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Assignment text

This text details a Masters thesis proposal put forward by Kongsberg Defence Systems
(KDS) for the spring semester of 2015. The task is intended for students in their final
year at the Institute of Electronics and Telecommunication at NTNU. Required skills
are digital signal processing and preferably VHDL along with Matlab programming.

When receiving radio signals it is sometimes desirable to cancel out signals from cer-
tain directions in space while maintaining the rest of the spectrum. One could achieve
this by making use of an array of antenna elements. The purpose of this system is to
reduce the mean power of the signals in the directions where the sources that are to
be canceled are located, while maintaining the rest of the spectrum. This can be done
by exploitation of destructive interference demanding an array that is designed so that
the incoming signals of the different antennas will be out of phase with each other. In
order to achieve this destructive interference the signals have to be scaled and phase
shifted by weights, and then added together. Both the signals and the weights will be
complex numbers. The algorithm should find a set of weights that corresponds to a
minimization of the mean power of the signals in the directions of the sources that are
to be canceled.

It is intended that the task is limited to developing and implementing one or several
variations of a recursive least squares null-steering algorithm on an FPGA and com-
paring the performance and complexity of these versus the analytical approach. It is
expected that a Matlab simulation is developed first and used to assess the suggested
design. The results from the simulation may then be used as a basis for implementation
and test on a real FPGA, and the resulting performance compared to the performance
estimates. A reference data set will be provided for the performance assessment.
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Summary

This thesis describes the design and implementation of a five-channel beamformer us-
ing a Space-Time Adaptive Processing (STAP) filter with Recursive Least Squares (RLS)
as the adaptive algorithm. The objective of the algorithm is to compute of a set of fil-
ter weights for a STAP filter, such that the channels are filtered and combined into a
signal with minimized power. Two test signal sets containing a high-powered jammer
signal and a noise floor are used for performance evaluation. Three goals are set for
this thesis; comparison of RLS to Sample Matrix Inversion (SMI) algorithm when used
in a beamformer, comparison of various architectures which implement RLS, and the
implementation and test of one of the architectures for a Xilinx Virtex 6 XC6VLX240T-1
Field-Programmable Gate Array (FPGA)

Simulations comparing RLS to SMI show that a beamformer using RLS performs the
same as a beamformer using SMI for 3-5 antennas (channels) and 1-4 temporal taps in

the STAP filter.

Litterature review shows that conventional RLS is unsuitable for FPGA implementation
due to numerical instability. Comparison of IQRD-RLS, FQRD-RLS and MCFQRD-RLS
architectures which are claimed to be stable RLS variants, shows that IQRD-RLS is the
least computationally expensive of the algorithms.

IQRD-RLS is implemented using Givens rotations in a systolic array architecture. Float-
ing point, fixed point and CORDIC-based Givens rotation algorithms are compared
with regard to speed and area, and floating point is chosen. Hardware simulations re-
veal that the filter weights returned by IQRD-RLS exhibit a drift, and is not stable in
finite-precision arithmetic. The main cause is accumulated quantization error from the
forgetting factor and its inverse (1*1/2).

The IQRD-RLS systolic array is reduced to a (stable) QRD-RLS systolic array, approx-
imately halving the number of systolic array nodes. Filter weights are not computed
directly by QRD-RLS, and are instead recovered from the QRD-RLS least squares filter-
ing error output by the method of weight flushing.

Results show that the QRD-RLS systolic array using 14 mantissa bits is sufficient as it
performs equivalently to conventional RLS using double precision (53 mantissa bits). If
only 11 mantissa bits are used, the output power increases by 3.3 dB. The final design
can operate at sample rates from 19.4 MHz to 24.6 MHz, for a mantissa precision range
of 14 to 11 bits. At this rate, the QRD-RLS systolic array can converge and output filter
weights in 5.3 us, significantly faster than the target of 100 us. It is found that the cur-
rent design has fully utilized its speed potential /limit due to the recursive nature of the
algorithm. Processing of signals at the desired rate of 125 MHz would require changes
to the algorithm itself. The implementation size is such that a 5-channel QRD-RLS ar-
ray with one tap can fit on the FPGA. Channel-interleaving is proposed as a method to
reduce system size, at the expense of slower operation.

All hardware is designed, simulated and tested using Simulink together with Xilinx
System Generator and its co-simulation and hardware-in-the-loop features.
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Sammendrag

Denne oppgaven beskriver design og implementasjon av en fem-kanals straleformer
som benytter et rom- og tids-adaptivt filter (STAP) med rekursiv minste kvadraters
metode (RLS) som adaptiv algoritme. Madlet til algoritmen er & finne filtervektene til
STAP-filteret slik at kanalene filtreres og kombineres til ett signal med minimert effekt.
To sett med testsignaler som inneholder et kraftig jammesignal og steygulv brukes for &
vurdere ytelsen. Tre mal er satt for oppgaven; sammenlikning av RLS-algoritmen med
direkte invertering av korrelasjonsmatriseestimat (SMI), sammenlikning av forskjellige
arkitekturer for implementasjon av RLS, og implementasjon og test av én av arkitek-
turene pd en Xilinx Virtex 6 XC6VLX240T-1 Field-Programmable Gate Array (FPGA).

Simuleringer som sammenlikner RLS med SMI viser at en strdleformer som bruker
RLS har tilsvarende ytelse som SMI ndr det brukes 3-5 antenner (kanaler) og 1-4 tapper
(tidsforsinkelser) i STAP-filteret.

Med grunnlag i litteratur vurderes konvensjonell RLS som uegnet for implementasjon
pa FPGA péa grunn av numerisk ustabilitet. Sammenlikning av arkitekturene IQRD-
RLS, FQRD-RLS og MCFQRD-RLS, som pastas & veere stabile varianter av RLS, viser at
IQRD-RLS krever minst regnekraft.

IQRD-RLS implementeres ved bruk av Givens rotasjoner i en “systolisk array”-arkitektur.
Flyttall, fastkomma og CORDIC-baserte metoder for Givens rotasjon sammenliknes
med hensyn til implementasjonens hastighet og sterrelse, og flyttall velges. Simuler-
ing av maskinvare viser at filtervektlasningene fra IQRD-RLS-arrayet drifter vekk fra
korrekt lasning og at IQRD-RLS derfor er ustabilt. Hoveddrsaken er akkumulert kvan-
tiseringsfeil fra glemmefaktoren og dens inverse (A*1/2).

IQRD-RLS-arrayet forenkles til et (stabilt) QRD-RLS systolisk array, noe som halverer
antallet noder brukt i arrayet. Filtervekter beregnes ikke direkte av QRD-RLS, men ma
i stedet hentes ut fra QRD-RLS arrayet sin impulsrespons.

Resultater viser at 14 bit mantisse er tilstrekkelig for at det QRD-RLS systoliske arrayet
har en ytelse tilsvarende konvensjonell RLS med dobbel presisjons aritmetikk (53 bits
mantisse). Reduksjon til 11 bit mantisse oker uteffekten med 3.3 dB. Maskinvareim-
plementasjonen kan operere opp til 19.4 MHz til 24.6 MHz avhengig av mantissepre-
sisjon fra 14 til 11 bit. Ved denne raten kan systemet konvergere og finne filtervektene
innen 5.3 us, som er betydelig raskere enn malsetningen pd 100 us. Det er ogsé fun-
net at den aktuelle implementasjonen har nddd hastighetsbegrensningen fordrsaket av
QRD-RLS-algoritmens rekursive definisjon. For & hdndtere signaler ved ensket rate pa
125 MHz ma selve QRD-RLS-algoritmen modifiseres. Implementasjonens storrelse er
slik at et QRD-RLS array med 5 kanaler og en tap far plass pa aktuell FPGA. Kanal-
interleaving er foreslatt som metode som vil redusere sterrelsen, pd bekostning av re-
dusert hastighet.

All maskinvare er designet, simulert og testet ved bruk av Simulink med Xilinx System
Generator og dets funksjonalitet for ko-simulering og simulering med FPGA i sloyfa.
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Abbreviations

FPGA
FIR
KDS
RLS
SMI
LUT
STAP
MMSE
DMI
CORDIC
LMS
GNSS
WE
SRF

Field-Programmable Gate Array
Finite Impulse Response
Kongsberg Defence Systems
Recursive Least Squares

Sample Matrix Inversion

Look-Up Table

Space-Time Adaptive Processing
Minimum Mean Square Error
Direct Matrix Inversion
Coordinate Rotation Digital Computer
Least Mean Squares

Global Navigation Satellite System
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Square Root Free

Notation and units

Notation that is extensively used is summarized here.

i

x[i], Al]

Imaginary unit or time (iteration) index

Discrete-time signal (1D or vector /matrix)

Complex conjugate of x

Identity matrix with number of columns/rows given by p
Hermitian transpose of matrix or vector, = (A*)T
Transpose of matrix inverse, = (A~1)7

¢ = cos(0), s = sin(0), rotation factors for Givens rotation
Number of channels excluding reference channel
Number of filter taps per channel

Forgetting factor for conventional RLS algorithm
Window length for correlation estimate in SMI algorithm

Used for RLS initialization or diagonal loading term in SMI

arctan(y,x) Inverse tangent with two arguments, covering all quadrants. Equal to

arctan(y/x) for positive y and x. Also known as atan2().

Decibel quantities are relative to some reference. The reference is denoted in the unit.
For instance, the quantity Py, [dBy,0is.] implies the calculation 10 log(Pout/Proise)-
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1 Introduction

1.1 Motivation

Many types of passive disturbances or interference can impair the function of a radio
system, such as shadowing, multipath effects, variable propagation speeds and others.
Disturbances can also be caused by radio transmitters, accidentally or intentionally. In-
tentional disturbances are commonly called jamming. Jammers may use one or several
strategies to disturb the target radio system, such as single tone, multi tone, narrowband
or broadband signals and frequency sweeps. A jammer could emit a signal which over-
powers and spoofs the original signal, or a signal that will exceed the dynamic range
of the receiver. A jammer could also replay the original signals, creating artificial mul-
tipath effects.

For a radio receiver that must function in an environment with jammers, it is desirable
to suppress disturbances originating from certain directions or disturbances in certain
frequency bands. This can be achieved using an antenna array where the signal from
each individual antenna is filtered and combined so that the interference is canceled
through destructive interference. The filtering operation for each channel can be a sin-
gle complex multiplication, or a more general complex FIR (Finite Impulse Response)
tilter. The filter coefficients may be computed based on prior knowledge of the direction
and/or frequency band of the interference and desired signal, or they may be adap-
tively computed by an algorithm, based on the received signals. The process of finding
the appropriate weights is called beamforming, since the choice of weights controls the
antenna array’s sensitivity in both direction and frequency.

The assignment was proposed by KDS (Kongsberg Defence Systems), a Norwegian sup-
plier of defence-related systems. KDS has several radio communication products, and
are naturally interested in antijamming measures. KDS has supplied test signal sets
and a Xilinx Virtex 6 Field-Programmable Gate Array (FPGA) development board for
this thesis.

1.2 Goals

The goals set for this thesis are:

e Compare performance Recursive Least Squares (RLS) with the reference algorithm
Sample Matrix Inversion (SMI) (the analytical approach).

e Compare various architectures for implementing RLS on the FPGA.

e Implement and test a suitable architecture on the FPGA.
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1.3 Tools

Mathworks MATLAB R2012b is used throughout to write and run scripts that imple-
ments various algorithms. A MATLAB extension called Simulink is used to create and
simulate block diagram models.

The target hardware for the implementation is a Xilinx Virtex 6 ML605 development
board. The board contains many peripherals, but only the Virtex 6 XC6VLX240T-1
FPGA and the included debugging connectivity is used for this thesis.

The Virtex 6 series FPGAs contain an array of (re)configurable logic blocks (CLBs) con-
nected to a programmable switch matrix for signal routing. Each CLB contains two
slices, and each slice contains four 6-input look-up tables (LUTs), eight register flip flops
(Reg.), multiplexers and carry logic. Some slices contain additional memory and shift
register functionality. There is also a special type of slice named DSP48E1 (DSP48 for
short) which implements multiply-accumulate functionality. The XC6VLX240T-1 de-
vice has a total capacity of 150720 LUTs (37680 slices), as well as 768 DSP48 slices. These
are the basic resources of the FPGA. Functionality implemented using LUTs is referred
to as a fabric implementation.

The FPGA configuration is typically derived from hardware description languages like
VHDL or Verilog. For this thesis, an extension to Simulink called System Generator is
used. This extension is developed by Xilinx and includes a hardware block library
containing functions such as adders, multipliers, dividers and other functions which
can be synthesized for Xilinx FPGAs. When a Simulink model is constructed using
these blocks, it can be processed using System Generator resulting in a synthesizable
VHDL description of the model. The conventional Xilinx ISE toolchain can then used
to process the VHDL, resulting in a configuration which can be loaded into the FPGA.
In this way, System Generator works as a translator from the Simulink block diagram
format to a more conventional VHDL description of a system.

System Generator is also able to accurately simulate the hardware blocks within the
Simulink environment by using the Xilinx ISim HDL simulator in the background. Sys-
tem Generator can also be used do a hardware-in-loop simulation. This means that
System Generator takes the block diagram model and generates a FPGA configura-
tion which is loaded onto the FPGA. When the model is simulated in Simulink, the
signals that are entering/leaving the hardware blocks is routed to/from the physical
FPGA across its debug interface. This method is used to check that the implementation
matches simulation results.



2 Theory

This chapter holds theory that will be referred to and /or applied in later chapters. The
theory behind least squares filtering is described, followed by the Sample Matrix In-
version and Recursive Least Squares algorithms which can be used to solve the least
squares problem.

The Givens rotation and CORDIC algorithms are explained as they can be used to real-
ize QR-decomposition. QR-decomposition is explained since it is the core of the QRD-
RLS and IQRD-RLS algorithms which are practical implementations of the RLS algo-
rithm.

2.1 The Space-Time Adaptive Processing (STAP) filter

STAP [1,ch12] is an extension to the M-channel beamformer which introduces tapped
delay line (FIR) filters of order N instead of a simple complex gain factor for each chan-
nel. The STAP filter linearly combines multiple channels into a single channel, and can
adjust the phase and frequency response (gain) by modifying the weights wy, . The
space-time filtering structure is shown in

Tl:RX x[i] - x[i-1] ey = X, [i-N+1]

[ay

Yoo @o1 Wo,N-1
=
\KIE x[i] = xq[i-1] A o x[i-N+1]
i W0 Wi W1N-1
N PR
\KIE IxM—l[i] = foz[i—lil 3 T ali-N+1]

W10 W11

Figure 2.1 A STAP filter with M channels and N taps.

Mathematically, it may be described by:
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M-1N-1
eli] = Wy, yXm[i —n]  or more simply  e[i] = wx[i]
0

m=0 n=

Here, we have chosen to define the MN X1 vector x[i] as a snapshot of the signal available
from the delay elements in the STAP structure at time i

I3 o I3 T
|xolil xlil - xpalil]
T
xoli =11 xq[i—=1] -+ xpmali—1]
. T
| [xli-N+1] x[i-N+1] - xyali-N+1]]
Similarly, the filter weights are also formed into a MN X 1 vector:
T
[wo,o w10 -t wM—l,O]
T
[wo,l wip v WM-11 ]
w =
T
| [wo,N—1 Wi,N-1 " wM—l,N—l] |

In STAP the filter weights are adapted by an algorithm based only on the input x. In
that case the weight vector changes over time and is denoted w/[i].

2.2 The Minimum Mean Square Error (MMSE) criterion

Consider the general filter y[i] = w'x[i]. This filter can represent a FIR filter when
elements of x are samples of the same signal at different times. It can also represent a
linear combiner if elements of x are taken from different signals. It can also represent a
combination of the two, like the STAP structure described earlier.

Figure 2.2 MMSE block diagram

A new signal d[i] is introduced as the desired signal, and the difference, or error, e[i] =
d[i] — whx[i] is computed as illustrated in . The MMSE criterion is used to
find the required properties of the filter weight values which minimize the squared
error E[le[i]|*] = E[e[i]e*[{]].

Elefile‘[i]] = E |d[ild*[i] - 2w x[ild"[1] + w"x[i]x"[i]aw]
Ele[ile'[i]] = E [d[i]d*[i]] = 2w E [x[i]d"[{]] + w"E [x[i]xH [i]] w

= 05 - szde + wlR w



2.3 Algorithms for solving MMSE problems

Stationarity is assumed. The minimum of |e[]|? is found by setting its gradient equal to
zero, and solving for w.

VwElelile*[i]] = 0 = —2ry + 2Ry w
Which is fulfilled when w = wy,; according to:
Ry Wopt = g =3 Wopt = R;,} Tyd (2.2)

is known as the Wiener-Hopf equation.

2.3 Algorithms for solving MMSE problems

The expressions in depend on the statistical properties Ry, and r,; which
describe the data. The Sample Matrix Inversion and Recursive Least Squares algorithms
presented in this section are two approaches to estimating these statistics, resulting in
the optimal filter weights.

2.3.1 The Sample Matrix Inversion (SMI) algorithm

The SMI algorithm uses the simple estimators of to estimate Ry and r,.
The estimates are then used in place of Ryy and r,; in to directly compute
wept- This is referred to as Sample Matrix Inversion and sometimes also Direct Matrix
Inversion (DMI).
T B R (R o S
Rolil=2 Y A1 #alil=5 Y 4] (2.3)

j=i—K+1 j=i—K+1
Inversion of Ry,[i] may be problematic since the estimators do not guarantee non-singularity.
One commonly proposed technique to avoid singular matrices is [1][2,ch7.3][3] termed

diagonal loading. It is done by adding a small term I to the estimate Ry, before inverting
it.

2.3.2 The Recursive Least Squares (RLS) algorithm

The RLS algorithm [1,p273][4,p209][5] applies MMSE but starts with a slightly different
formulation, so that the solution can be expressed on a recursive form. This means the
solution is found in terms of modifications to the previous solution. Let a new scalar
signal f[i] be defined as:

flil =Y AT e (24)
j=0

e[j]is the error signal and A € (0, 1) is a “forgetting factor” which exponentially reduces
the importance of previous squared errors. A value of A very close to 1 means that
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the algorithm responds slower to change; it has longer memory. A small value has the
opposite effect. By minimizing f[i] with respect to w, it can be shown [4,ch5.2] that the
solution must satisfy a modified Wiener-Hopf equation:

Ro[lwil=r il &  wlil=®Rl) 7l

where R}, [i] and 7 [i] are are the sample autocorrelation of x[i] and sample cross cor-
relation between x[i] and d[i], on a form that is exponentially weighted similarly to the
error signal of :

R Qi =Y A ol =) A la ]
j=0 j=0

It is possible to write R}, [i] and r}’c d[i] in a recursive form. The term corresponding to
“now” index i can be taken out of the summation:

R, [1]= Y A" Ixljlx"[j]

j=0

—_

= 1Y ACD ] + i)
]
= AR. [i — 1] + x[i]x[1]

I
o

The same can be done for r; Slil:

v il = Z A Ix[ 1] = Arl i — 1] + x[ild"[i]
=0

We have here found an expression describing how Rj,[i — 1] and r; d[i — 1] (previous
timestep correlation matrices) can be updated to the current time step. To avoid com-
puting the inverse (R, [i])~!, we apply the Woodbury matrix identity. To simplify no-
tation, we define P[i] = (R/,[i])~! and z[i] = r;d[i].

LP[i — 1 [P [ 1 Pli - 1]
1+ xH[i] X P[i — 1]x[i]

(Ri,lil ™ = Pl = Pli— 1] -

R S B
_/\P[z 1] AK[z]x [[]P[i — 1]

Where we have defined
q P[i — 1]x[i]
Kl = Pl - 1

The denominator here is a scalar making the expression somewhat simpler to compute.
By multiplying up the denomitator, we can show that:



2.3 Algorithms for solving MMSE problems
A L Hiaprs R :
K[i] + XK[z]x [{]1P[i — 1]x[i] = XP[Z — 1]x[7]

K[i] = (%P[i -1] - %K[i]xH [{]P[i — 1])x[i]

K[i] = P[ilx[i]

By inserting previous results in the modified Wiener-Hopf equation, we can find a re-
cursive expression for the filter weights which does not require a matrix inversion:

w'[i] = (R;x[i])‘lr;d[i]
= P[i]z[i]
= P[i] (Az[i — 1] + x[i]d[i])
= AP[i]z[i — 1] + P[i]x[i]d[i]
= A (%P[i ~1]- %K[i]xH[i]P[i - 1])2[1’ — 1] + P[ix[i)d[i]
= P[i — 1]z[i — 1] =K[i}x"[i] P[i - 1]2[i — 1] + P[i]x[i] d[i]
~— —— ~—_— — ——
w'[i-1] w'[i-1] K[i]
= w'[i — 1] = K[ [i]w’[i — 1] + K[{d[i]
= w'[i — 1] + K[i] (d[i] —wH[i - 1]x[i])
= w'[i — 1] + K[i]e[i]

Note that the scalar signal €[i] represents the error output from filtering the current
input signal with the previous filter. It is termed the a priori error signal. The a priori
error is multiplied with the gain matrix K[i] in order to modify the filter weights. The

conventional RLS algorithm is summarized in [5].
P[-1] =671
T
w[-1=[1 0 - 0]

for each timestep i > 0 do
a _ _ Pli-1]x[i]
Kl = s5mmpi-1mm

w'[i] = w'[i — 1] + K[i] (d[i] — w'™[i - 1]x[i])

P[] = Tri (} (P[i - 1] - K[i]x"[i]P[i - 1]))

eli] = d[i] — xH[i]w’[i] {apply filter weights to signal}
end for

Algorithm 2.1 The conventional RLS algorithm

The initialization of the P diagonal with 6! is performed to bring it close to its final
value when the signal power range is known in advance. Tri() signifies that only one
triangular half of the matrix needs to be calculated, while the other triangualar section
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is filled in with the complex conjugate due to the hermitian symmetry of the matrix P
[5,p510].

2.4 Givens rotation

A Givens rotation [6] is a matrix transformation (named after Wallace Givens) which
rotates two rows of a matrix. It can be used to transform matrices to an upper triangular
or lower triangular form as part of a QR-decomposition. For an example of a Givens
rotation, consider the illustration in (a). Here, the vector (a,b) = ae; + bey is
rotated by 0, creating a new vector (x, ).

e, €
A A
7 —— 7 E—
s r
Nz o _r—— 0
e > e
(a) (b)

Figure 2.3 Examples of givens rotation. On the left is the general case, and on the
right is the special case when the rotation is used to annihilate the e, dimension.

Mathematically, this clockwise rotation can be described by left-multiplication with a
rotation matrix as follows:

x| | cos(0) sin(0)||a]| _ G |7

y| [-sin*(@) cos(O)||b]| 1b
The givens rotation may be applied to n-th and m-th row in any matrix of size p, by
defining the rotation matrix as the identity matrix I, (of size p), with elements Ggy, , =

c = cos(0), Gonm = s = sin(0), Ggmn = —s* = —sin*(0) and Ggy,m = ¢ = cos(0): (zero
values are omitted)

1,

Ip—m—l ]

The transform will only affect the m-th and n-th row, and will transform each column
individually, for example if:

In some cases the Givens rotation is defined for counterclockwise rotation, for which the sine terms are
exchanged.

8



2.5 CORDIC algorithm

[x rl = Gy [a f}, then we have lxl = Gy lal and |rl = Gy |f]
y s °lb ¢ y b s ’l g

2.5 CORDIC algorithm

The CORDIC algorithm [7] (Coordinate Rotation Digital Computer) is an implemen-
tation that can compute a real-valued Givens rotation. Like the Givens rotation, it can
be used to perform a QR-decomposition. We start from the Givens rotation by angle 0,
and rewrite it in terms of tan(6):

x| | cos(0) sin(0) | |a N X
y | —sin(@) cos() | | b y

x = cos(0)(a + btan(0)) (2.5)
y = cos(0)(b —atan(0)) (2.6)

acos(0) + bsin()
—asin(6) + b cos()

The CORDIC algorithm can implement Givens rotations by computing

and 2.6 iteratively, but restricting each iteration to angles 0 = d,5; chosen so that f; =
arctan(27/) and d; € {—1,1}. When the cos(0) term is omitted, each iteration is reduced
to an addition and bit shift. The first iteration uses tan(fg) = 1, = 45°. The next
iteration uses tan(B;) = 0.5, 1 = 26.56...° and so on with smaller and smaller angles.

The key to CORDIC is how d; is chosen. In the vectoring mode, d; is chosen to be sign(y;_1).
Each iteration will therefore compute (x;, y;) where the y-component goes toward 0. If

the input vector is (a, b), the result approaches (K, /az +b2,0). Here, K = Hi-:g cos(d;f;)
which accounts for the cos(d;f;) factors in each iteration for a total of k iterations. By
computing 0; = }:0 d;B;, the total accumulated angle is also found. This way the
original vector has been converted from rectangular to polar coordinates.

If d; is instead chosen to be sign(0 — 0;) where 0 is some desired rotation angle, the
CORDIC is said to be in rotating mode. Each iteration will rotate the input vector (a, b)
closer and closer to K(x, y), being the original vector rotated by 0. If the desired rota-
tion angle comes from a vectoring CORDIC algorithm, there is no need to compute 6.
Instead, the sequence d; can be directly transmitted from vectoring to rotating CORDIC
as described by Gao [8]. Gao also shows one method for making CORDIC handle coarse
rotation, i.e. cases where a or b are negative.

The scaling factor K is shown in , for k number of stages. Its inverse
S = 1/Kis used after the last stage to correct the result. Since cos(-) is even, the choices of
d; do not affect the result. For large k, K = 1.6467602... and S = 1/K = 0.6072529.... Typ-
ically, the number of stages is chosen to be one larger than the number of bits precision
needed.

-1

k-1

; 1
K = | | cos(d;arctan(27")) = H
i=0

- (2.7)
=0 o V1 4+ 272
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2.6 QR-decomposition

A QR-decomposition is a factorization of a matrix A into the product QR where Q is an
orthogonal matrix and R is an upper triangular matrix. Since Q is orthogonal, we also
have QA = R.

Q" may be constructed by a series of Givens rotations or CORDIC operations. This
concept is shown for a 3 X 3 matrix below. In each step the the two rightmost matrices
are multiplied.

R =Q"A = G3G,G,A
(1 0 O0|[c s2 O[T 0 0][agp a1 aop
=10 Cc3 53 —s: (8] 0 0 C1 51 ai,0 a1,1 allz

10 —s3 c3|| 0 0 1]|0 —=s] ci|[ao a1 aop

|0 —s3 || 0 0 1|0 a4 4

0 —=s; || 0 a a

14 /
00 %1 “op
_ 7 17
=10 a1,1 a1,2
144
|0 0 @)

In the first step, the Givens rotation G that affects all of row 2 and 3 is chosen based on
vector (a1 o,a2,) (highlighted in blue) so that element 4, o becomes zero (shown under-
lined in subsequent line). This same processing step repeats until all elements under
the diagonal in the first column are zeroed, before continuing with the second column.

In general, each step takes a vector (a, b), rotates it to (7, 0), and applies the same rotation
angle to the other vectors occupying the same rows. The rotation angle is arctan(b, a),
but explicit computation of arctan(-) is in fact not required. By use of basic trigonometric
relationships with the illustration of (b), we find that:

r = \Ja% +b? c=—2 s——b
Va? + b? Va2 + b?

Clearly, s and c can be found directly without any trigonometric function. An algorithm
for Givens rotation for the case when a and b are complex is presented by Bindel et.al
[6], and is shown in

10



2.7 QR-decomposition-based RLS (QRD-RLS)

if b = 0 then r=cf +sg
c=1s=0r=a s=—s"f+cg
else if 2 = 0 then
c =0;s =sign(b"); r = |b|
else
¢ = lal/+/|al> + |b]?
s = sign(a)b*/+/lal> + |b?
r = sign(a)/|al*> + |bf?

Algorithm 2.2 Complex givens rotation. Left side rotates (a,b) to zero b, resulting in
(r,0) and rotation parameters ¢ and s. The right side uses ¢ and s to rotate a different
vector (f, g) — (r,9).

CORDIC can also be used for QR-decomposition, performing the same function as

. First assume real matrix elements. In the first step of the earlier ex-
ample, applying CORDIC in vectoring mode to (a1 ,a2,0) (highlighted in blue) gives
the result (ai,o, 0) and the angle 0; = arctan(ay,410). CORDIC in rotating mode can
then take this 0; angle and rotate the remaining vectors (a11,a21) — (aill,aé’l) and
(a12,a22) — (all,z' a§’2). This is repeated to bring all elements under the diagonal to
zero, just like with . Handling of complex values is described in more

detail by Rader, Gao and Maltsev [9, 10, 11].

2.7 QR-decomposition-based RLS (QRD-RLS)

The QRD-RLS algorithm implements the RLS recursion by use of a QR-decomposition.
It is described by [12,ch10]:

R[] plil  sli] - 0l] AMPR[i-1] AY2pli-1] 0
0" alil yl]| xT[i] dli] 1

A QR-decomposition is applied to the right hand side matrix, which consists of the
square root exponentially weighted covariance matrix R and p from the previous itera-
tion, a constant column vector [0, - - -,0,1]7, and the current data x[i] and d[i] which the
algorithm is to operate on.

(2.8)

The QR-decomposition generates a[i] = y[ile[i] and y[i] explicitly. €[7] is the a priori
estimation error in conventional RLS, which relates to the a posteriori error by the con-
version factor y[i]2 according to e[i] = yz[i]e[i]. It follows [12,ch3] that the a posteriori
error can be calculated from the QR-decomposition result by e[i] = y[i] - a[i].

The algorithm is summarized in

2.8 Inverse QRD-RLS (IQRD-RLS)

The IQRD-RLS algorithm is an implementation of the RLS recursion, which also makes
use of a QR-decomposition. It builds on the QRD-RLS algorithm by appending an

11
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R[-1] = 6?1
for each timestep i > 0 do

[R[Z l Qli] [Al/iﬁ[[i,]_ 1]] {Find and apply Q[i], update R[i]}

plil slil] .. [AY?pli-1] 0 . e o
l [ y[i]] —Q[ll[ d[i] ]{Apply Ql#], find ali], y[il}

eli] = y[i] - a[i] {Calculate error signal}
end for

Algorithm 2.3 The QRD-RLS algorithm

“inverse” matrix that can compute the optimal weights directly. It it is described by

[12,ch10]:
R[i] R[] . [Rli-11 RT[i-1]
[OT v’T[i]] ‘Qm[ T[] 0T 29)

R consists of the square-root exponentially weighted covariance matrices R and p from
QRD-RLS and the scalar y[i]. The rightmost columns contain RT = (R 1)T and asa
consequence, scaled weights —w][i]/y[i] appear in the rightmost column of R! (or the
bottom row of R™T). The inverse matrix uses A~/2 instead of A1/ as forgetting factor.

~  [AV2R[i] Al/zp[i]] = T _[ ATV2R-T o ]
Rm‘l o i REU= oty 1yt

#i) = [T dlil ]

The algorithm is summarized in

~ ey )
RH]:| o7 0]

= 7M1 0
R7-1]=
1= o]

for each timestep i > 0 do
[R[Z l Q[ ] [/\1/25?[[2]_ 1]] {Find and apply Q[i], update E[i]}

RT ~12p-T[i _ _
l v/T[[il]]] = Q[i] |A ROT l 1]] {Apply Q[i], update R~[i] }

wli] = —y[i] - —wli]/yli] {Found in R[i] and R~T[i] }
end for

Algorithm 2.4 The IQRD-RLS algorithm

12



2.9 Systolic array implementation of RLS algorithms

2.9 Systolic array implementation of RLS algorithms

The QRD-RLS and IQRD-RLS algorithm may be implemented by using a systolic ar-
ray architectures shown in . Figure is adapted from Harteneck and Stewart,
and Ma and Parhi [13, 12]. The array consists of two types of nodes; boundary nodes
(circles), and internal nodes.

Every labeled node stores a recursive variable indicated by the label, corresponding
to elements from the matrices of or depending on which
system is implemented. The recursive path from the previous iteration to the next in-
cludes a multiplication by the square root of the forgetting factor A*'/2. This is con-
tained within each node and not shown in the figure. Nodes labeled p,, store elements
of p, etc. For instance, at any given iteration i, node pp computes py[i] by using the pre-
vious value weighted with the forgetting factor; A1/2 - po[i — 1]. Column nodes marked
(0) in the QRD-RLS do not have any recursive variable, and the value used in the QR-
decomposition is a constant 0.

The boundary nodes compute c and s parameters for a Givens rotation of the vector
(AY 2rn,n[i], xin[i]) where 1y, ,[i] is the variable stored in the node, and x;,[i] is the signal
received from the nodes top input. Internal nodes propagate c and s parameters to the
right, and apply the received c and s parameters to rotate the vector (A=Y 21’,11,,1[1'], Xinli])-
Again, 1y, 4[i] is the internal variable and x;,,[i] is the nodes top input. The internal nodes
drawn with dotted lines represent RT of and use A~1/2, while all other
nodes use A1/2.

Boundary and internal node operation may be described in a new algorithm, similar
to the givens rotation from . If we assume that boundary nodes r;,, are
initialized with real, non-negative numbers and connected like shown in ,
it follows that they will remain real and positive, leading to simplifications shown in

. Here, the multiplication with the square root forgetting factor is in-

cluded.
if x;, = 0 then r=cAt2r 4 sxy,
c=1;5=0;r=AV% Xout = =" A12r + cxy,
else if r = 0 then c=c
¢ =0;s = sign(x; ); r = |x;yl s=s
else

¢ = A2r/J(A12r)? + |y 2
s = x5 [V(A20)2 + x;2
r = V(A21)2 + x?

Algorithm 2.5 QRD-RLS and IQRD-RLS boundary node operation (left) and internal
node operation (right) using givens rotations. Inverse internal nodes of IQRD-RLS use
A7172, all others use A1/

13
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A benefit of the systolic array is its regularity and locality. Blue dotted lines in

shows how latency can be added so that each node only has to provide its results to its
neighbors during one cycle, without the need for global signals except the clock. This
reduction of signal path length and delay gives an increase in the possible execution

speed. A consequence is that inputs at the top of the array must be delayed by different
amounts.

Xl xalll xlil 1 d[i]

- T T
— Lo — T2 i— I3

in

’1’
l

xout xout

Figure 2.4 Examples of QRD-RLS (top) and IQRD-RLS (bottom) systolic array struc-
tures for MN = 3. Latencies can be added as suggested with blue dotted lines.

14



3 Design

3.1 Requirements

This section describes the problem from the assignment text in more detail. The beam-

former, which is the focus of this thesis, is shown in relation to surrounding systems in
. Each antenna is followed by a digital demodulator which downmixes and

samples the received RF signals. This is contained in the radio front-end block.

Radio front-end Adaptive beamformer
d[i]
RX » e[i] )
i | STAP »  GNSS
0 : filter decoder

x[i] T wli]

Adaptive
algorithm (RLS)

el

RX

Figure 3.1 System diagram showing the multi channel radio front-end, the adaptive
beamformer and the GNSS decoder.

The STAP filter is shown in more detail in . It is a combination of the STAP
filter described in , and the MMSE criterion of . The first channel
is designated as the reference channel 4[7]. Signals from the remaining M channels at N
sample times (taps) are grouped into the 1 X MIN vector x[i] according to .
The STAP filter computes e[i] = d[i] — w[i]"x[i] which is passed on to the downstream
signal processing which can further decode and demodulate the desired signal.

Signals d[i] and x[i] are also passed to the adaptive algorithm. The objective of this
algorithm in this system is to find the filter weights w[i] that minimize the power in ¢[i],
which is equivalent to least squares filtering if e[7] is considered to be the error signal.
Least squares filtering can be performed with many algorithms[1], for instance Sample
Matrix Inversion (SMI), Least Mean Squares (LMS), genetic algorithms or Recursive
Least Squares (RLS). This thesis is limited to considering RLS which compared to the
other methods has fast convergence speed but high computational load.

The desired signal is supposed to be a spread-spectrum Global Navigation Satellite
System (GNSS) signal. A pre-processor is drawn in that will “hide” this
desired signal in the signal passed on to the adaptive algorithm, via an unspecified
method. The desired signal is hidden to prevent the beamformer from suppressing
it. The test signals used in this thesis do not contain GNSS signals, only only jammer

15
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d[i] \/;_'_ eli]

xoli] 13 xo[i—l]‘ 1 S xXo[i-N+1]
Z zZ [T Z

E Wo,0 Wo,1 Wo,N-1

: 2

xp4li] 1 Xpli-1] 1 1 Xpa[i-N+1]
Z

W10 W11

™M

Figure 3.2 Modified STAP filter modelled after the MMSE criterion. Adaptive algo-
rithm (not shown) is used to update weights wy, ;.

and noise floor. For this reason, the pre-processor can be assumed to pass d[i] and x[i]
through unmodified.

A total of M + 1 = 6 antennas are available, of which the first is designated as the
reference antenna. The number of taps N is suggested to be in the range 1-4. d[i] and x[i]
are complex, discrete-time signals available at a rate of 125 MHz. The data is available
in signed integer format, with 16 bits for each of the real and imaginary parts. It is
desired for the system to find a solution to the filter weights within 0.1 ms after the
jammer is enabled.

3.2 Test signal set

Test signals were provided by KDS to use for evaluation of the algorithms performance.
Two sets of signals were supplied, each containing different jammer signal character-
istics. Each set consisted of six channels, one for each of the antenna. Both data sets
start with approximately 100 samples of uncorrelated noise floor, followed by a strong
jamming signal from a single direction that does not move. The noise floor samples
were approximately in the value range +60 for each of the real and imaginary part.
Description of each signal set follows.

3.2.1 Multi-tone step from static jammer

In the left column of it can be seen that the jammer signal amplitude spans
roughly +5000 in both the real and imaginary components (imaginary part not shown).

16



3.3 Sample Matrix Inversion (SMI) vs Recursive Least Squares (RLS) performance

Distinct tones/peaks are visible in the spectrum. This signal is referred to as the multi-
tone test signal.

3.2.2 Broadband step from static jammer

This data set was similar to the Multi-tone in that it is a static scenario with a power
step, but the spectrum is broader and the signal amplitude and power is greater. It
is illustrated in the right column of . The jammer signal amplitude spans
approximately £15000 in both the real and imaginary components (imaginary part not
shown). This signal is referred to as the broadband test signal.

x 10Multitone step signal x 10Broadband step signal
v 1 1
gl
2
- *
<
E
| -1
0 100 200 300 0 100 200 300
Time [samples] Time [samples]
)
3 120 1 120
= 100 1 100
13
—
= 80 80
o0
e
= 60 60
N ‘ ‘ ‘ ‘
0 50 100 0 50 100
Frequency [MHZz] Frequency [MHZz]

Figure 3.3 Test signals showing a multitone signal (left) and a broadband signal
(right). The time domain plots (top) show the step in power near sample 100, while
the FFT plots (bottom) show relative differences between the spectra. Only reference
channel is shown.

3.3 Sample Matrix Inversion (SMI) vs Recursive Least Squares (RLS)
performance

To evaluate the performance of RLS, the SMI method is used as a reference. RLS was
compared with SMI by applying both algorithms to the test data sets, with varying
antenna/tap configurations, K and A parameters. Performance is quantified by first

17
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estimating the time-averaged power level of the reference channel when jammer is not
active. This section of the signal will be referred to the noise portion of the signal. The
power level at the beamformer output e[i] is then estimated using the same method on
a section where both noise and jammer signals are present on the input. This number is
then converted to decibels relative to the noise power level and is used for comparisons.
Signal power is estimated with where f[i] is the chosen section of the
signal.

k+N-1
1

P=< ) Ul (3.1)

i=k

RLS was implemented according to , and MATLAB code is included in
. The additional signals introduced by STAP filter taps were created us-
ing codein . For the comparison, a causal SMI was used as in
with code included in . A principal difference between RLS and SMI is
that RLS uses an exponential window for estimating the correlation matrices, while SMI
uses a rectangular window. This makes direct comparison difficult, since the rectangu-
lar window length K has no direct relationship to the exponential forgetting factor A. To
handle this, values of K and A were chosen to get approximately similar performance.
From the plot in , it is seen that SMI with K = 125 performs similarly to RLS
with A = 0.995. The same is true for K = 500 and A = 0.999. This is seen by the two sets
of red /blue planes overlapping.

|
]

noise
noise

Beamformer output power [dB
Beamformer output power [dB

Channels M

Channels M 5 4 54

Multi-tone signal Broadband signal

Figure 3.4 Surfaces show output power from SMI (red) and RLS (blue) algorithms for
different channel/tap configurations. Within each plot are four surfaces, the blue RLS
results for A = 0.995 (lower) and A = 0.999 (upper), and the red SMI results for K = 125
(lower) and K = 500 (upper).
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3.3 Sample Matrix Inversion (SMI) vs Recursive Least Squares (RLS) performance

also shows how the output power is reduced as taps and channels are added.
For the broadband signal, additional taps have very little effect. An interesting observa-
tion is that the performance for multi-tone and broadband test signals is quite similar,
despite the broadband jammer power being approximately 10 times stronger.

The absolute performance is not the main point here, since this can be changed by mod-
ifying K and A. The point is that an RLS-based beamformer can perform equivalently
to an SMI algorithm by selecting A appropriately. In this is seen by the close
overlap of red and blue surfaces.

Another aspect besides steady state performance, is the transient performance of the
algorithm. To demonstrate this, the filter weights produced by SMI and RLS were com-
pared and are presented in

25
2
|
15 |
l
1 | 24 RLS |w, | A=0.995
_ _ RLS lw, | A=0.995
05 2.35 SMI Iw, | K=125 |
A _ SMIlw, | K=125
[

100 1'10 23 1 1 1 1 1 1 1 1
. 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [samples] Time [samnles]

Figure 3.5 Filter weight magnitude behavior for M = 2, N = 1 configuration, multi-
tone test signal. Left graph shows both filter weights at the moment when the jammer
is activated. Right graph shows the steady state variation in a single weight [wy|.

From the left part of the figure it is clear that RLS and SMI behave similarly with re-
gards to convergence time, as they both converge within 3-4 samples. SMI and RLS
filter weights stay around the same average value, but it is noted that SMI filter weights
vary more than those produced by RLS. The variations themselves are caused by the
uncorrelated noise in the channels and the variance present in any statistical estimator,
and the same effect is also observed with the broadband test signal. This suggests that
RLS and SMI react to noise differently.

A conclusion that can be drawn from these results is that RLS can perform equivalently
to SMI on the test signals. For further development of an RLS implementation, com-
parison to conventional RLS is sufficient.
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3.4 RLS parameters

Adjustable parameters for RLS consist of the forgetting factor A, the initialization value
6~1 in the inverse correlation matrix P and the initial filter weights w[-1]. We can set

T
w[-1] = [0 e O] to start the system with no particular beamforming, effectively
eliminating the signals from all except the reference antenna.

To illustrate the effect of the 6 parameter, a range of simulations with different values
for 6 are shown in

200 0.5
E 5 0
o o
I I
~ ~ -0.5
-200 ' ' - ' ' '
0 1000 2000 3000 0 1000 2000 3000
Time (samples) Time (samples)
400 0.5
£ 200 E 0
Q. Q.
= I
& 0 ~ -0.5
-200 ' ' - ' : -
0 1000 2000 3000 0 1000 2000 3000
Time (samples) Time (samples)
2000 0.5
Y1000 T 0
o Q.
I S
& 0 ~ -0.5
-1000 ' ' - ' ' '
0 1000 2000 3000 0 1000 2000 3000
Time (samples) Time (samples)

Figure 3.6 Real component of beamformer output e[i] (left), and filter weight behavior
(right) for multi-tone signal, M =5, N =1, A = 0.99 and varying ¢ € {10°,10°, 108} from
top to bottom. Colors blue, green, red, cyan, purple correspond to weights wy through
Wy.

In all the simulations the beamformer output stabilizes on the same range of values
approximately between +£100. The effect of o is seen in the beamformer output around
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3.4 RLS parameters

sample 100. When the jammer is enabled, an excursion is visible for 6 € {10°,108}.
The cause of the excursion is that the inverse correlation matrix P is initialized for a
much higher power than is present in the input signal. The algorithm is therefore less
sensitive to the relatively weak jammer, until P converges to reflect the actual signal
power level.

This dynamic is also seen in the filter coefficients. For 6 € {10,108} the weights start out
smoothly, but gradually become more erratic. To get useful results, 6 is chosen so that
the algorithm converges to the noise power level before the jammer is enabled. 6 = 10°
was found to be acceptable.

When A is varied as shown in , there is no dramatic effect on the beamformer
output amplitude, but filter weight behavior is quite different. When A is closer to 1,
the weights become more stable. From the derivation of RLS, A is the constant which
is used to weight the previous correlation matrix estimates. According to Haykin [5,
p450], 1/(1 — A) can be thought of as the “memory” of the algorithm, thus a high A
should be expected to give more stable results.

3.4.1 Complexity and stability considerations

Conventional RLS has complexity O(q?) where g is the degrees of freedom, i.e. the
number of filter weights MN. For the system considered in this thesis the complex-
ity is therefore O((NM)z). An overview of one possible breakdown of the calculations
required by the RLS algorithm from was created, and is included for
reference in . The total number of multiplications are 33 + 3¢, and the
number of additions are 2g% + 24. The single division and a few of the additions and
multiplications have one real operand, and will as such require slightly less resources
to implement than the remaining complex operations.

There does exist other algorithm variants that are mathematically equivalent to RLS, but
use different internal variables and behave differently when implemented with limited
numeric precision. The conventional RLS algorithm suffers from instability caused by
limited precision, as described by Diniz [4, ch16] and Haykin [5, ch12]. Apolindrio
[12, ch2] states that instability in conventional RLS is encountered even with double
precision floating point arithmetic.

Two other classes of algorithms that implement RLS are described in litterature. The
tirst is the lattice filter. This variant was not considered in depth because it cannot
output filter weights, and it also tends to be unstable [12, ch5.7]. The last class is the
QRD-RLS filter of which several variants exist. Three variants of QRD-RLS were found
in the litterature, and are compared;

e (QRD-RLS[12, 5], described in )

e IQRD-RLS, known as the inverse- or square root QRD-RLS algorithm [12, 5], described
in
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Figure 3.7 Real component of beamformer output e[i] (left), and filter weight behavior
(right) for multi-tone signal, M =5 N =1,6 = 10° and varying A € {0.98,0.995, 0.999}
from top to bottom. Colors blue, green, red, cyan, purple correspond to weights wy
through wy.

e FQRD-RLS, a fast QRD-RLS version utilizing the time shifting property of the input
data [14, 12].

e MCFQRD-RLS, a multi-channel FQRD-RLS variant [15, 12].

At first, QRD-RLS was not considered since it only computes the beamformer output
e[i], and not w[i]. The inverse QRD-RLS is an extension to QRD-RLS that produces w][i]
as part of its normal operation. For the fast variants, an additional procedure is required
to extract the weights of the algorithm at a selected point in time. An overview of the
computational complexity of the different algorithms is shown in . “Filtering”
refers to generation of e[i], while “WE” refers to the process of weight extraction.
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3.5 MATLAB and Simulink simulation of IQRD-RLS

Table 3.1 Computational complexity per iteration for possible QR decomposition
based RLS algorithms. M is the number of channels (excluding reference), N is number
of taps per channel. [15, 14]

IQRD-RLS FQRD-RLS | MCFQRD-RLS
Multiplications 3(MN)? + 2MN + 1 19MN + 4 4MBN +
11M2N +9MN +
2 5.5M2+7.5M+1
—
p2 Divisions 2MN 4MN +1 M?N + MN +
i 1.5M? + M
Square roots MN 2MN +1 M?N + MN + M
Multiplications - 7(MN)%? + MN | 5M?N +
5(MN)? + M3N
E Divisions (WE not needed) 1 M
Square roots - 0 0

From the overview it is seen that the filtering process with the fast algorithms is much
simpler than with the inverse QRD-RLS, but the weight extraction process itself is more
demanding than a normal iteration of inverse QRD-RLS. For a graphical comparison,

the variables of were plotted in

Firstly, from the graph it appears that IQRD-RLS is always the simplest, but this is
only true if weights are extracted at every iteration (as plotted). The IQRD-RLS al-
gorithm will always produce filter weights, but FQRD-RLS and MCFQRD-RLS only
become more efficient as filter weights are extracted rarely. This makes FQRD-RLS and
MCFQRD-RLS less suitable for our application where the filter weights must be calcu-
lated and applied in near real time.

Second, the weight extraction process is mostly demanding in terms of multiplications,
so using FQRD-RLS or MCFQRD-RLS with rare weight extraction would not reduce the
number of divisions or square roots significantly. Division and square root operations
are slow operations that are not available as hardware blocks in the FPGA and were
therefore expected to be a limiting factor to the processing speed of the entire system.

Thirdly, no hardware implementations of FQRD-RLS or MCFQRD-RLS with weight ex-
traction are found in the litterature. Based on the presented reasoning, the IQRD-RLS
algorithm was selected for further exploration and implementation.

3.5 MATLAB and Simulink simulation of IQRD-RLS

It was necessary to create a MATLAB model of the IQRD-RLS systolic array structure of
in order to test its equivalence to conventional RLS and to serve as a reference
for the hardware implementation.
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Figure 3.8 Computational complexity per iteration for IQRD-, FQRD- and MCFQRD-
RLS algorithms with M = 5, and varying number of taps N.

The timing relationship of the IQRD-RLS systolic array in is illustrated in

. Here, the nodes and arrows are arranged to show the data dependency
from one cycle to the next as the signals x[0] and 4[0] belonging to iteration i = 0 flow
through the structure from one node to its neighbors, ending up as filter weights —w[0].

To simulate the system, MATLAB functions were first written for each type of node
according to , describing their input-output relationship. The function
arguments is the current state, and the function computes and returns the state for the
next iteration. A (1ambda) was also included as a parameter. The main reason for this
is to be able to switch between two internal node types by supplying A1/2 or A71/2 as a
parameter, instead of having two separate functions for the regular and inverse internal

nodes. Function signatures are as follows (“_n" signifies “next”);
function [s_n, c_n, r_n] = boundary_givens(r, xin, sqrtlambda)
function [s_n, c_n, r_n, xout] = intermal_givens(s, ¢, r, xin, sqrtlambda)

A MATLAB script was then written which manages the current state of the structure,
including all node values and signals connecting nodes, and simulates the structure.
For each simulated cycle, it iterates through and executes the appropriate function for
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Figure 3.9 Dependency graph showing a single iterations of a IQRD-RLS systolic ar-
ray structure for MN = 3.

all initialized nodes in the structure. Once all nodes are updated, the outputs from the
previous cycles become the inputs of the next cycle, and the process is repeated.

Initial conditions of the systolic array are important to control to be able to compare with
conventional RLS. Conventional RLS is not implemented as a systolic array, and the
computations are not spread over multiple cycles. Due to the distributed, parallel struc-
ture of IQRD-RLS, the values “belonging” to one iteration are spread out physically and
in time among the processing nodes as seen in the signal flow diagram . One
could simulate the systolic array on an iteration-by-iteration basis by propagating a sin-
gle “wave” of inputs and collecting them on the outputs and repeating this for each set
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of inputs. The drawback is that this would not simulate the actual cycle-by-cycle be-
havior of a real implementation, and would be less useful as a reference. Because of
this, the algorithm is instead simulated on a cycle-by cycle basis. For the first cycle,
only one node (r11) has valid data to process, while in the second cycle both r1; and 71
can execute and so on according to the signal flow diagram. When valid input signals
have propagated to every node, the array is considered fully initialized and every node
is evaluated in every cycle of the simulation.

MATLAB code for the simulator is included in , and when used with the
node functions from the results match those of conventional RLS.

As a stepping stone on the way to a System Generator model, a Simulink model was
made implementing the nodes and the entire systolic array. The benefits is that Simulink
(and System Generator) provides the tools suited for simulating and debugging a model
constructed with blocks and signals as opposed to the MATLAB simulator which is a
pure software model. A block diagram model of the boundary and internal nodes was
made in Simulink, and a top level graphical model was created which connects the
nodes together to form the IQRD-RLS array. The diagrams for this model are included
in

The results of the Simulink model matches those of the IQRD-RLS simulator, which
again matches the conventional RLS algorithm within tolerances on the order of 1071°.
This can be attributed to quantization effects of double precision arithmetic.

3.6 Hardware implementation considerations

3.6.1 Systolic array latency

Due to the regular structure of the IQRD-RLS systolic arrays in , the area
required in terms of nodes is simple to derive. For MN filtered inputs and one reference
channel, the structure requires MN + 1 boundary nodes and (MN)? - 1 internal nodes.
Since all nodes operate on the same clock frequency, the slowest type of node will be
the bottleneck of the system

Based on the data flow diagram in , the maximum latency is derived to be
3MN + 2 cycles from the top left node to the bottom right output node.

3.6.2 Floating point vs fixed point, Givens rotation vs CORDIC

The algorithm may be realized with only Givens rotations or CORDIC. CORDIC oper-
ates on fixed-point numbers. Givens rotations could be implemented with either float-
ing or fixed point. To simplify the terminology, a CORDIC based implementation will
be referred to as “CORDIC”, whereas a fixed and floating point Givens rotation based
implementations are simply referred to as “fixed point” and “floating point” respec-
tively.
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3.6 Hardware implementation considerations

Some litterature exists on a variant for floating/fixed point Givens rotation, called the
Square Root Free (SRF) Givens rotation. Kile’s [16,ch3] comparison of conventional and
SRF Givens rotation concluded that the SRF variant needed more computation than
conventional Givens rotation when complex numbers are used, and required 10 times
the number of divisions. The SRF variant was not used for this reason.

shows diagrams of the overall architecture for the different node types.
Note that the CORDIC based nodes uses multiple vectoring or rotating units to handle
complex numbers as described in works of both Rader, Gao and Maltsev [9, 10, 11].

Boundary node Internal node
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Figure 3.10 Possible architectures for the boundary nodes (left) and internal nodes
(right). CORDIC on top, Givens rotation on bottom. Loops highlighted in red. Thick
lines represent complex numbers.

Any system having a loop in its signal flow graph is limited in its operating speed.
This limitation is commonly quantified as the loop bound [17,slide 11.17], defined by
(loop delay)/ (# registers in loop). The inverse of the loop bound is the theoretical max-
imum speed, assuming the delay can be divided equally between the registers. The
limitation imposed by all the loops in a system is called the iteration bound as defined in

loop delay [s]
1/Fimax = max - -
all loops # registers in loop

(3.2)

In the case of real-valued signals, only a single vectoring/rotating CORDIC block is needed in the bound-
ary/internal node.
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In the IQRD-RLS system, one loop exists in every node and is highlighted in red in

. For Givens rotation, the loop calculates the magnitude of x;,, followed by
the square root of the sum of % and magnitude of x;,. For the CORDIC based node, the
loop involves one CORDIC operation.

To get an estimate for the expected performance, the square root, mulitplication and
addition operators required to compute r were synthesized and routed as individual
systems using System Generator. A 16 bit fixed point was compared with the 16 bit
IEEE 754 half-precision format which uses a 5 bits exponent and 11 bit mantissa. The
fundamental difference between fixed and floating point formats makes them difficult
to compare one-to one, as their benefits and drawbacks depend on the application.

Operators were configured with zero pipelining and an unrealistically high target clock
frequency to make the synthesis, place and route tools analyze and optimize the total
delay through the operator. The maximum path delay calculated by the analysis tools
for each individual operator could then be combined to approximate the delay around
the entire loop. Operator configuration was also set for maximum speed when possible.
For CORDIC operations the scale compensation factor S was not included as a separate
multiplier since it could be included into the multiplier for the A*!/2-term. Addition and
multiplication operators were tested with both DSP48 and fabric-only configuration.
The results reported by the tools are summarized in

From the results, it is noted that fixed point is generally faster than floating point alter-
native, except for square root. It is also seen that fabric implementations are generally
faster than embedded multipliers.

For a CORDIC implementation (fixed point), the loop consists of one multiplication
and one CORDIC vectoring operation. Using a fabric-only multiplier gives the fastest
solution with a delay of 35 ns with 913 LUTs.

For a Givens implementation (fixed or floating point), the loop is made up of two mul-
tiplications - the first for r- A2 and the second for (rA1/2)2. The result must be added to
Ixin| and followed by a square root. For fixed point integer mode square root, the delay
is 44.1ns using 942 LUTS. For floating point the delay is 48.5 ns, and logic usage is 650
LUTs.

Comparing Givens floating point to CORDIC on speed and area usage, it can be seen
that they are similar - the speed gained by choosing CORDIC is proportionally offset
by its increased size. The fixed point implementation has somewhat more delay and
logic usage than CORDIC, leaving CORDIC and floating point for further comparison.

Besides the comparison of floating point and CORDIC, there are other aspects which
are difficult to compare quantitatively without a complete implementation of both types
in a system.

e CORDIC allows a low-level optimization (not available in the Xilinx IP core), where
the direction of each micro-rotation is transmitted to the internal nodes instead of

Results were identical to floating point addition with fabric setting. No DSP48 unit was used.
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Table 3.2 Overview of the delay and resource consumption for square root, multipli-
cation and addition operators, for fixed and floating point formats.

Operation | Delay [ns] | Slices | Reg. LUT DSP48 | Note/setting
% Fixed 28.9 173 49 632 0 Vectoring
§ Fixed 31.7 263 70 951 0 Rotating
+ | Fixed 30.1 101 49 361 0 Integer
g Fixed 27.0 105 48 323 0 Fractional
Eu;* Float 19.9 30 0 152 0 -
Fixed 6.07 0 0 0 1 DSP48
> | Fixed 6.08 77 0 281 0 Fabric
g Float 12.4 21 0 45 2 DSP48
= Float 9.29 58 0 170 0 Fabric
Fixed 3.94 0 0 0 1 DSP48
= Fixed 1.86 5 0 19 0 Fabric
Eé Float 10.0 48 0 158 0 DSP48
Float 10.0 48 0 158 0 Fabric
Target device capacity 37680 - 150720 768 XC6VLX240T-1

the accumulated angle [8]. This eliminates the unnecessary accumulation and limits
the latency between vectoring and rotating iterations.

e CORDIC’s regularity makes it pipeline well, because of its many identical stages

e Floating point can make use of the DSP48 resources available, but CORDIC cannot
except for the scale factor S.

e Floating point requires additional divisions, increasing boundary node size
e CORDIC requires more logic in internal node than in boundary node

e Floating point has the longest (slowest) loop in the boundary nodes, whereas the
loop delay for CORDIC is similar in both types of nodes

e Floating point has a wide dynamic range and is used in MATLAB, making the tran-
sition from MATLAB to implementation simpler.

Based on these properties, floating point Givens rotation was selected for further im-
plementation of the IQRD-RLS array.
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3.7 Implementation of floating point complex IQRD-RLS

For a system operating on complex values, node signals x;,, Xt and s are complex,
while ¢ and A!/? are real. r is real in the boundary node, but complex in the inter-
nal nodes. Based on , a more detailed diagram was drawn as shown in

Boundary node Internal node

Xin

xout
S
X Refs}
. E—
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x| Imfs}
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> - C
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Figure 3.11 Node construction for bounday and internal nodes implementing
Bold lines for multipliers and adders indicate complex operations
which are not expanded for simplicity. Loops drawn in red.

Due to the fact that the boundary nodes loop consisted of two multiplications, one
addition and one square root, it was estimated to have a larger delay than the internal
node. The internal nodes loop consists of two half-complex multipliers (complex-real
multipliers), as well as one complex addition. Maximum delay through these is no
different than real-valued multipliers and adders, so in terms of loop delay, the nodes
differ only in the square root operation.

Full-complex multipliers were implemented according to , using four
multipliers and two adders.

(a + ib)(c + id) = (ac — bd) + i(ad + bc) (3.3)

3.7.1 Scope of implementation

The implementation focuses on the systolic array itself. To re-iterate, the systolic array
implements RLS which performs the job of the adaptive algorithm in the beamformer as
shown in . It receives the reference channel d[i] and “tapped” channel signals
x[i] from the STAP filter, and produces filter weights w[i] which are passed to the STAP
filter where they are used for filtering x[i]. The implemented system is illustrated in
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Figure 3.12 Diagram of designed system. The systolic array portion (indicated) is de-
signed for hardware.

3.7.2 Drift issues

MATLAB was first used to evaluate the impact of varying precision in the algorithm.
The boundary and internal node functions were modified to simulate limited precision
effects. Code is included in . A third party function roundfloat () [18]
seemed useful for limiting the number of bits of the mantissa, but its behavior was
questionable as it did not give identical results when compared against MATLABs built-
in conversion from double precision to single precision.

Because MATLAB simulations were inconclusive, the system was implemented with
System Generator to see the effects of limited precision by simulating the actual hard-
ware design. A small MN = 2 design was made, which is included in

When simulating the systolic array using limited-precision with 16 mantissa bits (and
less), an effect was observed where the filter coefficients appeared to drift. The weights
drifted exponentially from their correct value, eventually leading to incorrect values.
This effect had not been visible in earlier double- or single precision simulations. By
changing the the precision it was seen that the drift rate was related to the mantissa
precision level, and reducing precision increased the drift rate.

By some trial and error and changing which values of x;,, A2 s ¢ x,. and r were
quantized using roundfloat (), the drift was found to be caused by A*!/2. In the first
“triangle” of the IQRD-RLS systolic array where signals are applied, A1/2 is used, while
in the other “triangle” the inverse A~1/2 is used. These values are used to independently
update the node variables rand r~!. Itis believed that since the filter weights are formed
by multiplying y from the left triangle with the @, of the right triangle, the difference in
accumulated quantization error explains the drift/divergence of the weights.

1/2

Through hardware simulations it was observed that when the quantized A7/~ was

smaller than its theoretical value, the filter weights drifted towards zero. When the

quantized A~1/2

was larger than its theoretical value, the filter weights drifted away
from zero in the direction of their sign. For mantissa widths of 16 bits, the drift had
a detrimental effect on the output power within rougly 1000 samples, but the drift is
visible in the filter coefficients even earlier. An example illustrating the drift is shown

in
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Figure 3.13 Real value of filter weights wy (blue) and w; (green) from two overlaid
simulations for M = 2, N = 1. 6 bit exponent, 12 bit mantissa, A1/? = 0.989990234375
(quantized). The two cases show A~1/2 = 1.01025390625 (weights drifting away from 0)
and A~1/2 = 1.009765625 (weights drifting towards zero).

The drift is obviously not desired since it leads to incorrect weight solutions, so several
methods to mitigate it were considered.

3.7.2.1 Increasing precision of A*!/2

Precision could be directly increased by using more mantissa bits in the A*!/2 constants
and the operators that constitute the node loop. The drawback is that increasing preci-
sion will increase loop delay, reducing performance.

Another interesting approach is to make sure that the time-average of the quantized
A*1/2jg equal to its theoretical non-quantized value. Assuming the example in

this would mean switching between A~1/2 = 1.01025390625 and A~1/? = 1.009765625 in
a ratio so that the average approaches the ideal value 1.01011097411 which is not rep-
resentable in finite precision binary.

However, because of the floating point format, the magnitude and sign of the accumu-
lated quantization error depends on the value r being multiplied by A=/2. The average
value of r depends ultimately on the correlation and powers of the input signals x[i]
and d[i] to the systolic array, which are not predictable.

3.7.2.2 Careful selection of A*!/2

It is conceivable that there are some quantized values of A1*!/? with a quantized inverse
that is closer to the theoretical value. By restricting the choice of A*!/2, drift can be
minimized although not eliminated given a certain precision.
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Simulations with the only exact solution A1/? = 0.5 and A~1/2 = 2, showed that a sim-
ilar type of drift still existed, but on a larger time scale. In any case, proper choice of
forgetting factor depends on the jamming scenarios and the systems surrounding the
beamformer. Small forgetting factors like A1/?2 = 0.5 leads to larger variation in the
weigths as was illustrated in , and reduces the memory of the algorithm.

It was decided to abandon the idea of solving for filter weights every cycle, and the
IQRD-RLS structure. Instead, the system was simplified to leave the left hand triangular
systolic array of a QRD-RLS structure.

3.8 Implementation of floating point complex QRD-RLS

Use of the QRD-RLS systolic array left two methods of extracting the filter weights.

One could use a separate back-substitution system as described by Diniz [4,p385]. This
method uses back-substitution to solve the matrix equation R[i]Jwg[i] = —pli] for the
weights w[i]. Because of the latency added to the array as shown in , ele-
ments belonging to the matrices R[i] and p[i] are spread out in time This makes back-
substitution a serial process. Back-substitution requires multiplication, addition and
division.

The other method is weight flushing [19]. The QRD-RLS array produces the error signal
(the filtered output) according to e[i] = d[i] — wH[i]x[i], but the weights wli] are not
explicitly available in the structure. Consider setting d[i] = 0 and choosing x[i] = e.
Here, e is a unit vector in dimension k.

*

The systolic array output will be e[i] = 0 - wlilHe, = —w;. Thus, by sending such
impulses on every channel (for all k), all the negated conjugate filter weights become
available on the error output. Like back-substitution, this is a serial process. The nodes
in the system must be “frozen”, and must not adapt to the impulses since they are not
valid data. This is most simply achieved by inhibiting update of » within a node when
it processes the impulse. An example impulse for a MN = 3 array is:

x[z] =ey = [1,O,O]T - e[z] = —wa
xli+1]=e; =10,1,0]" - e[i + 1] = —w}

x[i+2] =e; =1[0,0,1]" — e[i +2] = —w},

There are drawbacks and benefits to either method. The main benefit of back-substitution
is that the adaptive filter does not need to be “paused” during readout. Pausing the
adaptation means that the system will ignore the regular input for the duration of the
impulse. However, with weight flushing this blind spot lasts only for a number of sam-
ples equal to the number of weights (i.e. the length of the filters impulse response). The
RLS algorithm converges very quickly, usually within 5 samples, and is only needed to
converge within 0.1 ms. In this context the blind time for the weight flushing method
is extremely small and was deemed acceptable.
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Weight flushing was chosen as the method for weight extraction because it also is simple
to implement.

3.8.1 Simulink model

A new Simulink model was created to simulate both the triangular QRD-RLS systolic
array, and the weight flushing method. A MATLAB simulator based on the IQRD-RLS
simulator was also created ( ), but was rarely used since Simulink and
hardware simulations were fast enough. The concept is illustrated in A
test signal source produces the test signal (either multi-tone or broadband). A readout
sequencer will periodically select and start the impulse generator, applying its signal to
the systolic array. The column of delay elements are used to skew the input data in time
for correct operation of the systolic array. The impulse signal is marked with the flag
“valid=false” which has the effect of inhibiting update of recursive variables within the
nodes. The flag follows the impulse through the systolic array to the output e[i]. This
makes it easy to identify and synchronize to the impulse response when it appears on
the output ¢[i] regardless of the latency through the systolic array. This process is the
responsibility of the “weight collector” block, implemented with a MATLAB script run
after simulation.

Test signal
source

wli]

!

collector

dlil 1,6 76}—’ Weight

Impulse .
generator y

i

Readout
sequencer

bivild

in]

Figure 3.14 Diagram of designed system with a QRD-RLS systolic array and weight
flushing. The systolic array portion (indicated) is implemented in hardware.

It should be made clear that implements the adaptive algorithm block in
the adaptive beamformer ( ). This means that signal e[i] from the systolic array
( ) is only used to extract filter weights. e[i] from the systolic array is different

from e[i] on the system level because of the pre-processor.

Diagrams of the Simulink and System Generator models for the systolic array are in-
cluded in and

Note that the sixth column of the systolic array is fed by the constant value 1 and does
not require the full functionality of an internal node. In this type of node r is set to
0, and is not recursively updated. The column is configured this way by setting the
simplify=true flag on the control bus in the Simulink model. The node effectively com-
putes xout = Xy, a half-complex multiplication. The d[i] signal fed into the top row of
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3.8 Implementation of floating point complex QRD-RLS

the systolic array is delayed one extra clock cycle because of the insertion of this extra
column.

Correct behavior of the system was checked by comparison with of IQRD-RLS simula-
tions. Both the error signal and extracted weights matched within double precision
tolerance. After the first weight extraction, subsequent weight extractions returned
slightly different results. This is expected since pausing and flushing of the systolic
array causes some information to be discarded.

3.8.2 Preliminary synthesis results

To characterize the system, boundary and internal nodes were built using System Gen-
erator according to the diagram of . Complex multipliers in the internal
nodes were implemented according to , using four multipliers and two
adders. The nodes were implemented using operators configured for lowest possible
delay, i.e. no pipelining.

This first design was not expected to be fast, but instead it would give an idea of the
amount of logic needed for the nodes and the needed precision. Verification of the
node behavior was done by comparing the behavior to the MATLAB functions bound-
ary_givens() and internal_givens() described in . This was straight-
forward to do with System Generator without having to write HDL test benches.

Synthesis results for boundary and internal nodes are summarized in . From
the table, some observations can be made;

e The use of DSP48 blocks is mostly unaffected by the number of mantissa bits because
the blocks natively operate on larger than 14 bit numbers. Using less bits does not
allow (automatic) re-use.

e The number of mantissa bits has no effect on the internal node delay, but a large ef-
fect the boundary node delay. This because square root and division delays depend
on the precision.

e The internal nodes are faster than the boundary nodes.

Itis seen that without further modifications, the nodes have a maximum delay of 80.3 ns
and 42.4 ns for the boundary and internal nodes respectively with 14 mantissa bits. The
speed is in all cases limited by the boundary node, to between 12.5 MHz and 15.5 MHz
depending on precision. Compared to the desired rate of 125 MHz it is clear that more
effort is needed to speed up the system. Keep in mind that the boundary node delays
shown here are not due to the recursive update of r, but are the delays from x;, to the s
outputs, which has an additional division after r is computed.
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Chapter 3. Design

Table 3.3 Overview of the input-output delay and resource consumption for bound-
ary and internal nodes for various mantissa widths (Mant.) [bit], as reported by syn-
thesis tools (no place/route). Exponent width is 6 bits.

Mant. | LUTs | DSP48 | Delay [ns] | Setting
14 | 2917 0 80.0 All fabric
g 1| 18w 8 80.3 All DSP48
S| 12 | 267 0 71.8 All fabric
S| 12 | 153 8 71.8 All DSP48
g1 10 | 19 0 63.2 All fabric
10 | 1287 8 64.7 All DSP48
14 | 5407 0 417 All fabric
J| 14 | 2669 | 28 24 All DSP48
B 12 | s609 0 39.4 All fabric
g 12 | 2333 | 28 403 All DSP48
E| 10 | w4 0 37.0 All fabric
10 | 2153 | 28 39.6 All DSP48

3.8.3 Performance vs precision

The chosen implementation uses floating point where the number of bits for mantissa
and exponent may be changed. Boundary and internal nodes were assembled to form
QRD-RLS systolic arrays of various sizes. The entire system was then simulated with
different mantissa precisions and the output power was compared to the input noise
level. Because the results from showed little difference between multi-tone
and broadband test signals when using more taps than 1, only a single tap and the
multi-tone test were used. Results are shown in

It is seen from that a 14 bit mantissa yields the same performance as the 53
bit double precision reference, and that further reductions in mantissa width leads to
degradation of performance (with one exception for (5,1) configuration at 12 mantissa
bits).

3.9 Improving speed

To improve the speed of the nodes in , latencies were added to the system.

illustrates how latency was inserted and redistributed without changing
the function of the system. This latency was added on top of existing latency as shown
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3.9 Improving speed

Table 3.4 Power output for different systolic array dimensions (M,N) and mantissa
precision. Multi-tone test signal, A = 0.995 quantized to 11 bit mantissa in all cases.

Mantissa Output power [dB;ys]
width [bits] | 3,1) | 4,1) (5,1
53 2.6 2.3 15
14 2.6 2.3 1.5
13 3.0 2.8 2.0
12 4.0 3.9 1.7
11 5.9 5.6 4.5
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Figure 3.15 Added latency (left) and redistributed latency (right). Blue dotted lines
represent cycles of latency.

in . In the boundary nodes, one cycle of latency is pushed to the bound-
ary node output, giving the dividers on the output one full clock cycle to calculate
their results. A detailed illustration of the added latency within the nodes is shown in
. The latencies were placed in such a way that the loop in the boundary node
(red) is the path with longest register-to-register delay and thus the only limit to the op-
erating frequency of the system. This “pipelined” node design is the one included in
, and the location of added latency is highlighted in their block diagrams

by vertical dotted lines.
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Pipelined boundary node

Pipelined internal node

Ref{s}

YY V

A

11

in

Figure 3.16 Boundary and internal nodes showing where extra latency is added.

Added latency is shown with blue dotted lines.
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4 Conclusion and further work

This chapter summarizes and discusses the implemented system, suggests improve-
ments and proposes further work.

4.1 Result overview

The preliminary results from was not optimized as described in ,
and used either all fabric, or all DSP48 configured operators. To fit the largest possible
array without sacrificing speed, the operator use of fabric and DSP48 resources were
balanced. Operators in the boundary node loop were configured for maximum speed
and fabric implementation. Operators not in the loop; those used to compute the inter-
mediate result Re(x;,, ) +Im(x;,)> were configured to use DSP48 resources and minimum
area. Updated results are summarized in . The large reduction in delay com-
pared to is mostly due to the addition of latency in the system ( )-

Table 4.1 Overview of resource consumption and max delay for boundary and inter-
nal nodes for various mantissa widths (Mant.) [bit], as reported by place and route
tools. Exponent width is 6 bits.

Mant. | LUTs | DSP48 | Delay [ns] | Speed [MHz]

14 | 2154 2 51.5 19.4
%é 13 | 1950 2 47.8 20.9
2 12 | 1779 2 46.1 217
% 11 | 1579 2 23 23.6
m

10 | 1439 2 40.6 24.6

14 | 2813 14 37.6 26.6
@ | 13 | 2578 14 36.9 27.1
é 12 | 2444 14 36.8 27.2
51 1 | 220 14 36.5 27.4
S 10 | 210 14 36.0 27.8

Because of the regular composition of the systolic array, predicting resource use and
maximum clock rate is straightforward. A QRD-RLS systolic array for M channels and
N tapsneeds MN boundary nodes, and ((MN )>+3MN)/2 internal nodes. The maximum
operating speed is the minimum of the boundary and internal nodes.
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Chapter 4. Conclusion and further work

4.2 Algorithmic improvements

The QRD-RLS algorithm relies on a square root computation in each iteration, either
implicitly as part of a CORDIC vectoring/rotation operation, or explicitly for a float-
ing point implementation like the one developed in this thesis. This operation con-
sumes most of the time in the loop, and limits the overall throughput of the algo-
rithm. Although faster square root implementations could exist, for operation at the
full 125 MHz rate the loop delay including two multipliers, one adder and one square
root would have to be 8 ns. This is similar to a single multiplication ( ). Since
synthesis tools identify the loop as the limit for the speed, it is certain that the current
design has reached its limit.

Therefore, the only way to approach 125 MHz is by modifying the algorithm. Some lit-
terature describes a look-ahead transformation which increases speed proportionally
to the increase in logic [20][21][22][12,ch10]. Conceptually, the transform changes the
order in which elements below the diagonal are zeroed in the QR-decomposition. In-
stead of rotating each new row xT[i] against AMP2R[i - 1] in so that x7[i]
is zeroed, the transform can rotate x'[i] against xT[i — 1] first, before rotating against
AYV2R[i - 2].

The result is that the dependency r[i] — r[i — 1] is pushed further back in time. By
doubling the number of Givens rotations performed by hardware, this dependency
becomes r[i] — r[i —2]. The transformation effectively inserts more z1 registers in
the loop path. When these are redistributed around the loop, the operating frequency
can be increased.

The mentioned litterature on the look-ahead transform only describes CORDIC im-
plementations for real-valued systems. To implement the look-ahead transform in the
floating point system described in this thesis, boundary nodes must first be modified
to support complex r. The existing boundary node design supports complex x;,, but
it was possible to simplify them to use real-valued r. Applying the complex version
of to QRD-RLS, we get r = sign(a)v/|al? + |bj>. Computation of sign(a)
requires another square root and a division®, which is a significant extension to the
current design. Implementing complex r leads to complex ¢, which will increase node
sizes.

4.3 Implementation improvements

4.3.1 Floating-point, fixed-point and CORDIC

Given the current implementation, there are many areas where improvement and opti-
mization is possible. The first is the possibility of converting to fixed point. One major

sign(x) = x/lx| forx # 0, 1 for x = 0.
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advantage of floating point was its dynamic range which would be useful for imple-
menting the IQRD-RLS array, because simulations showed widely different dynamic
range in the R and R~T matrices. When the IQRD-RLS array turned out to be unfeasi-
ble to implement without drift issues, the floating point implementation could still be
re-used for the QRD-RLS array. Since fixed-point QRD-RLS is fairly well understood
and described in literature [23], the only remaining argument for floating point is the
ease of use for the designer.

The current implementation uses Xilinx IP cores [24] for floating point operators. This
imposes limits on the mantissa and exponent precision used. For instance, for a 14 bit
mantissa the minimum exponent width is 6, even if this is not needed in the system.
Another limitation is caused by each operator claiming its own DSP48 block. By con-
verting the current design to fixed-point operators, it becomes possible to schedule a
few DSP48 block to implement many of the multiply and accumulate operations such
as complex multiplications in the internal nodes which consumes most of the DSP48

blocks ( ).

Itis also possible to change the balance of addition to multiplication in the internal node
complex multipliers. Instead of four multiplications and two additions in ,
complex multiplication can be done with three multiplications and four additions as in

(a+ib)(c + id) = (ac — bd) + i((a + b)(c + d) — ac — bd) 4.1)

An alternative to the floating and fixed point variations is the CORDIC algorithm.
CORDIC was initially in found to be comparable to floating point (and
fixed point) in speed/area tradeoff. A systolic array implementing QRD-RLS using
CORDIC for MN = 2 was constructed and tested successfully, but larger array sizes
could not be built and tested in time. This implementation is therefore described in
more detail separately, in

It was found that internal nodes need 4 CORDIC rotators instead of 3 to give results
for correct givens rotations matching . The fact that only three rotator
configurations are described in litterature [9, 10], raises doubts as to whether the fourth
rotator is necessary. Adding a fourth rotator increases internal node size by ~ 1/3.

Similarly to the floating point operators, Xilinx IP cores were also used for the CORDIC
blocks. These IP cores did not have the optimization described in where
the d; sequence can be passed directly from boundary to internal nodes. This means
that the third adder used to accumulate 6; within the CORDIC block can be eliminated,
reducing the number of adders in each CORDIC iteration from 3 to 2.

4.3.2 Size reduction

The current design fits up to MN = 5 on the target FPGA. It is possible to decrease
the amount of logic needed for the system by channel interleaving the boundary and in-
ternal nodes. Channel interleaving [17,slide 14.19] adds pipeline registers to the loop.
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Chapter 4. Conclusion and further work

This is illustrated in , Where the non-interleaved system has a recursive loop
with a single register and loop delay T;;. The added pipeline registers reduce the max-
imum register-to-register path delay which permits increase in operating frequency. If
the system pipelines “well”, every register-to-register delay introduced by pipelining
is equally long. If this is true for the example in , then F,,;,» = 5F,,1.- Each
pipeline register adds some delay T, to the recursive path, slightly decreasing the
speed for any single iteration.

\

F max1 = 1/ Tmuxl F max2 = 1/ Tmaxz
Fien =1/ Ty =1/T, Fipern =1/ (Tin + 5Treg) < Fiten

Figure 4.1 Illustration on how the size of a system (left) can be reduced by channel
interleaving (right). Blue dotted lines represent added pipeline registers. Adding 5
pipeline registers reduces logic to }th.

4.4 Beamforming performance and result validity

Conventional RLS was shown in to have the same potential as SMI for beam-
forming when a matching forgetting factor is chosen, and sufficient mantissa precision
is used. The results of are one example, but selection of the desired value of A
and the required number of bits depends on the properties of the systems surrounding
the beamformer (see ) and expected jamming scenarios.

Results based on test signals can only be as good as the test signals themselves. There
was very little benefit in having more than one tap, especially for large A and the broad-
band signal ( ). For this reason, implementation tests were limited to 1 tap, but
with varying number of channels. Because STAP filtering is linear, it does not matter
for the adaptive algorithm if it operates on 10 channels with one tap, or one channel
with 10 taps or any other combination of constant MN.

One uncertainty was that the test signals were computer-generated and did not con-
tain a desired, “known” GNSS signal which would pass through the beamformer and
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4.4 Beamforming performance and result validity

could be checked to be present on the output. Indeed, if the test signals had contained
GNSS signals, they might be cancelled or degraded by the beamformer. As shown in

, an unspecified pre-processor would be used to remove or mask such sig-
nals from the adaptive algorithm but not from the STAP filter which creates the final
beamformer output.

Since no reference existed for the output signal e[i], validation of conventional- and
QRD-RLS algorithms had to be done by comparing filter weights with those from the
SMI algorithm. The MATLAB implementation of SMI had earlier been verified by pass-
ing the test signal through a STAP filter with weights found by SMI, and observing that
the resulting output was reduced in power, close to the noise floor.

The filter weights behave differently depending on the number of channels. From the
simulation with M = 2 ( ), the RLS weights are stable and within a span of
~ 0.05 around its mean value, but in another simulation with M = 5 and the same
A( ), the weights vary much more, within a span of = 0.2. The reason for
this is that the M = 5 array has more degrees of freedom for a weight solution which
succssfully suppresses the jammer. Filter weights are free to move around between the
multiple equivalently good solutions.

compares filter weights flushed from the QRD-RLS array running on actual
hardware with those from the double precision conventional RLS algorithm. Flushed
values are plotted as discrete time values with solid dots, while the reference weights
from conventional RLS are drawn with continuous lines. In this example the weights
were chosen to be extracted every 50 iterations. It is clear that the extracted weights
match conventional RLS.

0.5

Real part
(=)

-0.5 ! ! ! ! !
0 100 200 300 400 500 600 700

Time [samples]
Figure 42 Comparison of filter weights from conventional RLS algorithm to filter
weights flushed from hardware implementation of QRD-RLS array. Multi-tone test sig-
nal, A = 0.998, M = 5, N = 1, 14 bit mantissa. Colors blue, green, red, cyan, purple
correspond to weights wg through wy.
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4.5 RLS convergence speed and STAP filter update rate

The initially planned IQRD-RLS array would be able to output filter weigths w once per
iteration. When IQRD-RLS had to be abandoned due to drift issues, it was decided to
simplify the array to a QRD-RLS array which outputs e[i] instead. Filter weights could
then be recovered after applying impulses and reading the weights from the impulse
response.

Because the current implementation is limited to ~ 20 MHz, the 125 MHz signal must
either be downsampled, or a portion of it must be selected and buffered for processing
with the QRD-RLS array. There is also a free choice of when to flush the weights. These
can be done automatically at a fixed frequency, or could be triggered based signal char-
acteristics such as the power level at the beamformer output. The best strategy would
depends on the jammer signal characteristic, and would require testing with a wider
selection of test signals.

RLS and the current QRD-RLS implementation converge within less than 5 iterations
(cycles) on the applied test signals. Latency from input to output for the QRD-RLS array
with added latency is 4 - MIN + 1 cycles, and weight readout takes MN cycles, one cycle
for each of the weights. A conservative estimate of the minimum delay from jammer
being enabled to weights being read out is 5 + (4MN + 1) + MN = S5MN + 6 cycles. At
the acheived speed of ~ 20 MHz, a full size system with M = 5 channels and N = 4
taps would only need 5.3 us to output a useful result. Compared to the requirement of
convergence within 0.1 ms, the system is performs its job very well.

compares the final beamformer output e[i] found using the conventional
RLS algorithm, to the e[i] output of a STAP filter using weights flushed from the QRD-
RLS array running on actual hardware. The filter weights (shown in ) are
flushed and updated every 50 samples. Just after a weight flushing at sample 100, the
jammer is turned on and becomes visible in the output. At sample 150, the next set
of weights is flushed and applied, suppressing the jammer. From this point, the filter
weights produced by the hardware implementation are successfully suppressing the

jammer.

4.6 Workflow and tools

The overall workflow started with using MATLAB to implement the mathematically
formulated conventional RLS algorithm ( ) and SMI ( ). Once
the MATLAB-implemented RLS behaved as it should, it could serve as a reference for
MATLAB simulations of the IQRD-RLS.

To have a uniform interface for the algorithm functions, the individual test signal chan-
nels were “packaged” into timeseries objects. These objects were then grouped using
tscollection objects (time series collection). The algorithms are implemented to ac-
cept the time series collection as input, and generates two time series ¢[i] and w[i] as
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Figure 4.3 Comparison of beamformer output from conventional RLS (red), and hard-
ware simulation of QRD-RLS array (blue). Multi-tone test signal, A = 0.998, M = 5,
N =1, 14 bit mantissa.

-300

outputs’. The MATLAB-implementation of algorithms is scalable and accepts an arbi-
trary number of channels and taps (any MN) without change in code.

Based on the MATLAB model, the systolic array was drawn as a block diagram in
Simulink to break it down into simpler mathematical operations, represented as blocks.
Once the Simulink model behavior matched the MATLAB model, a hardware model
was made using Xilinx System Generator blocks.

The use of System Generator has helped with the practical implementation of the de-
signed system. Without System Generator a lot of work would be required to manually
implement the systolic array, test benches and glue logic in VHDL. Test signals would
have to be exported to a format which test benches could import. The biggest hassle
with System Generator was the difficulty of building large systolic arrays with many
blocks and connections. System Generator did not properly support Simulink buses, a
grouping of multiple signals of different type into a single connection (the bus). This
made the systolic array schematic slow to modify, and the difference is seen by com-
paring the number of signal connections in and . Although the
System Generator model can have A, 0 and mantissa/exponent precision parameters
controlled by variables, the block diagram itself cannot be constructed or modified pro-
gramatically. It is for instance not possible to synthesize an MN = 10 array without
manually assembling the block diagram. A VHDL implementation could more easily
generate different sizes by using the GENERATE statement [25,ch11.8].

timeseries and tscollection were eventually subclassed into object types CustomSeries and Cus-
tomCollection to add functionality for visualization.
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Chapter 4. Conclusion and further work

4.7 Future work

The main challenge for the current implementation is its speed. By developing the
details of a look-ahead transform for a complex-valued QRD-RLS systolic array, the
speed can be increased at the expense of more nodes.

By applying channel-interleaving at the same time, existing node logic can be pipelined
to account for the nodes introduced by the look-ahead transform.
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.1.2 Boundary node model (b_node)

Chapter A. Simulink models
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A.1 Simulink IQRD-RLS array
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A.2 Simulink QRD-RLS array with weight flushing

Chapter A. Simulink models
A.2.1 Top level model
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A.2 Simulink QRD-RLS array with weight flushing

A.2.2 Systolic array model
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A.2.3 Boundary node model (b_node2)

Chapter A. Simulink models
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A.2 Simulink QRD-RLS array with weight flushing

A.2.4 Internal node model (i_node2)
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B System Generator (hardware) models
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Chapter B. System Generator (hardware) models

B.1.2 Boundary node model
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B.1 IQRD-RLS array

B.1.3 Internal node model
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Chapter B. System Generator (hardware) models
B.2 OQRD-RLS array with weight flushing

B.2.1 Top level model
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B.2.2 Systolic array model

B.2 QRD-RLS array with weight flushing
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Chapter B. System Generator (hardware) models
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B.2 QRD-RLS array with weight flushing
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C MATLAB source code

C.1 STAP expansion processing code

classdef STAPProcessor < Processor
methods (Static)
function [collection] = Process(input, N)

b
h
b
b
h

M
L

PROCESS Expand a collection of M channels into MN channels
where additional channels represent temporal taps.

Input should be a time series collection with the reference
channel named ’REF’, and any extra channels named ’CH1’,
’CH2’ etc. The parameter N selects the number of taps.

input.size(2)-1; % number of channels, excluding reference
input.length(); 7% length of time vector

[time, ref, x_in] = unpackcollection(input);

x_out = zeros(M*N,L);

for j = N:L % for each timestep, create a snapshot of all

for n=1:N % signals in the STAP filter, including current

% input and N-1 preceding inputs
x_out ((L:M)+(n-1)*M, j) = x_in( 1:M, j-(n-1) );

end

end

collection = tscollection();

ref _ts = CustomSeries(ref(N:end), time(N:end));
collection = collection.addts(ref_ts, ’REF’);

for j = 1:MxN

chan_ts = CustomSeries(x_out(j,N:end), input.Time(N:end));
collection =collection.addts(chan_ts, sprintf(’CH%i’,j));

end

end
end
end
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Chapter C. MATLAB source code

C.2 SMI processing code

classdef SMIProcessor < Processor
methods (Static)
function [output_ts, weight_ts] = Process(input, estimate_K, delta)
% PROCESS Apply sample matrix inversion. Input should be a time
% series collection with the reference channel named ’REF’,
% and any extra channels named ’CH1’, ’CH2’ etc.
% Returns filtered output and weight vector at every sample.
[time, d, x] = unpackcollection(input);

NM = input.size(2)-1;
L = input.length(); 7 length of time vector

SampleCor=zeros (NM,NM,L) ;
SampleAutoCor=zeros (NM,L) ;
Cor=zeros (NM,NM, L) ;
AutoCor=zeros(NM,L) ;

outdata = zeros(1,L);
zeros (NM,L) ;

weights

for 1=1:L % correlation matrices for each time step
SampleAutoCor(:,1) = x(:,1)*conj(d(1));
SampleCor(:,:,1) = x(:,L)*x(:,1)’;

end

% Time-average the correlation matrices. At start of sequence,
% use any previous samples available, up to K+1 samples

span_min = -(estimate_K-1); % Desired left/right offsets for
span_max = 0; % averaging window
for 1 = 1:L

limited_min = max(l+span_min, 1); % find window indexes

limited_max = min(l+span_max, L);

avg_span = limited_min:limited_max;

AutoCor(:,1) = mean( SampleAutoCor(:, avg_span) ,2);

Cor(:,:,1) = mean( SampleCor(:,:, avg_span) ,3) + (1/delta)*eye(NM);

end

% Apply SMI filter

for 1 = 1:L
weights(:,1) = inv(Cor(:,:,1))*AutoCor(:,1); % R_xx"-1 * r_xd
outdata(l) = d(1) - weights(:,1)’*x(:,1); % e =d - vw'H * x

end
output_ts = CustomSeries(outdata, time);
weight_ts = CustomSeries(weights, time);
end
end

end
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C.3 Conventional RLS processing code

C.3 Conventional RLS processing code

classdef RLSProcessor
methods (Static)
function [output_ts, weight_ts] = Process(input, lambda, delta)

h
h
h
h

PROCESS Apply conventional RLS filter. Input should be a time
series collection with the reference channel named ’REF’,

and any extra channels named ’CH1’, ’CH2’ etc.

Returns filtered output and weight vector at every sample.

[time, d_full, x_full] = unpackcollection(input);

MN

L

= input.size(2)-1; 7 input width, excluding reference
= input.length(); 7% length of time vector

outdata = zeros(1l,L); weights = zeros(MN,L);

W

h

= zeros(MN, 1);

Algorithm-specific initialization

lambdal = lambda™-1;

P = (delta™-1)*eye(MN);
for j = 1:L
d = d_full(j); x = x_full(:,j);

e =d - w*x; % a priori error, x filtered with previous filer

=~
]

(P*x)/(lambda + x’*P*x);

% Uses: P (previous iteration), x (input), lambda (constant)
Pnew = lambdal*(P - K¥x’*P);

% Uses w og P (previous iteration), x (input), lambda (constant),
% d (input, part of e).

wnew = w + K*conj(e);

P = Pnew;

W = wnew;

weights(:,j) = w;

outdata(j) = d - w’*x;

end
output_ts = CustomSeries(outdata, time);
weight_ts = CustomSeries(weights, time);
end
end
end
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Chapter C. MATLAB source code

C.4 Double precision boundary and internal node models

function [s_n, c_n, r_n] = boundary_givens(r, xin, sqrtlambda)

f = sqrtlambda*r;
g = xin;
if (g == 0)
cn=1;
s_.n=0;
rn-=7*;
elseif (f == 0)
c_n=0;
s_n = sign(conj(g));
r_n = abs(g);
else
c_n = abs(f) / sqrt(abs(£)"2 + abs(g)~2);
s_n = sign(f)*conj(g) / sqrt(abs(f)"2 + abs(g)~2);
r_n = sign(f)*sqrt(abs(f)72 + abs(g)~2);
end
end

function [s_n, c_n, r_n, xout] = internal_givens(s, ¢, r, xin, sqrtlambda)
xout = ¢ * xin - conj(s) * sqrtlambda * r;

r.n =s * xin + ¢ * sqrtlambda * r;
s_n = s;
c_n=c;

end
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C.5 Limited precision boundary and internal node models

C.5 Limited precision boundary and internal node models

These functions depend on roundfloat () by Kollar.

function

[s_n, c_n, r_n] = boundary_float(r, xin, sqrtlambda)

q = @(v) roundfloat(v,22); % quantizer

xin = q(xin);

sqrtlambda = q(sqrtlambda) ;
r = q(r);

f = g(sqrtlambda*r);

if (xin
cn =
s n =

rn
else

rn =

s n =

cn =
end

== 0)

1

0;

£;

sqrt(q( q(£72) + q( gq(real(xin)~2) + q(imag(xin)~2) ) ));

q(conj(xin) / r_n);
q(f / r_n);

r_n = q(r_n);

end

function

[s_n, c_n, r_n, xout] = internal_float(s, c, r, xin, sqrtlambda)

q = @(v) roundfloat(v,22); % quantizer

% s and

¢ already quantized

xin = q(xin);

sqrtlambda = q(sqrtlambda);

c * xin - conj(s) * sqrtlambda * r;
* xin + ¢ * sqrtlambda * r;

H

r = q(r);
xout =
rn=s
s n=-s
cn=c

’

xout = q(xout);

rn = q(r_n);

end
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Chapter C. MATLAB source code

C.6 Double precision CORDIC boundary and internal node models

function [phi_n, theta_n, r_n] = boundary_cordic(r, xin, sqrtlambda)
f = sqrtlambda*r;

% simulate two vectoring CORDICs by finding the magnitudes of the
% inputs, and the angle between the inputs

r_n = sqrt(£°2 + abs(xin)~2);
phi_n = atan2(imag(xin),real(xin));
theta_n = atan2(abs(xin), f);

end

function [phi_n, theta_n, r_n, xout] = internal_cordic(phi, theta, r, xin,
sqrtlambda)
f = sqrtlambda*r;

% simulates the four CORDIC rotators by treating the CORDIC inputs
% as a complex number, and rotating it by multiplying with exp(i*theta)
xin = xin * exp(-1li*phi); % phi-CORDIC rotator

complex(real(f), real(xin))*exp(-1lixtheta); % theta-CORDIC rotators

complex (imag(f), imag(xin))*exp(-lixtheta); % -"-

B
]

=]
]

r_n = complex(real(m), real(n));

xout = complex(imag(m), imag(n))*exp(li*phi); % reverse phi-CORDIC rotator

phi_n = phi;
theta_n = theta;
end
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C.7 IQRD-RLS systolic array simulator

C.7 IQRD-RLS systolic array simulator

classdef IQRDSystolicProcessor
methods (Static)
function [output_ts, weight_ts] = Process(input,lambda,delta,nodetype)
% PROCESS Simulate IQRD-RLS systolic array. Input should be a time
% series collection with the reference channel named ’REF’,
% and any extra channels named ’CH1’, ’CH2’ etc.
% Returns filtered output and weight vector at every sample.
[time, d, x] = unpackcollection(input);

MN = input.size(2)-1; % input width, excluding reference
L = input.length(); 7 length of time vector

state_struct = struct(
’node’ ,zeros (MN+1, MN+2),... % stores r values in recursion
‘ready’,false(MN+1, MN+2),... % nodes that are ready
’c’ ,ones(MN+1),... % rotation parameters between nodes
’s?,zeros(MN+1), ...
’xin’ ,zeros(MN+1, MN+2)... % inputs from above, for each node
);
state_struct.node(1:MN,1) = sqrt(delta); % init rll, r22 etc.
state_struct.node(1:MN,end) = 1/sqrt(delta); % init rmll, rm22 etc.
cs = state_struct;
ns = cs; % use next state ns and current state cs

ns.ready(1,1) = true; % mark rll ready, only depends on x0 input
ns.ready (MN+1,MN+2) = true; % mark 1/gamma as ready. node not used
outputrowhist = zeros(MN+1, L);

whist = zeros(MN, L);

outputhist = zeros(l, L);

sqrtlambda = sqrt(lambda); % may be precomputed
invsqrtlambda = 1/sqrtlambda;

boundary = str2func(strcat(’boundary_’, nodetype));
internal = str2func(strcat(’internal_’, nodetype));

input = [x; dl;

YA
h = waitbar(0,");
for 1 = 1:L

if (mod(1,25) == 0)

waitbar(1/L,h,sprintf (’IQRD-RLS Structure simulation: %02.0£f%%’,100%1/L))
end
cs = ns;

% feed new elements into the top of the xin matrix. We read a
% time-shifted slice of the input matrix.
invector = zeros(1l, MN+1);
for j = 1:MN+1
if (1-(j-1) < 1)
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break; % during initialization, not all values are ready
end
invector(j) = input(j, 1-(j-1));
end
invector = round(invector);
cs.xin(1,1:MN+1) = invector;

cs.xin(:,end) = 0; % zero rightmost column for clarity
% not really needed since nothing else writes this column

for j = 1:size(cs.node, 1) 7 visit each row..
for k = 1:size(cs.node, 2) % visit each node in that row

if cs.ready(j,k) == true

% find type of node and evaluate the node

if k == 1 % leftmost row, only boundary nodes.
%fprintf (’Boundary node %i,%i---\n’, j,k)
[ns.s(j,k), ns.c(j,k), ns.node(j,k)] =
boundary(cs.node(j,k),cs.xin(j,k),sqrtlambda) ;

% mark node to the right as ready
ns.ready(j,k+1) = true;
elseif j > MN + 1 -(k-1) % inverse internal nodes

%fprintf (’Inv internal node %i,%i---\n’, j,k)

% upper left triangle, internal nodes. Produces outputs

% that are indexed down and to the left so that that the

% receiving node reads it at its own index.

[ns.s(j,k), ns.c(j,k), ns.node(j,k), ns.xin(j+1,k-1)] = ...
internal(cs.s(j,k-1), cs.c(j,k-1), cs.node(j,k),...
cs.xin(j,k), invsqrtlambda);

% propagate readiness, if possible

if j+1 <= size(ns.ready,1)
ns.ready(j+1,k-1) = true; 7% node below and to left

end

if k+1 <= size(uns.ready, 2)
ns.ready(j,k+1) = true; ’ node to the right

end

else

%fprintf (’Internal node %i,%i---\n’, j,k)

% same as inverse nodes, just a different node

[ns.s(j,k),ns.c(j,k),ns.node(j,k),ns.xin(j+1,k-1)] = ...
internal(cs.s(j,k-1),cs.c(j,k-1),cs.node(j,k),...
cs.xin(j,k), sqrtlambda);

% propagate readiness
ns.ready(j+1,k-1) = true; 7% below and to left
ns.ready(j,k+1) = true; % to the right

end
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end

end
end
gamma = ns.node(MN+1, 1);
wtilde = ns.node(MN+1, 2:(end-1));
outputrowhist(:,1) = [gamma wtildel;

w = zeros(MN,1);
if cs.ready’), only generate weigths once all nodes are initialized
gamma = outputrowhist(1,1-MN);
for j = 1:MN
w(j) = -gamma*outputrowhist(l+j, 1-MN+j);
end
end
whist(:,1) = w;
latency = 1-(3*MN + 2 - 1);
if ((1-latency) >= 1)

outputhist(l) = d(l-latency) - w’*x(:,l-latency);
else
outputhist(l) = 0;
end
end
close(h);

% outputs are ready in following cycle, so add 1 to time
weight_ts = CustomSeries(whist, time+1);
output_ts = CustomSeries(outputhist, time+1);
end
end
end
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C.8 QRD-RLS systolic array simulator

classdef QRDSystolicProcessor
methods (Static)
function [output_ts]=Process(input,lambda,delta,nodetype)
% PROCESS Simulate QRD-RLS systolic array. Input should be a time
% series collection with the reference channel named ’REF’,
% and any extra channels named ’CH1’, ’CH2’ etc.
% Parameter ’nodetype’ is used to choose node simulation
% function. If ’givens’ is selected, the simulator will use
% boundary_givens() and internal_givens() functions.
% Returns filtered output.
[time, d, x] = unpackcollection(input);

MN = input.size(2)-1; % input width, excluding reference
L = input.length(); 7 length of time vector

state_struct = struct(

’node’, zeros(MN, MN+2),... % store r values in recursion
‘ready’, false(MN, MN+2), ... % nodes that are ready
’c’, zeros(MN), ... % rotation parameters between nodes

’s?, zeros(MN),
’xin’, zeros(MN+1, MN+2) ... 7% inputs from above, for each node.
... % xin is 1 row larger because we are interested in the
... % xin’s for the MN+1 row (i.e. outputs from the last MN row)
);
state_struct.node(1:MN,1) = sqrt(delta); % initialize rll, r22 etc.
cs = state_struct;
ns = cs; % use next state ns and current state cs

ns.ready(1,1) = true; ’ rll is ready, it only depends on x0 input

outputhist = zeros(l, L);

sqrtlambda = sqrt(lambda); ’ may be precomputed
boundary = str2func(strcat(’boundary_’, nodetype));
internal = str2func(strcat(’internal_’, nodetype));
input = [x;

ones(1l, length(d));

dl;
e
h = waitbar(0,");
for 1 = 1:L

if (mod(1,25) == 0)

waitbar(1/L,h,sprintf (’ IQRD-RLS Structure simulation: %02.0£%%’,100%1/L))
end
cs = ns;

% feed new elements into the top of the xin matrix. We read a
% time-shifted slice of the input matrix
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invector = zeros(1l, MN+2);
for j = 1:MN+2
if (1-(3-1) < 1)
break; % during initialization, not all values are ready
end
invector(j) = input(j, 1-(j-1));
end
invector = round(invector) ;
cs.xin(1,1:MN+2) = invector;

%fprintf (’\nlteration start: %i\n’,1);
for j = 1:size(cs.node, 1) % visit each row..
for k = 1:size(cs.node, 2) % visit each node in that row

if cs.ready(j,k) == true

% find type of node and evaluate the node

if k == 1 % leftmost row, only boundary nodes.
%fprintf (’Boundary node %i,%i---\n’, j,k)
[ns.s(j,k), ns.c(j,k), ns.node(j,k)] = ...
boundary(cs.node(j,k),cs.xin(j,k) ,sqrtlambda) ;

% mark node to the right as ready
ns.ready(j,k+1) = true;
else

%fprintf (’Internal node %i,%i---\n’, j,k)

% same as inverse nodes, just a different node

[ns.s(j,k),ns.c(j,k),ns.node(j,k),ns.xin(j+1,k-1)] = ...
internal(cs.s(j,k-1), cs.c(j,k-1), cs.node(j,k),...
cs.xin(j,k), sqrtlambda) ;

% propagate readiness
ns.ready(j+1,k-1) = true; 7 below and to left
ns.ready(j,k+1) = true; % to the right
end
end

end

% in each row, zero the node feedback for the column
% computing gamma
column = (MN+1):-1:1;
ns.node(j, column(j)) = 0;
end % all rows and columns processed

outputhist(:,1) = real(ns.xin(MN+1,1)).*(ns.xin(MN+1, 2));
end

close(h);

% outputs are ready in following cycle, so add 1 to time.
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% this structure does not create a weight output
output_ts = CustomSeries(outputhist, time);
end
end
end

76



C.9 Miscellaneous utility functions, dependencies

C.9 Miscellaneous utility functions, dependencies

function [time, ref, x] = unpackcollection(collection)

% UNPACKCOLLECTION take a timeseries collection containing channels

% ’REF’, ’CH1’, ’CH2’ etc., and place the contents into matlab arrays

% for the time vector, the reference signal and the M channels.

% For input of duration L samples, the output dimensions are;

% time = 1 row, L columns

% ref =1 row, L columns

% x = M rows, L columns
M = collection.size(2)-1; % number of channels, excluding reference
L = collection.length(); 7% length of time vector

ref = collection.get(’REF’) .Data(l,:);
x = zeros(M,L);

i=1
for channel = collection.gettimeseriesnames
if (strcmp(channel,’REF’))
continue % skip it
end
x(j, :) = collection.get(channel) .Data(1l,:);
i=3
end
time = collection.Time;
end
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D.1 Breakdown of conventional RLS complexity

Table D.1 Breakdown of conventional RLS arithmetic operations

Result Sub-expression | Type MUL | ADD | DIV

1 Pli—1]x[i] | 4x1,C | ¢*> | g(g-1) | 0
2 A+ xH[i] (Result1) | 1x1,R q q 0
3 AH[IP[i-1] | 1% q,C hermitian of Result 1
4 K] =feutd | gx1,C 0 0 1
5 K[i]- (Result3) | gx1,C | ¢ 0 0
6 Pli] = 1(P[i — 1] - Result5) | 4xq,C | q? q? 0
7 eli] = x"[iJw'[i—1]-d[i] | 1x1,C q q 0
8 w'[i] = w'[i = 1] = K[i]e[i] | ¢x1,C q q 0

D.2 Implementation of CORDIC-based QRD-RLS

The comparison made in to initially choose between floating point and

CORDIC (fixed point), was simplified in that it compared 16 bit fixed point to 16 bit
floating point. At that level the implementations were predicted to be similar in the
resource/performance trade-off. In this section, a CORDIC based fixed point imple-
mentation of QRD-RLS is detailed. References used are listed separately at the end of
this appendix, and not in the main reference list for the thesis.

Fixed-point design is more challenging because of the reduced dynamic range com-
pared to floating point. Numbers must be scaled to maintain precision and avoid over-
flow. Of particular interest is the recursive variable r in the systolic array nodes. Ac-

cording to , T = 1Mrz + |x;u|?, that is the norm of [AY/2r, x;,]T. It is clear
that » can grow and potentially overflow depending on the value of A and x;,,, because
of this recursive equation. One article [1] describes several properties of the systolic
array, such as a bound for the r variable in the first row of the array;

%, mmaxl
lim |rqi[k]| < - =R (D.1)
k—o0 I \/1 _ /\2

Then, the worst case bound for the r variable in subsequent rows is;
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klirn lrmjlKIl < @1)" - R (D.2)

Where R represents the maximum dynamic range for the first row. Since A in this
particular application is chosen close to 1 (between 0.99 to 0.999), it is observed from

that r should increase by one bit for every row to avoid overflow. The
number of rows in the array is equal to MN.

If the input data with real and imaginary parts is in the range [-2!%,2!° — 1] (16 bits)
and A € {0.99,0.995,0.999} we get the number of bits required is: log,(R) € {19, 19, 20}
bits for the last row.

For the implementation, the CORDIC construction from was initially simu-
lated in MATLAB using an ideal model of CORDIC ( ) in the same simu-
lation script used for the floating point Givens implementation. It proved to be difficult
to get the internal nodes to provide the expected results of a Givens rotation, so a fourth
CORDIC rotating element was added as shown in the bottom right of Ctis
not clear as to how the implementations of Rader[?] and Gao[3] can perform complex
Givens rotation without this fourth rotation.

Boundary node Internal node
Re{xin}lm{xin} Re{xin}lm{xin}
| 2 | 2
CORDIC |§ ¢  JCORDIC | ¢
A vectoring rotating
lx;, | VA A
D
CORDIC | & _ 10 CORDIC CORDIC |6
vectoring rotating rotating
Z'l < r Z-l € Z-l | ]
Re{r} [m{r}
R
- | CORDIC
rotating
Re{xout} + + Im{xout}

Figure D.1 Boundary and internal nodes for CORDIC based systolic array.

CORDIC IP cores provided by Xilinx were used[4]. System Generator blocks for these
cores were available, but did not allow input and output registers to be disabled for
purely combinatorial operation. Instead, the core had to be correctly configured using
Xilinx Core Generator, and the core was imported as a “black box” in System Generator.
Specific to the Xilinx CORDIC implementation is that inputs are normalized to [-1, 1],
phase angle isnormalized to [-, 7], and outputs have range [-V2, V2] in rotating mode
and [0, V2] in vectoring mode.

For use with the CORDIC IP cores, the test signals are scaled from a 16 bit integer range
[-215,215 — 1] to a fixed point range within [-1,1]. The multiplication used for this
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purpose is referred to as the gain. The scale factor and the number of bits must be
selected so that;

e rdoes not overflow for the selected A
e Computed filter weights are accurate enough to cancel the jammer

The space of possible solutions for a fixed-point design is very large, and the CORDIC
cores within the same internal or boundary node could have different precisions. To
reduce the solution space, it was decided to use the same precision in all CORDIC core
such that every node is identical. The precision is chosen so that overflow is avoided
with the test signal with largest range.

Since the test signal with largest range was the broadband signal (approximate range
[-15000, 15000]), this was selected as the range of x;, instead of the wider range [-215 215
1]. To get a precision of 14 bits (which proved a decent starting point for floating point
mantissa precision), the gain was set to 1/60000. The ranges for the broadband and
multitone signal become approximately [-0.25,0.25] and [-0.1, 0.1] respectively, at the
input of the array. A was selected to be 0.99.

With these parameters, the implementation is straightforward and based on

and uses the same weight flushing method as in . In this case the amplitude
of the weight flushing pulses cannot be 1 due to overflow. At the same time the pulse
should be large enough to reduce quantization effects. Similarly to the regular input
to the array, the pulses are scaled with a “pulse gain”. This gain was by trial and error
chosen to be 1/64.

In the following , and , the System Generator hardware
models are included for a MN = 2 system. The top level is identical to ,
with the exception of the gain, pulse gain and fewer channels passing to the QRD-RLS
systolic array block. It is omitted for this reason.
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D.2.1 Systolic array model
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D.2.2 Boundary node model
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Note: “Vector” blocks are CORDIC blocks in vectoring mode.
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D.2.3 Internal node model
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Note: Internal nodes in array column fed by constants use constant 0 instead of feedback path. “Rotator”
blocks are CORDIC blocks in rotating mode.
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