
Energy Harvesting for Sensor Nodes in
the Internet of Things

Erick Castillo

Embedded Computing Systems

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Marius Grannæs, Silicon Labs

Department of Electronics and Telecommunications

Submission date: July 2015

Norwegian University of Science and Technology

Energy Harvesting for Sensor

Nodes in the Internet of Things

Erick Alejandro Castillo García

July 2015

MASTER THESIS

Department of Electronics and Telecommunications

Norwegian University of Science and Technology

Supervisor 1: Kjetil Svarstad

Supervisor 2: Marius Grannæs

i

Abstract

Wireless sensor networks have an extensive range of applications in the real world.

From military uses saving lives, to environmental applications monitoring the fauna

and weather conditions, but also by checking the health of patients and even by au-

tomating our homes. This work presents a solution to implement an energy harvesting

sensor network. By using solar energy to power a sensor node we can extend its life-

time beyond the one powered only by batteries. Moreover, this solution attempts to be

energy efficient and to achieve a communication scheme in order to create a sensor

network where nodes read environmental data and transmit back to a sink node. The

communication scheme was successful to synchronize two nodes and transmit pack-

ets between them without collisions and avoiding loss of data due to lack of energy.

Furthermore, the duty cycling algorithm allowed the node to operate at its maximum

performance level, making the best use of its energy available without depleting it.

ii

Contents

Abstract . i

List of Figures . vi

List of Tables . ix

List of Acronyms . xii

1 Introduction 1

1.1 Objectives . 2

1.2 Limitations . 2

1.3 Methodology . 2

1.4 Contributions . 3

1.5 Structure of the Report . 3

2 Theoretical Background 5

2.1 Wireless sensor networks . 5

2.1.1 Commercial applications . 6

2.1.2 Design considerations . 7

iii

iv CONTENTS

2.2 Techniques for energy conservation in wireless sensor networks 8

2.2.1 Duty cycling . 8

2.2.2 Data-driven approaches . 13

2.2.3 Mobility-based approaches . 13

2.3 Energy harvesting in wireless sensor networks 14

2.3.1 Comparison of energy harvesting sources 14

2.3.2 Storage technologies . 15

2.3.3 Energy prediction methods . 16

2.3.4 Techniques for energy harvesting aware WSNs 17

2.4 Wireless sensor networks for the Internet of Things 22

2.4.1 Zigbee . 23

2.4.2 Thread . 27

2.5 Tools . 27

2.5.1 Simplicity Studio . 28

2.5.2 Energy Aware Profiler . 28

2.6 Related work . 29

3 Design and Implementation 31

3.1 Hardware architecture . 31

3.1.1 Processing unit . 32

3.1.2 Radio unit . 34

3.1.3 Sensing unit . 37

CONTENTS v

3.1.4 Power unit . 38

3.2 Energy Storage . 40

3.3 Software architecture . 41

3.3.1 Main Application . 41

3.3.2 Energy Harvesting . 45

3.3.3 Duty Cycling . 46

3.3.4 Communication . 48

4 Results and Analysis 53

4.1 Data rate . 53

4.1.1 Transmission range . 54

4.1.2 Transmission delay . 54

4.2 Energy consumption . 55

4.3 LQ Tracking simulation . 59

4.4 Network testing . 62

5 Summary 65

5.1 Summary and Discussion . 65

5.2 Recommendations for Further Work . 67

A Additional Information 69

A.1 Schematics . 69

A.2 Radio Configuration . 71

vi CONTENTS

B Harvesting node C code 77

B.1 communication.c . 78

B.2 duty_cycling.c . 85

B.3 energy_harvesting.c . 87

B.4 main.c . 89

B.5 radio.c . 92

Bibliography 96

List of Figures

2.1 Wireless Sensor Network.[1] . 6

2.2 Staggered wakeup pattern.[1] . 9

2.3 Asynchronous Wakeup Protocol.[1] . 10

2.4 Energy Harvesting Sources. 15

2.5 Zigbee layer architecture.[2] . 23

2.6 Simplicity Studio. 28

3.1 Sensor node. 32

3.2 EZR32LG development board.[3] . 32

3.3 MCU energy mode transitions.[4] . 34

3.4 Radio operating modes.[5] . 36

3.5 Radio power consumption. 37

3.6 Si7021 connection.[3] . 37

3.7 Sensor power consumption. 38

3.8 Energy Harvesting kit.[6] . 39

vii

viii LIST OF FIGURES

3.9 AA battery voltage discharge curve.[7] . 41

3.10 Architecture layers. 42

3.11 Application flowchart. 44

3.12 Solar harvested power. 46

3.13 Algorithm pseudocode.[8] . 48

3.14 DC period. 48

3.15 DATA slot flowchart. 50

3.16 Packet structure. 51

4.1 Energy trace of node’s initialization. 56

4.2 Energy trace using different duty cycles. 57

4.3 Energy trace of packet transmission with different sizes. 58

4.4 Battery variation with fixed duty cycles. 60

4.5 LQ tracking duty cycle. 61

4.6 Data packet test. 63

4.7 SYNC packet test. 64

4.8 SYNC packet test. 64

A.1 Schematic of Energy Harvester. 70

A.2 Radio configuration 1. 71

A.3 Radio configuration 2. 72

A.4 Radio configuration 3. 73

A.5 Radio configuration 4. 74

LIST OF FIGURES ix

A.6 Radio configuration 5. 75

A.7 Radio configuration 6. 76

x LIST OF FIGURES

List of Tables

3.1 MCU energy modes. 33

3.2 Radio characteristics. 34

3.3 Application parameters. 43

3.4 Performance comparison of duty cycling algorithms 47

4.1 Tradeoff between data rate and transmission range 54

4.2 Tradeoff between data rate and transmission delay 55

xi

xii LIST OF TABLES

List of Acronyms

AEM Advanced Energy Monitor

API Application Programming Interface

APO Application Object

BMAC Berkeley Medium Access Control

CRC Cyclic Redundancy Check

DC Duty Cycle

EEHF Environmental Energy Harvesting Framework

ENO Energy Neutral Operation

EWMA Exponentially Weighted Moving Average

FFD Full Function Device

GPIO General Purpose Input/Output

IDE Integrated Development Environment

IoT Internet of Things

IP Internet Protocol

I2C Inter-Integrated Circuit

Li-ion Lithium-ion

LQ Linear-Quadratic

xiii

xiv LIST OF TABLES

MAC Medium Access Control

MCU Microcontroller Unit

NiMH Nickel Metal Hydride

PAN Personal Area Network

RF Radio Frequency

RFD Reduced Function Device

RTC Real-Time Counter

RX Reception

SMAC Sensor Medium Access Control

SPI Serial Peripheral Interface

TDMA Time Division Multiple Access

TMAC Timeout Medium Access Control

TX Transmission

USB Universal Serial Bus

WSN Wireless Sensor Network

ZDO Zigbee Device Object

Chapter 1

Introduction

The increasing advances in semiconductor materials have contributed to the develop-

ment of smaller and less expensive wireless sensor networks (WSNs) over the past few

years. WSNs have stepped from military applications, to environmental, health and

home applications, entering into our daily life to facilitate everyday tasks. Moreover, the

proclivity towards the Internet of Things (IoT) is growing due to faster network connec-

tions and the increase of smart devices that allow users to connect different electronic

appliances and make their use more efficient. What is more, the use of environmental

energy is gathering more strength as it can offer free "unlimited" energy and at the same

time being environmentally-safe.

Problem Formulation

Green energy and sustainability are terms that have become increasingly important

in the development of new technologies. Nowadays, a wide range of industries have

adopted these eco-friendly practices not only for the environmental protection, but

also for the economic and social benefits they provide. By using energy harvesting to

power small devices such as sensor networks, besides the benefits formerly mentioned,

these devices can be deployed in areas where power is not easily obtained and their

lifespan can be much longer than battery-powered devices. However, traditional en-

ergy saving techniques are not suited for energy harvesting sensor networks since the

1

2 CHAPTER 1. INTRODUCTION

nodes depend on the variability of the energy source and therefore, an efficient syn-

chronization method enabling the communication between the nodes is needed in or-

der to exploit the benefits of environmental energy.

1.1 Objectives

The main objectives of this Master’s project are:

1. Find the necessary power requirements for a single node to operate and compare

the energy sources to find the most suitable one for this application.

2. Having a single node powered by energy harvesting, it has to send data as soon as

it has enough energy to a receiver which is always on and listens on any data that

comes along.

3. Having both nodes powered by energy harvesting, find a way to synchronize both

devices to communicate between them.

4. Expand the network to multiple nodes.

1.2 Limitations

Taking into consideration that the energy harvesting kit used in this work only contains

a simple array of capacitors as an energy buffer and it is not enough to retain enough

energy for the node’s operation, a simulation of the battery level which takes into ac-

count the energy harvested and power consumption of the node is used instead. Fur-

thermore, the communication between the nodes is tested at a close range, therefore

any packet losses due to large separations between the nodes are disregarded.

1.3 Methodology

In order to fulfill the objectives in this work, an experimental approach is followed. First,

an extensive literature research regarding the background theory, existing applications

1.4. CONTRIBUTIONS 3

and techniques has to be done. Then, after having obtained relevant information, a

basic solution has to be proposed and experiments made to test the theory and further

enhance the solution. Once the implementation is completed, then additional test-

ing will be done to ensure the solution is correct. Finally, when the implementation

is fully tested, simulations and experiments will be performed to analyze the different

configurations of parameters and determine which results work best to propose a final

solution.

1.4 Contributions

• Simulated the node’s battery level with respect to the node’s power consumption

and energy harvested.

• Implemented the Linear Quadratic Tracking algorithm for duty cycling to reduce

energy consumption.

• Developed a wireless communication scheme that allows nodes with different

duty cycles to communicate between each other, while reducing packet collisions

and loss of data.

• Accomplished a strategy to synchronize the clocks of the nodes after a certain

period.

• Programmed and tested a low-energy application for sensor nodes encompassing

all of the above.

1.5 Structure of the Report

The rest of the report is organized as follows.

Chapter 2 presents a background research on the applications and design consider-

ations of wireless sensor networks. Several traditional techniques for energy conserva-

tion are described. Moreover, different energy harvesting sources and storage technolo-

gies are compared and a few duty cycling and routing techniques which are envisioned

4 CHAPTER 1. INTRODUCTION

for energy harvesting systems are introduced. In the last part of the chapter, two pro-

tocols for implementing the network communication are discussed. Finally, software

tools to facilitate the development of the project are presented.

Chapter 3 presents the hardware and software implementation of the sensor node.

First, the hardware architecture is introduced, then the energy storage required is dis-

cussed and ultimately the software solution is explained.

Chapter 4 discuss the repercussion of the data rate in the transmission range and

transmission delay. Furthermore, the results of the energy measurements from the ap-

plication by using different configurations are presented. Additionally, the behavior of

the duty cycling algorithm implementation is analyzed. And finally, the tests of the net-

work communication are examined.

Chapter 5 presents a brief summary of the work achieved and a discussion about

the findings. In addition, some recommendations for future work are proposed.

Chapter 2

Theoretical Background

In this chapter, we present basic concepts and design considerations for wireless sen-

sor networks, as well as a classification of techniques for energy conservation in battery

operated sensor networks. Furthermore, we outline the factors to consider when im-

plementing an energy harvesting sensor network and a few different wireless protocols

that can be used to adapt it to the Internet of Things.

2.1 Wireless sensor networks

Over the past decade, there has been a great amount of research regarding WSNs due

to their broad field of applications. These networks, as seen in Figure 2.1, consist of

small sensor nodes deployed over some region, whose main functionality is to gather

data from the environment and report back to a sink through some wireless network

protocol, which then in turn is connected to the Internet.

In the following subsections we will present some of the most common applications

for WSNs and additionally, some considerations which need to be taken into account

when designing one.

5

6 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Wireless Sensor Network.[1]

2.1.1 Commercial applications

Due to their low production costs, fault tolerance and rapid deployment, WSNs have

different applications in the military, some of them being monitoring friendly forces,

equipment and ammunition; battlefield surveillance; reconnaissance of opposing forces

and terrain; targeting; battle damage assessment; and nuclear, biological and chemical

attack detection and reconnaissance [9].

Environmental applications also take advantage of the scalability and low power

consumption of the sensor nodes, making it feasible to monitor the migration of wild

animals for instance. Another example is sensing a region of the environment and de-

tecting changes in temperature or atmospheric pressure in order to prevent natural

catastrophes.

Because of the small size of the nodes, some of the health applications include: inte-

grated patient monitoring, drug administration in hospitals, telemonitoring of human

physiological data and tracking of doctors and patients inside a hospital [9].

As for the home applications, wireless sensor nodes can be integrated into almost

every electronic device, allowing them to communicate with each other and create

smart homes that adapt to the user’s requirements. These smart homes can also join

the Internet of Things, giving the user the possibility to control every device in the net-

work from a smart phone.

2.1. WIRELESS SENSOR NETWORKS 7

2.1.2 Design considerations

There are several factors to consider when designing a wireless sensor network, how-

ever they depend mostly on the specific application it is intended for. The following are

mentioned in [9]:

1. Fault tolerance: the level of tolerance to failure that nodes should have is depen-

dent on the type of environment they will be exposed to. According to [9], the

reliability of a node not having a failure between the time interval (0,t) can be

modelled as a Poisson distribution.

2. Scalability: a sensor network can vary from hundreds to thousands of nodes,

therefore the communication protocols should be able to support this increase

in the number of devices.

3. Production costs: the cost of a sensor node must be less than the cost of a tradi-

tional sensor in order to justify the overall cost of the network.

4. Hardware constraints: every node is composed of four basic components: a sens-

ing unit, a processing unit, a transceiver unit and a power unit. Moreover, some

nodes can have a location finding system, a mobilizer and an energy harvesting

unit. The main requisites of these nodes are that they should be small, consume

very low power and be able to work autonomously.

5. Network topology: sensor nodes can be either mass deployed in the field or posi-

tioned individually, hence the network protocol should adapt to different topolo-

gies. In addition, nodes can fail or new nodes can be re-deployed, changing the

initial topology, and the network should then be able to re-organize itself.

6. Environment: since the nodes can be deployed in different environments, they

should be able to work under different conditions depending on each applica-

tion, for instance high pressure, extreme heat or cold, noisy environments, among

others.

7. Transmission media: different wireless communications can be used such as ra-

dio, infrared or optical. Being radio the most adequate for WSNs, the industrial,

scientific and medical (ISM) bands can be used due to their free and global avail-

ability, although for this same reason, it should be taken into consideration that

there could be interference from existing applications.

8 CHAPTER 2. THEORETICAL BACKGROUND

8. Power consumption: there are three domains where the nodes spend their en-

ergy: sensing, communication and processing. The sensor energy consumption

depends entirely on the type of sensor used and the application, while the pro-

cessing energy consumption varies depending on energy reduction techniques

and low energy modes, as for the radio, it consumes much more energy than pro-

cessing data, in such a way that transmitting a single bit has the same energy cost

as processing a thousand operations [10]. In addition, considering short-range

communications, radios consume the same power whether transmitting or re-

ceiving [10][11]. Hence, the techniques for minimizing power consumption in

WSNs mainly focus on reducing the number of transmissions or the data to be

transmitted.

2.2 Techniques for energy conservation in wireless sen-

sor networks

As mentioned in the previous section, the main goal in the design of WSNs is the re-

duction of power consumption. There are three methods discussed in [1] to achieve

this, namely, duty cycling, data-driven approaches and mobility-based approaches. In

the following subsections we will present relevant duty cycling techniques and mention

some basic information about the other approaches.

2.2.1 Duty cycling

Duty cycling techniques consist on switching the radio off or to sleep mode whenever

it is not being used. The fraction of time the nodes are active is called the duty cycle,

this is usually predefined, although it could be dynamic depending on the application.

Moreover, the nodes must have some sleep/wake up scheduling algorithm to coordi-

nate when the communication should happen.

We can classify the following techniques depending on the layer of the network ar-

chitecture they are implemented at. They can either be sleep/wakeup protocols imple-

mented at the network or application layer or Medium Access Control (MAC) protocols

at the data link layer.

2.2. TECHNIQUES FOR ENERGY CONSERVATION IN WIRELESS SENSOR NETWORKS9

Figure 2.2: Staggered wakeup pattern.[1]

2.2.1.1 Sleep/wakeup protocols

These techniques allow a great flexibility as they can be tailored to any application and

used on any MAC protocol without relying on topology aspects. They can be further

classified into two categories depending on their level of synchronization.

Fully Synchronized Pattern. This is a simple scheme where all the nodes wake up

periodically every Tw akeup and remain active for a fixed Tacti ve . Due to the large size of

its active and sleeping periods, it does not require a very precise clock synchronization.

Its main drawbacks are, however, that since all nodes are awake at the same time and

may try to transmit, a large number of collisions might occur; it is also not very flexible

since the time periods are fixed and it does not adapt to variations in traffic or topology.

Staggered Wakeup Pattern. In this scheme, the network topology is viewed as a

tree, with the sink being the root and the sensor nodes the leaves. Nodes located at dif-

ferent levels of the tree, wake up at different times, taking into consideration that there

should be some overlap between adjacent levels in order for parents to communicate

with their children. In Figure 2.2, we can see an example of the active times for the

different levels of nodes and how the neighbors’ times overlap

The main advantages are that less collisions occur since only some of the nodes

transmit at the same time and hence the Tacti ve can be shorter than in the previous

scheme. In addition, this scheme is suitable for data aggregation. However, it has some

drawbacks such as collisions between the nodes in the same level and fixed time peri-

ods.

10 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Asynchronous Wakeup Protocol.[1]

Asynchronous Wakeup Protocol. In this protocol, every node wakes up indepen-

dently from the others with the guarantee that neighbors will always have overlapped

active periods within a specified number of cycles. Each node is associated with a

Wakeup Schedule Function to generate a wakeup schedule. For neighboring nodes,

their wakeup schedules have to overlap in order to be able to communicate. In Fig-

ure 2.3, an example based on a symmetric (7,3,1)-design is illustrated. This means that

all the nodes have the same duty cycle, each schedule repeats every seven slots, each

schedule has three active slots out of seven and any two schedules overlap for at most

one slot.

This protocol is resilient to packet collisions and variations in the network topology,

moreover it does not require a tight synchronization among the nodes. Nonetheless, it

consumes more energy due to the nodes having to wake up more often, in addition the

packet latency is large and it is not possible to broadcast messages to all the neighbors.

2.2.1.2 MAC protocols with low duty-cycle

MAC protocols optimize the medium access functions based on the specific sleep/wake

up patterns and there are many different implementations. They can be classified into

two types of protocols, the first one based on Time Division Multiple Access (TDMA)

and the second one which is contention-based.

2.2. TECHNIQUES FOR ENERGY CONSERVATION IN WIRELESS SENSOR NETWORKS11

TDMA-based MAC protocols

In this type of protocols, the time is divided into periodic frames consisting of slots,

then each node is assigned to one or more slots depending on the algorithm and they

turn on their radio only during their own slots. TDMA protocols are energy efficient,

but have limited flexibility and scalability due to slot allocation, they also need a tight

clock synchronization and are sensitive to interference. Due to these reasons they are

not widely used in WSNs.

Contention-based MAC protocols

In contention-based MAC protocols, being the most popular amongst the MAC pro-

tocols, the sleep/wakeup scheme is tightly coupled with the MAC protocol. They are

robust and scalable, can adapt to traffic variations, but have high energy consumption

due to contention and collisions.

Berkeley Medium Access Control (BMAC). The main goals of this protocol are:

achieving low power operation, effective collision avoidance, efficient channel utiliza-

tion, reconfiguration, tolerance to changing RF and networking conditions and scala-

bility [12].

BMAC uses Clear Channel Assessment (CCA) and packet backoffs for channel arbi-

tration. By using CCA it distinguishes between the noise and the ongoing transmissions

to determine if the channel is clear. Furthermore, it uses link layer acknowledgments

for reliability. Whenever a node receives a unicast packet it immediately sends an ac-

knowledgment packet back and the node receiving the acknowledgment records this in

its message buffer. Finally, BMAC implements a technique called Low Power Listening

(LPL). Whenever the node wakes up it turns on the radio and listens for activity, if it de-

tects it, then it powers up entirely to receive the packet and returns to sleep after doing

so, however if no packet is received it uses a timeout to go back to sleep. This protocol

also provides a set of interfaces to configure its operation, however network services

like organization, synchronization and routing are not provided by BMAC and have to

be built above its implementation.

12 CHAPTER 2. THEORETICAL BACKGROUND

Sensor Medium Access Control (SMAC). This protocol uses a low duty cycle op-

eration to reduce idle listening, which according to [13] accounts for the 50%-100% of

the energy required for receiving radio transmissions. Moreover, to reduce control over-

head and latency, it implements a coordinated sleeping among neighboring nodes by

exchanging special packets to synchronize their sleep/wakeup periods. Nodes can es-

tablish their own schedule or follow the one of a neighbor, forming a virtual cluster. In

order to allow communication between different clusters, nodes can follow different

schedules as long as they do not overlap. And to support the transmission of different

packets, the channel access time is split into two parts, one for synchronization packets

and the other for data transfer.

In addition, to overcome the problem of high latencies in multi-hop networks this

protocol uses an adaptive listening scheme. This technique allows a node overhearing

a transmission to wake up for a short period of time at the end of the transmission, so

if the node is the next hop, it can receive the data immediately. One last main feature of

SMAC is message passing, this helps to transmit long messages by dividing them into

smaller fragments and sending them in a burst.

It is worth mentioning that the parameters of the protocol such as the listen and

sleep periods are constant. However, [14] introduces a modified version of this protocol

called Timeout Medium Access Control (TMAC) which dynamically ends the active part

of the duty cycle based on traffic load thus reducing energy wasted on idle listening.

DMAC. This protocol is optimized for data gathering trees in WSNs and avoids

the sleep latency that occurs in SMAC and TMAC by using a staggered sleep/wakeup

schedule according to the nodes’ position in the tree network topology [15].

Each node has one slot where they can transmit a single packet, although they can

request for additional slots if needed, this way the network can adapt to traffic varia-

tions. A data prediction scheme is used to allow multiple children of a node to transmit

their packets in the same interval. While a More-to-Send (MTS) packet is used when

nodes of the same level in the hierarchy tree with different parents compete for chan-

nel access.

2.2. TECHNIQUES FOR ENERGY CONSERVATION IN WIRELESS SENSOR NETWORKS13

2.2.2 Data-driven approaches

The main objective of these approaches is to avoid transmitting unnecessary data, thus

reducing the communication costs. There are three categories in which they can be

classified.

The first one, in-network processing, consists of using a technique called data ag-

gregation in the intermediate nodes between the source nodes and the sink. Data ag-

gregation combines the data either by compressing the information of two packets into

one or by merging the data, only the first option allows the individual packets to be re-

constructed at the sink. Furthermore, this approach is relatively complex and usually

application-specific.

The second category, data compression, reduces the amount of information by en-

coding it at the source nodes and decoding it at the sink.

The last one, data prediction, uses a model of a sensed phenomenon which can

predict the values sensed by the nodes and it resides both at the source nodes and the

sink. The source node compares the sensed information to the one provided by the

model and if it falls out of a certain tolerance it updates the model at the sink, whereas

the sink uses the information from the model instead of the one from the source nodes.

Additionally, since these approaches are based on reducing the data transmitted,

they can be combined together with duty cycling techniques to benefit from the energy

reduction characteristics of both.

2.2.3 Mobility-based approaches

Taking into consideration that the nodes which are closer to the sink have to relay more

packets than the rest of the nodes in the network, they are more likely to run out of

energy sooner. In order to diminish this problem, mobility-based approaches consist

on making some of the nodes mobile to alter the traffic flow and additionally reducing

the path length of the communication between nodes and the sink.

14 CHAPTER 2. THEORETICAL BACKGROUND

2.3 Energy harvesting in wireless sensor networks

Energy reduction techniques help sensor networks work for extensive periods of time,

however, this time is still limited by the capacity of the battery and the behavior of the

nodes. Another approach to help extend the lifetime of these devices is to use an energy

harvesting unit to power the sensor nodes.

An energy harvesting node can be defined as any system which draws part or all of

its energy from the environment. A key distinction of this energy is that it is potentially

infinite, though there might be a limit on the rate at which it can be used [16]. In the

next subsections we present some of the different energy sources which can be used for

energy harvesting, also a few energy storage technologies suited for sensor networks

and some energy prediction methods. Furthermore, the concept of energy neutral op-

eration is introduced and a few energy harvesting aware techniques for sensor networks

are discussed.

2.3.1 Comparison of energy harvesting sources

There are many different energy sources which can be obtained from the environment

around us, only suitable transducers are needed to efficiently harvest them. In [17] the

following classification is adopted to present the different energy sources:

Electromagnetic radiation

• Solar – this is a very accessible and predictable energy source [Fig. 2.4a]. Even

though the energy available depends on the time of the day, the latitude, and

the atmospheric conditions; commercially available solar cells provide a typical

efficiency of about 15%-20% [17]. As a result, it is a widely used source from power

plants to small devices.

• Radio frequency signals – these signals [Fig. 2.4b] are used to power passive elec-

tronic devices such as RFID (Radio-frequency identification) tags. However, these

devices only respond to a certain frequency and they have to be close to the radio

source, making it difficult to implement on wireless sensor networks.

2.3. ENERGY HARVESTING IN WIRELESS SENSOR NETWORKS 15

Thermal

In order to harvest this type of energy, a thermal gradient is required. According to the

Carnot efficiency, the greater the temperature difference, the greater the conversion ef-

ficiency is. A commercial device can provide 100µW from a 10K temperature difference

in a 9.3mm diameter device 1.4mm thick [17].

Mechanical

• Wind/water flow – these sources are also widely available and used mostly at big

scales such as in wind turbines [Fig. 2.4c] and hydroelectric plants [Fig. 2.4d].

However due to their size, their adoption into smaller devices is not that common.

• Vibrations – these can be found in most environments and the energy extracted

depends on their amplitude and frequency. There are several types of transducers

to harvest this type of energy, for instance, piezoelectric, electrostatic and electro-

magnetic.

(a) Solar energy (b) Radio signals (c) Wind flow (d) Water flow

Figure 2.4: Energy Harvesting Sources.

2.3.2 Storage technologies

Different energy storage technologies exist, each one having their advantages and dis-

advantages. The three most adequate for wireless sensor networks according to their

characteristics presented in [18] are: Lithium-Ion (Li-ion), Nickel Metal Hydride (NiMH)

and super-capacitors.

Lithium batteries yield a high output voltage, high energy density, high efficiency,

low self-discharge rate and they do not suffer from memory effect-loss of energy ca-

16 CHAPTER 2. THEORETICAL BACKGROUND

pacity due to repeated shallow recharge. Nonetheless, they require a high pulsating

charging current and usually an additional charging circuit is used for this.

NiMH batteries have reasonably high energy density, high number of recharge cy-

cles and can be trickle charged, meaning that they do not need an additional charging

circuit. On the other hand, they do suffer from the memory effect-loss and their charge-

discharge efficiency is lower than Li-ion batteries.

Super-capacitors provide a high charge-discharge efficiency, no memory effect-loss,

can be trickle charged and theoretically have an infinite number of recharge cycles. De-

spite of this, they have a high self-discharge rate and low weight-to-energy density.

In view of the different characteristics of each technology, a possible implementa-

tion for wireless sensor networks could be to use an array of super-capacitors as pri-

mary storage and a Li-ion battery for secondary storage which is charged whenever the

super-capacitor exceeds its capacity. This could be managed either by software as in

Prometheus or by hardware as in AmbiMax, both are energy harvesting sensor nodes

presented in [18].

2.3.3 Energy prediction methods

The difference between battery-based and energy harvesting sensor networks is that

for the later one it is possible to increase the performance of the nodes knowing before-

hand that there is enough energy to spend until the next recharge cycle. An important

factor to achieve this is an energy prediction method.

According to [18] effective energy, which can help to attain energy neutrality, is a

function of the expected energy from recharge in a subsequent duration, the energy

consumption by non-optional tasks and the current battery level. The following three

energy prediction methods are presented in [18]:

Environmental Energy Harvesting Framework (EEHF). This framework uses the

concept of an epoch which is based on a single day. In order to predict the energy

in future epochs, it uses an autoregressive filter on energy consumption and energy

availability over a finite number of previous epochs.

2.3. ENERGY HARVESTING IN WIRELESS SENSOR NETWORKS 17

Enhanced-EEHF. This method increases the precision of the EEHF algorithm by

dividing each epoch into periods and obtaining estimates for each period instead. Fur-

thermore, it takes into account not only the history of previous epochs, but also the

trend between periods in the current cycle.

Exponentially Weighted Moving-Average (EWMA) filter. In this approach, the day

is divided into forty-eight slots and the available energy in each slot is predicted using

the weighted average of the energy availability of previous days for that same slot and

the energy estimate of the previous slot. In order to determine the average energy avail-

ability of a slot i , the following equation is used:

x̄(i) =αx̄(i −1)+ (1−α)x(i) (2.1)

where x(i) is the actual generated energy, and α the weighting factor. According to

experiments in [16] a weighting factor of 0.5 is an optimal value for minimum prediction

error. Moreover, this method can adapt to seasonal variations.

2.3.4 Techniques for energy harvesting aware WSNs

While in typical wireless sensor networks the objective is to minimize energy consump-

tion to prolong the battery’s life, in energy harvesting WSNs there is a different approach

called energy neutral operation (ENO). The objective is to consume less energy than the

harvested energy in order to achieve a perpetual functioning of the sensor node.

Considering the advantage that energy harvesting sensor nodes have to tune their

performance based on the energy availability, we present two techniques to dynami-

cally adapt the duty cycle of the nodes to achieve the best performance possible. Fur-

thermore, we present two networking techniques which take advantage of the energy

harvesting as well and whose implementation is tightly coupled with the nodes’ indi-

vidual behavior.

18 CHAPTER 2. THEORETICAL BACKGROUND

2.3.4.1 Node-level adaptations

Adaptive duty cycling based on a predicted energy model

A technique to adapt the duty cycle of the sensor nodes based on the predicted energy

model is presented in [16]. The goal is to dynamically choose the highest duty cycle

possible allowed, while maintaining energy neutral operation. This analysis is intended

for predictable energy sources, and in this case solar energy is used.

It basically consists of three steps: first, it uses a EWMA filter to predict the energy

availability; then, it solves an optimization problem to obtain the optimal duty cycle

based on some mathematical analysis; and finally, considering the predicted and actual

energy levels it adapts the duty cycle to account for excess or lack of energy.

Adaptive control of duty cycling based on linear quadratic tracking

Another approach is presented in [8] which aims to achieve an ENO-max condition,

this consists of obtaining the maximum performance while maintaining energy neutral

operation. However, the main difference with the previous technique is that this one

does not make any assumptions about the energy model and furthermore, it provides a

way to reduce the variations in the duty cycle.

First, an objective function is defined in terms of the node’s battery level, which if

minimized, it should achieve maximum performance while maintaining energy neu-

tral operation, this condition is referred as ENO-max condition. Considering a node’s

initial battery level as B0 ∈ [0,1] and its battery level at any discrete time t as Bt ∈ [0,1],

equation 2.2 satisfies the ENO-max condition due to the fact that the excess energy is

being used while preserving a certain battery level.

Bt = B0 ∀t > 0 (2.2)

However, it is not possible for a node to adjust its duty cycle to maintain this con-

dition for all t > 0. Therefore, a cost function (2.3) is defined to obtain an optimal duty

cycle by minimizing the average squared deviation of the battery level from its initial

level. In case of energy leakage from the battery, this can be viewed as an increase in

2.3. ENERGY HARVESTING IN WIRELESS SENSOR NETWORKS 19

power consumption, which will be compensated when minimizing the function.

lim
N→∞

1

N

N∑
t=1

(Bt −B0)2 (2.3)

Next, a solution to minimize this cost function is presented based on a problem

in adaptive control theory. The linear-quadratic tracking problem attempts to apply

external control to a dynamic system in order to keep the output at a desired value

or trajectory over time by minimizing a cost function. Moreover, the dynamics of the

system are linear, while the cost function is quadratic. In addition, for this case the

desired trajectory of the output is constant. Taking this into consideration, a first order,

discrete-time, linear dynamic system with colored noised is assumed (2.4) where y is

the output of the system, u is the control, w is the mean zero input noise and a,b,c ∈ℜ
are real-valued coefficients.

yt+1 = ayt +but + cwt +wt+1 (2.4)

Now considering that y∗ is the constant output value desired, which for this case is

B0, equation 2.3 can be rewritten as:

lim
N→∞

1

N

N∑
t=1

(yt − y∗)2 (2.5)

And by minimizing the cost function (2.5), the optimal control can be obtained us-

ing the following equation:

ut = y∗− (a + c)yt + c y∗

b
(2.6)

which does not depend on the noise w , but depends on the noise coefficient c of

previous values.

Additionally, taking into consideration that in this case the coefficients a, b and c

are not known a priori, they can be estimated online using gradient descent techniques

[8]. This is done by introducing a parameter vector θ = (a + c,b,c)T to represent the

true coefficients and a feature vector φt = (yt ,ut ,−y∗)T , where the parameter vector is

20 CHAPTER 2. THEORETICAL BACKGROUND

estimated as:

θ̂t+1 = θ̂t + µ

φT
t φt

φt (yt+1 −φT
t θ̂t) (2.7)

and µ is a positive constant step-size parameter.

To adapt this linear quadratic solution to the sensor nodes some considerations

have to be made. First, yt is the battery level Bt at time t , ut is the node’s duty cycle

at time t , and wt models the moving average of battery level increments. Secondly, the

battery inefficiencies are not modeled directly given that the algorithm only observes

the actual harvested energy. And finally, since most batteries have approximate linear

discharge and recharge rates in the middle region of their voltage discharge curves, the

linearity of the system holds as long as the voltage remains in this range.

Finally, this approach provides the possibility to decrease the variance of the control

outputs by using the following simple exponential weighting scheme:

ūt = ūt−1 +α(ut − ūt−1) (2.8)

where ūt is the smoothed control signal and α is the smoothing parameter ∈ (0,1].

For larger values of α, the smoothing occurs only over the last data points, while for

lower values of α, it occurs over a longer history of values.

However this smoothed control signal cannot be applied directly to the duty cycle,

since it would prevent in some cases to quickly adapt to large variations, which could

result in a violation of the ENO-max condition. Therefore a tradeoff parameterized by

β ∈ [0,1] which determines the relative contributions of each control signal is used to

obtain the duty cycle as follows:

ρt =βut + (1−β)ūt (2.9)

where smaller values of β will reduce the variance of the duty cycle by giving more

weight to the smoothed control signal, while higher values of beta are used when the

variance is irrelevant.

2.3. ENERGY HARVESTING IN WIRELESS SENSOR NETWORKS 21

2.3.4.2 Network-level design

Harvesting-aware routing

An efficient way to implement routing protocols in battery powered networks is to use

the battery level as a cost metric. However, in energy harvesting networks this is not

enough, the harvesting opportunity also needs to be taken into consideration. This

technique, presented in [19], first computes the energy potential for each node with the

following equation:

Ei = w ∗ρi + (1−w)∗Bi (2.10)

where w is a weight parameter (0 ≤ w ≤ 1), ρi is the expected rate of energy har-

vesting at a node i and Bi is the residual battery level at the same node. To predict the

energy harvested at each node the EEHF method is used.

Subsequently, it uses the inverse of the energy potential at a node i as the commu-

nication cost for all links into that node, this is modelled as follows:

cki (eki) = 1/Ei ∀k ∈ {k|eki ∈ Ecomm} (2.11)

where eki is the possible wireless hop between the pair of nodes k and i (also called

edge), and Ecomm is the set of edges across which radio communication is feasible for

the deployed network topology and radio hardware used.

Finally having obtained the cost metric for each node, a Bellman-Ford method,

which is a distributed route discovery algorithm, is used to find the lowest cost routes.

Low-latency routing

Considering a random graph topology, where nodes can have multiple parents, [20]

evaluates three approaches to reduce the routing latency in the sensor network.

The first one, only considers the next-hop latency therefore the node transmits the

22 CHAPTER 2. THEORETICAL BACKGROUND

message to the parent with the lowest latency. The second approach chooses the parent

which allows the message to reach a grandparent with the lowest latency, this requires

additional information however, increasing traffic and computational overhead. The

last approach uses the next-hop latency and also considers the estimated latency over

the whole path from the parent to the sink. If node x is sending a message to a parent

y at a time t , then the latency is expressed as L(x, y, t), the parent set is Px , and the

estimated latency from the parent y to the sink is Ey . The total latency to the sink node

can be obtained with the following equation:

S(x, t) = min
y∈Px

{L(x, y, t)+Ey } (2.12)

where Ey is calculated from the sink to the leaf nodes, and if T is the least com-

mon multiple of the duty cycles of the parents of node y , then Ey can be determined as

follows:

Ey = 1

T

∫
T

S(y, t)d t

Ey = 1

T

∫
T

min
z∈Pz

{L(y, z, t)+Ez }d t (2.13)

Moreover, this last approach does not add extra data transfer since Ey can be trans-

mitted with the INIT messages, and therefore it is the most suitable for energy harvest-

ing sensor networks.

2.4 Wireless sensor networks for the Internet of Things

WSNs were designed to collect data from the environment and report back to a gateway

where the information would then be transmitted to a user interface, being only a one-

way communication. Nevertheless, this is not the case anymore with the Internet of

Things trending in the past few years, WSNs should be able to send and also receive

data in order for the user to control them from a mobile device and this requires a two-

way communication from end-to-end devices.

There are two options we will consider for implementing the network communica-

2.4. WIRELESS SENSOR NETWORKS FOR THE INTERNET OF THINGS 23

tion. The first one being Zigbee, which is a low cost, low power, low data rate, widely

used wireless mesh topology; and the second one is Thread, a simple, secure and low

power network designed for the home environment.

2.4.1 Zigbee

2.4.1.1 Architecture

The Zigbee standard consists of 4 layers, namely, physical, MAC, network and applica-

tion layer as seen in Fig. 1.4. The first two layers take full advantage of the physical ra-

dio specified by IEEE 802.15.4, whereas the network, security and application software,

which are implemented in the firmware stack, are specified by the Zigbee Alliance [21].

Figure 2.5: Zigbee layer architecture.[2]

24 CHAPTER 2. THEORETICAL BACKGROUND

Physical layer

The physical layer is in charge of setting on/off the radio, the channel selection, link

quality estimation, energy detection measurement and clear channel assessment [2]. It

supports three frequency bands: the 2450 MHz band with 16 channels for use world-

wide, the 915 MHz band with 10 channels in the USA and the 868 MHz band with 1

channel in Europe, all of them using the Direct Sequence Spread Spectrum (DSSS) ac-

cess mode.

MAC layer

In the MAC layer two types of nodes are considered:

• Reduced Function Devices (RFD) which can act only as end devices.

• Full Function Devices (FFD) that have a full set of MAC layer functions and can

either be coordinators or end devices.

There is also two types of network topologies possible:

• Star topology, where a FFD is considered as the Personal Area Network (PAN) co-

ordinator and other FFDs or RFDs are communicating with it.

• Peer-to-peer topology, where a FFD can talk to other FFDs either directly or using

multi-hop, and a PAN coordinator manages the network.

In addition, for both topologies a PAN coordinator may operate with or without a su-

perframe. Using a superframe enables the nodes to communicate in time slots and also

allows the coordinator to sleep for a portion of the frame, on the other hand, when not

using a superframe the coordinator must always be on and ready to receive data.

The MAC layer also supports channel scan, to locate existing PANs and coordina-

tors, and association/disassociation, to join or leave a PAN [2].

2.4. WIRELESS SENSOR NETWORKS FOR THE INTERNET OF THINGS 25

Network layer

The network layer provides a multi-hop network built on top of the IEEE 802.15.4 stan-

dard. It considers three types of devices:

• Coordinator: a FFD that organizes the network and maintains the routing tables.

• Router: a FDD with routing capabilities which talks to the coordinator, other

routers and end-devices.

• End-device: a RFD or FFD acting as a simple device which can only talk to routers

or a coordinator.

In this layer three network topologies are identified: star topology, tree topology and

mesh topology, being the mesh the more complex, but most robust and resilient to

faults [2]. Furthermore, some of the functionalities supported are multi-hop routing,

route discovery and maintenance, security and joining/leaving a network.

When using a mesh topology, routers need to maintain a routing table to forward

packets. Basically the behavior they follow when receiving a message is to check if it is

intended for them or their children; if not, then consult the routing table for the next

hop; if no entry is available, then it starts a route discovery procedure; and if no re-

sources are available to do so, then it uses the tree-based routing. In the tree topology,

routers only maintain their addresses and their parent and children addresses, but des-

tination is easily determined due to how addresses are assigned to each node.

The route discovery procedure is based on the Ad hoc On Demand Distance Vec-

tor (AODV) routing algorithm. When a node needs a route to a certain destination, it

broadcasts a route request message that propagates through the network (also called

flooding) until it reaches its destination, while accumulating the cost of the links tra-

versed. This cost can either be a constant value or dynamically calculated based on a

link quality estimation [2].

Application layer

The application layer is made up of three parts:

26 CHAPTER 2. THEORETICAL BACKGROUND

• Application Objects (APO): a portion of software that controls a hardware unit on

a device and can interact with other APOs.

• Zigbee Device Object (ZDO): a special object which offers services to the APOs,

such as discovery services.

• Application Sublayer: it enables the interaction between APOs and the ZDO by

providing data transfer services.

An important part of the application layer are the application profiles, which define

message formats and protocols for interactions between APOs that collectively form a

distributed application [2].

2.4.1.2 Network specification

In order to implement Zigbee, a network specification needs to be chosen, for wireless

sensor networks we will consider Zigbee PRO and Zigbee IP.

Zigbee PRO

This is the most popular choice of Zigbee specification and the most widely adopted

for application standards. It offers the feature Green Power, which allows connecting

energy-harvesting or self-powered devices into Zigbee PRO networks.

To be able to connect a WSN using Zigbee PRO to Ethernet or Wi-Fi based devices

it is necessary to include a gateway in order to translate or map between the different

protocols used in the communication.

Another option to achieve this, is to use an end-to-end-based IPv6 architecture.

Since it provides 2128 unique addresses, it is possible to give a unique IP (Internet Pro-

tocol) address to every single device on the Earth. Moreover, memory-efficient im-

plementations of the IP stack show that IP can successfully work in as little as a few

kilobytes of RAM (Random Access Memory), and require less than 10 kilobytes of ROM

(Read Only Memory) [22]. In [23] a system architecture is proposed where Zigbee is

used as the communication medium and IPv6 in the network layer, whereas the com-

munication between the gateway server, the middle-ware and the mobile client is based

2.5. TOOLS 27

on IPv4 over Wi-Fi. Thus, enabling any device communicate with each other regarding

the communication medium or network protocol used.

Zigbee IP

It offers an architecture with end-to-end IPv6 networking. Moreover, it uses 6LoWPAN

(IPv6 over Low power Wireless Personal Area Networks) header compression to reduce

the 48 bytes of IPv6 down to 6 bytes for the common case. It also uses PANA (Protocol

for Carrying Authentication for Network Access) for authentication, RPL (Ripple routing

protocol) for routing, TLS (Transport Layer Security) and EAP-TLS (Extensible Authen-

tication Protocol-TLS) for security and the User Datagram Protocol (UDP) and Trans-

mission Control Protocol (TCP). The downside being that it only supports the Zigbee

2030.5 (Smart Energy 2) application standard.

One last thing to consider is that Zigbee PRO and Zigbee IP devices can only com-

municate between each other through a special gateway equipped with both specifica-

tions.

2.4.2 Thread

This is a robust self-healing mesh network capable of supporting over 250 devices on a

single network. It is IP-based, using IPv6 and 6LoWPAN compression, allowing devices

to communicate with the cloud. It also provides security at the network and application

layers. And only a software enhancement is needed to implement it on IEEE 802.15.4

compliant products.

2.5 Tools

The main objective of this work is to develop a software solution to operate a sensor

node. To facilitate and expedite this process some tools were used such as an Integrated

Development Environment (IDE) and an energy profiler.

28 CHAPTER 2. THEORETICAL BACKGROUND

2.5.1 Simplicity Studio

This is a software suite by Silicon Labs which provides an IDE and several other tools

to ease the complexity of developing an application [Fig. 2.6]. Among the main tools

are the energy profiler, explained in detail in the next subsection; a network analyzer,

to scan and capture radio packets using a ZigBee protocol; a Serial Wire Output (SWO)

terminal, to observe in real-time the output of the serial trace from the development

board; and application examples demonstrating the use of peripherals and other main

features.

Figure 2.6: Simplicity Studio.

2.5.2 Energy Aware Profiler

By using this tool, the energy consumption of the application running in the develop-

ment board can be examined. The current is plotted in real-time and several counters

sum the average current, the time elapsed and the energy spent, either in a selected

range of time or from the total time of operation. In addition, it allows to select a spe-

cific point in the graph and see to which section in the code it relates to, this permits

the user to find out where the application is spending most of its energy and optimize

it.

2.6. RELATED WORK 29

In order to measure the current, the Advanced Energy Monitor (AEM) consisting of

a current sense amplifier, multiple gain stages and signal processing is used. The AEM

can measure current signals in the range of 0.1µA to 150m A [3].

2.6 Related work

Wireless sensor networks have been in the market for over the past decade and there are

many commercial applications that have been implemented using different platforms

such as IRIS, Mica2, MicaZ, TelosB, Tmote Sky and EPIC [24]. These WSN platforms

are either based on the MSP430 or ATmega128 microcontrollers in combination with a

Zigbee network architecture. However in [24] a different platform using the EFM32G230

microcontroller together with Bluetooth Low Energy (BLE) for network communication

is presented.

By using these different platforms combined with other hardware, several imple-

mentations of sensor nodes have been developed such as Prometheus, HydroWatch,

Heliomote, Ambimax, Everlast and Sunflower [18]. For the energy source all these sen-

sor nodes harvest solar energy either by using a solar panel or photo diodes. However

for the energy storage, some use NiMH or Lithium batteries, while some others use su-

percapacitors and even some of them use a combination of both. When using batteries

and supercapacitors an additional charging circuit is needed to manage the energy. In

general, most of these applications have similar characteristics essentially differing in

the energy requirements.

30 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Design and Implementation

In this chapter we present the hardware components chosen for the sensor node: pro-

cessor, radio, sensor and power unit. We also examine some of their main characteris-

tics which make them suitable for this application. Additionally, we discuss what kind

of energy storage is needed to support the operation of the node. Finally, we explain the

software solution used in the sensor node.

3.1 Hardware architecture

The hardware architecture of the sensor node is composed of four main components

as seen in Figure 3.1. The processing, radio and sensing units are integrated into the

Silicon Labs’ EZR32 Leopard Gecko Development Kit. This kit provides two develop-

ment boards [Figure 3.2] with different sensors and peripherals in conjunction with a

low energy microcontroller and a radio. Additionally, it features the AEM for real-time

current and voltage monitoring, which is useful to determine where the application is

spending more energy and hence being able to optimize it. While the power unit is an

external energy harvester with a small energy buffer which is connected to the develop-

ment board.

31

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.1: Sensor node.

Figure 3.2: EZR32LG development board.[3]

3.1.1 Processing unit

The main unit of the sensor node is the ultra-low power EZR32LG330 wireless micro-

controller which consists on a 32-bit ARM Cortex-M3 processor clocked at 48 MHz,

with 256 KB of Flash memory and 32 KB of RAM, this makes it suitable to run complex

3.1. HARDWARE ARCHITECTURE 33

algorithms and a radio protocol stack. It also includes many different peripherals such

as a Real-Time Counter (RTC), a low energy timer, different communication interfaces,

amongst others. Moreover, each peripheral is individually clocked, allowing the user to

disable those which are not being used and thus reducing power consumption.

A main feature of this MCU (Microcontroller Unit) is the different energy modes it

offers, these are presented in Table 3.1. The EM0 mode is the normal execution mode

where all the peripherals can be enabled and the code is running from Flash. In the

EM1 the CPU (Central Processing Unit) is sleeping, but every peripheral can still be

active. The EM2 mode reduces energy by turning off the high-frequency oscillator. In

the EM3 mode, further energy is reduced by turning the low-frequency oscillator off,

but most of the peripherals can still be used with the ultra-low frequency oscillator.

Finally, in the EM4 mode almost all functionality is disabled, except for the pin reset,

GPIO (General Purpose Input/Output) pin wake-up, GPIO pin retention, backup RTC

with RAM retention and the Power-On Reset.

Table 3.1: MCU energy modes.

Energy Mode Current consumption
EM0 - Run Mode 211 µA/MHz
EM1 - Sleep Mode 63 µA/MHz
EM2 - Deep Sleep Mode 0.95 µA
EM3 - Stop Mode 0.65 µA
EM4 - Shutoff Mode 20 nA

Energy modes EM1-EM4 are accessed via software calls in the program code, how-

ever to return to the EM0 mode there are different wake-up triggers which can be used

in the EM1-EM3 modes, while for the EM4 a reset, GPIO wakeup request or backup RTC

interrupt are the only options, Figure 3.3 shows the state transitions. All the functional-

ity of energy modes is managed by the Energy Management Unit.

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: MCU energy mode transitions.[4]

3.1.2 Radio unit

The radio unit consists of the low-current Si4460 RF (Radio Frequency) transceiver cov-

ering the sub-GHz frequency bands from 119 to 1050 MHz which is included in the

physical package of the EZR32LG. It operates as a time division duplexing transceiver

where the device alternately transmits and receives data packets. Some of the main

characteristics presented in [11] which makes this radio suitable for battery operated

applications are shown in Table 3.2.

Table 3.2: Radio characteristics.

Operation frequency 868 MHz
Transmit power 13 dBm
Data rates 100 bps - 1 Mbps

Current consumption
18 mA TX @ +10 dBm
10/13 mA RX

Power amplifier Up to +20 dBm

The radio offers different operating modes to save energy, Figure 3.4 shows the tran-

sitions between them and the current consumption in each one. Each mode disables

different components to reduce energy consumption and therefore have different re-

sponse times when switching to TX (Transmission) or RX (Reception) modes. More-

3.1. HARDWARE ARCHITECTURE 35

over, these modes can be accessed by using the radio API commands. The Application

Programming Interface (API) is embedded into the device and provides commands to

control the chip and retrieve its status and also properties which are general configura-

tions that do not change very frequently, both are communicated from the processor to

the radio via a SPI (Serial Peripheral Interface) bus. A description of the API (Application

Programming Interface) can be found in [25].

Another feature is the highly configurable packet structure. Some usual communi-

cation fields such as preamble, synchronization word, header, packet length and CRC

(Cyclic Redundancy Check) can be automatically added by the packet handler, greatly

reducing the computational power required by the host MCU to construct or decon-

struct a packet [26]. Additionally, the user can configure up to five different fields which

can be used to create any data pattern and add different properties to each field such

as data whitening and Manchester encoding. Moreover, there are two 64-byte FIFOs

(First-In First-Out) integrated in the chip to store packets from TX and RX, but they are

only enabled when the radio is in FIFO mode.

Let us consider a scenario where the radio switches from the RX mode to the TX

mode to transmit a single packet and afterwards it changes back to the RX mode for

500ms. We can use equation 3.1 [9] to calculate the radio power consumption Pc , as

follows:

Pc = NT [PT (Ton +Tst)+Pout (Ton)]+NR [PR (Ron +Rst)] (3.1)

where PT /R is the power consumed by the transmitter/receiver, Pout is the output power

of the transmitter, T /Ron is the transmitter/receiver on-time, T /Rst is the transmit-

ter/receiver start-up time and NT /R is the number of times transmitter/receiver is being

switched on per unit time.

Together with the following parameters: NT =1, NR =1, PT = 5.94mW , PR = 42.9mW ,

Ton = 8.57ms, Ron = 491.43ms, Tst = 130µs, Rst = 0s and Pout = 59.4mW , we can deter-

mine that a total of 21.64m J is consumed by the radio.

Now, using the energy profiler we can observe in Figure 3.5 how the actual measure-

ment compares to this calculation. For this test a single packet of 23 bytes is transmit-

ted, and we can observe that the energy consumption is 22.79m J which is slightly above

the expected value probably due to the size of the packet which is not considered in the

Pout parameter.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.4: Radio operating modes.[5]

3.1. HARDWARE ARCHITECTURE 37

Figure 3.5: Radio power consumption.

3.1.3 Sensing unit

For the sensing unit we use the Si7021 sensor. This is a monolithic CMOS (Comple-

mentary Metal-Oxide Semiconductor) Integrated Circuit (IC) included in the EZR32LG,

which integrates humidity and temperature sensor elements, an analog-to-digital con-

verter, signal processing, calibration data, and an I2C (Inter-Integrated Circuit) Inter-

face [3]. This facilitates the measurements by handling all the processing in the chip

and only communicating the digital readings to the host MCU as seen in Figure 3.6.

Additionally, these sensors make environmental applications such as field monitoring

suitable for this sensor node.

Figure 3.6: Si7021 connection.[3]

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

The power consumption of this device is extremely low compared to the radio. We

can observe in Figure 3.7 that the measurements are completed in less than 10ms and

the energy consumed is no more than 174µJ , this is why the efforts to reduce energy

consumption are focused on delimiting the time the radio is on.

Figure 3.7: Sensor power consumption.

3.1.4 Power unit

The power unit in this case is composed of a harvesting unit and an energy buffer. As

mentioned in the previous chapter, there are different energy sources which can be har-

vested and for this work the solar energy was elected. This is mainly due to its pre-

dictability in order to generate an energy model and the accessibility which requires

only that the nodes are placed out in the open, supporting many different applications.

As the solution to harvest solar energy, the “Energy Harvesting Solution to Go Kit”

by Würth Elektronik which can be seen in Figure 3.8 was chosen. One of the main rea-

sons is because it provides a connection to power the Silicon Labs’ EFM32 Giant Gecko

Starter Kit through its expansion header and thus facilitates the development of appli-

cations. However given the similarities of EFM (Energy Friendly Microcontroller) starter

kits’ expansion headers, the compatibility is not limited to the Giant Gecko kit.

3.1. HARDWARE ARCHITECTURE 39

Figure 3.8: Energy Harvesting kit.[6]

The board offers four different harvesting sources namely solar, thermal, piezoelec-

tric and inductive, however only one can be selected at a given time to output the power

through the VMCU pin. In addition, it provides a logic signal through the PGOOD pin

which goes high the first time the converter reaches the sleep threshold of the pro-

grammed VOU T , signaling that the output is in regulation. The PGOOD pin will remain

high until VOU T falls to 92% of the desired regulation voltage. Additionally, if PGOOD

is high and VI N falls below the UV LO falling threshold, PGOOD will remain high until

VOU T falls to 92% of the desired regulation point. This allows output energy to be used

even if the input is lost [27].

According to [27] the solar cell input voltage can vary from 1.72V to 3.3V , as for

the output it has a switch that enables the VMCU output whenever the voltage reaches

3.15V and turns it off when it decreases under 2.25V , thus allowing a fast voltage rise at

start-up and using most of the energy stored in the capacitors.

Furthermore, this kit provides an array of 15 buffer capacitors of 100µF in paral-

lel which can store up to 8.1675m J at a voltage of 3.3V . More information about the

internal components can be found in the board schematic in the appendix A1.

The harvesting board can be easily customized by using different jumpers and for

this case the following configuration was used:

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

JP1 OPEN JP7 OPEN
JP2 OPEN JP8 INSTALLED
JP3 OPEN JP9 INSTALLED "ON" POSITION
JP4 INSTALLED JP10 OPEN
JP5 OPEN JP11 INSTALLED
JP6 OPEN JP12 OPEN

Where JP4 selects the solar cell energy supply, JP8 routes the LTC3459 PGOOD signal

to the PGOOD output, JP9 connects the 15 buffer capacitors to VOU T to store energy and

JP11, which is not relevant for this application, configures the AC (Alternating Current)

input for use with a P MDM vibration harvester.

3.2 Energy Storage

An important step to implement this solution is to find the appropriate battery type

and size to support energy neutral operation in the node. In chapter 2 different battery

types were presented along with their advantages and disadvantages, for this solution

we chose the NiMH due to its viability of being trickle charged and what is more, it does

not require a high charging current as the Li-ion batteries.

This type of battery has a typical charging efficiency of 66% [28], meaning that a

fair amount of the energy harvested is lost if it is first stored in the battery and used

afterwards. Furthermore, we have to consider the self discharge rate, which for NiMH

batteries they will retain 50% to 80% of their capacity after 6 months of storage [29],

however since this parameter is greatly dependant on the temperature and recharge

cycles, we do not contemplate it in our simulations.

Let us consider a AA sized NiMH battery with a voltage of 1.2V and a capacity of

2300m Ah (at 21°C) [7] which is equivalent to 9,936J . We can observe in Figure 3.9 that

it takes approximately 10 hours for the battery to discharge with a constant current of

230m A, and since our application for the sensor node consumes substantially less cur-

rent, roughly 14 m A without any duty cycle, we can employ this battery for our sensor

node. Additionally, since the sensor node operates on 3.3V , a step-up DC/DC (Direct

Current) converter such as the LTC3105, which is also used in the energy harvesting kit

[27], has to be employed to provide the necessary voltage output.

3.3. SOFTWARE ARCHITECTURE 41

Figure 3.9: AA battery voltage discharge curve.[7]

3.3 Software architecture

The software solution implemented in the C programming language features an energy

harvesting sensor network using a duty cycling technique based on adaptive control

theory and a communication protocol that synchronizes the transmission times of the

nodes with the active times of the neighboring nodes. Furthermore, it is divided into

different layers as seen in Figure 3.10.

The solution is based on the following assumptions:

• The sensor nodes contain a rechargeable battery with sufficient capacity such

that they can achieve energy neutral operation by adapting their duty cycles.

• The ZigBee routing protocol is considered to be already implemented.

3.3.1 Main Application

Typical techniques for duty cycling such as the ones previously presented in chapter 2

are not completely adaptable to energy harvesting systems, however some of their fea-

tures can be exploited in order to create a suitable technique for these systems.

The main problem that arises with the duty cycling techniques is the synchroniza-

tion of the nodes. Some techniques such as TDMA require a tight synchronization be-

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.10: Architecture layers.

tween nodes which can be very complex in large networks. This complexity can be

eliminated by letting the nodes set up their own wake-up times in a decentralized fash-

ion and go to sleep independently from each other, however it raises concerns about an

increase of the latency and the variance of the latency in the network [30]. Nevertheless,

for spatial sensing applications such as this, the latency and throughput of the network

are not as concerning as the energy consumption.

The solution adopted in this work requires a small synchronization between the

nodes, but can also be considered as a decentralized network because the nodes set up

their own sleep/wakeup schedules based on their energy parameters. The basic func-

tionality is based on the Fully Synchronized Pattern technique, where the nodes wake

up every Tw akeup , in this case called DC (Duty Cycle) period, and start transmitting

right after that. However in our case, the Tacti ve time is not fixed and varies depending

on the current duty cycle.

This basic approach has a high probability of collisions, since every node is trans-

mitting at the same time, a possible improvement to reduce collisions is to set an offset

on the Tw akeup times depending on the level of hierarchy of the nodes in the routing

tree, such as in the Staggered Wakeup Pattern technique. However routing information

is not available in this case and instead a random delay is used before each transmis-

sion, which will be explained in further detail in the next subsections.

An issue related with clock synchronization is the clock drift, according to [13] a typ-

ical clock drift does not exceed 0.2ms per second, which is equivalent to 200ppm (parts

per million). For instance, the crystal oscillator Si510 has a frequency stability grade A

of ±100ppm [31]. But taking into account that the listening periods for the nodes are in

3.3. SOFTWARE ARCHITECTURE 43

the order of seconds, this is not a problem. However, there is still the concern of long-

term clock drift, for every 30 minutes the clock could be out of sync by 360ms, therefore

the nodes are synchronized every SYNC period. Some of the initial considerations are

presented in Table 3.3.

Table 3.3: Application parameters.

SYNC period 30 minutes
DC period 1 minute
Minimum DC 4%
Minimum DC for TX 5%
Maximum DC 99%
Maximum clock drift 200ppm

In the application layer the node first initializes all the necessary hardware and pe-

ripherals. After this is done, the node enters a synchronization state, where it waits for

a SYNC packet containing the local time of another node in the network. Upon receiv-

ing this packet, the node matches its own clock with it considering the computation

delays. However, if the node has not received a SYNC packet after 30 minutes, which

is the SYNC period, then it uses a default time to start its own clock. Following the ini-

tialization, the node enters into an infinite loop where it follows the state transitions in

Figure 3.11. First it wakes up and enters the EM0 mode, setting the proper clock fre-

quency. Then, it obtains the battery level from the harvesting layer and verifies if it has

enough energy to operate, otherwise it goes back to sleep.

Subsequently, the node updates its duty cycle using an adaptive algorithm and turns

the radio on. Following that, if the SYNC period has expired, it enters the SYNC slot

where it listens for a SYNC packet from a parent node, adjusts its clock if needed and

retransmits the SYNC packet to its children nodes.

After that, the sensor readings are obtained and the node enters the DATA slot,

where it transmits these readings to other nodes and listens for NODE packets. In ad-

dition to the sensor readings, these packets also contain the duty cycle of the node, in a

similar fashion as SMAC does by periodically broadcasting the listen/sleep schedules to

immediate neighbors [13]. At the end of the DATA slot, the node turns off the radio and

enters EM2 mode to reduce energy consumption, waiting until the next DC period by

using the RTC. The SYNC and DATA slots are further explained in the communication

layer.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.11: Application flowchart.

When the duty cycle is below 5%, to avoid a possible shutdown due to miscalcula-

tions on the remaining power, the node adds up the sensor readings instead of trans-

mitting them, this way when the node is back on a higher duty cycle it will be able to

transmit an average of these past readings. The source code for the main function can

be seen in Appendix B4.

3.3. SOFTWARE ARCHITECTURE 45

3.3.2 Energy Harvesting

This layer takes care of measuring the voltage of the battery. This is done by using

the ADC (Analog-to-Digital Converter) to sample VDD /3 using an internal reference of

1.25V . Furthermore, a 12-bit resolution is used, meaning that the voltage is given by:

VDD = sample∗ 3.75V

2047
(3.2)

This value is then converted to a percentage level between 0 and 1 using the mini-

mum and maximum voltage values from the linear region of the battery’s discharging

curve.

3.3.2.1 Testing battery level

Considering that our harvesting unit does not have a battery of enough capacity to sup-

port the operation of the application, the battery’s level has to be simulated instead

using the energy available. In the previous section, we determined the capacity of a AA

sized NiMH battery to be 9,936J , however considering that not all of the energy can be

used since the voltage will drop below an operational level due to the discharge curve,

we consider that 80% of the total energy can be used instead, resulting in a total of

7,948.8J for the effective energy of the battery.

Subsequently, we need to determine the contribution of the harvester source to the

battery level. The solar panel on the energy harvester has a maximum current of 50m A

with an output of 3.3V , providing a maximum power of 165mW . However, due to the

absence of a measuring circuit in the sensor node, we use instead the data output pre-

sented in [32] from a solar cell with similar characteristics to our solar panel, providing

3.3V and 60m A as maximum outputs. Based on this data, we plot the harvested power

during one day with intervals of 10 minutes in Figure 3.12. The energy harvested is as-

sumed to go through the battery first and then to the sensor node, thus we consider the

charging efficiency when calculating this contribution.

Next, we need to calculate the decrease of the battery level due to the node’s power

consumption. This is done by using the average power during the last DC period with

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.12: Solar harvested power.

the following equation:

Pc =α(Pact)+ (1−α)(Psl p) (3.3)

where α is the duty cycle, Pact is the power consumed during the active state and

Psl p is the power consumed during the sleeping time.

Finally, we obtain the energy spent or accumulated during the last DC period and

add it to the total energy of the battery. Afterwards, a percentage level of the battery is

computed. The implementation of this function can be examined in Appendix B3.

3.3.3 Duty Cycling

To calculate the duty cycle two different techniques previously discussed were consid-

ered. The predicted model algorithm, first, initializes its parameters at the beginning of

the day and afterwards, it updates the model and duty cycle at the beginning of each

time slot by using the real energy harvested and modifying its predictions. The lin-

ear quadratic (LQ) tracking algorithm on the other hand, is executed every minute and

adapts its duty cycle based on the current battery level.

An experimental comparison of both algorithms was made in [8] with three solar

and one wind data sets which concluded that the LQ tracking algorithm adapts better to

variable weather conditions and avoids dead time. Table 3.4, adapted from [8], presents

the results of the experiments using the same solar data set used in [16].

3.3. SOFTWARE ARCHITECTURE 47

Table 3.4: Performance comparison of duty cycling algorithms

Algorithm Predicted model [16] LQ tracking [8]
Mean Duty Cycle 31.44 33.40
Time Dead (%) 0.55 0.0
Time Full (%) 2.33 0.0

3.3.3.1 Linear Quadratic Tracking implementation

The advantage of this approach is that it makes no assumptions about the nature of the

energy source, nor does it require any data or model of the source. It is based on a tech-

nique from adaptive control theory where the problem is formulated as a LQ tracking

problem and a simple control law is provided to achieve energy neutral operation while

maximizing task performance [8]. Furthermore, it implements a tunable mechanism

for minimizing the variance of the node’s duty cycling profile.

We based our implementation on the algorithm pseudocode in Figure 3.13. First, it

initializes the different variables and then using the battery level and equations 2.6, 2.7,

2.8 and 2.9 it calculates the node’s duty cycle.

Furthermore, it can be seen in Figure 3.13 that a rectifier functionσ(u) is introduced

to delimit the output value of the duty cycle, and it is defined as follows:

σ(u) =

0 if u < ρmi n

1 if u > ρmax

u otherwise

(3.4)

Since the parameter estimation algorithm converges much faster if θ̂ is initialized to

a reasonable value rather than arbitrarily according to [8], an initial value of (2,−1,1)T

is proposed. Additionally, a target battery value of 65% was selected to provide a bias

towards energy wasting instead of energy deficit. Moreover, an initial battery voltage

of 3.3V equivalent to a level of 92.85% and duty cycle of 10% were selected in case the

node starts operating during the night. The rest of the parameters are as follows: α =

0.0005, β = 0.5 and µ = 0.001. The C code implementation of the algorithm can be seen

in Appendix B2.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.13: Algorithm pseudocode.[8]

3.3.4 Communication

The communication between the nodes is performed during the SYNC and DATA slots

as mentioned before. These slots together with the sleeping time comprise the DC pe-

riod as seen in Figure 3.14.

Figure 3.14: DC period.

The SYNC slot is used to transmit a packet with the local clock for synchronization

3.3. SOFTWARE ARCHITECTURE 49

purposes and it is only available after each SYNC period, which should be a sufficient

time to see a clock mismatch but not enough to cause problems in the application. The

SYNC slot period is fixed at 1.5 seconds, this value has to be less than the active time

of the minimum duty cycle allowed in the node which is 4%, equivalent to an active

time of 2.4 seconds. Considering that the clock is synchronized during this slot, the

packet transmission has to follow a defined propagation order to avoid conflicts. This

can be easily achieved by using routing information from the network and transmitting

the clock from the root node to the leaf nodes in a tree-like topology. However, since

our implementation does not provide routing information, two cases are considered

for testing purposes. On the one hand, if the node is the root node, it waits for a delay

equal to the maximum clock drift before transmitting the packet. On the other hand,

if it is an intermediate node, it listens for a packet coming from a parent node and re-

transmits to its children nodes. After a node has forwarded a SYNC packet, it uses the

clock data to synchronize its own clock considering the transmission and computation

delays.

The DATA slot is used to communicate the sensor readings and the node’s duty cy-

cle. This slot is reliant on the node’s duty cycle and is accessible only when it is 5% or

higher, this is in order to provide enough time and energy for transmission. When the

duty cycle is 5% the active period will be of 3 seconds, however if there is a SYNC slot be-

fore, then the active period will consist of 1.5 seconds. The transmission of the packet

is delayed by a random time to avoid collisions in the network, which is common in

densely deployed sensor networks. The minimum delay is equal to the maximum clock

drift, while the maximum delay depends on the shorter active time between the sender

and the receiver, this in order to find a common window where both nodes are active.

T Xmax_del ay is defined as:

max delay = min{St ,Rt }−SYNCT −Dclk

where St is the active time of the sender node, Rt is the active time of the receiver

node, SYNCT is the SYNC period and Dclk is the maximum clock drift.

A flowchart describing the operation during this slot can be observed in Figure 3.15.

Furthermore, the source code for the initial clock synchronization and the SYNC and

DATA slots can be reviewed in Appendix B1.

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.15: DATA slot flowchart.

The random time used to delay the transmission of packets is obtained by using the

r and() function and the node’s ID is used as the seed to feed this function. However,

this method does not provide an uniform distribution when bounded by two values,

hence if required, a more complex function could be used instead of r and() to obtain a

better distribution. One further improvement to avoid collisions could be to implement

a virtual carrier sense as the one used in SMAC [13].

3.3. SOFTWARE ARCHITECTURE 51

3.3.4.1 Radio

This layer uses the radio configuration stored in the radio-config-wds-gen.h file to ini-

tialize the radio parameters and registers such as: base RF frequency, power amplifier,

modulation type, data rate, packet configuration, packet match, among others. Refer to

the appendix A2 to see the full configuration in detail.

Two types of packets are needed for the network communication, NODE DATA and

SYNC DATA. The first one is used to transmit sensor readings and the duty cycle and the

second one, to share the local clock time. Their structure can be seen in Figure 3.16.

Figure 3.16: Packet structure.

The first 10 bytes of both packets are used for the preamble and synchronization

word, these values are predefined in the configuration file and added automatically to

the packet via the packet handler. The next byte is used for the packet match, the radio

reads this byte and uses a mask to compare it to a predefined value, if they do not match

then it drops the packet and starts listening again. This helps to filter packets which are

not intended for the node, by using 1 byte and 1 match point we can define up to 256

different node addresses. The following byte is used to store the length of the variable

field, which contains the actual data. Finally, the variable field consists of 1 byte for the

sender’s ID, 1 byte for the packet type and the rest of the bytes for the data.

With support of the API library commands [25], this layer offers functions to ini-

tialize, shut down and restart the radio, also to start the transmission and reception of

packets, and check if a packet was received or transmitted successfully or if a CRC error

occurred. Since the packet handler only takes care of the preamble and synchroniza-

tion word fields, this layer ensures that the rest of the packet fields are encoded and

decoded correctly. The implementation of the transmit and receive functions is found

in Appendix B5.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Results and Analysis

In this chapter the results of the simulations and tests are presented. First, the implica-

tions the data rate has on the transmission range and delay are evaluated. Then, energy

measurements of the application using different duty cycles and packet sizes are an-

alyzed. Next, the output of the duty cycling algorithm is examined. And finally, the

network communication between two nodes and their synchronization is verified.

4.1 Data rate

Most of the radio configuration parameters [Appendix A2] have been chosen with the

default values provided by the configurator tool since they are not concerning to this

work. However, the data rate has several implications affecting the transmission range

and transmission delay which are dependent on the specific application of the sensor

node.

The modulation type used for the radio is 2FSK (Frequency Shift Keying). This is the

most basic choice of FSK modulation provided and uses two different frequencies to

represent binary information, however it can only support data rates up to 500kbps. If

a higher data rate is required then the 4FSK modulation, providing up to 1Mbps can be

used at the expense of the sensitivity. Moreover, for cases where a narrow spectral band

is needed, the 2GFSK/4GFSK (Gaussian Frequency Shift Keying) can be selected even

53

54 CHAPTER 4. RESULTS AND ANALYSIS

though they spend more energy.

4.1.1 Transmission range

By increasing the data rate the sensitivity of the radio will be reduced, thus lowering

the range of transmission. By rearranging Friis transmission equation we can calculate

the distance between two antennas for a specific transmission power and sensitivity as

follows:

R =
√

PT GT GRλ2

PR 16π2 (4.1)

where PT is the power transmitted, PR is the power received or sensitivity of the

antenna, GT and GR are the gain of the transmitting and receiving antennas and λ rep-

resents the wavelength. According to [33] typical gain values for antennas used with

low-power transmitters are as low as -10 dB to -15 dB.

Considering a free space condition and the following values: PT = +10 dBm, GT =

-15 dB, GR = -10 dB and λ = 0.345m, we used equation 4.1 to calculate the distance with

different sensitivity values presented in [11] and the results can be seen in Table 4.1

Table 4.1: Tradeoff between data rate and transmission range

Data rate Sensitivity (PR) Range
500 bps -126 dBm 9741.1 m
40 kbps -110 dBm 1543.9 m

100 kbps -106 dBm 974.11 m
125 kbps -105 dBm 868.16 m
500 kbps -97 dBm 345.62 m

4.1.2 Transmission delay

It is clear that by using a higher transmission data rate, packets will be transferred faster

and energy consumed will be reduced. We experimented by using different data rates

to transmit packets of different sizes in order to observe the time required for transmis-

sion, the results can be seen in Table 4.2.

4.2. ENERGY CONSUMPTION 55

Table 4.2: Tradeoff between data rate and transmission delay

Data rate 23 Bytes 46 Bytes 69 Bytes
500 bps 307.42 ms 698.96 ms 1060 ms
40 kbps 2.57 ms 4.96 ms 7.48 ms

100 kbps 1.42 ms 2.58 ms 3.58 ms
125 kbps 1.36 ms 2.19 ms 3.19 ms
500 kbps 0.81 ms 1.18 ms 1.59 ms

4.2 Energy consumption

As mentioned before, one of the main considerations in designing a sensor node is to

reduce the energy consumption, in this work we applied different commonly used tech-

niques together to achieve this.

The first technique was implementing a duty cycle, this reduced considerably the

node’s energy consumption by switching between active and sleep states. An algorithm

based on a linear quadratic tracking problem was used to dynamically calculate the

duty cycle. During the sleep state, the radio is turned off and a low energy mode is

entered, this is the most dominant power saving method in the node.

In addition, the energy modes provided by the microcontroller and radio presented

in chapter 3 alongside with the use of interrupts, further reduce the power used while

waiting for a delay or data to be fetched. Finally, the HFRCO which is an internal RC

oscillator providing a clock frequency from 4 to 28 MHz was used as the clock source

due to the lower power consumption than the alternative which is a crystal oscillator.

In order to measure the energy consumption of the node, the EZR32LG board was

connected through the USB debugger and the Energy Profiler was used to trace the

energy profiles.

In Figure 4.1 we can observe the energy required for the initialization of the node,

in which for testing purposes the initial clock synchronization is limited to 1 second,

making a total of 1.84 seconds before entering normal operation. The energy consumed

is only of 66.12m J , but considering that the maximum initial synchronization period

can take up to 30 minutes, the maximum energy spent in this section can ascend up to

81.75J .

56 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.1: Energy trace of node’s initialization.

In Figure 4.2 we present the energy consumption of the node using different duty

cycles of 4%, 33% and 99% respectively. The average power consumption during the

active mode is 45.7mW , while in the sleeping mode is only of 7.6µW . When the mini-

mum duty cycle for operation of 4% is used, the node only wakes up to read the sensors

and saves the readings before going back to sleep, this consumes a total of 3.28m J for

one DC period. Now considering a typical duty cycle of 33%, where the node reads the

sensors and transmits one packet, the total energy consumed during the DC period is of

881.13m J . Finally, when using a 99% duty cycle, which is nearly impossible because the

node has to be active almost the entire time, we can notice that the total energy spent is

2.75J , which would be the maximum energy spent during a DC period, since the node

cannot reach the 100% duty cycle due to application parameters.

Finally, in Figure 4.3 we show the energy required to transmit packets of 23 bytes, 46

bytes and 69 bytes respectively. The normal data packet consists of 23 bytes, consuming

a total of 143.32µJ , this is a very small portion of the total energy spent during the DC

period. We can also observe that the increase in the time required for packet transmis-

sion and therefore energy consumed escalate together with the packet size, however it

does not happen in a linear fashion.

4.2. ENERGY CONSUMPTION 57

Figure 4.2: Energy trace using different duty cycles.

58 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.3: Energy trace of packet transmission with different sizes.

4.3. LQ TRACKING SIMULATION 59

4.3 LQ Tracking simulation

For these tests, one of the boards was connected through the USB (Universal Serial Bus)

debugger and printed out the data through a virtual COM port. A terminal was used

to capture this data. For the energy harvested data we used the numbers plotted in

Figure 3.12.

First, we tested different fixed duty cycles to analyze the variation of the battery

level in order to corroborate our model. In Figure 4.4 we can observe three tests with

duty cycles of 5%, 50% and 80% respectively. Here we can notice that the extremely low

energy consumption of the sensor node allows operating at a duty cycle of 50% under

a sunny day while maintaining the same battery level. In addition, in case the weather

conditions are not optimal, using the minimum duty cycle for radio communication of

5% would allow to recharge the battery. However if a very high duty cycle is used, we can

see that the final battery level at the end of the day would be less than at the beginning

and the node would most likely deplete its battery in a few days, depending on weather

conditions.

For the second part, we used the duty cycle algorithm with the fixed parameters

specified in section 3.3.3.1, with the exception of α which controls the smoothing of

the duty cycle output. Figure 4.5 presents three tests with an α of 1, 0.05 and 0.0005

respectively. From these tests we can see that the algorithm can achieve energy neu-

trality while having a good performance. Moreover, the variation in duty cycles can be

reduced by modifying the parameter α if the application requires it, however when the

smoothing is too high, then the node fails to adapt quickly to abrupt changes in battery

level and there can be some dead times.

60 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.4: Battery variation with fixed duty cycles.

4.3. LQ TRACKING SIMULATION 61

Figure 4.5: LQ tracking duty cycle.

62 CHAPTER 4. RESULTS AND ANALYSIS

4.4 Network testing

To test the communication between the nodes, the two development boards were pow-

ered via the USB socket, providing a constant power since our harvesting unit does not

possess the required battery. However, they used the test battery values to modify their

duty cycles in real-time. In addition, they were printing data through a virtual COM

port.

Each node had an ID number, being 0x01 for node 1 and 0x02 for node 2. Node

1 was powered up first since it is considered the root node in the tests, while node 2

was started afterwards. We can observe in Figure 4.6 the data output of both nodes

during the first 30 minutes. At minute 0 a SYNC packet is sent from node 1 to node

2, allowing node 2 to set up its clock time and start operating. For the first 30 min-

utes we can observe both nodes exchanging DATA packets, however we can see that in

some cases such as in minute 8, there is a mismatch on the timestamp. This is due to

the small difference in the clocks which can be adjusted by modifying the parameter

CLOCK_INIT_DELAY in the application source code. At minute 30, the SYNC period is

over and node 1 sends a SYNC packet to node 2, which re-transmits to node 3 and so

on.

In order to test the SYNC packets, the SYNC period was changed to 3 minutes for a

faster testing. In this case, node 1 is considered the root node, whereas node 2 is a node

in the next level of hierarchy in the routing tree topology. In Figure 4.7 the outputs of

both nodes are printed out. The first SYNC packet of node 1 is used to set the initial

clock of node 2. The next two SYNC packets of node 1 are received by node 2 and then

re-transmitted to the nodes in the next level of the routing tree, which in this test was

node 3. After each node re-transmits their SYNC packet they synchronize their own

clock with it.

Another feature of the node is the ability to aggregate data when the battery level

is not enough for transmitting a packet. This works by saving the values of the sensor

readings and whenever the node has enough energy, then it sends an average of the

values, this can be seen in Figure 4.8.

4.4. NETWORK TESTING 63

Figure 4.6: Data packet test.

64 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.7: SYNC packet test.

Figure 4.8: SYNC packet test.

Chapter 5

Summary and Recommendations

for Further Work

In this final chapter we present a summary of the results obtained in this work and the

conclusions derived from them. In addition, a discussion of the strengths and limita-

tions of the work is given and recommendations for future work are proposed.

5.1 Summary and Discussion

The hardware architecture of the sensor node was implemented using the EZR32LG330

microcontroller containing the Si4460 radio transceiver, together with the Si7021 tem-

perature and relative humidity sensor and the Energy Harvesting kit as the solar energy

source [Fig. 3.1]. As for the energy storage, it was determined that a AA sized NiMH

battery with a typical voltage of 1.2V and a capacity of 2300mAh was a good option to

support the operation of the node while harvesting solar energy. However, since the

harvesting kit had a different energy storage composed of capacitors, we simulated the

battery’s energy level by using solar harvesting data [Fig. 3.12] in combination with the

energy consumption of the node.

For the software solution, a low-energy application was developed consisting of a

65

66 CHAPTER 5. SUMMARY

duty cycling technique and a wireless communication scheme and it was tested in the

hardware mentioned before. The Linear Quadratic Tracking algorithm was used to cal-

culate the duty cycle based on the battery voltage level. The communication scheme

was achieved by dividing the transmission slot into two, one for synchronization and

another for data [Fig. 3.14]. During the synchronization slot, the root node can trans-

mit the clock time so all other nodes in the network make adjustments in case of clock

drifting. While in the data slot, each node takes into consideration the active time of the

current DC period from its own and its neighbors to find a common time when both

are awake to avoid packet losses and also waits for a random time before transmitting

to avoid collisions.

After experimenting with different data rates and comparing its repercussions in

the transmission range and transmission delay, we concluded that for this application

a data rate of 100 kbps was a suitable option. This is because it provides a range of

nearly 1km in free space conditions and it only spends 1.42ms to send a data packet of

23 bytes, using a total energy of 143.32 µJ .

During the energy consumption tests we showed how by increasing the packet size,

the time and energy spent during transmission rises. Moreover, we corroborated the

low energy consumption by showing that with the minimum duty cycle of 4% the node’s

power consumption is only of 54.7µW using a total energy of 3.28m J in one DC period.

Furthermore, if a bigger duty cycle of 33% is used, it still consumes as little as 14.7mW

which is equivalent to a total energy of 881.13m J during each minute.

Furthermore, the battery level simulation was verified using constant duty cycles

and the LQ tracking algorithm was tested using different values of smoothing (α), which

reduces the variation of the duty cycles in case the application needs it. An α = 0.0005

was considered to be a convenient value to provide enough smoothing without failing

to adapt to rapid variations in the battery level.

In overall, this implementation achieves good results in managing the energy avail-

able to perform at its maximum level, while providing a reliable communication scheme.

However, it does require a battery of enough capacity to sustain the operation and a

routing protocol is needed to test the multi-hopping transmission.

5.2. RECOMMENDATIONS FOR FURTHER WORK 67

5.2 Recommendations for Further Work

Wireless sensor networks is a broad field and there are many possibilities for improve-

ment. We recommend the following to improve this work:

Routing aware algorithm

After implementing a duty cycling technique to control the behavior of each node indi-

vidually, the next step is to develop a routing algorithm which considers different fac-

tors such as energy harvesting potential, battery level and latency to make the network

more efficient. In the background chapter two routing techniques were presented, a

harvesting-aware routing and a low-latency routing. The first one aims to balance the

energy use of the sensor nodes in the network by employing a cost metric which con-

siders the expected rate of harvesting energy and the residual battery. The second one,

on the other hand, seeks to reduce the latency in the network by calculating the lowest

latency path to the destination.

Acknowledgment packets

A further improvement to make the network communication more reliable is to use

acknowledgment packets. Whenever a node sends out a data packet it should wait for

a certain period for an acknowledgment from the receiving node, if it does not receive

it in due time then it means the packet has been lost and the node should retransmit.

However, it might happen that the receiving node is out of battery, therefore the number

of retransmissions should be kept low to avoid unnecessary waste of energy and instead

the information should be aggregated for the next slot.

Data aggregation

Whenever the sensor node does not have enough energy to transmit data it aggregates

it. This is simply done by adding up the samples of the sensor and transmitting an

average when it has enough energy. For certain applications this is accurate enough,

68 CHAPTER 5. SUMMARY

but in case every reading is essential, every value should be saved in the node and then

transmitted when it has enough energy.

Appendix A

Additional Information

A.1 Schematics

69

70 APPENDIX A. ADDITIONAL INFORMATION
55

44

33

22

11

D
D

C
C

B
B

A
A

4 - 20m
A

20m
V - 400m

V

SOT23

NOTE: UNLESS OTHERW
ISE SPECIFIED

1. ALL RESISTORS ARE 0402, 1%
, 1/16W

2. INSTALL SHUNTS AS SHOW
N.

ALL CAPACITORS ARE 0402, 10%

0603

LTC
3588EM

SE-1 PIEZO
ELEC

TR
IC

EN
ER

G
Y H

A
R

VESTER

16V

LTC
3105ED

D
SU

PPLIED
 B

Y D
IO

D
E

VO
LTA

G
E D

R
O

P

3.6V

0805

LTC
3108ED

E TEG
PO

W
ER

ED
 EN

ER
G

Y
H

A
R

VESTER

LTC
3459ED

C
SU

PPLIED
 B

Y
SO

LA
R

 C
ELL

0
1

3.3V

1

1.8V
D1

OUTPUT VOLTAGE SETTINGS

1
0

1
2.5V

VOUT
0

0
D0

0805

0805

6.3V

VOUT = 3.3V

VOUT = 3.3V

VOUT = 3.3V VOUT = 3.3V

OPT

PGOOD_LTC3459

1:100

OPT
OPT

OPT

4.99K IS OPT

OPT

0603

0603

ONLY JP9 OR JP10
MAY BE ON AT
ANY TIME

CAUTION:

1.72V - 3.3V

OPTIONAL ENERGY STORAGE

< = 5m
A

IIN
< = 18Vpk

VINVIN
< = 50m

A
> 18Vpk **

0603

0603

0603

LOOP

3.3V, < 50 m
A

SHDN

(H
IG

H
-IM

PED
A

N
C

E A
C

 SO
U

R
C

ES)

1210

(SOLAR PANEL)

OPT

1
DEMO CIRCUIT 2080A

1
1

ENERGY HARVESTING MULTI-SOURCE DEMOBOARD

N/A

BS NC

1 - 8 - 13

SIZE

DATE:

IC NO.
REV.

SHEET
OF

TITLE:

APPROVALS

PCB DES.

APP ENG.

TEC
H

N
O

LO
G

Y
Fax: (408)434-0507

Milpitas, CA 95035
Phone: (408)432-1900

1630 McCarthy Blvd.

LTC Confidential-For Custom
er Use Only

CUSTOMER NOTICE
LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A
CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS;
HOW

EVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO
VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL
APPLICATION. COMPONENT SUBSTITUTION AND PRINTED
CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT
PERFORMANCE OR RELIABILITY. CONTACT LINEAR
TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.

THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND

SCHEMATIC

SUPPLIED FOR USE W
ITH LINEAR TECHNOLOGY PARTS.

SCALE = NONE

www.linear.com

BS
PRODUCTION FAB

-
1

1 - 8 - 13

REVISION HISTORY
DESCRIPTION

DATE
APPROVED

ECO
REV

/RST

VMCU
VAUX

BGND

VSTORE

HGND

VSTORE_1

PGOOD_LTC3588-1

VOUT2
VAUX

VOUT2_EN

VOUT2

LDO

PGOOD_LTC3105

PGOOD_LTC3588-1

VOUT2_EN

PGOOD_LTC3108

PGOOD_LTC3108

PGOOD_LTC3105
C15
10uF

6.3V

C10
100uF
10V
1210
20%

R10
NOPOP

TP8AUX
Q2

ZXMN2F30FH

3

1

2

R350

CO13
100uF
10V
1210
20%

D1

SM
P

1.5A/200V
AS1PD

21

C29
10uF
25V

R10.00

TP7

MPPC

R9NOPOPU6LTC2935CTS8-4
1234

5 6 7 8
S

2

S
1

S
0

G
N

D
P

FO

R
S

T

M
R

V
C

C

CO6
100uF
610V
1210
20%

R15
NOPOP

C19
33pF
25V

U2

LTC2935CTS8-2
1234

5 6 7 8
S

2

S
1

S
0

G
N

D
P

FO

R
S

T

M
R

V
C

C

C25
47pF
25V

D6AM-5412

1

2

POS (+)

NEG (-)

C8
330pF

50V

CO4
100uF
10V
1210
20%

D3

1N
5819H

W

OPT
SOD-123

2
1

R450.5K

JP4

VOUT_LTC3459

R7NOPOP

R17
0

C14
2.2uF

JP8

R21
499k

E5
+VIN

U5
LTC3459EDC3

6

5

4

1

2

7

S
H

D
N

SW

GND

FB

VIN

V
O

U
T

GND

R16
0

JP12
PIEZO

R22
2.80M

CO10
100uF
10V
1210
20%

R12
NOPOP

R33
NOPOP

TEG1
PELTIER MODULE
CP85438

1

2

RED (+)

BLACK (-)

R260

C21
4.7uF
16V

E6
BGND

E3
VIN

C24
100uF
10V
1210
20%

R36

NOPOP

R18
NOPOP

C71uF
6.3V

TP3
VLDO

TP1
VSTORE

U1
LTC3588EMSE -1

1
2

3 4
56

7

8
9

10
11

P
Z1

P
Z2

C
A

P

V
IN

S
W

V
O

U
T

V
IN

2

D
1

D
0

P
G

O
O

D
G

N
D

CO2
100uF
10V
1210
20%

CO12
100uF
10V
1210
20%

TP2
BGND

EM HEADER 2X10

J1SAMTEC-SMH-110-02-L-D

1

23 45 67 89 1011

12

13141617 1815 20

19

GND

V
M

C
U

R
F_#IN

T

S
P

I_M
O

S
I

R
F_W

A
K

E

S
P

I_M
IS

O

R
F_#R

E
S

E
T

S
P

I_C
LK

A
C

C
_S

E
LFTE

S
T

S
P

I_#C
S

P
G

O
O

D

GND

A
C

C
_#S

LE
E

P

A
C

C
_X

O
U

T

A
C

C
_Y

O
U

T

N
C

N
O

 C
O

N
N

E
C

T (U
S

B
 P

ow
er)

A
C

C
_ZO

U
T

N
O

 C
O

N
N

E
C

T (3.3V
 B

oard P
ow

er)

GND

R14

NOPOP

JP1

VOUT_LTC3588-1

R31
NOPOP

CO8
100uF
10V
1210
20%

D4

1N
5819H

W

OPT
SOD-123

2
1

C22
1uF
16V

JP6

E12
VMCU

C1
1uF
6.3V

J3

PIEZO CONNECTOR

1234

P
Z2

P
Z2

P
Z1

P
Z1

J2

DUST HEADER 2X6
SMH-106-02-L-D-05

1
2

3
4

5
6

7
8

9
10

11
12

V
S

U
P

P
LY

N
C

G
N

D
P

G
O

O
D

K
E

Y
V

B
A

T

R
S

V
D

E
H

O
R

B
A

T

I/O
 2

I/O
 1

+5V
V

+

E2
PZ1

C11
1nF
50V

R19
392k

E4
BGND

CO11
100uF
10V
1210
20%

+
C12
220uF

D2E CASE
6.3V

E7

VIN SOLAR

C17
10uF
6.3V

CO1
100uF
10V
1210
20%

TP9

E13
HGND

C27
0.1uF
16V R20

750k

R30
1.15 MEG

+
C16
220uF

D2E CASE
6.3V

R29
1.96 MEG

E8

BGND

JP11
PMDM

R60

TP5
VOUT2

C50.1uF
16V

R23
200k

C20
33pF

25V

+
C23
220uF

D2E CASE
6.3V

JP5

C60.1uF
16V

TP4
VOUT2_EN

JP9

ON
OFF

E1
PZ2

R32
NOPOP

CO7
100uF
10V
1210
20%

CO14
100uF
10V
1210
20%

JP10

ON
OFF

VSTORE

D5

1N
5819H

W

O
PT

SOD-123

2
1

E11
BGND

L1
22uH

W
URTH, 744043220

L3
22uH

W
URTH, 744028220

C322uF
25V
1210U4LTC3105EDD

1 7

8 6

11

10
4

3 92

5

FB

S
W

P
G

O
O

D

V
IN

GND

A
U

X
S

H
D

N

FB
LD

O

V
O

U
T

LD
O

M
P

P
C

E9
HGND

JP2

VOUT_LTC3108

U3LTC3108EDE

1210

4 1

119

23

87

56

13

S
W

C
1

V
O

U
T2

V
A

U
X

C
2

V
O

U
T2_E

N

V
S

TO
R

E

V
O

U
T

V
S

1

V
S

2

V
LD

O

P
G

D

GND

R11
NOPOP

R25
549k

R270

C28
0.1uF
16V

T1
W

URTH, 74488540070
12

4 3

JP7

R2NOPOP

C18
1uF
6.3V

Q3ZXMN2F30FH

3

1

2

L2
10uH

W
URTH, 744031100

D2

1N
5819H

W

OPT
SOD-123

2
1

CO15
100uF
10V
1210
20%

E10
VMCU

C9OPT

CO3
100uF
10V
1210
20%

R80

R50

JP3

VOUT_LTC3105

R34
40.2k

TP6
BGND

CO9
100uF
10V
1210
20%

C44.7uF
6.3V

R280

C26
100uF
10V
1210
20%

C2100uF
10V
1210
20%

+
C13
220uF

D2E CASE

CO5
100uF
10V
1210
20%

E14

BGND

R24

1.1M

Q1ZXMN2F30FH

3

1

2

R30

R13
499K

F
igu

re
A

.1:Sch
em

atic
o

fE
n

ergy
H

arvester.

A.2. RADIO CONFIGURATION 71

A.2 Radio Configuration

Figure A.2: Radio configuration 1.

72 APPENDIX A. ADDITIONAL INFORMATION

Figure A.3: Radio configuration 2.

A.2. RADIO CONFIGURATION 73

Figure A.4: Radio configuration 3.

74 APPENDIX A. ADDITIONAL INFORMATION

F
igu

re
A

.5:R
ad

io
co

n
fi

gu
ratio

n
4.

A.2. RADIO CONFIGURATION 75

Figure A.6: Radio configuration 5.

76 APPENDIX A. ADDITIONAL INFORMATION

Figure A.7: Radio configuration 6.

Appendix B

Harvesting node C code

The software solution is built upon a Silicon Labs MCU project using Simplicity Studio.

It uses the emlib libraries and some drivers to manage the peripherals of the EZR32LG330.

The source code which was developed in this work for the harvesting sensor node is or-

ganized as follows:

• config

– app_config.h

• headers

– communication.h

– duty_cycling.h

– energy_harvesting.h

– radio.h

• src

– communication.c

– duty_cycling.c

– energy_harvesting.c

– main.c

77

78 APPENDIX B. HARVESTING NODE C CODE

– radio.c

Several important functions are presented in the rest of this appendix.

B.1 communication.c

1 /∗∗∗

2 ∗ @brief Wait in RX mode for a sync packet to initialize local clock

3 ∗∗∗/

4 time_t COMMUNICATION_Init_Clk_Sync(void)

5 {

6 radioPkt_data dataRX = {0};

7 printf ("Waiting for clk sync\n");

8

9 // Allocate timers for transmission delays

10 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_AllocateTimer(&

syncTxDelayTimerId))

11 { printf ("Failed to allocate RTC 2!!"); while(1) ; }

12 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_AllocateTimer(&syncTxOverTimerId

))

13 { printf ("Failed to allocate RTC 3!!"); while(1) ; }

14 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_AllocateTimer(&

dataTxDelayTimerId))

15 { printf ("Failed to allocate RTC 4!!"); while(1) ; }

16

17 // Set a timeout in case there is no other nodes

18 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_AllocateTimer(&clockInitTimerId))

19 { return 0; }

20 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_StartTimer(clockInitTimerId,

rtcdrvTimerTypeOneshot, CLK_INIT_TIMEOUT, clockInitCallback, NULL))

21 { return 0; }

22

23 // Start listening

24 dataRX.length = SYNC_PAYLOAD_SIZE;

25 EZRADIO_StartRx(0, dataRX.length);

26

27 // Wait for a SYNC packet or until timeout

B.1. COMMUNICATION.C 79

28 do {

29 EMU_EnterEM2(true);

30

31 if (radioIrqReceived)

32 {

33 radioIrqReceived = false ;

34

35 // Check if packet is received and read out

36 if (EZRADIO_CheckReceived(&dataRX))

37 {

38 if (dataRX.type == SYNC_DATA)

39 {

40 RTCDRV_StopTimer(clockInitTimerId);

41 RTCDRV_FreeTimer(clockInitTimerId);

42

43 // Add delay in computation time

44 return dataRX.payload.cur_time;

45 }

46 }

47 }

48 } while (! clockInitTimeout) ;

49

50 RTCDRV_StopTimer(clockInitTimerId);

51 RTCDRV_FreeTimer(clockInitTimerId);

52

53 return 0;

54 }

55

56 /∗∗∗

57 ∗ @brief Listen for a SYNC packet from a parent node and retransmit

58 ∗∗∗/

59 void COMMUNICATION_Sync_TRx(void)

60 {

61 radioPkt_data dataRX = {0};

62 radioPkt_data dataTX = {0};

63 transmitSync = false ;

64 slotOver = false ;

65

80 APPENDIX B. HARVESTING NODE C CODE

66 // Start a timer to signal when SYNC slot is over

67 RTCDRV_StartTimer(syncTxOverTimerId, rtcdrvTimerTypeOneshot,

SYNC_SLOT_PERIOD, syncTxOverCallback, NULL);

68

69 // Since there is no routing information , a static implementation between node 1

and node 2 is used, node 1 transmits the clock information and node 2 updates its

clock and retransmits the information

70 #if (NODE_ID == 0x01)

71

72 // Delay the transmission of the SYNC packet to account for clock drift

73 RTCDRV_StartTimer(syncTxDelayTimerId, rtcdrvTimerTypeOneshot,

MIN_TX_DELAY_TIME, syncTxDelayCallback, NULL);

74

75 // Stay in this loop until SYNC slot is over

76 do {

77 EMU_EnterEM2(true);

78

79 if (radioIrqReceived)

80 {

81 radioIrqReceived = false ;

82

83 // Check if packet is sent

84 if (EZRADIO_CheckTransmitted())

85 {

86 clearLED(LED_TRANSMIT);

87 }

88 }

89

90 // Transmit packet to all level 2 nodes in routing table

91 if (transmitSync)

92 {

93 transmitSync = false ;

94 dataTX.dest_id = 0x02;

95 dataTX.src_id = NODE_ID;

96 dataTX.type = SYNC_DATA;

97 dataTX.length = SYNC_PAYLOAD_SIZE;

98 dataTX.payload.cur_time = getTime();

99 EZRADIO_StartTx(0, &dataTX);

B.1. COMMUNICATION.C 81

100 setLED(LED_TRANSMIT);

101 }

102 } while (! slotOver) ;

103

104 // Stop timer

105 RTCDRV_StopTimer(syncTxDelayTimerId);

106

107 #else

108

109 // Start listening for packets with N bytes

110 dataRX.length = SYNC_PAYLOAD_SIZE;

111 EZRADIO_StartRx(0, dataRX.length);

112

113 // Stay in this loop until SYNC slot is over

114 do {

115 EMU_EnterEM2(true);

116

117 // Check if radio interrupt is received

118 if (radioIrqReceived)

119 {

120 radioIrqReceived = false ;

121

122 // Check if packet is sent

123 if (EZRADIO_CheckTransmitted())

124 {

125 clearLED(LED_TRANSMIT);

126 }

127

128 // Check if packet is received

129 if (EZRADIO_CheckReceived(&dataRX))

130 {

131 // If SYNC packet is received , synchronize clock and retransmit

132 if (dataRX.type == SYNC_DATA)

133 {

134 // Transmit packet to all level 3 nodes in routing table

135 if (!transmitSync)

136 {

137 dataTX.dest_id = 0x03;

82 APPENDIX B. HARVESTING NODE C CODE

138 dataTX.src_id = NODE_ID;

139 dataTX.type = SYNC_DATA;

140 dataTX.length = SYNC_PAYLOAD_SIZE;

141 dataTX.payload.cur_time = dataRX.payload.cur_time;

142 EZRADIO_StartTx(0, &dataTX);

143 setLED(LED_TRANSMIT);

144 transmitSync = true;

145 }

146

147 // Synchronize clock

148 stopClock() ;

149 setTime(dataRX.payload.cur_time, MIN_TX_DELAY_TIME +

CLOCK_SYNC_DELAY);

150 startClock () ;

151 }

152 }

153 }

154 } while (! slotOver) ;

155

156 #endif

157

158 // Stop timer

159 RTCDRV_StopTimer(syncTxOverTimerId);

160

161 // Put the radio in sleep state until next TX/RX slot

162 ezradio_change_state(

EZRADIO_CMD_CHANGE_STATE_ARG_NEXT_STATE1_NEW_STATE_ENUM_SLEEP

);

163 }

164

165 /∗∗∗

166 ∗ @brief Transmit a data packet over RF and listen for data packets

167 ∗∗∗/

168 void COMMUNICATION_Data_TRx(sensorData ∗sensor_data, uint8_t dc)

169 {

170 uint16_t max_tx_data_delay = 0;

171 uint16_t tx_data_delay = 0;

172 radioPkt_data dataRX = {0};

B.1. COMMUNICATION.C 83

173 radioPkt_data dataTX = {0};

174

175 // Obtain minimum duty cycle of neighboring nodes

176 max_tx_data_delay = dc;

177

178 for (int i = 0; i < MAX_NETWORK_NODES; i++)

179 {

180 if (nodeInfo_table[i]. node == 0) {break;}

181

182 if (nodeInfo_table[i]. dc < max_tx_data_delay)

183 {

184 max_tx_data_delay = nodeInfo_table[i].dc;

185 }

186 }

187

188 // Convert duty cycle to time in ms

189 max_tx_data_delay = ((max_tx_data_delay ∗ PARAM_DC_PERIOD) / 100) ∗ 1000

− SYNC_SLOT_PERIOD − MAX_SLOT_CLK_DRIFT;

190

191 // Obtain a random time for the TX delay

192 tx_data_delay = rand_time(MIN_TX_DELAY_TIME, max_tx_data_delay);

193

194 // Start a timer to wait a random time before TX

195 RTCDRV_StartTimer(dataTxDelayTimerId, rtcdrvTimerTypeOneshot, tx_data_delay,

dataTxDelayCallback, NULL);

196

197 // Start listening for packets with N bytes

198 dataRX.length = NODE_PAYLOAD_SIZE;

199 EZRADIO_StartRx(0, dataRX.length);

200

201 // Stay in this loop until data slot is over

202 do {

203 EMU_EnterEM2(true);

204

205 // Transmit after a random delay

206 if (transmitData)

207 {

208 transmitData = false ;

84 APPENDIX B. HARVESTING NODE C CODE

209

210 // Stop timer

211 RTCDRV_StopTimer(dataTxDelayTimerId);

212

213 // Send DATA packet

214 dataTX.dest_id = 0x02;

215 dataTX.src_id = NODE_ID;

216 dataTX.type = NODE_DATA;

217 dataTX.length = NODE_PAYLOAD_SIZE;

218 dataTX.payload.node_data.sensor_data.rhData = sensor_data−>rhData;

219 dataTX.payload.node_data.sensor_data.tempData = sensor_data−>tempData;

220 dataTX.payload.node_data.dc = dc;

221 EZRADIO_StartTx(0, &dataTX);

222 setLED(LED_TRANSMIT);

223 }

224

225 // Check if radio interrupt is received

226 if (radioIrqReceived)

227 {

228 radioIrqReceived = false ;

229

230 // Check if packet is sent

231 if (EZRADIO_CheckTransmitted())

232 {

233 clearLED(LED_TRANSMIT);

234 }

235

236 // Check if packet is received

237 if (EZRADIO_CheckReceived(&dataRX))

238 {

239 if (dataRX.type == NODE_DATA)

240 {

241 // If new DC is received from another node, update in table

242 uint8_t nodeInfo_next = 0;

243

244 // Save duty cycles of other nodes

245 for (nodeInfo_next=0; nodeInfo_next<MAX_NETWORK_NODES;

nodeInfo_next++)

B.2. DUTY_CYCLING.C 85

246 {

247 if (nodeInfo_table[nodeInfo_next].node == 0 || nodeInfo_table[

nodeInfo_next].node == dataRX.src_id)

248 {

249 break;

250 }

251 }

252

253 if (nodeInfo_next < MAX_NETWORK_NODES)

254 {

255 nodeInfo_table[nodeInfo_next].node = dataRX.src_id;

256 nodeInfo_table[nodeInfo_next].dc = dataRX.payload.node_data.dc;

257 }

258 }

259 }

260

261 // Check if packet is received with CRC error

262 if (EZRADIO_CheckCRCError())

263 {

264 printf ("Pkt rxd − CRC Error\n");

265 }

266 }

267 } while (activeMode);

268 }

B.2 duty_cycling.c

1 /∗∗∗

2 ∗ @brief Function to update the duty cycle

3 ∗∗∗/

4 uint8_t DUTY_CYCLING_GetDC(float_t bat_level)

5 {

6 float_t temp = 0.0;

7 float_t op1 = 0.0;

8 float_t op2 = 0.0;

9

86 APPENDIX B. HARVESTING NODE C CODE

10 // Obtain the actual battery level

11 B_cur = bat_level;

12

13 // Compute the parameter vector

14 op1 = PARAM_STEP_SIZE / vector_mult(feature_vector, feature_vector, 3);

15 op2 = B_cur − vector_mult(feature_vector, param_vector, 3);

16 temp = op1 ∗ op2;

17

18 param_vector[0] = param_vector[0] + feature_vector[0]∗temp;

19 if (param_vector[0] <= 0) param_vector[0] = INIT_Pvec_0;

20 param_vector[1] = param_vector[1] + feature_vector[1]∗temp;

21 if (param_vector[1] >= 0) param_vector[1] = INIT_Pvec_1;

22 param_vector[2] = param_vector[2] + feature_vector[2]∗temp;

23 if (param_vector[2] <= 0) param_vector[2] = INIT_Pvec_2;

24

25 // Compute the duty cycle

26 dc = (B_tgt − param_vector[0]∗B_cur + param_vector[2]∗B_tgt) / param_vector[1];

27 if (dc < PARAM_MIN_DC) dc = PARAM_MIN_DC;

28 else if (dc > PARAM_MAX_DC) dc = PARAM_MAX_DC;

29

30 // Update the feature vector

31 feature_vector [0] = B_cur;

32 feature_vector [1] = dc;

33 feature_vector [2] = −B_tgt;

34

35 // Smooth the change of the duty cycle

36 dc_smooth = dc_smooth + PARAM_SMOOTHING∗(dc − dc_smooth);

37

38 // Control the variance of the duty cycle

39 dc_real = PARAM_VARIANCE∗dc + (1 − PARAM_VARIANCE)∗dc_smooth;

40

41 dc_real = dc_real∗100;

42

43 if (dc_real < APP_MIN_DC || dc_real > APP_MAX_DC)

44 {

45 printf ("error : invalid duty cycle");

46 return APP_MIN_DC;

47 }

B.3. ENERGY_HARVESTING.C 87

48

49 return dc_real;

50 }

B.3 energy_harvesting.c

1 /∗∗∗

2 ∗ @brief Calculate the battery ’ s energy for testing purposes

3 ∗∗∗/

4 static void getTestBattEnergy(float_t dc)

5 {

6 float_t P_harv = 0.0;

7 float_t P_cons = 0.0;

8 float_t E_tot = 0.0;

9

10 // Obtain the harvested power from experimental values [mW]

11 P_harv = (float_t)power_harvested[ph_index];

12 ph_cnt++;

13 if (ph_cnt >= 10) {

14 ph_cnt = 0;

15 ph_index++;

16 if (ph_index >= 144) ph_index = 0;

17 }

18

19 // Adjust the harvested power with the charge efficiency of the battery

20 P_harv ∗= BATT_CHARGE_EFFICIENCY;

21

22 // Obtain the power consumption according to last duty cycle [mW]

23 P_cons = dc∗NODE_ACTIVE_PC + (1−dc)∗NODE_SLEEP_PC;

24

25 // Total energy gained (+) or consumed (−) during last minute [J]

26 E_tot = ((P_harv − P_cons) ∗ 60) / 1000;

27

28 // New battery’s energy level

29 batt_energy += E_tot;

30

88 APPENDIX B. HARVESTING NODE C CODE

31 // Check boundaries of battery ’ s energy level

32 if (batt_energy > BATT_EFFECTIVE_ENERGY) batt_energy =

BATT_EFFECTIVE_ENERGY;

33 else if (batt_energy < 0) batt_energy = 0;

34 }

35

36

37 /∗∗∗

38 ∗ @brief Function to measure the current battery level

39 ∗∗∗/

40 float_t ENERGY_HARVESTING_getBatteryLevel(uint8_t duty_cycle)

41 {

42 uint32_t vBatt = 0;

43 float_t lBatt = 0.0;

44

45 #if (USE_TEST_VALUES)

46 // Use experimental values

47 getTestBattEnergy((float_t)duty_cycle/100);

48

49 // Convert battery energy to percentage level

50 lBatt = batt_energy / BATT_EFFECTIVE_ENERGY;

51 #else

52 // Sample the Vdd/3 to obtain the battery voltage

53 adcConversionComplete = false;

54 ADC_Start(ADC0, adcStartSingle);

55 while (!adcConversionComplete) EMU_EnterEM1();

56 vBatt = ADC_DataSingleGet(ADC0);

57

58 // Convert battery voltage to percentage level

59 lBatt = (float_t)(vBatt − MIN_BATTERY_LEVEL) / (MAX_BATTERY_LEVEL −
MIN_BATTERY_LEVEL);

60 #endif

61

62 return lBatt ;

63 }

B.4. MAIN.C 89

B.4 main.c

1 /∗∗∗

2 ∗ @brief Main function

3 ∗∗∗/

4 int main(void)

5 {

6 I2CSPM_Init_TypeDef i2cInit = I2CSPM_INIT_DEFAULT;

7 uint8_t duty_cycle = APP_INIT_DC;

8 float_t battery = 0.0;

9 sensorData sens_data = {0};

10 sensorData avgSens_data = {0};

11

12 // Chip errata

13 CHIP_Init();

14

15 // Configure HFRC frequency

16 CMU_HFRCOBandSet(cmuHFRCOBand_28MHz);

17

18 #if (DEBUG_ENERGY)

19 // Trace energy profile

20 BSP_TraceSwoSetup();

21 #endif

22

23 // Enable GPIO for sensor readings and LEDs

24 gpioSetup();

25

26 // Enable ADC for battery voltage readings

27 adcInit () ;

28

29 #if (DEBUG_DISPLAY)

30 // Initialize the display module

31 DISPLAY_Init();

32 RETARGET_TextDisplayInit();

33 printf ("\f");

34 #elif (DEBUG_USART)

35 // Enable UART(VCOM) for testing

36 RETARGET_SerialInit();

90 APPENDIX B. HARVESTING NODE C CODE

37 RETARGET_SerialCrLf(1);

38 printf ("\f");

39 #endif

40

41 // Initialize RTC

42 RTCDRV_Init();

43

44 // Initialize sensor bus

45 I2CIDM_Init(&i2cInit);

46

47 // Initialize radio and reset FIFOs

48 EZRADIO_Init();

49 EZRADIO_ResetTRxFifo();

50

51 // Set up the seed for random TX times

52 srand(NODE_ID);

53

54 // Get initial sensor status

55 if (!Si7013_Detect(i2cInit . port , SI7021_ADDR, NULL))

56 { printf ("Failed to detect sensor !! "); while(1) ; }

57

58 // Initialize clock

59 time_t network_time = COMMUNICATION_Init_Clk_Sync();

60 if (network_time > 0)

61 {

62 setTime(network_time, CLOCK_INIT_DELAY);

63 }

64 printf ("Clock set\n");

65

66 // Set up RTC

67 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_AllocateTimer(&

clockUpdateTimerId))

68 { printf ("Failed to allocate RTC!!"); while(1) ; }

69 if (ECODE_EMDRV_RTCDRV_OK != RTCDRV_StartTimer(clockUpdateTimerId,

rtcdrvTimerTypePeriodic,

70 CLOCK_UPDATE_MS, clockUpdateCallback, NULL))

71 { printf ("Failed to start RTC!!"); while(1) ; }

72

B.4. MAIN.C 91

73

74 // Main loop

75 while (1)

76 {

77 // Node wakes up

78 setLED(LED_ACTIVE);

79

80 // Measure battery level

81 battery = ENERGY_HARVESTING_getBatteryLevel(duty_cycle);

82

83 // Check if there is enough battery to operate

84 if (battery > 0)

85 {

86 // Update duty cycle

87 duty_cycle = DUTY_CYCLING_GetDC(battery);

88 active_period = (duty_cycle ∗ PARAM_DC_PERIOD) / 100;

89

90 // Turn the radio on

91 EZRADIO_Restart();

92

93 // Enter SYNC slot after each SYNC period

94 if (syncUpdate)

95 {

96 syncUpdate = false;

97 COMMUNICATION_Sync_TRx();

98 }

99

100 // Get sensor readings

101 Si7013_MeasureRHAndTemp(i2cInit.port, SI7021_ADDR, &sens_data.rhData, &

sens_data.tempData);

102

103 // If duty cycle is very low aggregate data, only transmit when it ’ s above a

threshold

104 if (duty_cycle < APP_MIN_DC_TX)

105 {

106 aggregateData(sens_data.rhData, sens_data.tempData, &avgSens_data);

107 active_period = 0;

108 }

92 APPENDIX B. HARVESTING NODE C CODE

109 else

110 {

111 if (saved_data)

112 {

113 aggregateData(sens_data.rhData, sens_data.tempData, &avgSens_data);

114 sens_data.rhData = avgSens_data.rhData;

115 sens_data.tempData = avgSens_data.tempData;

116 saved_data = false;

117 }

118

119 // Transmit node’s data

120 COMMUNICATION_Data_TRx(&sens_data, duty_cycle);

121 }

122

123 // Turn the radio off

124 EZRADIO_Shutdown();

125 }

126 else

127 {

128 duty_cycle = 0;

129 active_period = 0;

130 EZRADIO_Shutdown();

131 }

132

133 // Node goes to sleep

134 clearLED(LED_ACTIVE);

135 do {

136 EMU_EnterEM2(true);

137 } while (!activeMode);

138 }

139 }

B.5 radio.c

1 /∗∗∗

2 ∗ @brief Set radio to TX mode, switch to RX when done

B.5. RADIO.C 93

3 ∗∗∗/

4 bool EZRADIO_StartTx(uint8_t channel, radioPkt_data ∗data)

5 {

6 ezradio_request_device_state();

7

8 if (ezradioReply .REQUEST_DEVICE_STATE.CURR_STATE ==

EZRADIO_CMD_REQUEST_DEVICE_STATE_

9 REP_CURR_STATE_MAIN_STATE_ENUM_TX) {

10 return false ;

11 }

12

13 // Build packet structure

14 ∗(uint8_t ∗)(radioPkt + APP_PKT_MATCH_LOC) = data−>dest_id;

15 ∗(uint8_t ∗)(radioPkt + APP_PKT_LEN_LOC) = data−>length;

16 ∗(uint8_t ∗)(radioPkt + APP_PKT_SRCID_LOC) = data−>src_id;

17 ∗(uint8_t ∗)(radioPkt + APP_PKT_TYPE_LOC) = data−>type;

18

19 switch (data−>type)

20 {

21 case NODE_DATA:

22 ∗(uint32_t ∗)(radioPkt + APP_PKT_DATA_LOC) = data−>payload.node_data.

sensor_data.rhData;

23 ∗(uint32_t ∗)(radioPkt + APP_PKT_DATA_LOC + 4) = data−>payload.

node_data.sensor_data.tempData;

24 ∗(uint8_t ∗)(radioPkt + APP_PKT_DATA_LOC + 8) = data−>payload.node_data

.dc;

25 break;

26 case SYNC_DATA:

27 ∗(uint32_t ∗)(radioPkt + APP_PKT_DATA_LOC) = data−>payload.cur_time;

28 break;

29 default :

30 break;

31 }

32

33 // Fill the TX FIFO with data

34 ezradio_write_tx_fifo(data−>length, (uint8_t ∗)radioPkt);

35

94 APPENDIX B. HARVESTING NODE C CODE

36 // Start sending packet, START immediately, Packet n bytes long, go to RX when

done ∗∗∗∗change when want to retransmit

37 ezradio_start_tx(channel, 0x80, data−>length);

38

39 return true ;

40 }

41

42

43 /∗∗∗

44 ∗ @brief Check if Packet received IT flag is pending

45 ∗∗∗/

46 bool EZRADIO_CheckReceived(radioPkt_data ∗data)

47 {

48 if (false == ezradio_hal_NirqLevel())

49 {

50 // Read ITs, clear pending ones

51 ezradio_get_int_status(~(

EZRADIO_CMD_GET_INT_STATUS_REP_PH_PEND_PACKET_RX_PEND_BIT

), 0u, 0u);

52

53 // Check the reason for the IT

54 if (ezradioReply .GET_INT_STATUS.PH_PEND &

EZRADIO_CMD_GET_INT_STATUS_REP_PH_PEND_PACKET_RX_PEND_BIT

)

55 {

56 // Read the data from RX FIFO

57 ezradio_read_rx_fifo(data−>length, (uint8_t ∗) &radioPkt[0u]);

58

59 // Read out individual fields

60 //data−>length = ∗(uint8_t ∗)(radioPkt + 1u);

61 data−>src_id = ∗(uint8_t ∗)(radioPkt + 2u);

62 data−>type = ∗(uint8_t ∗)(radioPkt + 3u);

63

64 switch (data−>type)

65 {

66 case NODE_DATA:

67 data−>payload.node_data.sensor_data.rhData = ∗(uint32_t ∗)(radioPkt +

APP_PKT_DATA_LOC);

B.5. RADIO.C 95

68 data−>payload.node_data.sensor_data.tempData = ∗(uint32_t ∗)(radioPkt

+ APP_PKT_DATA_LOC + 4u);

69 data−>payload.node_data.dc = ∗(uint8_t ∗)(radioPkt +

APP_PKT_DATA_LOC + 8u);

70 break;

71 case SYNC_DATA:

72 data−>payload.cur_time = ∗(uint32_t ∗)(radioPkt +

APP_PKT_DATA_LOC);

73 break;

74 default :

75 break;

76 }

77

78 return true ;

79 }

80

81 // Reset FIFO

82 ezradio_fifo_info (EZRADIO_CMD_FIFO_INFO_ARG_FIFO_RX_BIT);

83 }

84

85 return false ;

86 }

96 APPENDIX B. HARVESTING NODE C CODE

Bibliography

[1] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy conservation in

wireless sensor networks: A survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537 – 568,

2009.

[2] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless sensor

networks: A survey on the state of the art and the 802.15.4 and zigbee standards,”

Computer Communications, vol. 30, no. 7, pp. 1655 – 1695, 2007. Wired/Wireless

Internet Communications.

[3] Silicon Labs, User Manual EZR32LG 868MHz Wireless Starter Kit, 2015.

[4] Silicon Labs, EZR32LG Reference Manual, 2015.

[5] Silicon Labs, AN633: Programming Guide for EZRadioPRO Si4x6x Devices, 2014.

[6] “Energy harvesting brochure.” [Online]. Available: http://www.we-

online.com/harvest.

[7] Energizer, ENERGIZER NH15-2300 Data Sheet.

[8] C. Vigorito, D. Ganesan, and A. Barto, “Adaptive control of duty cycling in energy-

harvesting wireless sensor networks,” in Sensor, Mesh and Ad Hoc Communica-

tions and Networks, 2007. SECON ’07. 4th Annual IEEE Communications Society

Conference on, pp. 21–30, June 2007.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: a survey,” Computer Networks, vol. 38, no. 4, pp. 393 – 422, 2002.

[10] G. Pottie and W. Kaiser, “Wireless integrated network sensors (wins): Principles

and practice,” CACM’00, 2000.

97

98 BIBLIOGRAPHY

[11] Silicon Labs, Si4464/63/61/60, 2012.

[12] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless

sensor networks,” in Proceedings of the 2Nd International Conference on Embed-

ded Networked Sensor Systems, SenSys ’04, (New York, NY, USA), pp. 95–107, ACM,

2004.

[13] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated

adaptive sleeping for wireless sensor networks,” Networking, IEEE/ACM Transac-

tions on, vol. 12, no. 3, pp. 493–506, 2004.

[14] T. Van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for

wireless sensor networks,” in Proceedings of the 1st international conference on

Embedded networked sensor systems, pp. 171–180, ACM, 2003.

[15] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient

and low-latency mac for data gathering in wireless sensor networks,” in Paral-

lel and Distributed Processing Symposium, 2004. Proceedings. 18th International,

p. 224, IEEE, 2004.

[16] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in energy

harvesting sensor networks,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 6, no. 4, p. 32, 2007.

[17] J. M. Gilbert and F. Balouchi, “Comparison of energy harvesting systems for wire-

less sensor networks,” international journal of automation and computing, vol. 5,

no. 4, pp. 334–347, 2008.

[18] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey and im-

plications,” Communications Surveys Tutorials, IEEE, vol. 13, pp. 443–461, Third

2011.

[19] A. Kansal, J. Hsu, M. Srivastava, and V. Raqhunathan, “Harvesting aware power

management for sensor networks,” in Design Automation Conference, 2006 43rd

ACM/IEEE, pp. 651–656, 2006.

[20] H. Kwon, D. Noh, J. Kim, J. Lee, D. Lee, and H. Shin, “Low-latency routing for

energy-harvesting sensor networks,” in Ubiquitous Intelligence and Computing,

pp. 422–433, Springer, 2007.

BIBLIOGRAPHY 99

[21] T. Cutler, “Implementing zigbee wireless mesh networking,” July 2005.

[22] A. Dunkels and J. Vasseur, “Ip for smart objects,” July 2010.

[23] N. Khalil, M. Abid, D. Benhaddou, and M. Gerndt, “Wireless sensors networks for

internet of things,” in Intelligent Sensors, Sensor Networks and Information Pro-

cessing (ISSNIP), 2014 IEEE Ninth International Conference on, pp. 1–6, April 2014.

[24] A. Kouche, “Towards a wireless sensor network platform for the internet of things:

Sprouts wsn platform,” in Communications (ICC), 2012 IEEE International Confer-

ence on, pp. 632–636, June 2012.

[25] Silicon Labs, AN625: Si446x API Descriptions, 2012.

[26] Silicon Labs, AN626: Packet Handler Operation for Si446x RFICs, 2013.

[27] Linear Technology Corporation, Demo Manual DC2080A, 2004.

[28] “Nimh battery charging basics.” [Online], May 2015. Available:

http://www.powerstream.com/NiMH.htm.

[29] Energizer, Nickel Metal Hydride (NiMH) Handbook and Application Manual.

[30] O. Dousse, P. Mannersalo, and P. Thiran, “Latency of wireless sensor networks with

uncoordinated power saving mechanisms,” in Proceedings of the 5th ACM interna-

tional symposium on Mobile ad hoc networking and computing, pp. 109–120, ACM,

2004.

[31] Silicon Labs, Crystal Oscillator (XO) 100 KHz to 250 MHz, 2013.

[32] A. Kansal, D. Potter, and M. B. Srivastava, “Performance aware tasking for environ-

mentally powered sensor networks,” ACM SIGMETRICS Performance Evaluation

Review, vol. 32, no. 1, pp. 223–234, 2004.

[33] Atmel, Range Calculation for 300 MHz to 1000 MHz Communication Systems, 2010.

