the voids.

102



The initial particle volume fraction was only determined from one SEM
micrograph. It was estimated to be @ = 0.24. This might be a too high estimate
since it is higher than particle and void volume fractions estimated for the
somewhat more deformed specimens. A volume fraction of w~ 0.2 is assumed to
be more realistic.

There are several possible sources of error in the particle and void identification
process. The micrographs were recorded some time after the experimental test. The
specimens might have contracted due to relaxation in this time period, even though
new measurements done a week after the testing did not indicate so. Another
source of error is that the regions investigated in the SEM may contain more
particles than the other regions of the test specimen. It is reasonable to believe that
a local high density of particles is the reason for the onset of a neck. Thus, the
investigated section might contain a local high density of particles. For the less
deformed specimens, PVC-1 and PVC-2, where no neck had occurred yet, the
choice of what section to observe was more or less arbitrary. This would lead to a
lower estimate of particle and void fractions @ for these two tests. Further, the
splitting of the specimens does not create an entirely plane surface. The fracture
imposed during splitting follows the “easiest way” through the specimen. The
surface investigated in the SEM may therefore have contained a higher density of
voids than what is representative for the whole specimen. Moreover, splitting of the
specimens during the SEM preparation might have caused a stress release of
residual stress around the voids and in next turn a change of the geometry of the
void.

A relatively low accelerating voltage, 5 keV, was used in the SEM to limit the
penetration depth of the electron beam. Still, some penetration should be accounted
for. This may lead to overestimation of the particle content. The quality of the SEM
micrographs is another source of error. With a poor focus, fewer particles are
visible at the micrograph. If too much time was used to focus at one point, the
material was heated and cracked. Therefore, the SEM process had to be performed
rather quickly. The applied zooming level might cause the smallest particles not to
appear in the micrographs. Moreover, the considered micrographs had to be
sufficiently large in order to depict a realistic area fraction of particles and voids.
As an extreme, Figure 6.13 would produce an unrealistic high estimate of the
particle content. This micrograph was therefore not included in the estimation of
volume fraction @. Two micrographs were considered for each specimen during
the counting process. These might not have been recorded at an area that was
representative, or they might not have been located exactly at the root of the notch.

It was challenging to determine from the micrographs whether the observed objects
were particles, voids or just material irregularities. Different automatic techniques
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to trace the outlines of the particles and the voids were evaluated [9]. Comparison
of the outlines found by the various techniques demonstrated that manual
identification was the most accurate one. An alternative method for determination
of the void volume fraction could have been to use X-ray tomography [10].

6.9 CONCLUDING REMARKS

e The investigated material is a composite of a PVC matrix containing
comparably stiff mineral particles, mainly CaCOs.

e Debonding of the mineral particles seems to initiate when a certain stress is
reached. After this, void growth is a dominating mechanism on the
microscale.

e The observed plastic dilation on the macroscale is in good agreement with
the estimated void growth on the microscale. Void growth is therefore
assumed to be the reason for the plastic dilation.

e Particle debonding and void growth are two damage mechanisms. Thus,
the damage cannot be estimated from the volume change alone. The
volume occupied by particles that have debonded should be taken into
account when estimating the damage.

e The stress drop on the Cauchy stress — logarithmic strain curve of the
mineral filled PVC may be related to debonding and void growth.
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CHAPTER 7

BIAXIAL TENSION

This chapter presents and discusses a set of biaxial tests performed on specimens
from the 5 mm plates of PVC and HDPE. Addressing the pressure sensitivity of the
yield stress, it is interesting to investigate the mechanical response at more
complex stress states than uniaxial tension and compression. The main purpose of
these tests is to serve as a basis for validation of a constitutive model that will be
presented in Chapter 10.

7.1 INTRODUCTION

Tensile biaxial load cases occur in several practical applications of thin-walled
polymer components. It is therefore important that the material model represents
such stress states properly. Within this context, it is relevant to evaluate the
capability of the Raghava yield function to describe large deformations in a biaxial
loading mode. This chapter presents and discusses a set of laboratory tests for this

purpose.

Some investigations on the mechanical response of different polymers in biaxial
deformation have been reported in the literature [1-8]. The studies on biaxial
deformation found in the literature often concern manufacturing conditions
involving high strain rates and high temperatures or the behaviour of polymer
films. Paying attention to validation of material models, Chevalier and co-workers
[9, 10] have shown that by using a multiaxial testing machine, a charge-coupled
device (CCD) camera and digital image correlation (DIC) software, biaxial
displacement and strain fields from such tests can be evaluated for rubber-like
materials. By assuming incompressibility they derived the stress evolution in the
test specimen during deformation and compared this with the stress calculated by
different rubber material models.
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7.2  TEST SETUP

Cross-shaped test specimens, see Figure 7.1, were cut out from the 5 mm thick
extruded PVC and HDPE plates. At the centre of the samples, the thickness was
gradually reduced to 1 mm. This was done to control the location of the initial
strain localization.

I ’
1 9
- A gl 1 [ R57.25
NS ?\E‘l -
]
iii £
SECTION A-A

Figure 7.1 Sketch of the biaxial test specimen including some relevant measures
(in mm).

All experiments were performed in the Astree triaxial testing machine [9, 11] at
LMT-Cachan in France. Two of the three axes of this machine were employed
using displacement controlled loading. The software LabView was used for
computer control of the test and data acquisition. Each test specimen was mounted
in the testing machine, according to Figure 7.2, with the extrusion direction parallel
to the horizontal x-axis and the transverse direction parallel to the vertical y-axis.
The deformation was surveyed by a CCD-camera taking pictures at frequencies
according to Table 7.1. All specimens were painted with a speckled pattern before
testing, facilitating post-test analysis with the DIC program 7D [12] to find the in-
plane Green strain fields £,, E, and E  at the surface of the biaxial test

samples.
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Figure 7.2 A biaxial tension specimen in the Astree testing machine.

In order to obtain different states of biaxial loading, three biaxial load cases with
different ratios were investigated for each material, see Table 7.1. The biaxial
extension ratio B=v /v, i.e. the ratio between the cross-head velocities v, and

v, in the y- and x-directions, respectively, was equal to 4, 2 and 1. To obtain this,

v, varied between the different tests while v, was fixed. During each test,
however, v, and v, were constant. The displacement in the two directions started

and stopped simultaneously. As a special case, one biaxial sample of both materials
was tested in uniaxial tension, applying a servo-hydraulic MTS testing machine.
For these tests the two transverse arms of the specimen were unconstrained and
free to move in the y-direction.

According to Table 7.1, the strain rate was set relatively low, ensuring that plastic
dissipation of the samples did not cause any large increase of temperature. Further,
an inspection of the clamped areas after the tests revealed no signs of sliding in the
fixtures. All tests were carried out at room temperature.
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Table 7.1 Biaxial test programme.

Material B v, v, Initial Sequence CCD-camera
[mm/s] [mm/s] strain rate frequency

[s"] [s"]

PVC - 0.05 4.1-10*  Uniaxial 0.50

PVC Vs 0.035 0.0086  2.3-10" Biaxial 0.90

PVC 2 0.035 0.017 2.3-10* Biaxial 0.90

PVC 1 0.035 0.035 2.3-10"* Equibiaxial  0.90

HDPE -  0.05 4.1-10*  Uniaxial 0.50

HDPE Ya 0.045 0.011 3.7-10™ Biaxial 0.23

HDPE 2 0.045 0.022 3.7-10™ Biaxial 0.23

HDPE 1 0.045 0.045 3.7-10™ Equibiaxial  0.23

7.3  RESULTS

Figure 7.3 shows the force-displacement curves for PVC for the four different
extension ratios. With the exception of the specimen loaded in the x-direction only,
see Figure 7.3 a), results from both directions x and y are included. All PVC load
curves show a rather linear behaviour up to maximum load, corresponding to the
onset of yielding. After the point of maximum load a softening effect can be
observed before cold-drawing and failure. All samples of PVC were deformed until
failure.

Also Figure 7.4 represents force-displacement relationships for the biaxial PVC
specimens. In this figure, only the response in the x-direction is included. This
means that the figure expresses how the response in the x-direction is affected by
the deformation in y-direction. It is seen that yielding starts at the same force level
in the tests loaded in uniaxial and the equibiaxial tension. The two tests with
extension ratios B= "2 and B= ' reach the same force at yielding, at a higher
level than the other tests.
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Figure 7.3 Force-displacement curves for PVC. a) Uniaxial test on biaxial
sample. The biaxial tests b) B="%,c) B="andd) B=1.
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Figure 7.4 Force-displacement curves in x-direction for biaxial samples of PVC
loaded at various extension ratios.
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Figure 7.5 shows force-displacement curves for the HDPE specimens deformed at
the different biaxial extension ratios. Also the HDPE samples experienced a load
drop after reaching the maximum force. Holes started to grow in the centre of all
HDPE specimens deformed in biaxial tension. The first appearances of the holes
are marked with a circle in the figure. With further deformation the holes kept on
growing larger. Due to the ductile behaviour of the material, these holes continued

to grow, without causing cracking and global failure of the test specimens, until the
test was aborted.

The responses of the HDPE specimens in the x-direction are presented in Figure
7.6. The force level reached in the uniaxial test is about the same as in the
equibiaxial test. The tests deformed at B="% and B = Y reach higher force values.

3 ‘ 3
) x-direction | ) x-direction |
= =
[ (]
5 2 y-direction
= 1 = 1
0 Uniaxial 0 ‘ B=1/4
0 20 40 60 0 20 40 60
Displacement [mm] Displacement [mm]
a) b)
3 3
E 2 x-direction E 2 o
= o o x- and y-direction
g y-direction 3]
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1 1
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Displacement [mm] Displacement [mm]
c) d)

Figure 7.5 Force-displacement curves for HDPE. a) Uniaxial test on biaxial
sample. The biaxial tests b) B="%,c) B="andd) B=1.
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Figure 7.6 Force-displacement curves in x-direction for biaxial samples of HDPE
loaded at various extension ratios.

Figure 7.7 shows photos of the PVC specimens at certain deformation stages. The
displacement in the x-direction is addressed under each picture. The first row
displays the specimen deformed uniaxially in the MTS testing machine. The three
next rows show the specimens deformed in biaxial tension in the Astree testing
machine. For all specimens sub-figure a) shows the specimens at peak force. In
some of the images, stress whitening can be seen at centre of the specimen at this
stage. The next column of pictures, see sub-figure b), is captured during the load
drop. It is now seen that the stress whitening zone has evolved to an X-shape. At
this stage, an X-shaped neck was also present in this region. The three first rows of
sub-figure ¢) show the specimen after fracture. Also the equibiaxial specimen
fractured in similar manner, however, it was not captured by the CCD-camera.

Figure 7.8 displays the deformed HDPE specimens at different deformation stages.
Also here, the specimen subjected to uniaxial deformation is displayed in the first
row and the biaxial tests are shown in the three subsequent rows. Sub-figure a)
shows the specimens at peak force. A hole appeared at the centre point of each of
the biaxially loaded HDPE specimens after some deformation. Sub-figure b)
displays the last images captured before the hole was observed. The holes kept on
growing during the deformation until the test was aborted. Distinct X-shaped necks
had evolved in the centre region of all specimens at the deformation stage in sub-
figure b). Sub-figure c) shows the specimens towards the end of the deformation.
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Figure 7.7 Biaxial test specimens of PVC. The images are taken a) at peak force b)
during deformation c) after fracture, or the last image before fracture.
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Figure 7.8 Biaxial test specimens of HDPE. The images are taken a) at peak force

b) during deformation c) towards the end of test.
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After the tests, all digital pictures were processed with the DIC software 7D. The
Green strain fields £, and E  from the PVC specimen deformed at B= ' are

shown in Figure 7.9. The Green shear strain field £, from the same specimen, but

applying a different colour bar, is shown in Figure 7.10. Sub-figure a) in Figure 7.9
and Figure 7.10 represents the strain state at maximum force. Strain localization
can be seen in the £ strain field. In sub-figure b) the strain localization becomes

clearer. This can be seen for all three strain components. The strain localization is
even stronger in sub-figure c). The same X-shape as earlier observed for the neck
and the stress whitening zone can be recognized. In the last sub-figure, c), some
information is missing in the strain field. At this stage, the speckle pattern used for
correlation was so distorted in the centre point that the DIC software could not
follow the deformation here. There are some fluctuations in the strain level. This is
due to measurement noise. Also, close to the edge there is some noise from the
correlation process.
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Figure 7.9 Green strain fields E, and E, in the centre region of the PVC

specimen deformed at B= "% , at a) 2.8 mm b) 5.9 mm and c) 8.3 mm deformation
in the x-direction .
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Figure 7.10 Green shear strain field E ., in the centre region of the PVC specimen

deformed at B= ", at a) 2.8 mm b) 5.9 mm and c) 8.3 mm deformation in the x-
direction .

The Green strain fields £ and E, from the HDPE specimen deformed at B= "2
are shown in Figure 7.11. The Green shear strain field £, is presented in Figure

7.12. Tt is seen that in sub-figure a) of Figure 7.11 and Figure 7.12, representing the
specimen at peak force, there is some strain localization. The strain localization
becomes stronger as the specimen is deformed. The earlier observed characteristic
X-shape can be recognized as the zone with the largest strains. This is seen in sub-
figure b) and c). In the last sub-figures some information about the strain is
missing. This is a result of distortion and cracking of the speckle pattern due to
large deformations in this region. It can be assumed that the missing values exceed
the maximum value indicated by the corresponding colour bars.
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Figure 7.11 Green strain fields E. and E | in the centre region of the HDPE

specimen deformed at B = %, at a) 8.7 mm b) 10.8 mm and c) 13.6 mm
deformation in the x -direction .
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Figure 7.12 Green shear strain field E,, in the centre region of the HDPE

specimen deformed at B = %, at a) 8.7 mm b) 10.8 mm and c) 13.6 mm
deformation in the x -direction .

The strain fields are inhomogeneous for all tests. Therefore only the centre point is
chosen to show how the extension ratio B affects the evolution of the strains with
increasing deformation. The strain components £ and E, at this location are

plotted in Figure 7.13 and Figure 7.14 for PVC. Figure 7.15 and Figure 7.16 show
the same for HDPE. As seen from Figure 7.10 and Figure 7.12, the shear strains are
small at this location and are therefore not included in the figures. The large
deformations at the centre point caused distortion of the speckle pattern, so it was
not possible to follow the strains towards the end of the experiments. Therefore, the
plots of the curves are aborted when the DIC software was unable to determine the
strain.
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Figure 7.13 Green strain E_ at the centre point of all PVC tests plotted against

displacement in the x-direction.

3.5
| Uniaxial |
B=1/4
2.5} B=1/2 1
B =
ol 1
o 15 1
1 L |
0.5 b
O |
_0.5 | | | | |
0 5 10 15 20 25 30

Displacement in x -direction [mm]

Figure 7.14 Green strain E at the centre point of all PVC tests plotted against

displacement in the x-direction.
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From Figure 7.14 and Figure 7.16 it is seen that uniaxial tension of the cross-
formed specimen produces negative E , indicating compression, for both

materials. The Poisson effect causes the upper and lower free parts to move closer
in the y-direction when the left and right parts are pulled away from each other in
the x-direction. Therefore a state of compression is created. Towards the end of the
deformation of these specimens, the centre region started to buckle, as a
consequence of the contraction. With respect to the strains in the biaxial specimens,
it can be seen that the higher the biaxial extension ratio B is, the larger is the strain
component £ .

7.4 DISCUSSION

The biaxial tension specimens were machined from 5 mm thick extruded plates of
mineral filled PVC and HDPE. Except from some thinning of the centre region, no
reduction of the thickness was done during the machining process. This means that
eventual skin layers from the extruding process are left in the specimens, and will
affect the test results.

For the specimens deformed at B= "2 and B= Y, there is a difference between the
two materials. For PVC, the tests at B= Y% and B= Y% reach about the same force
level. For HDPE, the test at B = " reaches a somewhat higher level. From uniaxial
tension and compression tests in Chapter 3 and Chapter 4 it was observed that the
yield stress of the PVC is sensitive to pressure while that of the HDPE is not. The
peak force in this study is also linked to the yield stress. The observations
regarding the maximum force levels may therefore be related to differences in
pressure sensitivity in PVC and HDPE.

The strain field plots in Figure 7.9 to Figure 7.12 indicate that strain localisation
occurs at an earlier deformation stage in PVC than in HDPE. However in both
materials strain localization sets in when maximum force is obtained. Further
deformation lead to X-shaped necks in the centre region of the specimens. In the
HDPE specimens, extensive drawing of the necked region made the centre region
very thin. When the cross section thickness decreases, less material is left to restrict
the deformation, and a softer response is observed. This geometrical effect might
explain why the load drop seems to increase slightly with the biaxial extension
ratio B . The thinning in the X-shaped neck in the centre of the test specimens was
more pronounced for the HDPE specimens than for the PVC specimens. The
drawing of the centre region in the three biaxial samples of HDPE resulted in
creation of holes. Due to the ductile behaviour of the material, these holes
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continued to grow, without causing cracking and global failure of the test
specimens, until the tests were aborted. All PVC specimens were deformed until
fracture.

During uniaxial tension of the cross-shaped test specimens the left and right parts
are pulled away from each other in the x-axis direction causing the upper and lower
free parts to move closer in the y direction. This Poisson effect is clearly visible in
the centre region of the specimen. By examination of the strain curves for the
uniaxial test in Figure 7.13 and Figure 7.14 for PVC, and in Figure 7.15 and Figure
7.16 for HDPE, it can be seen that £ becomes negative. This indicates that some

compression is present. In PVC the ratio £/ E, in the centre of the specimen at 10
mm deformation can roughly be estimated to —6.3. In HDPE the ratio £ / E, at the

same deformation is around —3.8. After applying some additional deformation,
buckling could also be observed at the centre of the specimen. Due to the
comprehensive thinning of this section, the load-bearing capacity might be reduced
so much that the global response of the specimen is not affected by the transverse
compression in the same manner as in the case of PVC.

With respect to the strains, it can be seen that the higher the biaxial extension ratio
B, the larger the strain component £, . However, due to the geometry of the

cross-shaped test specimen, the ratio £,/ E, in the specimens is not directly linked

to the extension ratio B. Moreover, it is not obtained one single deformation state
in the specimen as seen from the inhomogeneous strain fields in Figure 7.9 to
Figure 7.12. This means that these laboratory tests are not suitable for material tests
with the purpose to test the material response at one specific stress state. Also, with
the employed test setup employing only one CCD camera only the in-plane strains
could be determined. This means that the volume strains are unknown. Therefore,
such tests alone are not very well suited for investigation of mechanisms of biaxial
deformation. However, since these laboratory tests involve various strain states as
biaxial tension, compression and shear, they are considered as suitable for
constitutive model validation. Such validation is performed in Chapter 12.
Different other tests are present to test the biaxial behaviour, for instance
formability tests. An advantage of the test setup presented in this chapter is that it
allows for testing under controlled deformation without any unwanted effects from
contact and friction.
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7.5

CONCLUDING REMARKS

From the biaxial tension tests, it can be observed that there is some
difference in the pressure sensitivity of the yield stress of the tested PVC
and HDPE.

All the PVC specimens fractured during testing. The HDPE specimens
showed a ductile behaviour. A hole appeared in the centre of all HDPE
specimens tested in biaxial tension. The hole grew larger throughout the
test without causing global failure of the specimens.

The specimen geometry applied in this study produces inhomogeneous
strain fields and are therefore not suitable as material tests where the

purpose is to investigate the material response at one specific stress state.

The tests results presented in this chapter are regarded as a good basis for
validation of a constitutive model for polymers.
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CHAPTER 8

AXISYMMETRIC TENSILE BARS WITH NOTCH

Tensile tests of axisymmetric bars with notch were carried out on specimens of
mineral filled PVC and HDPE. The effect of stress triaxiality on the yield stress
and the volume change is studied in particular.

8.1 INTRODUCTION

The geometry of axisymmetric tensile bars with notch is known to induce
transverse components to the stress tensor and thereby create a triaxial stress state
in the minimum cross section of the specimen. The relationship between the
curvature and the stress triaxiality in necked metal specimens with circular cross
section has been expressed by Bridgman [1]. Bridgman’s formulas involve the
relationship between the smallest cross section radius a and the neck radius R .
They enable estimation of the average axial yield stress by compensating for
transverse stresses produced by the geometry of the neck. In his work, Bridgman
made some assumptions with respect to geometry, namely that the contour of the
neck could be approximated by the arc of a circle with radius R and that the
minimum cross section of the neck remained circular during the test [2]. Further,
he assumed the strains to be constant over the cross section of the neck [2]. And, at
last, he assumed J, flow theory.

The theory derived by Bridgman has been criticized in the literature [3] especially
for its lack of ability to handle large strains. Nevertheless, it is still the most often
used theory for treating the effect of stress triaxiality in a neck. Even though the
work was derived for smooth axisymmetric specimens [3], the formulas of
Bridgman have later widely been employed to describe the stress state in
axisymmetric tensile metal bars with a pre-machined notch [4-6].
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During experimental testing of metallic samples it is common to work under the
assumption of isochoric plastic deformations. In the case of metallic axisymmetric
specimens it is therefore adequate to measure the contraction of the minimum cross
section of the notch to determine the axial strain. In polymers with plastic dilation
another test setup is needed because measurements of both the volume change and
the axial strain are required. A new test setup was applied in this study to measure
the deformation of the notch as the specimen is extended.

Experiments on notched circular tensile bars made of polymers are found in the
literature [7-10]. Castagnet and Deburck [7] measure the actual cross section area
by employing a DCC camera followed by image analyses. By plotting the radial
strain against axial strain of the gauge length for specimens with different radii,
they showed that the change of the diameter (radial strain) was lower for higher
triaxialities. Measurement of the reduction of the minimum diameter of polymer
specimens has also been performed by applying a strain gage at the root of the
notch [8-10]. To express how the volume change was affected by stress triaxiality,
also Boisot et al. [8] plotted radial strain against axial strain. Moreover, Boisot et
al. [8] used a scanning electron microscope (SEM) to observe test specimens from
interrupted tests and to determine the porosity of the deformed material in the
notch. They used the data to calibrate parameters in a modified Gurson-Tvergaard-
Needleman material model. They compared numerical results from finite element
simulations with the predictions from the Bridgman theory and found that the
Bridgman theory over-predicted the yield stress. They addressed this discrepancy
to viscous effects and volume change effects [8]. Still, they consider the approach
to be relevant for describing distribution of stress. As a support to this
consideration, they showed by the SEM investigation and also with finite element
analyses that the void growth was greatest in the specimen centre.

Even though the assumptions for the Bridgman framework are questionable for
polymers it is considered as reasonable to expect that the stress triaxiality in the
polymeric test specimens increases with decreasing notch radius. This is in
accordance with the Bridgman theory.
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8.2  STRESS TRIAXIALITY AND BRIDGMAN’S EXPRESSIONS

The stress triaxiality is often represented as the dimensionless stress triaxiality ratio
o . Itis defined as [11]

o = (8.1)

The definition involves the first principal stress invariant, /, =tr(c), and the

dev . Gdev

second deviatoric stress invariant, J, =4 (o ). The deviatoric stress tensor is

dev
¢ =oc—tr(o)l.

According to the above definition a uniaxial stress state in tension gives ¢ =1/3
while a pure hydrostatic stress state gives an infinitely high, or low, stress
triaxiality ratio.

The stress state in the cross section of the notched samples is inhomogeneous. The
average axial stress &, can be defined as the applied force F' over the cross section

A:

z

_ F

For an axisymmetric specimen with notch radius R and minimum cross section
radius a, Bridgman expressed the axial stress o, normalized by the yield stress

Y at the distance » from the centre axis as follows [3]

2

2_
9. =1+ln[1+ @ " ] (8.3)
Y

2aR

Integration over the minimum cross section area gives the total applied force. By
using that7 €[0,a], where a is the current minimum radius, we get

F (1+2—len(l +ij (8.4)
Y a 2R

The current area of the minimum cross section is A= 7a’. Equation (8.4) can
therefore be expressed in terms of the averaged normalized axial stress &,
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Ql

: =(1+2£jln(l+ij (8.5)
Y a 2R

An advantage with this expression is that it is measurable in experimental tests.

Bridgman’s analysis assumes that the value of the yield stress Y is constant in the
minimum cross section. Moreover, no strain hardening, strain rate effects, pressure
sensitivity or plastic dilation is taken into account.

8.3  TEST SETUP

The axisymmetric tensile bars were prepared by using a lathe. The material was
taken from 10 mm thick extruded plates of PVC and HDPE. The samples were
machined with their longitudinal direction in the extrusion direction. Figure 8.1 a)
shows the geometry of the notched specimens. Four different notch radii R, were
20 mm, 5 mm, 2 mm and 0.8 mm were employed. In addition some smooth
specimens were machined according to Figure 8.1 b). Both ends of the specimens
were prepared by M 10 threads for mounting in the tensile machine.

h 10 6¥_®

90

R,

R=7.25

20 5 40

Y

b)
Figure 8.1 Specimen geometry of a) notched axisymmetric tensile bar and b)
smooth axisymmetric tensile bar [5]. Measures are given in mm.
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The different test specimens will be denoted by the material and the initial notch
radius R,, e.g. PVC-08 and HDPE-20. All specimens were deformed by the same

cross-head speed of v =0.04 mm/s. The deformation of the notch was surveyed by
a CCD-camera.

Each test was carried out with three replicates. The reproducibility of the force-
displacement response turned out to be good. For each geometry and material, the
test having the highest image quality from the CCD-camera was chosen to
represent all replicates. All specimens made of PVC were deformed until fracture.
Regarding the specimens of HDPE, only the samples with the smallest initial notch
radii R, , i.e. HDPE-2 and HDPE-08, fractured during testing.

8.4  STRAIN MEASUREMENTS

Prior to the tests all specimens were marked with small spots on each side of the
root of the notch, see Figure 8.2 a). The distance between the marks was initially
L,~ 2 mm. During the tests the deformation of the specimens was monitored by a

CCD-camera. The marks were captured by the camera, facilitating an optical
extensometer so that the longitudinal deformation could be followed, see Figure
8.2 b). The specimens were placed in front of a background in a contrasting colour
and the focus of the camera was at the outer edge of the notch so that the contour
clearly was depicted in the images. This was important in order to obtain good
measurements of the local notch radius R and the specimen radius a by image
processing after the test.
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a) b)
Figure 8.2 A4 test specimen with notch radius R, =5 mm. The black dots were
applied to the specimen before the test to serve as an optical extensometer. After
the test the different measurement quantities were determined by image processing.
a) The specimen before deformation showing the initial measures. b) The specimen
after some deformation.

By the use of a MATLAB script that was created by Dahlen [12] for the purpose,
the following data was found for each image taken during the test, see Figure 8.2:

e The minimum specimen radius a
e The local notch radius R
e The distance L between the optical extensometer marks

In addition, the local contour ¢ in the root of the notch was used as an auxiliary
measurement for finding ¢ and R . The contour was used to locate the narrowest
section of the specimen. The smallest diameter of the specimen, 2a, was measured
at this location. In order to find the notch radius R locally in the notch, the least
squares method was used to fit a circle to the contour. The radius of the fitted circle
was used as the local notch radius R .The curvature of the specimen changed
during deformation. After some deformation a local neck could appear inside the
notch, see Figure 8.2 b). In order to obtain a measure of the radius R in the local
neck only a short part of the contour ¢ lying at the root of the notch was used for
the circle fitting. The length of ¢ was determined by the value of the notch radius
from the previous image R,; c¢=(z/3)R,. After cold-drawing, the curvature of

the neck changed character, then a maximum limit of ¢ was set to 2 mm. The
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MATLAB code also traced the distance L between the two extensometer marks
closest to the root of the notch. Subsequently the volume V between the two
extensometer marks was found from revolving a curve describing the left contour
around the specimen axis and thereafter calculating the volume of the solid of
revolution by disk integration.

From Figure 8.2 was seen that the cross section of the specimen varies over the
distance L . Also the strains are not homogenous distributed over L.The average
axial strain & over the notch was computed as

g =In (ij (8.6)
LO
The average radial strain & was calculated from the change of the radius a
z =1n[ij (8.7)
y

The averaged axial stress was found by dividing the applied force F by the current
minimum cross section area A, recall Equation (8.2).

The average volume strain £, between the two marks was be expressed as

_ Vv
g, =In LFJ (8.8)

0

where V is the volume between the two marks for the undeformed sample.

8.5 RESULTS

Force-displacement plots for all specimen geometries are shown in Figure 8.3 and
Figure 8.4 for PVC and HDPE. Black open circles are used to indicate the peak of
the force-displacement curve. The state of maximum force will be addressed
similarly in the following figures in this section.
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Figure 8.3 Force-displacement curves for representative PVC specimens. The

circles indicate the maximum force.
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Figure 8.4 Force-displacement curves for representative HDPE specimens. The

circles indicate the maximum force.
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Paying attention to the pre-notched samples, photos of the PVC specimens at
certain deformations are shown in Figure 8.5. The upper row shows specimen
PVC-20, the second row PVC-5, the third row PVC-2 and the last and fourth row
PVC-08. Each of the four columns represents a sub-figure and a deformation state.
The undeformed specimens are depicted in sub-figure a). Sub-figure b) shows the
specimens at the instant where maximum force is reached, i.e. at the state marked
with an open circle in the previous figures. At this state stress whitening gradually
sets in. In sub-figure c) the specimens are at a local stress minimum. Now, the
stress whitening is more distinct. At this point, it is also possible to see that small
necks have been formed in the pre-machined notch of the specimens PVC-20 and
PVC-5. The last sub-figure d) shows the last image before fracture, i.e. the
specimens at their most deformed state. It is seen that PVC-20 experienced cold-
drawing towards the end of the deformation.

The notched HDPE specimens are depicted during testing in Figure 8.6. Also here,
the four rows from the top show the specimens in the order: HDPE-20, HDPE-5,
HDPE-2 and HDPE-08. The four columns are divided in four different sub-figures
and represent four different deformation states. Sub-figure a) shows un-deformed
specimens and sub-figure b) displays the specimens when the maximum force is
reached. After some deformation a local neck forms inside the pre-machined notch.
It appears as a change in the curvature of the notch resulting in a reduction of the
notch radius R. It is particular distinct for HDPE-20 and HDPE-5. Further
deformation leads to cold drawing of the material observed as an increase of R.
Sub-figure c) depicts the specimens when the notch radius starts to increase. The
last sub-figure, d), shows the specimens at the last sampled points in the graphs.
For HDPE-2 and HDPE-08, sub-figure d) is the last captured photo of the specimen
before fracture. Cold-drawing can be seen in sub-figure d) for all HDPE specimens.
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a)
Figure 8.5 Photos of PVC specimens at different stages of deformation. The first
row from the top shows PVC-20, the second row PVC-5, the third row PVC-2 and
the bottom row PVC-08. The photos were captured a) before deformation, b) at
maximum force, c) at local minimum of average axial stress — average axial strain

curve and d) just before fracture.
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Figure 8.6 Photos of HDPE specimens at different stages of deformation. The first
row show HDPE-20, the second row HDPE-5, the third row HDPE-2 and the
fourth row HDPE-08. The photos were captured a) before deformation, b) at
maximum force, c) when the notch radius starts to increase and d) just before
fracture or as the last photo that was captured.
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The averaged axial stress o.=F /A is plotted against averaged axial strain
g =In(L/L,) in Figure 8.7 for the PVC specimens and in Figure 8.8 for the

HDPE specimens. Also results from the smooth specimens are included to serve as
a reference. Again, black open circles are used to mark the state where maximum
force is reached, see Figure 8.3 and Figure 8.4.

All stress-strain curves for the PVC specimens, plotted in Figure 8.7, have a
familiar response including a local stress maximum before softening followed by
strain re-hardening. The position of the black open circles demonstrates that the
peak stress coincides with the peak of the force-displacement curve. Further, it is
seen that the notched specimens obtain a higher stress maximum than the smooth
specimen.

As seen in Figure 8.8, the two HDPE specimens with the smallest notch radius, i.e.
HDPE-2 and HDPE-08, have a softening behaviour after a peak stress is reached.
These specimens also fractured during testing. The other HDPE specimens strain-
harden monotonically throughout the deformation and the tests were aborted before
fracture. The black open circle coincides with peak stress for the HDPE-08

specimen.
80 r .
Né 60 B N
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Ry= 0.8 mm
0 | | | ] |
0 0.2 0.4 0.6 0.8 1

In(L/Ly)

Figure 8.7 Averaged axial stress plotted against averaged axial strain for
representative PVC specimens. The circles indicate the state at maximum force.
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Figure 8.8 Averaged axial stress plotted against averaged axial strain for
representative HDPE specimens. The circles indicate the state at maximum force.

The average axial strain is plotted against time in Figure 8.9 and Figure 8.10 for the
first part of the deformation. The state of maximum force is again marked with
open circles. Results from the smooth specimens are plotted for reference also in
these plots. In the figures it is seen that after some deformation, there is an increase
in the slope of the curves, representing the rate of the axial strain averaged over the
notch. It can be noted that this average strain rate, from a time of 20 s onwards, is
higher for the notched specimens than for the smooth one. This difference is more
evident for PVC than for HDPE. Further, it is seen that between the notched
specimens, there is no large variation in strain rate. The rates of average strain, i.e.
the slopes of the curves, at maximum force are listed in Table 8.1 and Table 8.2.

Table 8.1 Rate of average axial strain at maximum force in the PVC specimens.

PVC smooth PVC-20 PVC-5 PVC-2 PVC-08

£, [s'] 0.0015 0.012 0.018 0.018 0.021
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Table 8.2 Rate of average axial strain at maximum force in the HDPE specimens.

HDPE smooth HDPE-20  HDPE-5 HDPE-2 HDPE-08

£, [s'] 0.0024 0.0059 0.0070 0.012 0.013

The test and post-processing method used in this study was found suitable for the
notched bars, where the onset of necking is given by the specimen geometry.
However, the method produced poor results for the smooth specimens since onset
of necking could not be controlled to occur exactly between two optical
extensometer markings. The smooth specimens will not be included in the results

hereafter.
0.2
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_ R0= 2 mm
<y R,= 0.8 mm
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=
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Figure 8.9 Average axial strain plotted against time for representative PVC
specimens. The circles indicate the state at maximum force.
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Figure 8.10 Average axial strain plotted against time for representative HDPE
specimens. The circles indicate the state at maximum force.

The evolution of the notch radii R during the experiments are plotted for all
specimens in Figure 8.11 and Figure 8.12, addressing respectively PVC and HDPE.
In similar way as in the previous figures, the black open circles indicate the notch
radius at maximum force. Thereafter the notch radius R remains nearly constant.
During the test, the deformation localizes and a neck forms inside the pre-
machined notch. This can be seen as a decrease of R. It is more distinct for the
specimens with a large notch. For some of the tests this neck stabilizes and cold
drawing sets in. These are the tests where an increase in R can be observed
towards the end of the test; PVC-20 and all HDPE tests. This was in fact already
seen in Figure 8.5 d) and in Figure 8.6 d). When the radius of the notch increases,
the noise in the data also increases due to the fitting of the circle to find R in the
image post processing. Therefore the parts of the curves in Figure 8.11 and Figure
8.12 with increasing R are smoothed by a MATLAB function.

Assuming that the notch radius R affects the stress state in the specimen, it can be
interpreted from Figure 8.11 and Figure 8.12 that the stress state changes quite
radically during deformation. Following Bridgman, a decrease of the notch radius
R is expected to lead to an increase of the hydrostatic stress in the notch.
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Figure 8.11 The notch radius R against average axial strain for representative
PVC specimens. The circles indicate the state at maximum force.
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Figure 8.12 The notch radius R against average axial strain for representative
HDPE specimens. The circles indicate the state at maximum force.

144



The net volume strains &, =In(V' / V), as defined in Equation (8.8), are plotted in
Figure 8.13 and Figure 8.14 for PVC and HDPE respectively. Also here, the states
of maximum force are marked by black open circles. The general observation is
that the volume change is larger for the specimens with sharper initial notch radius
R, . Assuming that a small notch radius produces a high triaxial stress state, the

volume change can be observed to increase quite radically with the stress
triaxiality.

Plastic dilation in the PVC was already reported in Chapter 2.8. Hardly any
volume change has been observed in the HDPE during plastic deformation in
uniaxial tension at moderate strain rates, see Chapter 2.8. However, Figure 8.14
reveals that the HDPE experiences a significant increase of volume when subjected
to a triaxial stress state. Indeed, the net volume strain is only slightly lower than for
PVC at equal levels of average axial strain & =In(L/L,).

Ry= 20 mm

0.57

Ry= 5 mm

In(V/v)

0 1 1 1
0 0.2 0.4 0.6 0.8 1

In(L/Ly)

Figure 8.13 Volume strain in the PVC specimens, calculated from the change of
the volume in the notch between the two extensometer markings, plotted against
average axial strain. The circles indicate the state at maximum force.
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Figure 8.14 Volume strain in the HDPE specimens, calculated from the change of
the volume in the notch between the two extensometer markings, plotted against
average axial strain. The circles indicate the state at maximum force.

The plots of average radial strain & =In(a/a,) in Figure 8.15 and Figure 8.16

once again demonstrate the increase in volume strain with decrease of R. The
results show that a sharp initial notch radius R, causes less contraction of the

specimen than a large initial notch radius does. Reduced contraction can be
interpreted as higher dilation.
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Figure 8.15 Average radial strain plotted against average axial strain for all PVC
specimens. The circles indicate the state at maximum force.
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Figure 8.16 Average radial strain plotted against average axial strain for all
HDPE specimens. The circles indicate the state at maximum force.
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In order to show how the specimen geometry and thereby the stress triaxiality
affects the yield stress, the averaged axial stress at maximum force is plotted
against the notch radius R in Figure 8.17. The stresses are normalized by the stress
Y, which is the stress in the smooth test specimens at maximum force.

According to the Bridgman theory, the axial yield stress increases with increasing
triaxiality. Figure 8.17 includes a plot of the Bridgman prediction expressed by
Equation (8.5). The fixed value of the Bridgman curve represents an estimate of the
relationship between the normalized averaged yield stress and the notch radius for
test specimens of a perfect plastic material at small strains without any pressure
sensitivity, dilational or viscous effects. It shows that in such a material the average
axial yield stress is higher when the notch radius is smaller. This means that higher
stress triaxialities increase the average axial peak stress.

For the PVC specimens there is a clear mismatch with the Bridgman prediction.
Higher stress triaxialities do not increase the axial net peak stress of the PVC. This
was also observed in the stress-strain curves in Figure 8.7. For HDPE the general
trend is similar to that of the Bridgman prediction; smaller R leads to higher
normalized average axial stress (F/ A)_ . at maximum force.

max

Bridgman prediction
V  PVC, experimental
*  HDPE, experimental

max/Y

(F/A)

0 5 10 15 20 25

Figure 8.17 Variation in normalized average stress at peak force with the notch
radius R.
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8.6  NUMERICAL STUDY OF STRESS TRIAXIALITY

This chapter is based on the assumption that the geometrical conditions from the
notch produce a triaxial stress field in the minimum cross section of the
axisymmetric test specimen. However, we do not know the value of the stress
triaxiality ratio. To investigate this, finite element simulations were used to
provide an estimate of the stress triaxiality in the elastic regime, before onset of
yielding. Axisymmetric meshes representing the geometries of the different tensile
specimens were used in the analyses. The meshes will be further introduced in
Chapter 8, addressing finite element analyses of the notched tensile specimens. The
simulations were carried out employing elastic material models with Young’s
modulus and Poisson’s ratios for the two materials; £ = 3000 MPa and v = 0.3 for
PVC, and FE = 800 MPa and v = 0.4 for HDPE [13]. The results were taken out
from 20 elements that define the minimum cross sections of the axisymmetric
mesh. The axial stress in the element in the minimum cross section located closest
to the centre axis, at » ~ 0 mm, is used as a reference for the stress state. The
results from each simulation are normalized by the axial stress of this centre
element. Figure 8.18 to Figure 8.20 represent the axial, radial and hoop stress
normalized with respect to the axial stress at the centre axis. All the figures are
plotted as radial distributions i.e. from =0 to r = a,= 3 mm.

The radial distribution of the normalized axial stress in the minimum cross section
is plotted in Figure 8.18. Because the stress at the centre axis of the specimen is
selected as reference stress and therefore equal to 1 all normalized stresses are
equal to 1 at »=0 mm. For larger r, towards the root of the notch, the axial stress
increases. The increase depends on the specimen geometry. In particular, is seen
that the specimens with the smallest notch radius, R,= 0.8 mm, has a less
homogenous stress distribution than the other specimens. The normalized axial
stress is almost constant in the sample with the highest notch radius of R;,= 20

mm.
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Figure 8.18 Variation of axial stress in the minimum cross section of the test
specimens from the FE simulations of elastic deformation. The stresses are
normalized by the axial stress in the element closest to the centre axis. Solid lines
are applied for PVC and dashed lines for HDPE.

Figure 8.19 shows the radial distribution of normalized radial stress in the
minimum cross section for elastic deformation. Again, the curves are determined
from the elastic numerical simulations of PVC and HDPE specimens. Also here
the stress is normalized by the axial stress in the element closest to the centre axis.
It is seen that the smaller the notch radius is the higher is the stress component in
the radial direction. For specimens with R, = 0.8 mm the maximum value is about

40-50% of the reference axial stress while it in specimens with R;= 20 mm is less

than 10% of the reference axial stress.
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Figure 8.19 Variation of radial stress in the minimum cross section of the test
specimens from the FE simulations of elastic deformation. The stresses are
normalized by the axial stress in the element closest to the centre axis. Solid lines
are applied for PVC and dashed lines for HDPE.

The radial distribution of the hoop stress is plotted in Figure 8.20. As in the two
previous figures, it is normalized by the axial stress in the centre element for each
of the specimens. Also for this case, the stress is higher in the specimens with
lower R,. Like the other stress components, the homogeneity of the stress field

reduces with decreasing R, . For the specimens with R, = 0.8 mm, the normalized

hoop stress varies from about 0.4 to 1.
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Figure 8.20 Variation of hoop stress in the minimum cross section of the test
specimens from the FE simulations of elastic deformation. The stresses are
normalized by the axial stress in the element closest to the centre axis. Solid lines
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are applied for PVC and dashed lines for HDPE.

By combining the three stress components, the stress triaxiality ratio o~ defined in
Equation (8.1) are found for each of the numerical models. Their radial
distributions are plotted in Figure 8.21. It is seen that the smaller the notch radius
R, is, the higher is the stress triaxiality and so is the variation in the radial

distribution.
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Figure 8.21 Variation of the stress triaxiality ratio, ¢, stress in the minimum cross
section of the test specimens from the FE simulations of elastic deformation..
Solid lines are applied for PVC and dashed lines for HDPE.

In order to get a better impression of the stress state in the specimens just before
yielding, the stress states from the numerical simulations of the elastic deformation
of both PVC and HDPE are plotted in a stress invariant space in Figure 8.22,
applying the hydrostatic stress invariant /, /3 and the deviatoric stress invariant

3J, as axes. This is done to show how the two invariants are present in the

different test specimens before onset of plasticity. Figure 8.22 applies sectors to
show the variation of stress states that occur in each of the specimen geometries.
Moreover, the stress states of the PVC specimens lie within the solid lines and
stress states for the HDPE specimens lie within the dashed lines. The specimens
with the largest notch ( R, = 20 mm), see sub-figure a), have a quite narrow sector
in the 7, /3—,/3J, stress space. As seen in Figure 8.18 - Figure 8.20, there is little
variation in the radial distribution of stress in these specimens. The sector in sub-
figure b) representing the stress state in the specimens with R,= 5 mm is
somewhat wider. The stress states in the specimens with R;=2 mm and R,= 0.8

mm are displayed by sectors in sub-figures c) and d). Again, it is seen that the
variation in stress state in the specimens with low R, is larger than for the other

specimens.
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Figure 8.22 Sectors representing the stress states present in the minimum cross
section of each specimen before yielding: a) R, =20 mm, b) Ry=5 mm, c) R, =2
m and d) R, = 0.8 mm. Solid lines are applied for PVC and dashed lines for HDPE.
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8.7 FRACTURE

All PVC specimens fractured during testing. Fracture surfaces of representative
samples of each of the specimen geometries are displayed in Figure 8.23 to Figure
8.26. Only the two HDPE specimens with lowest R, ruptured in the tests. Their

fracture surfaces are presented in Figure 8.27 and Figure 8.28. All fracture surfaces
indicate that the failure is dominated by void growth: Small holes can be seen at
the PVC fracture surface and traces after large voids are present at the HDPE
fracture surfaces. For both materials, and especially for the HDPE, a fibrillar
structure oriented radially out from the voids is observed.

Visual observation of the fracture surfaces of the PVC specimens reveals a rough
topography. An impression from comparing the different PVC specimens is that a
higher R, caused a rougher fracture surface. Moreover, the fracture surfaces of

PVC in general appear more uneven than the fracture surfaces of HDPE.

Comparison of the fracture surfaces of HDPE-2 and HDPE-08, see Figure 8.27 and
Figure 8.28 respectively, reveals that the void size is largest in the first case. The
fracture surfaces of the other two specimens of the same material and geometry
indicate the same. Assuming that the voids initially were small and of equal size in
the two specimens, and taking into account that the HDPE-2 specimen fractured at
a larger strain than HDPE-08, this observation indicates that the voids coalesce
during deformation. HDPE-2 is deformed more than HDPE-08, therefore more of
the voids have coalesced. The voids located close to, but not at, the rim of the
fracture surface of HDPE-08 also appear somewhat larger than those in the centre
and those at the rim. The comparatively large voids are thus in the region of highest
triaxiality in the elastic domain, as reported in Figure 8.27. Comparing the strains
at fracture, the fracture strains are much lower for PVC than for HDPE.

It was also noted that some kind of a thin skin layer was formed around the fracture
surface of the HDPE specimens. Whether this was a structural or damage effect, or
if it originated from changes in the surface material during machining of the
specimens is not known.
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Figure 8.23 Fracture surface of a PVC-20 specimen. a) Upper part. b) Lower part.

Figure 8.24 Fracture surface of a PVC-5 specimen. a) Upper part. b) Lower part.

156



Figure 8.25 Fracture surface of a PVC-2 specimen. a) Upper part. b) Lower part.

Figure 8.26 Fracture surface of a PVC-08 specimen. a) Upper part. b) Lower part.
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Figure 8.27 Fracture surface of a HDPE-2 specimen. a) Upper part. b) Lower
part.

Figure 8.28 Fracture surface of a HDPE-08 specimen. a) Upper part. b) Lower
part.
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8.8  DISCUSSION

Axisymmetric tensile bars with and without notch were machined from the
extruded plates of mineral filled PVC and HDPE. Different notch radii were
employed to create different stress triaxialities. In this work it is assumed that
smaller notch radii produce higher stress triaxialities, in accordance with Bridgman
[1]. The assumption is supported by results from the numerical simulations of
elastic deformation of notched axisymmetric tensile bars presented in Figure 8.21.

Each of the test specimens was marked with small spots prior to the test and the
specimens were deformed in front of a contrast background as seen in Figure 8.2.
The deformation was surveyed by a CCD camera so that the curvature of the
specimen and the distance between the marks could be traced after testing by a
image post-processing code made in MATLAB [12]. This method allowed for
measurement of the minimum radius a, notch radius R, optical extensometer
length L, and volume V' for the entire deformation process. This test data created
a comprehensive basis for studying the effect of the changes in stress triaxiality on
the mechanical response of the two materials.

All force-displacement curves in Figure 8.3 and Figure 8.4 reach a peak in terms of
a maximum force followed by a drop in the force level. The averaged axial stress-
strain curves plotted in Figure 8.7 and Figure 8.8 account for reduction of the
minimum cross section due to necking by defining the net stress as the applied
force divided by the current minimum cross section area in accordance with
Equation (8.2). Yet, a local maximum followed by a drop can also be observed in
the stress-strain curves for all PVC specimens and for HDPE-2 and HDPE-08.
These peaks may be related to internal damage: If void growth sets in at this stage,
the effective load bearing cross section is reduced. The area reduction from an
increasing void volume fraction cannot be measured by the test setup employed
here. By interrupting the deformation and splitting the specimens, as done for
uniaxial tensile specimens in Chapter 6 and by Boisot et al. [8] for axisymmetric
specimens with notch, estimates of the void volume fraction could have been found
by using SEM. X-ray tomography is an alternative method that also could have
been applied [14, 15].

In Chapter 6 it was shown that void growth on the microscale can be linked to
volume strain on the macroscale. The change of volume in the notch can be
presented in terms of volume strain, as in Figure 8.13 and Figure 8.14, or in terms
of radial strain [7, 8], see Figure 8.15 and Figure 8.16. One major difference
between the two measures is that the volume strain is calculated for a larger zone,
while the radial strain is measured in the minimum cross section where the strain is
localized. However, the same trend is seen in the two ways of presenting volume
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change: The dilation increases with decreasing R,. Comparing with the volume

strains in uniaxial tension in Chapter 2.8, the volume changes are quite dramatic
when the materials are subjected to a triaxial stress field. Especially for the HDPE,
behaving almost isochoric in uniaxial tension, the difference is significant. It is
reasonable to assume that the volume change, both in PVC and HDPE, is linked to
void growth. Voids in the PVC specimens can be observed in terms of stress
whitening in Figure 8.5. No stress whitening is observed for the HDPE. Still, the
volume change evident from Figure 8.14 suggests that growth of voids occurs. The
presence of voids, in both materials, is further confirmed by examining the fracture
surfaces as demonstrated in Figure 8.23 to Figure 8.27.

The average stress-strain responses of the PVC specimens are plotted in Figure 8.7.
It is seen that all the notched specimens have a higher yield stress than the smooth
specimen. Further, it is seen that there is little variation between the responses of
the notched PVC specimens. Figure 8.9 and Table 8.1 reveal that there is some
difference in the strain rate in the smooth and the notched specimens, while the
difference in the strain rate between the notched specimens is less. The average
stress-strain curves from the HDPE specimens are plotted in Figure 8.8. The figure
shows that also for HDPE there is a difference in the responses between the smooth
and the notched specimens. Moreover, the stress-strain curves differ for HDPE
samples with different notch radii. Between the HDPE specimens, there are no
considerable differences in the strain rates. According to the slopes of the curves in
Figure 8.10 and the data in Table 8.2 the rates of average strain of HDPE is less
influenced by R, than they are for PVC.

For a material without pressure sensitivity, the axial net stress which the material
can sustain before yielding is higher when a stress component of hydrostatic
tension is present. This means that the presence of a notch producing a triaxial
stress field increases the observed averaged axial yield stress in testing of such
materials. This is in accordance with the theory of Bridgman and the relationship is
plotted by a solid line in Figure 8.17. In a pressure sensitive material, like many
polymers, also the hydrostatic stress component contributes to reach the onset of
yielding. This is seen in Figure 8.17 where the axial net stress is plotted against the
notch radius, both taken at maximum force, for the experimental test results. Since
PVC does not obey the Bridgman prediction, it is suggested that the yield stress of
PVC is pressure sensitive. HDPE followed the Bridgman prediction better, and is
therefore likely to be less pressure sensitive. This is in accordance to what is
observed in the tension and compression of PVC and HDPE, see Chapter 2.8. The
discrepancy from the Bridgman prediction might to some degree relate to the
viscous effects seen in Figure 8.9 and Figure 8.10. However, Table 8.1 reveals
that the rate of average axial strain in PVC-20 is 8 times the rate in the smooth
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PVC specimen while it from Table 8.2 is seen that the rate of average axial strain
in HDPE-20 is 2.5 times the rate in the smooth HDPE specimen. Moreover, as will
be seen in Chapter 10, the magnitude of strain rate dependency C is higher for
PVC than for HDPE. Therefore one should expect that the PVC-20 should deviate
more from the Bridgman prediction than HDPE-20. It is not so. Another point
worth noticing in this relation is that the Bridgman prediction should regard the
yield stress of the two materials. Here, the axial average stress is determined at
maximum force, and this may not be a proper way to consider the yield stress for
HDPE.

In order to gain information of the stress triaxiality o in the different test
specimens in this study, a numerical study of the elastic deformation of the two
materials was carried out for the different specimen geometries. The stress
components found from the numerical simulations are plotted in Figure 8.18 to
Figure 8.20. It is seen that the stress components vary a lot over the cross section.
In general, the normalized value of each of the stress components seem to increase
with decreasing R, . Consequently, a large variation occurs in the stress triaxiality

ratio, see Figure 8.21. The range of stress triaxialities are plotted in the
1,/3—4/3J, principal stress space in Figure 8.22. Again the variation in the stress

field is demonstrated. From Figure 8.18 to Figure 8.22 it is obvious that one test
specimen does not evaluate a single stress state, but a combination of stress states.
Without knowing the yield criterion, we do not know when plasticity sets in.

The radial distribution of stress triaxiality in the numerical simulation of elastic
deformation of specimens with R, = 0.8 mm in Figure 8.21 reveals that the stress

triaxiality is not at its maximum in the centre of the specimen, but at a location
closer to the root of the notch. The increased void size at positions approaching the
boundary of the fracture surface of HDPE-08, see Figure 8.28, indicates that void
growth and coalescence have been more pronounced in this zone. For a similar test
specimen, also with a low value of R, /2a, Laiarinandrasana et al. [15] identified
the same zone as the location of maximum damage. This was done for polyamide 6
both by finite element modelling and by experimental tests employing X-ray
tomography. If the minimum diameter 2« is considerably larger than R, the stress
triaxiality does not increase monotonically towards the specimen centre.

In addition to HDPE-2 and HDPE-08 all PVC specimens fractured during testing.
The fracture surfaces, depicted in Figure 8.23 to Figure 8.28, suggest that the
fractures were induced by void growth. The surfaces of the PVC specimens have a
rather rough topography. An impression from comparing the different PVC
specimens is that a higher R, caused a rougher fracture surface. This fits with the
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observation from Figure 8.5 that the stress whitened zone of these specimens
ranges over a larger extent in the longitudinal direction than for the specimens with
a lower R,. It may indicate coalescence of voids in longitudinal and lateral

directions in PVC for the largest R,. The fracture surfaces of the two HDPE

specimens are more planar, oriented transverse to the loading direction. A possible
interpretation is that the void growth of the HDPE occurs on a more local level and
that the voids coalesce in the transverse direction. The shape of the stress-strain
curves in Chapter 2.8 suggests that the strain hardening is less in HDPE than in
PVC. Thus the ability to redistribute strain is less in HDPE. The voids are able to
coalesce and form fracture in the transverse direction. It is also worth noticing that
the two HDPE specimens that did fracture, HDPE-2 and HDPE-08, have a
noticeable dilation compared to HDPE-20 and HDPE-5. This is clearly seen in
Figure 8.14 and Figure 8.16.

Laiarinandrasana et al. [10] discussed the effect of strain rate, temperature and
stress triaxiality on the fracture surface on polyvinylidene fluoride. They showed
that more ductile fracture surfaces were present for circular notched tensile
specimens with larger notch radii, i.e. lower triaxialities. They also showed that
higher strain rate and high stress triaxialities gave more brittle fracture. This is in
accordance with the experience from our study. The HDPE specimens with large
R, were too ductile to fracture, while the specimens with lower R, fractured.

It should be emphasized that several of the entities presented in the results are
averaged over a length, an area or a volume. Except the cross section radius a , the
deformations are not measured locally. Local values of axial strain in the minimum
cross section is probably higher in the averaged axial strain In(L/L,). Also the
local strain rate in the minimum cross section is likely to be higher in the minimum
cross section than what we have measured. The rates of average axial strain are
represented by the slopes of the curves in Figure 8.9 and Figure 8.10. Since PVC
and HDPE are viscoplastic materials, this may have affected the maximum force
level more than what first appears. As an effect of this also the temperature might
have been higher in the notched specimens.

The comparatively small radial strains In(a/a,) in Figure 8.15 and Figure 8.16 are

a sign of little contraction of the minimum cross section and therefore much
dilation. The slopes of HDPE-20 and HDPE-5 in Figure 8.15 are steeper than —0.5.
This is an effect of In(a/a,) being a measure over the localized zone while

In(L/ L,) is not. None of the PVC specimens have a slope close to —0.5.
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An approach to get the local strains, instead of net strains, could be to use DIC. In
fact, some introductory tests on axisymmetric notched tensile bars were carried out
using 3D DIC employing two CCD-cameras. The small size of the notch combined
with the large local deformations and the double-curved surface caused difficulties
with the image quality and also so much noise that the test results were poor.
Therefore, the simple test setup described in this section, involving one camera
focusing on the rim of the test specimen so that its curvature could be traced, was
chosen. To obtain reliable results with the test setup in general, the image
resolution for the images taken by the CCD-camera should be good. If the
resolution is poor, the relative size of one pixel is large. Thus, inaccuracy or noise
from one pixel can have a large influence on the result.

8.9 CONCLUDING REMARKS

e The yield stress of mineral the filled PVC does not follow the formulas of
Bridgman and is therefore likely to be is sensitive to stress triaxiality. Also
the plastic dilation of the material is sensitive to stress triaxiality: higher
stress triaxialities leads to more volume increase in the PVC.

e The yield stress of the HDPE does hardly show any sensitivity to stress
triaxiality. However, the change of volume at higher stress triaxialities is
evident: higher stress triaxialities leads to more volume increase in the
HDPE.

e Void growth is assumed to be the reason for the plastic dilation in both
materials. Also the fracture of both materials is assumed to be related to
voids.

e From the numerical simulations it is observed that the geometry of the
axisymmetric specimens with notch creates a stress field with that
increasing triaxiality with decreasing notch radius R .

e  When the notch radius R is small relative to the minimum diameter 2a,
the value of maximum triaxiality is not located in the specimen centre, but
closer to the root of the notch. The photos of the fractured surfaces of the
two HDPE samples with the smallest R, support this prediction.
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PART II

NUMERICAL STUDY






CHAPTER 9

UNIT CELL MODEL

This chapter deals with a numerical study of the matrix-particle interaction in a
composite material subjected to uniaxial tension. The study employs unit cell
models representing soft polymer matrix containing stiff particles with idealized
arrangements and geometries. The study was carried out to achieve a better
understanding of the effect of the filler on the PVC. In particular, the macroscopic
response of the unit cell in terms of stress-strain relationship and volume change is
investigated.

9.1 INTRODUCTION

Finite element analysis on simplified micromechanical models have been used by
many researchers [1-8] to achieve a better understanding of the macromechanical
response of polymer materials containing second phase particles. It is challenging
to reconstruct the complex microstructure of a polymer-particle composite exact in
a finite element mesh. Also, to run simulations on a “geometrical perfect” model
would be rather computationally expensive. It is therefore attractive to represent
the real microstructure by geometrically simpler structures in terms of unit cell
models. Real particles might have rather irregular shapes. The particle size might
also be quite diverse. In unit cell models it is common to idealize the particle
shapes as perfect spheres of identical size. Their arrangement is often idealized as
well. Real particles are normally distributed randomly in the matrix. A unit cell
model, on the other hand, usually contains particles of equal size in periodic
patterns. Such simplifications can affect the results. The arrangement of the
particles influences how the matrix flows between them. Also, a stress field around
one particle may overlap the stress field of its neighbour. Socrate and Boyce [1]
report that if the interparticle distance approaches the average particle diameter,
such interactions between particles become important. In that case a more
advanced micromechanical model as a ‘representative volume elements’ (RVE)
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can be used. In such a model particles can be organized in a more irregular pattern
with a larger variety of particle sizes than possible in a simple unit cell model [2].
Still, some homogenization assumptions are required also for these models.

Many of the micromechanical unit cell models found in the literature concern self-
cavitation of rubber particles and void growth. These phenomena are often
modelled simply by a matrix material containing initial voids [1, 3, 4]. In some
cases actual rubber particles are modelled with a proper constitutive model [2, 5,
6]. Some studies are also performed on polymers containing stiff particles [5, 7-9].
Van Dommelen et al. [9] present a study of a two dimensional (plane strain) as well
as an axisymmetric RVE representing a semicrystalline polymer containing both
soft and stiff particles with different particle-matrix interface strengths. Their
models included local anisotropy of the matrix material around the particles and
their work is mainly focused on the effect of this. Kemal et al. [8] have studied the
toughening of PVC through the addition of CaCOj; nano-particles. They presented
a unit cell model of spherical particles in a stacked array with weak bonding
between the particle and the matrix [8]. Another two dimensional unit cell model
representing polypropylene (PP) containing stiff mineral particles in a periodic
stacked array and plane strain condition was developed by Delhaye [5]. In this
model, the matrix-particle interface was modelled without any bonding. The effect
of different matrix-particle interface strengths was investigated by Hempel et al.
[7]. They created a three dimensional unit cell model representing a PP matrix
containing platelet-like talc particles.

The unit cell models in this study represent the microstructure as a periodic
distribution of rather stiff linear elastic particles surrounded by a soft elastic-plastic
matrix of PVC. Four parameters have been varied. They are the:

e particle volume fraction @

e particle shape

e particle arrangement

e particle-matrix interface strength

Two particle volume fractions, @= 0.1 and @= 0.2, are represented in the models.
Meshes with both cubical and spherical particles were created to study the effect of
the particle shape. The particles are organized in both a stacked and a staggered
array. The four combinations of shape and arrangement of particles are illustrated
in Figure 9.1. Particle-matrix debonding was modelled by using a contact
algorithm that allows for failure when a critical stress criterion is met. This is
similar to what is done in the study of Hempel et al. [7]. By setting different critical
stresses, the effect of the particle-matrix interface strength is investigated.
Although only these four parameters have been varied one should keep in mind
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that any change of these parameters has influence on other parameters such as the
distance between particles and the area of the matrix-particle interface.

Stacked

Staggered

Figure 9.1 Sketches of eight unit cell models assembled into a) stacked array of
cubical particles, b) stacked array of spherical particles, c) staggered array of
cubical particles and d) staggered array of spherical particles. These unit cell
models contain a particle volume fraction of w = 0.1.

9.2 MESH

Eight different unit cell meshes were defined. Each unit cell has a total volume of 1
and it contains the particle volume fraction @. Meshes of unit cells containing
cubical and spherical particles organized in stacked and staggered arrays were
constructed as explained in the following. Eight node solid elements with reduced
integration were used in all meshes. Stiffness based hourglass control was
employed to avoid nonphysical hourglass modes. Rather extensive mass scaling, by
a factor of 10%, was employed to make the simulations run faster. Also, additional
simulations with less mass scaling were carried out on a test mesh of a unit cell
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model with cubical particles. They showed that the mass scaling did not alter the
numerical results. After the simulations it was controlled that the kinetic, the
sliding and the hourglass energy did not exceed 1% of the total energy in the
simulations.

9.2.1 STACKED ARRAY OF CUBICAL PARTICLES

The arrangement of cubical particles in a stacked array is shown in Figure 9.1 a).
Figure 9.2 a) shows the mesh used in the simulations. It contains a total of 28°
equally sized cubical elements whereof 13° are modelled as particles. This give a
particle volume fraction of @= 0.1. The mesh in Figure 9.2 b) consists of 24°
equally sized elements whereof 14° are modelled as particles. This gives a volume
of particles equal to @w = 0.19, a number that is regarded as adequate for
representing a material with a particle volume fraction of @w=10.2.

Figure 9.2 Unit cell models representing a stacked array of cubical particles with
particle volume fractions of a) @ = 0.1 and b) o= 0.2.

9.2.2 STAGGERED ARRAY OF CUBICAL PARTICLES

Figure 9.1 c) shows cubical particles organized in a staggered BCC-array. The
mesh containing particle volume fraction w= 0.1, see Figure 9.3 a), was made as a
model of 19° equally sized cubical elements whereof 2-7° were modelled as
particles. This means that 10% of the volume is occupied by particles. The mesh
with @= 0.2 was modelled with 28’ equal-sized elements whereof 2-13° were
modelled as particles. It is displayed in Figure 9.3 b).
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Figure 9.3 Unit cell models representing a staggered array of cubical particles
with particle volume fractions of a) @= 0.1 and b) @w=0.2.

9.2.3 STACKED ARRAY OF SPHERICAL PARTICLES
The total volume of the unit cell is still 1, the volume fraction is @ and the radius

of the particles is r. The volume of an entire spherical particle is (4/3)zr’. A

unit cell model contains 1/8 of a spherical particle. It is placed in one corner of the
unit cell as shown in Figure 9.1 b). The particle volume fraction is then

mzé-(iﬂﬁj 9.1)

which gives the radius

r= i/@ 9.2)
T

Particle volume fractions of w= 0.1 and @w= 0.2 results in » = 0.576 and r =
0.726, shown in Figure 9.4 a) and b), respectively.
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Figure 9.4 Unit cell models representing a stacked array of spherical particles
with particle volume fractions of a) @= 0.1 and b) @w=0.2.

9.2.4 STAGGERED ARRAY OF SPHERICAL PARTICLES

The staggered BCC array of spherical particles is shown in Figure 9.1 d). One such
unit cell contains two times an 1/8 part of a spherical particle placed in opposite
corners. The particle volume fraction is

o =g-(iﬁr3] 9.3)

Solved for the radius r

y= i/g (9.4)
v

This gives = 0.457 and »= 0.576 for w= 0.1 and @= 0.2. The meshes created
for these unit cells are shown in Figure 9.5 a) and b).

Figure 9.5 Unit cell models representing a staggered array of spherical particles
with particle volume fractions of a) @ = 0.1 and b) o= 0.2.
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9.3 MATERIAL MODEL

The material of the PVC matrix was modelled as linear elastic-plastic with a strain
hardening effect being characteristic for the response of neat PVC. The simple
elasto-plastic *MAT 024 material model in LS-DYNA with a pre-defined stress-
strain response was used [10]. The matrix yield stress and Young’s modulus were
respectively or = 50 MPa and £ = 2000 MPa. Poisson’s ratio was set to v = 0.3.
The shape of the curve after yielding was adapted from stress-strain data from
G’Sell et al. [11] valid for pure PVC. The curve was shifted to fit the applied yield
stress of 50 MPa. The stress-train curve can be seen in Figure 9.6. The calcium
carbonate particles were modelled as elastic with the properties £ = 35000 MPa
and v = 0.2 [12]. The stress-strain curve of the mineral filled test specimen PVC-8
from Chapter 6 is also included in Figure 9.6 for comparison.

150 ‘ ‘ ‘
| - Particle, unit cell model
----- Matrix, unit cell model
""""" Mineral filled PVC, experimental //
— 100} A
< o
a¥ -
v - -
3 - e
O T—— ST e :.
7 f':-’-: ................................ *
,
0 ‘ ‘ 6 o
0 0.2 0.4 0.6 0.8 1
Strain

Figure 9.6 Stress-strain relationships for the components of the unit cell model and
also for experimental test specimen PVC-8 from Chapter 6.
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9.4 CONTACT FORMULATION

Debonding of particles was implemented through the contact-automatic-surface-to-
surface-tiebreak formulation, which was used with failure law option 2 in LS-
DYNA [10]. This means that tying of the nodes breaks when the normal stress o,

and the shear stress o, meet the following criterion:

[<0">j +[<0S>j >1 (9.5)
O-n crit Gs crit

and the critical shear stress o

s,crit

The critical normal stress o were assumed to

n,crit

=0

s,crit *

be equal, i.e. o

o crit In order to study how the voids are formed around
particles without any bonding to the matrix the critical stresses were as one case set
to zero. Different matrix-particle interface strengths were modelled by setting the
critical stress to 40 MPa, 50 MPa, 60 MPa and 500 MPa. The critical stress of 500
MPa is a value higher than what would occur in the simulation. It is set
unrealistically high in order to study how the response would be for a perfectly
bonded material. In addition, simulations without any matrix-particle interface

strength were carried out in order to study the effect of unbounded particles.

9.5 BOUNDARY CONDITIONS

Boundary prescribed motion was defined for the side of the unit cell cube facing
the positive x-direction. All nodes on this side, see Figure 9.7 a), were restricted to
move equally in the x-direction. The nodes of two other sides, one facing the
positive y-direction and one facing the positive z-direction, see Figure 9.7 b), were
constrained to planar movement. The remaining three orthogonal faces, facing the
negative x-, y- and z-directions, were constrained against translations in the
direction they were facing [7]. These planes are addressed in Figure 9.7 c).
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Figure 9.7 Boundary conditions. a) The displacement is applied in x-direction to
nodes on one side of the unit cell. b) The nodes on the two sides of the unit cell
constrained to planar movement. c¢) The nodes on three of the sides of the unit cell
constrained against out-of-plane motions.

9.6 RESULTS

In order to express the joint behaviour of the unit cells, the terms macroscopic
stress and macroscopic strain are used. They differ in general from the local
stresses and strains within a unit cell. The macroscopic stress for each unit cell
cube is a “macroscopic Cauchy stress” calculated by dividing the force acting
through the cross section of the unit cell by the area of the cross section at the
corresponding time step. The macroscopic strains are calculated as the logarithmic
strains computed from the lengths of the edges of the cube. Macroscopic stress-
strain curves of the different unit cells containing particles of @= 0.1 are presented
in Figure 9.8. Figure 9.9 shows the same for a particle fraction of w=0.2.

The response is dependent on the volume fraction, shape and arrangement of the
particles, but some generalities are observed for all unit cell models. The unit cells
representing particles without any bonding between the particles and the matrix
show the softest behaviour. The other models have higher initial stiffness. The
bonded particles carry load and therefore add stiffness to the unit cell. When the
tiebreak criterion is fulfilled for the first node, the total stiffness of the unit cells
instantly decreases and they tend to act more like the unit cells without bonding
strength. Some of the unit cell models show a drop in the stress-strain curve. These
drops are more sudden for the cubical than for the spherical particles, and they are
greater for the highest volume fraction. A possible explanation for the sudden
drops, observed in e.g. Figure 9.9 c), is that a large number of nodes break
simultaneously. The unit cell models representing perfectly bonded particles show,
naturally, the stiffest behaviour in all cases.
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It is common to define the first local stress maximum of the stress-strain curve as
the yield stress for polymers. This can be adapted to the macroscopic stress-strain
curves for the unit cell models plotted in Figure 9.8 and Figure 9.9. By comparing
the macroscopic responses from the unit cell models with the response of the
material used to model the PVC matrix, see Figure 9.6, it can be seen that the
response is different in the polymer-particle composite. The yield stress of the
matrix was set to 50 MPa. Still, it can be seen in Figure 9.8 and Figure 9.9 that the
peak stress is somewhat lower in the unit cell models with low or intermediate
interface strengths. On the other hand, perfectly bonded particles increase the yield
stress of the composite material. This tendency is stronger for the highest particle
volume fraction.

If we leave the perfectly bonded particles out of the picture, it can be seen that the
strain rehardening is independent on the particle-matrix bonding. It is determined
by the geometry of the unit cell, and it is barely stronger for the lowest particle
volume fractions. It is more pronounced for spherical particles than for cubical.
Also the stacked array seems to increase the rehardening effect. This may be
explained by how the particles affect the flow of the matrix, but one should keep in
mind that the macroscopic Cauchy stress is also coupled with the volume change of
the unit cells.
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Figure 9.8 Macroscopic stress-strain curves for the unit cell models with particle
volume fraction = 0.1. a) Cubical particles in a stacked array. b) Spherical
particles in a stacked array. c¢) Cubical particles in a staggered array. d)
Spherical particles in a staggered array.
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Figure 9.9 Macroscopic stress-strain curves for the unit cell models with particle
volume fraction w= 0.2. a) Cubical particles in a stacked array. b) Spherical
particles in a stacked array. c¢) Cubical particles in a staggered array. d)
Spherical particles in a staggered array.

Contour plots of equivalent plastic strain and pressure, as provided by LS-DYNA,
from a selection of unit cell models are displayed in Figure 9.10 to Figure 9.14. In
these plots the particles are blanked. Thus, the plots address the surface of the
matrix material adjacent to the particle. Further, the unit cells are mirrored four
times in order to give a better visualization of the strain and stress fields in the
matrix around the void.

Plasticity in the matrix can occur locally around the particle before the macroscopic
yield stress is reached. This can be seen in the sub-figure a) in Figure 9.11, Figure
9.12 and Figure 9.13, which all are plotted just before reaching the maximum of
the macroscopic stress-strain curve. Sub-figure c) in the same figures shows that
only local plasticity is observed also some time after the stress peak is passed.
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Both the unbonded and the bonded particles induce localization of plastic strain in
the unit cell models. Plasticity sets in at equator for the spherical particles not
bonded to the matrix, see Figure 9.10. Particles with stronger particle-matrix
interface strengths, which are shown in Figure 9.11 to Figure 9.14, initiate plastic
strain somewhat closer to the pole. The cubical particles initiate plastic strain in the
matrix around the sharp edge of the particle.

There seems to be a gradual debonding process of the spherical particles.
Debonding always starts at the pole of the particle. It is initiated due to high normal
stress. As the deformation proceeds a “debonding zone” moves towards equator
and the failure becomes more characterized by shear. As the particles debond from
the matrix, a relocation of negative pressure (stress triaxiality) happens. The
maximum negative pressure is located around the equator of the unbonded
particles, see Figure 9.10. A zone of maximum negative pressure moves from the
pole towards the equator of the bonded particles in Figure 9.11, Figure 9.12 and
Figure 9.13.

The cubical particles, see Figure 14, experience a more sudden debonding; their
two planes orthogonal to the loading direction lose their contact with the matrix
almost simultaneously. The four other surfaces of the cube fail in shear
subsequently.
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Figure 9.10 Contour plots of plastic strain and pressure in the matrix around
spherical particles organized in a stacked array without any particle-matrix
interface strength. The particle volume fraction is @ = 0.2. The unit cell is
mirrorved four times to better show the result.
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Figure 9.11 Contour plots of plastic strain and pressure in the matrix around
spherical particles organized in a stacked array with particle-matrix interface
strength of 60 MPa. The particle volume fraction is @ = 0.2. The unit cell is
mirrorved four times to better show the result.
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Figure 9.12 Contour plots of plastic strain and pressure in the matrix around
spherical particles organized in a staggered array with particle-matrix interface
strength of 60 MPa. The particle volume fraction is @ = 0.2. The unit cell is
mirrorved four times to better show the result.
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Figure 9.13 Contour plots of plastic strain and pressure in the matrix around
spherical particles organized in a stacked array with particle-matrix interface
strength of 60 MPa. The particle volume fraction is @ = 0.1. The unit cell is
mirrored four times to better show the result.
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Figure 9.14 Contour plots of plastic strain and pressure in the matrix around
cubical particles organized in a stacked array with particle-matrix interface
strength of 60 MPa. The particle volume fraction is w = 0.2. The unit cell is
mirrored four times to better show the result.
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Figure 9.15 shows the void growth around a spherical particle with volume fraction
of @w= 0.2 in a stacked array. This unit cell model represented in this picture was
modelled without any interface strength between the particle and the matrix. The
other unit cells with initially debonded particles showed similar behaviour. Void
growth around a cubical particle is displayed in Figure 9.16. Also this figure
represents a unit cell with particle volume fraction of @=0.2, a staggered array and
no particle-matrix interface strength. Both Figure 9.15 and Figure 9.16 clearly
show how voids grow around the particles. The void growth leads to increase of
volume strain on the macroscale also in the plastic regime.

a) b) c) d)
Figure 9.15 Outline of void growth around a spherical particle of ®= 0.2 in a

staggered array without any interface strength to the matrix at different
macroscopic logarithmic strains: a) 0, b) 0.049, ¢) 0.27 and, d) 0.41.

a) b) 9) d)
Figure 9.16 Outline of void growth around a cubical particle of @ = 0.2 in a
staggered array without any interface strength to the matrix at different
macroscopic logarithmic strains: a) 0, b) 0.04, ¢) 0.27, and d) 0.41.

The macroscopic volume strains from the unit cell simulations are plotted in Figure
9.17 and Figure 9.18 representing particle volume fractions @= 0.1 and w= 0.2,
respectively. Note that towards the end of the deformations some penetration is

185



observed in the numerical simulations causing the volume strain to decline. The
highest content of particles leads to the highest volume strains. Also the cubical
particle shape and the staggered arrangement seem to cause most macroscopic
dilation. These figures further suggest that the increase of particle volume fraction
from w= 0.1 to w= 0.2 affects the void growth around cubical particles more than
the spherical ones.
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Figure 9.17 Macroscopic volume strain for the unit cell models with particle
volume fraction = 0.1. a) Cubical particles in a stacked array. b) Spherical
particles in a stacked array. c¢) Cubical particles in a staggered array. d)
Spherical particles in a staggered array.
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Figure 9.18 Macroscopic volume strain for the unit cell models with particle
volume fraction = 0.2. a) Cubical particles in a stacked array. b) Spherical
particles in a stacked array. c¢) Cubical particles in a staggered array. d)
Spherical particles in a staggered array.

Figure 9.19 and Figure 9.20 display the volume change in terms of the retraction
ratio p=—¢, /& . This quotient corresponds to Poisson’s ratio in the elastic

domain. It provides an alternative representation of the dilation process.

Voids are growing around the unbonded particles from the very beginning of the
deformation, therefore the retraction ratio for these models initially have a low
value. On the contrary, no voids are allowed to form around the perfectly bonded
particles. The initial value of p lies in between the elastic Poisson’s ratios for the

matrix and the particles. At the onset of yielding, the retraction ratio increases
radically since the only contribution then is from the Poisson’s ratio of the
particles.
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For the models with intermediate interface strengths it is seen that when a particle
debonds from the matrix, there is a drop in the retraction ratio, i.e. an increase of
volume. During plastic deformation there is some increase in the retraction ratio.
Owing to the void growth, however, it is still far below 0.5, which corresponds to
an isochoric response.
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Figure 9.19 Retraction ratio for the unit cell models with particle volume fraction
w=0.1. a) Cubical particles in a stacked array. b) Spherical particles in a stacked
array. c) Cubical particles in a staggered array. d) Spherical particles in a
staggered array.
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Figure 9.20 Retraction ratio for the unit cell models with particle volume fraction
w=0.2. a) Cubical particles in a stacked array. b) Spherical particles in a stacked
array. c) Cubical particles in a staggered array. d) Spherical particles in a
staggered array.

Figure 9.21 and Figure 9.22 seek to provide an improved impression of the physics
in the debonding process. These figures pay attention to the beginning of the
deformation process, and show the macroscopic Cauchy stress together with the
retraction ratio.

The initiation of the debonding process can be observed as softening of the stress-
strain curve and a decline of the retraction ratio curve. The onset of softening is
observed at the same time that LS-DYNA reports activation of the first tiebreak,
meaning that the debonding process has begun. This occurs at relatively small
strains. It is also seen that when the stress-strain curve passes its local maximum
value, the retraction ratio starts to increase.
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Figure 9.21 Stress-strain curves (continuous lines) plotted together with retraction
ratios (dashed lines) of models of particle volume fraction w=0.1. a) Cubical
particles in a stacked array. b) Spherical particles in a stacked array. c) Cubical
particles in a staggered array. d) Spherical particles in a staggered array.
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Figure 9.22 Stress-strain curves (continuous lines) plotted together with retraction
ratios (dashed lines) of models of particle volume fraction w=0.2. a) Cubical
particles in a stacked array. b) Spherical particles in a stacked array. c) Cubical
particles in a staggered array. d) Spherical particles in a staggered array.

9.7 DISCUSSION

Despite the simplifications regarding constitutive modelling and geometric
representation, several of the characteristics observed in the experimental tests of
the mineral filled PVC, see Chapter 6, can also be found in the results from these
unit cell simulations. Similar to the PVC in the experiments some of the unit cell
models show a rather linear behaviour up to a stress maximum. The stress
maximum is, in both cases, followed by a drop and subsequently by a plateau with
almost constant stress. Plastic dilation of about the same order is observed both in
laboratory tests, as seen in Chapter 6 and in this micromechanical numerical study.
Moreover, SEM study of the microstructure of the laboratory test specimens in
Chapter 6 and the contour plots of the deformation of the unit cell models, see
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Figure 9.10 to Figure 9.14, both conclude that the volume change is related to void
growth.

The first softening of the stress-strain curve appears simultaneously with the
breaking of the first of the tied nodes in the contact formulation. A similar
observation is reported by van Dommelen et al. [9] in their numerical study. This
suggests that the softening effect may be a result of particle debonding., also in the
laboratory tests.

In many cases, the particle debonds before the macroscopic stress in the unit cell
model has reached 50 MPa, i.e. the yield stress of the matrix material. Thus, the
composite material has a lower yield stress than in the matrix material. This is seen
from comparing the macroscopic stress-strain curves from the unit cell models in
Figure 9.8 and Figure 9.9 with the stress-strain curve used to model the PVC
matrix in Figure 9.6. Moreover it is seen that presence of particles that debond
from the matrix reduces the macroscopic strain hardening effect of the composite.
The reduction of strain hardening seems to increase with the particle volume
fraction.

Comparison of the results from unit cells containing 10% and 20% particles shows
that a higher content of particles increases the initial stiffness of all the unit cells
containing bonded particles. At the same time, the highest fraction of particles
decreases the stiffness for unit cells with unbonded particles. The stress plateaus
observed after debonding are at a lower stress level for the unit cell models with
high particle volume fraction. Hence, the load drop appears more dramatic.

The cubical particles seem to provoke a sudden debonding compared to the
spherical particles. They also seem to induce more plastic dilation. Also particles
organized in a staggered array seem to promote marginally higher dilation than
particles in a stacked array. This might be because the voids in the staggered array
are organized in such way that they can grow easier without influence from the
neighbouring particles. The staggered arrangement causes a larger distance
between the particles, a property pointed out to be important for the deformation
[1, 8].

The decreasing tendency of the retraction ratio o in the beginning of the

deformation is assumed to be an effect of debonding and void growth. When the
particle in the model is completely debonded, the retraction ratio is not further
reduced. The local minimum value in the retraction ratio plots occurs at a lower
strain than observed in the experiments reported in Chapter 6. In the unit cell
models discussed in this chapter the minimum value of the retraction ratio occurs at
the onset of macroscopic yielding while it in the laboratory tests is observed some
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time after macroscopic yielding. An important difference between the numerical
and the laboratory tests is that in the numerical unit cell model, the particle
geometry and arrangement is crudely idealized by a part of a particle. When this
part of the particle has debonded, the whole debonding process is over. The
retraction ratio of the real composite is in the experiment measured for a volume
containing a lot of particles of different sizes and shapes dispersed randomly
through the material. As a consequence, the debonding process in the real material
can be in progress over a longer period of time.

It is seen from the contour plots in Figure 9.10 to Figure 9.14 that even though the
macroscopic strain level is relatively low, comparably high local plastic strains
develop between the particles.

Figure 9.10 to Figure 9.14 also reveal that the stress field of the matrix is highly
triaxial. It shows that even if the applied load is uniaxial, a triaxial stress field rises
on the microscale. The PVC composite in this study has a pressure sensitive
behaviour, see Chapter 2.8. We do not know whether the pressure sensitivity is
affected by the presence of particles, or if it is a material property of the matrix
material only. Therefore, the pressure sensitivity of the matrix was omitted in this
study.

The constitutive behaviour of the matrix material is very simplified in this unit cell
study. PVC is known to be a material sensitive to strain rate. In the unit cell
models, the flow around the particles is not uniform. Some locations in the material
are deformed faster than others. This might affect the results. Also, the matrix
enclosing the particles may have another morphology and different mechanical
behaviour than the rest of the matrix. Van Dommelen el al. [9] included such an
effect in terms of local anisotropy in their RVE model representing a
semicrystalline polymer with stiff particles. In this study it is not taken into
account.

Smit et al. [13] studied the mechanical response of a polycarbonate (PC) matrix
possessing stress softening constitutive response containing voids in regular and
irregular arrays. They showed that while voids organized in a regular pattern
caused a stress softening effect also for the macroscopic level, the stress softening
disappeared in the more complex unit cell representing voids in an irregular array.
Even though the fundamentals of the study performed by Smit et al. [13] are very
different from ours, and the results can therefore not be directly transferred, it is
worth to note how the arrangement can alter the macroscopic response. In
particular, it should be noted that the periodic arrangements of particles in this
study induce layers of yielded and easier deformable material in a regular pattern
that is unrealistic for a real composite.
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9.8

194

CONCLUDING REMARKS

Despite crude idealizations, several of the mechanical characteristics
observed in experimental tests are observed in the results from the
numerical study.

The numerical simulations result in macroscopic dilation as a result of void
growth. The dilation in the unit cell model is in the same order as measured
in uniaxial tension of mineral filled PVC in Chapter 6.

Stress softening is observed even though none of the materials in the
composite is modelled with such behaviour. The stress softening is related
to loss of material strength in the composite due to debonding of particles.

Matrix-particle debonding in the numerical model leads to the presence of
a peak stress in the macroscopic stress-strain curve. The local maximum of
the stress-strain curve observed in laboratory tests may also be imposed by
debonding of particles.
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CHAPTER 10

NUMERICAL SIMULATIONS OF THE BEHAVIOUR OF
THERMOPLASTICS

In order to carry out realistic numerical simulations of the behaviour of polymer
components, a constitutive model that captures the main deformation features is
required. Yet, a material model for industrial use has to be “‘user friendly” without
too demanding calibration procedures. This chapter presents a constitutive model
for polymer materials proposed by Polanco-Loria et al. [1]. The model is intended
for industrial use, involving large scale finite element analysis of polymer
components undergoing large deformations. This chapter also addresses
identification of material parameters from the uniaxial tension and compression
tests of the 5 mm plates of PVC and HDPE presented in Chapter 3 and Chapter 4.

10.1 INTRODUCTION

The deformation of thermoplastic polymers commonly involves large elastic and
plastic deformations. Their mechanical response is in general sensitive to strain rate
and temperature. Polymers are often regarded as pressure sensitive materials; a
higher yield strength in compression than in tension is commonly observed.
Another feature is that the volume changes during plastic deformation [2-6].
Moreover, some polymers have a stress softening behaviour after the yield limit,
while others experience monotonic hardening [6, 7]. These are some characteristics
a material model for thermoplastics should allow for. Based on the original idea of
Haward and Thackray [8], Polanco-Loria et al. [1] presented a constitutive model
separating the response in two parts describing the intermolecular resistance and
the molecular network resistance. The constitutive model includes the pressure
dependent Raghava yield criterion [9, 10].
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A procedure for determination of the parameters of the constitutive model has been
developed and performed by Hovden [11]. Hovden determined the parameters for
the 10 mm thick extruded plates of PVC and HDPE. According to the producer, the
plates of the two thicknesses, 10 mm and 5 mm, are made of the same materials.
However, experimental tests showed some minor difference in the response
between the plates. Therefore, a new determination of the material parameters for
the 5 mm thick plates is required, calling for some extra material tests. The material
tests used for the parameter identification were presented in Chapter 3 and Chapter
4.

10.2 CONSTITUTIVE MODEL FOR THERMOPLASTICS

The hyperelastic-viscoplastic material model presented by Polanco-Loria et al. [1]
consists of two parts coupled in parallel. Part A represents an intermolecular barrier
to deformation while Part B represents the network stretching. An outline of the
model is shown in Figure 10.1.

F=F,=F O~ OaA™ 08
T A 7B Total
2 .
o _(Hardening) ______
27 e
Initial stiffness N > = — — — — — —.
: A Network 35 S~ A (Inter-molecular)
| stretching S| ] rises-- [N, B
O (Softening)
Plastic flow LT/—], . o
"B (Network)

¢ ................

Logarithmic strain

a) b)
Figure 10.1 a) Rheological representation of the constitutive model with inter-
molecular (A) and network (B) contributions, and b) stress contributions from Part
A and Part B.

The main kinematic variable in the model is the deformation gradient F . It is equal
for Part A and Part B: F=F,=F,. This means also the volume change, the

determinant of the deformation gradient, is the same for the two parts:
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J,=J,=J=detF . The total Cauchy stress ¢ is taken as the sum of the stress

contributions from the two parts

6=6,+0, (10.1)

Part A describes a hyperelastic-viscoplastic response due to intermolecular
resistance. A multiplicative split is used to decompose the deformation gradient of

Part A into elastic and plastic components: F, =F;-F/. The decomposition

produces three configurations: the reference configuration €, the virtual,

intermediate configuration, Q, , and the current configuration Q. An illustration of

the kinematics is given in Figure 10.2.

— N

F=F, =F,

e
Fp FA
A

Figure 10.2 Conceptual illustration of the kinematics of the constitutive model. It
shows the decomposition of the deformation gradient F in the reference

o, the intermediate configuration Q, and the current

configuration is Q [1].

configuration Q)

The intermediate configuration, defined by the plastic part of the deformation
gradient, F}, is invariant to the rigid body rotations of the current configuration.
The evolution of the intermediate configuration is defined by the differential
equation Fj =L/, -F?, where L/, is the plastic velocity gradient with respect to

the intermediate configuration.

A Neo-Hookean model is used to allow for large elastic deformations
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T, =4, mInJI+u[B, 1] (10.2)

where t,=J%06, is the Kirchhoff stress, J; =detF; is the elastic part of the
Jacobian, 1 is the second-order unit tensor, and B, =F¢-(F¢)" is the elastic left
Cauchy-Green deformation tensor. The Lamé constants A, and g, are used to

define the elastic response. They can also be expressed by Young’s modulus E
and Poisson’s ratio v

E_,uo(?’ﬂo"'zluo) V= A

am o U2k (109

The viscoplastic contribution of Part A is computed on the intermediate

configuration, applying the Mandel stress tensor X, . The relationships between the
Kirchhoff and Mandel stress tensors read T,=(F¢)"-X,-(F9)" and

X, =(F)" -1, -(F)". Note that the Mandel stress tensor is symmetric due to the
assumed isotropy of the material. The yield criterion is formulated as
f,=06,—0,—R=0. The Raghava equivalent stress &, 1is used to express

pressure dependency [9]

_ (a-DI, +(a—-171} +12aJ,,
o, =

A

(10.4)

2a

where /,, =trX, and J,, =19 : X% are invariants of respectively the Mandel
stress tensor and the deviatoric part. The deviatoric part of the Mandel stress is
defined by T =X, —1tr(Z,)-1 .

The parameter o =0 /o, in Equation (10.4) represents the ratio between the

yield stresses in compression and tension. These two stress data provide sufficient
information to define the shape of the yield surface. By setting a =1 we get the
von Mises yield surface as a special case of the Raghava function. Further, the
isotropic strain hardening or softening R of Part A, see Figure 10.1 b), is a

function of the accumulated plastic strain £/ , and it is controlled by the saturation

stress o, and the hardening/softening parameter H , viz.

R(Ej)z(as—ar)[l—exp(—HEj’)} (10.5)
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A non-associated viscoplastic flow rule is assumed to define the plastic velocity
gradient on the intermediate configuration as

o, =§;% (10.6)
A

where the plastic potential g, is defined in the form

gA:(ﬂ—1)11A+x/(/3—1) L1285, (10.7)

2p

Here, £ is the plastic dilation parameter, determining the increase of volume

during plastic flow.

The equivalent plastic strain rate £/ of Equation (10.6) is defined by the

constitutive relation

0 if £,<0

=P _ = 10.8

o s'OA{epoGC’j R—lﬂ—l} if £,>0 (10-5)
T

In this expression, two rate-sensitivity parameters, &, and C , are introduced.

Part B of the material model describes a hyperelastic entropic resistance originally
proposed by Arruda and Boyce [12]

Co 4 i A ) o =
=—r 7L N Z (B -2 10.9
O 3J, A {/ILJ( i ) (10.9)

where C, is the initial elastic modulus of Part B, /TL is the locking stretch, £ is

the inverse function of the Langevin function which 1is defined as
L(x)=cothx—1/x. The Jacobian J, is J, =detF, (recall that F=F,). The

average total stretch ratio A is calculated as

7= 3u(B;) (10.10)
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where B, =F,-(F,)" is the distortional left Cauchy-Green deformation

tensor, and F, =J,"°F, denotes the distortional part of F, .

The model involves 11 coefficients to be determined from uniaxial tension and
compression tests. The parameters are listed in Table 10.1. Neither thermal effects
or a fracture criterion is incorporated in the model. For further details about the
model it is referred to Polanco-Loria et al. [1].

Table 10.1 Material parameters.

E Young’s modulus [MPa]

v Poisson’s ratio

o, Yield stress in uniaxial tension [MPa]
o, Saturation stress [MPa]

a Pressure sensitivity parameter

p Plastic dilation parameter

Eou Reference strain rate [s™']

C Strain rate dependency

H Hardening/softening parameter

C, Initial elastic modulus of Part B [MPa]

Locking stretch

I

10.3 PARAMETER IDENTIFICATION

As already mentioned, the parameters of the 5 mm plates of PVC and HDPE have
to be identified. To limit the extent of the identification process the Poisson’s ratio
v, the pressure sensitivity «, the plastic dilation parameter f and the strain rate
dependency C are assumed to be the same as for the 10 mm thick plates and as
determined by Hovden [11]. Therefore one tensile test and one compression test of
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each material are sufficient to determine the remaining parameters: Young’s
modulus E, the yield stress o, the saturation stress o, the ramping parameter

H of the isotropic hardening/softening function, the reference strain rate &,,, the
initial elastic modulus of Part B C, and the locking stretch A, . The tensile and

compression tests presented in Chapter 3 and Chapter 4 are used as a basis for the
parameter identification.

Starting with Part A, the Young’s modulus £ for both materials is defined as the
initial slope of the stress-strain curve. Since the stress state of Part A is affected by
strain rate and also the stress of Part B, the yield stress o, and the saturation stress

o, cannot be taken directly from the stress-strain curves in Chapter 3. Therefore a
preliminary yield stress o, and a preliminary saturation stress o, are determined

first. The preliminary values, denoted with a sub-script ‘0’, represent the stress at
the reference strain rate &,, without any correction from the stress contribution of

Part B. The preliminary yield stress o,, for PVC is taken as the first local

maximum of the stress-strain curve. The HDPE material does not show any
obvious maximum point. Therefore, the 0.2% offset from the initial slope is used to
define o,,. Further, the local stress minimum on the true stress-strain curve for

PVC is taken as a preliminary saturation stress, og,. Since HDPE have no
softening, the Considére construction [13] is used for determining oy, for this

material.

The reference strain rate &,, represents the local strain rate present in the sample
when the stress approaches o, . It is for both materials set equal to the slope of the

strain-time curve, determined by digital image correlation, at the instant where the
stress is equal to o, .

At onset of plasticity the hardening/softening term in Equation (10.5) is R= 0.
Equation (10.8) can then be re-arranged into

=P
5A=0T{1+cm(§—f4+1]} (10.11)
04

Disregarding the contribution from Part B, the preliminary yield stress o,

measured in the material test is equal to the Raghava equivalent stress &, at the

reference strain rate &,,. In other words & ,=0,,when &,,=¢; . This means that,

at the reference strain rate, Equation (10.11) can be expressed as
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Now the yield stress o, at a fictitious strain rate equal to zero can be found. Also

the saturation stress for the hypothetical case of zero strain rate can be found from
Equation (10.11) employing the strain rate present at o,. Subsequently, o, and

o, also have to be adjusted by the stress contribution of Part B.

The ramping parameter H controls the stress evolution towards the saturation
stress. It defines the slope between o, and o, see Equation (10.5)

According to Equation (10.5) the exact saturation stress will only be approached,
never fully reached. Defining a target plastic strain ¢/ that is equal to the plastic

strain at the saturation stress and demanding a 95% attainment of the saturation can
be a first step in the determination of H . In other words, we require an amount of
softening R equal to 95% of the difference between o and o, .

R(e2)=095(c, — ;) (10.13)

Combining Equation (10.5) and Equation (10.13) A can then be determined from

1-exp(-Hel)=0.05 (10.14)
The result is
p = 10005 (10.15)
&

Turning the attention to Part B, it is first convenient to isolate the Part B stress
from the stress strain curve obtained in the laboratory test. Equation (10.9)

produces a deviatoric stress state with the transverse stresses 0, =0, =—10,

even for uniaxial deformation [11]. However, in uniaxial tension the total
transverse stress should be zero, i.e o, + 0,, =0 .The transverse stresses in Part B

must thus be counteracted by Part A

43 = "0py = 0yp (10.16)

42 =
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This again leads to a change in o, , which in next turn affects the Raghava
equivalent stress o, of Equation (10.4). In the elastic regime, the counteracting

stress from Part B is neglected. Taking the yield criterion into account in the plastic
regime, Hovden [11] expressed the stress in Part A as

c 1 _ K
O =—+—0,—= 10.17
Al kl 2 Bl kl ( )
where &, and k, are functions of o
k, :L+“__1, k, 1 _e-1 (10.18)

Hovden further assumed & in Equation (10.17) to be defined by the previously

test

. The observed stress o in

par

identified parameters. This stress can be denoted o,

the uniaxial tension test can then be expressed as the sum of the longitudinal Part A
and Part B stresses [11]

par
O'lmzo'Al’Laslzali +O_Bl(l+2k_liJ (1049
1

1

From Equation (10.19) the Part B stress can be isolated and employed for
determination of the Part B parameters [11]

2kl test O-Iflmr
= . 10.20
T [2k1+k2J(0' A j (10.20)

There is no analytical expression of the inverse Langevin function of Part B. An

approximation proposed by Padé [14] reads

3—x?
1—x?

Ll(x)=x (10.21)

By using Equation (10.21) and assuming a uniaxial stress state and transverse
isotropy, the longitudinal stress o, of Part B can be expressed by the initial

stiffness C, of Part B and the locking stretch /TL [11].

3 12 _
2,5, 3K

n=g/ Co (ﬂq +4;) (10.22)

o
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In this expression J is the Jacobian determinant J =det(F) and A, and A, are the

stretch ratios in the longitudinal and transverse directions respectively. The

effective distortional stretch is A =4/+J - (A7 +247).

The locking stretch /TL can also be expressed by a locking strain &, [11]

A =\/ﬂexp@amp)}2exp[—§éz(1+p)ﬂ (10.23)

The retraction ratio p represents the average value of the ratio between
longitudinal and transverse strain —¢, / ¢, in the plastic domain. The locking strain
g, represents the upper limit strain of the progressive strain hardening of the
polymer. It is not straightforward to determine. However, from examination of the
stress-strain curves a trial value of &, can be found. Then, by Equation (10.23) also
a trial value for ZL is found. The retraction ratios found by Hovden [11] of p =
0.32 and p = 0.47 are used in turn for PVC and HDPE. Applying the trial values,

both C, and A, are found by curve fitting.

10.4 THE MATERIAL PARAMETERS

The material parameters determined for the 5 mm plates of mineral filled PVC are
listed in Table 10.2 while the parameters for 5 mm plates of HDPE are given in
Table 10.3. Both tables present all 11 material parameters for each material,
including those found by Hovden [11].

Table 10.2 Material parameters for 5 mm thick extruded plates of mineral filled
PVC.

E [MPa] v Eoa 5] C o, [MPa] C, [MPa]
1800 0.3 0.00100 0.0700 473 4.40

A, a yij o [MPa] H

1.87 1.3 1.27 38.0 16.0
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Table 10.3 Material parameters for 5 mm thick extruded plates of HDPE.

E [MPa] v Eoa [ C o, [MPa] C, [MPa]
450 0.4 0.00045 0.1080 12.1 1.20

A, a yis o [MPa] H

3.00 1.0 1.04 19.0 24.0

The material parameters found by Hovden [11] for the 10 mm plates of mineral
filled PVC and HDPE are listed in Table 10.4 and Table 10.5.

Table 10.4 Material parameters for 10 mm thick extruded plates of mineral filled
PVC. The parameters are determined by Hovden [11].

E [MPa] v Eoq 5] C o, [MPa] C, [MPa]
3000 0.3 0.00100 0.0700 46.8 5.50

A, a yij o [MPa] H

1.92 1.3 1.27 37.8 15.0

Table 10.5 Material parameters for 10 mm thick extruded plates of HDPE. The
parameters are determined by Hovden [11].

E [MPa] v £ 18] C o, [MPa] C, [MPa]
800 0.4 0.00070 0.1080 13.0 1.74

A, a yis o [MPa] H

7.75 1.0 1.04 23.9 39.6

The pressure sensitivity « and the plastic dilation parameter S determined for

materials in the 10 mm plates are chosen also for the 5 mm plates. The Raghava
functions defined by & and g are plotted in Figure 10.3 and Figure 10.4. Figure

10.3 shows the yield surface f, and the flow potential g, of PVC and HDPE in a
stress space defined by the stress invariants /, and J,. Figure 10.4 represents the
same functions, but in a principal stress space normalized with respect to o, . It is

clearly seen that PVC requires a higher stress to reach the yield limit in
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compression than in tension. This is not the case for HDPE. Also in the plastic
potential there is a clear difference between the two materials. During plastic
deformation, this leads to different responses of PVC and HDPE because the
gradients of the potential functions do not have the same directions in stress space.

N3J,

1,3

Figure 10.3 Raghava yield function f,(solid lines) and potential function g,
(dotted lines) for PVC and HDPE in the stress space defined by the invariants.
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Figure 10.4 Raghava yield function f,(solid lines) and potential function g,
(dotted lines) for PVC and HDPE in a normalized principal stress space.

10.5 DISCUSSION

A constitutive model for thermoplastics [1] has been introduced. The material
parameters of the model can be found from uniaxial tension and compression tests.
Some of the parameters for the 5 mm plates of PVC and HDPE have been
identified in this chapter. The remaining parameters are taken from Hovden [11] .
By comparing the stress-strain curves from the tension tests in Chapter 3 with the
stress-strain curves from the compression tests in Chapter 4, this was done in figure
4.11, it is seen that the pressure sensitivity coefficients determined by Hovden [11],
i.e. a = 1.3 for PVC and a = 1.0 for HDPE, fit the two materials well.

The plastic flow is determined from the gradient of the flow potential g ,. From the

flow potentials plotted in Figure 10.3, it is seen that also for stress states of
compression, the direction of the gradient indicates positive volume change.
However, recall from Chapter 4 that the determination of volume change in the
compression samples is rather uncertain. New and better compression tests should
be performed before drawing any conclusions of the accuracy of the prediction of
volume strain in compression.
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The calibration method presented herein involves some trial and error when the
curve fitting was used to find the parameters of Part B. Also, since the choice of
material parameters of Part A affects the parameters of Part B, some iterations of
correcting of the parameters of both parts had to be carried out. Different choices in
the parameter identification process can lead to different combinations that produce
similar results.

Another source of error in the calibration is that a uniaxial stress state is assumed.
The experimental results used for the calibration are not representing a true
uniaxial stress state since necking occurred during testing. However, the effect of
this stress triaxiality is assumed to be of minor importance.

Delhaye [15] proposed a similar analytical procedure of parameter identification as
done by Hovden [11]. An alternative method is by inverse modelling. Such a
method has been applied by Polanco-Loria et al. [16].
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CHAPTER 11

NUMERICAL SIMULATIONS OF UNIAXIAL TENSION AND
COMPRESSION TESTS

The material parameters determined in Chapter 10 for the Smm thick plates of
PVC and HDPE are verified by employing the parameters on meshes of simple
uniaxial tension and compression test specimens. In other words, it is checked
whether the laboratory tests used for the parameter identification could be
reproduced by numerical simulations.

11.1 INTRODUCTION

The constitutive model described in Chapter 10 has been confirmed to predict the
behaviour of uniaxial tension and compression tests of polymer materials in a
good way [1, 2]. The uniaxial deformation of specimens cut out from 10 mm thick
sheets of mineral filled PVC and HDPE was predicted by numerical simulations by
Hovden [1] by employing the material parameters determined for these materials,
listed in Table 10.4 and Table 10.5. Delhaye [2] also achieved good results when
using the same constitutive model, though with different material parameters, in
the prediction of uniaxial response of particle-reinforced polypropylene. This
chapter aims to check whether the material parameters for the 5 mm plates of PVC
and HDPE, determined in Chapter 10, can reproduce the response of the uniaxial
tensile tests from Chapter 3 and the uniaxial compression tests in Chapter 4.
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11.2 UNIAXIAL TENSION TESTS

11.2.1 MESH

The finite element model of the uniaxial tensile specimen is shown in Figure 11.1.
It was created to represent the tensile specimens used in the experimental tests
presented in Chapter 3. The left and the right ends were modelled as rigid bodies.
The mesh consists of 5 elements over the thickness, 12 elements in the width
direction and 52 elements along the gauge part. Eight node solid elements with
reduced integration [3] were used in the numerical simulations. To avoid
unphysical energies from hourglass modes, a stiffness based hourglass control was
employed. Mass scaling by a factor of 10’ was used in the simulations in order to
reduce the computation time. The elements marked in grey in Figure 11.1 were
modelled as rigid material. After the simulations it was checked that the kinetic
energy and the hourglass energy was much less than 1% of the total energy in the
simulation.

Figure 11.1 Finite element mesh of the uniaxial tensile specimen.

11.2.2 MATERIAL MODEL

The constitutive model proposed by Polanco-Loria et al. [4], as presented in
Chapter 10 was employed for the materials. The parameters, determined from the
response of 5 mm thick extruded sheets of mineral filled PVC and HDPE, are listed
in Table 10.2 and Table 10.3.

11.2.3 BOUNDARY CONDITIONS

A motion corresponding to 3.3- 107> mm/s was applied to the right part of the finite
element mesh modelled as a rigid body. This motion gives the same strain rate as in
the experiments. The rigid body at the opposite end of the specimen was fixed.
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11.2.4 RESULTS

The force-displacement relationships from the numerical simulations are compared
with results from experiments in Figure 11.2. The solid lines represent numerical
results while the dashed lines represent the results from the laboratory tests. The
numerical simulation captures the initial stiftness and the peak force for PVC. The
softening, however, occurs more sudden in the laboratory test than in the numerical
simulation. Regarding the HDPE, the initial stiffness is somewhat softer in the
experimental test than what is predicted by the simulation. The peak force is well
captured also for the HPDE. During cold-drawing of HDPE there is some increase
in the force level predicted by the numerical model while that from the experiment
remains constant.

z
o
o 1.5 R
2
5
m —J
1 | _
0.5 HDPE - Experiment |
Simulation
0 L L L L
0 20 40 60 80 100

Displacement [mm]

Figure 11.2 Force-displacement curves from finite element simulations and

experimental tests.
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11.3 UNIAXIAL COMPRESSION TESTS

11.3.1 MESH

The mesh of the compression test coupon is seen in Figure 11.3. It was modelled
by 20 elements over the diameter and 40 elements over the height. Eight node solid
elements with selectively reduced integration [5] were used to carry out the
simulations. The cylindrical specimens tested in Chapter 4 differed somewhat from
the drawing in Figure 4.1. The meshes were defined according to the actual
geometry of the test specimens as listed in Table 11.1. The compression platens
were modelled as rigid bodies employing shell elements. Mass scaling by a factor
of 10° was used also for the compression tests without causing high levels of
kinetic energy or penetration problems. After the simulations it was checked that
the kinetic energy was much less than 1% of the total energy in the simulation.

Figure 11.3 Finite element mesh of the compression coupon between the
compression platens.

Table 11.1 Height and diameter measures for the compression test coupons.

Nominal height Nominal diameter
PVC coupon 5.09 mm 4.76 mm
HDPE coupon 5.04 mm 4.86 mm

11.3.2 MATERIAL MODEL

Again, the constitutive model [4] presented in Chapter 10 with parameters
determined for the 5 mm sheets of PVC and HDPE was employed. The material
parameters are listed in Table 10.2 and Table 10.3.
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11.3.3 BOUNDARY CONDITIONS

A velocity corresponding to 5-107 mm/s was applied the upper compression
platen while the lower platen was fixed. This was to recreate the deformation
imposed to the test coupon in the test. The contact formulation contact-automatic-
one-way-surface-to-surface in LS-DYNA [3] was used to model the contact
between the compression platens and the test specimen. Static and dynamic friction
coefficients ¢ of 0.1, 0.05 and 0.01 were used in the contact formulation between

the platens and the test coupon. After the simulations it was checked that the
sliding energy remained positive during the simulations.

11.3.4 RESULTS

The force-displacement curves from the numerical simulations of PVC are
compared with results from experiments in Figure 11.4. The initial response is
reasonable well predicted. However, the post-yield response is overestimated.

4
— u=0.1 ,
— 1=0.05 ,,'
30 ——u=0.01 J/ I
_____ : /
= Experiment ,/
=} /s
£ ‘,a"”
1 ~.___-__,ﬁ" i
0
0 1 2 3 4

Displacement [mm]

Figure 11.4 Force-displacement curves from finite element simulations and
experimental test of PVC in compression.
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Figure 11.5 shows the force-displacement curves from the HDPE simulations
together with the response from the experimental test. The initial response is well
captured by the numerical model. For large deformations there is some deviation.

1.5 ‘ ‘ 7
4
,I
/
'I
,I
,I
— 1 | l” ]
Z -
= p
o -
@] PR
S -
= 05" — u=0.1 i
— u=0.05
- u=001
""" Experiment
0 | | |
0 1 2 3 4

Displacement [mm]

Figure 11.5 Force-displacement curves from finite element simulations and
experimental tests of HDPE in compression.

11.4 DISCUSSION

The constitutive model [6] is well capable of predicting the main features of the
response in uniaxial tension of both the mineral filled PVC and the HDPE. This
can be seen in Figure 11.2. Also in compression, the response of HDPE is well
described. For PVC, the initial response is reasonably well captured. However, we
see a clear overestimation of the force in the plastic domain.

The mineral filled PVC is modelled with a plastic dilation coefficient of = 1.27.

This gives the plastic flow potential shown in Figure 10.3. The predicted flow
direction is normal to the plastic potential function. From the figure it is seen that
in any case, also in compression, the constitutive model predicts positive volume
change. To check whether the overestimation of the force level in the compression
of PVC, see Figure 11.4, was related to incorrect dilation, additional simulations
were carried out with £ = 1. This eliminates any volume change in the numerical

model. The results from these simulations are plotted in Figure 11.6. Although the
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post-yield response is better reproduced in Figure 11.6 than in Figure 11.4, it is still
somewhat overestimated.

4
— u=0.1 ,
I
—— u=0.05 /]
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0 1 1 1
0 1 2 3 4

Displacement [mm]

Figure 11.6 Force-displacement curves from numerical simulations of
compression of PVC without plastic dilation, i.e. f = 1.

The shape of the stress-strain curve in the numerical model is determined from
tension. In Chapter 4 it was observed that the stress-strain curve for compression
exhibited a larger stress drop than what occurs in the stress-strain curve for tension.
To check whether this was caused by the geometrical conditions, from the
barrelling due to friction between the test coupon and the compression platens,
Cauchy stress — logarithmic strain curves were computed from the numerical
results in similar ways as for the test results in Chapter 4. The numerical
simulations for PVC without plastic dilation, i.e. =1, were used for this purpose

to exclude any effects from artificial volume change. The results plotted in Figure
11.7 show stress-strain curves for PVC modelled with different friction coefficients
M between the test coupon and the compression platen. The numerical model is

not able to predict the same stress drop in compression that is observed in
experimental test, not even with the higher friction coefficients . In fact, the

stress-strain curve is almost unaffected by x .
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Figure 11.7 Cauchy stress vs. logarithmic strain from numerical simulations of
compression of PVC without plastic dilation, i.e. f = 1. Onset of barrelling is

marked by circles.

The simulations of compression of PVC without any plastic dilation, i.e. f =1,

were also used to calculate volume strains in the same manner as in the numerical
tests in Chapter 4. These volume strains are plotted in Figure 11.8, and they clearly
show the necessity of reducing the friction between the test coupon and the

compression platens.
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Figure 11.8 Logarithmic volume strain from numerical simulations of compression
of PVC without plastic dilation, i.e. § = 1. Onset of barrelling is marked by circles.

11.5

CONCLUDING REMARKS

The constitutive model with the parameters determined for 5 mm thick
plates of mineral filled PVC and HDPE are well able to predict the
mechanical response in uniaxial tension.

The material model is well capable of predicting the initial response in
compression tests of the mineral filled PVC and the HDPE. The post-yield
behaviour in the mineral filled PVC subjected to compression is somewhat
overestimated. In the HDPE, it is better captured.

The stress softening in compression of PVC is not captured by the
numerical model. Eliminating plastic dilation in the constitutive model or
reducing friction coefficients does not account for this.

Numerical simulations of PVC without any plastic dilation shows that the
volume increase observed in the compression tests in Chapter 4 might be
due to friction between the test coupon and the compression platens.
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CHAPTER 12

NUMERICAL SIMULATIONS OF BIAXIAL TENSION TESTS

Numerical simulations of the deformation of biaxial test specimens are carried out
to check whether the material parameters determined from uniaxial tension and
compression tests are adequate in a more complex stress state. Force-displacement
curves and strain fields from the simulations are compared with those from the
laboratory tests. Thus, the capability of the constitutive model presented in Chapter
10 is explored through nonlinear finite element analyses of the biaxial tests
presented in Chapter 7.

12.1 INTRODUCTION

In Chapter 11 it was shown that the constitutive model described in Chapter 10 was
able to represent the force-displacement curves obtained in uniaxial tension and
compression tests rather well. This chapter aims to explore whether the material
model is able to predict the behaviour observed in a biaxial loading case. The
intended use of this particular constitutive model is for simulations of polymeric
components for industrial applications. In this perspective, the biaxial tension tests
are believed to represent realistic loading cases. The tests in Chapter 7 are therefore
applied in this validation study of the constitutive model.

12.2 MESH

The geometry of the mesh, displayed in Figure 12.1, was defined in order to
describe the geometry of the biaxial tension test specimens presented in Chapter 7.
Two meshes with three and five elements through the thickness were considered
for the finite element simulations of equibiaxial loading of cross shaped biaxial test
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specimens. The two meshes gave similar results as seen in Figure 12.2. To save
computational time, the mesh with three elements through the thickness was used
in the further simulations. As seen in Figure 12.1, smaller elements were applied in
the areas where large deformations were expected. In total, 12660 solid elements
were used to model the deformable part of the sample. Eight node solid elements
with reduced integration and a stiffness based hourglass control were used in the
simulations. The hourglass energy did not exceed 2% of the total energy during the
simulations. Mass scaling of a factor 10° was employed to make the simulations
run faster. After the simulations it was checked that the kinetic energy was less
than 1% of the total energy in the simulations.

Figure 12.1 The finite element mesh of the biaxial specimen. The mesh has 3
elements over the thickness. The clamping areas, modelled as rigid bodies, are
marked with grey.
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Figure 12.2 Results from numerical simulations of equibiaxial tension tests
employing meshes with three and five elements through the thickness.

12.3 MATERIAL MODEL

The material model of Polanco-Loria et al. [1], see Chapter 10, has been employed
to model the material. The parameters, displayed in Table 10.2 and Table 10.3,
were determined from the response of 5 mm thick extruded sheets of the mineral
filled PVC and HDPE. Addressing the pressure sensitivity of the yield surface, it
should be noted that the mineral filled PVC is modelled with o= 1.27 while the
HDPE is modelled with a=1. The yield stress of the PVC is in other words
pressure sensitive in the material model and the yield stress in HDPE is insensitive
to pressure. The four clamping areas of the specimen, addressed in dark grey in
Figure 12.1, were idealized as a rigid material.

12.4 BOUNDARY CONDITIONS

Different biaxial extension ratios B were simulated by applying different
velocities v, and v, to each of the four rigid clamping areas. The biaxial extension

ratio is defined as B=v /v, . It is the ratio between the deformation velocities v,

and v_ in the y- and x-directions, i.e. the vertical and the horizontal directions. The
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values of v and v, used in the simulation corresponded to the velocities from the

laboratory tests, as listed in Table 7.1. The addressed biaxial extension ratios were
B =Y, B ='%,and B = 1. As in the experimental tests v § varied between the

different tests while v was fixed. Moreover, one of the numerical models was

deformed in uniaxial tension.

12.5 RESULTS

Figure 12.3 shows results from the simulations together with the tests results
obtained in Chapter 7 for PVC. Solid lines represent the numerical results while the
dotted lines address test results. Figure 12.4 expresses the effect of biaxial loading
mode on the force-displacement curve, in other words how the response in the x-
direction is affected by a change of the deformation in the y-direction. The sub-
figure a) and b) represent the numerical predictions and the laboratory tests in turn.

It can be seen both from Figure 12.3 a) and from Figure 12.4 that the finite element
model underestimates the maximum force for the cross-shaped test specimen of
PVC loaded in uniaxial tension. For the biaxial loading cases, the maximum force
predicted from the simulation is somewhat higher than the experimental results.
The model captures that the maximum force is largest when the extension ratio B
is equal to %2 or Ya.

In similar manner as for PVC, numerical and test results for HDPE are displayed in
Figure 12.5 and Figure 12.6. Again the solid lines in Figure 12.5 represent the
numerical predictions and the dashed lines refer to the test results from Chapter 7.
In Figure 12.6, sub-figures a) and b) show numerical and test results in turn. It can
be seen from the figures that the numerical model underestimates the maximum
force in all load cases of the HDPE specimens. However, it is captured that the
specimen loaded with biaxial extension ratio B = % reaches the highest maximum
force while the specimen with B = ' reaches the second highest one. As
mentioned in Chapter 7 a hole appeared in the centre of each of the biaxially
loaded HDPE test specimens in the laboratory tests after some deformation. The
first visual appearances of the holes in the test specimen centres are marked with
circles in Figure 12.5 and Figure 12.6 b). These holes were not included in the
numerical model. However, at this stage the elements in the centre region of the
model were very thin. The rehardening seen in the numerical simulations and not in
the laboratory tests might be related to the absent holes.
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Figure 12.3 Force-displacement curves for PVC.
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Experimental tests.
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The Green strain fields £, and E, from numerical simulation of the PVC

specimen loaded in equibiaxial tension, i.e. B = 1, are plotted in Figure 12.7.
Similar strain fields, £ and E , from laboratory tests are shown in Figure 12.8.

The laboratory test data was obtained by digital image correlation (DIC). The
agreement between the numerical predictions and the laboratory tests seem to be
good apart from the somewhat stronger strain localization in the centre region of
the test specimens seen in sub-figures b) and c). As in the laboratory tests, large
deformations in the finite element model lead to strain localization and necking of
the X-shaped centre region. The strain levels are captured reasonably well.
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a) b)
Figure 12.7 Green strain fields E and E, obtained from numerical simulation of

PVC subjected to equibiaxial tension at a) 2.4 mm , b) 3.1 mm and c) 5.9 mm
deformation in the x- and y-direction
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Figure 12.8 Green strain fields E, and E, obtained from test of PVC subjected to

equibiaxial extension, i.e. B= 1, at a) 2.2 mm b) 3.0 mm and c) 5.7 mm
deformation in the x- and y-direction .

The Green shear strain field £, , also from the simulation of the biaxial sample
with B= 1, 1is plotted in Figure 12.9. Corresponding strain fields from the
laboratory test are plotted in Figure 12.10. The shear strains seem to be in the same
order in the two figures. Again, the X-shape of the localized zone can be
recognized, and the width of this zone is approximately the same in both figures.
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Figure 12.9 Green shear strain fields E,, obtained from numerical simulation of

PVC subjected to equibiaxial tension at a) 2.4 mm , b) 3.1 mm and c) 5.9 mm
deformation in the x- and y-direction.
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Figure 12.10 Green shear strain field E

y
equibiaxial extemnsion, i.e. B= lLat a) 2.2 mm b) 3.0 mm and c) 5.7 mm
deformation in the x- and y-direction .

Figure 12.11 displays the Green strain fields £, and E obtained from numerical

simulation of the HDPE specimen loaded with B = 1. Strain fields of from the
corresponding laboratory test are shown in Figure 12.12. In the numerical model
of HDPE as well as in the laboratory tests, the characteristic X-shaped region of
strain localization can be recognized. Note that the last strain field of HDPE in
Figure 12.11 c) the strain field at 12.5 mm deformation in x- and y-direction is
plotted with a colour bar with a higher span in values than used in the strain field in
Figure 12.12. Due to distortion of the speckle pattern, the DIC software could not
track the information at all points in the laboratory test specimen. Therefore some
information is missing. It can be assumed that the lacking strain values are
somewhat higher than indicated by the corresponding colour bar.
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Figure 12.11 Green strain fields E and E, obtained from numerical simulation of

HDPE subjected to equibiaxial tension at a) 7.1 mm, b) 9.3 mm and c) 12.5 mm
deformation in the x- and y-direction.
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Figure 12.12 Green strain fields E,_ and E, obtained from test of HDPE

subjected to equibiaxial extension, i.e. B= l,at a) 6.8 mm b) 9.0 mm and c) 12.8
mm deformation in the x- and y-direction .

Figure 12.13 displays the Green strain fields £, from the numerical simulation of

the biaxial HDPE specimen deformed with B = 1. The corresponding experimental
strain fields are shown in Figure 12.14. There is a good agreement between the two
figures. Note that the colour bars in Figure 12.15 ¢) and Figure 12.16 ¢) are
different.
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Figure 12.13 Green strain fields E,, obtained from numerical simulation of

HDPE subjected to equibiaxial tension at a) 7.1 mm, b) 9.3 mm and c¢) 12.5 mm
deformation in the x- and y-direction.
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Figure 12.14 Green shear strain field E,, obtained from test of HDPE subjected

to equibiaxial extension, i.e. B= 1, at a) 6.8 mm b) 9.0 mm and c) 12.8 mm
deformation in the x- and y-direction .

The Green strains £, and E, taken from the centre point are chosen to represent

how the evolution of strains is affected by the biaxial extension ratio B . The shear
strains are small at this location, and are therefore not plotted in these figures.
Figure 12.15 represents the strains in the PVC specimens. Numerical results are
plotted on the left hand side in sub-figure a) and c). For comparison, the test results
from Chapter 7 are plotted on the right hand side in sub-figure b) and d). For values
of E_ below 1, the numerical and the experimental results are comparable. For
larger strains, the deviation is larger. This may be related to the distortion of the
speckle pattern in the laboratory test causing difficulties for the DIC-software. An
up-turn in E_ is seen at about 3 mm deformation in the x-direction both in the

numerical simulations and the laboratory tests. The strains £ are reasonably well
predicted by the numerical simulation. The negative £, produced in the uniaxial

tests, as discussed in Chapter 7, is also captured by the numerical simulations.
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Figure 12.15 Green strain E, and E taken from the centre point of the biaxial

specimens of PVC as function of displacement in x-direction: a) E_ from

numerical simulation, b) E,_ from the test, ¢) E, from numerical simulation and d)

E, from the test.

Figure 12.16 displays the Green strains £, and E taken from the centre point of

the HDPE specimens. Again, numerical results are displayed on left hand side in
sub-figures a) and c). The test results from Chapter 7 are displayed on the right
hand side in sub-figure b) and d) for comparison. As mentioned before, the DIC-
software could not follow the strains for large deformations because of distortion of
the speckle pattern. For deformations in the x-direction lower than 8§ mm, the
strains in the centre point are captured in a relatively good way by the numerical
model. Also for the uniaxial deformation of HDPE it is captured that negative E|

is produced. Moreover, in the laboratory tests it was seen that the uniaxially
deformed specimens of both PVC and HDPE started to buckle after some
deformation. The same could be observed in the numerical models.
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Figure 12.16 Green strain E, and E taken from the centre point of the biaxial

specimens of HDPE as function of displacement in x-direction: a) E_ from

numerical simulation, b) E,_ from the test, ¢) E, from numerical simulation and d)

E, from the test.

12.6 DISCUSSION

The constitutive model [1] described in Chapter 10 with parameters determined
from uniaxial tension and compression tests was employed to predict the
mechanical response of PVC and HDPE in biaxial tension. The purpose was to
evaluate the material model in a deformation state different from those used as a
basis for the parameter identification. The biaxial tests presented in Chapter 7 are
relevant for such a validation.

In particular, validation of the pressure-dependent Raghava yield criterion was
addressed in this study. In that perspective, the main difference between the two
materials is the pressure sensitivity. The mineral filled PVC was modelled with
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= 1.3 in the yield function to incorporate pressure sensitivity of the yield surface.
HDPE, on the other hand, was modelled with & = 1.0, which corresponds to the
von Mises yield criterion. Another main difference between the two materials is
that the PVC exhibits stress softening after reaching the yield stress while HDPE
does not. The numerical analyses of the biaxial tests slightly overestimate the force
level for PVC, while for HDPE the force level is somewhat lower in the
simulations than in the tests. However, the main features of the behaviour observed
in the test seem to be captured by the numerical model.

The model predicts that the specimens deformed at B =2 and B = Y4 reach about
the same force level in PVC. With respect to the strain state at the centre point, this
prediction is in accordance with the shape of the yield surface employed for this
material, see Figure 12.17. According to the yield surface, a higher value of the x-
direction stress can be obtained in uniaxial tension (corresponding to the horizontal
axis) than for equibiaxial tension (corresponding to the dashed line in the figure).

o, /O'T

Figure 12.17 Yield surface f, and plastic potential g,, plotted in the principal
stress space, employed for the PVC and the HDPE in the numerical model.

The maximum force in the equibiaxial test of PVC is overestimated by the
numerical model. The reason may be that there seem to be some strain localization
in the experimental test that is not captured by the numerical simulation. This can
be seen by comparing the strain field from the simulations of PVC, see Figure 12.7,
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with the strain fields from experimental tests shown in Figure 12.8. By
examination of the yield surface used for modelling of PVC, see Figure 12.17, it
would be expected that the peak load in uniaxial tension is higher than the one in
equibiaxial tension. Due to the transverse compression at the centre of specimen
subjected to uniaxial loading, however, the stress state in this specimen is not
uniaxial. Thus, the location on the yield surface corresponding to this stress state is
not on the x-axis of the yield surface in the principal stress space but slightly
below. Figure 12.15 shows that at the centre of the specimen, the ratio £ /E, at

10 mm deformation can roughly be estimated to —6.3 and —5.9 for the experiments
and simulations, respectively. This also suggests that the corresponding stress state
is somewhere within the fourth quadrant of the yield surface in the principal stress
space. The ultimate rupture of the specimens was not captured in the simulation
because no failure criterion was employed in the numerical model.

Figure 12.6 b) shows that there is not much difference in the maximum force level
reached in the uniaxial test and the equibiaxial test of HDPE. This is captured well
by the numerical model, see Figure 12.6 a). Also for HDPE the intermediate
extension ratios result in a larger maximum force in the x-direction in the tests as
well as in the numerical analyses. In particular, the test deformed at B = % reaches
the highest force level both in the test and the analyses. The drawing of the centre
region of the HDPE specimens makes the specimens very thin. In the laboratory
tests, this thinning leads to creation of holes in the three biaxial tests on HDPE.
This hole-growth is not included in the model. However, the elements in the
numerical model in this region are extremely thin at this stage. Even though some
rehardening is observed in the global response of the numerical simulations, the
response is still quite similar to the one observed in the experiments some time
after the hole initiation. Compression could be observed also at the centre of the
HDPE specimen tested in uniaxial tension, see Figure 12.16. It is seen that the ratio
E /E, at 10 mm deformation is around —3.8 for both experiment and simulation.

Due to the comprehensive thinning of this section, the load-bearing capacity might
be reduced so much that the global response of the specimen is not affected by the
transverse compression in the same manner as in the case of PVC. Modelling this
particular HDPE with a von Mises yield criterion seems to be in reasonable
accordance with the experimental results.

Comparing the strain fields from the simulations of both materials with the strain
fields from the tests, see Figure 12.7 to Figure 12.14, it is seen that there is a
reasonably good agreement between the experimentally and numerically obtained
strain fields. Some information is lost in the strain fields from the laboratory test of
HDPE due to large deformations and distortion of the speckle pattern used for
digital image correlation. However, the blank spots in the plots indicate that the
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local strain values are rather high. This is confirmed in the strain fields obtained
from the numerical simulations.

From Figure 12.15 and Figure 12.16 it can be seen that the Green strains at the
centre points of the specimens found from the experiments and the numerical
simulations are comparable. These plots also show that the model is able to predict
the earlier localization of strains for PVC compared with HDPE.

Addressing the post yield behaviour, it can be seen from Figure 12.3 and Figure
12.4 that there is some mismatch between experiments and simulations after onset
of yielding in PVC, especially for the uniaxially loaded specimen. In the
simulations, the load drop is less pronounced than in the experiments. This might
be related to the plastic potential g, . If the plastic dilation is overestimated, the

load drop will be too small.

12.7 CONCLUDING REMARKS

e [t is found that the constitutive model proposed by Polanco-Loria et al. [1]
is capable of describing the response of the mineral filled PVC and the
HDPE in biaxial tension with good accuracy.

e The 11 parameters in the material model determined from uniaxial tension

and compression tests are adequate for describing a biaxial load case. This
facilitates an industrial use of the model.
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CHAPTER 13

NUMERICAL SIMULATIONS OF AXISYMMETRIC TENSILE
BARS WITH NOTCH

This chapter presents results from numerical simulations of the behaviour of the
axisymmetric notched tensile bars from Chapter 8. This numerical study is carried
out to check whether the constitutive model, employing a Raghava yield surface
and flow potential, can predict the response of the polymers under triaxial stress
state. In particular, the prediction of yield stress and volume change is discussed.

13.1 INTRODUCTION

The previous chapters have shown that the material model of Polanco-Loria et al.
[1] with parameters calibrated from uniaxial tension and compression tests is
capable of describing the behaviour of the polymers under uniaxial and biaxial
stress states. This chapter is concerned with how the material model represents
triaxial stress states. As described in Chapter 8, experimental tests have been
performed on axisymmetric notched tensile bars with notches of different sizes.
The current chapter employs the material model in numerical simulations of the
behaviour of the test specimens to see how well the response is captured. The
results from the numerical simulations are compared with the experimental results
to check the agreement.

13.2 MESH

Figure 13.1 shows outlines of the five mesh geometries employed in this study.
The figure displays the sketches used to create an axisymmetric solid from 2D
elements. Four node axisymmetric elements with reduced integration together with
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a stiffness based hourglass control were employed to carry out the simulations [2].
Mass scaling of a factor of 10° was used to decrease the simulation time. After the
simulations it was controlled that the hourglass energy and the kinetic energy were
much less than 1% of the total energy. Since large deformations were expected in
the notch, this region was defined by smaller elements, as seen in Figure 13.2.
Across the minimum cross section 20 elements were used. This corresponds to the
distance g, in Figure 13.2. The part of the sample located 1 mm to each side of the

minimum cross section was divided into 40 elements in the longitudinal direction.
This corresponds to the distance L, in Figure /3.2 and the distance used for axial

strain measurements in the laboratory tests in Chapter 8.

2) b) ) d) )

Figure 13.1 The geometries of a) the smooth test specimen, and test specimens

with initial notch radii R, equal to b) 20 mm, c) 5 mm, d) 2 mm and e) 0.8 mm.
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Figure 13.2 Example of mesh refinement in the notch of an axisymmetric bar with
R, = 5 mm. The height of the area with the finest mesh is L,= 2 mm.

13.3 MATERIAL MODEL

The material model of Polanco-Loria et al. [1], see Chapter 10, was used for
describing the material behaviour in this study. The material parameters,
determined from uniaxial tension and compression tests of the 10 mm sheets of
mineral filled PVC and HDPE [3] are given in Table 10.4 and Table 10.5,
respectively. Since this study focuses on the onset of yielding and the plastic
dilation, it is worth paying attention to the values of the - and S -parameters.
The pressure sensitivity parameter ¢, defining the shape of the yield surface,
introduces pressure sensitivity in PVC by having a value of 1.3. In HDPE pressure
sensitivity is excluded by setting a equal to 1.0 and thereby defining a von Mises
yield surface. The plastic dilation is given by the shape of the plastic potential,
which is controlled by £ . For PVC and HDPE pfis set to 1.27 and 1.04,
respectively. This means that the material model predicts some plastic dilation in
both materials. However, for HDPE £ is close to unity and therefore the plastic

change of volume is minor.
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13.4 BOUNDARY CONDITIONS

The nodes facing the positive and negative z-direction at each end of the mesh were
applied a prescribed motion of 0.02 mm/s in the direction they were facing. When
the global displacement in the numerical simulations has passed about 1/3 of the
global displacement at fracture in the experiments, the simulations were stopped.
Numerical simulations of the specimen that did not fracture were carried out to
approximately the same global deformation level as in the experiments.

13.5 POST PROCESSING

With the purpose of comparing the results from the numerical simulations with the
results from the experimental tests in Chapter 8, some of the same measures were
extracted. These measures were the length L spanning over the root of the notch,
the minimum cross section radius a and the global displacement and force. Like in
the experimental tests, the initial values of L and @ are ;=2 mm and g,= 3 mm.
Further average stresses and strains were computed in similar manner as for the
experimental tests. Thus, the average axial strain from the simulation was
calculated by

z =ln(£j (13.1)

The average radial strain was calculated from the radius a as

g = h{ij (13.2)

ay

The net axial stress was found from dividing the applied force F by the actual
cross section area

5. = (13.3)

The plastic deformation gradient F” was extracted from the 20 elements defining
the minimum cross section. It was used to find the plastic volume strain &’ over

the cross section
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gl =In(detF") (13.4)
This made it possible to plot the radial distribution of plastic volume strain &” for
several deformation levels.

Finally, the stress triaxiality ratio o, as defined as in Chapter 8, is

. 1/3
o =
3J,

(13.5)

The data required to plot &~ over the cross section was extracted in terms of
pressure, —/, /3, and von Mises stress, /3.J, , as provided by LS-DYNA from the

20 elements in the minimum cross section.

13.6 RESULTS

In the following, results from the numerical simulations will be presented together
with experimental results from Chapter 8. Results from the numerical simulations
will be displayed on the left hand side in sub-figures a) and the laboratory test
results will be included on the right hand side in sub-figures b).

The force-displacement curves from simulations and laboratory tests are plotted in
Figure 13.3 for PVC and Figure 13.4 for HDPE. The response of the smooth PVC
specimen and the specimen with R,= 20 mm seems to be well captured by the

finite element models. For the specimens with smaller notch radius, on the other
hand, it is seen that the maximum force level in PVC is overestimated. The PVC
specimens from the tests all reach about the same maximum force level. The
numerical simulations, on the other hand, predict a higher maximum force for the
specimens with smaller notch radius. For the HDPE the numerical model generally
overestimates the maximum force. However it is captured that the specimen with
smallest notch radius reaches the highest maximum force while the smooth
specimen reaches the lowest.
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Figure 13.3 Force-displacement curves for PVC from a) numerical simulations
and b) experimental tests.
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Figure 13.4 Force-displacement curves for HDPE from a) numerical simulations
and b) experimental tests.

The averaged axial stress and strain was computed from Equation (13.3) and

Equation (13.1), respectively. Figure 13.5 presents results for PVC and Figure 13.6
for HDPE.

As for the force-displacement relationships, also the stress-strain curves for PVC
specimens with small notch radii are overestimated by the finite element model.
According to the simulations, the axial average peak stress increases with reduction
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of the notch radius. The experimental test results are different; all notched
specimens reach about the same peak stress independent on the notch size.

In the experimental test, the smooth HDPE specimen experienced severe strain
localization, maybe due to an uneven lathe surface finish. This strain localization is
not captured in the numerical model. Therefore, the local strains in the numerical
model ceases at a lower level than in the experiment, even though they had the
same global displacement. The response of the HDPE specimen with R, =20 mm
in Figure 13.6 a) seems to reproduce the experimental observations in sub-figure b)
rather well, although both the stress and the strain level are somewhat
overestimated. Worse is the response estimation of the two specimens with the
smallest notch radii; R,= 2 mm and R,= 0.8 mm. Both specimens show a

softening behaviour in the experimental test that is not captured by the numerical

simulations.
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Figure 13.5 Net axial stress-strain curves for PVC from a) numerical simulations

and b) experimental tests.
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Figure 13.6 Net axial stress-strain curves for HDPE from a) numerical simulations

and b) experimental tests.

The rates of average axial strain &, at the state of maximum force in the numerical

simulation of each test are presented in Table /3.7 and Table /3.2.These values for
the net strain rate are similar to those found in the experimental tests presented in

Chapter 8.

Table 13.1 Rate of average axial strain at maximum force in simulations of PVC

specimens.

PVC-2 PVC-08
0.019 0.017

PVC smooth PVC-20 PVC-5
Ez [s7'] 0.00096 0.0087 0.015

Table 13.2 Rate of average axial strain at maximum force in simulations of HDPE

specimens.

HDPE smooth HDPE-20 HDPE-5 HDPE-2  HDPE-08

EZ [s'] 0.0091 0.0068 0.010 0.012 0.011
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Figure 13.7 and Figure 13.8 display contour plots of the equivalent plastic strain as
provided by LS-DYNA in the notch in PVC and HDPE specimens from numerical
simulations. The plots are captured at net axial strain levels In(L/L,) similar to

the strain levels in the experimental tests displayed in Figure 9 and Figure 10 in
Chapter 8. The contour plots have been mirrored about the symmetry axis for better
visualization.

From the contour of the specimens it can be seen that some of the main
characteristics of the deformation are captured. Both in the numerical simulations
and the experimental tests, a local neck in some cases appeared inside the pre-
machined neck. Also the cold-drawing seen in the experimental test as elongation
of the most central region of the neck can be observed in the numerical results.
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Figure 13.7 Contour plots of plastic strain from simulations of the PVC specimens.
The columns a), b) and c) refer to different deformation levels.
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Figure 13.8 Contour plots of plastic strain from simulations of the HDPE
specimens. The columns a), b) and c) refer to different deformation levels.
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The axial force is plotted against the average radial strain from both numerical
simulations and experiments in Figure 13.9 and Figure 13.10. These figures
provide a more precise representation of the difference between the numerical and
the experimental data, since these quantities are more directly comparable. The
force is taken directly from the numerical simulations and the tensile testing
machine without any kind of conversion. The average radial strain is determined
from the radius measured exactly in the minimum cross section of both the
numerical models and the test specimens. It becomes clear also here that the
material model is better for HDPE than for PVC at predicting the behaviour before
localization.
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Figure 13.9 Force against average radial strain for PVC in a) numerical
simulations and b) experimental tests.
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Figure 13.10 Force against average radial strain for HDPE in a) numerical
simulations and b) experimental tests.

Figure 13.11 and Figure 13.12 show average radial strain against average axial
strain. By comparing the contraction of the minimum cross section of the finite
element models and the experimental tests, it is seen that the volume change is
poorly reproduced by the simulations. The variation in the contraction produced by
the different notch geometries is not captured. In general, the finite element model
predicts stronger contraction of the minimum cross section than what is observed in
the experiments. This means that the estimated increase of volume is too small in
the finite element analyses.
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Figure 13.11 Average radial strain against average axial strain for PVC in a)
numerical simulations and b) experimental tests.
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Figure 13.12 Average radial strain against average axial strain for HDPE in a)
numerical simulations and b) experimental tests.

From the numerical results it is seen that the notch produces heterogeneous stress
and strain fields that vary with the notch radius R. In the following, radial

distributions of the stress triaxiality ratio ¢ and the plastic volume strain &’ for
each of the materials and geometries are presented. The stress triaxiality factor was
found according to Equation (13.5) employing the hydrostatic stress 7, /3 and the
equivalent von Mises stress ,/3J, taken directly from LS-DYNA. The plastic

volume strains ¢’ was found by Equation (13.4). The results are presented in

Figure 13.13 to Figure 13.16 for PVC, while Figure 13.17 to Figure 13.20 display
results for HDPE. Each figure includes three lines representing the three
deformation levels which were displayed in sub-figures a), b) and ¢) in Figure 13.7
and Figure 13.8.

Even though the different figures represent different deformation stages, it seems
that the stress triaxiality factor varies from case to case and also during
deformation. A comparison between the different figures shows that specimens

with largest R, have the lowest o . By comparing the deformation levels

represented within each figure, it is seen that as the model of the specimen is
deformed a small neck is formed inside the pre-machined notch causing a reduction

of R. Consequently, the value of o increases in the centre of the specimen.

During further deformation R increases again, and o’ is reduced.
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For all specimens, except those with the smallest notch, both the stress triaxiality
o and the plastic volume strain &’ have their largest value in the centre of the
specimen. In the specimens with R, = 0.8 mm the maximum values occur closer to

the root of the notch.

In the numerical simulations, the plastic dilation parameter is # = 1.27 for PVC
and S = 1.04 for PVC. As a result, the volume strain in the simulations of PVC is

in general higher than in the simulations of HDPE even though the level of average
axial strain &, is higher in HDPE.
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Figure 13.13 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of PVC model with R,= 20 mm. The solid

lines represent & = 0.040, the dashed lines & =0.13 and the dotted lines & =0.99.
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Figure 13.14 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of PVC model with R, = 5 mm. The solid lines

represent € = 0.054, the dashed lines & =0.18 and the dotted lines €. =0.47.
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Figure 13.15 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of PVC model with R, = 2 mm. The solid lines

represent £, = 0.038, the dashed lines &, =0.18 and the dotted lines g, =0.47.
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Figure 13.16 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of PVC model with R,= 0.8 mm. The solid

lines represent & = 0.054, the dashed lines & =0.18 and the dotted lines & =0.47.
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Figure 13.17 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of HDPE model with R, = 20 mm. The solid

lines represent & = 0.15, the dashed lines &, =0.79 and the dotted lines &, =1.6.
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Figure 13.18 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of HDPE model with R, = 5 mm. The solid

lines represent & = 0.13, the dashed lines &, =0.52 and the dotted lines &, =1.6.
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Figure 13.19 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of HDPE model with R, = 2 mm. The solid

lines represent &, = 0.24, the dashed lines &, =0.75 and the dotted lines &, =1.5.
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Figure 13.20 Radial distribution of a) stress triaxiality ratio and b) plastic volume
strain in the minimum cross section of HDPE model with R, = 0.8 mm. The solid

lines represent & = 0.23, the dashed lines &, =0.38 and the dotted lines g, =0.95.

The stress state in the numerical simulations is plotted as sectors in the principal
stress space [, /3—./3J, in Figure 13.21. The figure addresses the deformation

state depicted in Figure 13.7 a) and Figure 13.8 a) which approximately
corresponds to state at peak force. The sectors between the solid lines describe the
stress state in PVC while the dashed lines represent the HDPE. Included in Figure
13.7 are also the yield functions employed to model PVC and HDPE. The figure
gives an indication of what range of the yield surface that is relevant in this study.
In the experimental test, only the average value of one of the stress components is

measured, namely the average axial stress &,. Without knowledge about the two

262



other stress components the yield stress from the experiments cannot be included in

the figure.
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Figure 13.21 The yield function f, and flow potential g, for PVC and HDPE

together with sectors representing the approximate stress states present in the

minimum cross section of each model at onset of plasticity in both materials. The
values for PVC lie within the coloured solid lines, while the values for HDPE lies
within the coloured dashed lines.
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13.7 DISCUSSION

Employing the material model of Polanco-Loria et al. [1], the deformation of
axisymmetric notched tensile bars was studied numerically. The results from the
simulations were compared with the experimental results presented in Chapter 8.
The stress triaxiality factor ¢~ in the axisymmetric notched tensile bars is shown to
increase with the reduction of notch radius R, see Figure 13.13 to Figure 13.20.

The numerical simulations predict an increase in maximum average axial stress for
specimens with higher triaxialities, see Figure 13.5 a) and Figure 13.6 a). This is
not in accordance with the results from the experiments presented in the
corresponding sub-figures b). It seems that a pressure sensitivity parameter of o =
1.3 for PVC does not reduce the yield stress in the constitutive model sufficiently.
For HDPE, the choice of =1 seems to fit better. However, in both materials the
stress triaxiality that increases with decreasing notch radius R appears to introduce
some damage effect that is not captured in the constitutive model. For the PVC the
damage might affect the value of obtained maximum force, while for HDPE it
becomes important after the maximum force level is reached. Also Figure 13.9 and
Figure 13.10, representing the axial force plotted against average radial strain,
support the impression that there might be some damage in the experiments that is
not taken into account in the numerical simulations.

To check whether the differences observed in the maximum force level might be
related so strain rate, the net strain rate EZ at the point of maximum force was
found for the numerical simulation of each test. The values presented in Table /3.7
and Table /3.2 are similar to those found in the experimental tests, as seen in
Chapter 8. Therefore, the mismatch in the maximum force level can probably not
be ascribed to differences in strain rate.

The experimental tests show that the plastic dilation increases with the stress
triaxiality in both materials. This is not well captured in the numerical simulations,
as seen from the contraction of the minimum cross section plotted in terms of radial
strain in Figure 13.11 and Figure 13.12.

The material model used in the simulations [1] employs the pressure dependent
Raghava yield criterion. It is a function of the first principal stress invariant /, and

the second deviatoric stress invariant J,, where the shape is controlled by the

pressure dependency parameter « . Since the stress triaxiality o is the ratio
between the two invariants it serves as an indication of the location on the yield
surface. For PVC, modelled with a = 1.3, a stress state of high triaxiality reduces
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the yield stress measured in terms of the peak of average axial stress &.. For
HDPE with =1, the value of /, does not affect yielding.

In Chapter 6 it was suggested that the peak stress in the mineral filled PVC can be
interpreted as a “matrix - particle debonding stress” rather than a “yield stress of
the PVC matrix”. Micrographs of HDPE reveal that also this material contains
some amount of particles, although it is much less than the PVC. In this perspective
it is possible to imagine that a high triaxial stress state stimulates the process of
particle debonding. Moreover, such a stress state most probably enhances the void
growth around the debonded particles. Therefore, the numerical results might have
been better by using a yield criterion and a plastic potential with blunter shape in
the domain of hydrostatic tension. Then the yield stress would have been lower for
higher stress triaxialities. Also, the gradient of the plastic potential would produce
higher volume strains.

For the modelling of the mineral filled PVC material, a softening function was
employed by using that o, > o . This softening can be interpreted as the reduction

of strength in the material due to damage. It might have been an interesting
modification of the material model to control, or just scale, the softening by the
volumetric strain instead of the equivalent plastic strain. However, this would not
affect the prediction of the yield stress, i.e. the debonding stress, only the
subsequent behaviour.

Another approach of modelling the behaviour of these materials subjected to
triaxial stress could have been to use a material model based on the mechanisms of
void growth. Boisot et al. [4] report good numerical results from employing a
modified Gurson-Needleman-Tvergaard model on axisymmetric notched
specimens of polyamide 11 with an initial porosity of 1%. Especially when it
comes to peak stress, stress softening and the stress plateau, they state that their
results are in good agreement with experimental data. However, such a material
model requires a more complicated calibration process including determination of
the initial porosity. The model is therefore considered as less attractive for
industrial applications.

13.8 CONCLUDING REMARKS
e In the experimental tests there seem to be some increasing damage with

stress triaxiality that affects the volume change and the maximum force
level. This is not captured by the numerical simulations.
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CHAPTER 14

DISCUSSION, CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

14.1 DISCUSSION

Experimental and numerical studies of the large-deformation behaviour of
thermoplastics have been addressed in this thesis. The work is a part of a more
comprehensive research project about constitutive modelling of thermoplastics for
industrial applications.

Within the framework of the polymer research project, two types of thermoplastic
polymers, a PVC and a HDPE, are addressed. These two materials were chosen
because they are fundamentally different. The PVC is an amorphous polymer filled
with mineral fillers by a volume fraction of about 0.2. The HDPE is semicrystalline
and contains much less particle fillers.

Through the research project, the behaviour in uniaxial tension and compression
has already been well studied and reported for the PVC and the HDPE [1, 2]. The
two materials have different mechanical behaviour. The Young’s modulus and the
yield stress for the PVC are somewhat higher than for the HDPE. From tension and
compression tests it has been found that the yield stress of PVC is pressure
sensitive, while that of HDPE is not. Moreover, the PVC dilates markedly during
uniaxial tension, while the dilation in the HDPE is almost zero. After the onset of
yielding a stress drop is observed on the stress-strain curve of the PVC. The HDPE
has no such stress drop. Even though the fundamental behaviour of the two
materials is well known, little has been done to study the behaviour at more
complex stress states. Furthermore, the mechanisms behind the deformation have
been paid little attention to.
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The research group has proposed a constitutive model for thermoplastics for
industrial applications [3]. In this monograph, the capabilities and the limitations of
this constitutive model at different stress states have been explored. Moreover, the
mechanisms behind the deformation characteristics, that are not yet fully
understood, have been studied.

It was considered relevant to check how the constitutive model, with parameters
determined from uniaxial tension and compression tests, was applicable for other
stress states. To serve as validation, biaxial tension tests of specimens of the PVC
and the HDPE were carried out, as described in Chapter 7. These tests produced a
complex biaxial stress state in the centre part of the samples without any distortion
from contact or friction. Numerical simulations of the behaviour, presented in
Chapter 12, show that the constitutive model is well capable of predicting the
maximum level of the force-displacement curves from the experiments. Thus, the
pressure sensitivity of the onset of yield in the biaxial test specimens is captured by
the model. Moreover, the strain fields produced in the numerical simulations seem
to be comparable with those from the laboratory tests. The capability of the
constitutive model was also checked for triaxial stress states in Chapter 13. This
was done through numerical simulations of the tests on axisymmetric tensile bars
with notch reported in Chapter 8. At high stress triaxialities there seem to be some
damage in the tests that is not captured by the constitutive model. The numerical
model overestimates the yield stress in the PVC at high stress triaxialities. For
HDPE the result is somewhat better. However, the volume change observed in both
materials at high stress triaxialities is not well captured by the numerical model. To
sum up, it can be concluded that the constitutive model works well for biaxial
tension while it is less accurate for higher triaxialities. Since polymer components
are often injection moulded into components with maximum wall thickness up to 3
mm, it can be argued that the biaxial load case is more relevant. However, it is
important to know that the constitutive model can have some limitations at highly
triaxial stress states.

By employing various experimental test setups and different measurement
techniques the deformation mechanisms of the PVC and HDPE have been
investigated. In Chapter 5, addressing loading, storage and reloading of uniaxial
tension specimens, it was found that the shape of the initial stress-strain curve of
HDPE is recalled during the second loading cycle. Moreover, the volume change
remains close to zero. The response of PVC, on the other hand, is softer and the
stress-softening effect vanishes during the second loading cycle. This result,
together with the observed plastic dilation and the stress whitening, was interpreted
as a sign of damage occurring in the material. The damage in PVC was
investigated on a microscopic level in Chapter 6. It was concluded that debonding
of mineral particles and subsequent void growth are two damage mechanisms in
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the PVC. This means that the damage cannot be determined by volume strains
alone. At a certain stress level, the particles detach from the matrix, and the
material consequently loses 20% of its load carrying cross section. It was further
suggested that the stress softening effect in the PVC could be a consequence of
damage. Damage and void growth was also investigated in a numerical study of the
matrix-particle interaction by the use of unit cell models in Chapter 9. The
numerical simulations confirmed that debonding and void growth can cause
volume changes and a stress-drop similar to what is seen in laboratory tests of the
PVC. In the unit cell study, the macroscopic peak stress of the composite was
lower than the yield stress of the matrix material. This means that the peak stress
observed in laboratory test of PVC might be related to debonding of particles. The
unit cell study confirmed that the subsequent stress drop may be related to the loss
of strength due to debonding. However, the peak stress and stress drop observed in
compression call for further investigation. In fact, the stress drop is more intense in
compression than in tension. The reason for this observation remains to be
explained.

It is shown in Chapter 8 that the volume change in both the PVC and the HDPE
increase with the degree of triaxiality in the stress state. From investigation of
fractured specimens, it was concluded that void growth had been a comprehensive
mechanism in both materials.

14.2 CONCLUSIONS

Biaxial tension test has been proposed as a validation for the constitutive model.
Further validation has been carried out on simulations of axisymmetric tensile bars
with notch. It can be concluded that:

e The constitutive model is well capable of describing the behaviour of the
PVC and the HDPE in biaxial tension.

e The numerical model does not capture the behaviour of PVC or HDPE at
high stress triaxialities. This may be related to the enhancement of damage
in the material at high stress triaxialities.

Several material test setups for investigation of the large-deformation behaviour of
polymers have been presented. From the test results, it can be concluded that:

e Damage mechanisms observed in uniaxial tension of the PVC are
debonding of mineral particles and void growth. These mechanisms lead to
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volume change. The damage may also contribute to the stress drop on the
stress-strain curve of the material.

e Void growth is a damage mechanism both in the PVC and the HDPE at
high stress triaxialities. The volume change in both materials increases
with the stress triaxiality. Fracture surfaces of the axisymmetric test
specimens with notch further suggest that void growth and coalescence are
factors determining the fracture.

14.3 SUGGESTIONS FOR FURTHER WORK

The damage mechanisms in the PVC have been identified as debonding of mineral
particles and subsequent growth of voids. Thus, it seems reasonable to assume that
the particle content is a determining factor for the void growth. It is tempting to
suggest including the particle volume fraction as a parameter in a constitutive
model. However, the particle volume fraction can be hard to determine. Material
parameters that cannot be determined from stress and strain measurements are
undesirable in a constitutive model for industrial applications. It may therefore be
relevant to include a failure criterion simply based on a critical volume strain in the
existing constitutive model. Another, more comprehensive, suggestion is to employ
a flow potential formulated to consider porous materials, like the Gurson model or
similar.

Turning attention to experimental work, it is recommended to carry out new
compression tests. An attempt should be made to reduce the friction between the
specimen and the compression platen, for instance by using some PTFE-film.
Moreover, the volume change during deformation should be investigated in more
depth. Addressing the stress-drop, it would have been interesting to study
compressed specimens in a scanning electron microscope (SEM) to see whether
any signs of damage could be observed on the microscopic level. Simulations of
unit-cell models in compression could also be carried out at the same time to study
the matrix-particle interaction. In addition, loading and reloading in compression
could be performed to investigate the effect of a second load cycle on the peak
stress.

It would have been interesting to study the effect of the mineral particles closer.
For instance, the matrix-particle interaction in other materials than PVC can be
studied. As a start, a SEM study of the deformation of HDPE can be performed.
Moreover, it is suggested to employ specimens made of the same type of polymer
but with different volume fractions of particles added. Comparison of stress-strain
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curves in tension and compression, as well as volume strain curves, might give
deeper insight in how the particles affect the mechanical response. In particular, it
would be interesting to see how different particle volume fractions affect the
damage.

Another relevant topic concerning material modelling of thermoplastics for
industrial applications is the material behaviour at various temperatures and at
higher strain rates. At other temperatures or at higher strain rates, the debonding
and void growth may act differently.
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