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Definitive enable signal was created of course by multiplying this signal by 

HTRANS[1] signal of the AHB bus which was used to initiate a transaction.  

3.2.1.3 Loop Cache 

As it can be seen from the Figure 3.6, HTRANS[1] was used as input into the cache 

although it was already used to create enable signal which could be disputed as redundant. This 

signal was one cycle delayed within the cache itself (it is called htrans_a inside cache) in order 

to perform correct write since the address the cache was writing data in was also one cycle 

delayed (address_a). The writing process is shown in Figure 3.11. In the case simulated, address 

bus of the loop cache was 3b wide (8 locations each containing 4B) and those were 

HADDR[4:2] bits. Two least significant bits from the address bus were completely neglected 

in the whole system since both memories were word addressable (this is the reason why all the 

conditions for the address comparison in the Table compared if they differed by 1 and not by 4 

what would have been the case if least significant bits of the HADDR were used as well).   

 

Figure 3.11 – Filling of the Loop Cache 

 

Figure 3.11 shows how cache writing process was performed. It clearly illustrates one 

of the benefits of this implementation because instructions did not need to be aligned to any 



56 

 

starting address (first location that was written into was 6, the second one was 7, third was 0 

and the last one was 1).  

Address_a was only a one cycle delayed version of address signal and at first it was 

created within the cache module itself but later on it was noticed that there was a signal inside 

loop cache controller module that was already containing the previous address. If a part of that 

signal (lower n bits if n is the width of the address bus of the cache) was taken from there, some 

hardware savings could be gained. 

 

Figure 3.12 – Two different Controller-Cache implementations and interfaces 

  

During the system development there were three different versions of the Controller that 

were implemented, each next version was an improved version of the previous one in a sense 

of resources utilization which later led to smaller power consumptions.  

First version of the Controller had 2 outputs more than the version showed in Figure 3.6 

- these outputs and their description are shown in Table 3.4.  

Table 3.4 – Controller output signals (first version) 

Output signal Description IDLE FILL ACTIVE 

main_enable 

enables that the address present on 

the HADDR bus at that moment  is 

read from the main instruction 

memory  

 

1 1 0 
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cache_enable 

enables that the address present on 

the HADDR bus at that moment  is 

read from the cache 

0 0 1 

      cache_we 

indicates that the data from the  

address currently on the bus should 

be written into the cache (on the next 

rising clock edge) 

 

0 1 0 

      mux_sel 
decides whether processor should 

read data from RAM or cache   
1 1 0 

 

It is quite easy to see that there was redundancy in this implementation: signals mux_sel 

and main_enable had the same values in each state of the Controller whereas signal 

cache_enable had their inverted values. The next logical step was to remove two redundant 

signals and this was how the number of outputs was cut to only two as shown and explained in 

previous sections. The multiplexer was controlled by the same signal that was enabling the main 

instruction memory whereas input enable signal of the cache was the inverted version of this 

signal.  

Second implementation of the Controller had only two controller outputs as explained. 

Moreover, all the conditions to enable state transitions were implemented the way shown in 

Table 3.1. The system was behaving correctly but then it was noticed that there was also 

redundancy present in condition implementation. 

 

Table 3.5 – Utility reports of three different implementations of the Controller  

Description LUT 
Slice 

Reg 
Slice 

LUT 

as log 
LUT ff 

Bonded 

IOB 

BUF 

CTRL 

Redundancy in 

condition 

implementation 

and output signals 

5 41 33 85 100 22      1 

Redundancy in 

condition 

implementation 

   3 41 30 83 90 20      1 
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No redundancy in 

both number of 

output control 

signals and 

condition 

implementation 

    

   9 

 

41 

 

26 

 

59 

 

72 

 

20 

 

1 

 

Instead of repeating same conditions couple of times, new variables (cond1, cond2, 

cond3…) were created to save logical information if this particular condition was fulfilled or 

not and later on, these signals which had already been synthesized elsewhere were reused. This 

lead to the third Controller implementation which brought more utilization savings as shown in 

Table 3.5. 

Final Verilog designs of both Controller and Loop Cache are listed in Appendix B. 
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4 Testing and Measurements 

4.1 Software Implementation 

4.1.1 Methodology 

Simulator input data were the same benchmarks used in [2]: coremark, dijkstra, emlcd 

hex, preamp, primes, sha and touch. As the first version from [2], the new simulator counted: 

- number of reads from the main instruction memory (flash_reads), 

- number of writes into the cache (sram_writes) and 

- number of reads from the cache (sram_reads) 

but now using a little bit more complex state machine. Based on these recorded values, 

simulator calculated hit rate, read/write ratio, power consumption in case cache was not used 

and power consumption in case it was used. The way these evaluation parameters were 

calculated was explained in [2]. Each benchmark was evaluated using 5 different sizes of cache: 

16B, 32B, 64B, 128B and 256B.  

4.1.2 Results 

Table 4.1 shows power saving percentage, hit rate and read/write ratio in the case of 

cache size 64B. Each evaluation parameter has the value obtained in [2] using a state machine 

with only 4 states (called basic here) and next to them, on the right, the results from the new 

simulator (improved) which uses 4 additional pseudo states. 

Table 4.1 – Simulation results for cache size 64B 

Benchmark 
Power savings [%] Hit rate [%] R/W ratio [%] 

basic improved Basic improved basic improved 

Coremark 19 36 29 41 1.02 2.09 

Dijkstra 2 16 14 21 0.68 0.85 

Emlcd 29 38 40 43 1.67 2.97 

Hex 50 61 62 68 2.98 3.98 

Preamp 42 62 54 68 2.89 8.07 

Primes 83 79 97 85 18.562 24.19 

Sha 73 81 86 89 8.86 16.46 

touch -1 43 8 48 0.58 3.48 
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It can be seen that by ignoring data transaction activities on the bus (not allowing them 

to break cache fill or read), the cache hit rate, R/W ratio and therefore the overall power savings 

get to grow significantly. Recording the same system properties for different cache sizes 

showed that power savings get to grow as the cache size increases but only up to a certain point 

(with a cache of around 32B). Increasing cache size over 32B did not show to bring any 

advantages into the system performance mainly because the loop sizes do not get to grow larger 

than 16 instructions at least in the case of the benchmarks used here.  

4.2 Hardware Implementation 

After the system was built, it was necessary to simulate its behaviour and prove it was 

working correctly which was done using VIVADO simulator. The design had to work properly 

both after implementation and after place and route of course, which was proven by 

behavioural, post synthesis and post implementation simulations.  

Next step was to program the board itself and verify the design was working properly 

in hardware as well. There was no easy and direct way of doing this on the board as it was done 

in simulation by checking values of processor registers, other variables and flags. Instead, the 

blinking diode was used as a stable proof the design was working well, as it was used in [18] 

as well. As in [18], a slowly blinking diode was used to verify the design was working properly, 

because a fast change could not be noticed by human eye at all. On the other hand, performing 

a VIVADO simulation of a slowly blinking diode was extremely time consuming and therefore 

was only used as a verification that the system was working correctly. All the power 

measurements and therefore all the power results shown in this report, refer to the case of a fast 

blinking diode because in this way the results can be compared and discussed without the need 

of time consuming simulations. 

Next two sections show different power results for different design settings: the first 

shows VIVADO power reports whereas the second shows measurements performed on the 

board in real time.  

 

4.2.1 VIVADO measurements 

This chapter presents the results gained form VIVADO DS simulation of the system: 

first the Methodology used to evaluate the system is explained and later on the results are listed 

and commented. 
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4.2.1.1 Methodology 

4.2.1.1.1 Low and high confidence of power reports 

As it was mentioned earlier in 2.4.5 , it is possible to measure power both after synthesis 

and after implementation, without toggling information, with toggling information for some 

signals or with complete toggling information for all nodes. Table 4.3 shows power reports for 

the case of Instruction Memory of size 32KB and the cache size of 64B. First column shows 

total power (dynamic and static) consumed by the system with a default toggle rate for all nodes 

(12.5 %). the second column had a specified toggling rate for the global_enable signal (toggle 

rate of 0% and static probability of 1 or 0, depending on the situation examined), whereas the 

third column shows post synthesis power report in the case of using a .saif (switching activity 

interchange format) file that was generated in a post-synthesis simulation which was using a 

testbench with the same clock frequency that was going to be used to perform the power report. 

Last three columns show those results but after implementation (place and route). Next to each 

power number there is a level of confidence stated: low for a report with default toggle rate and 

high when using a switching activity file obtained from corresponding simulation. 

In order to be able to get the feeling about how much power would be consumed in case 

of building the memory system not from FPGA fibre but with the technologies available to 

Silicon Labs, number of cache writes and reads as well as number of reads from main 

instruction memory were recorded in the simulation as well. All the numbers were recorded in 

the same simulation time slot of 125 us. The results are shown in Table 4.6. 

4.2.1.1.2 Test programs 

Testing setups were using Instruction Memory of size 32KB as in the case of Zero 

Gecko whereas different cache sizes (16B, 32B and 64B) and programs with different loop 

sizes (8 instructions, 16 instructions, 24 instructions, 32 instructions and 40 instructions) were 

used. This makes up total number of 15 different configurations to be synthesized and later on 

measured and recorded. Simulating different programs executing on the core meant that 

programs with different loop sizes should be loaded into the Instruction Memory. The easiest 

way this could be done was by modifying the program used in [18], which had 8 instructions 

in the loop, to obtain a greater loop size. Since the original C code had only one line in for loop 

part (counter ++), Figure 2.30, which corresponded to one assembly instruction (inc r1), the 

easiest way to enlarge the loop was to add more of these counter++ lines in C code (as many 

as the difference from the desired loop size and the original loop size was). These source codes 
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were used to create .coe files that were later on loaded into the Instruction Memory. Table 4.2 

shows how different program loop sizes were achieved. Same binaries (.coe files) were used in 

both VIVADO and real time measurements.   

 

Table 4.2- Source code modification impact on program loop size 

Loop size [instructions] Number of “counter++” lines in source file 

8 1 

16 9 

24 17 

32 25 

40 33 

 

4.2.1.2 Results 

Table 4.3 shows that, as expected, when having no information about the toggle rate and 

assuming default toggle rate for each signal, the power results get worse than in the case of 

knowing the exact toggle rates. 

 

Table 4.3 – Dynamic power reports after synthesis and after implementation using different 

toggling information (32KB Instruction Memory, 64B cache, loop size 8) 

        Instruction Memory (32KB) 1       2       3       4       5       6 

 

global_enable  = 0 

(no cache) 

dynamic 

power [mW] 

104 

 

103 

 

100 

 

117 115 

 

114 

 

report 

confidence 
low low high low low high 

 

global_enable = 1 

(with 64B cache) 

dynamic 

power [mW] 

108 

 

107 

 

106 

 

116 

 

114 

 

113 

 

report 

confidence 
low low high low low high 

 

 

Table 4.4 – Power report generation details for different measurement configurations  

Config Power report generation details 
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1 post synthesis power report with default toggle rate for all nodes 

2 post synthesis power report with exact toggle rate for global_enable signal 

3 post synthesis power report with proper .saif file as input 

4 post implementation power report with default toggle rate for all nodes 

5 post implementation power report with exact toggle rate for global_enable signal 

6 post implementation power report with proper .saif file as input 

 

The results also show that exact power consumption can be known only after place and 

route is performed and that a lot of dynamic power consumption (in this case around 12% and 

7%, depending on global enable signal value) gets consumed by the clock tree and wiring itself. 

Complete power report (with both static and dynamic power numbers), Figure 4.1, shows that 

most of the power consumption (around 69%) belongs to static power consumption which is 

reasonable considering that Zynq-7000 AP SoCs use 28nm High-K Metal Gate (HKMG) 

technology. It is well known that by lowering process node technology, leakage power becomes 

a dominant contributor to the overall power consumption. Therefore it becomes reasonable why 

a non-conventional process had to be used at these gate sizes. 

High-K Metal Gate (HKMG) process is a process where the capacitance of the gate oxide gets 

increased by using a dielectric with a higher κ than the one of a SiO2 that is normally used as a 

gate oxide.  

 

Figure 4.1- Complete power report, VIVADO layout  

(32KB Instruction Memory, 64B cache, loop size 8, cache enabled)  

 

But even with a sophisticated process like this, static power still dominates the overall power 

consumption and not much can be done to reduce it. That is why all the results in the following 

results will refer to dynamic power consumption only since the static one was fixed: 256mW. 
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All the power numbers reported from now on were obtained from post implementation power 

reports with high confidence (with usage of corresponding switching activity files).  

Having a look at the results from Table 4.3, it can be seen that in the case of enabling 

usage of loop cache there was a dynamic power saving of 1mW compared to the case when no 

cache was added into the system. Considering the overall power consumption of 114mW this 

saving of less than 1% was not something to be too much proud of. On the other hand, these 

results show the consumption of the entire system (with the core itself of course) so it was 

necessary to separate the consumption of the core form the consumption of the memory system 

alone. 

This was performed by synthesizing the core alone (with no Instruction Memory, no cache 

memory but with the rest of the system). The post implementation power report is shown in  

Figure 4.2. 

 

Figure 4.2- Power report of the system with no memory hierarchy  

 

Comparing this result of dynamic power consumption of 110mW with no memory hierarchy 

with 114mW using only Instruction Memory and 113mW when enabling use of cache, it is easy 

to conclude that memory system itself consumed either 3mW or 4mW depending if the cache 

was enabled or not. Saving of 1mW when enabling usage of cache now becomes 25% which is 

a result that cannot be neglected.  

 

Figure 4.3 – Design timing repor 
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Another thing worth noting at this point is the design post implementation timing report 

which was checked every time to make sure there were no timing violations (positive TNS and 

WNS) and that all constraints were met. This is clearly shown in Figure 4.3. 

In order to show how different cache sizes and different loop sizes influence power 

reports, 15 different configurations were synthesized and simulated. Configuration settings are 

shown in Table 4.5 whereas the power reports are shown in Table 4.6. 

Table 4.5 – Different testing configurations 

Configuration Loop size [instructions] Cache size [B] 

1 8 16 

2 8 32 

3 8 64 

4 16 16 

5 16 32 

6 16 64 

7 24 16 

8 24 32 

9 24 64 

10 32 16 

11 32 32 

12 32 64 

13 40 16 

14 40 32 

15 40 64 

 

Table 4.6 – Power and statistic reports for different system configurations 

 

Dynamic 

power 

[mW] 

cache 

reads 

cache 

writes 

main 

reads 
R/W ratio Hit rate 

1 113 790 8 20 98.75 97.53 

2 113 790 8 20 98.75 97.53 

3 113 790 8 20 98.75 97.53 

4 114 0 0 810 - 0 

5 113 782 16 28 48.875 96.54 
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6 113 782 16 28 48.875 96.54 

7 114 0 0 810 - 0 

8 114 0 0 810 - 0 

9 113 774 24 36 32.25 95.55 

10 114 0 0 810 - 0 

11 114 0 0 810 - 0 

12 113 766 32 44 23.9375 94.56 

13 114 0 0 810 - 0 

14 114 0 0 810 - 0 

15 114 0 0 810 - 0 

 

As it can be seen from Table 4.6, there was not too much difference in power numbers 

in case of using different configurations. This can be explained by the fact that the VIVADO 

resolution goes as far as 1mW and the configuration changes are sometimes in order of couple 

of bytes which brings power changes that are more subtle than 1mW and cannot be recorded 

by the simulator. Furthermore, although utility reports showed that Instruction Memory was 

built from BRAM blocks and cache memory merely from flip flops (LUTs), there was no notion 

of the power ratio between a read from a BRAM and a read from a flip flop. This is why writes 

and reads numbers can help getting the feeling about real power consumption if the hardware 

was synthesized as an ASIC and not from FPGA fibre. What can be seen from power reports 

in Table 4.6  is that when a loop was larger than the cache size no cache writes and therefore 

no cache reads were performed at all and the power consumption of the system in that case was 

the same as in the case when cache was globally disabled, i.e. not existed at all. 

Cache reads and writes, as well as hit rates and R/W ratios show very good use of the 

TLC technique (around 98% of power savings) but it should not be forgotten that the test 

programs used here were completely synthetically created and that the reads and writes were 

recorded for the period when only one loop was executed over and over again. Future work 

could include the use of test programs that would reflect more truly real embedded program 

execution environment. 
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4.2.2 Real time measurements 

Apart from performing power estimations using VIVADO simulator, system was 

evaluated in real time as well. For those purposes the system was synthesized on a Xilinx ZC702 

evaluation kit which will be briefly introduced in one of the next sections. 

4.2.2.1 Methodology 

This section explains which hardware the system was synthesized on, what kind of 

software support was needed to perform the power measurements and the rest of the evaluation 

system setup. Following [18] it was clear that, apart from the zc702, it was necessary to order 

the Texas Instruments USB-TO-GPIO Interface, download and install the TI Fusion Digital 

Power Designer GUI. Evaluation kit and the GUI will be briefly introduced in the next sections.  

4.2.2.1.1 Evaluation Kit: zc702 

For the purposes of system verification and testing Xilinx ZC702 evaluation board for 

XC7Z020 AP SoC was used. It provides features that can commonly be found in most 

embedded systems, such as DDR3 Component Memory, HDMI Codec, I2C bus, USB to UART 

interface, tri-mode Ethernet PHY…  Before using the board it was necessary to verify its proper 

functioning by performing the Built In Self Test as described in [24] that came loaded into the 

Quad SPI Flash memory on the board (tests UART, I2C, Timer, DDR3 Memory, LEDs, 

Watchdog Timer, SWITHES etc.) The board layout is shown in Figure 4.4 where the elements 

that were used in this project are marked with blue boxes: DIP switches, tasters, LEDs, the 

power management system and the Zynq XC7Z020 AP SoC of course. One of the reasons why 

this board was chosen to be used are “the power regulators and a PMBus compliant system 

controller from Texas Instruments it uses to supply core and auxiliary voltages.” [20] and the 
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possibility to easily monitor and measure those voltages  through a GUI from TI called Fusion 

Digital Power Designer. 

The whole ZC702 hardware system is built around Zynq-7000 XC7Z020-1CLG484C 

AP SoC which consists of an SoC integrated processing system (PS) and programmable logic 

(PL) on a single die. “The PS integrates two ARM Cortex-A9 MP Core processors, AMBA 

interconnect, internal memories, external memory interfaces and peripherals including USB, 

Ethernet, SPI, SD/SDIO, I2C, CAN, UART and GPIO.“[20] 

The main advantage of Zynq-7000 family is the flexibility and scalability of an FPGA combined 

with performance, power and ease of use associated with ASIC and ASSP. ”The integration of 

the PS with the PL provides better performance than the case of two chips used due to their 

limited I/O bandwidth, loose-coupling and power budgets.”[25] All the devices from Zynq-

 

Figure 4.4 - zc702 Evaluation Kit board layout [20] 
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7000 family include the same Processing System although the Programmable Logic and I/O 

Resources differ from device to device.  Since in this project, the PS was not used at all: all the 

system (including the core) was written in HDL and synthesized using only PL features of the 

device, such as Block RAMs for synthesizing Instruction memory, Clock Management to adapt 

200MHz oscillator on the board to the system frequency of 10 MHz and of course CLBs with 

LUTs to synthesize the rest of the system logic. The system input interface as well as status 

signals that enabled communication with the user are shown in Figure 4.5 (this is the part of the 

system marked with a blue frame in Figure 4.4) 

 

Figure 4.5 - System user interface and output status (LEDs, switch and push buttons) 

 

Evaluation kit has several power domains as shown in Figure 4.6. The board uses power 

regulators and a PMBus (Power Management Bus) compliant system controller from Texas 

Instruments to supply core and auxiliary voltages. Apart from 12 V input supply that powers 

the board, there are 5 switching regulators and 1 linear regulator which generate different 

voltages required for different power domains. Voltage outputs of these regulators are 

controlled by three TI power controllers and it is possible to monitor them via a GUI called 

Fusion Digital Power Designer. 
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4.2.2.1.2 TI Fusion Digital Power Designer (FDPD) 

FDPD is a GUI specially designed to monitor 10 different rails on the board. Each rail 

supplies particular subset of components in a corresponding power domain. List of components 

each power rail supplies can be found in [26]. It is possible to monitor voltage, current, power 

and temperature of each node in real time: see waveforms in separate windows as well as save 

the measurements in a .csv file. 

Saving measurements in .csv file not only does give possibility to process this data later in a 

desired way but it also gives opportunity to save data in a higher resolution than it can be shown 

in the figures drawn by the GUI itself (voltage resolution of a mV, current resolution of 100uA, 

power resolution of 100nW). An example of saved measurements is shown in Figure 4.7 where 

four different rails (their voltages, currents and power) are monitored by the same device (TI 

UCD9248). There are two more files with readings of the other two power management devices 

that monitor other 6 rails that are of importance for the supply system of this evaluation board. 

 

Figure 4.7 – Format of a .csv file with real time measurements saved by TI FDPD 

 

Each measurement is recorded at a particular time stamp contained in the first column. It can 

be noticed that a new reading is available each 500ms which is the polling interval of the GUI 

Figure 4.6 - Power domains on the ZC702[26] 
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itself. Voltage and current measurements show the current values at a particular time stamp 

whereas power values show RMS value of the power in time interval between this and the 

previous reading. This means that total power is calculated by summing up these particular 

values. 

4.2.2.2 Results 

As it was mentioned, the way to verify the core was running the program code on the 

hardware, was to observe the behaviour of the LED called detector in . In order for human eye 

to detect the change, the blinking period had to be long (around 10s). Similar principle was used 

to check whether the measurements on the board made sense: board was programmed to blink 

diode very slowly and measurements were recorded separately for the period of diode being on 

and diode being off. In case of a diode being ON, measurements should show higher power 

consumption since LED power consumption is quite significant: around 90mW according to 

[27]. To make this change even more visible the author programmed 4 LEDs to be tuned on 

and off. Total power readings (sum of power consumed by all the rails) was shown to be higher 

in the case when LEDs were off than when they were on which made no sense at all. However, 

the power measurements for a particular rail, VCC3V3, that is used to power up the LEDs, were 

smaller in case of LEDS off: 22.4436mW than in case of LEDs being on: 22.8555mW. The 

difference is around 400mW which is quite close to what four diodes should consume (around 

360mW) but it still stays unclear why total power consumption is smaller in case of LEDs being 

on. These results are summed up in Table 4.7. 

 

Table 4.7 – Total and Vcc3V3 power consumption for 4 LEDs ON and OFF 

 Total power [W] VCC3V3 power[mW] 

4 LEDs on 1.5584 680.8555 

4 LEDs off 1.5612 282.4436 

 

 Another type of measurement was conducted to try to get more information 

about the system: voltages and currents of the system were monitored and recorded while LEDs 

were first on for 10s then off for 10s and repeated that way for 4 times (7 transitions from on to 

off and off to on). Voltages, power and currents were then plotted in MATLAB and the results 

are shown in Figure 4.8 - 4.10. 
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Figure 4.8 – Real time voltage measurements for LEDs periodically ON and OFF (Matlab) 

  

 

Figure 4.9 – Real time power consumption  for LEDs periodically ON and OFF 
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Figure 4.10 – Real time current measurements for LEDs periodicallt ON and OFF 

 

Total number of samples in time was 160 (each state of diodes recorded in 20 samples). 

What was expected to be seen in the figures (only 9 rails shown for the sake of simplicity, the 

last one shows no more information) was that there was a current/voltage drop/rise for different 

states of the system since according to [27], one LED drew 30mA. As it can be seen from Figure 

4.10 there were no falls/rises in values that would have helped drawing conclusions. 

Nevertheless, systems with different cache sizes were configured and tested while 

running the original code with the loop of size 8 instructions, with enabled use of cache and 

disabled use of cache (controlled by the switch on the board) and the energy consumption in a 

particular time slot is shown in Table 4.8. 

 

Table 4.8 – Total power consumption (loop size: 8 instructions) 

 16B 32B 64B 

No cache 1.3642 1.3722 1.3598 

With cache 1.4037 1.4090 1.5297 
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These results show that when using bigger cache, energy consumption gets slightly 

higher in the case of running the same code which is quite clear. Power numbers are now I order 

of 1.5 W which is quite different than the case of VIVADO power reports (around 300mW) 

which is reasonable taking into account that VIVADO does not take into account the board 

system, but only the Zynq device consumption. 

 Unexpectedly, the results show that power consumption is higher in the case of 

including cache into memory hierarchy than not having it as part of the system at all. Although 

this is not very plausible taking into account the idea and goal of reducing power consumption 

by adding cache into the system, this result could be explained if the ratio between RAM and 

register read on this particular FPGA fibre was measured and maybe concluded that it was 

around 1:1 which would not be the case if the system was synthesized as an ASIC. 

Author tried to perform these measurements in the explained experimental setup but since the 

GUI polling (measurement) interval was 500ms and the core was running on 10 MHz (100ns), 

there was no way of knowing power consumption of separate executed instructions and 

therefore no way of measuring RAM and register access power. Another important thing that 

could be checked is whether the RAM generated with IP generator and having an enable signal 

is actually switching its interior logic (mostly consisting of big comparators) and signals 

although not changing its output while disabled or disabling it means really turning of all the 

logic as well. Most probably latter is true but it would not be a bad idea to check this.   
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5 Conclusion and Future Work 

5.1 Conclusion 

There are many different caching techniques that are believed to improve instruction 

fetch energy of microcontrollers, some of them were explored and explained in [2]. One of the 

techniques, called Tight Loop Cache, was chosen to be evaluated as the most promising and 

easy to incorporate into a working system. The technique was implemented both in software 

(Python) and hardware (Verilog), evaluated by counting parameters close to meanings of cache 

hits and misses and by calculating, estimating and measuring energy consumption. 

Software simulations showed that power savings with the use of loop cache can go as 

far as 80% (taking into account only the memory system). These measurements were performed 

by counting reads and writes into the cache and main instruction memory neglecting power 

consumption of the control logic behind the system. Such good potential savings served as 

initial encouragement for the system to be implemented in hardware so that the results can be 

checked and verified.  

It was proven that the principle can be integrated within a system that uses ARM Cortex-

M0 which does not offer any advanced information, such as branch status of the instructions in 

different pipeline stages. This leads to a conclusion that the technique could be easily integrated 

into any modern system. Technique was first built in software, taking into account only memory 

access powers (neglected the control power consumption), where simulations were performed 

in order to prove the feasibility of the system. Excessive simulation of the hardware 

implementation showed the principle can be successfully applied to any modern MCU system. 

Power optimization techniques of VIVADO synthesis and place and route tools were exploited 

to their maximum and showed that the use of the technique could bring up to 25% energy 

savings. 

It was shown that even a small modification of RTL design of a module (Controller in 

this case) can lead to a completely different implementation: different utility reports and 

therefore different power consumptions. Smart changes in the design at this level can bring 

much more savings than changes in synthesis and implementation setup. Different synthesis 

and implementation setup options offered by VIVADO DS and guided by power optimization 

principles were explored deeply and their influence on final power reports was shown. 
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Real time measurements brought a lot of confusion and doubts that are tightly related to 

the initial system setup. Some of these issues were mentioned at the end of last Chapter, such 

as ratio of power of memory access to a bit RAM and a register bit. In the technology available 

at Silicon Labs, this ratio goes as far as 1:10 which would definitely bring more savings since 

this ratio in the FPGA fibre is believed to go as close to 1:1.  

Main conclusion that can be made from all the results discussed is that the initial system 

hardware implementation was not set in a best possible way to achieve correct power saving 

numbers: FPGAs are usually used only to build prototypes and prove principles of operation. 

This was successfully performed: a working design that is using a small cache to store 

instructions from small loops was built and even brought around 25% power savings into the 

memory hierarchy system. 

 

5.2 Future Work 

As it was discussed in the previous section, the initial resources that were available for 

the system to be implemented on (FPGA fibre is not as much power optimized as possible) 

were not optimally chosen. It is believed that if the design gets implemented as an ASIC with 

completely configurable and controllable synthesis and place and route tools, it would bring 

more power savings than in the case of using FPGA.  

Another important thing noticed when analysing benchmarks used as inputs into the 

software simulator was that it happened quite often that a loop was executed many times, which 

was followed by a quick sequential execution and then the return to the same loop execution. 

In the case of the TLC implemented in this project, there was no information about which loop 

the cache was filled with so it happened quite often that new writes were performed into the 

loop cache although it was already filled with the correct data. A possible modification to the 

Controller design would be to allow it directly enter ACTIVE state from IDLE if it was 

concluded that the cache was already filled with the right loop instructions. This way, 

unnecessary cache writes (costly FILL state) would be avoided. 

Chapter 3.2.1.2 mentioned two possible implementations of the Controller but this 

project involved design of only one of the principles. It would be interesting to implement the 

second approach as well and compare the results. 

Another idea that was analysed roughly but could be considered as future work was to 

deal with conditional branches inside the loop as well and to store both situations: branch taken 
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and not taken inside the cache in different places and base on the situation chose to read from 

different parts of the cache. This idea still sounds too costly regarding control hardware 

implementation but it is worth exploring as well. 

Real time measurement potentials of the ZC702 were not explored thoroughly since 

there was not enough time and nobody at the Department ever performed these measurements 

before. This report gives some basic system setup to for the measurements to be done but it 

does not explain the results completely, That is why a good next step would be to analyse power 

domains on the board and see how the use of different domains influences the measurements. 

This would bring better understanding of the measurements reported here. 
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Appendix A 

Code A.1 – Software Implementation of TLC in Python  

""" 

Created on Sun Mar 29 05:03:07 2015 

 

@author: Dell 

""" 

# -------------------------------------------------------------------------

---- 

 

import sys 

import csv 

 

def Simulate(dataSet, cache_size ): 

####### states: 

#IDLE:         0 

#PSEUDO_IDLE:   1 

#COUNT:         2 

#PSEUDO_COUNT:  3 

#FILL:          4 

#PSEUDO_FILL:   5 

#ACTIVE:        6 

#PSEUDO_ACTIVE: 7 

       

  readpwrs = {} 

  writepwrs = {} 

  flashpwr = 180  

   

  readpwrs[16] = 1.875 

  writepwrs[16] = 2.5 

  readpwrs[32] = 3.75 

  writepwrs[32] = 5 

  readpwrs[64] = 7.5 

  writepwrs[64] = 10 

  readpwrs[128] = 15 

  writepwrs[128] = 20 

  readpwrs[256] = 17 

  writepwrs[256] = 24 

  readpwrs[384] = 19 

  writepwrs[384] = 28 

  readpwrs[512] = 21 

  writepwrs[512] = 30 

  readpwrs[640] = 23 

  writepwrs[640] = 34 

  readpwrs[768] = 25 

  writepwrs[768] = 37 

  readpwrs[896] = 27 

  writepwrs[896] = 41 

  readpwrs[1024] = 28 

  writepwrs[1024] = 44 

  readpwrs[1536] = 35 

  writepwrs[1536] = 42 

  readpwrs[2048] = 37 

  writepwrs[2048] = 46 

  readpwrs[4096] = 37 

  writepwrs[4096] = 46 

  sram_reads  = 0 
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  sram_writes = 0 

  valid = 0 

  hit_rate = 0 

  rw_ratio = 0 

  old = 0 

  old_old = 0 

  new = 0 

  position = 0 

   

 

  state = 0 

 

  cache = [] 

  counter = 0 

  loop_size = 0 

  times_executed = 0 

  firsts=[] 

  sbbs=[] 

  loop_sz=[] 

  inst_no=[] 

  times_ex=[] 

  sbb = 0 

  first = 0 

  nextstate = 0 

  flash_reads = 0 

   

 

  # Open dataSet 

  try: 

    file = open(dataSet,'r') 

  except: 

    sys.stderr.write('Could not open dataSet\n') 

    sys.exit() 

 

  # Skip the first line in file (header) 

  file.readline() 

 

  # -----------------------------------------------------------------------

---- 

  # Each line contains one address 

 

  for line in file: 

    position=position+1 

    # Split out the address, ignore time for now 

    try: 

      [timeString, addrHex ] = line.split(',') 

    except: 

      sys.stderr.write('Bad: '+line+"\n") 

      continue 

 

    try: 

      a = int(addrHex, 16) 

      #print a 

      if (a > 0) and (a < 536870911): 

        # don't save idles and dummy values as last address 

        valid = valid + 1 

        old_old = old 

        old = new 

        new = a 

      else: 

        # Ignore idles 



82 

 

        continue 

    except: 

      sys.stderr.write('Could not convert %s to int\n' % addrHex) 

      continue 

   

    if (valid == 1): 

        old_old = a 

        old = a 

        new = a 

 

    if state == 0: # idle state 

        cache = []  

        if (new == old+4): # idle => idle 

            nextstate = 0 

            flash_reads = flash_reads + 1 

        else: # idle => count 

            if (new < old): 

                nextstate = 2 

                sbb = old 

                first = new 

                counter = 1 

                flash_reads = flash_reads + 1 

            else: # idle => pseudo_idle 

                nextstate = 1 

                flash_reads = flash_reads + 1 

             

    if state == 1: # PSEUDO_IDLE 

        if (new == old + 4) or (new == old_old + 4): # pseudo_idle => idle 

            old = old_old  

            nextstate = 0 

            flash_reads = flash_reads + 1 

        else: 

            if (new < old): # pseudo_idle => count 

                nextstate = 2 

                sbb = old 

                first = new 

                counter = 1 

                flash_reads = flash_reads + 1 

            else: # stay pseudo_idle 

                nextstate = 1  

                flash_reads = flash_reads + 1 

 

                 

    if state == 2: # COUNT 

        if (new == old + 4) and (new <= sbb):  

            nextstate = 2  # stay in count 

            counter = counter + 1 

            flash_reads=flash_reads + 1 

        else: 

            if (new > old + 4): 

                nextstate = 3 # count => pseudo_count 

                flash_reads=flash_reads + 1 

            else: 

                if (new == first) and (old == sbb) and (counter <= 

cache_size): # count => fill 

                    nextstate = 4  

                    sram_writes = sram_writes + 1 

                    loop_size = counter 

                    counter = 1 

                    cache. append (new) 

                    flash_reads = flash_reads + 1 
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                else: # count => idle  

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

         

    if state == 3: # PSEUDO_COUNT 

        if (new == old_old + 4): # pseudo_count => count 

            old = old_old 

            counter = counter + 1  

            nextstate = 2 

            flash_reads = flash_reads + 1 

        else: 

            if (new == first) and (old_old == sbb) and (counter <= 

cache_size):  # pseudo_count => fill 

                nextstate = 4  

                sram_writes = sram_writes + 1 

                old = old_old 

                loop_size = counter 

                cache. append (new) 

                flash_reads = flash_reads + 1 

            else:  # pseudo_count => idle 

                nextstate = 0 

                flash_reads = flash_reads + 1 

                counter = 0 

                 

    if state == 4: # FILL 

        if (new == old + 4) and (new <= sbb) and (counter < loop_size) :             

            nextstate = 4   # fill => fill             

            counter = counter + 1 

            sram_writes=sram_writes + 1 

            cache. append (new) 

            flash_reads = flash_reads + 1 

        else: 

            if (new > old + 4): # fill => pseudo_fill  

                nextstate = 5  

                flash_reads=flash_reads + 1 

            else: 

                if (new == first) and (old == sbb) and (counter == 

loop_size):  # fill => active  

                    nextstate = 6  

                    sram_reads = sram_reads + 1 

                    counter = 1 

                    loop_sz.append(loop_size) 

                else: 

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

                 

    if state == 5: # PSEUDO_FILL 

        if (new == old_old + 4) and (counter < loop_size): # pseudo_fill=> 

fill 

            old = old_old 

            nextstate = 4   

            counter = counter + 1 

            flash_reads = flash_reads + 1 

            sram_writes = sram_writes + 1 

            cache. append (new) 

        else: 

            if (new == first) and (old_old == sbb) and (counter == 

loop_size): # pseudo_fill => active 

                nextstate = 6  
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                sram_reads = sram_reads+1 

                old = old_old 

                counter = 1 

                loop_sz.append(loop_size) 

            else: # pseudo_fill => idle 

                nextstate = 0 

                flash_reads = flash_reads + 1 

                counter = 0 

                 

    if state == 6: # ACTIVE 

        if (new == old + 4) and (new <= sbb): # stay in active 

            sram_reads=sram_reads + 1 

            nextstate = 6 

            counter = counter + 1             

            if (new not in cache): # sanity check 

                  print("1. Tried to read from cache, but value not there") 

                  print new 

                  print cache 

                  sys.exit()             

        else: 

            if (new == first) and (old == sbb) and (counter == loop_size): 

# stay in active but it is the begining of the loop again 

                sram_reads=sram_reads + 1 

                nextstate = 6 

                counter = 1 

                times_executed = times_executed + 1 

                if (new not in cache): # sanity check 

                      print("1. Tried to read from cache, but value not 

there") 

                      print new 

                      print cache 

                      sys.exit()                   

            else: 

                if (new > old + 4):   # ACTIVE => pseudo_active  

                    nextstate = 7  

                    flash_reads=flash_reads + 1 

                else:    # ACTIVE => idle 

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

                    loop_sz.append(loop_size) 

                    times_ex.append(times_executed) 

                    sbbs.append(sbb) 

                    firsts.append(first) 

                    inst_no.append(position) 

 

    if state == 7: # PSEUDO_ACTIVE 

        if (new == old_old + 4) and (new <= sbb) and (counter < loop_size 

):  # pseudo_active => active 

            old = old_old 

            nextstate = 6 

            counter = counter + 1 

            sram_reads = sram_reads + 1       

        else: 

            if (new == first and old_old == sbb) and (counter == loop_size 

):   # pseudo_active => active but begining of the loop again           

                nextstate = 6 

                counter = 1 

                sram_reads = sram_reads + 1 

                times_executed = times_executed + 1 

            else:   # pseudo_active => idle 
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                nextstate = 0 

                flash_reads=flash_reads + 1     

                counter = 0  

                loop_sz.append(loop_size) 

                times_ex.append(times_executed) 

                sbbs.append(sbb) 

                firsts.append(first) 

                inst_no.append(position) 

                 

    state = nextstate 

  file.close() 

 

     

  power_nocache=(flash_reads + sram_reads)*flashpwr 

  power_withcache=flash_reads*flashpwr + sram_reads*readpwrs[cache_size*4] 

+ sram_writes*writepwrs[cache_size*4] 

  hit_rate=sram_reads/float(flash_reads + sram_reads) 

  rw_ratio=sram_reads/float(sram_writes) 

  x=power_withcache/float(power_nocache) 

  power_savings = 1.0 - x   

  #result='results_final_' + cache_size + dataSet 

  result='results_final_' + str(cache_size) + dataSet 

  with open(result, 'wb') as result_file:     

    csv_writer = csv.writer(result_file) 

    for row in range (1): 

 

       csv_writer.writerow([sram_writes] + ['SRAM Writes:']) 

       csv_writer.writerow([sram_reads] + ['SRAM Reads:']) 

       csv_writer.writerow([flash_reads] + ['Flash reads:']) 

       csv_writer.writerow([' ']) 

       csv_writer.writerow(['Loop size:'] + loop_sz) 

       csv_writer.writerow(['Times executed:'] + times_ex) 

       csv_writer.writerow(['First:'] + firsts) 

       csv_writer.writerow(['Sbb:'] + sbbs) 

       csv_writer.writerow(['Last instruction of the loop (its row in 

dataset) read from SRAM:'] + inst_no) 

       csv_writer.writerow([cache_size] + ['Cache size'] ) 

       csv_writer.writerow([power_nocache] + ['Total Power With No Cache'] 

) 

       csv_writer.writerow([power_withcache] + ['Total Power With Cache'] ) 

       csv_writer.writerow([power_savings] + ['Power Savings'] ) 

       csv_writer.writerow([hit_rate] + ['Hit Rate:'] ) 

       csv_writer.writerow([rw_ratio] + ['RW Ratio'] ) 

  result_file.close()                 

 

datasets = ["coremark.csv", "primes.csv", "dijkstra.csv", "emlcd.csv", 

"preamp.csv", "sha.csv", "touch.csv"] 

 

#datasets = ["coremark.csv"] 

 

for d in datasets: 

  print d 

  for size in [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]: 

      Simulate(d, size) 
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Appendix B 

Code B.1 – Loop Cache Controller Verilog code 

 

module Loop_Cache_Controller 

( 

input wire clk, 

input wire n_reset, 

input wire global_cache_enable, 

input wire htrans, 

input wire hprot, 

input wire [12:0] new_address, 

output reg main_cache, 

output reg cache_write_enable 

); 

 

parameter cache_size=16; // size of the cache in words 

localparam IDLE=0, FILL=1, ACTIVE=2; 

 

(* mark_debug = "true" *) reg [1:0] present_state, next_state; 

(* mark_debug = "true" *) reg prot_trans; 

(* mark_debug = "true" *) reg [12:0] branch; 

(* mark_debug = "true" *) reg [12:0] branch_target; 

(* mark_debug = "true" *) reg [12:0] previous_address; 

(* mark_debug = "true" *) reg loop_detector; 

 

 

always @(posedge clk or negedge n_reset) 

begin 

    if (~n_reset) 

        previous_address<=13'b0000000000000; 

    else 

        begin 

            if (global_cache_enable) 

                previous_address<=new_address; 

            else 

                previous_address<=13'b0000000000000; 

        end 

end 

 

 

always @(posedge clk or negedge n_reset)  

begin 

    if (~n_reset) 

        present_state <= IDLE; 

    else 

        present_state <= next_state;  

end 

 

always @(posedge clk or negedge n_reset) 

begin 

if (~n_reset) 

    begin    

    branch<= 13'b0000000000000; 

    branch_target<= 13'b0000000000000; 

    end 

else 

    if (loop_detector) 
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        begin 

        branch<=previous_address; 

        branch_target<=new_address; 

        end 

end 

 

always @(*) 

begin 

next_state=present_state; 

main_cache=1'b1; 

cache_write_enable=1'b0; 

loop_detector=1'b0; 

prot_trans=1'b0; 

if (global_cache_enable) 

    begin 

    prot_trans = ~hprot & htrans; 

    case (present_state) 

        IDLE: begin 

            cache_write_enable = 1'b0; 

            main_cache = 1'b1;     

            if  (prot_trans && ($signed(previous_address-new_address) <= 

(cache_size-1)) && ($signed (previous_address-new_address) > 1)) 

                begin 

                next_state = FILL; 

                loop_detector=1'b1; 

                end 

            else 

                next_state = IDLE; 

            end  

       

        FILL: begin  

              if (~hprot) 

                begin 

                if ((new_address==branch_target) && 

(previous_address==branch)) 

                    begin 

                    next_state = ACTIVE;   

                    main_cache = 1'b0;   

                    cache_write_enable=1'b1; 

                    end 

                else 

                    begin      

                    if (((new_address==previous_address) || 

(new_address==previous_address+1)) && (new_address<=branch))  

                        begin 

                        next_state = FILL; 

                        cache_write_enable=1'b1; 

                        main_cache = 1'b1; 

                        end 

                    else 

                        begin 

                        next_state = IDLE; 

                        cache_write_enable=1'b1; 

                        main_cache = 1'b1; 

                        end 

                    end   

                end 

              else 

                begin 

                cache_write_enable=1'b1; 

                main_cache = 1'b1; 
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                next_state = IDLE;           

                end 

              end 

 

 

        ACTIVE: begin          

                if (~hprot) 

                    begin  

                    if (new_address<=branch && 

((new_address==previous_address)|| (new_address==previous_address+1)  || 

(new_address==branch_target && previous_address==branch))) 

                        begin 

                        next_state = ACTIVE; 

                        cache_write_enable=1'b0; 

                        main_cache = 1'b0; 

                        end 

                    else 

                        begin 

                        next_state = IDLE; 

                        cache_write_enable=1'b0; 

                        main_cache = 1'b1; 

                        end 

                    end 

                else 

                    begin 

                    next_state = IDLE; 

                    cache_write_enable=1'b0; 

                    main_cache = 1'b1;  

                    end 

                end 

                 

    endcase 

    end 

else // default values for the case of global_enable=0 

    begin 

    cache_write_enable=1'b0; 

    main_cache=1'b1; 

    next_state = IDLE; 

    prot_trans=1'b0; 

    loop_detector=1'b0; 

    end 

end 

endmodule 

 

 

Code B.2 - Loop Cache Verilog code 

 

module loop_cache #(parameter ADDRWIDTH=4) 

( 

input wire clk, 

input  wire n_reset, 

input wire htrans, 

input wire enable_cache, 

input wire write_enable, 

input wire [31:0] data_in, 

input wire [ADDRWIDTH-1:0] address, 

output  reg [31:0] data_out 

); 
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integer i; 

(* mark_debug = "true" *) reg htrans_a; 

(* mark_debug = "true" *) reg [ADDRWIDTH-1:0] address_a; 

(* mark_debug = "true" *) reg [31:0] cache [2**ADDRWIDTH-1:0]; 

                  

//ADDRESS phase  

always @(posedge clk ,negedge n_reset) 

begin 

    if (~n_reset) 

        begin 

        address_a <= 4'b0000; 

        data_out<= 32'h00000000; 

        for (i=0; i<2**ADDRWIDTH; i=i+1) 

        cache[i] <= 32'h00000000; 

        end 

    else 

        begin 

        htrans_a<=htrans; 

        address_a<=address; 

        if (write_enable&& htrans_a) 

            cache[address_a] <= data_in;// fill 

 

        if (enable_cache && htrans)  

            data_out<=cache[address]; 

        end 

end 

endmodule 

 


