
DPA-Resistant ASIC implementation of
AES

Henrik Fegran

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology

Problem Description
Side channel attacks such as Differential Power Analysis (DPA) is a hot topic
in cryptographic circuit design. This master thesis aims to design, implement
and verify a version of Advanced Encryption Standard (AES) that is resistant
to DPA attacks. The design should be synthesized in a nanoscale technology
and characterized with regards to power, performance, area and evaluated with
regards to security measures.

Supervisor: Bjørn B. Larsen, IET.

Sammendrag

Med den økte utbredelsen av små innvevde systemer tilkoblet internet, og internet-
of-things blir sikkerhetsforanstaltninger stadig viktigere. Kryptering, og beskyt-
telse av krypterte kretser blir stadig viktigere. Med denne masteroppgaven er
målet å designe en krypteringsbrikke som er i stand til å fungere uten å lekke
sensitiv informasjon selv under angrep, mer spesifikt til å være i stand til å motstå
differensiell effektanalyseangrep.

En maskert AES-krypterings- og dekrypteringsalgoritme med 128-bits data-
path blir foreslått, den støtter AES-128, 192 og 256 med cipher-block chaining
modus. Systemet har blitt syntetisert til 65nm og oppnå en ytelse på 0.99-1.32
Gb/s ved 400MHz avhengig av nøkkelmodus, med et gjennomsnittlig effektfor-
bruk på 167.9mW. Den maskerte tilnærmingen benyttet skal være i stand til
å motstå selv andreordens DPA-angrep med en arealkostnad på 486% av den
umaskerte ekvivalente kretsen.

Abstract

With the increased proliferation of small embedded systems connected to the
internet and the internet-of-things, the security concerns becomes increasingly
important. Encryption, and the protection of encrypted circuits can be of great
importance. With this thesis the aim was to design an encryption chip that
was able to operate without leaking sensitive information even in the presence
of a malicious adversary, specifically to be able to withstand differential power
analysis attacks.

A masked 128-bit data-path AES encryption and decryption architecture is
proposed, supporting AES-128, 192 and 256 using cipher-block chaining mode
of operation. Synthesized to 65nm technology, the system achieves a keymode-
dependent throughput of 0.99-1.32 Gb/s operating at 400MHz with an average
power consumption of 167.9mW. Our masking approach should withstand second
order DPA-attacks at an area cost of 486% compared to the unmasked equivalent
circuit.

Preface
This master thesis is submitted in partial fulfillment of the requirements for the
degree of Master of Science in electronics engineering at the Norwegian University
of Science and Technology (NTNU). The thesis is a result of a self-defined research
project which was performed over the course of five months, from January to June
2015 at the institute for electronics and telecommunications at NTNU.

I would like to thank my supervisor, Bjørn B. Larsen, as well as my family and
friends for their guidance, feedback and support throughout my studies.

Trondheim, June 17th. 2015
Henrik Fegran

Contents

1 Introduction 1
1.1 Historical Perspective and Motivation 2
1.2 Thesis Organization . 3

2 Advanced Encryption Standard 4
2.1 Background . 5
2.2 Overview . 6
2.3 Preliminaries . 7

2.3.1 Standard Conventions . 7
2.3.2 Finite Fields . 8
2.3.3 Addition in GF(28) . 9
2.3.4 Multiplication in GF(28) . 9

2.4 Components and Their Function 10
2.4.1 Key Schedule . 10
2.4.2 AddRoundKey . 11
2.4.3 SubBytes, S-Box and its Derivation 12
2.4.4 Multiplicative Inversion via Isomorphic Mapping 13
2.4.5 ShiftRows . 16
2.4.6 MixColumns . 17

2.5 Modes of Operation . 19

3 Differential Power-Analysis 21
3.1 Background . 22
3.2 Why Does it Work? . 22

3.2.1 Security of Glitchy Circuits 23
3.3 Method Explained . 25
3.4 Prevention of DPA . 27

3.4.1 Protocol Level Countermeasures 27
3.4.2 Masking . 28

4 Implementation 32
4.1 Overview of Proposed Unmasked Architecture 33
4.2 Control Logic Modules . 33

4.2.1 Clock Divider . 34
4.2.2 Clock Synchronizer . 34
4.2.3 Main Control FSM . 35
4.2.4 Round Counter . 35

4.3 Key Expansion . 36
4.4 Key Registers . 39
4.5 Core Interconnect . 39
4.6 S-Box . 39

4.6.1 Affine Transformation and Isomorphism 40
4.6.2 Notation in Normal and Polynomial Basis Calculations . . 40
4.6.3 GF(24) Square-Scaler . 41
4.6.4 GF(24) Multiplier . 43
4.6.5 GF(24) Inverter . 44

4.7 ShiftRows . 46
4.8 MixColumns . 46
4.9 Masking . 49
4.10 Cipher Block Chaining . 51
4.11 The Complete Masked Core Architecture 51

5 Test Methodology & Results 53
5.1 Software Setup . 54
5.2 Simulation . 54
5.3 Synthesis . 55
5.4 Power Analysis . 56
5.5 Performance . 56
5.6 Security Considerations . 57
5.7 Possible Improvements/Changes 57

6 Conclusion 58
6.1 Summary of Thesis and Results . 59
6.2 Further Work . 59

A A 64
A.1 Isomorphisms . 64
A.2 Sharing Schemes . 65
A.3 Inversion in GF(28) . 66
A.4 GF(24) Inverter - Masked Realization in Polynomial Basis 67
A.5 GF(24) Inverter - Masked Realization in Normal Basis 72
A.6 GF(24) Multiplier - Masked Realization in Polynomial Basis 75

A.7 GF(24) Multiplier - Masked Realization in Normal Basis 77

List of Figures

2.1 Overview of the AES Algorithm . 6
2.2 Representation of Data in AES . 7
2.3 AddRoundKey transformation . 12
2.4 SubByte transformation . 12
2.5 Polynomial Basis GF(28) Inverter 14
2.6 Normal Basis GF(28) Inverter . 16
2.7 The ShiftRows transformation . 16
2.8 The MixColumns Transformation 17
2.9 Unencrypted . 19
2.10 ECB . 19
2.11 CBC . 19
2.12 CBC mode of operation, encryption and decryption respectively. . 20

3.1 Circuit of function 3.1 . 23
3.2 Power Trace collected from unprotected AES[20]. 25
3.3 Register remasking as suggested by Moradi[24] for a 3-share case. . 31

4.1 Basic structure of unmasked AES implementation. 33
4.2 1:3 Clock Divider Circuit . 34
4.3 Finite State Machine - S1: Wait for key, S2: Wait for data, S3:

Do rounds, Signals (A/B/C): A: key stable, B: Input Data Ready,
C: Rounds Executing . 35

4.4 Key expansion . 38
4.5 Structure of suggested non-masked polynomial basis S-box imple-

mentation . 40
4.6 Structure of suggested non-masked normal basis S-box implemen-

tation . 40
4.7 Polynomial Basis Square-Scaler . 42
4.8 Normal Basis Square-Scaler . 43

4.9 Modified (Inv)MixColums implementation based on the architec-
ture proposed by Zhang[36]. 48

4.10 Masking overview of linear components 49
4.11 Structure of suggested masked polynomial basis S-box implemen-

tation . 50
4.12 Structure of suggested masked normal basis S-box implementation 50
4.13 AES-core implementation . 52

5.1 Simulated Power Trace from PrimeTime 56

List of Tables

2.1 Round-block-key Combinations . 8

3.1 AND/XOR-transitions based on late arrival of X2 24

4.1 Key Expansion Rounds, P: Passthrough, R: Rotate-SubByte-Rcon
(RSR), X: XOR, S: Subbyte . 37

5.1 Synthesis Results . 55
5.2 Primetime Results . 56
5.3 Performance @400MHz . 57

Acronyms
AES Advanced Encryption Standard

ANF Algebraic Normal Form

CBC Cipher-Block Chaining

CEPACA Correlation-Enhanced Power Analysis Collision Attack

CMOS Complementary Metal-Oxide-Semiconductor

CPA Correlation Power Analysis

DES Data Encryption Standard

DPA Differential Power Analysis

ECB Electronic Codebook

FF Flip-Flop

FSM Finite-State Machine

GF Galois fields

HO-DPA Higher Order Differential Power Analysis

IoT Internet of Things

IV Initialization Vector

NIST National Institute for Standards and Technology

ROM Read-Only Memory

S-box Substitution-box

SCA Side-Channel Attack

SNR Signal-to-Noise Ratio

SPA Simple Power Analysis

SPN Substitution-Permutation Network

XOR Exclusive-OR

Chapter 1

Introduction

1

1.1 Historical Perspective and Motivation
Cryptography, the art of secret writing, has roots back to ancient times. However
it is not until recent decades with the advent of semiconductor technology and
the internet age that cryptosystems have become widespread outside of govern-
ment and military areas. Today the proliferation of embedded systems is ever
increasing, including such applications as smart cards, cellular phones, key-less
entry systems and the recent popular buzz word, Internet of Things (IoT).

The widespread adoptance of embedded systems, and especially internet con-
nected embedded systems bring with them an increased need for security. Re-
searchers have spent considerable effort in designing secure cryptographic ci-
phers, the Advanced Encryption Standard (AES) notably being among the most
widespread after being adopted by the US National Institute of Standards and
Technology in 2001.

However, the security of a cipher not only lies in its inherent mathematical
properties, also the equipment on which it is implemented can be targeted to
attain knowledge of the secret. This class of attacks is known as side-channel at-
tacks and includes attacks such as timing-, power- and electromagnetic radiation
analysis.

Differential Power Analysis (DPA) is one such attack that has been shown
to be a powerful tool in breaking previously assumed secure cryptosystems. A
famous example is the attack on the KeeLoq-system [16] used in many cars for
keyless entry. Not only was DPA able to retrieve the secret key, but also the
manufacturer key was retrieved such that new valid remote controls could be
easily made in a short amount of time.

Since DPA was suggested by Kocher[19], much research has been performed in
this field, and our aim is to build on this research and propose a complete secure
cryptosystem utilizing AES that is not vulnerable to DPA and implemented on
standard CMOS.

2

1.2 Thesis Organization
• Chapter 1: Introduction gives an overview of the topic, a historical

perspective and motivation behind this thesis.

• Chapter 2: Advanced Encryption Standard explains the fundamental
principles and mathematical preliminaries of the advanced encryption stan-
dard algorithm. Furthermore, previous research considered for this thesis
is presented.

• Chapter 3: Differential Power-Analysis explains the principles behind
the side-channel attack known as differential power-analysis (DPA) and
presents relevant research about DPA and protection thereof.

• Chapter 4: Implementation gives a detailed overview of the imple-
mentation steps taken to create an DPA-resistant AES-architecture in Sys-
temVerilog.

• Chapter 5: Test Methodology & Results shows the step taken to
verify and analyze the proposed architecture and the results obtained.

• Chapter 6: Conclusion and Further Work Presents the result of the
thesis and possible future research.

• Appendix A: Contains some additional formulas and materials.

3

Chapter 2

Advanced Encryption
Standard

4

2.1 Background
Since the end of the 1970s, the Data Encryption Standard (DES) had been the
predominant symmetric-key algorithm for encryption of electronic data. By the
1990s, due to advances in cryptanalysis, computing power and its limited key
length of only 56 bits was no longer considered secure. Consequently, in 1997
the National Institute for Standards and Technology (NIST) reached out for
proposals of algorithms that that could replace DES and become the Advanced
Encryption Standard. It was intended that the AES would specify an unclassified,
publicly disclosed encryption algorithm that were to be available royalty free
world wide and capable of protecting sensitive government information well into
the next century[27]. After three years, in October 2000, an algorithm coined
Rijndael after its creators, Vincent Rijmen and Joan Daemen was chosen to
become the new advanced encryption standard.

One of the primary features of AES is its good performance in both hard-
ware and software implementations. On smartcards, AES can be implemented
with less than 1kb of code and using only 36 bytes of memory. With high-end
processors AES may exploit the use of caches and parallelism to achieve signif-
icant speedups[35]. The main cryptographic design goal of AES was to provide
adequate and provable protection against linear and differential cryptanalysis.

The following design principles were used to achieve the effectiveness and
security of the cipher[35]:

• Keep it simple - No unneeded complexity, everything is there for a reason.
The cipher should be secure against known attacks but should also avoid
introducing new vulnerabilities.

• Modularity - AES is built from several distinct modules, each selected ac-
cording to quantitative selection criteria.

• Symmetry and Parallelism - All steps can be parallelized and and operate on
the data in a symmetrical way to allow great freedom in designing efficient
hardware implementations.

• Choice of operations - All steps are defined in GF(28) and can be im-
plemented with Exclusive-OR (XOR) gates and table lookups only. No
arithmetic operations are needed thus reducing the area consumption on
hardware platforms.

5

2.2 Overview

Key ExpansionAddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

AddRoundKey

ShiftRows

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

AddRoundKey

InvSubBytes

AddRoundKey

InvShiftRows

Plaintext in Key in Ciphertext in

Plaintext outCiphertext out

Nr-1
Rounds

Nr-1
Rounds

Figure 2.1: Overview of the AES Algorithm

Figure 2.1 gives an overview of the various parts and dataflow of the AES en-
cryption and decryption algorithms. The left part of the figure describes the
encryption process, while the right side describes the decryption process. After
initialization of the AES algorithm. a cipher key is asserted to the key expansion
module, which expands this key into a number of round keys, one for each round.
When the first round key is ready, the algorithm is ready to accept input data;
plaintext in the case of encryption or ciphertext in the case of decryption. In the
initial round, the input data is combined with the first round key, then passed on
to the next step, the rounds of AES, which are the following four modules whose
operation is repeated Nr times (values of Nr is given in table 2.1). After being
processed Nr times, the data is passed on to be processed by the remaining three
modules before it is asserted on the output as ciphertext or plaintext for encryp-
tion and decryption respectively. In section 2.4, a more detailed description of
the algorithm and its constituents will be presented.

6

2.3 Preliminaries
2.3.1 Standard Conventions
The AES algorithm is a symmetric block cipher, as such the key for encryption
and decryption remains the same. To provide the confusion and diffusion proper-
ties as described by Shannon [34] a Substitution-Permutation Network (SPN) is
used. Input and output data, as well as the internal data representation, called
the state, are all represented by blocks of 128 bits divided into 8 bit subfields in
a 4x4 row column fashion as seen in figure 2.2

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,2 a3,3

a2,2

Figure 2.2: Representation of Data in AES

Key length is defined to be 128, 192 or 256 bits, no other key-lengths nor in-
put/output sizes are allowed according to the standard. The state undergoes four
transformations, namely AddRoundKey, SubByte, ShiftRow and MixColumns,
of which the SubByte transformation is the most computationally heavy. To-
gether these four transformations form what is known as a round of AES which
is repeated a specific number of times as given in table 2.1. Modules used in
the decryption process are denoted as the inverse of the original function, and
performs the operation in reverse compared to the regular variant.

This table gives the combinations of allowed key-lengths, data block sizes and
number of rounds as specified by AES. No other combinations are approved for
use.

7

Table 2.1: Round-block-key Combinations
Key Length Block Size Number of Rounds
Nk words Nb words Nr rounds

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

2.3.2 Finite Fields
Finite fields, or Galois fields (GF) form the foundation for the mathematical
operations in the AES algorithm. A field is a set of F elements with two binary
operations, ⊕ and ⊗, addition and multiplication respectively.

For all operations, the result must be confined within this field, and thus these
operations must satisfy the following properties [12]:

1. The set is closed with respect to both operations:

(a) a ⊕ b ∈ F

(b) a ⊗ b ∈ F

2. Both operations are associative:

(a) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
(b) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)

3. Both operations are commutative:

(a) a ⊕ b = b ⊕ a

(b) a ⊗ b = b ⊗ a

4. The operations are distributive: (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c)

5. For both operations, an identity exists:

(a) a ⊕ 0 = a

(b) a ⊗ 1 = a

6. Each element in the field has an additive inverse: If q is the additive inverse
of a then a ⊕ q = 0 and as such the additive inverse defines subtraction.
Commonly written as −a.

7. Each element in the field has a multiplicative inverse: If r defines the multi-
plicative inverse of a then a⊗ r = 1. Notation for the multiplicative inverse
is a−1. See section on multiplication in GF(28) for more details.

8

The basic unit of operation within each block is one byte, consisting of 8
bits presented in the following order {b7, b6, b5, b4, b3, b2, b1}. These bytes are
interpreted as finite field elements in GF(28) using polynomial representation:

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x1 + b0 =
7∑

i=0
bix

i (2.1)

Thus it is convenient to refer to individual bytes with the following equivalent
representations:

Polynomial : x7 + x6 + x3 + x2 + 1 (2.2)
Binary : {11001101} (2.3)
Hexadecimal : {CD} (2.4)

2.3.3 Addition in GF(28)
Addition in GF(28) is performed by adding the polynomial coefficients together
modulo 2. In other words, to bytes can be added together by exclusive-OR
(denoted by ⊕) of the values in its respective bit positions. Consequently, addition
and subtraction are equivalent operations.

(x5 + x4 + x + 1) + (x7 + x + 1) = x7 + x5 + x4 (2.5)
{00110011} + {10000011} = {10110000} (2.6)

{33} + {83} = {B0} (2.7)

2.3.4 Multiplication in GF(28)
Multiplication of polynomials in GF(28) (denoted by ⊗) is accomplished by a
polynomial multiplication modulo an irreducible polynomial of degree 8. For
AES this polynomial is

m(x) = x8 + x4 + x3 + x + 1 = {01}{1D} (2.8)

This polynomial ensures that the resulting polynomial will be of degree less
than 8 and as such can be represented by the finite field GF(28).

9

Multiplication by a polynomial

{57} ⊗ {83} = {C1} because

(x6 + x4 + x2 + x + 1)(x7 + x + 1) mod m(x) =
x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 mod m(x) =

x7 + x6 + 1
(2.9)

Note that the two factors of equal powers cancel each other out due to the additive
inverse property. The modulo result can be easily obtained by either polynomial
long division or simply by recursively replacing all instances of x8 with the root
of m(x), x4 + x3 + x + 1.

Multiplication by a constant

The method of multiplication of a polynomial and a constant are identical if the
constant is represented as a polynomial in GF(28). For example, the constant 3
in binary is {11}2 which can also be represented as the polynomial x + 1 in the
finite field and thus the multiplication is performed as above.

2.4 Components and Their Function
2.4.1 Key Schedule
The key schedule of AES consists of two parts, key expansion and a round key
selection function. Once per round, the algorithm requires the addition of 128 bits
of key data. To supply the necessary key bits, the cipher key, which is 128, 192
or 256 bits long needs to be expanded so that there is 128 unique bits necessary
for each round. AES specifies a lightweight algorithm, as given in algorithm 1,
to perform the key expansion. A lightweight key expansion routine is necessary
for a general purpose encryption algorithm, particularly for applications which
require frequent change of secret keys [35].

The key expansion of the AES algorithm takes an input key and generates
a total of Nb(Nr + 1) round keys. This forms the basis for a key scheduling
routine. Upon the initialization of the AES algorithm, one round key of Nb
words (128 bit) is required, followed by one round key for each successive round.
Round keys are generated as a function of previous round keys; conveniently
enabling generation of round keys for encryption on the fly. For decryption, the
round keys are utilized in reverse, and thus not conveniently generated on the fly.
The key expansion function itself requires two further functions, RotWord and
SubWord in addition to a special register rcon. The function SubWord() applies
the SubByte s-box substitution on each byte in the four words and RotWord()

10

performs a cyclic left shift by one byte. The round constant word array Rcon[i]
contains the values [xi−1, {00}, {00}, {00}] where xi being powers of x = {02}.

Algorithm 1 Key expansion algorithm
1: function KeyExpansion(byte key[4 ∗ Nk], word w[Nb ∗ (Nr + 1)], Nk)
2: word temp
3: i = 0
4: while (i < Nk) do
5: w[i] =word(key[4 · i], key[4 · i + 1], key[4 · i + 2], key[4 · i + 3])
6: i = i + 1
7: end while
8: i = Nk
9: while (i < Nb · (Nr + 1)) do

10: temp = w[i − 1]
11: if (i mod Nk = 0) then
12: temp = SubWord(RotWord(temp)) ⊕ Rcon[i/Nk]
13: else if (Nk > 6 and i mod Nk = 4) then
14: temp = SubWord(temp)
15: end if
16: w[i] = w[i − Nk]⊕ temp
17: i = i + 1
18: end while
19: end functionKeyExpansion

2.4.2 AddRoundKey
The AddRoundKey transformation is where the state is combined with the round
key for the current round. Each byte in the state is XORed with its corresponding
bytes in the round key. Expansion of the round key from the cipher key is
explained in detail in section 2.4.1

11

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,3

k3,0 k3,1 k3,2 k3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,3

b3,0 b3,1 b3,2 b3,3

a2,2 b2,2

k2,2

Figure 2.3: AddRoundKey transformation

2.4.3 SubBytes, S-Box and its Derivation

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,3

b3,0 b3,1 b3,2 b3,3

a2,2 b2,2

SubByte

Figure 2.4: SubByte transformation

SubBytes is the function that substitutes a byte from the state with its corre-
sponding match in the substitution box. The Substitution-box (S-box) is the
part of a SP-network that provides non-linearity to the cipher. Several older
ciphers used modifiable S-boxes, e.g. GOST 28147-89, where it was rumored
that the governing authorities would provide secure S-boxes for entities trusted,
and insecure or backdoored s-boxes for others [33]. AES on the other hand was

12

specifically designed to avoid such problems by using a fixed, standardized S-box
based on a mathematical derivation known to provide good degree of non-linearity
and resistance to known cryptanalyisis-attacks.[13] By standardizing the S-box
based on known mathematical properties, there are two main approaches to its
implementation. Firstly the traditional look-up table based method, where the
precomputed S-box values would be stored in a ROM and fetched as needed.
Using a ROM based method would incur some performance penalties with each
access to the ROM. For encryption or decryption alone, a 256 byte look-up ta-
ble would be needed and 512 bytes if both operations are to be supported. The
alternative is to implement the S-box inversion as logic based on its mathemat-
ical properties. Implementation of a secure S-box in AES is one of the largest
challenges in creating efficient hardware and software.

The S-box consists of two parts, a multiplicative inverse in GF(28) followed
by an affine transformation and the addition of a constant. The inverse transfor-
mation used in decryption is accomplished by adding the inverse affine transform
with a constant before inverting the input. The affine transformation is given
in equation 2.10. Input The multiplicative inverse was chosen to provide nec-
essary non-linearity to the cipher as required by the wide trail strategy[14] to
protect against linear and differential cryptanalysis, while the affine mapping
seeks to complicate the algebraic expressions without affecting the nonlinearity
properties to combat cryptanalysis methods such as interpolation attacks[35].

Decryption uses the same inversion module from the S-box, the difference
lies in adding an inverse affine transformation and constant to the byte prior to
inversion.

b′
0

b′
1

b′
2

b′
3

b′
4

b′
5

b′
6

b′
7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

×

b0
b1
b2
b3
b4
b5
b6
b7

+

1
1
0
0
0
1
1
0

(2.10)

2.4.4 Multiplicative Inversion via Isomorphic Mapping
To create a more area efficient implementation of the S-box, based on research by
Rijmen [30], Canright [12] suggested using a Tower- or composite field approach to
implement the S-box. The basic idea is that the data is isomorphically mapped to
a smaller subfield in which the operations become less complicated and technically
challenging to implement. In the following section this will be further elaborated.

13

Polynomial Basis

Finite fields such as the Galois field used in AES are unique and finite. How-
ever, multiple methods for representing these fields and its elements exist. The
first considered in this thesis is the polynomial basis. The foundation for the
polynomial basis is that each element in the field-array, b7, b6, b5, b4, b3, b2, b1, b0
is represented by a polynomial a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x+a0,
where ai is either 0 or 1 depending on the value of the element, and the powers of
x defines the position. Furthermore, the field itself is constructed using an irre-
ducible primitive polynomial; such that the root of this polynomial function as a
generator for the field. To give an example for GF(28), the smallest such polyno-
mial is f(x) = x8 +x4 +x3 +x2 +1, with one primitive root, γ = x4 +x3 +x2 +1.

The primitive root forms the basis of the field, by taking powers of γ mod f(x)
all the elements in the field can be uniquely defined. As such, any possible poly-
nomial that represents the field can be expressed by γ to some distinct power.
For example, γ2 = x6 + x3 + x2 + 1 = {01001101}. Note that two equal factors
cancel, due to the additive inverse property previously described.

v ⊗ γ2γ1

γ2

δ1

δ2

γ−1

Figure 2.5: Polynomial Basis GF(28) Inverter

Calculating the multiplicative inverse in GF(28) is quite complicated. Can-
right [12] showed that it is possible to represent the inverse in GF(28) by its co-
efficients in GF(24), with an irreducible primitive polynomial y2 + yτ + ν where
τ is the trace and ν is the norm of the function, as follows (For the complete
derivation, see appendix):

g =γ1y + γ0

d =g−1 = δ1y + δ0

s.t. gd =1
(2.11)

14

δ1 =(γ2
1 + γ1γ0τ + γ2

0)−1γ1

δ0 =(γ2
1 + γ1γ0τ + γ2

0)−1(γ0 + γ1τ) (2.12)

Here the coefficients, γ1 and γ2 are represented in GF(24) together forming
the GF(28) field. From the above formula, it is apparent that the inversion
in GF(28) can be carried out by a combination of multiplications, additions,
squarings and inversion in GF(24). Further decomposition down to GF(22) and
GF(2) is possible for further simplification. [12]. A possible realization of this
in hardware is shown in figure 2.5. For the full realization here we may either
use an inversion in GF(24 directly, or continue decomposing the GF(24) inverter
down to GF(22) where inversion amounts to a simple bit swap.

The AES field polynomial however is irreducible but not primitive, so the
above representation does not automatically apply. First, a linear mapping, or
isomorphism, is necessary to represent the values in a properly constructed field.
The basic idea here is to map a primitive element of GF((2n)m) to GF(2k) such
that the group homomorphism holds. For further details the reader may confer
[32][28].

Normal Basis

Polynomial basis is not the only possible representation of a finite field. Several
other representations exist, of which normal basis is one of the more commonly
used.

Consider a string of bits {bm, bm−1, . . . , b1, b0} in GF(2m). To represent the
individual bits with normal basis, we first find an element β, such that the m

elements {β2m−1
, β2m−2

, . . . , β2, β} are linearly independent. As such, β2m−1

represents the most significant bit, β2m−2 the second most significant bit and so
on.

Normal basis often leads to much more efficient1 implementation of bit arith-
metic in hardware, particularly if squaring is involved as squaring in the normal
basis is simply a cyclic shift of bits. [28], although not in all cases. Canright [12]
throughly examined the use of normal basis and AES, and concluded that the
most efficient implementation uses normal basis for the s-box, but not for the
rest of the affine transformations.

1Efficient with regards to low usage of logic gates in the implementation

15

v ⊗ γ2γ1

γ2

δ1

δ2

γ−1

Figure 2.6: Normal Basis GF(28) Inverter

Similarly to polynomial basis, the inverse in normal basis over GF(28) can be
derived, in [12] it was shown to be as follows:

g =γ1Y16 + γ0Y
g−1 =d = δ1Y16 + δ0Y

s.t. gd =1
(2.13)

δ1 =γ0
[
γ1γ0τ2 + (γ2

0 + γ2
1)ν
]−1

δ0 =γ1
[
γ1γ0τ2 + (γ2

0 + γ2
1)ν
]−1 (2.14)

Selecting τ , the trace, to be one leads to a structure similar to that of the
polynomial basis as shown in figure 2.6, however the internal functions are all
performed with the normal representation, so that the underlying logic will be
substantially different. Canright found this representation to give the smallest
S-box implementation so far, although critical path was not taken into consider-
ation.

2.4.5 ShiftRows

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,2 a3,3

a2,2

a0,0 a0,1 a0,2 a0,3

a1,0a1,1 a1,2 a1,3

a2,0 a2,1a2,3

a3,0 a3,1 a3,2a3,3

a2,2

Figure 2.7: The ShiftRows transformation

16

The ShiftRows transformation operates on the state in a row-based manner. 0-
indexing the rows from top to bottom, rows are cyclically shifted left the number
of bytes denoted by their index. Mathematically this can be described as follows:

S′
r,c = Sr,(c+shift(r,Nb))modNb for 0 < r < 4 and 0 ≤ c < Nb (2.15)

Without the ShiftRows transformation, the columns of the AES cipher would
be linearily independent, and thus be equivalent to four distinct ciphers run-
ning on each column. The inverse ShiftRows transformation performs the same
number of cyclical shifts as ShiftRows but in the right direction.

2.4.6 MixColumns

a0,0 a0,1

a0,2
a0,3

a1,0 a1,1 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,3

b0,0 b0,1
b0,2

b0,3

b1,0 b1,1
b1,2 b1,3

b2,0 b2,1 b2,3

b3,0 b3,1 b3,2 b3,3

a2,2 b2,2

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

a1,2

a3,2

×

Figure 2.8: The MixColumns Transformation

The MixColumns transformation operates on the state in a column-by-column
fashion, treating each term as a four term polynomial in GF(28) and multiplied
modulo x4 + 1 with a fixed polynomial a(x) given as

a(x) = {03}x3 + {01}x2 + {01}x + {02} (2.16)

Writing this as matrix multiplication we have
s′

0,c

s′
1,c

s′
2,c

s′
3,c

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

s0,c

s1,c

s2,c

s3,c

 (2.17)

17

Thus equating to the following transformed state bytes:

s′
0,c = ({02} · s0,c) ⊕ ({03} · s1,c) ⊕ s2,c ⊕ s3,c

s′
1,c = s0,c ⊕ ({02} · s1,c) ⊕ ({03} · s2,c) ⊕ s3,c

s′
2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c) ⊕ ({03} · s3,c)

s′
3,c = ({03} · s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c)

(2.18)

Similarily for the inverse case, the operation differs by the coefficients of the
four term polynomial, that is:

a−1(x) = {0b}x3 + {0d}x2 + {09}x1 + {0e}x (2.19)

18

2.5 Modes of Operation
When a block cipher is used for confidentiality protection, the goal is to pre-
vent an adversary with limited computational power to gain any knowledge of
the plaintext. The basic AES algorithm operates on each block of input data
completely independent of past or future inputs, only the key and the input data
defines the output. This is known as Electronic Codebook (ECB) mode. The
inherent weakness by this approach is that each and every identical plaintext will
produce identical output[35].

For example, bitmap images normally contains a header followed by uncom-
pressed data specifying the color of the individual pixels. If an image contains
large areas of the same color it forms a clear pattern, both visually and in the
data. Normally bitmap images are much larger than the block size of the encryp-
tion algorithm thus these patterns are repeatedly given as input to the cipher. As
a consequence, each block containing the same color information gets encrypted
identically leaving the original patterns of the image largely intact. Figure 2.10
shows an example of encrypting the NTNU-logo from figure 2.9 in ECB mode.
From these images it is apparent that if the algorithm is used to encrypt bitmap
images it does not provide confidentiality as information about the structure of
the image is leaked.

Figure 2.9: Unencrypted Figure 2.10: ECB Figure 2.11: CBC

To remedy this problem and provide confidentiality for block ciphers, several
modes of operation have been introduced. The most common mode is known as
Cipher-Block Chaining (CBC)[35].

19

Cipher block chaining

Figure 2.11 shows the output of the AES encryption of the NTNU-logo in CBC-
mode. Visually inspecting the figure does not reveal any information of the
original image in contrast to the ECB-mode encrypted variant.

plaintext plaintext

ciphertext ciphertext

IV

AES AES
IV

AES

ciphertext

plaintext

AES

ciphertext

plaintext

Figure 2.12: CBC mode of operation, encryption and decryption respectively.

Figure 2.12 shows how this is performed in practice. For the first plaintext
after a reset, an additional Initialization Vector (IV) is required as no previous
ciphertext is available. The IV is then combined with the plaintext, together
forming the input to the algorithm. Subsequent blocks combine the previous
ciphertext with the current plaintext instead of the IV. This ensures that each
block of input data to the cipher is not identical. As the output of the previous
block is required for encryption, a disadvantage of this mode is that it is not
possible to parallelize encryption. Decryption follows a similar principle, the
ciphertext (input) from the previous round is combined with the output of the
present round. Decryption does not depend on the output of the previous round,
only on its input, which makes it possible to implement the mode in parallel.

20

Chapter 3

Differential Power-Analysis

21

3.1 Background
Historically, attacks on cryptosystems have largely been targeted towards math-
ematical weaknesses in the encryption scheme. Several methods, such as linear
cryptanalysis [22] and differential cryptanalysis [4] have been devised to display
weaknesses in cryptographic algorithms. Modern cryptographic algorithms are
designed to withstand such attacks, and in the case of AES there is still no
method available that can break the cipher faster than an exhaustive key-search
approach. With mathematical attacks on AES out of the question, researchers
have turned to side-channel attacks. Side-channel attacks are a group of attacks
that do not target the mathematical structure of the algorithm itself, but rather
the equipment on which it is implemented. Thus, for a system to be secure it is
not enough for a cryptographic algorithm to be able to withstand a cryptanalysis
attack. Attacks using defective computations [10], timing information [18] and
power consumption [19] have been demonstrated in practice. US government
also made a large effort with their TEMPEST-program to secure cryptographic
hardware from leaking information through electromagnetic radiation[2].

In this thesis the focus will largely be on a class of side channels attacks
based on instantaneous power consumption, known as simple and differential
power analysis (SPA and DPA) and its related methods. In the following chapter
this will be thoroughly explained.

3.2 Why Does it Work?
Modern cryptosystems, as with most other modern microelectronics is usually
implemented in CMOS technology. The CMOS logic gates are composed of tran-
sistors, that controls the electron flow across the substrate. This flow is dependent
on a charge being applied or removed from the transitor gate, which in turn affects
the power consumption and emission of electromagnetic radiation. Furthermore,
the activity of the circuit is directly correlated to its power consumption through
the aggregate activities of its individual components.

Activity of the components is in turn affected by the operations performed by
the circuit. For example, adding the hexadecimal numbers {4A} and {7F} may
cause more transistors to switch compared to adding {00} and {01}.

Because the power consumption of a circuit is dependent on the data processed
and calculations performed, power measurements will contain information about
the processed data. Even the effect of a single transistor in a large system can
show a weak correlation to the processed data. As such it is paramount in a
secure cryptosystem to avoid leaking secrets in a way that an adversary can
easily exploit. DPA and its related attacks of side channels are very powerful
methods that may be employed even in systems where large amounts of noise is

22

present.

3.2.1 Security of Glitchy Circuits
The ideal CMOS logic gate exhibits at most one transition per clock cycle, in
reality however this is not the case. Propagation delays can cause gates to go
through more than one transition during a clock cycle. This is called a glitch, and
is very common in unbalanced CMOS circuits. Consider the following example
from [5] for a masked sharing of the function f = Z⊕XY with order of operations
shown by parantheses.

f1(X1, Y1) = Z1 ⊕ X1Y1

f2(X1, X2, Y1, Y2) = ((Z2 ⊕ X1Y2) ⊕ X2Y1) ⊕ X2Y2 (3.1)

The function in 3.1 is securely shared as long as the order of operations is
maintained and the circuit is free of glitches.

z2
x1 x2 x2y1y2 y2

Figure 3.1: Circuit of function 3.1

Assume a constant zero initial state of the inputs followed by a change to a
random value with x2 delayed due to propagation delay. The last two columns
of table 3.1 shows the amount of AND and XOR transitions in the circuit with
the given input stimuli. Plus signs denote the transitions before and after arrival
of x2.

Comparing the leftmost column, the unmasked (secret) value, and the columns
showing the transitions it is apparent that the average number of transitions is
not independent of the input value y. Hence the power consumption with dif-
ferent values of y differs and thus reveals information that can be exploited to
attack the circuit. Glitches at other points in the circuit may or may not leak

23

secret information, but verifying the safety of each transition in a larger circuit
is not feasible.

Table 3.1: AND/XOR-transitions based on late arrival of X2
y y1 y2 x2 z2 ⊕ x1y2 AND XOR
0 0 0 0 0 0+0 0+0
0 1 1 0 0 0+0 0+0
0 0 0 1 0 0+0 0+0
0 1 1 1 0 0+2 0+1
0 0 0 0 1 0+0 2+0
0 1 1 0 1 0+0 2+0
0 0 0 1 1 0+0 2+0
0 1 1 1 1 0+2 2+1
1 0 1 0 0 0+0 0+0
1 1 0 0 0 0+0 0+0
1 0 1 1 0 0+1 0+1
1 1 0 1 0 0+1 0+2
1 0 1 0 1 0+0 2+0
1 1 0 0 1 0+0 2+0
1 0 1 1 1 0+1 2+1
1 1 0 1 1 0+1 2+2

24

3.3 Method Explained
Simple Power Analysis Attack (SPA)

The SPA-attack can be considered a precursor of the differential power analysis.
This method involves collecting power traces from the cryptographic hardware,
and visually inspecting these for determining data-dependent power variation.

Figure 3.2: Power Trace collected from unprotected AES[20].

From figure 3.2, the various stages of AES is clearly visible - the rounds of
AES forms a clear pattern. Visually inspecting and analyzing the power plots to
attain knowledge of secret data is very difficult, and the difficulty increases with
added noise. This has led to the development of DPA, differential power analysis.

Difference of Means - Basic DPA Attack

The difference of means-attack is DPA in its most basic form, and was the method
that was proposed by Kocher [19]. DPA is a statistical method, thus to be enable
to employ this attack, the first thing needed is to collect data. Furthermore, it
requires knowledge of the employed algorithm. The necessary data consists of
power traces from the system during normal operation, where the key is static,
and different plaintexts are applied. (in the case of encryption). Next, it is
necessary to identify an intermediate value that depends only on a small part of
the cipher key, the subkey and then proceed to guess the subkey and generate
a list of hypothetical values for the intermediate (commonly hamming weight or
hamming distance[20]). These values form the basis of a selection function, which
is used to assign traces to subsets.

Kocher[20] summarized the process of a DPA attack as follows: Let T denote
the set of traces collected, with Ti being the ith trace. Ti[j] denotes the power

25

measurement at the jth time offset. C corresponds to the set of known inputs
or outputs for the traces, while Ci denotes the ith trace. D(Ci, Kn) denotes the
selection function with inputs Ci and the partial key guess Kn. Then each point
j in the differential trace ∆D is computed as follows:

∆D[j] =
∑m

i=1 D(Ci, Kn)Ti[j]∑m
i=1 D(Ci, Kn)

−
∑m

i=1(1 − D(Ci, Kn))Ti[j]∑m
i=1(1 − D(Ci, Kn))

(3.2)

Typically the guesses of Kn that yields the largest spikes in ∆D are the most
likely candidates for a correct guess.

Correlation Power Analysis

Correlation Power Analysis (CPA) was proposed by Brier et al. in 2004[11] and
involves the evaluation of variations in internal key-dependent variables compared
to a device leakage model. This leakage model is based on one or more interme-
diates in the cryptographic calculations, such as correlating power consumption
to Hamming weight of a multi-bit register, or the Hamming distance between a
value and the next value stored in the same register.

As this method requires a leakage model for the system it is most effective in
a white-box attack, where the leakage of the device is fully known. It can also
be utilized in a black-box setting if there is some correlation between the actual
leakage of the device and the leakage model used by CPA[20].

• Generate p× t matrix T corresponding to p power traces with length t with
values from repeated encryptions with varying plaintexts and the same key.

• Generate p × k matrix L corresponding to p hypothetical leakage values of
the target with all plaintexts and a different key hypothesis.

Using the aforementioned matrices the attacker constructs a matrix R from
the values rj,l in equation 3.3, T̄ and L̄ represents the mean values.

rj,l =
∑p

i=1(Ti,j − T̄j)(Li,l − L̄l)√∑p
i=1(Ti,j − T̄j)2

√∑p
i=1(Li,l − L̄l)2

(3.3)

Each column of R corresponds to the correlation coefficients of a key hypothesis on
all the time samples. Indices corresponding to the absolute maxima of elements in
R reveals the specific samples where the hypothetical leakage matches a particular
key hypothesis indicating a correct guess.

26

Correlation-Enhanced Power Analysis Collision Attack

Moradi et al.[25] proposed the Correlation-Enhanced Power Analysis Collision
Attack (CEPACA) in 2010 that enables a significant reduction in the possible
key space in the cryptosytem. The main principle behind CEPACA is to exploit
collisions of two different intermediate values. Section 2.2 shows that the input
to the s-box is formed by a linear combination of the state and the round key.
For two different inputs, statei ⊕ keyi and statej ⊕ keyj with i ̸= j. When these
two inputs to the s-box are equal, it implies that statei ⊕ statej = keyi ⊕ keyj .
This further implies that the difference between the partial inputs are equal to
the difference between the subkeys.

Performing this analysis on several collisions representing different subkeys,
CEPACA can significantly reduce the key space, although other methods is
needed to reveal the actual cipher key.

Higher-Order DPA Attacks

Higher Order Differential Power Analysis (HO-DPA) attacks were introduced by
Messerges[23], and seek to undermine the security in circuits using 1st. order
masking. Typically, HO-DPA consists of probing multiple points in a circuit.
Multiple samples within a power trace lets an adversary analyze the joint distri-
bution between these measurements and target a known or hypothesized relation-
ship between the parameters. dth.-order DPA can be successfully used to attack
an implementation masked with d number of shares, however the complexity
increases exponentially with increasing number of shares[7].

3.4 Prevention of DPA
Kocher [20] gives an overview of several countermeasuresemployed against differ-
ential power attacks, of which the ones relevant to AES will be summarized in
the following section. Furthermore a more in depth coverage of the secret sharing
scheme will be presented.

3.4.1 Protocol Level Countermeasures
The most straightforward way of securing AES, or any other block cipher against
DPA attacks is through protocol level countermeasures. In other words, to restrict
how many times a given key may be used before it is invalidated. This effectively
thwarths an adversary’s ability to gather enough samples to determine the secret
key. As convenient as it may seem, several new problems arise such as secure key
exchange and generation of secure cryptographic keys.

27

Introduction of Noise

DPA depends on statistical information of the power consumption in a circuit
at specific points in time. This means that if additional noise into the system
the collection of power samples usable becomes more difficult. Added noise can
be in the form of amplitude noise, e.g. adding noisy power consuming devices
on the chip, or it can be in the form of temporal noise. Conversely, one may
seek to decrease the amount of leakage from the circuit to reduce the signal-to-
noise ratio of the circuit. Temporal noise on the other hand seeks to disrupt an
adversary’s ability to perform measurements at predictable intervals, for example
by randomizing order of operations or adding delays. Adding any noise makes
the attack more difficult, but not impossible, given enough time and resources
the adversary is still able to obtain the secret.

Logic Styles, CMOS Countermeasures

Last, it is possible to implement countermeasures on a physical level, by using
glitch free logic and balanced functions. However, making sure that each module
in a larger system has a balanced power consumption soon becomes an infeasible
task. Adding physical shielding to the device may also be used in extremely
security sensitive devices.

3.4.2 Masking
In this section the underlying theory behind secret sharing, requirements and
proofs will be presented. Presently to our knowledge there are only two known
AES-implementation methods assumed to be secure even in the presence of
glitches, the methods by Nikova[26] and Prouff[29]. In this thesis we will mainly
focus on the method by Nikova, which is based on the tower field approach[12],
as it has lower hardware complexity. Masking, or secret sharing, attempts to
conceal the intermediate data processed by the algorithm by modifying the data
such that the complete secret is never processed simultaneously, and such that
the power consumption is not directly correlated to the intermediate values.

Requirements

Nikova et al[26] postulated 3 requirements necessary for secure implementation
of CMOS logic in the presence of glitches.

Property 1 (Correctness):

(Z1, . . . , Zq) = f(X1, . . . , Xp) =
s∑

i=1
fi(X̄1, . . . , X̄p) (3.4)

28

for all vectors of input shares (X̄1, . . . , X̄p) satisfying
∑s

i=1 Xj
i = Xj with

1 ≤ j ≤ p. In other words, the unshared vector function operating on the
original data must be equivalent to a linear recombination of the shared vector
function, thus preserving the intended functionality.

Property 2 (Non-completeness): Every function is independent of at least one
share of each component. Denoting the reduced vector (xj

1, . . . , xj
i−1, xj

i+1, . . . , xj
s)

by x̄j
i . Requrire zi to be independent of xj

i , ∀j

z1 = f1(x̄1
1, x̄2

1, . . . , x̄p
1)

z2 = f2(x̄1
2, x̄2

2, . . . , x̄p
2)

. . .

zs = fs(x̄1
s, x̄2

s, . . . , x̄p
s)

(3.5)

Property 3 (Uniformity): A realization of (z1, . . . , zq) = f(x1, . . . , xp) is uni-
form if the distribution of the shares of the output satisfies:

P (z̄1 = Z̄1, . . . , z̄p = Z̄p) = Q1−sP (z1 =
s∑

i=1
Z1

i , . . . , zq =
s∑

i=1
Zq

i) (3.6)

In other words, consider the function f(x) = X, if for each x, each of the masked
output X occur with the same probability.

Nikova further proposed the following theorems to show that circuits fulfilling
the aforementioned properties are secure (The formal proofs are available in [26],
and are omitted here for brevity):

• Theorem 1: If the masking X is uniform and the shared function f is non-
complete, then any single component of f does not leak any information
about X. That is, any single component in the system does not contain the
information necessary to determine X. Intuitively, if a function does not
know X, then it cannot leak X.

• Theorem 2: If the masking X is uniform and the circuit of f is non-complete,
the expected value of the system leakage is constant.

Implementing Linear Transformations

Let L be a linear vector function where (z1, . . . , zq) = L (x1, . . . , xp). The
easiest way to securely implement linear functions is by processing each share
independently. and as such, each output share variable depends only on one
input share of each variable. this yields an implementation that does not leak

29

information usable by a Side-Channel Attack (SCA), even in the presence of
glitches [21][26]. More formally, splitting each variable into n shares such that

(z1
i , . . . , zq

i) =L (x1
i+1, . . . , xp

i+1), 1 ≤ i < n

(z1
s , . . . , zq

s) =L (x1
1, . . . , xp

1)
(3.7)

By definition of the linearity property it follows that

(z1, . . . , zq) =
s∑

i=1
(z1

i , . . . , zq
i) =

s∑
i=1

L (x1
i , . . . , xp

i)

=L

(
s∑

i=1
(x1

i , . . . , xp
i)

)
= L (x1, . . . , xp)

(3.8)

Processing each share independently is relatively trivial to implement in hardware
by either by duplicating the modules involved or serially processing the data.
From [26] we have that the minimum number of shares required to implement a
function that is a product of s variables is:

n ≥ 1 + s (3.9)

Thus the minimum number of shares necessary to implement the linear functions
of AES is two. However, more shares may add to the protection of the circuit
and/or reduce necessary amount of randomness.

Implementing Nonlinear Transformations

For the linear parts of the algorithm, it suffices to simply add a random data mask
to the information to be concealed (i.e. by use of a simple XOR operation). Most
operations in the AES-algorithm are linear - with the exception of operations in
the S-box. Thus, implementation of the S-box is where the difficulty in efficiently
implementing such a scheme lies.

Initially, several schemes were introduced, some also provably secure[31][9][17].
The main issue however is that they all base their formal proofs on an idealized
hardware model and thus do not consider issues such as glitches. Glitches have
been shown to introduce vulnerabilities into circuits, and cryptographic algo-
rithms can be compromised with the aid of DPA and glitch-analysis.

Bilgin[6] proposed one solution adhering to the properties proposed by Nikova
for the AES S-box. The solution uses a 3-share tower field implementation of the
S-box in normal basis, with additional re-masking bits to ensure uniformity.

30

Implementing Cascaded and Parallel Functions

Implementing one function uniformly does not necessarily imply that the outputs
of said function are uniform when taken as an input to another cascaded function.
To ensure the uniformity in the joint distribution, Moradi [24] suggested using
fresh random bits to mask the registers between the functions in the S-box.

m1

m2

b1

b2

b3

b1’

b2’

b3’

Figure 3.3: Register remasking as suggested by Moradi[24] for a 3-share case.

3.3 shows an example on how this may be done in practice. By adding the
random masks m1 and m2 to the register as shown, uniformity can be ensured
in the system. Similarly for parallel functions, the same can be applied to the
output of one of the functions to ensure uniformity[5].

31

Chapter 4

Implementation

32

4.1 Overview of Proposed Unmasked Architec-
ture

State KeySch

Done

Out

Data in Encrypt Key in

1

S-box

2

Initial Round

Figure 4.1: Basic structure of unmasked AES implementation.

Figure 4.1 shows a basic overview of the proposed AES core architecture. KeySch
represents the key scheduling routine, state is the intermediate state-register
keeping the state between rounds. Module 1 is the combined ShiftRows and
MixColumns modules while 2 is an inverse MixColumns module for use during
decryption. In the following sections the various parts of the architecture will be
introduced and at the end of the chapter the masked version will be discussed.
We chose to implement a 128 bit data-path, with a two register pipelined s-box
such that one AES-round is performed per three cycles.

4.2 Control Logic Modules
This section describes the individual modules necessary to control the data flow in
the proposed implementation. The control modules are identical for the masked
and the unmasked implementation as they do not operate on secret data directly.

33

4.2.1 Clock Divider

i_clk

o_sreg_clkD D DQ Q Q

Figure 4.2: 1:3 Clock Divider Circuit

As the proposed S-box implementations uses two pipeline registers, and our state-
logic only consists of one register, there is a minimum delay through one round
of three clock cycles. To avoid complicating the Finite-State Machine (FSM) and
adding additional multiplexers to the system, an approach with a 1:3 clock di-
vider was chosen, where the state logic (MixColumns, ShiftRows, AddRoundKey)
operates on a clock (i_sreg_clk) that runs slower than the system clock (i_clk)
and thus process one round in one cycle. The S-box however still runs on the
fast system clock. The clock divider is designed by placing two Flip-Flop (FF) in
series with an NOR-gate, creating a 1:3 divider with 33.3% duty cycle, followed
by another negative edge triggered FF ORed with the output of the second FF.
This gives a compact 50% duty cycle, 1:3 clock divider.

4.2.2 Clock Synchronizer
When the system operates on two different clock frequencies, it is essential that
the signals that operates across clock domains are synchronized. In this case, it
is essential that the stable-signal from the key expansion is matched to that of
the slow system clock. This is implemented with a FF triggered on the rising
edge of the state-reg clock signal.

34

4.2.3 Main Control FSM

s1

s3 s2

1/x/x

1/1/x

1/0/x

0/x/x

0/x/x

0/x/x

1/x/0

1/1/x

Figure 4.3: Finite State Machine - S1: Wait for key, S2: Wait for data, S3:
Do rounds, Signals (A/B/C): A: key stable, B: Input Data Ready, C: Rounds
Executing

The main control FSM of our system consists of three states as shown in figure 4.3.
The figure shows the main control signals, however the fully implemented system
requires some additional synchronization signals that are not included here for
brevity. The included signals however do represent the necessary conditions for
state transition.

The FSM operates with two different clocks, for the wait_key state we operate
with the regular system clock, and for the remaining two states the i_sreg_clk
is used.

4.2.4 Round Counter
The round consists of a counter counting from 0 to either 10, 12 or 14 depending
on the current operating mode. Additionally it outputs a signal, flf, representing
first, last or intermediate round to control the part of the algorithm that differs
in the first and last rounds in addition to controlling the exit from the do rounds
part of the FSM. Initial synthesis of the counter module showed some problems
with glitches during AES-256 mode, this was solved by converting the counter
architecture to a state machine methodology, using synchronous outputs.

35

4.3 Key Expansion
AES suggests two main methods of implementing the key expansion algorithm;
on-the fly generation of round keys or precomputing the round keys prior to ex-
ecuting the algorithm[1]. For the encryption process the round keys are required
in the ascending order, which caters well to the iterative key-generation process.
Decryption on the other hand faces the problem of requiring the keys in the re-
verse order. Thus if an on the fly key-generator is used, we would either need
to store the keys in advance, or first generate the keys in the correct order to
obtain the last roundkey, whereafter the last round-key forms the initial key for
a modified expansion routine.

Second, expanding a round key from the original cipher key during the ex-
ecution of every single round adds another pontential probing point for a side
channel attack. This is due to the key expansion itself leaking secret information,
and thus would also need to be masked. This would also call for a the need of a
preshared key such that the complete secret is never repeatedly processed by the
system. Based on the aformentioned, pre-computational approach with masked
storage was selected for this paper. In this chapter the key expansion module it-
self will be explained, while the storage part and masking is considered in section
4.4 and 4.9 respectively.

Note from algorithm 1 that each round key depends on the previous and the
Nk previous key, specifically

w[i] = f(w[i − Nk], w[i − 1]) (4.1)

where f(a, b) can take four possible forms, where a and b are 32-bit words.

• Pass-through mode, a is passed on to the output. This happens during the
initial round (and second round in the case of AES-192/256). With some
modifications to the key expansion, we may bypass this stage entirely, thus
removing the need to implement this into the module.

• Rotate-SubByte-Rcon mode, involving a circular shift, an s-box substitu-
tion and an addition of a round constant to b followed by an XOR of a.

• Subbytes mode, involving an s-box substitution of b during AES-256 key
expansion followed by an XOR of a.

• XOR-mode, performing an XOR of the two input words.

Considering that operations are performed modulo Nk, it is convenient to
represent the operations for the three modes of operation as follows:

• AES-128: RXXX

36

• AES-192: RXXXXX

• AES-256: RXXXSXXX

AES defines the round-key size to be equivalent to the state-matrix, 128-bits
(4×32-bit words), mapping the aformentioned representation to each round of
128-bits gives the following table:

Table 4.1: Key Expansion Rounds, P: Passthrough, R: Rotate-SubByte-Rcon
(RSR), X: XOR, S: Subbyte

Round # AES-128 AES-192 AES-256
0 P-P-P-P P-P-P-P P-P-P-P
1 R-X-X-X P-P-R-X P-P-P-P
2 R-X-X-X X-X-X-X R-X-X-X
3 R-X-X-X R-X-X-X S-X-X-X
4 R-X-X-X X-X-R-X R-X-X-X
5 R-X-X-X X-X-X-X S-X-X-X
6 R-X-X-X R-X-X-X R-X-X-X
7 R-X-X-X X-X-R-X S-X-X-X
8 R-X-X-X X-X-X-X R-X-X-X
9 R-X-X-X R-X-X-X S-X-X-X
10 R-X-X-X X-X-R-X R-X-X-X
11 X-X-X-X S-X-X-X
12 R-X-X-X R-X-X-X
13 S-X-X-X
14 R-X-X-X

From table 4.1 it is apparent that each round key contains one and only
one SubByte or Rotate-SubByte-XOR operation, the rest of the operations are
XORs. By directing the correct input to the correct module each round, the
current roundkey can be properly generated.

37

key_in

key_out

f1 f2 f3 f4

K

Figure 4.4: Key expansion

It is apparent from table 4.1 that it possible to use four functional units f(a, b)
to map this representation to hardware, as shown in figure 4.4. The leftmost unit
needs to be capable of rotate-sub-rcon-mode, while the three others only needs
to support XOR and pass-through. With an iterative 4-cycle generation of keys
it is also possible to make do with only one common module, but to keep the
possibility of modifying the structure to fit a one key per cycle we opted to keep
using four modules. To further simplify the logic, the initial round does not need
to pass through the functional units, and can be passed directly to the output.
The register K in figure 4.4 contains the current round key, and through a cycle of
four rounds calculates the consecutive-words, iteratively overwriting the previous
word. Whenever the last word is written to the input register, the data in the
input register is sent to the output together with the round counter.

Three counters are needed for the control logic, to represent the current round,
the position in the Nk-word array and to represent the number of Nk-word strings
processed. Furthermore the control logic must set the correct inputs and outputs
to the functional modules each cycle. For AES-128 this corresponds to a direct
1-to-1 mapping between the outputs and inputs. AES-192 requires some more
modification, by mapping inputs and outputs as shown in figure 4.4 by the dotted
lines. In 256 bit mode the key expansion proceeds similarly as AES-128, but the
the key is split in two 128-bit chunks. The first chunk is processed with the same

38

logic as AES-128, while the second chunk replaces the RSR-operation with an
S-box substitution instead. In figure 4.4 the AES-256 data-path is represented
by the dashed lines.

4.4 Key Registers
The basic key register module covers the roundkey selection function and consists
of a 128x15 bit register, one for each round key. According to the AES standard
[1] it is possible to modify the decryption algorithm to perform the necessary
operations in the same order as for encryption. This is accomplished by modifying
the key scheduling routine with the addition of a conditional inverse MixColumns
operation on the given roundkey.

In the AES standard, the decryption and encryption operation the order of
operations differ, however it is mentioned that by modifying the key scheduling
routine To be able to use the same hardware structure for decryption and encryp-
tion operation as mentioned by [1] a conditional inverse MixColumns module is
connected to each of the outputs.

4.5 Core Interconnect
To cover the functions involved in input and output to the system, in addition to
the AddRoundKey function, the proposed system uses a module which is named
core_interconnect. This module covers everything between the state-module, the
key registers and the s-box.

4.6 S-Box
Figures 4.5 and 4.6 show the basic structure for the unmasked s-box implemen-
tations. These were created to serve as a reference for performance and area
compared to the implementations using secret sharing. The A−1 and A blocks
represent the inverse affine and affine transformations as specified by the AES
standard. I and I−1 are the isomorphisms converting the standard binary rep-
resentation of AES to and from the polynomial or normal basis representations.
The modules located between the I modules form the GF(28) inverter, which
consists of a GF(24) square-scaler module (N ⊗ x2), two pipeline registers (gray
bars), a GF(24) inverter (x−1) and three multipliers (⊗). Addition (⊕) is simply
a bitwise xor of the incoming signals. Thin arrows represent 4 bit signals while
bold arrows represent 8 bits. The following subsections will elaborate on these
modules in more detail.

39

N ⊗ x2

x−1

i_encrypt i_encrypt

A−1 AI I−1

Figure 4.5: Structure of suggested non-masked polynomial basis S-box imple-
mentation

N ⊗ x2

x−1

i_encrypt i_encrypt

A−1 AI I−1

Figure 4.6: Structure of suggested non-masked normal basis S-box implementa-
tion

4.6.1 Affine Transformation and Isomorphism
For implementation of the affine transformation and the isomorphism two possible
approaches were considered. One would be to combine the two transforms - in
an encryption- or decryption only system this would be the most efficient, as it
saves area as only two transforms are needed; one at the input and one at the
output of the multiplicative inverse module. For the dual-mode system however,
the choice of representation is not as clear. A combination of the two modules
on for example the input, would require a mux and another transform module
only including the isomorphism for encryption mode as well. The isomorphisms
used are given in appendix, normal and polynomial basis representations require
different isomorphisms.

4.6.2 Notation in Normal and Polynomial Basis Calcula-
tions

In the following sections, the mathematical derivation on some of the modules
will be shown, and thus some explanation of the notation is necessary. Greek
lowercase letters, γ, δ represents numbers in GF(24), Greek uppercase letters,
Γ and ∆ represent numbers in GF(22) and Latin lowercase letters represents

40

individual bits in GF(2). z represents the position of the upper two bits in
GF(24) for polynomial basis, equivalently in normal basis this is represented by
Z4. The lower two bits in polynomial basis are without such notation, while in
normal basis Z is used. ω represents the position of the upper bit in GF(22).

4.6.3 GF(24) Square-Scaler
The square scaler modules perform scaling by a factor ν in GF(24) a squaring
of the result, and is optimized by creating a dedicated fixed multiplier module
combined with a squarer.

Polynomial Basis

In general, for squaring and multiplication by a constant in a polynomial exten-
sion field GF(28)/GF(24) represented by r(y) = y2 + τy + ν with τ = 1, we have
the following:

ν ⊗ γ2 =ν ⊗ (Γ1z + Γ0) ⊗ (Γ1z + Γ0)
=ν ⊗ (Γ2

1z + Γ2
0 + NΓ2

1)
=(∆1z + ∆0) ⊗ (Γ2

1z + Γ2
0 + NΓ2

1)
(4.2)

Equation 4.2 becomes less complex if ∆0 of ν is set equal to zero (It is not possible
to set ∆1 to zero as this would lead to a reducible polynomial). Furthermore,
N ̸= 0, 1 since this would lead to an irreducible polynomial over GF(22) Thus
we have the option of selecting N = ω or N2 = ω. Note here that this implies
N2 = N + 1. Selecting N = ω and replacing ∆1z in ν by N2z:

ν ⊗ γ2 =N2z ⊗ (Γ2
1z + Γ2

0 + N ⊗ Γ2
1)

=(N2 ⊗ (Γ2
1 + Γ2

0 + N2Γ2
0))z + Γ2

1

=((N2 + 1) ⊗ Γ2
1 + N2 ⊗ Γ2

0)z + γ2
1

=(NΓ2
1 + N2Γ2

0)z + Γ2
1

(4.3)

To realize the structure in equation 4.3 it is necessary to calculate multiplications
by N and N2 respectively in addition to the squaring of the higher and lower
bits.

Γ2 =(aω + b)2 = aω + (a + b)
NΓ2 =ω(aω + (a + b)) = a(ω + 1) + aω + bω = bω + a

N2Γ2 =ω2(aω + (a + b)) = (a + b)ω + b

(4.4)

41

Inserting 4.4 into 4.3, the Algebraic Normal Form (ANF) for the polynomial
square scaler becomes

b′3 =b2 ⊕ b1 ⊕ b0

b′2 =b3 ⊕ b0

b′1 =b3

b′0 =b3 ⊕ b2

(4.5)

b3

b2

b1

b0

b′
3

b′
2

b′
1

b′
0

Figure 4.7: Polynomial Basis Square-Scaler

Normal Basis

Note that in polynomial basis (Z4)Z = N and T = Z4 + Z.

ν ⊗ γ2 =ν ⊗ {(Γ1Z4 + Γ0Z) ⊗ (Γ1Z4 + Γ0Z)}
=ν ⊗ {Γ2

1(Z4)2 + Γ2
0(Z)2}

=ν ⊗ {Γ2
1Z + Γ2

1N + Γ2
0Z + Γ2

0N}
=(∆1Z4 + ∆0Z) ⊗ {(Γ2

1 + N ⊗ (Γ2
1 + Γ2

0))Z4+
(Γ2

0 + N ⊗ (Γ2
1 + Γ2

0))Z}
=∆1(Z4 + N)(Γ2

1 + N ⊗ (Γ2
1 + Γ2

0)) + ∆1N(Γ2
0 + N ⊗ (Γ1 + Γ2

0))
+∆0(Z + N)(Γ2

0 + N ⊗ (Γ2
1 + Γ2

0)) + ∆0N(Γ2
1 + N ⊗ (Γ1 + Γ2

0))
={(∆1 + N∆0)Γ2

1 + N∆0 ⊗ Γ2
0}Z4+

{(∆0 + N∆1)Γ2
0 + N∆1 ⊗ Γ2

1}Z

(4.6)

Assuming1 that Bilgin et al.[8] used N = ω2 for the given formulas 4.17 and
4.13, and suggested as a convenient N by Canright [12] the higher bits of ν, ∆1
is equal to {00} and disappears, thus the above simplifies to

(N∆0Γ2
1 + N∆0Γ2

0)Z4 + ∆0Γ2
0Z =

(N3Γ2
1 + N3Γ2

0)Z4 + N2Γ2
0 =

(Γ1 + Γ0)2Z4 + N2Γ2
0Z

(4.7)

1Simulation verified this assumption to be correct.

42

Equation 4.7 shows that the square scaling module can be represented by addition
of the upper and lower bits followed by a squaring module for the high output
bits. The low output bits are equal to the low input bits multiplied by N and
squared. From section 2.4.4 we have that squaring in Normal basis equals a
rotation of the elements, thus for the two bits in equation 4.7 it equals a bit swap
and can be implemented for free in the circuit. From 4.7 we have that the lower
two bits equal N2Γ2

0, where N = ω2. Name the two bits a and b and note that
(aω2 + bω)2 = bω2 + aω, the expression then simplifies to

N2Γ2
0 =ω(bω2 + aω) = bω3 + aω2

=(a + b)ω2 + bω
(4.8)

The ANF for the square scaler thus equals the formula given in 4.9 and as shown
in figure 4.8.

b′
3 =b2 ⊕ b0

b′
2 =b3 ⊕ b1

b′
1 =b1 ⊕ b0

b′
0 =b0

(4.9)

b3

b2

b1

b0

b′
3

b′
2

b′
1

b′
0

Figure 4.8: Normal Basis Square-Scaler

4.6.4 GF(24) Multiplier
Polynomial Basis

The following shows how to find the representation for the product of two numbers
over GF(24) in polynomial basis:

γδ =(∆1z + ∆0) ⊗ (Γ1z + Γ0)
=Γ1∆1z2 + Γ1∆0z + Γ0∆1z + Γ0∆0

=(Γ1∆1 + Γ1∆0 + Γ0∆1)z + (Γ0∆0 + NΓ1∆1)
(4.10)

43

Then for the operations in GF(22) we have

Γ∆ = (aω + b) ⊗ (cω + d) = ac(ω + 1) + adω + bcω + bd

= (ac + ad + bc)ω + (ac + bd)
NΓ∆ = (ac + ad + bc)(ω + 1) + (ac + bd)ω

= (ad + bc + bd)ω + (ac + ad + bc)

(4.11)

Inserting 4.11 into 4.10 and solving for the individual bits we get the ANF for
the multiplier as follows:

(Z3, Z2, Z1, Z0) =(X3, X2, X1, X0) ⊗ (Y3, Y2, Y1, Y0)
Z3 =X3Y3 ⊕ X3Y2 ⊕ X3Y1 ⊕ X3Y0 ⊕ X2Y3 ⊕ X2Y1

⊕ X1Y3 ⊕ X1Y2 ⊕ X0Y3

Z2 =X3Y3 ⊕ X3Y1 ⊕ X2Y2 ⊕ X2Y0 ⊕ X1Y3 ⊕ X0Y2

Z1 =X3Y2 ⊕ X2Y3 ⊕ X2Y2 ⊕ X1Y1 ⊕ X1Y0 ⊕ X0Y1

Z0 =X3Y3 ⊕ X3Y2 ⊕ X2Y3 ⊕ X1Y1 ⊕ X0Y0

(4.12)

Normal Basis

For the normal basis, the structure suggested by Bilgin[6] was used, its ANF is
given in equation 4.13

Z3 =X3Y3 ⊕ X1Y3 ⊕ X0Y3 ⊕ X2Y2 ⊕ X1Y2 ⊕ X3Y1 ⊕ X2Y1 ⊕ X1Y1 ⊕ X0Y1⊕
X3Y0 ⊕ X1Y0

Z2 =X2Y3 ⊕ X1Y3 ⊕ X3Y2 ⊕ X2Y2 ⊕ X0Y2 ⊕ X3Y1 ⊕ X1Y1 ⊕ X2Y0 ⊕ X0Y0

Z1 =X3Y3 ⊕ X2Y3 ⊕ X1Y3 ⊕ X0Y3 ⊕ X3Y2 ⊕ X1Y2 ⊕ X3Y1 ⊕ X2Y1 ⊕ X1Y1⊕
X3Y0 ⊕ X0Y0

Z0 =X3Y3 ⊕ X1Y3 ⊕ X2Y2 ⊕ X0Y2 ⊕ X3Y1 ⊕ X0Y1 ⊕ X2Y0 ⊕ X1Y0 ⊕ X0Y0
(4.13)

4.6.5 GF(24) Inverter
The two first implementations of the GF(24) inverters presented here serves as
reference for the following masked implementations.

Polynomial Basis

The method for deducing the GF(24) inverter proceeds similarly as to the polyno-
mial GF(28) inverter described in section 2.4.4, with the trace over GF(24)/GF(22)
= T = 1 and the norm, N = ω.

44

γδ =(Γ1z + Γ0)(∆1z + ∆0) = 0z + 1
⇒

∆1 =(Γ2
1N + Γ1Γ0 + Γ2

0)−1Γ1

∆0 =(Γ2
1N + Γ1Γ0 + Γ2

0)−1(Γ0 + Γ1)

(4.14)

We then proceed by finding the inverse in GF(22)

Γ∆ =(g1ω + g0)(d1ω + d0) = 0ω + 1
⇒

d1 =(g2
1 + g1g0 + g2

0)−1g1

d0 =(g2
1 + g1g0 + g2

0)−1(g1 + g0)

(4.15)

in GF(2), an inversion is simply a flip of bit, which again is the same as squaring.
Considering this and combine the equations above we get the following ANF for
the GF(24) inverter:

(Y3, Y2, Y1, Y0) =Inv(X3, X2, X1, X0)
Y3 =X3 ⊕ X2 ⊕ X3X0 ⊕ X3X2X1

Y2 =X2 ⊕ X3X0 ⊕ X2X1 ⊕ X3X2X0 ⊕ X3X2X1

Y1 =X3 ⊕ X2 ⊕ X1 ⊕ X2X0 ⊕ X3X1X0 ⊕ X3X2X1

Y0 =X2 ⊕ X1 ⊕ X0 ⊕ X2X1 ⊕ X3X0 ⊕ X3X1

⊕X2X1X0 ⊕ X3X1X0 ⊕ X3X2X0 ⊕ X3X2X1

(4.16)

Normal Basis

For the normal basis implementation, the proposed structure by Bilgin et al. [6]
was used. its functionality in ANF given in equation 4.17.

(Y3, Y2, Y1, Y0) =Inv(X3, X2, X1, X0)
Y3 =X1 ⊕ X0 ⊕ X3X1 ⊕ X2X1 ⊕ X2X1X0

Y2 =X0 ⊕ X3X1 ⊕ X2X1 ⊕ X2X0 ⊕ X3X1X0

Y1 =X3 ⊕ X2 ⊕ X3X1 ⊕ X3X0 ⊕ X3X2X0

Y0 =X2 ⊕ X3X1 ⊕ X3X0 ⊕ X2X0 ⊕ X3X2X1

(4.17)

According to [7] both the aforementioned implementations belong to the same
class of substitution boxes and can be shared without decomposition using a 5-
input 5-output sharing scheme.

45

4.7 ShiftRows
The operations in ShiftRows and inverse ShiftRows only involves a transposition
of elements in the state and it can be implemented by wiring, i.e. without any
cost penalty. However, combining these into one module requires the addition of
a multiplexer to select which wires are used in the respective operations.

4.8 MixColumns
Operation in the MixColumns module is based on polynomial multiplication on
columns of the state. As shown earlier, the multiplication in the MixColumns
module only involves factors 2 and 3. A multiplication by two in the Galois
field is equivalent to a left shift of one bit and a conditional addition of the root
of the characteristic field-polynomial. The inverse MixColumns module how-
ever requires multiplications by 9, 11, 13 and 15 complicating matters substan-
tially. Initially, the inverse module was implemented using a look-up table for
the multiplication operations, however this gave very little control over the ac-
tual arcitechture deduced by the synthesis tool. Zhang [36] proposed a more
efficient VLSI-architecture that enabled a combination of MixColumns and in-
verse MixColumns into one module and by utilizing substructure sharing only
the multiplications by 2 and 4 are needed.

For MixColumns we have:

S′
0 = {02} ⊗ (S0 ⊕ S1) ⊕ (S2 ⊕ S3) ⊕ S1

S′
1 = {02} ⊗ (S1 ⊕ S2) ⊕ (S3 ⊕ S0) ⊕ S2

S′
2 = {02} ⊗ (S2 ⊕ S3) ⊕ (S0 ⊕ S1) ⊕ S3

S′
3 = {02} ⊗ (S3 ⊕ S0) ⊕ (S1 ⊕ S2) ⊕ S0

(4.18)

46

and for inverse MixColumns:

S′
0 =({02} ⊗ (S0 ⊕ S1) ⊕ (S2 ⊕ S3) ⊕ S1)

⊕({02} ⊗ ({04} ⊗ (S0 ⊕ S2) ⊕ {04} ⊗ (S1 ⊕ S3))
⊕{04} ⊗ (S0 ⊕ S2))

S′
1 =({02} ⊗ (S1 ⊕ S2) ⊕ (S3 ⊕ S0) ⊕ S2)

⊕({02} ⊗ ({04} ⊗ (S0 ⊕ S2) ⊕ {04} ⊗ (S1 ⊕ S3))
⊕{04} ⊗ (S1 ⊕ S3))

S′
2 =({02} ⊗ (S2 ⊕ S3) ⊕ (S0 ⊕ S1) ⊕ S3)

⊕({02} ⊗ ({04} ⊗ (S0 ⊕ S2) ⊕ {04} ⊗ (S1 ⊕ S3))
⊕{04} ⊗ (S0 ⊕ S2))

S′
3 =({02} ⊗ (S3 ⊕ S0) ⊕ (S1 ⊕ S2) ⊕ S0)

⊕({02} ⊗ ({04} ⊗ (S0 ⊕ S2) ⊕ {04} ⊗ (S1 ⊕ S3))
⊕{04} ⊗ (S1 ⊕ S3))

(4.19)

As can be seen from the formulas above, MixColumns constitutes the first part
of the inverse MixColumns module. During AES operation these two modules
are never processing data simultaneously and can be combined into one module
with a conditional output.

Multiplication by two in the GF(28) field is given by

{02} ⊗ S = xS =s7x8 + s6x7 + s5x6 + s4x5 + s3x4

+ s2x3 + s1x2 + s0x mod p(x)
(4.20)

p(x) is the root of the polynomial x8 + x4 + x3 + x + 1, i.e. p(x) = x4 + x3 + x + 1
and thus every instance of x8 in the above formula should be replaced by p(x)
yielding

{02} ⊗ S = s6x7 + s5x6 + s4x5 + (s3 + s7)x4

+(s2 + s7)x3 + s1x2 + (s0 + s7)x + s7
(4.21)

Similarily for multiplication by 4:

{04} ⊗ S =x2S = s7x9 + s6x8 + s5x7 + s4x6

+s3x5 + s2x4 + s1x3 + s0x2 mod p(x)
=s5x7 + s4x6 + (s3 + s7)x5 + (s2 + (s6 + s7))x4

+(s1 + s6)x3 + (s0 + s7)x2 + (s6 + s7)x + s6

(4.22)

47

Combining the above calculations leads to the implementation as shown in
figure 4.9.

X2 X2 X2 X2

X2

X4 X4

S0 S1 S2 S3

S′
3 S′

0 S′
1 S′

2

S′
3

S′
0

S′
1

S′
2

mode

Figure 4.9: Modified (Inv)MixColums implementation based on the architecture
proposed by Zhang[36].

48

4.9 Masking

s1 s2 s3

s1

s2

s3

1

0

2 2

3

4 4

5

6

7

S-Box

S1

S2

S3

K1

K2

K3

Figure 4.10: Masking overview of linear components

As stated by formula 3.9, a minimum of two shares is necessary to implement
linear functions securely to prevent a first order DPA attack. Increasing the
number of shares increases the difficulty of a DPA attack exponentially, but
also incurs a large increase in area consumption. Masking schemes require the
addition of a certain amount of cryptographically secure random data. The cost
of implementing such circuitry will also be proportional to the amount of random
bits needed. Therefore, not only the direct cost of our implementation must be
taken into consideration, but a balance between area and need of randomness
must also be considered. In this thesis a 3-share method have been used on all
components in the data-path. This should create resistance against 2nd. order
DPA. Figure 4.10 gives an overview of the linear component masking. Each linear
component in the data-path is duplicated 3 times. S1, S2 and S3 represent the
state registers, each with their own combined mixcolumn-shiftrows module. K1,
K2 and K3 are the shared 15x128 bit round key registers. Round keys arrive at
input 5 and are masked by two random masks at input 4. Similarly, the plaintext

49

arrives at input 1, and is masked upon input by two new random masks arriving
at input 2. When encryption is complete, the three masks are combined to form
the correct ciphertext output at output 3.

The S-box takes a four-share input, and outputs three shares, thus an addi-
tional 128 bit block of random data is necessary at input 6 during each round.
The additional bits needed for re-masking are added at input 7.

N⊗x2

x−1 I−1 AA−1

i_encrypt i_encrypt

I r1
r2

r3

r4r5

r3
r5

r4
r1r2

Figure 4.11: Structure of suggested masked polynomial basis S-box implementa-
tion

N⊗x2

x−1 I−1 AA−1

i_encrypt i_encrypt

I r1
r2

r3

r4r5

r3
r5

r4
r1r2

Figure 4.12: Structure of suggested masked normal basis S-box implementation

Figures 4.12 and 4.11 shows the masked implementations of the normal and
polynomial basis S-boxes respectively. The linear parts, i.e. the affine transfor-
mations and isomorphisms on each end of the inverter and the square scaler, are
implemented by duplicating the non-shared structures with one slight alteration.
The affine transformation modules contains a constant that should only be added
once, thus it is only added to one of the shares.

Sharing of the non-linear parts, the inverted and the multipliers, uses the
uniform sharing functions proposed by Bilgin[6]. For the inverter, a 5-input,
5-output sharing is used, which is the smallest possible uniform sharing for the
inverter without decomposition. Similarly, the multiplier uses a 4-input, 3-output
sharing, again the smallest possible uniform sharing implementation. ANF for
the sharing and their realizations are given in appendix.

Additionally, random bits r1-r5 are applied at the pipeline register in each
stage to ensure that the inputs to the next stage is uniformly distributed.

50

The single byte version of the normal basis S-box used in this thesis was tested
by Bilgin et al. and with 10 million power traces they were still unable to attain
knowledge of the key using DPA-attacks. Our proposed implementation uses 16
of these single byte S-boxes in parallel, which should increase the amount of noise
in the system and further complicating attacks.

4.10 Cipher Block Chaining
The AES-algorithm on its own operates in ECB mode, as mentioned in section
2.5 this is not a secure solution. Cipher-Block Chaining (CBC) is one of the
modes of operation recommended by FIPS[15], and its lightweight structure lend
itself well to our suggested implementation.

Figure 4.13 shows an overview of the entire suggested architecture including
CBC. Note first that we assume that the ciphertext is not secret, and is known
to a possible adversary. To avoid any direct correlation with the plaintext data,
the suggested encryption mode implementation adds the ciphertext to one of the
shares that holds one of the random state-masks, and not the one containing
the original masked data. Similarily, the decryption mode adds the ciphertext
together with the shares prior to outputting the decrypted data. Encryption uses
one 128 bit register to hold the previous ciphertext until a new encryption round
is started. Decryption on the other hand needs an additional register as both
the previous ciphertext cn−1 and the present ciphertext cn needs to be stored in
registers 1 and 2 respectively. Upon completion of one round, cn is shifted into
register 1 and the next ciphertext cn+1 is placed in register 2.

4.11 The Complete Masked Core Architecture
Figure 4.13 gives a complete overview of the proposed masked core architecture
including CBC. s_reg_1 through 3 represent the state registers, mcsr repre-
sents the combined ShiftRows and MixColumn modules and imc represents the
InverseMixColumn used in decryption. Key registers are denoted by k_reg_1
through 3. Control logic and key expansion modules are not shown.

51

s_
re

g_
3

k_
re

g_
1

k_
re

g_
2

k_
re

g_
3

s_
re

g_
1

s1
s2

s3

s1 s2 s3

da
ta

_
ou

t

da
ta

_
in

s_
m

as
k_

1
s_

m
as

k_
2

k_
m

as
k_

1
k_

m
as

k_
2

m
c_

m
od

e

ro
un

d1

ro
un

d1

ro
un

d1

s_
m

as
k_

3im
c

im
c

im
c

m
cs

r

0

re
m

as
k_

bi
ts

de
cr

yp
t

ad
dr

do
ne

s_
re

g_
2

m
cs

r

m
cs

r

cb
c

cb
c_

en
cr

yp
t

iv
ou

t_
ci

ph
er

_
cb

c
in

_
ci

ph
er

cb
c_

en
cr

yp
t

cb
c_

de
cr

yp
t

ou
t_

ci
ph

er
_

cb
c cb
c_

de
cr

yp
t

sb
ox

rk
ey

_
in

Figure 4.13: AES-core implementation

52

Chapter 5

Test Methodology & Results

53

5.1 Software Setup
The various implementations were implemented using SystemVerilog and sim-
ulated with Mentor Graphics Modelsim SE 10.4. For logic synthesis, Synop-
sys DesignCompiler I-2013.12-SP3 for RHEL64 was used in conjunction with
CORE65GPSVT v5.3.6 65nm standard cell library from STMicroelectronics.
Preliminary power results were collected using the report_power feature in De-
sign Compiler, while the chosen architecture was evaluated using vector based,
cycle accurate power analysis using Synopsys PrimeTimePX.

5.2 Simulation
While designing the cryptosystem, the modules have been individually verified,
and the S-box have been exhaustively tested.

During the first phase of testing the complete implementation, the CBC circuit
was disabled letting AES operate in ECB-mode for easier verification. The large
key- and data block size in AES makes exhaustive testing very time consuming.
As such, known input-response vectors provided by NIST[3] were used. These
vectors are constructed in the following way:

• Constant zero key, sequentially flipping each bit in the input data for 128,
192 and 256 bit key-lengths.

• Constant zero input data, sequentially flipping each bit in the key for 128,
192 and 256 bit key-lengths.

One common criteria for implementing secure cryptographic algorithms is the
avalanche effect. Thus a change in one bit of input data or key, should incur a
completely different ciphertext. The random bits for the masks and S-box were
generated using the random number generator in SystemVerilog, regenerating
a new value every cycle. Due to this the supplied vectors should give a good
coverage of the functionality of the algorithm, although corner cases might not
be completely covered.

To improve the coverage further, individual module verification was used for
the submodules. Additionally the step-by-step encryption/decryption from the
AES standard was used to verify correct output at each point during operation.
As large parts of the architecture operates on masked data, it is necessary to
combine the masks to verify the correct output at any given module. This is
accomplished by simply XORing the masked values.

The second phase involved creating a test bench to test correct CBC-operation.
Similarly to the previous method, known input-response vectors from NIST [3]
was used.

54

Both the aforementioned test benches uses SystemVerilog assertion to perform
a check where the output of the circuit is verified towards the vector given in the
input-response file.

No errors were found during simulation indicating correct functionality of our
implementation and that the random bits asserted to mask the internal data does
not affect the end result.

5.3 Synthesis
The circuits were synthesized once with a target frequency of 400MHz1, using
the compile_ultra command in together with no_autoungroup. To prevent DC
from optimizing across hierarchical boundaries the no_autoungroup command is
essential with our proposed masking scheme. The reason for this is that our mask-
ing depends on independent processing of the data shares. Optimizing between
modules could possible cause correlations between data in different shares.

The synthesis results clearly show why recent lightweight implementations of
AES largely use the normal basis representations for calculating the multiplicative
inverse in GF(28). The equivalent polynomial basis implementation uses 16%
larger area, consumes 20% more power and operates at a speed 20MHz slower
than the normal basis implementation. Further testing showed that the normal
basis implementation successfully synthesized and verified for speeds in excess
of 500MHz, still using less area than the polynomial basis implementation. A
summary of these results is shown in table 5.1. Based on these results we decided
to proceed with the normal basis implementation of the system.

Table 5.1: Synthesis Results
Target f Version Area (GE) Dyn. Pwr. Stat. Pwr.
400Mhz Normal (S) 258046 46.56 mW 2.83 mW
400Mhz Normal (N) 53072 12.69 mW 0.92 mW
380Mhz Polynomial (S) 301192 56.13 mW 4.40 mW
400Mhz Polynomial (N) 54369 16.38 mW 1.03 mW
500Mhz Normal (S) 282443 67.22 mW 3.88 mW

The linear modules of our implementation scale linearly with the number of
shares, occupying about 300% of the area of the non-shared version. The S-box
on the other hand is 511% the size of the non-shared version. Considering the
whole architecture, the increased area over the unmasked variant of the circuit is
about 486%.

1Polynomial shared version was re-synthesized with a slightly slower target frequency to
avoid negative slack

55

5.4 Power Analysis
To attain a more accurate power figure during normal operation for the selected
implementation it is necessary to supply the power analysis tool, Synopsys Prime-
time PX, with switching activity for the circuit. Figure 5.1 shows the power trace
for the proposed architecture while encrypting 100 random plaintexts. Note the
low power consumption initially, this is during key expansion. Key expansion is
performed unmasked, thus there is no masking overhead as opposed to the rest
of the algorithm.

0 125 250 375 500 625 750 875 1000
0

0.2

0.4

0.6

0.8

Figure 5.1: Simulated Power Trace from PrimeTime

Primetime also estimated the power consumption of the circuit to be sub-
stantially larger than what was reported by Design Compiler, with an average
dynamic power of 167.9mW and an instantaneous peak power of 725.9 mW.

Table 5.2: Primetime Results
Target f Version Dyn. Pwr. Stat. Pwr.
400Mhz Normal (S) 167.9 mW 3.09 mW

This is likely due to constantly encrypting plaintexts. The avalanche effect in
cryptographic algorithms cause most of the bytes in the state to change between
two rounds, and thus also switching a large percentage of the transistors in the
circuit.

5.5 Performance
Table 5.3 shows an overview of the performance of our proposed circuit at 400
MHz. Due to how clock synchronization is implemented in the proposed im-
plementation there is quite a large overhead of 12 cycles from the theoretical

56

minimum. With a 2-stage pipelined s-box, using 3 cycles per round, AES-128
can theoretically be performed in 33 cycles, with a similar reduction in cycles
for the other modes. Considering this there is still room for optimization of
our control circuitry. On the other hand, a throughput of approximately 1Gb/s
should be sufficient for many applications, considering that this is a relatively
lightweight implementation of AES.

Table 5.3: Performance @400MHz
Mode Cycles/Encryption Throughput
AES-128 42 1.32 Gb/s
AES-192 51 1.13 Gb/s
AES-256 57 0.99 Gb/s

5.6 Security Considerations
The S-box of our implementation is a 16 byte version based on the 1-byte S-box
by Bilgin et al.[6] which has been attacked using DPA and CEPACA-attacks
with more than 10 million power traces. Bilgin et al. did not find any weakness
in the sharing as implemented here. By implementing the S-box as a 16-byte
parallel module should increase the security as the Signal-to-Noise Ratio (SNR)
of the circuit decreases. However we can not rule out that other weaknesses has
been created in the process, this would be a good candidate for further work and
analysis. By using 3 shares in all data path modules throughout the system, the
system should be secure against second order DPA attacks.

5.7 Possible Improvements/Changes
During post synthesis simulations it became apparent that some further work
may be needed on the control logic to improve the robustness of the architecture,
as the clock synchronization causes a 27-30% time-increase for each encryption
compared to the theoretical minimum. Furthermore, due to debugging reasons,
the affine transformation and linear mapping modules of the S-box were kept sep-
arate. Combining these modules could also potentially yield a more area efficient
structure, for example utilizing the exhaustive method proposed by Canright[12].

57

Chapter 6

Conclusion

58

6.1 Summary of Thesis and Results
This thesis propose a masked AES architecture with a 128-bit datapath sup-
porting AES-128, AES-192 and AES-256 with CBC-support. The system has
been synthesized to 65nm technology and verified pre- and post synthesis. Our
proposed implementation should theoretically be able to withstand second order
DPA-attacks with no assumptions on the underlying hardware. Two different
basis representations for the S-boxes were evaluated and as for the unshared
case, the normal basis appears to be the optimal basis resulting in a circuit 20%
smaller, with 20% lower power consumption and more headroom for increasing
the frequency. In preliminary synthesis tests, the proposed circuit is able to
achieve frequencies in excess of 500MHz, in comparison to the polynomial basis
version which is experiencing issues even at 380MHz. Operating at 400 MHz
our implementation achieves a keymode-dependent throughput of 0.99-1.32Gb/s
with an average power consumption of 167.9mW. Compared to the size of the
unmasked version, the suggested implementation occupies 4.86 times the area of
the unmasked version.

6.2 Further Work
Complete verification of our circuit would not be possible without loading it
onto actual hardware, this will be left for future research. In addition some
performance issues were identified that have room for optimization, both low
level datapath logic and control logic.

59

Bibliography

[1] Federal information processing standards publication (FIPS 197). Advanced
Encryption Standard (AES). http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf, 2001.

[2] National Security Agency. Nacsim 5000 tempest fundamentals. http://
cryptome.org/jya/nacsim-5000/nacsim-5000.htm, 1982.

[3] L.E. Bassham III. The advanced encryption standard algorithm validation
suite (AESAVS). National Instistute of Standards and Technology, 2002.
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf.

[4] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosys-
tems. Journal of Cryptology, 4(1):3–72, 1991.

[5] B. Bilgin. Threshold implementations : as countermeasure against higher-
order differential power analysis. PhD thesis, Enschede, May 2015.

[6] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Trade-offs for
threshold implementations illustrated on aes. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, PP(99):1–1, 2015.

[7] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold im-
plementations of all 3×3 and 4×4 s-boxes. In Cryptographic Hardware and
Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 76–91. Springer Berlin Heidelberg, 2012.

[8] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup.
Threshold implementations of small s-boxes. Cryptography and Communi-
cations, 7(1):3–33, 2015.

[9] J. Blömer, J. Guajardo, and V. Krummel. Provably secure masking of aes. In
Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer
Science, pages 69–83. Springer Berlin Heidelberg, 2005.

60

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://cryptome.org/jya/nacsim-5000/nacsim-5000.htm
http://cryptome.org/jya/nacsim-5000/nacsim-5000.htm
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

[10] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of check-
ing cryptographic protocols for faults. In Advances in Cryptology — EU-
ROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages
37–51. Springer Berlin Heidelberg, 1997.

[11] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analy-
sis with a leakage model. In Cryptographic Hardware and Embedded Systems
- CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 16–
29. Springer Berlin Heidelberg, 2004.

[12] D. Canright. A very compact s-box for aes. In in Proceedings of CHES 2005,
ser. LNCS, pages 441–455. Springer-Verlag, 2005.

[13] J. Daemen and V. Rijmen. Aes proposal: Rijndael. http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf, 1998.

[14] J. Daemen and V. Rijmen. Aes and the wide trail design strategy. In Ad-
vances in Cryptology—EUROCRYPT 2002, pages 108–109. Springer, 2002.

[15] M. Dworkin, R.M. Blank, P.D. Gallagher, et al. Recommendation for block
cipher modes of operation: Methods and techniques. In NIST Special Pub-
lication. National Instistute of Standards and Technology, 2001. http:
//csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[16] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A prac-
tical attack on keeloq. In Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 1–18. Springer
Berlin Heidelberg, 2008.

[17] H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order
masking of aes s-box. In Cryptographic Hardware and Embedded Systems
– CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages
95–107. Springer Berlin Heidelberg, 2011.

[18] P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Advances in Cryptology — CRYPTO ’96, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer Berlin
Heidelberg, 1996.

[19] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology—CRYPTO’99, pages 388–397. Springer, 1999.

[20] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential
power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

61

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[21] S. Mangard, N. Pramstaller, and E. Oswald. Successfully attacking masked
aes hardware implementations. In in Proc. Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), Aug. 2005, LNCS 3659, pages 157–
171. Springer, 2005.

[22] M. Matsui and A. Yamagishi. A new method for known plaintext attack of
feal cipher. In Advances in Cryptology — EUROCRYPT’ 92, volume 658 of
Lecture Notes in Computer Science, pages 81–91. Springer Berlin Heidelberg,
1993.

[23] T.S. Messerges. Using second-order power analysis to attack dpa resistant
software. In Cryptographic Hardware and Embedded Systems — CHES 2000,
volume 1965 of Lecture Notes in Computer Science, pages 238–251. Springer
Berlin Heidelberg, 2000.

[24] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the
limits: A very compact and a threshold implementation of aes. In Advances
in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 69–88. Springer Berlin Heidelberg, 2011.

[25] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-
enhanced power analysis collision attack. In Cryptographic Hardware and
Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 125–139. Springer Berlin Heidelberg, 2010.

[26] S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation
of nonlinear functions in the presence of glitches. Journal of Cryptology,
24(2):292–321, 2011.

[27] US Department of Commerce, National Institute of Standards and Tech-
nology. Announcing request for candidate algorithm nominations for the
advanced encryption standard (aes). [Docket No. 970725180-7180-01] RIN
No. 0693-ZA16, 1997. http://csrc.nist.gov/archive/aes/pre-round1/
aes_9709.htm.

[28] C. Paar. Efficient VLSI architectures for bit parallel computation in Galois
fields. VDI-Verlag, 1994.

[29] E. Prouff and T. Roche. Higher-order glitches free implementation of the aes
using secure multi-party computation protocols. In Cryptographic Hardware
and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 63–78. Springer Berlin Heidelberg, 2011.

[30] V. Rijmen. Efficient implementation of the rijndael s-box. Katholieke Uni-
versiteit Leuven, Dept. ESAT. Belgium, 2000.

62

http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm

[31] M. Rivain and E. Prouff. Provably secure higher-order masking of aes. In
Cryptographic Hardware and Embedded Systems, CHES 2010, volume 6225
of Lecture Notes in Computer Science, pages 413–427. Springer Berlin Hei-
delberg, 2010.

[32] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi.
Efficient rijndael encryption implementation with composite field arithmetic.
In Proceedings of the Third International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES ’01, pages 171–184, London, UK, UK,
2001. Springer-Verlag.

[33] B. Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[34] C. E. Shannon. Communication Theory of Secrecy Systems. Bell Systems
Technical Journal, 28:656–715, 1949.

[35] H.C.A. van Tilborg. Encyclopedia of Cryptography and Security. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[36] X.M. Zhang and K.K. Parhi. High-speed vlsi architectures for the aes al-
gorithm. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 12(9):957–967, Sept 2004.

63

Appendix A

A

A.1 Isomorphisms
Equation A.1 and A.2 gives the isomorphism and inverse isomorphism for con-
version from the AES-field to the composite normal field.

1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1

b7
b6
b5
b4
b3
b2
b1
b0

(A.1)

0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

b7
b6
b5
b4
b3
b2
b1
b0

(A.2)

Equation A.3 and A.4 gives the isomorphism and inverse isomorphism for

64

conversion from the AES-field to the composite polynomial field.

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 1

b7
b6
b5
b4
b3
b2
b1
b0

(A.3)

1 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
0 0 1 1 1 1 1 0
1 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 1 1 1 0 1 0 1

b7
b6
b5
b4
b3
b2
b1
b0

(A.4)

A.2 Sharing Schemes

F = XY where
F = F1 ⊕ F2 ⊕ F3

X = X1 ⊕ X2 ⊕ X3 ⊕ X4

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4

F1 = (X2 ⊕ X3 ⊕ X4)(Y2 ⊕ Y3) ⊕ Y4

F2 = ((X1 ⊕ X3)(Y1 ⊕ Y4)) ⊕ X1Y3 ⊕ X4

F3 = ((X2 ⊕ X4)(Y1 ⊕ Y4)) ⊕ X1Y2 ⊕ X4 ⊕ Y4

(A.5)

65

F =XY Z ⊕ XY ⊕ Z

F =F1 ⊕ F2 ⊕ F3 ⊕ F4 ⊕ F5

X =X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ X5

Y =Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5

Z =Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5

F1 =((X2 ⊕ X3 ⊕ X4 ⊕ X5)(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5)(Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5))⊕
((X2 ⊕ X3 ⊕ X4 ⊕ X5)(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5)) ⊕ Z2

F2 =(X1(Y3 ⊕ Y4 ⊕ Y5)(Z3 ⊕ Z4 ⊕ Z5) ⊕ Y1(X3 ⊕ X4 ⊕ X5)(Z3 ⊕ Z4 ⊕ Z5)⊕
Z1(X3 ⊕ X4 ⊕ X5)(Y3 ⊕ Y4 ⊕ Y5) ⊕ X1Y1(Z3 ⊕ Z4 ⊕ Z5)⊕
X1Z1(Y3 ⊕ Y4 ⊕ Y5) ⊕ Y1Z1(X3 ⊕ X4 ⊕ X5) ⊕ X1Y1Z1)⊕
(X1(Y3 ⊕ Y4 ⊕ Y5) ⊕ Y1(X3 ⊕ X4 ⊕ X5) ⊕ X1Y1) ⊕ Z3

F3 =(X1Y1Z2 ⊕ X1Y2Z1 ⊕ X2Y1Z1 ⊕ X1Y2Z2 ⊕ X2Y1Z2 ⊕ X2Y2Z1⊕
X1Y2Z4 ⊕ X2Y1Z4 ⊕ X1Y4Z2 ⊕ X2Y4Z1 ⊕ X4Y1Z2 ⊕ X4Y2Z1⊕
X1Y2Z5 ⊕ X2Y1Z5 ⊕ X1Y5Z2 ⊕ X2Y5Z1 ⊕ X5Y1Z2 ⊕ X5Y2Z1)⊕
(X1Y2 ⊕ Y1X2) ⊕ Z4

F4 =X1Y2Z3 ⊕ X1Y3Z2 ⊕ X2Y1Z3 ⊕ X2Y3Z1 ⊕ X3Y1Z2 ⊕ X3Y2Z1) ⊕ Z5

F5 =Z1
(A.6)

A.3 Inversion in GF(28)

g =γ1y + γ0

d =δ1y + δ0

gd =1 = (γ1y + γ0)(δ1y + δ0) mod (y2 + τy + ν)
=γ1δ1y2 + γ1δ0y + γ0δ1y + γ0δ0 mod (y2 + τy + ν)
=γ1δ1(τy + ν) + y(γ1δ0 + γ0δ1) + γ0δ0

=(γ1δ0 + γ0δ1 + τγ1δ1)y + γ0δ0 + γ1δ1ν

=0y + 1

(A.7)

0 =γ1δ0 + γ0δ1 + γ1δ1τ

1 =γ0δ0 + γ1δ1ν
(A.8)

66

0 =γ1γ0δ0 + (γ2
0 + γ0γ1τ)δ1

γ1 =γ1γ0δ0 + (γ2
1ν)δ1

γ1 =(γ2
0 + γ0γ1τ)δ1 + (γ2

1ν)δ1

γ1 =(γ2
1ν + γ1γ0τ + γ2

0)δ1

γ1δ0 =(γ0 + γ1τ)δ1

(A.9)

⇒ δ1 =(γ2
1 + γ1γ0τ + γ2

0)−1γ1

δ0 =(γ2
1 + γ1γ0τ + γ2

0)−1(γ0 + γ1τ)
(A.10)

A.4 GF(24) Inverter - Masked Realization in Poly-
nomial Basis

S0,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(v1 ⊕ v2 ⊕ v3 ⊕ v4)) ⊕ x1 ⊕ y1

S0,1 =((x0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(z2 ⊕ z3 ⊕ z4))⊕
(x0z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0z0))⊕
(x0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0v0) ⊕ x2 ⊕ y2

S0,2 =(x0y0z1) ⊕ (x0y1z0) ⊕ (x1y0z0) ⊕ (x0y1z1) ⊕ (x1y0z1)⊕
(x1y1z0) ⊕ (x0y1z3) ⊕ (x1y0z3) ⊕ (x0y3z1) ⊕ (x1y3z0)⊕
(x3y0z1) ⊕ (x3y1z0) ⊕ (x0y1z4) ⊕ (x1y0z4) ⊕ (x0y4z1)⊕
(x1y4z0) ⊕ (x4y0z1) ⊕ (x4y1z0) ⊕ ((x0v1) ⊕ (x1v0)) ⊕ x3 ⊕ y3

S0,3 =(x0y1z2) ⊕ (x0y2z1) ⊕ (x1y0z2) ⊕ (x1y2z0) ⊕ (x2y0z1) ⊕ (x2y1z0)⊕
x4 ⊕ y4

S0,4 =x0 ⊕ y0
(A.11)

67

S1,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(v1 ⊕ v2 ⊕ v3 ⊕ v4)) ⊕ y1

S1,1 =((x0(y2 ⊕ y3 ⊕ y4)(v2 ⊕ v3 ⊕ v4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0v0))⊕
((x0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(z2 ⊕ z3 ⊕ z4))⊕
(x0z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0z0))⊕
(y0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0) ⊕ (x0(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0v0) ⊕ y2

S1,2 =(x0y0v1) ⊕ (x0y1v0) ⊕ (x1y0v0) ⊕ (x0y1v1) ⊕ (x1y0v1) ⊕ (x1y1v0)⊕
(x0y1v3) ⊕ (x1y0v3) ⊕ (x0y3v1) ⊕ (x1y3v0) ⊕ (x3y0v1) ⊕ (x3y1v0)⊕
(x0y1v4) ⊕ (x1y0v4) ⊕ (x0y4v1) ⊕ (x1y4v0) ⊕ (x4y0v1) ⊕ (x4y1v0)⊕
(x0y0z1) ⊕ (x0y1z0) ⊕ (x1y0z0) ⊕ (x0y1z1) ⊕ (x1y0z1) ⊕ (x1y1z0)⊕
(x0y1z3) ⊕ (x1y0z3) ⊕ (x0y3z1) ⊕ (x1y3z0) ⊕ (x3y0z1) ⊕ (x3y1z0)⊕
(x0y1z4) ⊕ (x1y0z4) ⊕ (x0y4z1) ⊕ (x1y4z0) ⊕ (x4y0z1) ⊕ (x4y1z0)⊕
((x0v1) ⊕ (x1v0)) ⊕ ((y0z1) ⊕ (y1z0)) ⊕ y3

S1,3 =(x0y1v2) ⊕ (x0y2v1) ⊕ (x1y0v2) ⊕ (x1y2v0) ⊕ (x2y0v1) ⊕ (x2y1v0)⊕
(x0y1z2) ⊕ (x0y2z1) ⊕ (x1y0z2) ⊕ (x1y2z0) ⊕ (x2y0z1) ⊕ (x2y1z0) ⊕ y4

S1,4 =y0
(A.12)

68

S2,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4)) ⊕ x1 ⊕ y1 ⊕ z1

S2,1 =((x0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(z2 ⊕ z3 ⊕ z4))⊕
(x0z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0z0))⊕
((x0(z2 ⊕ z3 ⊕ z4)(v2 ⊕ v3 ⊕ v4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4)) ⊕ (x0z0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0v0))⊕
(y0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0v0) ⊕ x2 ⊕ y2 ⊕ z2

S2,2 =(x0y0z1) ⊕ (x0y1z0) ⊕ (x1y0z0) ⊕ (x0y1z1) ⊕ (x1y0z1) ⊕ (x1y1z0)⊕
(x0y1z3) ⊕ (x1y0z3) ⊕ (x0y3z1) ⊕ (x1y3z0) ⊕ (x3y0z1) ⊕ (x3y1z0)⊕
(x0y1z4) ⊕ (x1y0z4) ⊕ (x0y4z1) ⊕ (x1y4z0) ⊕ (x4y0z1) ⊕ (x4y1z0)⊕
(x0z0v1) ⊕ (x0z1v0) ⊕ (x1z0v0) ⊕ (x0z1v1) ⊕ (x1z0v1) ⊕ (x1z1v0)⊕
(x0z1v3) ⊕ (x1z0v3) ⊕ (x0z3v1) ⊕ (x1z3v0) ⊕ (x3z0v1) ⊕ (x3z1v0)⊕
(x0z1v4) ⊕ (x1z0v4) ⊕ (x0z4v1) ⊕ (x1z4v0) ⊕ (x4z0v1) ⊕ (x4z1v0)⊕
((y0v1) ⊕ (y1v0)) ⊕ x3 ⊕ y3 ⊕ z3

S2,3 =(x0y1z2) ⊕ (x0y2z1) ⊕ (x1y0z2) ⊕ (x1y2z0) ⊕ (x2y0z1) ⊕ (x2y1z0)⊕
(x0z1v2) ⊕ (x0z2v1) ⊕ (x1z0v2) ⊕ (x1z2v0) ⊕ (x2z0v1) ⊕ (x2z1v0)⊕
x4 ⊕ y4 ⊕ z4

S2,4 =x0 ⊕ y0 ⊕ z0
(A.13)

69

S3,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)) ⊕ y1 ⊕ z1 ⊕ v1

S3,1 =((x0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(z2 ⊕ z3 ⊕ z4))⊕
(x0z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0z0))⊕
((x0(y2 ⊕ y3 ⊕ y4)(v2 ⊕ v3 ⊕ v4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0v0))⊕
((x0(z2 ⊕ z3 ⊕ z4)(v2 ⊕ v3 ⊕ v4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4)) ⊕ (x0z0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0v0))⊕
((y0(z2 ⊕ z3 ⊕ z4)(v2 ⊕ v3 ⊕ v4)) ⊕ (z0(y2 ⊕ y3 ⊕ y4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0z0(v2 ⊕ v3 ⊕ v4))⊕
(y0v0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0v0))⊕
(x0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0)⊕
(x0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0v0)⊕
(y0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0) ⊕ y2 ⊕ z2 ⊕ v2

70

S3,2 =(x0y0z1) ⊕ (x0y1z0) ⊕ (x1y0z0) ⊕ (x0y1z1) ⊕ (x1y0z1) ⊕ (x1y1z0)⊕
(x0y1z3) ⊕ (x1y0z3) ⊕ (x0y3z1) ⊕ (x1y3z0) ⊕ (x3y0z1) ⊕ (x3y1z0)⊕
(x0y1z4) ⊕ (x1y0z4) ⊕ (x0y4z1) ⊕ (x1y4z0) ⊕ (x4y0z1) ⊕ (x4y1z0)⊕
(x0y0v1) ⊕ (x0y1v0) ⊕ (x1y0v0) ⊕ (x0y1v1) ⊕ (x1y0v1) ⊕ (x1y1v0)⊕
(x0y1v3) ⊕ (x1y0v3) ⊕ (x0y3v1) ⊕ (x1y3v0) ⊕ (x3y0v1) ⊕ (x3y1v0)⊕
(x0y1v4) ⊕ (x1y0v4) ⊕ (x0y4v1) ⊕ (x1y4v0) ⊕ (x4y0v1) ⊕ (x4y1v0)⊕
(x0z0v1) ⊕ (x0z1v0) ⊕ (x1z0v0) ⊕ (x0z1v1) ⊕ (x1z0v1) ⊕ (x1z1v0)⊕
(x0z1v3) ⊕ (x1z0v3) ⊕ (x0z3v1) ⊕ (x1z3v0) ⊕ (x3z0v1) ⊕ (x3z1v0)⊕
(x0z1v4) ⊕ (x1z0v4) ⊕ (x0z4v1) ⊕ (x1z4v0) ⊕ (x4z0v1) ⊕ (x4z1v0)⊕
(y0z0v1) ⊕ (y0z1v0) ⊕ (y1z0v0) ⊕ (y0z1v1) ⊕ (y1z0v1) ⊕ (y1z1v0)⊕
(y0z1v3) ⊕ (y1z0v3) ⊕ (y0z3v1) ⊕ (y1z3v0) ⊕ (y3z0v1) ⊕ (y3z1v0)⊕
(y0z1v4) ⊕ (y1z0v4) ⊕ (y0z4v1) ⊕ (y1z4v0) ⊕ (y4z0v1) ⊕ (y4z1v0)⊕
((x0z1) ⊕ (x1z0)) ⊕ ((x0v1) ⊕ (x1v0)) ⊕ ((y0z1) ⊕ (y1z0)) ⊕ y3 ⊕ z3 ⊕ v3

S3,3 =(x0y1z2) ⊕ (x0y2z1) ⊕ (x1y0z2) ⊕ (x1y2z0) ⊕ (x2y0z1) ⊕ (x2y1z0)⊕
(x0y1v2) ⊕ (x0y2v1) ⊕ (x1y0v2) ⊕ (x1y2v0) ⊕ (x2y0v1) ⊕ (x2y1v0)⊕
(x0z1v2) ⊕ (x0z2v1) ⊕ (x1z0v2) ⊕ (x1z2v0) ⊕ (x2z0v1) ⊕ (x2z1v0)⊕
(y0z1v2) ⊕ (y0z2v1) ⊕ (y1z0v2) ⊕ (y1z2v0) ⊕ (y2z0v1) ⊕ (y2z1v0)⊕
y4 ⊕ z4 ⊕ v4

S3,4 =y0 ⊕ z0 ⊕ v0
(A.14)

71

A.5 GF(24) Inverter - Masked Realization in Nor-
mal Basis

S0,0 =((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)) ⊕ z1 ⊕ v1

S0,1 =((y0(z2 ⊕ z3 ⊕ z4)(v2 ⊕ v3 ⊕ v4))⊕
(z0(y2 ⊕ y3 ⊕ y4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4))⊕
(y0z0(v2 ⊕ v3 ⊕ v4)) ⊕ (y0v0(z2 ⊕ z3 ⊕ z4))⊕
(z0v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0v0)) ⊕ ((y0(z2 ⊕ z3 ⊕ z4))⊕
(z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0)) ⊕ ((x0(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0)) ⊕ z2 ⊕ v2

S0,2 =((y0z0v1) ⊕ (y0z1v0) ⊕ (y1z0v0) ⊕ (y0z1v1) ⊕ (y1z0v1) ⊕ (y1z1v0)⊕
(y0z1v3) ⊕ (y1z0v3) ⊕ (y0z3v1) ⊕ (y1z3v0) ⊕ (y3z0v1) ⊕ (y3z1v0)⊕
(y0z1v4) ⊕ (y1z0v4) ⊕ (y0z4v1) ⊕ (y1z4v0) ⊕ (y4z0v1) ⊕ (y4z1v0))⊕
((y0z1) ⊕ (y1z0)) ⊕ ((x0z1) ⊕ (x1z0)) ⊕ z3 ⊕ v3

S0,3 =(y0z1v2) ⊕ (y0z2v1) ⊕ (y1z0v2) ⊕ (y1z2v0) ⊕ (y2z0v1) ⊕ (y2z1v0)⊕
z4 ⊕ v4

S0,4 =z0 ⊕ v0
(A.15)

72

S1,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)) ⊕ v1

S1,1 =((x0(z2 ⊕ z3 ⊕ z4)(v2 ⊕ v3 ⊕ v4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4)) ⊕ (x0z0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0v0))⊕
((y0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(y2 ⊕ y3 ⊕ y4)) ⊕ (v0y0))⊕
((y0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0))⊕
((x0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0)) ⊕ v2

S1,2 =((x0z0v1) ⊕ (x0z1v0) ⊕ (x1z0v0) ⊕ (x0z1v1) ⊕ (x1z0v1) ⊕ (x1z1v0)⊕
(x0z1v3) ⊕ (x1z0v3) ⊕ (x0z3v1) ⊕ (x1z3v0) ⊕ (x3z0v1) ⊕ (x3z1v0)⊕
(x0z1v4) ⊕ (x1z0v4) ⊕ (x0z4v1) ⊕ (x1z4v0) ⊕ (x4z0v1) ⊕ (x4z1v0))⊕
((y0v1) ⊕ (y1v0)) ⊕ ((y0z1) ⊕ (y1z0)) ⊕ ((x0z1) ⊕ (x1z0)) ⊕ v3

S1,3 =(x0z1v2) ⊕ (x0z2v1) ⊕ (x1z0v2) ⊕ (x1z2v0) ⊕ (x2z0v1) ⊕ (x2z1v0) ⊕ v4

S1,4 =v0
(A.16)

S2,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)) ⊕ x1 ⊕ y1

S2,1 =((x0(y2 ⊕ y3 ⊕ y4)(v2 ⊕ v3 ⊕ v4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(v2 ⊕ v3 ⊕ v4))⊕
(v0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(v2 ⊕ v3 ⊕ v4))⊕
(x0v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0v0))⊕
((x0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0v0))⊕
((x0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0)) ⊕ x2 ⊕ y2

S2,2 =((x0y0v1) ⊕ (x0y1v0) ⊕ (x1y0v0) ⊕ (x0y1v1) ⊕ (x1y0v1) ⊕ (x1y1v0)⊕
(x0y1v3) ⊕ (x1y0v3) ⊕ (x0y3v1) ⊕ (x1y3v0) ⊕ (x3y0v1) ⊕ (x3y1v0)⊕
(x0y1v4) ⊕ (x1y0v4) ⊕ (x0y4v1) ⊕ (x1y4v0) ⊕ (x4y0v1) ⊕ (x4y1v0))⊕
((x0v1) ⊕ (x1v0)) ⊕ ((x0z1) ⊕ (x1z0)) ⊕ x3 ⊕ y3

S2,3 =(x0y1v2) ⊕ (x0y2v1) ⊕ (x1y0v2) ⊕ (x1y2v0) ⊕ (x2y0v1) ⊕ (x2y1v0) ⊕ x4 ⊕ y4

S2,4 =x0 ⊕ y0
(A.17)

73

S3,0 =((x1 ⊕ x2 ⊕ x3 ⊕ x4)(y1 ⊕ y2 ⊕ y3 ⊕ y4)(z1 ⊕ z2 ⊕ z3 ⊕ z4))⊕
((y1 ⊕ y2 ⊕ y3 ⊕ y4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(v1 ⊕ v2 ⊕ v3 ⊕ v4))⊕
((x1 ⊕ x2 ⊕ x3 ⊕ x4)(z1 ⊕ z2 ⊕ z3 ⊕ z4)) ⊕ y1

S3,1 =((x0(y2 ⊕ y3 ⊕ y4)(z2 ⊕ z3 ⊕ z4)) ⊕ (y0(x2 ⊕ x3 ⊕ x4)(z2 ⊕ z3 ⊕ z4))⊕
(z0(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3 ⊕ y4)) ⊕ (x0y0(z2 ⊕ z3 ⊕ z4))⊕
(x0z0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0y0z0))⊕
((y0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(y2 ⊕ y3 ⊕ y4)) ⊕ (y0v0))⊕
((x0(v2 ⊕ v3 ⊕ v4)) ⊕ (v0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0v0))⊕
((x0(z2 ⊕ z3 ⊕ z4)) ⊕ (z0(x2 ⊕ x3 ⊕ x4)) ⊕ (x0z0)) ⊕ y2

S3,2 =((x0y0z1) ⊕ (x0y1z0) ⊕ (x1y0z0) ⊕ (x0y1z1) ⊕ (x1y0z1) ⊕ (x1y1z0)⊕
(x0y1z3) ⊕ (x1y0z3) ⊕ (x0y3z1) ⊕ (x1y3z0) ⊕ (x3y0z1) ⊕ (x3y1z0)⊕
(x0y1z4) ⊕ (x1y0z4) ⊕ (x0y4z1) ⊕ (x1y4z0) ⊕ (x4y0z1) ⊕ (x4y1z0))⊕
((y0v1) ⊕ (y1v0)) ⊕ ((x0v1) ⊕ (x1v0)) ⊕ ((x0z1) ⊕ (x1z0)) ⊕ y3

S3,3 =(x0y1z2) ⊕ (x0y2z1) ⊕ (x1y0z2) ⊕ (x1y2z0) ⊕ (x2y0z1) ⊕ (x2y1z0) ⊕ y4

S3,4 =y0
(A.18)

74

A.6 GF(24) Multiplier - Masked Realization in
Polynomial Basis

S0,0 =((a1 ⊕ a2 ⊕ a3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((a1 ⊕ a2 ⊕ a3)(y1 ⊕ y2)) ⊕ y3⊕
((a1 ⊕ a2 ⊕ a3)(z1 ⊕ z2)) ⊕ z3 ⊕ ((a1 ⊕ a2 ⊕ a3)(v1 ⊕ v2)) ⊕ v3⊕
((b1 ⊕ b2 ⊕ b3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((b1 ⊕ b2 ⊕ b3)(z1 ⊕ z2)) ⊕ z3⊕
((c1 ⊕ c2 ⊕ c3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((c1 ⊕ c2 ⊕ c3)(y1 ⊕ y2)) ⊕ y3⊕
((d1 ⊕ d2 ⊕ d3)(x1 ⊕ x2)) ⊕ x3

S0,1 =((a0 ⊕ a2)(x0 ⊕ x3)) ⊕ (a0x2) ⊕ a3 ⊕ ((a0 ⊕ a2)(y0 ⊕ y3))⊕
(a0y2) ⊕ a3 ⊕ ((a0 ⊕ a2)(z0 ⊕ z3)) ⊕ (a0z2) ⊕ a3 ⊕ ((a0 ⊕ a2)(v0 ⊕ v3))⊕
(a0v2) ⊕ a3 ⊕ ((b0 ⊕ b2)(x0 ⊕ x3)) ⊕ (b0x2) ⊕ b3 ⊕ ((b0 ⊕ b2)(z0 ⊕ z3))⊕
(b0z2) ⊕ b3 ⊕ ((c0 ⊕ c2)(x0 ⊕ x3)) ⊕ (c0x2) ⊕ c3 ⊕ ((c0 ⊕ c2)(y0 ⊕ y3))⊕
(c0y2) ⊕ c3 ⊕ ((d0 ⊕ d2)(x0 ⊕ x3)) ⊕ (d0x2) ⊕ d3

S0,2 =((a1 ⊕ a3)(x0 ⊕ x3)) ⊕ (a0x1) ⊕ a3 ⊕ x3 ⊕ ((a1 ⊕ a3)(y0 ⊕ y3))⊕
(a0y1) ⊕ a3 ⊕ y3 ⊕ ((a1 ⊕ a3)(z0 ⊕ z3)) ⊕ (a0z1) ⊕ a3 ⊕ z3⊕
((a1 ⊕ a3)(v0 ⊕ v3)) ⊕ (a0v1) ⊕ a3 ⊕ v3 ⊕ ((b1 ⊕ b3)(x0 ⊕ x3))⊕
(b0x1) ⊕ b3 ⊕ x3 ⊕ ((b1 ⊕ b3)(z0 ⊕ z3)) ⊕ (b0z1) ⊕ b3 ⊕ z3⊕
((c1 ⊕ c3)(x0 ⊕ x3)) ⊕ (c0x1) ⊕ c3 ⊕ x3 ⊕ ((c1 ⊕ c3)(y0 ⊕ y3))⊕
(c0y1) ⊕ c3 ⊕ y3 ⊕ ((d1 ⊕ d3)(x0 ⊕ x3)) ⊕ (d0x1) ⊕ d3 ⊕ x3

(A.19)

S1,0 =((a1 ⊕ a2 ⊕ a3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((a1 ⊕ a2 ⊕ a3)(z1 ⊕ z2)) ⊕ z3⊕
((b1 ⊕ b2 ⊕ b3)(y1 ⊕ y2)) ⊕ y3 ⊕ ((b1 ⊕ b2 ⊕ b3)(v1 ⊕ v2)) ⊕ v3⊕
((c1 ⊕ c2 ⊕ c3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((d1 ⊕ d2 ⊕ d3)(y1 ⊕ y2)) ⊕ y3

S1,1 =((a0 ⊕ a2)(x0 ⊕ x3)) ⊕ (a0x2) ⊕ a3 ⊕ ((a0 ⊕ a2)(z0 ⊕ z3)) ⊕ (a0z2) ⊕ a3⊕
((b0 ⊕ b2)(y0 ⊕ y3)) ⊕ (b0y2) ⊕ b3 ⊕ ((b0 ⊕ b2)(v0 ⊕ v3)) ⊕ (b0v2) ⊕ b3⊕
((c0 ⊕ c2)(x0 ⊕ x3)) ⊕ (c0x2) ⊕ c3 ⊕ ((d0 ⊕ d2)(y0 ⊕ y3)) ⊕ (d0y2) ⊕ d3

S1,2 =((a1 ⊕ a3)(x0 ⊕ x3)) ⊕ (a0x1) ⊕ a3 ⊕ x3 ⊕ ((a1 ⊕ a3)(z0 ⊕ z3)) ⊕ (a0z1) ⊕ a3 ⊕ z3⊕
((b1 ⊕ b3)(y0 ⊕ y3)) ⊕ (b0y1) ⊕ b3 ⊕ y3 ⊕ ((b1 ⊕ b3)(v0 ⊕ v3)) ⊕ (b0v1) ⊕ b3 ⊕ v3⊕
((c1 ⊕ c3)(x0 ⊕ x3)) ⊕ (c0x1) ⊕ c3 ⊕ x3 ⊕ ((d1 ⊕ d3)(y0 ⊕ y3)) ⊕ (d0y1) ⊕ d3 ⊕ y3

(A.20)

75

S2,0 =((a1 ⊕ a2 ⊕ a3)(y1 ⊕ y2)) ⊕ y3 ⊕ ((b1 ⊕ b2 ⊕ b3)(x1 ⊕ x2)) ⊕ x3⊕
((b1 ⊕ b2 ⊕ b3)(y1 ⊕ y2)) ⊕ y3 ⊕ ((c1 ⊕ c2 ⊕ c3)(z1 ⊕ z2)) ⊕ z3⊕
((c1 ⊕ c2 ⊕ c3)(v1 ⊕ v2)) ⊕ v3 ⊕ ((d1 ⊕ d2 ⊕ d3)(z1 ⊕ z2)) ⊕ z3

S2,1 =((a0 ⊕ a2)(y0 ⊕ y3)) ⊕ (a0y2) ⊕ a3 ⊕ ((b0 ⊕ b2)(x0 ⊕ x3)) ⊕ (b0x2) ⊕ b3⊕
((b0 ⊕ b2)(y0 ⊕ y3)) ⊕ (b0y2) ⊕ b3 ⊕ ((c0 ⊕ c2)(z0 ⊕ z3)) ⊕ (c0z2) ⊕ c3⊕
((c0 ⊕ c2)(v0 ⊕ v3)) ⊕ (c0v2) ⊕ c3 ⊕ ((d0 ⊕ d2)(z0 ⊕ z3)) ⊕ (d0z2) ⊕ d3

S2,2 =((a1 ⊕ a3)(y0 ⊕ y3)) ⊕ (a0y1) ⊕ a3 ⊕ y3 ⊕ ((b1 ⊕ b3)(x0 ⊕ x3)) ⊕ (b0x1) ⊕ b3 ⊕ x3⊕
((b1 ⊕ b3)(y0 ⊕ y3)) ⊕ (b0y1) ⊕ b3 ⊕ y3 ⊕ ((c1 ⊕ c3)(z0 ⊕ z3)) ⊕ (c0z1) ⊕ c3 ⊕ z3⊕
((c1 ⊕ c3)(v0 ⊕ v3)) ⊕ (c0v1) ⊕ c3 ⊕ v3 ⊕ ((d1 ⊕ d3)(z0 ⊕ z3)) ⊕ (d0z1) ⊕ d3 ⊕ z3

(A.21)

S3,0 =((a1 ⊕ a2 ⊕ a3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((a1 ⊕ a2 ⊕ a3)(y1 ⊕ y2)) ⊕ y3⊕
((b1 ⊕ b2 ⊕ b3)(x1 ⊕ x2)) ⊕ x3 ⊕ ((c1 ⊕ c2 ⊕ c3)(z1 ⊕ z2)) ⊕ z3⊕
((d1 ⊕ d2 ⊕ d3)(v1 ⊕ v2)) ⊕ v3

S3,1 =((a0 ⊕ a2)(x0 ⊕ x3)) ⊕ (a0x2) ⊕ a3 ⊕ ((a0 ⊕ a2)(y0 ⊕ y3)) ⊕ (a0y2) ⊕ a3⊕
((b0 ⊕ b2)(x0 ⊕ x3)) ⊕ (b0x2) ⊕ b3 ⊕ ((c0 ⊕ c2)(z0 ⊕ z3)) ⊕ (c0z2) ⊕ c3⊕
((d0 ⊕ d2)(v0 ⊕ v3)) ⊕ (d0v2) ⊕ d3

S3,2 =((a1 ⊕ a3)(x0 ⊕ x3)) ⊕ (a0x1) ⊕ a3 ⊕ x3 ⊕ ((a1 ⊕ a3)(y0 ⊕ y3)) ⊕ (a0y1) ⊕ a3 ⊕ y3⊕
((b1 ⊕ b3)(x0 ⊕ x3)) ⊕ (b0x1) ⊕ b3 ⊕ x3 ⊕ ((c1 ⊕ c3)(z0 ⊕ z3)) ⊕ (c0z1) ⊕ c3 ⊕ z3⊕
((d1 ⊕ d3)(v0 ⊕ v3)) ⊕ (d0v1) ⊕ d3 ⊕ v3

(A.22)

76

A.7 GF(24) Multiplier - Masked Realization in
Normal Basis

S0,0 =(((a1 ⊕ a2 ⊕ a3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((c1 ⊕ c2 ⊕ c3)(e1 ⊕ e2)) ⊕ e3)⊕
(((d1 ⊕ d2 ⊕ d3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((b1 ⊕ b2 ⊕ b3)(f1 ⊕ f2)) ⊕ f3)⊕
(((c1 ⊕ c2 ⊕ c3)(f1 ⊕ f2)) ⊕ f3) ⊕ (((a1 ⊕ a2 ⊕ a3)(g1 ⊕ g2)) ⊕ g3)⊕
(((b1 ⊕ b2 ⊕ b3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((c1 ⊕ c2 ⊕ c3)(g1 ⊕ g2)) ⊕ g3)⊕
(((d1 ⊕ d2 ⊕ d3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((a1 ⊕ a2 ⊕ a3)(h1 ⊕ h2)) ⊕ h3)⊕
(((c1 ⊕ c2 ⊕ c3)(h1 ⊕ h2)) ⊕ h3)

S0,1 =(((a0 ⊕ a2)(e0 ⊕ e3)) ⊕ (a0e2) ⊕ a3) ⊕ (((c0 ⊕ c2)(e0 ⊕ e3)) ⊕ (c0e2) ⊕ c3)⊕
(((d0 ⊕ d2)(e0 ⊕ e3)) ⊕ (d0e2) ⊕ d3) ⊕ (((b0 ⊕ b2)(f0 ⊕ f3)) ⊕ (b0f2) ⊕ b3)⊕
(((c0 ⊕ c2)(f0 ⊕ f3)) ⊕ (c0f2) ⊕ c3) ⊕ (((a0 ⊕ a2)(g0 ⊕ g3)) ⊕ (a0g2) ⊕ a3)⊕
(((b0 ⊕ b2)(g0 ⊕ g3)) ⊕ (b0g2) ⊕ b3) ⊕ (((c0 ⊕ c2)(g0 ⊕ g3)) ⊕ (c0g2) ⊕ c3)⊕
(((d0 ⊕ d2)(g0 ⊕ g3)) ⊕ (d0g2) ⊕ d3) ⊕ (((a0 ⊕ a2)(h0 ⊕ h3)) ⊕ (a0h2) ⊕ a3)⊕
(((c0 ⊕ c2)(h0 ⊕ h3)) ⊕ (c0h2) ⊕ c3)

S0,2 =(((a1 ⊕ a3)(e0 ⊕ e3)) ⊕ (a0e1) ⊕ a3 ⊕ e3)⊕
(((c1 ⊕ c3)(e0 ⊕ e3)) ⊕ (c0e1) ⊕ c3 ⊕ e3)⊕
(((d1 ⊕ d3)(e0 ⊕ e3)) ⊕ (d0e1) ⊕ d3 ⊕ e3)⊕
(((b1 ⊕ b3)(f0 ⊕ f3)) ⊕ (b0f1) ⊕ b3 ⊕ f3)⊕
(((c1 ⊕ c3)(f0 ⊕ f3)) ⊕ (c0f1) ⊕ c3 ⊕ f3)⊕
(((a1 ⊕ a3)(g0 ⊕ g3)) ⊕ (a0g1) ⊕ a3 ⊕ g3)⊕
(((b1 ⊕ b3)(g0 ⊕ g3)) ⊕ (b0g1) ⊕ b3 ⊕ g3)⊕
(((c1 ⊕ c3)(g0 ⊕ g3)) ⊕ (c0g1) ⊕ c3 ⊕ g3)⊕
(((d1 ⊕ d3)(g0 ⊕ g3)) ⊕ (d0g1) ⊕ d3 ⊕ g3)⊕
(((a1 ⊕ a3)(h0 ⊕ h3)) ⊕ (a0h1) ⊕ a3 ⊕ h3)⊕
(((c1 ⊕ c3)(h0 ⊕ h3)) ⊕ (c0h1) ⊕ c3 ⊕ h3)

(A.23)

77

S1,0 =(((b1 ⊕ b2 ⊕ b3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((c1 ⊕ c2 ⊕ c3)(e1 ⊕ e2)) ⊕ e3)⊕
(((a1 ⊕ a2 ⊕ a3)(f1 ⊕ f2)) ⊕ f3) ⊕ (((b1 ⊕ b2 ⊕ b3)(f1 ⊕ f2)) ⊕ f3)⊕
(((d1 ⊕ d2 ⊕ d3)(f1 ⊕ f2)) ⊕ f3) ⊕ (((a1 ⊕ a2 ⊕ a3)(g1 ⊕ g2)) ⊕ g3)⊕
(((c1 ⊕ c2 ⊕ c3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((b1 ⊕ b2 ⊕ b3)(h1 ⊕ h2)) ⊕ h3)⊕
(((d1 ⊕ d2 ⊕ d3)(h1 ⊕ h2)) ⊕ h3)

S1,1 =(((b0 ⊕ b2)(e0 ⊕ e3)) ⊕ (b0e2) ⊕ b3) ⊕ (((c0 ⊕ c2)(e0 ⊕ e3)) ⊕ (c0e2) ⊕ c3)⊕
(((a0 ⊕ a2)(f0 ⊕ f3)) ⊕ (a0f2) ⊕ a3) ⊕ (((b0 ⊕ b2)(f0 ⊕ f3)) ⊕ (b0f2) ⊕ b3)⊕
(((d0 ⊕ d2)(f0 ⊕ f3)) ⊕ (d0f2) ⊕ d3) ⊕ (((a0 ⊕ a2)(g0 ⊕ g3)) ⊕ (a0g2) ⊕ a3)⊕
(((c0 ⊕ c2)(g0 ⊕ g3)) ⊕ (c0g2) ⊕ c3) ⊕ (((b0 ⊕ b2)(h0 ⊕ h3)) ⊕ (b0h2) ⊕ b3)⊕
(((d0 ⊕ d2)(h0 ⊕ h3)) ⊕ (d0h2) ⊕ d3)

S1,2 =(((b1 ⊕ b3)(e0 ⊕ e3)) ⊕ (b0e1) ⊕ b3 ⊕ e3)⊕
(((c1 ⊕ c3)(e0 ⊕ e3)) ⊕ (c0e1) ⊕ c3 ⊕ e3)⊕
(((a1 ⊕ a3)(f0 ⊕ f3)) ⊕ (a0f1) ⊕ a3 ⊕ f3)⊕
(((b1 ⊕ b3)(f0 ⊕ f3)) ⊕ (b0f1) ⊕ b3 ⊕ f3)⊕
(((d1 ⊕ d3)(f0 ⊕ f3)) ⊕ (d0f1) ⊕ d3 ⊕ f3)⊕
(((a1 ⊕ a3)(g0 ⊕ g3)) ⊕ (a0g1) ⊕ a3 ⊕ g3)⊕
(((c1 ⊕ c3)(g0 ⊕ g3)) ⊕ (c0g1) ⊕ c3 ⊕ g3)⊕
(((b1 ⊕ b3)(h0 ⊕ h3)) ⊕ (b0h1) ⊕ b3 ⊕ h3)⊕
(((d1 ⊕ d3)(h0 ⊕ h3)) ⊕ (d0h1) ⊕ d3 ⊕ h3)

(A.24)

78

S2,0 =(((a1 ⊕ a2 ⊕ a3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((b1 ⊕ b2 ⊕ b3)(e1 ⊕ e2)) ⊕ e3)⊕
(((c1 ⊕ c2 ⊕ c3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((d1 ⊕ d2 ⊕ d3)(e1 ⊕ e2)) ⊕ e3)⊕
(((a1 ⊕ a2 ⊕ a3)(f1 ⊕ f2)) ⊕ f3) ⊕ (((c1 ⊕ c2 ⊕ c3)(f1 ⊕ f2)) ⊕ f3)⊕
(((a1 ⊕ a2 ⊕ a3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((b1 ⊕ b2 ⊕ b3)(g1 ⊕ g2)) ⊕ g3)⊕
(((c1 ⊕ c2 ⊕ c3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((a1 ⊕ a2 ⊕ a3)(h1 ⊕ h2)) ⊕ h3)⊕
(((d1 ⊕ d2 ⊕ d3)(h1 ⊕ h2)) ⊕ h3)

S2,1 =(((a0 ⊕ a2)(e0 ⊕ e3)) ⊕ (a0e2) ⊕ a3) ⊕ (((b0 ⊕ b2)(e0 ⊕ e3)) ⊕ (b0e2) ⊕ b3)⊕
(((c0 ⊕ c2)(e0 ⊕ e3)) ⊕ (c0e2) ⊕ c3) ⊕ (((d0 ⊕ d2)(e0 ⊕ e3)) ⊕ (d0e2) ⊕ d3)⊕
(((a0 ⊕ a2)(f0 ⊕ f3)) ⊕ (a0f2) ⊕ a3) ⊕ (((c0 ⊕ c2)(f0 ⊕ f3)) ⊕ (c0f2) ⊕ c3)⊕
(((a0 ⊕ a2)(g0 ⊕ g3)) ⊕ (a0g2) ⊕ a3) ⊕ (((b0 ⊕ b2)(g0 ⊕ g3)) ⊕ (b0g2) ⊕ b3)⊕
(((c0 ⊕ c2)(g0 ⊕ g3)) ⊕ (c0g2) ⊕ c3) ⊕ (((a0 ⊕ a2)(h0 ⊕ h3)) ⊕ (a0h2) ⊕ a3)⊕
(((d0 ⊕ d2)(h0 ⊕ h3)) ⊕ (d0h2) ⊕ d3)

S2,2 =(((a1 ⊕ a3)(e0 ⊕ e3)) ⊕ (a0e1) ⊕ a3 ⊕ e3)⊕
(((b1 ⊕ b3)(e0 ⊕ e3)) ⊕ (b0e1) ⊕ b3 ⊕ e3)⊕
(((c1 ⊕ c3)(e0 ⊕ e3)) ⊕ (c0e1) ⊕ c3 ⊕ e3)⊕
(((d1 ⊕ d3)(e0 ⊕ e3)) ⊕ (d0e1) ⊕ d3 ⊕ e3)⊕
(((a1 ⊕ a3)(f0 ⊕ f3)) ⊕ (a0f1) ⊕ a3 ⊕ f3)⊕
(((c1 ⊕ c3)(f0 ⊕ f3)) ⊕ (c0f1) ⊕ c3 ⊕ f3)⊕
(((a1 ⊕ a3)(g0 ⊕ g3)) ⊕ (a0g1) ⊕ a3 ⊕ g3)⊕
(((b1 ⊕ b3)(g0 ⊕ g3)) ⊕ (b0g1) ⊕ b3 ⊕ g3)⊕
(((c1 ⊕ c3)(g0 ⊕ g3)) ⊕ (c0g1) ⊕ c3 ⊕ g3)⊕
(((a1 ⊕ a3)(h0 ⊕ h3)) ⊕ (a0h1) ⊕ a3 ⊕ h3)⊕
(((d1 ⊕ d3)(h0 ⊕ h3)) ⊕ (d0h1) ⊕ d3 ⊕ h3)

(A.25)

79

S3,0 =(((a1 ⊕ a2 ⊕ a3)(e1 ⊕ e2)) ⊕ e3) ⊕ (((c1 ⊕ c2 ⊕ c3)(e1 ⊕ e2)) ⊕ e3)⊕
(((b1 ⊕ b2 ⊕ b3)(f1 ⊕ f2)) ⊕ f3) ⊕ (((d1 ⊕ d2 ⊕ d3)(f1 ⊕ f2)) ⊕ f3)⊕
(((a1 ⊕ a2 ⊕ a3)(g1 ⊕ g2)) ⊕ g3) ⊕ (((d1 ⊕ d2 ⊕ d3)(g1 ⊕ g2)) ⊕ g3)⊕
(((b1 ⊕ b2 ⊕ b3)(h1 ⊕ h2)) ⊕ h3) ⊕ (((c1 ⊕ c2 ⊕ c3)(h1 ⊕ h2)) ⊕ h3)⊕
(((d1 ⊕ d2 ⊕ d3)(h1 ⊕ h2)) ⊕ h3)

S3,1 =(((a0 ⊕ a2)(e0 ⊕ e3)) ⊕ (a0e2) ⊕ a3) ⊕ (((c0 ⊕ c2)(e0 ⊕ e3)) ⊕ (c0e2) ⊕ c3)⊕
(((b0 ⊕ b2)(f0 ⊕ f3)) ⊕ (b0f2) ⊕ b3) ⊕ (((d0 ⊕ d2)(f0 ⊕ f3)) ⊕ (d0f2) ⊕ d3)⊕
(((a0 ⊕ a2)(g0 ⊕ g3)) ⊕ (a0g2) ⊕ a3) ⊕ (((d0 ⊕ d2)(g0 ⊕ g3)) ⊕ (d0g2) ⊕ d3)⊕
(((b0 ⊕ b2)(h0 ⊕ h3)) ⊕ (b0h2) ⊕ b3) ⊕ (((c0 ⊕ c2)(h0 ⊕ h3)) ⊕ (c0h2) ⊕ c3)⊕
(((d0 ⊕ d2)(h0 ⊕ h3)) ⊕ (d0h2) ⊕ d3)

S3,2 =(((a1 ⊕ a3)(e0 ⊕ e3)) ⊕ (a0e1) ⊕ a3 ⊕ e3)⊕
(((c1 ⊕ c3)(e0 ⊕ e3)) ⊕ (c0e1) ⊕ c3 ⊕ e3)⊕
(((b1 ⊕ b3)(f0 ⊕ f3)) ⊕ (b0f1) ⊕ b3 ⊕ f3)⊕
(((d1 ⊕ d3)(f0 ⊕ f3)) ⊕ (d0f1) ⊕ d3 ⊕ f3)⊕
(((a1 ⊕ a3)(g0 ⊕ g3)) ⊕ (a0g1) ⊕ a3 ⊕ g3)⊕
(((d1 ⊕ d3)(g0 ⊕ g3)) ⊕ (d0g1) ⊕ d3 ⊕ g3)⊕
(((b1 ⊕ b3)(h0 ⊕ h3)) ⊕ (b0h1) ⊕ b3 ⊕ h3)⊕
(((c1 ⊕ c3)(h0 ⊕ h3)) ⊕ (c0h1) ⊕ c3 ⊕ h3)⊕
(((d1 ⊕ d3)(h0 ⊕ h3)) ⊕ (d0h1) ⊕ d3 ⊕ h3)

(A.26)

80

	Introduction
	Historical Perspective and Motivation
	Thesis Organization

	Advanced Encryption Standard
	Background
	Overview
	Preliminaries
	Standard Conventions
	Finite Fields
	Addition in GF(28)
	Multiplication in GF(28)

	Components and Their Function
	Key Schedule
	AddRoundKey
	SubBytes, S-Box and its Derivation
	Multiplicative Inversion via Isomorphic Mapping
	ShiftRows
	MixColumns

	Modes of Operation

	Differential Power-Analysis
	Background
	Why Does it Work?
	Security of Glitchy Circuits

	Method Explained
	Prevention of DPA
	Protocol Level Countermeasures
	Masking

	Implementation
	Overview of Proposed Unmasked Architecture
	Control Logic Modules
	Clock Divider
	Clock Synchronizer
	Main Control FSM
	Round Counter

	Key Expansion
	Key Registers
	Core Interconnect
	S-Box
	Affine Transformation and Isomorphism
	Notation in Normal and Polynomial Basis Calculations
	GF(24) Square-Scaler
	GF(24) Multiplier
	GF(24) Inverter

	ShiftRows
	MixColumns
	Masking
	Cipher Block Chaining
	The Complete Masked Core Architecture

	Test Methodology & Results
	Software Setup
	Simulation
	Synthesis
	Power Analysis
	Performance
	Security Considerations
	Possible Improvements/Changes

	Conclusion
	Summary of Thesis and Results
	Further Work

	A
	Isomorphisms
	Sharing Schemes
	Inversion in GF(28)
	GF(24) Inverter - Masked Realization in Polynomial Basis
	GF(24) Inverter - Masked Realization in Normal Basis
	GF(24) Multiplier - Masked Realization in Polynomial Basis
	GF(24) Multiplier - Masked Realization in Normal Basis

