
55

 1 0 0

 1 1 1

�%
L �:�#�§
E�#�$�;

Definitive enable signal was created of course by multiplying this signal by

HTRANS[1] signal of the AHB bus which was used to initiate a transaction.

3.2.1.3 Loop Cache

As it can be seen from the Figure 3.6, HTRANS[1] was used as input into the cache

although it was already used to create enable signal which could be disputed as redundant. This

signal was one cycle delayed within the cache itself (it is called htrans_a inside cache) in order

to perform correct write since the address the cache was writing data in was also one cycle

delayed (address_a). The writing process is shown in Figure 3.11. In the case simulated, address

bus of the loop cache was 3b wide (8 locations each containing 4B) and those were

HADDR[4:2] bits. Two least significant bits from the address bus were completely neglected

in the whole system since both memories were word addressable (this is the reason why all the

conditions for the address comparison in the Table compared if they differed by 1 and not by 4

what would have been the case if least significant bits of the HADDR were used as well).

Figure 3.11 – Filling of the Loop Cache

Figure 3.11 shows how cache writing process was performed. It clearly illustrates one

of the benefits of this implementation because instructions did not need to be aligned to any

56

starting address (first location that was written into was 6, the second one was 7, third was 0

and the last one was 1).

Address_a was only a one cycle delayed version of address signal and at first it was

created within the cache module itself but later on it was noticed that there was a signal inside

loop cache controller module that was already containing the previous address. If a part of that

signal (lower n bits if n is the width of the address bus of the cache) was taken from there, some

hardware savings could be gained.

Figure 3.12 – Two different Controller-Cache implementations and interfaces

During the system development there were three different versions of the Controller that

were implemented, each next version was an improved version of the previous one in a sense

of resources utilization which later led to smaller power consumptions.

First version of the Controller had 2 outputs more than the version showed in Figure 3.6

- these outputs and their description are shown in Table 3.4.

Table 3.4 – Controller output signals (first version)

Output signal Description IDLE FILL ACTIVE

main_enable

enables that the address present on

the HADDR bus at that moment is

read from the main instruction

memory

1 1 0

57

cache_enable

enables that the address present on

the HADDR bus at that moment is

read from the cache

0 0 1

 cache_we

indicates that the data from the

address currently on the bus should

be written into the cache (on the next

rising clock edge)

0 1 0

 mux_sel
decides whether processor should

read data from RAM or cache
1 1 0

It is quite easy to see that there was redundancy in this implementation: signals mux_sel

and main_enable had the same values in each state of the Controller whereas signal

cache_enable had their inverted values. The next logical step was to remove two redundant

signals and this was how the number of outputs was cut to only two as shown and explained in

previous sections. The multiplexer was controlled by the same signal that was enabling the main

instruction memory whereas input enable signal of the cache was the inverted version of this

signal.

Second implementation of the Controller had only two controller outputs as explained.

Moreover, all the conditions to enable state transitions were implemented the way shown in

Table 3.1. The system was behaving correctly but then it was noticed that there was also

redundancy present in condition implementation.

Table 3.5 – Utility reports of three different implementations of the Controller

Description LUT
Slice

Reg
Slice

LUT

as log
LUT ff

Bonded

IOB

BUF

CTRL

Redundancy in

condition

implementation

and output signals

5 41 33 85 100 22 1

Redundancy in

condition

implementation

 3 41 30 83 90 20 1

58

No redundancy in

both number of

output control

signals and

condition

implementation

 9

41

26

59

72

20

1

Instead of repeating same conditions couple of times, new variables (cond1, cond2,

cond3…) were created to save logical information if this particular condition was fulfilled or

not and later on, these signals which had already been synthesized elsewhere were reused. This

lead to the third Controller implementation which brought more utilization savings as shown in

Table 3.5.

Final Verilog designs of both Controller and Loop Cache are listed in Appendix B.

59

4 Testing and Measurements

4.1 Software Implementation

4.1.1 Methodology

Simulator input data were the same benchmarks used in [2]: coremark, dijkstra, emlcd

hex, preamp, primes, sha and touch. As the first version from [2], the new simulator counted:

- number of reads from the main instruction memory (flash_reads),

- number of writes into the cache (sram_writes) and

- number of reads from the cache (sram_reads)

but now using a little bit more complex state machine. Based on these recorded values,

simulator calculated hit rate, read/write ratio, power consumption in case cache was not used

and power consumption in case it was used. The way these evaluation parameters were

calculated was explained in [2]. Each benchmark was evaluated using 5 different sizes of cache:

16B, 32B, 64B, 128B and 256B.

4.1.2 Results

Table 4.1 shows power saving percentage, hit rate and read/write ratio in the case of

cache size 64B. Each evaluation parameter has the value obtained in [2] using a state machine

with only 4 states (called basic here) and next to them, on the right, the results from the new

simulator (improved) which uses 4 additional pseudo states.

Table 4.1 – Simulation results for cache size 64B

Benchmark
Power savings [%] Hit rate [%] R/W ratio [%]

basic improved Basic improved basic improved

Coremark 19 36 29 41 1.02 2.09

Dijkstra 2 16 14 21 0.68 0.85

Emlcd 29 38 40 43 1.67 2.97

Hex 50 61 62 68 2.98 3.98

Preamp 42 62 54 68 2.89 8.07

Primes 83 79 97 85 18.562 24.19

Sha 73 81 86 89 8.86 16.46

touch -1 43 8 48 0.58 3.48

60

It can be seen that by ignoring data transaction activities on the bus (not allowing them

to break cache fill or read), the cache hit rate, R/W ratio and therefore the overall power savings

get to grow significantly. Recording the same system properties for different cache sizes

showed that power savings get to grow as the cache size increases but only up to a certain point

(with a cache of around 32B). Increasing cache size over 32B did not show to bring any

advantages into the system performance mainly because the loop sizes do not get to grow larger

than 16 instructions at least in the case of the benchmarks used here.

4.2 Hardware Implementation

After the system was built, it was necessary to simulate its behaviour and prove it was

working correctly which was done using VIVADO simulator. The design had to work properly

both after implementation and after place and route of course, which was proven by

behavioural, post synthesis and post implementation simulations.

Next step was to program the board itself and verify the design was working properly

in hardware as well. There was no easy and direct way of doing this on the board as it was done

in simulation by checking values of processor registers, other variables and flags. Instead, the

blinking diode was used as a stable proof the design was working well, as it was used in [18]

as well. As in [18], a slowly blinking diode was used to verify the design was working properly,

because a fast change could not be noticed by human eye at all. On the other hand, performing

a VIVADO simulation of a slowly blinking diode was extremely time consuming and therefore

was only used as a verification that the system was working correctly. All the power

measurements and therefore all the power results shown in this report, refer to the case of a fast

blinking diode because in this way the results can be compared and discussed without the need

of time consuming simulations.

Next two sections show different power results for different design settings: the first

shows VIVADO power reports whereas the second shows measurements performed on the

board in real time.

4.2.1 VIVADO measurements

This chapter presents the results gained form VIVADO DS simulation of the system:

first the Methodology used to evaluate the system is explained and later on the results are listed

and commented.

61

4.2.1.1 Methodology

4.2.1.1.1 Low and high confidence of power reports

As it was mentioned earlier in 2.4.5 , it is possible to measure power both after synthesis

and after implementation, without toggling information, with toggling information for some

signals or with complete toggling information for all nodes. Table 4.3 shows power reports for

the case of Instruction Memory of size 32KB and the cache size of 64B. First column shows

total power (dynamic and static) consumed by the system with a default toggle rate for all nodes

(12.5 %). the second column had a specified toggling rate for the global_enable signal (toggle

rate of 0% and static probability of 1 or 0, depending on the situation examined), whereas the

third column shows post synthesis power report in the case of using a .saif (switching activity

interchange format) file that was generated in a post-synthesis simulation which was using a

testbench with the same clock frequency that was going to be used to perform the power report.

Last three columns show those results but after implementation (place and route). Next to each

power number there is a level of confidence stated: low for a report with default toggle rate and

high when using a switching activity file obtained from corresponding simulation.

In order to be able to get the feeling about how much power would be consumed in case

of building the memory system not from FPGA fibre but with the technologies available to

Silicon Labs, number of cache writes and reads as well as number of reads from main

instruction memory were recorded in the simulation as well. All the numbers were recorded in

the same simulation time slot of 125 us. The results are shown in Table 4.6.

4.2.1.1.2 Test programs

Testing setups were using Instruction Memory of size 32KB as in the case of Zero

Gecko whereas different cache sizes (16B, 32B and 64B) and programs with different loop

sizes (8 instructions, 16 instructions, 24 instructions, 32 instructions and 40 instructions) were

used. This makes up total number of 15 different configurations to be synthesized and later on

measured and recorded. Simulating different programs executing on the core meant that

programs with different loop sizes should be loaded into the Instruction Memory. The easiest

way this could be done was by modifying the program used in [18], which had 8 instructions

in the loop, to obtain a greater loop size. Since the original C code had only one line in for loop

part (counter ++), Figure 2.30, which corresponded to one assembly instruction (inc r1), the

easiest way to enlarge the loop was to add more of these counter++ lines in C code (as many

as the difference from the desired loop size and the original loop size was). These source codes

62

were used to create .coe files that were later on loaded into the Instruction Memory. Table 4.2

shows how different program loop sizes were achieved. Same binaries (.coe files) were used in

both VIVADO and real time measurements.

Table 4.2- Source code modification impact on program loop size

Loop size [instructions] Number of “counter++” lines in source file

8 1

16 9

24 17

32 25

40 33

4.2.1.2 Results

Table 4.3 shows that, as expected, when having no information about the toggle rate and

assuming default toggle rate for each signal, the power results get worse than in the case of

knowing the exact toggle rates.

Table 4.3 – Dynamic power reports after synthesis and after implementation using different

toggling information (32KB Instruction Memory, 64B cache, loop size 8)

 Instruction Memory (32KB) 1 2 3 4 5 6

global_enable = 0

(no cache)

dynamic

power [mW]

104

103

100

117 115

114

report

confidence
low low high low low high

global_enable = 1

(with 64B cache)

dynamic

power [mW]

108

107

106

116

114

113

report

confidence
low low high low low high

Table 4.4 – Power report generation details for different measurement configurations

Config Power report generation details

63

1 post synthesis power report with default toggle rate for all nodes

2 post synthesis power report with exact toggle rate for global_enable signal

3 post synthesis power report with proper .saif file as input

4 post implementation power report with default toggle rate for all nodes

5 post implementation power report with exact toggle rate for global_enable signal

6 post implementation power report with proper .saif file as input

The results also show that exact power consumption can be known only after place and

route is performed and that a lot of dynamic power consumption (in this case around 12% and

7%, depending on global enable signal value) gets consumed by the clock tree and wiring itself.

Complete power report (with both static and dynamic power numbers), Figure 4.1, shows that

most of the power consumption (around 69%) belongs to static power consumption which is

reasonable considering that Zynq-7000 AP SoCs use 28nm High-K Metal Gate (HKMG)

technology. It is well known that by lowering process node technology, leakage power becomes

a dominant contributor to the overall power consumption. Therefore it becomes reasonable why

a non-conventional process had to be used at these gate sizes.

High-K Metal Gate (HKMG) process is a process where the capacitance of the gate oxide gets

increased by using a dielectric with a higher κ than the one of a SiO2 that is normally used as a

gate oxide.

Figure 4.1- Complete power report, VIVADO layout

(32KB Instruction Memory, 64B cache, loop size 8, cache enabled)

But even with a sophisticated process like this, static power still dominates the overall power

consumption and not much can be done to reduce it. That is why all the results in the following

results will refer to dynamic power consumption only since the static one was fixed: 256mW.

64

All the power numbers reported from now on were obtained from post implementation power

reports with high confidence (with usage of corresponding switching activity files).

Having a look at the results from Table 4.3, it can be seen that in the case of enabling

usage of loop cache there was a dynamic power saving of 1mW compared to the case when no

cache was added into the system. Considering the overall power consumption of 114mW this

saving of less than 1% was not something to be too much proud of. On the other hand, these

results show the consumption of the entire system (with the core itself of course) so it was

necessary to separate the consumption of the core form the consumption of the memory system

alone.

This was performed by synthesizing the core alone (with no Instruction Memory, no cache

memory but with the rest of the system). The post implementation power report is shown in

Figure 4.2.

Figure 4.2- Power report of the system with no memory hierarchy

Comparing this result of dynamic power consumption of 110mW with no memory hierarchy

with 114mW using only Instruction Memory and 113mW when enabling use of cache, it is easy

to conclude that memory system itself consumed either 3mW or 4mW depending if the cache

was enabled or not. Saving of 1mW when enabling usage of cache now becomes 25% which is

a result that cannot be neglected.

Figure 4.3 – Design timing repor

65

Another thing worth noting at this point is the design post implementation timing report

which was checked every time to make sure there were no timing violations (positive TNS and

WNS) and that all constraints were met. This is clearly shown in Figure 4.3.

In order to show how different cache sizes and different loop sizes influence power

reports, 15 different configurations were synthesized and simulated. Configuration settings are

shown in Table 4.5 whereas the power reports are shown in Table 4.6.

Table 4.5 – Different testing configurations

Configuration Loop size [instructions] Cache size [B]

1 8 16

2 8 32

3 8 64

4 16 16

5 16 32

6 16 64

7 24 16

8 24 32

9 24 64

10 32 16

11 32 32

12 32 64

13 40 16

14 40 32

15 40 64

Table 4.6 – Power and statistic reports for different system configurations

Dynamic

power

[mW]

cache

reads

cache

writes

main

reads
R/W ratio Hit rate

1 113 790 8 20 98.75 97.53

2 113 790 8 20 98.75 97.53

3 113 790 8 20 98.75 97.53

4 114 0 0 810 - 0

5 113 782 16 28 48.875 96.54

66

6 113 782 16 28 48.875 96.54

7 114 0 0 810 - 0

8 114 0 0 810 - 0

9 113 774 24 36 32.25 95.55

10 114 0 0 810 - 0

11 114 0 0 810 - 0

12 113 766 32 44 23.9375 94.56

13 114 0 0 810 - 0

14 114 0 0 810 - 0

15 114 0 0 810 - 0

As it can be seen from Table 4.6, there was not too much difference in power numbers

in case of using different configurations. This can be explained by the fact that the VIVADO

resolution goes as far as 1mW and the configuration changes are sometimes in order of couple

of bytes which brings power changes that are more subtle than 1mW and cannot be recorded

by the simulator. Furthermore, although utility reports showed that Instruction Memory was

built from BRAM blocks and cache memory merely from flip flops (LUTs), there was no notion

of the power ratio between a read from a BRAM and a read from a flip flop. This is why writes

and reads numbers can help getting the feeling about real power consumption if the hardware

was synthesized as an ASIC and not from FPGA fibre. What can be seen from power reports

in Table 4.6 is that when a loop was larger than the cache size no cache writes and therefore

no cache reads were performed at all and the power consumption of the system in that case was

the same as in the case when cache was globally disabled, i.e. not existed at all.

Cache reads and writes, as well as hit rates and R/W ratios show very good use of the

TLC technique (around 98% of power savings) but it should not be forgotten that the test

programs used here were completely synthetically created and that the reads and writes were

recorded for the period when only one loop was executed over and over again. Future work

could include the use of test programs that would reflect more truly real embedded program

execution environment.

67

4.2.2 Real time measurements

Apart from performing power estimations using VIVADO simulator, system was

evaluated in real time as well. For those purposes the system was synthesized on a Xilinx ZC702

evaluation kit which will be briefly introduced in one of the next sections.

4.2.2.1 Methodology

This section explains which hardware the system was synthesized on, what kind of

software support was needed to perform the power measurements and the rest of the evaluation

system setup. Following [18] it was clear that, apart from the zc702, it was necessary to order

the Texas Instruments USB-TO-GPIO Interface, download and install the TI Fusion Digital

Power Designer GUI. Evaluation kit and the GUI will be briefly introduced in the next sections.

4.2.2.1.1 Evaluation Kit: zc702

For the purposes of system verification and testing Xilinx ZC702 evaluation board for

XC7Z020 AP SoC was used. It provides features that can commonly be found in most

embedded systems, such as DDR3 Component Memory, HDMI Codec, I2C bus, USB to UART

interface, tri-mode Ethernet PHY… Before using the board it was necessary to verify its proper

functioning by performing the Built In Self Test as described in [24] that came loaded into the

Quad SPI Flash memory on the board (tests UART, I2C, Timer, DDR3 Memory, LEDs,

Watchdog Timer, SWITHES etc.) The board layout is shown in Figure 4.4 where the elements

that were used in this project are marked with blue boxes: DIP switches, tasters, LEDs, the

power management system and the Zynq XC7Z020 AP SoC of course. One of the reasons why

this board was chosen to be used are “the power regulators and a PMBus compliant system

controller from Texas Instruments it uses to supply core and auxiliary voltages.” [20] and the

68

possibility to easily monitor and measure those voltages through a GUI from TI called Fusion

Digital Power Designer.

The whole ZC702 hardware system is built around Zynq-7000 XC7Z020-1CLG484C

AP SoC which consists of an SoC integrated processing system (PS) and programmable logic

(PL) on a single die. “The PS integrates two ARM Cortex-A9 MP Core processors, AMBA

interconnect, internal memories, external memory interfaces and peripherals including USB,

Ethernet, SPI, SD/SDIO, I2C, CAN, UART and GPIO.“[20]

The main advantage of Zynq-7000 family is the flexibility and scalability of an FPGA combined

with performance, power and ease of use associated with ASIC and ASSP. ”The integration of

the PS with the PL provides better performance than the case of two chips used due to their

limited I/O bandwidth, loose-coupling and power budgets.”[25] All the devices from Zynq-

Figure 4.4 - zc702 Evaluation Kit board layout [20]

69

7000 family include the same Processing System although the Programmable Logic and I/O

Resources differ from device to device. Since in this project, the PS was not used at all: all the

system (including the core) was written in HDL and synthesized using only PL features of the

device, such as Block RAMs for synthesizing Instruction memory, Clock Management to adapt

200MHz oscillator on the board to the system frequency of 10 MHz and of course CLBs with

LUTs to synthesize the rest of the system logic. The system input interface as well as status

signals that enabled communication with the user are shown in Figure 4.5 (this is the part of the

system marked with a blue frame in Figure 4.4)

Figure 4.5 - System user interface and output status (LEDs, switch and push buttons)

Evaluation kit has several power domains as shown in Figure 4.6. The board uses power

regulators and a PMBus (Power Management Bus) compliant system controller from Texas

Instruments to supply core and auxiliary voltages. Apart from 12 V input supply that powers

the board, there are 5 switching regulators and 1 linear regulator which generate different

voltages required for different power domains. Voltage outputs of these regulators are

controlled by three TI power controllers and it is possible to monitor them via a GUI called

Fusion Digital Power Designer.

70

4.2.2.1.2 TI Fusion Digital Power Designer (FDPD)

FDPD is a GUI specially designed to monitor 10 different rails on the board. Each rail

supplies particular subset of components in a corresponding power domain. List of components

each power rail supplies can be found in [26]. It is possible to monitor voltage, current, power

and temperature of each node in real time: see waveforms in separate windows as well as save

the measurements in a .csv file.

Saving measurements in .csv file not only does give possibility to process this data later in a

desired way but it also gives opportunity to save data in a higher resolution than it can be shown

in the figures drawn by the GUI itself (voltage resolution of a mV, current resolution of 100uA,

power resolution of 100nW). An example of saved measurements is shown in Figure 4.7 where

four different rails (their voltages, currents and power) are monitored by the same device (TI

UCD9248). There are two more files with readings of the other two power management devices

that monitor other 6 rails that are of importance for the supply system of this evaluation board.

Figure 4.7 – Format of a .csv file with real time measurements saved by TI FDPD

Each measurement is recorded at a particular time stamp contained in the first column. It can

be noticed that a new reading is available each 500ms which is the polling interval of the GUI

Figure 4.6 - Power domains on the ZC702[26]

71

itself. Voltage and current measurements show the current values at a particular time stamp

whereas power values show RMS value of the power in time interval between this and the

previous reading. This means that total power is calculated by summing up these particular

values.

4.2.2.2 Results

As it was mentioned, the way to verify the core was running the program code on the

hardware, was to observe the behaviour of the LED called detector in . In order for human eye

to detect the change, the blinking period had to be long (around 10s). Similar principle was used

to check whether the measurements on the board made sense: board was programmed to blink

diode very slowly and measurements were recorded separately for the period of diode being on

and diode being off. In case of a diode being ON, measurements should show higher power

consumption since LED power consumption is quite significant: around 90mW according to

[27]. To make this change even more visible the author programmed 4 LEDs to be tuned on

and off. Total power readings (sum of power consumed by all the rails) was shown to be higher

in the case when LEDs were off than when they were on which made no sense at all. However,

the power measurements for a particular rail, VCC3V3, that is used to power up the LEDs, were

smaller in case of LEDS off: 22.4436mW than in case of LEDs being on: 22.8555mW. The

difference is around 400mW which is quite close to what four diodes should consume (around

360mW) but it still stays unclear why total power consumption is smaller in case of LEDs being

on. These results are summed up in Table 4.7.

Table 4.7 – Total and Vcc3V3 power consumption for 4 LEDs ON and OFF

 Total power [W] VCC3V3 power[mW]

4 LEDs on 1.5584 680.8555

4 LEDs off 1.5612 282.4436

 Another type of measurement was conducted to try to get more information

about the system: voltages and currents of the system were monitored and recorded while LEDs

were first on for 10s then off for 10s and repeated that way for 4 times (7 transitions from on to

off and off to on). Voltages, power and currents were then plotted in MATLAB and the results

are shown in Figure 4.8 - 4.10.

72

Figure 4.8 – Real time voltage measurements for LEDs periodically ON and OFF (Matlab)

Figure 4.9 – Real time power consumption for LEDs periodically ON and OFF

73

Figure 4.10 – Real time current measurements for LEDs periodicallt ON and OFF

Total number of samples in time was 160 (each state of diodes recorded in 20 samples).

What was expected to be seen in the figures (only 9 rails shown for the sake of simplicity, the

last one shows no more information) was that there was a current/voltage drop/rise for different

states of the system since according to [27], one LED drew 30mA. As it can be seen from Figure

4.10 there were no falls/rises in values that would have helped drawing conclusions.

Nevertheless, systems with different cache sizes were configured and tested while

running the original code with the loop of size 8 instructions, with enabled use of cache and

disabled use of cache (controlled by the switch on the board) and the energy consumption in a

particular time slot is shown in Table 4.8.

Table 4.8 – Total power consumption (loop size: 8 instructions)

 16B 32B 64B

No cache 1.3642 1.3722 1.3598

With cache 1.4037 1.4090 1.5297

74

These results show that when using bigger cache, energy consumption gets slightly

higher in the case of running the same code which is quite clear. Power numbers are now I order

of 1.5 W which is quite different than the case of VIVADO power reports (around 300mW)

which is reasonable taking into account that VIVADO does not take into account the board

system, but only the Zynq device consumption.

 Unexpectedly, the results show that power consumption is higher in the case of

including cache into memory hierarchy than not having it as part of the system at all. Although

this is not very plausible taking into account the idea and goal of reducing power consumption

by adding cache into the system, this result could be explained if the ratio between RAM and

register read on this particular FPGA fibre was measured and maybe concluded that it was

around 1:1 which would not be the case if the system was synthesized as an ASIC.

Author tried to perform these measurements in the explained experimental setup but since the

GUI polling (measurement) interval was 500ms and the core was running on 10 MHz (100ns),

there was no way of knowing power consumption of separate executed instructions and

therefore no way of measuring RAM and register access power. Another important thing that

could be checked is whether the RAM generated with IP generator and having an enable signal

is actually switching its interior logic (mostly consisting of big comparators) and signals

although not changing its output while disabled or disabling it means really turning of all the

logic as well. Most probably latter is true but it would not be a bad idea to check this.

75

5 Conclusion and Future Work

5.1 Conclusion

There are many different caching techniques that are believed to improve instruction

fetch energy of microcontrollers, some of them were explored and explained in [2]. One of the

techniques, called Tight Loop Cache, was chosen to be evaluated as the most promising and

easy to incorporate into a working system. The technique was implemented both in software

(Python) and hardware (Verilog), evaluated by counting parameters close to meanings of cache

hits and misses and by calculating, estimating and measuring energy consumption.

Software simulations showed that power savings with the use of loop cache can go as

far as 80% (taking into account only the memory system). These measurements were performed

by counting reads and writes into the cache and main instruction memory neglecting power

consumption of the control logic behind the system. Such good potential savings served as

initial encouragement for the system to be implemented in hardware so that the results can be

checked and verified.

It was proven that the principle can be integrated within a system that uses ARM Cortex-

M0 which does not offer any advanced information, such as branch status of the instructions in

different pipeline stages. This leads to a conclusion that the technique could be easily integrated

into any modern system. Technique was first built in software, taking into account only memory

access powers (neglected the control power consumption), where simulations were performed

in order to prove the feasibility of the system. Excessive simulation of the hardware

implementation showed the principle can be successfully applied to any modern MCU system.

Power optimization techniques of VIVADO synthesis and place and route tools were exploited

to their maximum and showed that the use of the technique could bring up to 25% energy

savings.

It was shown that even a small modification of RTL design of a module (Controller in

this case) can lead to a completely different implementation: different utility reports and

therefore different power consumptions. Smart changes in the design at this level can bring

much more savings than changes in synthesis and implementation setup. Different synthesis

and implementation setup options offered by VIVADO DS and guided by power optimization

principles were explored deeply and their influence on final power reports was shown.

76

Real time measurements brought a lot of confusion and doubts that are tightly related to

the initial system setup. Some of these issues were mentioned at the end of last Chapter, such

as ratio of power of memory access to a bit RAM and a register bit. In the technology available

at Silicon Labs, this ratio goes as far as 1:10 which would definitely bring more savings since

this ratio in the FPGA fibre is believed to go as close to 1:1.

Main conclusion that can be made from all the results discussed is that the initial system

hardware implementation was not set in a best possible way to achieve correct power saving

numbers: FPGAs are usually used only to build prototypes and prove principles of operation.

This was successfully performed: a working design that is using a small cache to store

instructions from small loops was built and even brought around 25% power savings into the

memory hierarchy system.

5.2 Future Work

As it was discussed in the previous section, the initial resources that were available for

the system to be implemented on (FPGA fibre is not as much power optimized as possible)

were not optimally chosen. It is believed that if the design gets implemented as an ASIC with

completely configurable and controllable synthesis and place and route tools, it would bring

more power savings than in the case of using FPGA.

Another important thing noticed when analysing benchmarks used as inputs into the

software simulator was that it happened quite often that a loop was executed many times, which

was followed by a quick sequential execution and then the return to the same loop execution.

In the case of the TLC implemented in this project, there was no information about which loop

the cache was filled with so it happened quite often that new writes were performed into the

loop cache although it was already filled with the correct data. A possible modification to the

Controller design would be to allow it directly enter ACTIVE state from IDLE if it was

concluded that the cache was already filled with the right loop instructions. This way,

unnecessary cache writes (costly FILL state) would be avoided.

Chapter 3.2.1.2 mentioned two possible implementations of the Controller but this

project involved design of only one of the principles. It would be interesting to implement the

second approach as well and compare the results.

Another idea that was analysed roughly but could be considered as future work was to

deal with conditional branches inside the loop as well and to store both situations: branch taken

77

and not taken inside the cache in different places and base on the situation chose to read from

different parts of the cache. This idea still sounds too costly regarding control hardware

implementation but it is worth exploring as well.

Real time measurement potentials of the ZC702 were not explored thoroughly since

there was not enough time and nobody at the Department ever performed these measurements

before. This report gives some basic system setup to for the measurements to be done but it

does not explain the results completely, That is why a good next step would be to analyse power

domains on the board and see how the use of different domains influences the measurements.

This would bring better understanding of the measurements reported here.

78

References

[1] D. A. Patterson, J. L. Hennesy, “Computer Organization and Design”, 5th edition,

Morgan Kaufman, 2014

[2] M. Popovic, “Techniques for lowering instruction fetch power in microcontrollers”,

NTNU, December 2014.

[3] T.R. Halfhill, “Achieving Energy Efficiency with EFM32 Microcontroller”, The

Linley Group, 2014.

 [4] Kin, Johnson, Munish Gupta, and William H. Mangione-Smith. "The filter cache:

an energy efficient memory structure", Proceedings of the 30th annual ACM/IEEE international

symposium on Microarchitecture. IEEE Computer Society, 1997.

[5] Tang, Weiyu, Rajesh Gupta, and Alexandru Nicolau, "Design of a predictive filter

cache for energy savings in high performance processor architectures", Computer Design,

2001. ICCD 2001. Proceedings. 2001 International Conference on. IEEE, 2001.

[6] Bellas, Nikolaos, et al. "Energy and performance improvements in microprocessor

design using a loop cache", Computer Design, 1999.(ICCD'99) International Conference on.

IEEE, 1999.

[7] S. Hines, D. Whalley and G. Tyson, “Guaranteeing Hits to Improve the Efficiency

of a Small Instruction Cache”, Microarchitecture, 2007. MICRO 2007. 40th Annual

IEEE/ACM International Symposium on. IEEE, 2007.

[8] Inoue, Koji, Vasily G. Moshnyaga, and K. Murakarni. "A history-based I-cache for

low-energy multimedia applications", Low Power Electronics and Design, 2002. ISLPED'02.

Proceedings of the 2002 International Symposium on. IEEE, 2002.

[9] Su, Ching-Long, and Alvin M. Despain. "Cache design trade-offs for power and

performance optimization: a case study", Proceedings of the 1995 international symposium on

Low power design. ACM, 1995.

[10] L. H. Lee, B. Moyer, J. Arends, “Instruction Fetch Energy Reduction Using Loop

Caches For Embedded Applications with Small Tight Loops”, Low Power Electronics and

Design, 1999. Precedings, 1999. International Symposium on IEEE, 1999.

[11] “Cortex M3 – Technical Reference Manual”, ARM, 2006.

[12] “Cortex-M0 Technical Reference Manual”, ARM, 2009.

[13] Joseph Yiu, “The Definitive Guide to the ARM Cortex-M0”, Newnes, 2011.

[14] “ARMv6-M Architecture Reference Manual”, ARM, 2010.

79

[15] www.infocenter.arm.com

[16] “ARM Cortex-M0 Design Start”, ARM, 2010.

[17] “AMBA 3 AHB-Lite Protocol specification”, ARM, 2010, available at

www.arm.com

[18] C. Gahagan,“Step by step guide to implementing the Cortex-M0 using a NEXYS2

FPGA board”, Louisianan Tech College of Engineering and Science, 2013.

[19] “Xilinx 7Series FPGA Libraries Guide for HDL Designs”, Xilinx, 2012.

[20] “ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC

User Guide”, Xilinx, 2015.

[21] P. Martos, F. Baglivo, “Aplication Note: Cortex-M0 Implementation in the Nexys2

FPGA Board, A Step by Step Guide”, University of Buenos Aires, 2011.

 [22] “Vivado Design Suite User Guide - Power Analysis and Optimisation”, Xilinx

2015.

[23] “Vivado Design Suite Tutorial - Power Analysis and Optimisation”, Xilinx 2015.

[24] “ZC702 Built-In Self Test Flash Application”, Xilinx, 2013.

[25] “Zynq-7000 All Programmable SoC Technical Reference Manual”, Xilinx, 2015.

[26] “Zynq-7000 All Programmable SoC Low Power Techniques Part 2 – Measuring

ZC702 Power using TI Fusion Power Designer Tech Tip”, tutorial available at:

http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-

+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip

 [27] “TLMS1100, TLMO1100, TLMY1100, TLMG1100, Standard 0603 SMD LED”

Vishay Semiconductors, datasheet, 2014.

[28] Marius Grannæs, Personal communication

http://www.infocenter.arm.com/
http://www.arm.com/
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip

80

Appendix A

Code A.1 – Software Implementation of TLC in Python

"""

Created on Sun Mar 29 05:03:07 2015

@author: Dell

"""

import sys

import csv

def Simulate(dataSet, cache_size):

####### states:

#IDLE: 0

#PSEUDO_IDLE: 1

#COUNT: 2

#PSEUDO_COUNT: 3

#FILL: 4

#PSEUDO_FILL: 5

#ACTIVE: 6

#PSEUDO_ACTIVE: 7

 readpwrs = {}

 writepwrs = {}

 flashpwr = 180

 readpwrs[16] = 1.875

 writepwrs[16] = 2.5

 readpwrs[32] = 3.75

 writepwrs[32] = 5

 readpwrs[64] = 7.5

 writepwrs[64] = 10

 readpwrs[128] = 15

 writepwrs[128] = 20

 readpwrs[256] = 17

 writepwrs[256] = 24

 readpwrs[384] = 19

 writepwrs[384] = 28

 readpwrs[512] = 21

 writepwrs[512] = 30

 readpwrs[640] = 23

 writepwrs[640] = 34

 readpwrs[768] = 25

 writepwrs[768] = 37

 readpwrs[896] = 27

 writepwrs[896] = 41

 readpwrs[1024] = 28

 writepwrs[1024] = 44

 readpwrs[1536] = 35

 writepwrs[1536] = 42

 readpwrs[2048] = 37

 writepwrs[2048] = 46

 readpwrs[4096] = 37

 writepwrs[4096] = 46

 sram_reads = 0

81

 sram_writes = 0

 valid = 0

 hit_rate = 0

 rw_ratio = 0

 old = 0

 old_old = 0

 new = 0

 position = 0

 state = 0

 cache = []

 counter = 0

 loop_size = 0

 times_executed = 0

 firsts=[]

 sbbs=[]

 loop_sz=[]

 inst_no=[]

 times_ex=[]

 sbb = 0

 first = 0

 nextstate = 0

 flash_reads = 0

 # Open dataSet

 try:

 file = open(dataSet,'r')

 except:

 sys.stderr.write('Could not open dataSet\n')

 sys.exit()

 # Skip the first line in file (header)

 file.readline()

 # ---

 # Each line contains one address

 for line in file:

 position=position+1

 # Split out the address, ignore time for now

 try:

 [timeString, addrHex] = line.split(',')

 except:

 sys.stderr.write('Bad: '+line+"\n")

 continue

 try:

 a = int(addrHex, 16)

 #print a

 if (a > 0) and (a < 536870911):

 # don't save idles and dummy values as last address

 valid = valid + 1

 old_old = old

 old = new

 new = a

 else:

 # Ignore idles

82

 continue

 except:

 sys.stderr.write('Could not convert %s to int\n' % addrHex)

 continue

 if (valid == 1):

 old_old = a

 old = a

 new = a

 if state == 0: # idle state

 cache = []

 if (new == old+4): # idle => idle

 nextstate = 0

 flash_reads = flash_reads + 1

 else: # idle => count

 if (new < old):

 nextstate = 2

 sbb = old

 first = new

 counter = 1

 flash_reads = flash_reads + 1

 else: # idle => pseudo_idle

 nextstate = 1

 flash_reads = flash_reads + 1

 if state == 1: # PSEUDO_IDLE

 if (new == old + 4) or (new == old_old + 4): # pseudo_idle => idle

 old = old_old

 nextstate = 0

 flash_reads = flash_reads + 1

 else:

 if (new < old): # pseudo_idle => count

 nextstate = 2

 sbb = old

 first = new

 counter = 1

 flash_reads = flash_reads + 1

 else: # stay pseudo_idle

 nextstate = 1

 flash_reads = flash_reads + 1

 if state == 2: # COUNT

 if (new == old + 4) and (new <= sbb):

 nextstate = 2 # stay in count

 counter = counter + 1

 flash_reads=flash_reads + 1

 else:

 if (new > old + 4):

 nextstate = 3 # count => pseudo_count

 flash_reads=flash_reads + 1

 else:

 if (new == first) and (old == sbb) and (counter <=

cache_size): # count => fill

 nextstate = 4

 sram_writes = sram_writes + 1

 loop_size = counter

 counter = 1

 cache. append (new)

 flash_reads = flash_reads + 1

83

 else: # count => idle

 nextstate = 0

 flash_reads=flash_reads + 1

 counter = 0

 if state == 3: # PSEUDO_COUNT

 if (new == old_old + 4): # pseudo_count => count

 old = old_old

 counter = counter + 1

 nextstate = 2

 flash_reads = flash_reads + 1

 else:

 if (new == first) and (old_old == sbb) and (counter <=

cache_size): # pseudo_count => fill

 nextstate = 4

 sram_writes = sram_writes + 1

 old = old_old

 loop_size = counter

 cache. append (new)

 flash_reads = flash_reads + 1

 else: # pseudo_count => idle

 nextstate = 0

 flash_reads = flash_reads + 1

 counter = 0

 if state == 4: # FILL

 if (new == old + 4) and (new <= sbb) and (counter < loop_size) :

 nextstate = 4 # fill => fill

 counter = counter + 1

 sram_writes=sram_writes + 1

 cache. append (new)

 flash_reads = flash_reads + 1

 else:

 if (new > old + 4): # fill => pseudo_fill

 nextstate = 5

 flash_reads=flash_reads + 1

 else:

 if (new == first) and (old == sbb) and (counter ==

loop_size): # fill => active

 nextstate = 6

 sram_reads = sram_reads + 1

 counter = 1

 loop_sz.append(loop_size)

 else:

 nextstate = 0

 flash_reads=flash_reads + 1

 counter = 0

 if state == 5: # PSEUDO_FILL

 if (new == old_old + 4) and (counter < loop_size): # pseudo_fill=>

fill

 old = old_old

 nextstate = 4

 counter = counter + 1

 flash_reads = flash_reads + 1

 sram_writes = sram_writes + 1

 cache. append (new)

 else:

 if (new == first) and (old_old == sbb) and (counter ==

loop_size): # pseudo_fill => active

 nextstate = 6

84

 sram_reads = sram_reads+1

 old = old_old

 counter = 1

 loop_sz.append(loop_size)

 else: # pseudo_fill => idle

 nextstate = 0

 flash_reads = flash_reads + 1

 counter = 0

 if state == 6: # ACTIVE

 if (new == old + 4) and (new <= sbb): # stay in active

 sram_reads=sram_reads + 1

 nextstate = 6

 counter = counter + 1

 if (new not in cache): # sanity check

 print("1. Tried to read from cache, but value not there")

 print new

 print cache

 sys.exit()

 else:

 if (new == first) and (old == sbb) and (counter == loop_size):

stay in active but it is the begining of the loop again

 sram_reads=sram_reads + 1

 nextstate = 6

 counter = 1

 times_executed = times_executed + 1

 if (new not in cache): # sanity check

 print("1. Tried to read from cache, but value not

there")

 print new

 print cache

 sys.exit()

 else:

 if (new > old + 4): # ACTIVE => pseudo_active

 nextstate = 7

 flash_reads=flash_reads + 1

 else: # ACTIVE => idle

 nextstate = 0

 flash_reads=flash_reads + 1

 counter = 0

 loop_sz.append(loop_size)

 times_ex.append(times_executed)

 sbbs.append(sbb)

 firsts.append(first)

 inst_no.append(position)

 if state == 7: # PSEUDO_ACTIVE

 if (new == old_old + 4) and (new <= sbb) and (counter < loop_size

): # pseudo_active => active

 old = old_old

 nextstate = 6

 counter = counter + 1

 sram_reads = sram_reads + 1

 else:

 if (new == first and old_old == sbb) and (counter == loop_size

): # pseudo_active => active but begining of the loop again

 nextstate = 6

 counter = 1

 sram_reads = sram_reads + 1

 times_executed = times_executed + 1

 else: # pseudo_active => idle

85

 nextstate = 0

 flash_reads=flash_reads + 1

 counter = 0

 loop_sz.append(loop_size)

 times_ex.append(times_executed)

 sbbs.append(sbb)

 firsts.append(first)

 inst_no.append(position)

 state = nextstate

 file.close()

 power_nocache=(flash_reads + sram_reads)*flashpwr

 power_withcache=flash_reads*flashpwr + sram_reads*readpwrs[cache_size*4]

+ sram_writes*writepwrs[cache_size*4]

 hit_rate=sram_reads/float(flash_reads + sram_reads)

 rw_ratio=sram_reads/float(sram_writes)

 x=power_withcache/float(power_nocache)

 power_savings = 1.0 - x

 #result='results_final_' + cache_size + dataSet

 result='results_final_' + str(cache_size) + dataSet

 with open(result, 'wb') as result_file:

 csv_writer = csv.writer(result_file)

 for row in range (1):

 csv_writer.writerow([sram_writes] + ['SRAM Writes:'])

 csv_writer.writerow([sram_reads] + ['SRAM Reads:'])

 csv_writer.writerow([flash_reads] + ['Flash reads:'])

 csv_writer.writerow([' '])

 csv_writer.writerow(['Loop size:'] + loop_sz)

 csv_writer.writerow(['Times executed:'] + times_ex)

 csv_writer.writerow(['First:'] + firsts)

 csv_writer.writerow(['Sbb:'] + sbbs)

 csv_writer.writerow(['Last instruction of the loop (its row in

dataset) read from SRAM:'] + inst_no)

 csv_writer.writerow([cache_size] + ['Cache size'])

 csv_writer.writerow([power_nocache] + ['Total Power With No Cache']

)

 csv_writer.writerow([power_withcache] + ['Total Power With Cache'])

 csv_writer.writerow([power_savings] + ['Power Savings'])

 csv_writer.writerow([hit_rate] + ['Hit Rate:'])

 csv_writer.writerow([rw_ratio] + ['RW Ratio'])

 result_file.close()

datasets = ["coremark.csv", "primes.csv", "dijkstra.csv", "emlcd.csv",

"preamp.csv", "sha.csv", "touch.csv"]

#datasets = ["coremark.csv"]

for d in datasets:

 print d

 for size in [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]:

 Simulate(d, size)

86

Appendix B

Code B.1 – Loop Cache Controller Verilog code

module Loop_Cache_Controller

(

input wire clk,

input wire n_reset,

input wire global_cache_enable,

input wire htrans,

input wire hprot,

input wire [12:0] new_address,

output reg main_cache,

output reg cache_write_enable

);

parameter cache_size=16; // size of the cache in words

localparam IDLE=0, FILL=1, ACTIVE=2;

(* mark_debug = "true" *) reg [1:0] present_state, next_state;

(* mark_debug = "true" *) reg prot_trans;

(* mark_debug = "true" *) reg [12:0] branch;

(* mark_debug = "true" *) reg [12:0] branch_target;

(* mark_debug = "true" *) reg [12:0] previous_address;

(* mark_debug = "true" *) reg loop_detector;

always @(posedge clk or negedge n_reset)

begin

 if (~n_reset)

 previous_address<=13'b0000000000000;

 else

 begin

 if (global_cache_enable)

 previous_address<=new_address;

 else

 previous_address<=13'b0000000000000;

 end

end

always @(posedge clk or negedge n_reset)

begin

 if (~n_reset)

 present_state <= IDLE;

 else

 present_state <= next_state;

end

always @(posedge clk or negedge n_reset)

begin

if (~n_reset)

 begin

 branch<= 13'b0000000000000;

 branch_target<= 13'b0000000000000;

 end

else

 if (loop_detector)

87

 begin

 branch<=previous_address;

 branch_target<=new_address;

 end

end

always @(*)

begin

next_state=present_state;

main_cache=1'b1;

cache_write_enable=1'b0;

loop_detector=1'b0;

prot_trans=1'b0;

if (global_cache_enable)

 begin

 prot_trans = ~hprot & htrans;

 case (present_state)

 IDLE: begin

 cache_write_enable = 1'b0;

 main_cache = 1'b1;

 if (prot_trans && ($signed(previous_address-new_address) <=

(cache_size-1)) && ($signed (previous_address-new_address) > 1))

 begin

 next_state = FILL;

 loop_detector=1'b1;

 end

 else

 next_state = IDLE;

 end

 FILL: begin

 if (~hprot)

 begin

 if ((new_address==branch_target) &&

(previous_address==branch))

 begin

 next_state = ACTIVE;

 main_cache = 1'b0;

 cache_write_enable=1'b1;

 end

 else

 begin

 if (((new_address==previous_address) ||

(new_address==previous_address+1)) && (new_address<=branch))

 begin

 next_state = FILL;

 cache_write_enable=1'b1;

 main_cache = 1'b1;

 end

 else

 begin

 next_state = IDLE;

 cache_write_enable=1'b1;

 main_cache = 1'b1;

 end

 end

 end

 else

 begin

 cache_write_enable=1'b1;

 main_cache = 1'b1;

88

 next_state = IDLE;

 end

 end

 ACTIVE: begin

 if (~hprot)

 begin

 if (new_address<=branch &&

((new_address==previous_address)|| (new_address==previous_address+1) ||

(new_address==branch_target && previous_address==branch)))

 begin

 next_state = ACTIVE;

 cache_write_enable=1'b0;

 main_cache = 1'b0;

 end

 else

 begin

 next_state = IDLE;

 cache_write_enable=1'b0;

 main_cache = 1'b1;

 end

 end

 else

 begin

 next_state = IDLE;

 cache_write_enable=1'b0;

 main_cache = 1'b1;

 end

 end

 endcase

 end

else // default values for the case of global_enable=0

 begin

 cache_write_enable=1'b0;

 main_cache=1'b1;

 next_state = IDLE;

 prot_trans=1'b0;

 loop_detector=1'b0;

 end

end

endmodule

Code B.2 - Loop Cache Verilog code

module loop_cache #(parameter ADDRWIDTH=4)

(

input wire clk,

input wire n_reset,

input wire htrans,

input wire enable_cache,

input wire write_enable,

input wire [31:0] data_in,

input wire [ADDRWIDTH-1:0] address,

output reg [31:0] data_out

);

89

integer i;

(* mark_debug = "true" *) reg htrans_a;

(* mark_debug = "true" *) reg [ADDRWIDTH-1:0] address_a;

(* mark_debug = "true" *) reg [31:0] cache [2**ADDRWIDTH-1:0];

//ADDRESS phase

always @(posedge clk ,negedge n_reset)

begin

 if (~n_reset)

 begin

 address_a <= 4'b0000;

 data_out<= 32'h00000000;

 for (i=0; i<2**ADDRWIDTH; i=i+1)

 cache[i] <= 32'h00000000;

 end

 else

 begin

 htrans_a<=htrans;

 address_a<=address;

 if (write_enable&& htrans_a)

 cache[address_a] <= data_in;// fill

 if (enable_cache && htrans)

 data_out<=cache[address];

 end

end

endmodule

