
Design and Implementation of a Reliable 
Transport Layer Protocol for NUTS

Erlend Riis Jahren

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology



 



“People who think they know everything are a great annoyance to those

of us who do.”

– Isaac Asimov





Abstract

The NTNU Test Satellite (NUTS) is a double CubeSat developed mainly by stu-
dents and volunteers at the Norwegian University of Science and Technology (NTNU).
One of the main goals of the NUTS mission is to establish a communication chan-
nel between the satellite and a ground station, enabling collection of data from
the satellites sensors, and receiving pictures of the earth taken from the satellites
camera.

The satellite is expected to be launched into low earth orbit, where the presence of
cosmic radiation is known to cause erroneous behavior in electronic hardware. This
generates a demand for reliability in the communication network, using redundant
techniques for error detection and correction.

This thesis aims to improve the NUTS communication network by proposing a
design and implementation of a reliable transport layer protocol. The protocol,
named NUTS reliable protocol (NRP), features segmentation of large payloads,
error detection, and error correction through retransmission of corrupt data. NRP
was implemented for the NUTS software repository, with a simple API to facilitate
further software development within NUTS.

The protocol has been tested and the results have been discussed, concluding a
successful design and implementation of a transport layer protocol for the NUTS
CubeSat mission. However, further testing is advised to maximise the protocols
performance in the NUTS network.



iv

Sammendrag

NTNU Test Satellite (NUTS) er en dobbel CubeSat utviklet hovedsakelig av stu-
denter og frivillige ved Norges Teknisk-Naturvitenskapelige Universitet (NTNU) .
Et av de viktigste målene for NUTS er å opprette en kommunikasjonskanal mellom
satellitten og en bakkestasjon, slik at sensordata og bilder tatt fra satellitten kan
sendes til jorden.

Satellitten skal skytes ut i lav jordbane, der kosmisk str̊aling er kjent for å kunne
for̊arsake feil i elektronisk maskinvare. Dette skaper et behov for p̊alitelighet i kom-
munikasjonsnettet, ved hjelp av redundante teknikker for feildeteksjon og feilkor-
reksjon.

Denne master oppgaven har som mål å forbedre NUTS kommunikasjonsnettverk
ved å foresl̊a et design og en implementering av en p̊alitelig transportlags protokoll.
Protokollen, kalt NUTS Reliable Protocol (NRP), tilbyr segmentering av store
nyttelaster, feildeteksjon, og feilkorreksjon ved å sende korrupt data p̊a nytt. NRP
ble implementert i NUTS programvarebibliotek med et enkelt grensesnitt, slik at
det tilrettelegger for videre utvikling av programvare innen NUTS.

Protokollen har s̊a blitt testet, og resultatene diskutert. Konklusjonen er et vel-
lykket design og implementering av en transportlags protokoll for NUTS, med et
forbehold om at videre testing utføres for å maksimere protokollens ytelse i NUTS
nettverket.



v

Acknowledgements

I would first like to thank my supervisor Bjørn B. Larsen for all the help and
advice you have o↵ered throughout this master thesis. I would also like to express
my gratitude to NUTS supervisor Roger Birkeland, who has been guiding me in
the right direction, and o↵ered me helpful advice and knowledge.

The NUTS team should be thanked for all their individual contributions to this
thesis, and also the entertaining discussions, theories and stories which have kept
the spirit of development alive through tough hours on the rooftop of NTNU.

At last I want to thank all my friends and family for their encouraging motivation,
and the support they have o↵ered during this semester.

Erlend Riis Jahren

Trondheim, 09.06.2015



vi



List of Figures

1.1 NUTS unreliable communication layer model . . . . . . . . . . . . . 2
1.2 NUTS reliable communication layer model . . . . . . . . . . . . . . . 3

2.1 Example setup of CSP addressing . . . . . . . . . . . . . . . . . . . . 6
2.2 CSP header structure, v.1.0+ . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Stop-And-Wait ARQ protocol . . . . . . . . . . . . . . . . . . . 9
2.4 Client (sender) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Server (receiver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 A visual representation of a sender window, w = 5 . . . . . . . . . . 10
2.7 A GBN timeschedule with window size w = 4 . . . . . . . . . . . . . 10
2.8 Packet-loss handled by Go-Back-N . . . . . . . . . . . . . . . . . . . 11
2.9 Packet-loss handled by Selective Repeat . . . . . . . . . . . . . . . . 11
2.10 AX.25 Information packet frame . . . . . . . . . . . . . . . . . . . . 12
2.11 NGHam frame, illustration by Skagmo . . . . . . . . . . . . . . . . . 14

4.1 NUTS Reliable Protocol (NRP) header v.1.0 . . . . . . . . . . . . . 20
4.2 NRP transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Setup and termination of a connection . . . . . . . . . . . . . . . . . 24
4.4 Packet loss during connection . . . . . . . . . . . . . . . . . . . . . . 25
4.5 A connection is refused by the server . . . . . . . . . . . . . . . . . . 25
4.6 NRP streaming 150 bytes of payload over three packets . . . . . . . 27
4.7 Theoretical time comparison of the UHF(AX.25) and VHF(NGHam)

radios when sending 30KB using NRP . . . . . . . . . . . . . . . . . 29

5.1 Communication structure before NRP implementation . . . . . . . . 32
5.2 Communication structure after NRP implementation . . . . . . . . . 32
5.3 NRP segmentation and encapsulation . . . . . . . . . . . . . . . . . 33
5.4 Obtaining the connection pool mutex to alter the connection values 35
5.5 Multiple active connections within the connection pools of NUTS

sub-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 NRP send reliable data procedure . . . . . . . . . . . . . . . . . . . 37
5.7 NRP receive procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.8 Storing data to reproduce original payload . . . . . . . . . . . . . . . 39
5.9 Calculating a timeout for each individual stream . . . . . . . . . . . 39



LIST OF FIGURES viii

6.1 Schematics of the test setup with three Atmels UC3-A3 development
boards connected through an I2C link. . . . . . . . . . . . . . . . . . 42

6.2 Measured stream transmission time for 0% PER with GBN . . . . . 47
6.3 Measured stream transmission time for 2% PER with GBN . . . . . 48
6.4 Closeup of the first 1000 streams in 2% per test . . . . . . . . . . . . 48
6.5 Expected behavior of simultaneous stream test . . . . . . . . . . . . 50
6.6 Test with multiple streams to same receiver . . . . . . . . . . . . . . 50
6.7 Closeup of test with multiple streams to same receiver . . . . . . . . 51
6.8 Graphical representation of stream transmission time for di↵erent

PERs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.9 Graphical representation of the registered transmission fails . . . . . 53
6.10 Graphical representation of the speed di↵erences with static timeout

at 1000ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 ARQ comparison by Yang Qin and Lie-Liang Yang . . . . . . . . . . 59

A.1 Triple timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 ACK lost during connection setup . . . . . . . . . . . . . . . . . . . 79
A.3 FIN lost during connection termination . . . . . . . . . . . . . . . . 80
A.4 Connection timeout when radio contact is lost during transmission . 80

B.1 Theoretic data versus time comparison for di↵erent utilizations on
the NUTS radio link using AX.25 . . . . . . . . . . . . . . . . . . . . 81

B.2 Theoretic data versus time comparison for di↵erent utilizations on
the NUTS radio link using NGHam . . . . . . . . . . . . . . . . . . . 82



List of Tables

2.1 Payload e�ciency with the AX.25 protocol . . . . . . . . . . . . . . 13
2.2 Payload e�ciency with the NGHam protocol . . . . . . . . . . . . . 13
2.3 Theoretical e↵ective throughput of the VHF and UHF radios . . . . 14

3.1 Marholms estimations of the NUTS down-link capacity . . . . . . . . 16
3.2 Estimated minimal duration of satellite to GS connectivity for 90%

of the passes by Bakkebø et al. . . . . . . . . . . . . . . . . . . . . . 17
3.3 Theoretical minimum radio-link capacity in 90% of satellite passes . 17
3.4 Theoretical minimum radio-link capacity in 50% of satellite passes . 17

4.1 Theoretical payload e�ciency with NRP using the AX.25 protocol . 28
4.2 Theoretical payload e�ciency with NRP using the NGHam protocol 28
4.3 Theoretical e↵ective throughput of the VHF and UHF radios with

NRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Important values in a NRP connection structure . . . . . . . . . . . 34

6.1 Stream specifications for the ”Reliability with Go-Back-N” test . . . 44
6.2 Expected results for the ”Segmentation and encapsulation” test . . . 44
6.3 Stream specifications for the ”Detection of bit-errors” test . . . . . . 45
6.4 Stream specifications for the ”Reliability with Go-Back-N” test . . . 46
6.5 Estimated occurrences of stream failures and spikes . . . . . . . . . . 47
6.6 Measured occurrences of spikes and SYN retransmissions with 2%

PER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.7 Specifications for the ”Simultaneous streams” test . . . . . . . . . . 49
6.8 Specifications for the ”E↵ect of window size” test . . . . . . . . . . . 52
6.9 Specifications for the ”E↵ect of dynamic timeout” test . . . . . . . . 54

D.1 Data points for the speed test described in Section 6.9. . . . . . . . . 86



LIST OF TABLES x



Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background theory 5
2.1 The CubeSat Space Protocol . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Automatic Repeat Request . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 NUTS radios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Protocol requirements 15
3.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 NUTS link budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 NUTS payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Design specifications 19
4.1 NRP v.1.0 - overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Sequence and acknowledgment number . . . . . . . . . . . . . . . . . 26
4.5 Cyclic Redundancy Check . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation 31
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Segmentation and encapsulation . . . . . . . . . . . . . . . . . . . . 33
5.3 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Dynamic timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Testing 41
6.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



CONTENTS xii

6.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Heap limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Bit-error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5 Test 1: Segmentation and encapsulation . . . . . . . . . . . . . . . . 43
6.6 Test 2: Detection of bit-errors . . . . . . . . . . . . . . . . . . . . . . 45
6.7 Test 3: Reliability with Go-Back-N . . . . . . . . . . . . . . . . . . . 46
6.8 Test 4: Simultaneous streams . . . . . . . . . . . . . . . . . . . . . . 49
6.9 Test 5: E↵ect of window size . . . . . . . . . . . . . . . . . . . . . . 51
6.10 Test 6: E↵ect of Dynamic timeout . . . . . . . . . . . . . . . . . . . 53

7 Discussion 57
7.1 Performance of the NRP implementation . . . . . . . . . . . . . . . . 58
7.2 Real scenario testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Go-Back-N versus Selective Repeat . . . . . . . . . . . . . . . . . . . 59
7.4 Acknowledgement timeout calculation . . . . . . . . . . . . . . . . . 60

8 Future work 61
8.1 Further testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Implementing NRP for the GS . . . . . . . . . . . . . . . . . . . . . 61
8.3 Implementation of CSP routing . . . . . . . . . . . . . . . . . . . . . 62
8.4 Extending the heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Conclusion 63

References 65

Acronyms 68

A NRP Design 71
A.1 Receive packet procedures . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Connection events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Transmission capacity graphs 81

C Bit-flip function 83

D Speed test 85



CHAPTER

1

INTRODUCTION

The NTNU Test Satellite (NUTS) program aims to build and deploy a satellite
following the double CubeSat standards, mainly through the work of master stu-
dents and volunteers from the Norwegian University of Science and Technology[1].
The main goal of the NUTS satellite mission is to educate NTNU students through
projects and master theses, while also expanding the interest of student satellites in
Norway[2]. Other, more concrete, goals includes successful two-way communication
with a Ground Station (GS), stabilization and satellite control using an Attitude
Determination and Control System (ADCS), and to be able to capture pictures
of the earth from an on-board camera, and transmit the images successfully to a
Ground Station (GS).

Radio communication between a satellite and a GS is highly prone to errors, due to
the altitude, elevation angle and limited transmission power of the satellite[3]. In
addition, the solar induced radiation present in space environments may produce
faulty behaviour in the electronic modules of the satellite, generating a demand
for correction techniques and redundant fault checks[4]. Several precautions has
been made by the NUTS development team to limit the impact of erroneous com-
munication, such as error detection and Forward Error Correction (FEC) on the
radio link. Still, there are no higher level communication protocols implemented
to assure validity of transmissions between the sub-modules of the NUTS commu-
nication network.

This master thesis aims to resolve the issue of secure end-to-end transmission be-



1.1. BACKGROUND 2

tween sub-modules of the satellite and the GS by introducing a transport layer1 pro-
tocol, o↵ering reliability throughout the entire NUTS communication network.

1.1 Background

In 2014, an implementation of a network/transport layer communication protocol,
the CubeSat Space Protocol, was added to the NUTS software repository, simpli-
fying end-to-end transmissions between sub-modules of the satellite and the NUTS
GS[6]. When tests were performed on the implementation, it was discovered that
errors did not propagate through the layers of the communication structure, mean-
ing the process responsible of sending a packet would not be able to know if the
packet was actually sent and received properly. This was believed to be caused by
an error with the CubeSat Space Protocol (CSP) library, but later discoveries has
found this to be caused by the CSP implementation using an unreliable protocol[7,
p 5]. Its functionality was thereby limited to that of a network layer protocol, il-
lustrated in Figure 1.1. As reliability is a wanted feature in NUTS communication
network, members of the team requested further development of the end-to-end
protocol.

Figure 1.1: NUTS unreliable communication layer model

The CSP library includes an implementation of a Reliable Datagram Protocol
(RDP), based on the RFC 908/RFC 1151 protocols. The lowest cost method
of ensuring reliability in the NUTS communication system would be to use this
feature of CSP, provided that it works ”out of the box” as not much of the CSP
documentation is publicly available. CSP’s RDP feature was shortly tested in the
start-up of this thesis, but was concluded not working.

1.2 Problem definition

The goal of this thesis is to design, implement and test a transport layer protocol for
the NUTS CubeSat mission, featuring segmentation of payloads, error detection
and recovery, and a connection oriented service. The implementation should be

1The Open System Interconnection (OSI) model presents a layered model for interoperability
within communication networks[5, p. 73-76].



3 CHAPTER 1. INTRODUCTION

written in ”C” language for the On-Board-Computer (OBC) software repository,
available to all NUTS software developers. It should feature a simple Applica-
tion Programming Interface (API), with easy to use method calls for transmitting
payloads across the network, and well documented behavior. Figure 1.2 shows a
visual presentation of the transport layer functionality this thesis aims to add to
the NUTS communication structure.

Figure 1.2: NUTS reliable communication layer model

In total, the thesis can be deconstructed into 4 individual goals;

• Design of a reliable protocol, with functionality according to the NUTS re-
quirements

• Creating an implementation of the protocol, integrated into the software
repository of the satellite

• Test the behavior and functionality of the implemented protocol

• Discuss the results of the tests and provide further improvements



1.2. PROBLEM DEFINITION 4



CHAPTER

2

BACKGROUND THEORY

The purpose of this chapter is to introduce di↵erent theories and concepts used
throughout this report. The chapter will give closer insight to the network and link
layer protocols used in the NUTS communication network, and present common
techniques used when designing reliable protocols.



2.1. THE CUBESAT SPACE PROTOCOL 6

2.1 The CubeSat Space Protocol

The CubeSat Space Protocol (CSP) is a network/transport layer protocol aimed at
simplifying connectivity between distributed embedded systems[7]. The protocol
was originally designed by students from Aalborg University, but was later handed
over to GomSpace, a danish company specializing in cost-e↵ective solutions for
developers of nano- and cube satellites[8].

An implementation of the basic CSP functionality is released by GomSpace as a
software library under GNU Lesser General Public Licence (LGPL), allowing the
material to be copied and used by the public[9]. The implementation is written
in GNU C, and has been ported to several di↵erent operating systems, including
FreeRTOS, the OS used on the NUTS satellite. The library can be configured to
use di↵erent MAC-layer drivers, authentication techniques and reliability checks,
making it a viable option for the network/transport layer of the NUTS communi-
cation structure.

2.1.1 Overview

Figure 2.1: Example setup of CSP addressing

The network topology of CSP is similar to the common TCP/IP model used in
the Internet[7, p 3]. Sub-modules are given addresses, each with up to 64 ports
available. Each port represents an endpoint of a transmission, and can be accessed



7 CHAPTER 2. BACKGROUND THEORY

individually. Figure 2.1 illustrates a possible setup of CSP in a satellite, similar to
the setup used in the CSP user manual. Here, sub-modules within the satellite are
given addresses between 0 and 6 and sub-modules of the ground station are given
addresses in the range of 7 to 15. By using a routing table, all packets from the
satellite to the base station will be sent through the radio module, which will pass
the packet over on the radio link. When the packet is received at the base station
radio module, it will be transmitted onto the base station link and received at the
requested destination.

2.1.2 Header

Figure 2.2: CSP header structure, v.1.0+

Figure 2.2 illustrates the 32 bit basic header of a CSP transmission. The first two
bits of the header contains a priority field, giving a total of 4 di↵erent priorities
for the packet[10]. The following 22 bits represents the source and destination ad-
dresses and ports of the packet. The destination fields are used in the CSP router
core and determines where the content of the packet is received, depending on a
preprogrammed routing table[7, p 5]. The final 8 bits of the header are flags used
for other supported features by the CSP library, such as authentication(HMAC),
encryption(XTEA), reliability(RDP) and checksum(CRC). Setting the flags gener-
ates extra overhead to the packet, but documentation of the added header fields
are not publicly available and will therefore not be covered. Finally, the maximum
payload size of one CSP packet is set to 65535 bytes.

2.1.3 I2C driver and I2C -to-CSP interface

Internally, the NUTS satellite uses an I2C data bus for communication between
sub-modules[11]. The bus is built into the backplane of the satellite, reaching all
sub-modules while minimizing the physical footprint.

Even though GomSpace o↵ers I2C drivers and a CSP to I2C , ”glue”, interface
module, these parts of the library are not included under the LGPL licence, and
is therefore not used in the NUTS satellite mission. Instead, NUTS uses an I2C
driver and a glue interface developed by NUTS member Giskeødeg̊ard in 2012[12].
His implementations were later tested and concluded functional for NUTS by an
Experts in Teams (EiT) group from NTNU and Jahren[6, 13].



2.2. AUTOMATIC REPEAT REQUEST 8

2.2 Automatic Repeat Request

Automatic Repeat Request (ARQ) protocols provides reliability to data transfers
in communication networks, using techniques such as error detection, receiver feed-
back and retransmission of corrupted data[5, p. 233-235]. The protocols could be
implemented at both OSI- link and transport layer, o↵ering a method of controlling
the order of packets in a stream, and that all packets are received validly. A stream

of packets refers to multiple separate packets containing data that belongs together,
which is often a result of a payload being to big to send as one packet. The event in
which a payload is split into smaller chunks is referred to as segmentation.

Error detection is a mechanism where redundant bits are added to a packet prior
to sending it, in order for the receiver to calculate if the packet has been corrupted
during the transmission.

Receiver feedback is the event in which a receiver of a transmission sends feedback
to the sender about a received packet. Common examples of feedback includes
the Acknowledgement (ACK), where the feedback states the packet to be received
without corruption, or Negative acknowledgement (NAK), where the packet was
lost in transmission or corrupted at arrival. A timer is often used in addition to
the receiver feedback, indicating when a packet has been completely lost.

When the sender of a packet realises that the packet did not arrive successfully
at the receiver, it will retransmit the packet, and potentially other packets. The
procedure is known as a retransmission.

Several protocols providing ARQ functionality has been published, where the trade-
o↵ amongst them is the cost of implementation and e�ciency. Sections 2.2.1 to 2.2.3
presents the three most commonly used ARQ protocols in modern communication
networks.

2.2.1 Stop-And-Wait

The Stop-And-Wait (SW) protocol ensures reliability and correct ordering of pack-
ets at the cost of ine�ciency. A transmission is initiated by the client sending the
first packet of a sequence to the server, before entering a wait state, as illustrated
in Figure 2.4[5, p 235]. Here, the client waits for feedback from the server, or a
timeout indicating the packet was lost. If an ACK is received, signaling the client
that the packet was successfully received at the server end, it transmits the next
packet of the sequence, illustrated in Figure 2.3. This procedure loops until all
packets of the sequence has been sent and acknowledged, and the transmission has
completed. If the client receives a NAK, or the feedback times out, indicating that
the packet was corrupted or not received at the server end, it retransmits the last
sent packet and remains in the wait state.

Figure 2.5 illustrates the server, replying either ACK’s or NAK’s depending on the
content of the received packet.



9 CHAPTER 2. BACKGROUND THEORY

Figure 2.3: The Stop-And-Wait ARQ protocol

Figure 2.4: Client (sender) Figure 2.5: Server (receiver)

Benefits and shortcomings

Burns and Wellings claim the main benefit of the Stop-And-Wait (SW) protocol is
its simplicity, as only one packet is actively awaiting acknowledgment at any time.
This reduces both implementation cost and the possibility of faulty behavior to
occur[5]. In addition, sequence number fields in the header can be reduced to only
one bit using the Alternating Bit Protocol.

However, the simplicity comes with a drawback. Transmissions are necessarily
bounded by both transmission and propagation delay, making the protocol slower
than most of its alternatives.

2.2.2 Go-Back-N

A Go-Back-N (GBN) protocol utilizes a sender window of size w when transmitting
a packet sequence, as illustrated in Figure 2.6 and 2.7[5, p 244-249]. The sender
window, often referred to as a sliding window, keeps track of the packets that has
been sent, but not yet acknowledged. In Go-Back-N (GBN), when the leftmost
packet of the sender window in Figure 2.6 has been acknowledged, the window
slides one position to the right, allowing a new packet to be sent to the receiver.
If a packet gets lost during transmission, the sender will retransmit the sequence
of packets within its sender window, as shown in Figure 2.8. The GBN protocol



2.2. AUTOMATIC REPEAT REQUEST 10

demands a more complex implementation than the SW protocol, as it has to keep
track of the packets currently being within the sender window.

Figure 2.6: A visual representation of a sender window, w = 5

Figure 2.7: A GBN timeschedule with window size w = 4

Benefits and shortcomings

The GBN protocol has the benefit of transmitting several packets directly after
each other, increasing channel utilization, thus making the reliable transmission
faster compared to a SW protocol[5]. On the other side, as the Packet Error
Rate (PER) increases, the number of unnecessary retransmissions made by the
Go-Back-N protocol increases, filling the channel with superfluous information.
The GBN protocol is more complex than the SW protocol, resulting in a higher
implementation cost.

2.2.3 Selective Repeat

As with the GBN protocol, the Selective-Repeat (SR) protocol transmits packets
within a sender window, and awaits acknowledgments for the sent packets[5, p 249-
256]. However, whereas the GBN protocol will retransmit all packets succeeding



11 CHAPTER 2. BACKGROUND THEORY

Figure 2.8: Packet-loss handled by Go-Back-N

a lost packet, the Selective-Repeat (SR) protocol only retransmits the packets
that were lost, greatly reducing unnecessary transmissions and increasing channel
utilization. Figure 2.9 presents an illustration of a possible implementation of
SR.

Figure 2.9: Packet-loss handled by Selective Repeat



2.3. NUTS RADIOS 12

Benefits and shortcomings

SRs improvement of the GBN protocol depends on the probability of erroneous
transmissions. When the PER is 0, Selective-Repeat utilisation of the channel
is the same as with Go-Back-N. As the PER increases, the SRs utilization and
throughput decreases at a slower rate than with the GBN[14].

The main disadvantage with the SR protocol is its higher implementation cost, as
the receiver will need to keep track of packets that are received out of order[15].

2.3 NUTS radios

The NUTS satellite is stated to carry two radios, one Ultra High Frequency (UHF)
radio transmitting over the amateur satellite frequency at 437 MHz, and one Very
High Frequency (VHF) radio transmitting in the frequency range of 135 to 165
MHz[16, 17]. For simplicity, the two radios will be referred to as the UHF and the
VHF radios throughout this report.

Birkeland has announced that both of the radios may be responsible of transmitting
CSP packets between the satellite and the ground station[2]. Although the radios
use di↵erent protocols for their transmissions, they should from an end-to-end point
of view be regarded as a single unit, following the abstraction principle of the OSI
network layering model[5].

2.3.1 AX.25

Members of NUTS have decided that the UHF radio will be transmitting over the
well documented AX.25 protocol v.2.2[16], o�cially published by Beech, Nielsen
and Knoper in 1998[18]. The protocol is a known standard within amateur radio
communication, enabling the satellite to communicate with a number of ground
stations around the world. Beech et al. states that AX.25 features both con-
nectionless and connection oriented service routines together with a segmenter,
capable of splitting payloads into smaller packets when necessary. The protocol
header also includes a Cyclic Redundancy Check (CRC) of 2 bytes used for error
detection.

Figure 2.10: AX.25 Information packet frame



13 CHAPTER 2. BACKGROUND THEORY

Payload e�ciency

The o�cial publication document of the AX.25 protocol reveals the default in-
formation field of the packet frame presented in Figure 2.10 to be bounded to 256
bytes, and that the information packet header itself has a maximum of 35 bytes[18].
With the CSP header v.1.0+ of 4 bytes we can calculate the e�ciency of the pro-
tocols on the radio link. The proposed NUTS Authentication Protocol (NAP) of
22 bytes by Marius Münch[19], which was previously intended to be used on the
up-link, is left out, as it will be di�cult to implement and is by Birkeland consid-
ered to be an unlikely part of the radio link protocols[2]. As a result, the e�cient
payload calculations are the same for both up-link and down-link.

pl
eff

=
B

pay

B
tot

(2.1)

Using Equation 2.1, where pl
eff

is the payload e�ciency, B
pay

is the payload in
bytes, and B

tot

is total bytes in the packet, we obtain the theoretical payload
e�ciencies in Table 2.1.

Table 2.1: Payload e�ciency with the AX.25 protocol
Case B

pay

B
tot

pl
e↵

best 252 291 ⇡ 87.0%
worst 1 40 ⇡ 2.5%

2.3.2 NGHam

The NGHam protocol, developed by NUTS member Jon Petter Skagmo, is imple-
mented to the NUTS satellite with the intent to improve aspects of the AX.25[20].
NGHam is stated to have higher throughput, better spectral e�ciency and higher
robustness than AX.25, much due to its use of FEC. The protocol structure is
illustrated in Figure 2.11

Payload e�ciency

Table 2.2: Payload e�ciency with the NGHam protocol
Case B

pay

Padding (B) B
tot

pl
e↵

best 216 0 266 ⇡ 81.2%
worst 1 27 78 ⇡ 1.3%

NGHam has the possibility of 7 packet sizes, the biggest giving a payload of 220
bytes, with an additional 46 Bytes of header fields. By including the CSP in the



2.3. NUTS RADIOS 14

Figure 2.11: NGHam frame, illustration by Skagmo[20]

payload of the link layer, we obtain the theoretical payload e�ciencies presented
in Table 2.2.

2.3.3 Link capacity

R
eff

= pl
eff

⇤ R|{z}
bit rate

(2.2)

The radio links are the weakest link of the NUTS communication network, making
it the bottleneck of any Ground Station to satellite transmission. Table 2.3 presents
the theoretical best case (b-c) and worst case (w-c) e↵ective throughput R

eff

of
the two radios, calculated using Equation 2.2. However, it is important to note
that the actual throughput may be significantly lower due to the noise present in
real-world scenarios.

Table 2.3: Theoretical e↵ective throughput of the VHF and UHF radios
Freq. band Protocol R estimated R

e↵

UHF AX.25 9600bit/s b-c: ⇡ 8350bit/s
w-c: ⇡ 250bit/s

VHF NGHam 9600bit/s b-c: ⇡ 7800bit/s
w-c: ⇡ 125bit/s



CHAPTER

3

PROTOCOL REQUIREMENTS

A protocols design resembles the intention it was made for. In this chapter we will
look at the functionality and features of a reliable transport protocol that is useful
for NUTS, and investigate how this can be implemented in a protocol with e�cient
utilization of the communication network.



3.1. RELIABILITY 16

3.1 Reliability

3.1.1 Reliable delivery

Assured delivery of payload in the NUTS network is impractical, as the satellite
at any point can become unable to communicate with the GS over a substantial
amount of time. Hence, the reliable service of the transport layer protocol should be
limited to notifying the sender if a transmission was successful or not. If the sender
is notified that the transmission was a success, it must be assured beforehand that
the payload was received successfully and without corruption at its final destination.
If the transmission was not successful, the sender should be notified with an error,
thus making the transport service reliable.

3.1.2 Error detection

The NUTS networks most unreliable links, the radio links, are protected by error
detection and correction techniques through the protocols described in Section
2.3. However, Lantz II claims space environments are exposed for solar radiation,
causing soft errors such as bit-flips in electronic hardware[4]. To prevent corrupt
information from being received and interpreted as valid, the end-to-end transport
layer protocol should include an error detecting technique.

3.2 NUTS link budget

In Antenna systems for NUTS, Marholm presents estimated download link capac-
ities for the di↵erent satellite altitudes shown in Table 3.1.

Table 3.1: Marholms estimations of the NUTS down-link capacity
Altitude Min. elevation angle Average capacity
350km 21� 581kB/day
500km 28� 627kB/day
650km 34� 636kB/day

The orbital altitude is dependent on the specific rocket-mission responsible of
launching the NUTS CubeSat into space, which has yet to be decided as of June
2015[2]. Elevation angle is a time variant variable, as the satellite passes the GS
with di↵erent angles for each orbit, resulting in various transmission capacities for
each pass. The report Image Compression by Bakkebø et al. uses simulations of
the satellites potential orbits to calculate the duration the satellite will have contact
with the GS as it passes[21]. Their calculations are presented in Table 3.2.



17 CHAPTER 3. PROTOCOL REQUIREMENTS

Table 3.2: Estimated minimal duration of satellite to GS connectivity for 90% of
the passes by Bakkebø et al.

Altitude Min. duration (90% of passes)
350km 85 seconds
500km 93 seconds
650km 103 seconds

Using the information in Table 3.2, and the b-c bit-rates calculated in Section
2.3, we obtain the e�cient radio link capacities for each pass, presented in Table
3.3.

Table 3.3: Theoretical minimum radio-link capacity in 90% of satellite passes
Protocol Altitude Duration R

e↵

(b-c) Capacity
AX.25 350km 85s 8 350bit/s ⇡ 88.7kB
AX.25 500km 93s 8 350bit/s ⇡ 97.1kB
AX.25 650km 103s 8 350bit/s ⇡ 107.5kB
NGHam 350km 85s 7 800bit/s ⇡ 82.9kB
NGHam 500km 93s 7 800bit/s ⇡ 90.7kB
NGHam 650km 103s 7 800bit/s ⇡ 100.4kB

Bakkebø et al. further claims that around 50% of the passes will have at least 200
seconds available for transmission, giving the link capacities presented in Table
3.4.

Table 3.4: Theoretical minimum radio-link capacity in 50% of satellite passes
Protocol Altitude Duration R

e↵

bc Capacity
AX.25 500km ⇡200s 8 350bit/s ⇡ 208.8kB
NGHam 500km ⇡200s 7 800bit/s ⇡ 195.0kB

The capacities indicates the lower limit a transport layer protocol should be able
to transmit reliably within one stream, while the maximum limit should be set so
it does not add restraints to the transmissions.

3.3 NUTS payloads

Knowledge of the type, and especially the size, of the payload which will be trans-
mitted through the NUTS communication network is of importance when design-
ing a proprietary protocol. NUTS supervisor Roger Birkeland has stated that the
biggest payload in terms of bytes will be the picture sent from the satellite to
the GS[2]. The report Digital processing system for a Cubesat camera by Andreas
Bertheussen states the raw picture of 2592x1952 pixels captured by the camera



3.3. NUTS PAYLOADS 18

expected to be used on the NUTS satellite to be ⇡ 7.6MB[22]. Using Equation 3.1
it is calculated that the transmission of the picture would take approximately 2
hours, assuming an utility factor, u, of 100%. Even under these perfect conditions
the transmission time largely exceeds the approximate of 200 seconds available at
the longest satellite passes. As a result, Bakkebø et al. provides information about
how the picture can be reduced to any requested size, using image compressor
software such as the JPEG2000. This will necessarily produce a reduction in the
quality of the image, but is unavoidable in order to transmit the image to earth
over the slow radio-links described in Section 2.3.

T
trans

=
B

tot

R
eff

⇤ u (3.1)

In Section 2.3 it was mentioned that the maximum payload size of the radio packets
were 256 bytes for the UHF radio and 220 bytes for the VHF radio. The radio
packets are in other words significantly lower than the maximum packet size, 65535
bytes, of a CSP packet. To avoid being dependent on link layer segmentation,
this should be done in the transport layer, with packets not exceeding the lowest
maximum payload of the two radio protocols. Hence, maximum packet size for
the transport layer protocol must be 216 bytes, as the CSP header of 4 bytes is
included in the radio link payload.



CHAPTER

4

DESIGN SPECIFICATIONS

There are many publicly defined protocols that could be used for as the trans-
port layer protocol for NUTS, but they most often support more features than
whats necessary for the requested functionality of the NTNU Test Satellite. In the
attempt to minimize protocol overhead, and thus increasing channel utility, a pro-
tocol has been designed for the sole purpose of the NUTS CubeSat mission. The
protocol has been given the name NUTS Reliable Protocol (NRP).



4.1. NRP V.1.0 - OVERVIEW 20

4.1 NRP v.1.0 - overview

4.1.1 Header

The protocol header consists of 5 flags and 3 fields ranging over a total of 7 bytes,
as illustrated in Figure 4.1.

Figure 4.1: NRP header v.1.0

The structure of the protocol header is the same for every packet type in NRP, but
the flags and field values change depending on the content and the type of packet
being sent. The maximum payload size of a NRP packet is limited to 255 bytes,
due to the limited payload size in the underlying link layer protocols AX.25 and
NGHam, explained in Section 2.3.

4.1.2 Features

The following features are included in the NRP protocol;

• Segmentation and encapsulation of payloads

• Connection oriented service

• Client to server, half-duplex communication

• Error detection

• Go-Back-N ARQ functionality



21 CHAPTER 4. DESIGN SPECIFICATIONS

4.1.3 Reliable data transfer

Figure 4.2 illustrates a timing diagram of a successful NRP transmission. Data is
transmitted in a client to server direction, and acknowledgements are returned by
the server as feedback.

Figure 4.2: NRP transmission

The following four steps explains the NRP reliable transmission procedure in a
simplified manner:

1. Segmentation and encapsulation of payload

2. Connection initiation

3. Transmit data using Go-Back-N ARQ

4. Connection termination

Step 1: Segmentation and encapsulation

Payloads larger than the maximum payload of one NRP packet are split into sepa-
rate parts, each encapsulated by a NRP header and ready to be transmitted. Each
header contains a sequence number indicating the order of the packets, and a pay-
load length field indicating the size of the packet content. Sequence numbering is
further explained in Section 4.4.

Step 2: Connection initiation

Next, a connection is requested by the client and acknowledged by the server. A
reference to the connection details is stored in both the client and server throughout
the transmission. A detailed explanation of NRP connections is given in Section
4.3.



4.2. PACKET TYPES 22

Step 3: Transmit data

Data transmission begins immediately after requesting the connection, sending
packets within a sender window, using the Go-Back-N ARQ protocol explained
in Section 2.2. Transmission of data runs continuously until all packets has been
received by the server.

Step 4: Connection termination

When all packets are sent from the client and acknowledged by the server, the client
issues a connection termination request, which is acknowledged by the server. The
transmission is successfully completed.

4.2 Packet types

The first byte of the NRP header contains 5 flag fields and a 3 bit reserved field.
The combination of set1 flags determines the type of the packet, and how it should
be processed. The reserved field is currently unused except for its byte aligning pur-
poses, making it available header space in a future revision of the protocol.

In total there are 9 di↵erent defined packet types, each explained briefly be-
low.

SYN packet
Indicated by setting the ARQ and the SYN flags. It initiates a connection request
between a client and a server, while also containing the first payload of the stream.
This packet type is used in the first transmitted packet of a stream.

Direction: client to server

SYN/ACK packet
Indicated by setting the ARQ, the SYN and the ACK flags. It acknowledges a
connection request sent from a client, letting the client know that the connection
was created at the server.

Direction: server to client

SYN/NAK packet
Indicated by setting the ARQ, the SYN and the NAK flags. It is a negative
acknowledgement to a connection request, letting the client know that the server
was not able to create the connection, and that the transmission failed.

Direction: server to client

Reliable data packet
Is indicated by setting only the ARQ flag. The packet informs the receiver that

1A flag is said to be ”set” if its value is ’1’



23 CHAPTER 4. DESIGN SPECIFICATIONS

the content of the packet is sent using the reliable protocol, thus requiring specific
actions based on the header content.

Direction: client to server

ACK packet
Indicated by setting the ARQ and the ACK flags. The packet type is used to
acknowledge received payload.

Direction: server to client

NAK packet
Indicated by setting the ARQ and the NAK flags. It requests the client of a
connection to retransmit all packets from a specified sequence number.

Direction: server to client

FIN flag
Indicated by setting the ARQ and the FIN flags. It is sent as the last packet from
client to server, requesting the server to release its connection, thus terminating
the transmission.

Direction: client to server

FIN/ACK packet
Indicated by setting the ARQ, the FIN and the ACK flags. It acknowledges a
connection termination request sent from a client, letting the client know that
the connection was terminated at the server, and that the transmission was a
success.

Direction: server to client

Unreliable data packet
The reliable features of NRP can be turned o↵ by not setting the ARQ flag. This
will result in the receiver not taking the header fields into account when processing
a packet, thus providing unreliable, connectionless service. The header fields will
still be present in the packet, which is useful because the NUTS implementation
of the lower level CubeSat Space Protocol does not contain a field to specify the
transport layer protocol.

Direction: client to server

4.3 Connection

A connection oriented transmission begins with a handshake between the two end-
points of the transmission, prior to sending any data[5]. During the handshake,
each endpoint exchange information needed to transfer the following data, accord-
ing to a specified transmission protocol. The connection is then preserved during



4.3. CONNECTION 24

the entire time the transmission is active, and terminated once all data is success-
fully sent, or the transmission has failed. A connection oriented service facilitates
several features important for a reliable transmission, such as error detection, ac-
knowledgements, retransmission of lost packets, and correct order of data.

In NRP, the handshake is integrated with the first payload of a packet stream, thus
slightly separating itself from the definition of a connected oriented service, while
still facilitating the features for a reliable transmission. The separate handshake
is generally useful to avoid sending unnecessary data through a larger network to
a endpoint that may not exist, but is found unnecessary for the more predictable,
and less congested, network of the NUTS satellite and GS.

The following subsections presents the design of the NRP connection handling.
Figures that explains NRP behavior not specified in this section is available in
Appendix A.2.

4.3.1 Setting up the connection

All reliable transmissions are based on a set connection between two endpoints,
as illustrated in Figure 4.3. A client populates a connection structure from the
connection pool with information about the transmission before sending a SYN
packet to the server. The sequence number of the SYN packet is set to the size
of the total payload, in bytes, making the server able to allocate memory for the
content of the stream. The payload field is filled with the first part of the segmented
payload, thus integrating the connection handshake and the first part of the payload
within the same packet.

Figure 4.3: Setup and termination of a connection

A server receiving a SYN packet will request the population of an available connec-
tion structure and allocate a bu↵er for the payload of the stream. If successful, the
payload of the SYN packet will be stored in the bu↵er, and a SYN/ACK packet
will be sent in return. The SYN/ACK packet lets the client know the connec-
tion request was successful, and that the server is awaiting the next packet of the
stream.

The client will retransmit its SYN packet if it does not receive a reply within a



25 CHAPTER 4. DESIGN SPECIFICATIONS

Figure 4.4: Packet loss during connection

set time, as illustrated in Figure 4.4. If the server does not reply within three
retransmissions, the sending is canceled and the sending task is notified through
an error code.

4.3.2 Refusing a connection attempt

Figure 4.5 illustrates the occurrence of a refused connection. When a server receives
a SYN packet, but is not able to create a connection, it can respond back to the
client with a SYN/NAK packet, refusing the connection attempt. The SYN/NAK
packet carries an 8-bit error code in the payload field, explaining the reason for
refusing the connection. Note that a SYN/NAK packet is a special case in the
NRP design, as it is the only event in which payload is transmitted in a server to
client direction.

Figure 4.5: A connection is refused by the server



4.4. SEQUENCE AND ACKNOWLEDGMENT NUMBER 26

4.3.3 Closing the connection

Figure 4.3 also illustrates the termination of an active connection. When a FIN
packet is received at the server, it releases its connection structure, and notifies the
task listening to the specific port that a message has been received, with a pointer to
the full payload of the stream. The server proceeds to acknowledge the FIN packet
with a FIN/ACK packet, which makes the client release its connection structure.
When the connections at both the server and the client has been released, the
transmission is completed and and the sender task is notified whether or not the
transmission was successful.

4.3.4 Connection timeout

The NRP protocol is designed to transmit information between a satellite and a
GS. Hence, at any point, part of the communication link between two endpoints
may disappear, due to the satellite being out of reach from the GS. If contact
is lost before connection initiation, the connection attempt will result in a triple
timeout. However, if the connection is already created between the end points,
the loss of contact must be handled di↵erently. After a triple ACK timeout, the
client releases its connection and an error is returned. On server side, there are no
indications of the transmission having failed, as it simply just stops receiving the
expected packets from the client. Therefore, a connection timeout is used to avoid
the connection to remain active in the server when contact is lost.

t
conn

� (N
retrans

+ 1) ⇤ t
ACK

max

(4.1)

The connection timeout is given by Equation 4.1, where t
ACK

max

denotes the
maximum timeout of acknowledgements in the network, and N

retrans

denotes the
maximum number a packet is allowed to be retransmitted. The connection timer
is necessarily reset each time a new packet is received, as this is an indication of
the connection still being active. By exceeding the maximum client side timeout,
a triple t

ACK

max

, unwanted connection timeouts are prevented.

4.4 Sequence and acknowledgment number

Correct ordering and delivery of packets in a stream is handled using a sequence
number, where each number represents one byte of the total stream. As illustrated
in Figure 4.6, the initial sequence number of a transmission is set to the total
payload of the stream in bytes, informing the server of the bu↵er size it has to
allocate to receive the message. For each packet sent, the number is decreased
by the size of the payload in that packet, supplying the receiving node with an
indicator of the sequence number in the next expected packet.



27 CHAPTER 4. DESIGN SPECIFICATIONS

Figure 4.6: NRP streaming 150 bytes of payload over three packets

As packets are received at the server, their sequence numbers are checked against
the next expected sequence number stored in the connection reference of the trans-
mission. If the numbers match, an ACK packet is transmitted back to the client,
and the sequence number field is used as an acknowledgement number field instead,
informing the client that the server has received all bytes up to, but not included,
the given ACK number. When the client receives an acknowledgement with ACK
number 0, it knows that the entire payload of the stream has been transmitted
successfully, and it closes the connection with a handshake.

Note that the three byte sequence field limits the total payload of the stream to
224 bytes, or about 16.7MB, which is well within the requirements presented in
Section 3.3

4.5 Cyclic Redundancy Check

A 16 bit Cyclic Redundancy Check (CRC) is computed and added after the payload
to assure the packets validity. CRC is an error detection method commonly used in
computer network protocols, popular because of its ability to detect multiple error
scenarios at a low computational cost[23]. Kurose and Ross states that proper
implementations of CRC are able to detect any b

e

number of bit errors while
b
e

 r+1, where r is the number of redundant bits added to the packet[5, p. 469].
It follows that for any bit error bursts of b

e

> r + 1, the probability of detecting
the packet to be erroneous becomes P

e detected

= 1� ( 12 )
r

The NUTS project has already implemented link layer error detection and correc-
tion for the radio links, through the AX.25 and NGHam protocols, yielding the
16 bit CRC to be a su�cient error detection technique for the NUTS Reliable
Protocol.



4.6. EFFICIENCY 28

4.6 E�ciency

4.6.1 Payload

In Section 2.3 we determined the best and worst case payload e�ciencies of packets
transmitted across the radio link, without a transport layer protocol. Tables 4.1 and
4.2 presents the updated payload e�ciencies for the UHF and VHF radios when the
redundant 7 byte NRP header is contained in the packet, and acknowledgements
of the data is required. Note that the maximum payload of a NRP packet is set
to 209 bytes for both AX.25 and NGHam, as the radio protocol is unknown from
the transport layers point of view. The maximum packet payload, 220 bytes, of
NGHam is reached with 209 bytes NRP payload, 7 bytes NRP header, and 4 bytes
of CSP header.

Table 4.1: Theoretical payload e�ciency with NRP using the AX.25 protocol
Case B

pay

B
tot

B
ackpkt pl

e↵

best 209 255 46 ⇡ 69.4%
worst 1 47 46 ⇡ 1.1%

Table 4.2: Theoretical payload e�ciency with NRP using the NGHam protocol
Case B

pay

Padding (B) B
tot

B
ackpkt pl

e↵

best 209 0 266 78 ⇡ 60.8%
worst 1 27 78 78 ⇡ 0.6%

This further allows estimations of the NUTS radios R
eff

using the NRP protocol
with a max packet payload size, pl

max

, of 209 bytes, which is presented in Table
4.3.

Table 4.3: Theoretical e↵ective throughput of the VHF and UHF radios with NRP
Protocol NRP pl

max

R estimated R
e↵

AX.25 (UHF) 209B 9600bit/s b-c: ⇡ 6650bit/s
NGHam (VHF) 209B 9600bit/s b-c: ⇡ 5850bit/s

4.6.2 Transmission

Using the data in Table 4.3 and Equation 2.2 we are able to estimate the time it
will take to send a picture through the slowest and most important NUTS commu-
nication link, the radio. Figure 4.7 illustrates a time comparison of the two radio
link protocols when sending a stream of 30KB, using the NRP protocol. The figure
shows that there is only a small di↵erence between the UHF and the VHF radios
when transmitting payloads using the NUTS Reliable Protocol.



29 CHAPTER 4. DESIGN SPECIFICATIONS

Figure 4.7: Theoretical time comparison of the UHF(AX.25) and VHF(NGHam)
radios when sending 30KB using NRP



4.6. EFFICIENCY 30



CHAPTER

5

IMPLEMENTATION

This chapter presents an implementation of NRP v.1.0 in the software repository of
the NUTS CubeSat. The implementation is i written in C programming language,
and builds on already implemented versions of FreeRTOS and CSP. All source code
is available at NUTSs BitBucket git repository, and in the archive file attached to
this report.



5.1. OVERVIEW 32

5.1 Overview

NRP is implemented on top of the already implemented CSP network layer protocol
in a sub-modules internal communication structure, as illustrated in Figures 5.1
and 5.2. One FreeRTOS task, the NRP task, is responsible of receiving CSP
packets from its underlying layer, where each packet is processed according to its
NRP packet type. The task provides reliability by sending acknowledgements for
received packets, and stores the data of a stream into an allocated bu↵er.

Multiple FreeRTOS tasks is used to listen to specific ports. When a stream has
completed, its payload is sent to the task listening to the destination port.

Figure 5.1: Communication structure
before NRP implementation

Figure 5.2: Communication structure
after NRP implementation

5.1.1 FreeRTOS

FreeRTOS is an open source, cross platform, real time operating system (OS) widely
used for micro-controllers and microprocessors[24], already implemented to the



33 CHAPTER 5. IMPLEMENTATION

NUTS software repository. The OS features creation of parallel tasks, semaphores
and queues, which is used extensively in the protocol implementation.

5.2 Segmentation and encapsulation

For payloads longer than the maximum NRP packet payload size pl
pkt

max

, where
pl

pkt

max

 255, segmentation is necessary. Figure 5.3 illustrates the segmentation
and encapsulation method of the NRP protocol. Here, the payload is divided into
separate parts, each part being smaller or equal to pl

pkt

max

, before setting header
fields such as the sequence number and flags. Next, the NRP header and packet
payload is used together with the CSP header to calculate a CRC of 16 bits. Finally,
the packet content is encapsulated by the NRP header and the CRC is appended
to the end of the payload.

In the NUTS implementation of NRP, pl
pkt

max

is set to a maximum of 209 bytes, as
this is the maximum payload size available when using the NGHam protocol.

Figure 5.3: NRP segmentation and encapsulation

Segmentation is not necessary for payloads shorter than pl
pkt

max

, thus leaving only
the steps of filling header fields and encapsulate the packet.

5.3 Connection

The NRP connection pool consists of an array of struct data structures, storing
information about each end point of a connection. The most important values of
a NRP connection structure is presented in Table 5.1.



5.3. CONNECTION 34

Table 5.1: Important values in a NRP connection structure
Variable Description
client socket info A struct containing the address and

port of the client
server socket info A struct containing the address and

port of the server
window avail The number of unsent packets within the

sender window, only used by the client
packets recv Server - Number of payload packets received.

Client - Number of acknowledgements received
init seq num The initial sequence number, the

payload of the stream in bytes.
next expected seq num The expected sequence or acknowledgement

number in the next packet to be received
init timestamp Connection initiation timestamp
last updated timestamp Timestamp from last received packet
*recv packet t pointer to the first byte of the payload

5.3.1 Mutual exclusion

Several of the variables in each connection struct is read and changed by multiple
concurrently running FreeRTOS tasks, a concept described by Burns and Wellings
as shared variables[25, p 137-139]. With shared variables, a problem arises in
the event where a sender task and a receiving task performs overlapping memory
instructions on the same connection variable at the same time, causing the stored
values to become corrupt. To overcome this unwanted behavior, we introduce
critical sections. These are sections where only one task can operate at the same
time, thereby protecting the shared variables from corruption. In FreeRTOS, and
many other OS’s, critical sections can be implemented with a technique known
as mutual exclusion (mutex)[26]. The FreeRTOS website describes the mutex
functionality as follows;

“When used for mutual exclusion the mutex acts like a token that is used

to guard a resource. When a task wishes to access the resource it must

first obtain (’take’) the token. When it has finished with the resource it

must ’give’ the token back - allowing other tasks the opportunity to access

the same resource.”

– FreeRTOS website[26]

In the NUTS NRP implementation, the entire connection pool is guarded by one
single mutex. Before altering any information stored in one of the connection
structs, the running task must obtain the connection pool mutex successfully. Once
the mutex is taken, the task can change both the values in the variables of each



35 CHAPTER 5. IMPLEMENTATION

struct in the pool array, and their order in the array. The procedure of taking the
mutex is illustrated in Figure 5.4

Figure 5.4: Obtaining the connection pool mutex to alter the connection values

5.3.2 Active first principle

The connection pool array is implemented as ”active first”, meaning that active
connections are always indexed before inactive connections. All interactions with
the connections involves an iteration through the connection pool array until the
desired connection is found. By preserving the active first principle, less iterations
are needed for each interaction, resulting in faster computation.

5.3.3 Activation and termination

Upon connection activation, the connection pool array is iterated until an inactive
connection is found. The connection is then activated if the connection pool is
not full and no other reasons to reject the new connection is found. Terminating
a connection will re-index the other active connections to fulfill the principle of
active first.

5.3.4 Multiple simultaneous connections

Figure 5.5 illustrates how a sub-module is implemented to have multiple active con-
nections with other sub-modules simultaneously. When a client-to-server packet is
received, its source address and port number is extracted and compared to the
client socket info field of the active connections in the connection pool. Consecu-
tively, a server-to-client packet will compare the source fields to the server socket info

of the connection pool. If the port and address of an active connection matches the
received packet, its information is used to process the packet. The implementation
is thus necessarily limited to only one simultaneous connection between two specific
ports in the network at any time.



5.4. CRC 36

Figure 5.5: Multiple active connections within the connection pools of NUTS sub-
modules.

5.4 CRC

The NRP implementation uses a publicly available CRC-16 implementation by
Michael Barr to check the packets for bit-errors[27]. Barrs implementation features
fast individual CRC computing due to its use of a pre-calculated look-up table,
using 256 bytes of memory. The look-up table is recalculated every 10 minutes to
resolve eventual corruption caused by cosmic radiation.

5.5 Data transfer

Reliable transfer of data is implemented abstractly for the user of NRP, through a
simple API.

5.5.1 Sending

Once NRP is initialized, it can be used to send reliably with the nrp send function
shown in Listing 5.1. The parameters in the nrp send function specifies the con-
nection details, such as the address and ports of the source and destination, the
payload length and a pointer to the data, and a priority. The priority is directly
transferred to the CSP library, where bu↵ered packets with higher priority are sent
before lower prioritised packets.



37 CHAPTER 5. IMPLEMENTATION

int8_t nrp_send(const module_socket_t *dest ,
const module_socket_t *source ,
const uint8_t *payload ,
uint32_t payload_length ,
uint8_t priority );

Listing 5.1: NRP send function

A call to the nrp send function initiates the procedure illustrated in Figure 5.6,
which continues until the transmission is either finished with success, or stopped
and an error code is returned. The CSP dummy header that is generated in the
procedure is used to include the CSP header in the calculation of the CRC.

Figure 5.6: NRP send reliable data procedure



5.5. DATA TRANSFER 38

5.5.2 Receiving

A single FreeRTOS task is continously listening to all CSP ports, thus receiving all
packets from the underlying network layer. When a packet is received, it is first
checked for its validity by calculating the expected CRC. The packet is assumed
valid if the calculated CRC value matches with the CRC appended to the packet.
An invalid packet is discarded, while valid packets are processed depending on the
value of the flag fields. Figure 5.7 illustrates the general receive procedure, while
flag specific behavior is presented with figures in Appendix A.1.

Figure 5.7: NRP receive procedure

5.5.3 Port listeners

Content is stored in the preallocated memory by subtracting the received packets
sequence number from the initial sequence number of the transmission, as illus-
trated in Figure 5.8. When the the entire payload of a stream has been received,
the receive task generates a struct containing all necessary information about the
transmission and a pointer to the allocated data bu↵er. The struct is then added to
a queue, to be received by the task listening to the port the stream was sent to. The
queueing of fully received payload streams is illustrated in Appendix A.1.6.



39 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Storing data to reproduce original payload

5.6 Dynamic timeout

The Round-Trip-Time (RTT) is calculated by the client in the beginning of every
transmission. It starts a timer right before sending the SYN packet to the server,
and ends it immediately after receiving the SYN/ACK reply. This RTT then
becomes the reference point for the ACK timeouts for all the following packets in
the stream. ACK timeouts are simply obtained by a multiplication of the RTT, as
shown in Equation 5.1, where t

ACK

must be within the boundaries of t
ACK

min

and
t
ACK

max

. The triple RTT timeout provides an e�cient and reasonable timeout for
the ACKs, while remaining simple and a↵ordable to implement.

t
ACK

= RTT ⇤ 3 (5.1)

Figure 5.9 illustrates the functionality of the t
ACK

.

Figure 5.9: Calculating a timeout for each individual stream



5.6. DYNAMIC TIMEOUT 40



CHAPTER

6

TESTING

To verify that the behavior of the NRP implementation is according to the protocol
design described in Chapter 4, a series of tests has been created and executed. All
tests are performed over a test setup with Inter-Intergrated Circuit (I2C )-links.
In short terms, the functionality tested for is listed below

• Segmentation and reproduction of original payload

• Robustness with CRC-16 error detection

• Go-Back-N ARQ functionality

• Receiving data streams from multiple senders simultaneously

• E↵ect of Go-Back-N ARQ window sizes

• E↵ect of dynamic ACK timeouts

NRPs underlying CSP protocol has been concluded to work for the NUTS mis-
sion by Jahren in the report Implementing CSP over I2C for the new repository

on the NTNU Test Satellite, and will therefore not be specifically tested in this
report[6].



6.1. TEST SETUP 42

6.1 Test setup

6.1.1 Hardware

The hardware setup is the same as in Jahrens test of CSP in 2014, using three Atmel
UC3-A3256 development boards to represent di↵erent sub modules of the satellite,
and an I2C link as the communication channel[6]. An overview of the setup is
illustrated in Figure 6.1. Here, the OBC, ADCS and camera sub-modules are
represented, although their functionality is limited to NRP communication.

Figure 6.1: Schematics of the test setup with three Atmels UC3-A3 development
boards connected through an I2C link.

Each of the Atmel UC3-A3 development boards are connected to a computer
through UART to RS232 and RS232 to Universal Serial Bus (USB) adapters which
enables serial communication through a Command Line Interface (CLI) im-
plemented for the NUTS project by Thomas Nornes in 2014[28]. The CLI is ran
by a separate FreeRTOS task and is used to tests and to setup the modules with
di↵erent CSP addresses and ports.

6.2 Software

Data from the tests are collected by transmitting values from the sub-modules to
a file on a computer through the serial communication. The data is then read
and presented by various Python scripts using matplotlib, a python library for
presentation of graphs and plots[29].



43 CHAPTER 6. TESTING

6.3 Heap limitations

The available internal Static Random Access Memory (SRAM) of the Atmel UC3-
A3s is limited to 64KB[30]. Almost all of the memory is already used in the FreeR-
TOS, CSP and NRP implementations, leaving only the leftover memory available
to be used in testing. Solving this was attempted in this thesis by trying to move
the heap into an external SRAM, but it was never completed successfully. How-
ever, Birkeland has stated that an extension of the memory is expected to be
implemented for some of the sub-modules in a later revision of the satellite, as this
is needed in order to transmit large sized pictures[2].

Limited memory makes it impossible to test payloads in the size range of the
pictures that will be sent between the satellite and the Ground Station. Instead,
maximum NRP packet sizes has been adjusted considerably down in the following
tests to simulate the many individual packets of a large payload stream.

6.4 Bit-error function

In order to test the NRP implementation for its reliable features, it is necessary
to have a function that can simulate the bit-flip errors present in space and radio
transmissions. The created function randomly inserts a given number of bit-flips
into a NRP packet, and has a set probability of being called right before the packet
is transmitted. The CSP header is not included in the function, as this is processed
in the network layer. The source code for the function is presented in Appendix
C

6.5 Test 1: Segmentation and encapsulation

The test will prove that the NRP implementation is able to take payloads longer
than the maximum payload of a NRP packet, split the payload into smaller chunks
of data, encapsulate each chunk with an appropriate NRP header, before sending
each packet individually over the network. On the receiving end, the original full
payload will be reproduced by putting the chunks together in correct order. The
segmentation and encapsulation is considered working successfully if it can segment
data into

6.5.1 Procedure

A payload of 500 bytes is sent with a maximum NRP paylaod size, pl
pkt

, of 1
to 10 bytes. Thus, in order to send the full payload it needs to be segmented
into N chunks of data, where N is given by Equation 6.1. The number of chunks



6.5. TEST 1: SEGMENTATION AND ENCAPSULATION 44

Table 6.1: Stream specifications for the ”Reliability with Go-Back-N” test
Specification Value

Streams 20 ⇤ 1
pl

tot

500 bytes
pl

pkt

1 - 10 bytes

is printed out before sending the stream, indicating if the payload was correctly
segmented.

N � pl
tot

pl
pkt

(6.1)

Each chunk of data is then encapsulated by a NRP header with values according
to the protocol, creating a packet ready for transmission. The bit-wise represen-
tation of the packet is then printed to the CLI, where the values are checked for
correctness.

6.5.2 Expectations

The results are expected to show payloads being segmented into a specific number
of packets depending on the pl

pkt

size, as shown in Table 6.2. It is further ex-
pected that every first packet of the stream will have set the SYN flag, indicating a
connection request. The sequence number of the first packet should be 500 bytes,
and decrease with pl

pkt

for each packet. The last packet of the stream should not
contain a FIN flag, as this is generated as a separate packet.

Table 6.2: Expected results for the ”Segmentation and encapsulation” test
pl

pkt

N packets Sequence numbers
1 500 (500, 499,... ...,1)
2 250 (500, 498,... ...,2)
3 167 (500, 497,... ...,2)
# # #
10 50 (500, 490,... ...,10)

6.5.3 Result

The segmentation and encapsulation test was successful, as all segmentations and
encapsulations resulted in the expected values of Table 6.2. Every streams first
packet had set the SYN flag, while the other packets had only the ARQ flag,
indicating that the stream was using the NRP reliable functionality.



45 CHAPTER 6. TESTING

6.6 Test 2: Detection of bit-errors

The NRP CRC-16 generator is a published implementation by Michael Barr from
2000, and is considered to work properly[27]. However, it is important to make
sure that it works as expected in the NRP implementation, in order to discard this
source of error from other tests.

6.6.1 Procedure

Table 6.3: Stream specifications for the ”Detection of bit-errors” test
Specification Value

Streams 9 ⇤ 5000
pl

tot

500 bytes
pl

pkt

5, 48, 102 bytes
w 1

PER 0%, 5%, 20%

The test is performed by sending a total of 45 000 streams of 500 bytes with the
di↵erent pl

pkt

and PER shown in Table 6.3. The window size is set to 1 to avoid
unnecessary retransmissions. The sending node, the ADCS, counts the number of
packets it inserts errors in, and prints the result to the CLI at the end of each 5000
streams. The receiving node, the OBC, counts the number of packets it throws
away due to CRC calculation not matching the CRC value appended to the packet.
The OBC prints out the number of invalid packets it has detected after receiving
all of the streams.

The test is also ran with di↵erent pl
pkt

sizes to verify that packet sizes should be
insignificant when detecting errors. The pl

pkt

sizes is chosen randomly do give a
range of payload sizes, as testing for all packet sizes between 1 and 255 is imprac-
tical.

6.6.2 Expectations

The I2C link is very stable, and is thus not considered a source of error itself.
This means that all detected errors should be caused by artificially inserted bit-
flips by the ADCS, thus making the packet error count equal on each side of the
transmission.

6.6.3 Result

The test was successful, with all corrupted packets being detected and discarded.
There was no evidence of corrupt packets being accepted or valid packets being



6.7. TEST 3: RELIABILITY WITH GO-BACK-N 46

discarded.

6.7 Test 3: Reliability with Go-Back-N

The test is designed to prove that the GBN ARQ protocol is working correctly,
and that error codes are returned for unsuccessful transmissions. The GBN func-
tionality is responsible of resending packets that has been introduced to errors,
making sure that all packets of a stream is received successfully in the server of a
connection.

6.7.1 Procedure

Table 6.4: Stream specifications for the ”Reliability with Go-Back-N” test
Specification Value

pl
tot

500 bytes
pl

pkt

5 bytes
w 5

PER 0% & 2%
t
ACK

3 ⇤RTT
SY N

The camera sub-module takes 500 specific bytes of payload and segments and
encapsulates it to a stream of 100 packets containing 5 bytes of data each, before
sending the stream to the OBC using NRPs reliable functionality. The camera
measures the time it takes for the entire stream to be transmitted successfully,
and prints the result through the CLI. An unsuccessful stream transmission, which
should cause an error to be returned to the sender task of the camera, will be
printed with time 0. The OBC prints out error messages to the CLI, indicating
if a SYN/NAK was sent, or if a successfully received stream contained corrupt
data.

Each stream of 500 bytes is sent 20 000 times with 0% PER, and another 20
000 times with 2% PER, where each corrupt packet contains between 1 and 16
bit-flips.

6.7.2 Expectations

The result of the test is expected to show a large number of streams being sent
successfully with Go-Back-N functionality, even with the packet error probability of
2%. The streams with 0% PER should have a close to constant stream transmission
time, while the streams with 2% PER are expected to be spread over a larger
time interval, due to retransmission of corrupted packets. The test with 2% PER



47 CHAPTER 6. TESTING

is also expected to show spikes ranging well above the average time, due to the
probabilistic event where SYN or SYN/ACK packets are corrupted. These packets
are sent before the dynamic acknowledgement timeout, t

ACK

is set, resulting in
a maximum ACK timeout of 3000ms before retransmission. The probability P

e

of a packet or its acknowledgement being corrupted is 4%, giving the estimated
occurrences, O

est

, shown in Table 6.5. For the stream failure rate we estimate that
each packet and ACK transaction has a probability of slightly more than 2%, as
the packets can be acknowledged by the ACK belonging to the next packet of the
window, thus almost removing the ACK-loss error source.

Table 6.5: Estimated occurrences of stream failures and spikes
Event in stream P

e

O
est

Stream failure 2% < P
e

est

< 2.5% 16 < O
est

< 32
SYN or SYN/ACK loss once 4% 800
SYN or SYN/ACK loss twice 0.16% 32

For the test to be successful, there should be no occurrences of payload being re-
ceived with errors after the entire stream is completed, and all unsuccessful streams
should result in an error code being returned to the sending task.

6.7.3 Result

The test ran for a total of approximately 12 hours, without a single occurrence of
received payload being corrupted after stream completion. All erroneous stream
transmissions were registered by the sending module, and the test thus concludes
the GBN functionality to be successfully implemented.

Figure 6.2: Measured stream transmission time for 0% PER with GBN

Figure 6.2 displays the time it took for each of the 20 000 streams of 100 packets to
reliably be transmitted when no bit-errors were inserted. The figure shows that the
time is fairly constant for all streams, except for two cases where the transmission
failed, indicated by a time of 0. The OBC printed out two occurrences of SYN/-
NAKs being sent, which explains the two transmission failures. The SYN/NAKs
were caused by the OBC not being able to allocate 500 bytes for the payload.



6.7. TEST 3: RELIABILITY WITH GO-BACK-N 48

The reason for the allocation errors is unknown, but a realistic scenario would be
that it was caused by a delayed deallocation of a previous stream, leaving too little
memory available for a new stream. This event could have happened, as there
was not enough memory available to allocate multiple 500 byte payloads at the
same time, and because the payload memory is allocated and deallocated by two
di↵erent FreeRTOS tasks.

Figure 6.3: Measured stream transmission time for 2% PER with GBN

Figure 6.3 displays the same timing diagram for the 20 000 streams with 2% PER.
The graph shows that these streams were highly time variant, ranging from 700ms
to just below 8000ms.

Figure 6.4: Closeup of the first 1000 streams in 2% per test

Figure 6.4 is a closeup of the first 1000 streams in Figure 6.3. The graph shows
that most streams are transmitted within a range of 700 to 2000 milliseconds, while
there are occasional occurrences of spikes and failures. The spikes can be divided
into two groups, where the first group average around 4000ms and the second
average around 7000ms. This is a clear indication of the expected 3000ms and



49 CHAPTER 6. TESTING

6000ms ACK timeouts for one and two SYN retransmissions, respectively.

Table 6.6: Measured occurrences of spikes and SYN retransmissions with 2% PER

Event L
lower

(ms) L
upper

(ms) O
est

O
m

Fails 0 199 16-32 27
Normal 200 2999 19 150 19 206

One SYN retrans. 3000 5999 800 743
Two SYN retrans. 6000 1 32 24

In Table 6.6, each measured stream time is placed within upper and lower limits, L,
to compare the measured results with the estimated occurrences in Table 6.5. The
measurements shows that the GBN functionality works as expected, with all mea-
sured occurrences, O

m

, being within reasonable deviation of the estimations.

6.8 Test 4: Simultaneous streams

The test is designed to check whether or not the NRP implementation can han-
dle multiple connections simultaneously, as stated in Section 5.3.4. To test this,
it would have been best to transmit one very big payload stream from two sub-
modules to one simultaneously, but this was not possible due to the heap limita-
tions. Instead, many smaller streams are transmitted directly after each other from
the two sub-modules, and the time of arrival for each stream is measured in the
receiving module.

6.8.1 Procedure

Table 6.7: Specifications for the ”Simultaneous streams” test
Specification Value

streams 2 ⇤ 1000
pl

stream

500 bytes
pl

pkt

5 bytes
w 5

PER 0%
t
ACK

3 ⇤RTT
SY N

The ADCS and camera sub-modules spams the OBC with streams having the
specifications presented in Table 6.7, until they each have successfully sent 1000
streams. An unsuccessful stream transmission will result in the sender being inac-
tive for slightly longer than the set connection timeout, before retransmitting the
entire stream. Both the ADCS and the camera will be transmitting with the same
CSP priority.



6.8. TEST 4: SIMULTANEOUS STREAMS 50

6.8.2 Expectation

time

Streams

Figure 6.5: Expected behavior of simultaneous stream test

The receiver, the OBC, is expected to be able to receive equally from both the
ADCS and camera, with a result close to the illustration in Figure 6.8.2. Here,
the green and blue arrows represents the number of successful transmissions from
the ADCS and camera respectively compared to the time it was received at the
OBC.

6.8.3 Result

Figure 6.6: Test with multiple streams to same receiver

Figure 6.6 presents the time schedule of successfully arrived streams in the OBC,
where the green and blue line represents the ADCS and camera respectively. The



51 CHAPTER 6. TESTING

graph shows results visually close to what was expected, with each sub-module
managing to transmit all the 1000 streams within approximately the same time
period. However, the close-up illustration in Figure 6.7 shows one of several exam-
ples in the data where one sub-module is on hold or unable to transmit an entire
stream for a longer period of time, while the other sub-module is transmitting its
streams successfully. This is most likely a result of one of the sub-modules failing
a stream, and then being held back until the connection timeout has ran out on
the receiver side.

Figure 6.7: Closeup of test with multiple streams to same receiver

No explanation for the failing streams has been found, but it is assumed that it
is caused by the OBC module getting too many packets simultaneously, thus not
being able to process both streams. Once the ADCS has stopped transmitting due
to a stream failure, the camera is able to transmit perfectly, and vica versa. The
problem does not prevent the implementation from working reliably, but lowers the
throughput due to tasks waiting for connection timeouts.

6.9 Test 5: E↵ect of window size

In Section 2.2.2 it was stated that a Go-Back-N protocol provided faster service
than a simpler stop-and-wait ARQ implementation, due to a sliding windows higher
utilization of the communication channel. To prove that this is the case for the
NRP implementation presented in this report, we need to perform speed tests with
di↵erent window sizes and compare the results.

It is important to note that a Go-Back-N protocol with window size, w = 1, is in
fact a Stop-And-Wait protocol, as each packet sent will have to be acknowledged
before transmitting the next packet of the stream.



6.9. TEST 5: EFFECT OF WINDOW SIZE 52

6.9.1 Procedure

Table 6.8: Specifications for the ”E↵ect of window size” test
Specification Value

Streams 36 ⇤ 2000
pl

stream

500 bytes
pl

pkt

5 bytes
w 1,2,5,10

PER 0, 0.5, 1, 2, 5, 7.5, 10, 15, 20, 30 (%)
t
ACK

3 ⇤RTT
SY N

2000 streams of 500 bytes segmented into 100 packets are transmitted from the
ADCS to the OBC for each of the window sizes and PERs in Table 6.8, thus giving
a total of 36 tests. The average time, number of failed stream transmissions and
measured PER is printed through the CLI at the end of each test, and the results
are saved.

6.9.2 Expectations

The test is expected to show improved stream transmission times when using GBN
functionality, as opposed to SW, for all variants of packet error ratios.

For the stream failure rates, it is expected higher failure rates for lower values of w.
This is expected due to ACK packets ability to acknowledge previous data packets
in addition to the packet it was intended for, thus reducing the probability of a
corrupted ACK causing retransmissions.

6.9.3 Result

Figure 6.8 shows the measured average speed of each stream, for all the di↵erent
window sizes. The graph displays a clear improvement in speed when w � 2, with
best results for w = 5. As the PER increases, the time it takes to transmit a stream
increases exponentially for all w > 2 and proportionally for w = 1. A table with
all the data from Figure 6.8 is given in Appendix D.

The stream fail rate is illustrated in Figure 6.9, showing close to expected results.
The failure rate is highest for w = 1, almost equal for w = 5 and w = 10, while
w = 2 has the lowest rate.



53 CHAPTER 6. TESTING

0 5 10 15 20 25 30
0

1

2

3

4

5

Packet loss (%)

A
vg

.
ti
m
e
to

tr
an

sm
it
st
re
am

(s
ec
on

d
s)

w=1
w=2
w=5
w=10

Figure 6.8: Graphical representation of stream transmission time for di↵erent PERs

0 5 10 15 20 25 30
0

5

10

15

20

Packet loss (%)

T
ra
n
sm

is
si
on

fa
il
s
(%

)

w=1
w=2
w=5
w=10

Figure 6.9: Graphical representation of the registered transmission fails

6.10 Test 6: E↵ect of Dynamic timeout

The Figure 6.8 from the previous test showed that stream transmission times de-
creased using GBN compared to SW. In this test, we want to investigate the impor-
tance of a dynamic timeout. As the results of the previous test showed transmission



6.10. TEST 6: EFFECT OF DYNAMIC TIMEOUT 54

times with a dynamic timeout, we will in this test use a static timeout, and look
at the di↵erences between the results.

6.10.1 Procedure

Table 6.9: Specifications for the ”E↵ect of dynamic timeout” test
Specification Value

Streams 21 ⇤ 1000
pl

stream

500 bytes
pl

pkt

5 bytes
w 1,5,10

PER 0%,0.5%,1%,2%,5%,10%,20%
t
ACK

1000ms

The procedure is almost identical to the ”E↵ect of window size” test, with the
exception of only testing for w’s of 1,5 and 10, and with only 1000 streams for
each individual test. The static timeout, t

ACK

, is set to 1000milliseconds (ms), as
shown in Table 6.9.

6.10.2 Expectations

The test is expected to show slower stream transmission times for all window sizes
compared to the results from the ”E↵ects of window size” test.

6.10.3 Result

The results of the test is presented in Figure 6.10. As expected, each of the mea-
sured streams has a much higher stream transmission time than for the dynamic
timeout results in Figure 6.8 of the previous test. At 10% PER, the stream time
has close to doubled for w = 5 and w = 10, and increased by a factor of 5 for
w = 1.



55 CHAPTER 6. TESTING

0 5 10 15 20
0

1

2

3

4

5

Packet loss (%)

A
vg

.
ti
m
e
to

tr
an

sm
it
st
re
am

(s
ec
on

d
s)

w=1
w=5
w=10

Figure 6.10: Graphical representation of the speed di↵erences with static timeout
at 1000ms



6.10. TEST 6: EFFECT OF DYNAMIC TIMEOUT 56



CHAPTER

7

DISCUSSION

The purpose of this chapter is to discuss the results from Chapter 6, determine if
the protocol has been successfully implemented, and to investigate the importance
of further development and testing of NRP.



7.1. PERFORMANCE OF THE NRP IMPLEMENTATION 58

7.1 Performance of the NRP implementation

The tests performed in Chapter 6 proved in many ways the NRP implementation to
be successful. It was shown that the segmentation part of the implementation man-
aged to split large payloads into smaller chunks of data, and that each chunk was
encapsulated by correct header fields. Further it was proved that the implementa-
tion of CRC was working, with packets containing bit-errors being discarded, and
valid packets being accepted. The GBN functionality test showed that the reliabil-
ity feature of NRP was working as expected, with high probability of transferring
payloads successfully over the I2C link with a relatively high Packet Error Rate
of 2%. All unsuccessful transmissions were reported and feedback was given to
the task responsible of sending the data, thus o↵ering reliable service. The e↵ects
of using a sliding window and dynamic timeout was also tested, and proved to
significantly improve the transmission time and throughput of the protocol.

Only the test of multiple streams showed results that were di↵erent from the ex-
pectations, with a server node that was not capable of receiving payload from two
client nodes simultaneously. This might have been the consequence of the server
not being able to process all the packets quick enough, resulting in packets being
thrown out of the receiving bu↵er prior to being processed, although this was never
proven. It is therefore advised to further test the protocol implementation, to find
and potentially correct the error source of this problem.

7.2 Real scenario testing

The NRP implementation presented in this report was only tested on an I2C link,
which will be the internal physical layer of the NUTS satellite. The results showed
that the implementation works for this purpose, but should be tested further in
order to conclude it as successful. In addition, NRP is also designed specifically for
the UHF and VHF radio links between the satellite and the GS. Testing of the pro-
tocol over the radio links was considered impractical in this thesis, because neither
the NUTS radios nor the CSP routing functionality were properly implemented at
the time of the testing.

The biggest di↵erence when testing over the radio links compared to I2C , is the
larger transmission delays due to the slow bit rate. It is unknown how this will
a↵ect the transmission time and the necessary window sizes needed to provide good
utilization over the network, which is important in order to send larger payloads
successfully between the satellite and the ground station.

One big concern when testing the NRP protocol over a network consisting of several
links, with routing mechanisms to get the packets to their destination, is the possi-
bility of reordering of packets. Packets arriving out of order in the destination node
would result in many packets being discarded, as the NRP protocol implementation
does not include a receiving window, thus only accepting ordered packets. This



59 CHAPTER 7. DISCUSSION

could, however, be solved by upgrading NRP to include SR behavior, which should
be possible without redesigning the entire protocol and implementation.

7.3 Go-Back-N versus Selective Repeat

The Go-Back-N protocol was chosen as the ARQ protocol for NRP due to its
better performance compared to Stop-And-Wait, and its implementation simplicity
compared to the Selective-Repeat. However, Section 4.6 illustrated the importance
of a good utilization when sending bigger payloads reliably over the short time
span available as the satellite passes the ground station. The achieved throughput
is generally di�cult to estimate as it depends on numerous parameters, such as
PER, transmission and propagation delays, window size of the ARQ protocol and
more. Still, it is a good idea to investigate and discuss the possible utilization
improvement obtained by using a SR protocol instead of the GBN protocol.

Yang Qin and Lie-Liang Yang presents a calculation of utilization di↵erences be-
tween the three ARQ protocols described in this thesis, as shown in Figure 7.1[14].
Their analysis is not based on satellite to GS radio links, but does provide general
information about the di↵erences in ARQ utilization, which is su�cient for the
purpose of this discussion.

Figure 7.1: ARQ comparison by Yang Qin and Lie-Liang Yang

Qin and Liangs analysis shows a steep loss in utilization with GBN even for lower
PER values, which indicates that NUTS would benefit from a SR ARQ protocol.
However, the calculations should be compared with the expected PER in the NUTS
network in order to present a reasonable expected improvement. If the expected
PER is of size 10�2, then the improvement factor becomes very small compared to



7.4. ACKNOWLEDGEMENT TIMEOUT CALCULATION 60

the implementation cost, while the utilization improvement factor with a PER of
� 10�1 would be significantly larger.

Marholm states the NUTS Bit Error Rate (BER) of the radio link to be 10�5,
giving a PER of around 2 ⇤ 10�2 for full sized packets[3]. The low error rate,
together with the error detection and correction techniques in the radio link pro-
tocols, would result in only a small improvement in utilization by swithing to a SR
protocol. However, the impact of bit-flips in the satellites hardware due to radia-
tion is unknown, and might cause a much worse PER in end to end transmissions.
The improvement factor and necessity of a revision of NRP to include SR should
thus be further investigated before a conclusion can be made.

Upgrading NRP to include Selective-Repeat behavior should be possible without
redesigning the entire protocol. In order to do this, it must be implemented a
mechanism responsible of remembering the packets that has already been received.
A mechanism for storing the data correctly ordered in the receive bu↵er has already
been implemented, as described in Section 5.5.

7.4 Acknowledgement timeout calculation

The dynamic acknowledgement timeout described in Section 5.6 is implemented to
avoid unnecessary large timeouts over parts of the NUTS communication network
where the transmission and propagation delays are lower than for the radio, such
as over the internal I2C link in the satellite. The calculation of the dynamic
timeout is currently based on a simple multiplication of the Round-Trip-Time,
which works for its purpose. However, there are possibilities of improving the
dynamic acknowledgement timeout and the maximum ACK timeout.

The maximum ACK timeout in the implementation presented in this thesis is set
unreasonable high, at 3000ms, as the end-to-end RTT of a satellite to GS trans-
mission is unknown. The value could easily be redefined in the implementation
with better calculations of the theoretical RTT, thus providing faster transmis-
sions.

It is also possible to improve the dynamic ACK timeout calculation by introducing
more advanced techniques, e.g. where ACK-timeouts are based on an estimated
RTT calculated from multiple measurements of the actual RTT. The improvement
factor realised by such an implementation is unknown, but should be considered in
a revision of the NRP protocol.



CHAPTER

8

FUTURE WORK

8.1 Further testing

As mentioned in Section 7.1, further testing of the NRP implementation is advised,
as it has only been tested on an I2C link with limited heap available. In addition,
one of the tests performed in this report showed an anomaly from the expected
behavior, which should be further investigated. At last, a complete test, including
radio links and picture sized payloads, should be performed and verified before
concluding to use the NRP protocol and implementation for the NUTS CubeSat
mission.

8.2 Implementing NRP for the GS

This thesis has presented an implementation of NRP for FreeRTOS, the OS used
on the sub-modules of the NUTS satellite. However, the transport layer protocol
must also be implemented for the OS on the Ground Station in order to receive
NRP packets from the satellite.



8.3. IMPLEMENTATION OF CSP ROUTING 62

8.3 Implementation of CSP routing

The NUTS network consists of multiple modules and sub-modules divided by both
radio links and I2C links. Transmitting a packet from one of the sub-modules on
the satellite to the GS would require a routing mechanism as all packets must be
sent through the radio module. CSP o↵ers a routing functionality which should be
implemented to the software of each sub-module in the NUTS network.

8.4 Extending the heap

The internal memory of the Atmel UC3-A3256 microprocessors used on the OBC
of the satellite is too small for the transmission of a picture, as most of the memory
is already used by the FreeRTOS, CSP, and NRP implementations. Hence, the
issue of moving the heap of the microprocessor into an external SRAM must be
completed.



CHAPTER

9

CONCLUSION

This thesis has presented a proposed design and implementation of a reliable trans-
port layer protocol, specifically intended for the NUTS CubeSat mission. The pro-
tocol, conveniently named the NUTS Reliable Protocol (NRP), features segmenta-
tion of payloads, error detection through cyclic redundancy checks, and reliability
through Go-Back-N ARQ functionality.

NRP was designed based on the requirements, estimations and assumptions that
has previously been presented for the NUTS CubeSat mission, and estimations that
were presented in this thesis. A short study estimated that NRP was theoretically
able to transmit reliably with close to 70% utilization of the radio links, which are
the bottlenecks of the NUTS communication network.

The protocol was then implemented for the NUTS software repository, receiving
data through the underlying network layer protocol, CSP. The implementation
aimed at providing reliable service according to the designed protocol, using error
detection and retransmissions of corrupt data.

The implementation was tested for its functionality, which showed results indicating
that the implementation was mostly successful. Payload larger than the maximum
NRP packet size was segmented into appropriate sized chunks, and encapsulated
correctly according to the protocol design. Further it was shown that the imple-
mented error detection successfully detected packets with inserted bit-errors. Tests
of the Go-Back-N functionality proved that invalid packets were discarded, and
retransmitted to assure that all the payload was received in correct order. One test
showed a possible defect with the implementation, making it unstable when trying



64

to receive payload from multiple streams simultaneously, but the source of error
was never found. The registered defect did not prevent the implementation form
working reliably, but could have negative e↵ects for the throughput.

The tests were only performed over an I2C link, simulating the internal physical
link of the NUTS satellite. However, the implementation should also be tested with
routing mechanisms over multiple links simultaneously, including the NUTS radio
link, as this is closer to the scenario the protocol will be used for.

The requested reliability feature of the transport layer protocol in NUTS was con-
centrated to the assurance of a client knowing when a payload has been fully
received by a server, and when it has not. The tests have shown that this reliabil-
ity is in fact present in this implementation of NRP, along with good results for
throughput and utilization. The design and implementation of a reliable transport
layer protocol for the NUTS CubeSat mission is thus concluded successful, but
further testing and development is advised to maximise its performance.



REFERENCES

[1] NUTS. NTNU Test Satellite. [Online]. http://nuts.cubesat.no (accessed
27.03.2015).

[2] Roger Birkeland. NUTS coordinator and supervisor. Personal conversation, .
E-mail: roger.birkeland@iet.ntnu.no.

[3] Sigvald Marholm. Antenna systems for NUTS. Master’s thesis, NTNU, Trond-
heim, 2012.

[4] Leon Lantz II. Soft errors induced by alpha particles. IEEE Trans. Reliability,
1996.

[5] James F. Kurose and Keith W. Ross. Computer Networking, A Top-Down

Approach. Pearson, Essex, England, sixth edition, 2013.

[6] Erlend Riis Jahren. Implementing CSP over I2C for the new repository on the
NTNU Test Satellite. Technical report.

[7] GomSpace. CubeSat Space Protocol(CSP). [Online]. http://www.gomspace.
com/documents/GS-CSP-1.1.pdf (accessed 26.01.2015), .

[8] GomSpace. GomSpace Profile. [Online]. http://www.gomspace.com/index.
php?p=profile (accessed 01.04.2015), .

[9] GomSpace. libcsp. [Online]. https://github.com/GomSpace/libcsp (ac-
cessed 06.04.2015), .

http://nuts.cubesat.no
http://www.gomspace.com/documents/GS-CSP-1.1.pdf
http://www.gomspace.com/documents/GS-CSP-1.1.pdf
http://www.gomspace.com/index.php?p=profile
http://www.gomspace.com/index.php?p=profile
https://github.com/GomSpace/libcsp


REFERENCES 66

[10] Wikipedia. CubeSat Space Protocol. [Online]. http://en.wikipedia.org/
wiki/Cubesat_Space_Protocol (accessed 06.04.2015).

[11] Roger Birkeland. NUTS Backplane. [Online]. https://www.ntnu.no/wiki/
display/nuts/Backplane (accessed 06.04.2015), .

[12] Andreas Giskeødeg̊ard. Implementing CSP over I2C on NTNU Test Satellite.
Project report, NTNU, Trondheim, 2012.

[13] Blakkisrud J. Delabahan C. Munthe-Kaas N. Bjørnevik, A. and Ø. Sture.
Testing of the CSP implementation on the NTNU Test Satellite. Experts in
Teams, Project report, NTNU, Trondheim, 2014.

[14] Yang Qin and Lie-Liang Yang. Throughput Comparison of Automatic Re-
peat Request Assisted Butterfly Networks. Technical report, School of ECS,
University of Southampton.

[15] Ekram Hossain Long B. Le and Michele Zorzi. Queueing Analysis for
GBN and SR ARQ Protocols under Dynamic Radio Link Adaptation with
Non-Zero Feedback Delay. [Online]. http://www.necphy-lab.com/pub/
Queueing%20Analysis%20for%20GBN%20and%20SR%20ARQ%20Protocols%
20under%20Dynamic%20Radio%20Link%20Adaptation%20with%20Non-
Zero%20Feedback%20Delay.pdf (accessed 31.05.2015).

[16] Mathias Tømmer and Knut Aldrin Wikström. UHF Radio. [Online]. https:
//www.ntnu.no/wiki/display/nuts/UHF+Radio (accessed 04.04.2015).

[17] Roger Birkeland and Jon Petter Skagmo. OWL VHF Radio. [Online]. https:
//www.ntnu.no/wiki/display/nuts/Owl+VHF (accessed 04.04.2015).

[18] William A. Beech, Douglas E. Nielsen and Lee Knoper. AX.25 Amateur
Packet-Radio Link-Layer Protocol. Publication, 1998.

[19] Marius Münch. Integration and verification of a keyed-hash of a message
authentication scheme based on broadcast timestamps for NUTS. Master
Thesis, NTNU, Trondheim, 2014.

[20] Jon Petter Skagmo. NGHam Protocol. [Online]. https://github.com/
skagmo/ngham (accessed 20.05.2015).

[21] Flogard E. Gammelsæter M. Mork-H. Pignède A. Solberg S. Bakkebø, N.
Image Compression. NUTS - Experts in Teams, Project report, [in Norwegian],
NTNU, Trondheim, 2014.

[22] Andreas Bertheussen. Digital Processing System for a CubeSat Camera.
Project report, NTNU, Trondheim, 2014.

[23] Terry Ritter. The Great CRC Mystery. [Online]. http://www.
ciphersbyritter.com/ARTS/CRCMYST.HTM (accessed 04.04.2015).

http://en.wikipedia.org/wiki/Cubesat_Space_Protocol
http://en.wikipedia.org/wiki/Cubesat_Space_Protocol
https://www.ntnu.no/wiki/display/nuts/Backplane
https://www.ntnu.no/wiki/display/nuts/Backplane
http://www.necphy-lab.com/pub/Queueing%20Analysis%20for%20GBN%20and%20SR%20ARQ%20Protocols%20under%20Dynamic%20Radio%20Link%20Adaptation%20with%20Non-Zero%20Feedback%20Delay.pdf
http://www.necphy-lab.com/pub/Queueing%20Analysis%20for%20GBN%20and%20SR%20ARQ%20Protocols%20under%20Dynamic%20Radio%20Link%20Adaptation%20with%20Non-Zero%20Feedback%20Delay.pdf
http://www.necphy-lab.com/pub/Queueing%20Analysis%20for%20GBN%20and%20SR%20ARQ%20Protocols%20under%20Dynamic%20Radio%20Link%20Adaptation%20with%20Non-Zero%20Feedback%20Delay.pdf
http://www.necphy-lab.com/pub/Queueing%20Analysis%20for%20GBN%20and%20SR%20ARQ%20Protocols%20under%20Dynamic%20Radio%20Link%20Adaptation%20with%20Non-Zero%20Feedback%20Delay.pdf
https://www.ntnu.no/wiki/display/nuts/UHF+Radio
https://www.ntnu.no/wiki/display/nuts/UHF+Radio
https://www.ntnu.no/wiki/display/nuts/Owl+VHF
https://www.ntnu.no/wiki/display/nuts/Owl+VHF
https://github.com/skagmo/ngham
https://github.com/skagmo/ngham
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM


67 REFERENCES

[24] FreeRTOS. FreeRTOS. [Online]. http://www.freertos.org (accessed
07.04.2015), .

[25] Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-

guages. Pearson, Essex, England, fourth edition, 2009.

[26] FreeRTOS. FreeRTOS - Queues, Mutexes, Semaphores... [Online]. http:
//www.freertos.org/Real-time-embedded-RTOS-mutexes.html (accessed
20.05.2015), .

[27] Michael Barr. CRC Series, Part 3: CRC Implementation Code in
C/C++. [Online]. http://www.barrgroup.com/Embedded-Systems/How-
To/CRC-Calculation-C-Code (accessed 02.06.2015).

[28] Thomas Hanssen Nornes. former NUTS member. Personal conversation.

[29] Matplotlib. Introduction. [Online]. http://matplotlib.org (accessed
02.06.2015).

[30] Atmel. AT32UC3A3/A4 Series Summary. [Online]. http://www.atmel.com/
Images/32072s.pdf (accessed 02.06.2015).

http://www.freertos.org
http://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
http://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
http://www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://matplotlib.org
http://www.atmel.com/Images/32072s.pdf
http://www.atmel.com/Images/32072s.pdf


REFERENCES 68



ACRONYMS

I2C Inter-Intergrated Circuit.

BER Bit Error Rate.

PER Packet Error Rate.

b-c best case.

w-c worst case.

ACK Acknowledgement.

ADCS Attitude Determination and Control System.

API Application Programming Interface.

ARQ Automatic Repeat Request.

CLI Command Line Interface.

CRC Cyclic Redundancy Check.

CSP CubeSat Space Protocol.

EiT Experts in Teams.

FEC Forward Error Correction.



Acronyms 70

GBN Go-Back-N.

GS Ground Station.

LGPL GNU Lesser General Public Licence.

ms milliseconds.

mutex mutual exclusion.

NAK Negative acknowledgement.

NAP NUTS Authentication Protocol.

NRP NUTS Reliable Protocol.

NUTS NTNU Test Satellite.

OBC On-Board-Computer.

OS operating system.

OSI Open System Interconnection.

RDP Reliable Datagram Protocol.

RTT Round-Trip-Time.

SR Selective-Repeat.

SRAM Static Random Access Memory.

SW Stop-And-Wait.

UHF Ultra High Frequency.

USB Universal Serial Bus.

VHF Very High Frequency.



APPENDIX

A

NRP DESIGN

The figures in this appendix chapter illustrates NRP behavior that was excluded
from the main chapters of this report.



A.1. RECEIVE PACKET PROCEDURES 72

A.1 Receive packet procedures

A.1.1 SYN packet



73 APPENDIX A. NRP DESIGN

A.1.2 SYN/ACK packet



A.1. RECEIVE PACKET PROCEDURES 74

A.1.3 Content packet (No flags)



75 APPENDIX A. NRP DESIGN

A.1.4 ACK packet



A.1. RECEIVE PACKET PROCEDURES 76

A.1.5 NAK packet



77 APPENDIX A. NRP DESIGN

A.1.6 FIN packet



A.1. RECEIVE PACKET PROCEDURES 78

A.1.7 FIN/ACK packet



79 APPENDIX A. NRP DESIGN

A.2 Connection events

Figure A.1: Triple timeout

Figure A.2: ACK lost during connection setup



A.2. CONNECTION EVENTS 80

Figure A.3: FIN lost during connection termination

Figure A.4: Connection timeout when radio contact is lost during transmission



APPENDIX

B

TRANSMISSION CAPACITY
GRAPHS

Figure B.1: Theoretic data versus time comparison for di↵erent utilizations on the
NUTS radio link using AX.25



82

Figure B.2: Theoretic data versus time comparison for di↵erent utilizations on the
NUTS radio link using NGHam



APPENDIX

C

BIT-FLIP FUNCTION

typedef struct {
uint8_t byte;
uint8_t bit;

}test_bit_flip_t;

void flip_random_bits(uint8_t *packet , uint8_t number_of_bitflips ){
uint8_t length = NRP_HEADER_SIZE + packet[NRP_PAYLOAD_LENGTH_BYTE ];
test_bit_flip_t flipped[number_of_bitflips ];
for (int i = 0; i < number_of_bitflips; i++){

uint8_t bit = rand() % 8;
uint8_t in_byte = rand() % length;

// check that the bit is not already flipped
Bool already_flipped = false;
for (int j = 0; j < i; j++){

if (flipped[j].byte == in_byte && flipped[j].bit == bit){
i--;
already_flipped = true;
break;

}
}

//flip bit with XOR
if (! already_flipped ){

packet[in_byte] ^= 1 << bit;
flipped[i].byte = in_byte;
flipped[i].bit = bit;

}
}

}

Listing C.1: Bit-error inserting test function



84



APPENDIX

D

SPEED TEST

w: window size
P
e

: Packet error probability
avg time: Average time in ms
P
loss

: Measured packet loss
s. fails: Stream fails



86

w P
e

avg time P
loss

s. fails

1 0.0% 1003 0.00% 0.00%
1 0.5% 1061 0.49% 0.00%
1 1.0% 1118 0.98% 0.00%
1 2.0% 1237 1.95% 0.00%
1 5.0% 1624 4.98% 0.05%
1 7.5% 2010 7.51% 0.20%
1 10.0% 2330 9.87% 1.35%
1 15.0% 3113 14.91% 4.85%
1 20.0% 3926 19.89% 14.20%
1 30.0% 5683 29.69% 53.00%

2 0.0% 743 0.00% 0.00%
2 0.5% 756 0.48% 0.00%
2 1.0% 773 1.00% 0.00%
2 2.0% 813 1.96% 0.00%
2 5.0% 1008 4.97% 0.00%
2 7.5% 1234 7.49% 0.15%
2 10.0% 1449 9.95% 0.30%
2 15.0% 2017 14.79% 0.70%
2 20.0% 2823 19.78% 2.60%
2 30.0% 5390 29.86% 16.85%

5 0.0% 735 0.00% 0.00%
5 0.5% 747 0,49% 0.00%
5 1.0% 761 1,00% 0.00%
5 2.0% 797 1,98% 0.00%
5 5.0% 899 4,97% 0,05%
5 7.5% 1017 7,50% 0,10%
5 10.0% 1151 9,92% 0.00%
5 15.0% 1508 14,87% 0,90%
5 20.0% 1931 19,86% 3,65%
5 30.0% 3892 29,89% 22,35 %

10 0.0% 737 0.00% 0.00%
10 0.5% 747 0,50% 0.00%
10 1.0% 767 1,00% 0.00%
10 2.0% 798 2,02% 0.00%
10 5.0% 915 4,96% 0,05%
10 7.5% 1046 7,38% 0,05%
10 10.0% 1376 10,02% 0.00%
10 15.0% 1565 14,84% 0,85%
10 20.0% 2512 19,89% 4,70%
10 30.0% 4008 29,88% 22,60%

Table D.1: Data points for the speed test described in Section 6.9.


	List of Figures
	List of Tables
	Introduction
	Background
	Problem definition

	Background theory
	The CubeSat Space Protocol
	Automatic Repeat Request
	NUTS radios

	Protocol requirements
	Reliability
	NUTS link budget
	NUTS payloads

	Design specifications
	NRP v.1.0 - overview
	Packet types
	Connection
	Sequence and acknowledgment number
	Cyclic Redundancy Check
	Efficiency

	Implementation
	Overview
	Segmentation and encapsulation
	Connection
	CRC
	Data transfer
	Dynamic timeout

	Testing
	Test setup
	Software
	Heap limitations
	Bit-error function
	Test 1: Segmentation and encapsulation
	Test 2: Detection of bit-errors
	Test 3: Reliability with Go-Back-N
	Test 4: Simultaneous streams
	Test 5: Effect of window size
	Test 6: Effect of Dynamic timeout

	Discussion
	Performance of the NRP implementation
	Real scenario testing
	Go-Back-N versus Selective Repeat
	Acknowledgement timeout calculation

	Future work
	Further testing
	Implementing NRP for the GS
	Implementation of CSP routing
	Extending the heap

	Conclusion
	References
	Acronyms
	NRP Design
	Receive packet procedures
	Connection events

	Transmission capacity graphs
	Bit-flip function
	Speed test

