
Channel Filter Cross-Layer Optimization

Joar Nikolai Talstad

Master of Science in Electronics

Supervisor: Snorre Aunet, IET
Co-supervisor: Isael Diaz, Nordic Semiconductor

Jan Egil Øye, Nordic Semiconductor

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology

Title: Channel Filter Cross-Layer Optimization
Student: Joar Nikolai Talstad

Problem description:

The objective of this project is to analyze a channel filter in a number of design-
dimensions, in order to arrive to an ultimate solution that is re-configurable and
can potentially have low energy consumption and good performance at the cost of
moderate complexity increase. The goal is the final implementation of a channel
filter that compared to state-of-the-art in literature: consumes less energy, presents
the same performance, does not occupy more than 30% additional footprint. The
configuration time should not be longer than 2 clock cycles.

The methodology to be used consists of running multiple times a short design
cycle with initial constraints. A candidate implementation is generated at the end of
every cycle and saved for posterior evaluation. A comparison between the various
implementation candidates is done by comparing each solution in terms of cost and
performance. Finally, a number of candidates that best suit the initial constraints
are merged into a single reconfigurable architecture. In this manner the final solution
can adapt itself to the computational requirements in real time.

Responsible professor: Snorre Aunet, IET
Supervisors: Jan Egil Øye, Nordic Semiconductor

Isael Diaz, Nordic Semiconductor

Abstract

The recent raise of Internet of Things has increased the demand of
energy-efficient wireless devices. However, the design process of a low-
energy, high-performance device for all operational cases is not trivial.
Thus, in this thesis a cross layer optimization technique called algorithm-
architecture co-design is used to optimize one of the most critical DSP
blocks in any communication device, namely, the channel filter.

In order to effectively trade between similar RTL designs in terms
of area and power dissipation, a fully automated tool-flow is created
which performs RTL-simulation, synthesis, layout and power analysis.
The tool-flow provides the results of a 500 gate design in less than 5
minutes, running on a computer of the current industry standard, and is
considered to be very accurate based on the results of a previous study.

A digital low pass filter is first optimized through a constructed
filter sorting algorithm. It generates a large number of theoretical filter
solutions and sorts them based on how eligible they are for hardware
implementation. The algorithm is made generic, and hence applicable
for any filter requirement, and proves to find the most energy-efficient
solution.

The hardware architecture of the most effective filter implementation
is then thoroughly analyzed in two stages. Firstly, in order to find the
filter’s most effective quantization levels, and secondly, in order to make
the architecture dynamic with regards to filter performance and power
dissipation. In the latter, two main approaches are proposed.

The first approach adapts the filter order, and hence the stopband
attenuation, according to the quality of the radio link. The best imple-
mentation of this approach manages to reduce the power dissipation of
28%, 55% and 88% for the constructed low power modes, with an increase
of only 8% in area compared to the non-dynamic implementation.

The second approach adapts the quantization level, and hence the
amount of noise introduced by the filter, according to the radio link. Here,
the best implementation reduces the power dissipation of 11%, 32% and
81% for the low power modes, while increasing the area of only 18%.

Sammendrag

Konseptet Internet of Things har de siste årene økt etterspørselen
av energieffektive, trådløse enheter. Å utvikle systemer som tilbyr lavt
effektforbruk og høy ytelse for ethvert funksjonsområde er imidlertid ingen
triviell oppgave. Denne oppgaven anvender derfor en kryssoptimaliserings-
teknikk kalt algorithm-architecture co-design for å optimalisere en av de
mest kritiske DSP-blokkene i ethvert kommunikasjons-system, nemlig
kanalfilteret.

For å effektivt kunne veie like RTL design opp mot hverandre når det
gjelder areal og effekttap, er det laget en automatisk verktøy-flyt som
utfører RTL-simulering, syntese, layout og power analyse. Verktøy-flyten
gir resultater fra et 500 gate design på mindre enn 5 minutter når den
kjører på en datamaskin av dagens industristandard, og anses å være
nøyaktig basert på resultater fra en tidligere studie.

Et digitalt lavpass-filter er først optimalisert gjennom en konstru-
ert filtersorterings-algoritme. Den genererer et stort antall teoretiske
filterløsninger og sorterer dem basert på hvor egnet de er for hardware-
implementasjon. Algoritmen er generisk, og derfor anvendelig for alle
filter-spesifikasjoner, og viser seg å finne den mest energieffektive løsnin-
gen.

Hardware-arkitekturen til den mest effektive filter-implementasjonen
er deretter nøye analysert i to steg. Først for å finne filterets mest effektive
kvantiseringsnivå, og deretter for å gjøre arkitekturen dynamisk med
hensyn til filter-ytelse og effekttap. I det sistnevnte er det foreslått to
hovedtilnærminger.

Den første tilnærmingen tilpasser filterets orden, og dermed dempnin-
gen i stopp-bånd, i henhold til kvaliteten på radioforbindelsen. Den beste
implementasjonen av denne tilnærmingen reduserer effekttapet med 28%,
55% og 88% for de konstruerte laveffekt-modusene, med en økning i areal
på bare 8% sammenlignet med den ikke-dynamiske implementasjonen.

Den andre tilnærmingen tilpasser kvantiseringsnivået, og dermed
mengden støy introdusert av filteret, i henhold til radioforbindelsen. Her
gir den beste implementasjonen en reduksjon i effekttap på 11%, 32% og
81% for de forskjellige laveffekt-modusene, med en økning på bare 18% i
areal.

Preface

This thesis completes a Master of Science degree in Electronics, De-
sign of Digital Systems, submitted to the Department of Electronics and
Telecommunications at the Norwegian University of Science and Tech-
nology. The assignment was given by Nordic Semiconductor in January
2015, and the work was completed in June the same year.

Working with this thesis has been very interesting, but also challenging
and time-consuming, as it required me to familiarize with a lot of different
CAD tools, as well as theory regarding digital signal processing. The
work has given me insight in modern IC development, and practice in
designing and implementing low-power oriented systems, which I think
will be useful in the future.

Firstly, I would like to thank my supervisor Professor Snorre Aunet at
NTNU for his help and guidance throughout this last semester. I would
also like to thank my supervisors at Nordic Semiconductor, Jan Egil Øye
and Isael Diaz. Your continuous feedback throughout this process has
been invaluable for me, and for that I am very grateful. Finally, I wish
to thank my family for their support, and my fiancé Sissel Klakegg for
all her love and encouragement over these 5 years.

Trondheim, 2015-6-10

Joar Nikolai Talstad

Contents

List of Figures xi

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Algorithm-architecture co-design . 2
1.3 Previous work . 2
1.4 Objectives . 3
1.5 Thesis overview . 3

2 Background and Theory 5
2.1 The channel filter in wireless communication systems 5
2.2 Digital filters . 6

2.2.1 FIR filters . 7
2.2.2 IIR filters . 8

2.3 Quantization noise . 12
2.3.1 Truncation . 13
2.3.2 Rounding . 13

2.4 CMOS Power Dissipation . 14
2.4.1 Static Power . 14
2.4.2 Dynamic Power . 15

2.5 Low power techniques . 16
2.5.1 Clock gating . 16
2.5.2 Datapath gating . 16

vii

2.5.3 Power gating . 17

3 Automated area and power estimating tool-flow 19
3.1 The steps of a complete design cycle 20

3.1.1 RTL Design . 20
3.1.2 Commands in terminal . 20
3.1.3 Simulation . 20
3.1.4 Synthesis . 21
3.1.5 Layout . 22
3.1.6 Power Analysis . 23
3.1.7 Visualization in Matlab . 24

4 Automated filter generation and eligibility calculation 25
4.1 Automated filter generation . 25

4.1.1 Filter requirements . 26
4.1.2 Filter type . 26
4.1.3 Filter structure . 26
4.1.4 Filter generating algorithm 27

4.2 Coefficient quantization algorithm 28
4.3 Eligibility calculation . 30

4.3.1 Characteristics . 30
4.3.2 Eligibility function . 32

4.4 Results of the AFGEC . 33
4.4.1 Winner candidates from the AFGEC 34
4.4.2 Conclusion of the AFGEC . 37

5 RTL implementation of winner candidates 41
5.1 Framework . 41
5.2 Coefficients . 43
5.3 Power scenarios . 44
5.4 Results of the RTL implementations 44

5.4.1 Conclusion of the RTL implementations 47

6 Quantization level exploration 49
6.1 Quantization noise analysis . 49
6.2 Implementation . 51
6.3 Results of the quantization level exploration 52

6.3.1 Conclusion of the quantization level exploration 52

7 Dynamic RTL 55
7.1 Implementation . 55

7.1.1 Modes of performance . 56
7.1.2 Dynamic filter order . 57

7.1.3 Dynamic quantization noise 60
7.1.4 Power gating . 62

7.2 Results of the dynamic implementations 63
7.2.1 Dynamic filter order results 63
7.2.2 Dynamic quantization noise results 67
7.2.3 Power gating results . 70
7.2.4 Conclusion of the dynamic implementations 70

8 Discussion 73
8.1 Algorithm-architecture co-design and platform level implementation 73
8.2 Evaluation of dynamic implementations 74

8.2.1 Dynamic order . 74
8.2.2 Dynamic noise . 74
8.2.3 Possible combined solution 75

8.3 Thoughts around future work . 76
8.3.1 Fine-tune the AFGEC algorithm 76
8.3.2 Include power gating in tool-flow and implement 76
8.3.3 Extended quantization level exploration 76
8.3.4 Similar studies . 77
8.3.5 Link quality estimator and mode selector 77

9 Conclusion 79
9.1 Future work . 80

References 81

Appendices

A Automated area and power estimating tool-flow 83
A.1 Makefile for the automated tool-flow 83
A.2 IIRFilt testbench in SystemVerilog 84
A.3 Makefile for synthesis . 88
A.4 Synthesis design constraints . 88
A.5 Makefile for layout . 89
A.6 Makefile for power analysis . 90
A.7 Power analysis script . 90
A.8 Matlab script for visualizing score results 97

B Automated filter generation and eligibility calculation 101
B.1 Matlab script for AFGEC . 101

C RTL implementation of winner candidates 109
C.1 SystemVerilog code for IIRFilt46 109

D Quantization level exploration 115
D.1 Matlab script for quantization noise analysis 115

E Dynamic RTL 117
E.1 SystemVerilog code for DynOrderMux 117
E.2 SystemVerilog code for DynNoiseRnd12 123
E.3 Clock and reset distribution of dynamic RTL implementations . . . 131

List of Figures

1.1 The master thesis workflow . 4

2.1 Basic transmit-receive procedures in digital communications 5
2.2 Building blocks of DSP systems: Adder, multiplier and delay element . 6
2.3 Direct Form realization of an FIR filter 8
2.4 Direct Form I realization of an IIR filter 9
2.5 Direct Form II realization of an IIR filter 10
2.6 Cascade-Form realization of an IIR filter, with generic Second-Order

Section . 11
2.7 Relationship between original and truncated signal 13
2.8 Relationship between original and rounded signal 14
2.9 CMOS power dissipation categories . 14
2.10 CMOS power dissipation circuit diagram 15
2.11 Enabled register with and without clock gating 16
2.12 Datapath gating using guarded evaluation 17
2.13 Ideal and realistic effect of power gating 18

3.1 Automated area and power estimating tool-flow 19
3.2 Detailed overview of the automated area and power estimating tool-flow 24

4.1 Automated filter generation and eligibility calculation flow diagram . . . 25
4.2 Flow chart of the coefficient quantization algorithm 29
4.3 Calculated eligibility for each of the 300 filter implementations 33
4.4 The parameters which influence the four characteristics, of each filter

implementation . 34
4.5 The four characteristics yielding the Eligibility function, of each filter

implementation . 35

xi

4.6 Frequency response of IIRFilt46 . 36
4.7 Frequency response of IIRFilt21 . 37
4.8 Frequency response of IIRFilt29 . 38
4.9 Frequency response of IIRFilt30 . 38
4.10 Frequency response of IIRFilt120 . 39
4.11 Frequency response of IIRFilt296 . 39
4.12 Phase response in passband of winner candidates 40

5.1 Top level block diagram of the IIRFilt implementations 42
5.2 Block diagram of the first order section in IIRFilt 43
5.3 Block diagram of the second order section in IIRFilt 43
5.4 Cell area of IIRFilt implementations . 45
5.5 Number of logic cells in IIRFilt implementations 46
5.6 Average power dissipation in active scenario for IIRFilt implementations 46
5.7 Average power dissipation in inactive scenario for IIRFilt implementations 47
5.8 Frequency response of IIRFilt implementations, computed from impulse

response in simulation . 48

6.1 Quantization noise sources at top level 49
6.2 Quantization noise sources in the first order section 50
6.3 Quantization noise sources in the second order section 50
6.4 Total quantization noise power and SQNR for different inter-module

bitwidths . 51
6.5 Cell area of IIRFiltQ implementations 53
6.6 Average power dissipation in active scenario, for the IIRFiltQ implemen-

tations . 53
6.7 Average power dissipation in inactive scenario, for the IIRFiltQ imple-

mentations . 54
6.8 Frequency response of IIRFiltQ implementations, computed from impulse

response in simulation . 54

7.1 Link quality estimator and mode selector provides the dynamic modules
with the current mode of operation . 57

7.2 Implementation with dynamic filter order, DynOrder 58
7.3 Analysis of second order section in DynOrder when inactive 58
7.4 Implementation with dynamic filter order, including datapath gating

using input MUX, DynOrderMux . 59
7.5 Implementation with dynamic filter order, including datapath gating

using input registers, DynOrderReg . 60
7.6 Register of wordlength WL is divided into sections of significance 61
7.7 Implementations with dynamic quantization noise, DynNoise 62
7.8 Power gating analysis of the DynOrderMux implementation 63

7.9 Frequency responses of the dynamic filter order implementations 65
7.10 Power and area results of the dynamic filter order implementations . . . 66
7.11 Frequency responses of the dynamic quantization noise implementations 68
7.12 Power and area results of the dynamic quantization noise implementations 69
7.13 Estimated power and area results of a power gated implementation . . . 71

E.1 Registers and clock signals in the DynOrder and DynOrderMux imple-
mentations . 131

E.2 Registers and clock signals in the DynOrderReg implementation 132
E.3 Registers and clock signals in the dynamic quantization noise approach 133

List of Tables

3.1 Overview of test cases and power scenarios 21

4.1 Filter requirements . 26
4.2 Parameters in the filter generating algorithm 27

5.1 Quantized filter coefficients in decimal 44
5.2 Quantized filter coefficients in binary and hardware implementation . . 44

6.1 Implementations during quantization level exploration 52

7.1 Control signals in dynamic filter order implementations 57
7.2 Control signals in dynamic quantization noise implementations 60
7.3 Dynamic quantization noise implementations 61
7.4 180 nm technology power switching cell details 63

8.1 Possible combined dynamic order and dynamic noise solution 75

xv

List of Acronyms

AFGEC Automated Filter Generation and Eligibility Calculation.

CMOS Complementary Metal-Oxide-Semiconductor.

CSV Comma-Separated Values.

DSP Digital Signal Processing.

FDA Filter Design and Analysis.

FIR Finite Impulse Response.

FOS First Order Section.

IIR Infinite Impulse Response.

IoT Internet of Things.

IP Intellectual Property.

RTL Register-Transfer Level.

SAIF Switching Activity Interchange Format.

SOS Second Order Section.

SQNR Signal-to-Quantization-Noise Ratio.

VCD Value Change Dump.

xvii

Chapter 1

Introduction

Energy efficiency has become one of the most important aspect in today’s wireless
technology, with increasing demands in both performance and battery life time. With
the Internet of Things (IoT) at its staring point, which is expected to reach 50 billion
connected devices over the next decade [5], it is more relevant than ever to come up
with low power design methodologies that prolong the battery life time of wireless
communicating devices. Sleep modes are used to shut down parts of the circuit
whenever they are unused. But as important as saving power in sleep mode, is to
save power when the device is computing.

1.1 Motivation

When designing an Intellectual Property (IP) in the industry, there is usually not
time nor resources to compare tens or hundreds of different implementations in order
to find the most eligible one. Thus, several sub-optimal solutions will be implemented.
This thesis addresses this problem by taking a closer look at one of the IPs that may
be implemented in numerous ways, namely the channel filter, in order to find an
optimized implementation of the filter. The computational IPs are often implemented
as static, in the meaning of providing the same performance at all times. The IP then
needs to be able to provide the best level of performance for the worst case scenario,
which implies that it will be overqualified in most cases. However, by making the
IP dynamic it may adapt its performance to the computational requirements. This
will require a slight increase in the amount of logic, but may potentially reduce the
average power dissipation in the typical case.

1

2 1. INTRODUCTION

1.2 Algorithm-architecture co-design

This thesis will explore a methodology called algorithm-architecture co-design which
is described in the doctoral dissertation by Isael Diaz [4]. It states that “the best
implementation for any application requires a fine tuning between both algorithm
and architecture.” Diaz explains that since design constraints vary considerably
among different applications, a general abstraction model will result in sub-optimal
implementations. Thus, he writes, “efficient implementations can only be realized if
both algorithm and architecture are prepared towards a common goal.”

The common goal in this work is to reduce the power dissipation of the channel
filter, without increasing the area more than 30% and while maintaining the perfor-
mance of the filter at an acceptable level. This thesis will try to achieve the optimal
solution by addressing the algorithm and architecture aspects in the following way:

Algorithm optimization

Minimal power dissipation can be obtained by finding the simplest digital signal
processing algorithm which provides the desired filter performance. Investigating
different filter types and structures may then lead to find the implementation which
is most eligible for hardware implementation with regards to area and consequently
power dissipation. Some filtering algorithms may also be better suited for a dynamic
implementation, and should therefore be prioritized.

Architecture optimization

Investigating the architecture of the hardware implementation may lead to finding
possible simplifications. For instance, parts of the circuit may be bypassed in order
to reduce the power dissipation, although this will degrade the performance of the
filter and increase the total area due to additional control logic. Such trade-offs will
be examined in order to find the optimal solution in terms of power dissipation.

1.3 Previous work

In the author’s specialization project [14], the accuracy of two early stage power
estimation methods is explored. The first method takes use of the commercial Design-
for-Power tool PowerArtist by Ansys Apache, which estimates power dissipation from
Register-Transfer Level (RTL). The tool yields promising results and accuracy, but
its license is not available for the time being. The second method annotates switching
activity from RTL simulation on post-layout netlists in Synopsys’ PrimeTime-PX.
This method proves to detect the power states of a multi-voltage full-chip design,
and estimates its power dissipation within 1% deviation for low activity scenarios
and within 13% deviation for high activity scenarios, using a sign-off power analysis

1.4. OBJECTIVES 3

as reference. The specialization project report concludes that this method is well
suited for making RTL-design tradeoffs based on power dissipation in multi-voltage
designs, but that it will require a custom-made automated tool-flow. The automated
tool-flow should first perform a simplified synthesis and layout of an RTL-design
in order to generate a post-layout netlist, and then perform the power analysis in
PrimeTime-PX which applies activity files from RTL.

1.4 Objectives

The work to be done can be split into the following objectives:

1. Create an automated tool-flow based on the previous work, which enables
an efficient work-flow when making tradeoffs among a set of different RTL
implementations. The tool-flow should create a scorefile for each implementation
which extract details regarding area and power from the layout reports and
power estimation reports.

2. Create a script that generates a large number of theoretical filters and sorts
them based on hardware implementation friendliness.

3. Implement the highest scoring filters in Objective 2 in RTL, run them through
the tool-flow in Objective 1, and verify or disprove the prediction. Settle for
one implementation that will be used for further investigation.

4. Investigate the effect of quantizing at different levels. Make several RTL-
implementations and verify using the tool-flow in Objective 1. Find the optimal
quantization level in the tradeoff between quantization noise and area/power.

5. Investigate different approaches in making the channel filter dynamic. Im-
plement in RTL and analyze the gain versus overhead introduced using the
tool-flow in Objective 1.

The order and interrelation of the objectives are visualized in the master thesis
workflow, in Figure 1.1.

1.5 Thesis overview

Chapter 2 presents the theory regarding digital filters, power dissipation, quantization
noise and commonly used low-power design techniques, which is considered useful
material for the reader.

Chapter 3 describes the automated area and power estimating tool-flow. Chapter
4 describes the automated filter generation and eligibility calculation algorithm, along

4 1. INTRODUCTION

Start

Objective 1: Create area and
power estimating tool-flow

Objective 2: Create filter generation
and eligibility calculation program

Objective 3: Implement
winner candidates in RTL

Objective 4: Explore quantiza-
tion levels and implement in RTL

Objective 5: Explore dynamic ap-
proaches and implement in RTL

Stop

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Most eligible filter solutions

Most effective filter

Most effective quantization level

Optimized solution

Tool-flow

Figure 1.1: The master thesis workflow

with the results and conclusion with the most eligible solutions. Chapter 5 describes
the RTL implementation of the winner candidates, and presents their resulting area
and power dissipation. The results are compared to the predictions in Chapter 4,
and a conclusion is made where the most efficient filter is found. Chapter 6 carries
out a quantization noise analysis of the filter, and presents the results of different
quantization level implementations. Chapter 7 presents two main approaches in
making the filter dynamic. Several implementations are made for each approach,
which are analyzed with regards to area, power and performance.

Chapter 8 discusses the overall result, and takes a look at the methodology from
a more generic point of view. Finally, Chapter 9 presents the overall conclusions and
lists the objectives for future work.

Chapter 2

Background and Theory

This chapter presents the material needed in order to understand how power is
dissipated in CMOS circuits, some basic low-power design techniques, and some
digital signal processing theory regarding digital filters.

2.1 The channel filter in wireless communication systems

An illustration of a basic wireless communication system is shown in Figure 2.1 [9].
Note that this is an abstracted model, and does not necessarily represent the system
mentioned in this thesis.

Figure 2.1: Basic transmit-receive procedures in digital communications

5

6 2. BACKGROUND AND THEORY

In such systems, a channel filter is typically placed in both the transmitter and
the receiver, filtering the information in baseband. This is done in transmission to
avoid leaking energy into the neighboring bands, and in reception to reject interfering
signals outside the operating band, and unwanted products from mixers and amplifiers
[10]. This is typically done in the digital domain, which is the case that will be
explored in this thesis.

2.2 Digital filters

A digital filter is a Digital Signal Processing (DSP) system which alters the spectral
content of an input signal in order to remove noise, improve signal quality or extract
signal information, to mention a few common objectives [7]. DSP systems are defined
as an implemented algorithm which performs a certain operation on digital signals
in order to achieve a predefined task. The processing of digital signals, and hence
digital filters, can be described by additions, multiplications and time shifts, using
the building blocks in Figure 2.2 [7]. A digital filter can be implemented in software
or hardware using these building blocks.

Figure 2.2: Building blocks of DSP systems: Adder, multiplier and delay element

Filter representations

Digital filters may be represented in several ways, and one of them is the I/O
equation, or difference equation. The general constant-coefficient difference equation
of discrete-time systems is defined as [11]:

y(n) = −
N∑

k=1
aky(n− k) +

M∑
k=0

bkx(n− k) (2.1)

where x(n) is the input, y(n) is the output, and ak and bk are the coefficients of
the system. Here, the larger number of M and N is called the order of the system,

2.2. DIGITAL FILTERS 7

although N is usually selected to equal or exceed M . Another way of representing
digital filters is by its system function [11]:

H(z) =
∑M

k=0 bkz
−k

1 +
∑N

k=1 akz−k
(2.2)

which is the ratio of the system input and output after performing the z-transform.
The system function is defined by the coefficients ak and bk, which determines the
poles and zeros of the system, and thereby its frequency response [11]. The impulse
response of a digital filter can be obtained by applying the unit impulse function,

δ(n) =
{

1 , n = 0
0 , n 6= 0

(2.3)

to the input of the system. Hence, by substituting x(n) with δ(n) in Equation
2.1, the equation for the impulse response is found. Digital filters can be divided into
two categories based on their impulse response. These are, Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR) filters.

2.2.1 FIR filters

FIR filters are defined exclusively by the input x(n) and the coefficients bk, as the
output y(n) do not depend on previous output values. Hence, the I/O equation of
FIR filters can be defined by:

y(n) =
M∑

k=0
bkx(n− k) (2.4)

The impulse response of an FIR filter can, as the name implies, be represented
by a finite number of samples. These samples are identical to the coefficients of the
filter, as can be verified by inserting x(n) = δ(n) into Equation 2.4:

y(n) =
M∑

k=0
bk (2.5)

The simplest structure for implementing an FIR filter, is called the direct-form.
This realization requires M − 1 memory elements, M multiplications and M − 1
additions, which is illustated in Figure 2.3 [11].

8 2. BACKGROUND AND THEORY

Figure 2.3: Direct Form realization of an FIR filter

The finite length of the FIR filter impulse response ensures that they are stable
[7]. And when the system has linear phase, the coefficients also are symmetrical,
which makes it possible to reuse half the coefficients. This may reduce the number
of multiplications to M/2 [11]. However, the disadvantage with FIR filters is that
they require a relatively high order (number of coefficients) in order to obtain steep
curves in the frequency response, which implies a high complexity [7].

2.2.2 IIR filters

If the impulse response of a filter is not of finite length, it is called an IIR filter
[7]. An easy way to recognize an IIR filter is that the output of the filter not only
depends on previous input values, but also on previous output values, which creates
feedback loops in the system. The I/O equation and system function of an IIR filter
can be described by Equation 2.1 and 2.2, respectively.

There are several ways of realizing IIR filters. The Direct Form structures can be
realized by splitting the system function in Equation 2.2 into an all-zero filter and

2.2. DIGITAL FILTERS 9

Figure 2.4: Direct Form I realization of an IIR filter

an all-pole filter, as follows [11]:

H(z) = H1(z)H2(z) (2.6)

where

H1(z) =
M∑

k=0
bkz

−k (2.7)

and

H2(z) = 1
1 +

∑N
k=1 akz−k

(2.8)

10 2. BACKGROUND AND THEORY

Figure 2.5: Direct Form II realization of an IIR filter

The Direct Form I structure

The Direct Form I structure, illustrated in Figure 2.4, is realized by first implementing
the all-pole filter H1(z) followed by the all-zeros filter H2(z). Note that if the ak

coefficients are zero, this becomes an FIR filter. This structure requires M +N + 1
multiplications, M +N additions and M +N memory elements.

The Direct Form II structure

The Direct Form II structure, illustrated in Figure 2.5, is obtained by placing the
all-pole filter in front of the all-zero filter. This is a more compact structure, as
the memory elements may be reused. Consequently, it requires a maximum of
M + N + 1 multiplications, M + N additions, and max(M,N) memory elements.
Unfortunately, the Direct Form structures are extremely sensitive to quantization
and are not recommended in practical applications, as small changes in the filter
coefficients results in large changes in the placement of poles and zeros in the system
if N is large [11]. To reduce this effect, high-order IIR filters are often factored
into first- and second-order sections, or biquadratic sections, which are connected in
cascade to form the overall filter [7].

2.2. DIGITAL FILTERS 11

Figure 2.6: Cascade-Form realization of an IIR filter, with generic Second-Order
Section

The Cascade-Form structure

The Cascade-Form structure of H(z) can be expressed as

H(z) =
K∏

k=1
Hk(z) (2.9)

where

K = dN + 1
2 e (2.10)

and

Hk(z) = bk0 + bk1z
−1 + bk2z

−2

1 + ak1z−1 + ak2z−2 (2.11)

If N > M , some of the second-order sections will have b-coefficients that are zero.
Also, if N is odd, one of the sections will have ak2 = 0 in order to form a first-order

12 2. BACKGROUND AND THEORY

section. Each of the sections defined by Equation 2.11 can be realized as either
Direct Form I or II. There are also many ways of pairing the poles and zeros when
factoring into second-order sections, and ordering the sections. For infinite-precision
arithmetic all implementations are equivalent, but for practical applications the
various implementations may differ significantly [11]. The Direct Form II realization
of a cascaded second-order section is illustrated in Figure 2.6.

Commonly Used IIR Filters

When the structure of the filter is selected, the values of the coefficients need to
be determined. This implies determining the poles and zeros of the filter, which
is a well-developed field in analog filter design. There also exist several computer
programs for designing digital filters. One example is the Filter Design and Analysis
(FDA) tool in Matlab, which calculates the coefficients based on a set of design
constraints and specifications. However, the tool needs to know which filter to
generate, and this section presents the characteristics of the three most commonly
used IIR filters:

Butterworth filters are all-pole filters where all the poles occur on a circle of a
given radius, at equally spaced points. The frequency response of Butterworth filters
are monotonic in both passband and stopband [11].

Chebyshev Type I filters are all-pole filters that have equiripple behaviour in
passband, and monotonic behaviour in stopband. The poles is placed on an ellipse,
and is easiest determined by first finding the points of an equivalent order Butterworth
filter. The details of this can be found in [11].

Elliptic filters contain both poles and zeros, and have equiripple behaviour in
both passband and stopband. The poles are placed according to the Jacobian elliptic
function, and the zeros are placed on the imaginary axis. The Elliptic filters manages
to spread the approximation error equally over the passband and stopband, and
are therefore considered the most efficient from the view of yielding the smallest
order filter for a given specification. A disadvantage with the Elliptic filter compared
to Butterworth and Chebyshev, is that its phase response is more nonlinear in the
passband [11].

2.3 Quantization noise

When performing fixed-point multiplications, you usually need to quantize a number
via rounding or truncation in order to keep the same word length, which degrades the
precision level of the signal [11]. The consequence of rounding and truncation is that
a quantization error, the difference between the number prior and after quantization,

2.3. QUANTIZATION NOISE 13

is introduced to the signal. The characteristics of this error depends on the number
representation of the signal. We will focus on the two’s-complement representation.

2.3.1 Truncation

For positive numbers, truncation results in a number that is smaller than the original.
Hence, the quantization error Et is within the region −(2−bt − 2−b) ≤ Et ≤ 0, where
b and bt are the number of bits before and after truncation, respectively. In two’s
complement, truncating a negative number increases the magnitude of the negative
number. Hence, the truncation error is always negative, and falls within the region
−(2−bt − 2−b) ≤ Et ≤ 0 [11]. The relationship between the original signal x, and the
truncated signal Qt(x) is illustrated in Figure 2.7, where the quantization error is
defined as Et = x−Qt(x).

Figure 2.7: Relationship between original and truncated signal

If the quantization error is uniformly distributed in the range −∆ ≤ E ≤ 0, the
mean value of the error is −∆

2 and the quantization noise power is ∆2

3 .

2.3.2 Rounding

In rounding, the maximum error that can be introduced is 1
2 (2−br − 2−b), where br

is the number of bits after rounding. The round-off error can be either positive or
negative, and falls within the region − 1

2 (2−br −2−b) ≤ Er ≤ 1
2 (2−br −2−b). Thus the

quantization error of rounding is symmetrical about zero, as illustrated in Figure 2.8.
Here, the quantization error is defined as Er = x −Qr(x), where x is the original
signal and Qr(x) is the rounded signal.

If the quantization error is uniformly distributed in the range −∆
2 ≤ E ≤

∆
2 , the

mean value of the error is zero and the quantization noise power is ∆2

12 [11].

14 2. BACKGROUND AND THEORY

Figure 2.8: Relationship between original and rounded signal

2.4 CMOS Power Dissipation

The power dissipation of digital Complementary Metal-Oxide-Semiconductor (CMOS)
circuits can be categorized as shown in Figure 2.9. The following sections will explain
each component in detail, and present the resulting equation.

Figure 2.9: CMOS power dissipation categories

2.4.1 Static Power

The power dissipated by a gate when it is inactive, is called static power or leakage
power. This is due to the fact that all static power components are caused by
leakage currents. Most of the static power dissipation is due to the source-to-drain
subthreshold leakage Isb, which is caused by reduced threshold voltages that prevent
the gate from turning off completely. The other component results from current
leaking between the diffusion layers and substrate [12]. The leakage currents are
denoted Ilk in Figure 2.10.

2.4. CMOS POWER DISSIPATION 15

Figure 2.10: CMOS power dissipation circuit diagram

2.4.2 Dynamic Power

The power dissipated by an active gate is called dynamic power, and can be split
into the following two categories.

Internal Power

Whenever the voltage on a net changes, a circuit dissipates power due to charging or
discharging of internal capacitances. This is one of the components of internal power,
together with the more dominating component called short-circuit power. The latter
is caused by the short-circuit current going from Vdd to ground the short period of
time the PMOS and NMOS transistors are simultaneously open during switching
[12]. In Figure 2.10, Isc is the short-circuit current rising when both transistor types
are partially open.

Switching Power

The switching power is the power dissipated by charging and discharging the load
capacitance CL, which is given by the sum of net and gate capacitances at the output.
In Figure 2.10, Isw denotes the switching current charging and discharging the output
capacitance. The switching power component is part of the following equation, which
shows the total average power in a digital CMOS circuit:

Pavg = Pswitching + Pshort−circuit + Pleakage

= αCLV
2

ddfclk + IscVdd + IlkVdd

(2.12)

16 2. BACKGROUND AND THEORY

The switching component is calculated from the supply voltage Vdd, the load
capacitance CL, the clock frequency fclk and the switching activity factor α. The
factor α is defined as the average number of times in each clock cycle a specific node
makes a power consuming transition, going from 0 to 1 [3].

2.5 Low power techniques

This section presents some of the most common low-power techniques for reducing
dynamic and static power dissipation, which will be part of the dynamic implemen-
tations in Chapter 7.

2.5.1 Clock gating

One of the most common low-power techniques is clock gating, which means to
prevent the clock signal from propagating to parts of the circuit whenever it is not
required [1]. This reduces dynamic power in the clock distribution tree, and in the
sequential elements connected to that clock.

The most simple clock gate is realized with the clock signal and the enable signal
connected to the inputs of an AND-gate. However, this structure is sensitive to
glitches in the enable signal, that would create glitches in the gated clock signal as
well. A better solution is obtained by using a latch in addition to the AND-gate,
which filters the glitches in the enable signal [1]. This structure can be seen in
Figure 2.11b, where it appears in front of a register, while Figure 2.11a shows the
enabled register without clock gating.

(a) Not implemented (b) Implemented

Figure 2.11: Enabled register with and without clock gating

2.5.2 Datapath gating

Significant amounts of dynamic power may be wasted in combinational datapaths,
due to switching activity that has no contribution to the functionality of the circuit
[1].

2.5. LOW POWER TECHNIQUES 17

Guarded evaluation is a datapath gating technique which can be applied when
the outputs of embedded combinational blocks are not used. Transparent latches
are inserted at the inputs of the combinational block, and control logic is added to
determine when the output of the block is unused. The control signal is then used to
latch the inputs, preventing the combinational block from toggling [1]. An example
of guarded evaluation is illustrated in Figure 2.12, where a multiplier represents the
combinational block.

(a) Not implemented (b) Implemented

Figure 2.12: Datapath gating using guarded evaluation

2.5.3 Power gating

While clock- and datapath gating can be used to reduce the dynamic power dissipation
of a circuit, power gating may be used to reduce static power. The basic strategy of
power gating is to provide a low power mode and an active mode, and switch between
the modes in order to maximize the power reduction while minimizing the impact on
performance. A disadvantage of power gating is that it adds significant time delays
to safely power up and down the circuits. Also, controlling a power domain requires
one or more power switches, which will increase the area and also contribute with
additional leakage power. Figure 2.13 illustrates the ideal versus the realistic effect
of power gating [8].

18 2. BACKGROUND AND THEORY

(a) Ideal (b) Realistic

Figure 2.13: Ideal and realistic effect of power gating

Chapter 3

Automated area and power
estimating tool-flow

Start makefile

Simulation

Synthesis

Layout

Power Analysis

Stop makefile

Input RTL filelist

SAIF

Design files

Design files

Save CSV scorefile

VCD
namemap

Figure 3.1: Automated area and
power estimating tool-flow

This chapter describes the tool-flow that is cre-
ated in order to obtain area and power numbers
for each RTL implementation, addressing Objec-
tive 1 in Section 1.4. The tool-flow is based on
the previous work of the author [14], where it was
found that fast and accurate power estimations
could be obtained by applying switching activity
information from RTL simulation on post-layout
netlists. The tool-flow is created using a Make-
file of the GNU Make Utility1 to structure a list
of commands with certain dependencies. The
Makefile can be read in Appendix A.1, and its
function is illustrated in Figure 3.1. The tool-
flow estimates the area and power dissipation of
an RTL design automatically by simply provid-
ing it with the RTL filelist. The figure shows the
dependencies between the steps in the tool-flow,
and a simplified overview of how design files are
passed on to succeeding tools. The tool-flow is

1https://www.gnu.org/software/make/manual/make.pdf

19

https://www.gnu.org/software/make/manual/make.pdf

20 3. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

run on a computer of the current industry standard, holding two 2.8GHz six-core
Intel Xeon E5660 processors and 32GB RAM, running a 64 bit CentOS 5.10 operating
system.

3.1 The steps of a complete design cycle

Figure 3.2 shows a complete design cycle in this work, from RTL design to illustrated
results of the designs area and power dissipation, including the automated tool-flow.
The steps in this design cycle will now be explained in detail.

3.1.1 RTL Design

A module is designed in SystemVerilog2, and a filelist is written which lists all
RTL files that makes the complete design. The filelist must have a unique name,
representing that particular design, as it will be used throughout the whole tool-flow.

3.1.2 Commands in terminal

Two simple commands needs to be executed in terminal in order to start the automated
tool-flow. The first command sets the enviormental variable FILE_LIST to the unique
name of the current RTL design. The second command, make runpow, tells the
Makefile to run the power analysis. Due to the dependencies, the Makefile will first
complete the simulation, synthesis and layout, before starting on the power analysis.

3.1.3 Simulation

This is the first step of the automated tool-flow. The current RTL design is simu-
lated in Mentor Graphics’ Questa3, running a testbench which applies several test
frequencies to the data input of the module. Since all RTL designs are planned to
have the same interface, the testbench will be reused for all cases. The test scenarios
are listed in Table 3.1. The testbench SystemVerilog code can be found in Appendix
A.2. The testbench also logs the data output, such that the frequency response may
be calculated from the impulse response in simulation. Furthermore, the simulation
tool generates both Value Change Dump (VCD) and Switching Activity Interchange
Format (SAIF) activity files. VCD is a cycle accurate activity file format which
will be used to annotate switching activity in power analysis. SAIF is an average
activity file format which, in this case, only is used to generate a name-mapping file
in synthesis. The name-mapping will ensure name consistency between the activity
file and the netlist.

2http://www.eda.org/sv/SystemVerilog_3.1a.pdf
3http://www.mentor.com/products/fv/questa/

http://www.eda.org/sv/SystemVerilog_3.1a.pdf

3.1. THE STEPS OF A COMPLETE DESIGN CYCLE 21

Test case Power Scenario Description
Impulse response None A single pulse is input to the sys-

tem. This can be used to calcu-
late the frequency response of the
filter.

Inactive Inactive The clock is the only signal ac-
tive. This can be used to measure
power dissipation in idle state.

1MHz input Active The data input is a 1MHz sinus.
Attenuation is measured.

2MHz input Active The data input is a 2MHz sinus.
Attenuation is measured.

3MHz input Active The data input is a 3MHz sinus.
Attenuation is measured.

Table 3.1: Overview of test cases and power scenarios

3.1.4 Synthesis

This is the second step of the automated tool-flow. When the Makefile encounters
this step, it enters a new Makefile dedicated to synthesis, which can be found in
Appendix A.3. The synthesis is performed in Design Compiler4 using Synopsys’
reference scripts for recommended methodology [13].

The RTL design, given by the filelist variable, is synthesized to a netlist of logic
gates from a given cell library in Synopsys Design Compiler. The cell library used is
of 180 nm technology. The synthesis is performed under certain design constraints,
including input transition times, output capacitance load and clock signal details,
which can be found in Appendix A.4. A name-mapping file is generated from the
SAIF activity file created in simulation. This will be used in power analysis to map
the signals from RTL simulation to the corresponding pins in the post-layout netlist.
The synthesis creates a Verilog netlist, a Synopsys design file and an expanded
constraint file, which all will be used in layout.

Slight changes are made to the recommended methodology scripts in order to read
in the correct RTL design and perform the name-mapping. Important commands for
this are listed below.

4http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/

22 3. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

set FILE_LIST [getenv "FILE_LIST"]
set DESIGN_NAME "IIRFilt"
set RTL_SOURCE_FILES "[N_ReadFileList␣[subst␣"../rtl/${FILE_LIST}.fl"]]

"
analyze -format sverilog -define HINST_TSMC_180_ARM_1V2 ${

RTL_SOURCE_FILES}
saif_map -start
read_saif -auto_map_names -input /pri/jota/workspace/master/ip/IIRFilt/

sim/run/rtl/IIRFilt.saif -instance test_IIRFilt/u_IIRFilt -verbose
saif_map -type ptpx -write_map ${RESULTS_DIR }/${DESIGN_NAME}

.mapped.SAIF.namemap

3.1.5 Layout

As the Makefile encounters the layout step, it enters the layout dedicated Makefile,
which can be read in Appendix A.5. As for the synthesis step, the layout is also
performed using Synopsys’ reference scripts for recommended methodology [13].

The synthesized design files are passed on to Synopsys IC Compiler 5 which
performs floorplanning, place and route, clock tree synthesis and optimization algo-
rithms. The script is set up to create a quadratic core layout with a core utilization
of 40%, with a vertical power supply through the center of the core. Key commands
for this customization are listed below.

set DESIGN_NAME "IIRFilt"
set ICC_IN_VERILOG_NETLIST_FILE "/pri/jota/workspace/master/ip/IIRFilt/

syn/results/$DESIGN_NAME.mapped.v" ;
set ICC_IN_SDC_FILE "/pri/jota/workspace/master/ip/IIRFilt/

syn/results/$DESIGN_NAME.mapped.sdc"
set ICC_IN_DDC_FILE "/pri/jota/workspace/master/ip/IIRFilt/

syn/results/$DESIGN_NAME.mapped.ddc"
create_floorplan \

-control_type aspect_ratio \
-core_aspect_ratio 1 \
-core_utilization 0.4 \
-left_io2core 5 \
-bottom_io2core 5 \
-right_io2core 5 \
-top_io2core 5 \
-start_first_row

create_power_straps -direction vertical -start_at 150.0 -nets {
DVDD_1V2 AVSS} -layer METAL2 -width 1.0

5http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/
ICCompiler.aspx

http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/ICCompiler.aspx
http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/ICCompiler.aspx

3.1. THE STEPS OF A COMPLETE DESIGN CYCLE 23

The output of the layout is a post-layout netlist, a design constraint file, and a
parasitic exchange file. It also generates several layout reports, from which details
regarding cell count and area can be extracted. These will be included in the Comma-
Separated Values (CSV) scorefile generated in the end of power analysis. The details
are:

• Number of combinational cells
• Number of sequential cells
• Number of clock tree buffers/inverters
• Number of adders
• Combinational area
• Noncombinational area
• Total area

3.1.6 Power Analysis

When the Makefile reaches the final step, it enters the power analysis dedicated
Makefile, given in Appendix A.6. The power analysis script is also based on Synopsys’
reference scripts. However, the script can be read in its entirety in Appendix A.7
due to several customizations.

The design files from layout are passed on to Synopsys’ PrimeTime-PX6, which
performs the power analysis. It analyzes the activity in different scenarios, defined
by certain time windows of the VCD file. The power scenarios are given in Table 3.1,
where Active is an average power analysis of three different time windows. PrimeTime
uses the VCD activity file generated in RTL simulation to initiate toggling in as
many nets as possible. The name-mapping file ensures that the toggling information
reaches the correct pin. The nets that are not directly annotated, will get their
toggling information from activity propagating throughout the circuit. The power
analysis generates a power report for each scenario. The information extracted from
these reports into the scorefile is:

• Total internal power
• Total switching power
• Total leakage power
• Total power

6http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

24 3. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

Figure 3.2: Detailed overview of the automated area and power estimating tool-flow

3.1.7 Visualization in Matlab

Finally, one or more CSV scorefiles may be input to the Matlab7 script which is
created to visualize the scores and easily compare the different RTL implementations.
The script also reads the impulse response dumped from RTL simulation in order to
plot the frequency responses of the implementations. The Matlab script can be read
in Appendix A.8.

7http://se.mathworks.com/products/matlab/

Chapter 4

Automated filter generation and
eligibility calculation

Start AFGEC

Generate filters

Quantize co-
efficients

Gather char-
acteristics

Calculate eligibility

Stop AFGEC

Input settings

Output filter candidates

Figure 4.1: Automated filter gen-
eration and eligibility calculation
flow diagram

This chapter describes the Automated Filter Gen-
eration and Eligibility Calculation (AFGEC) al-
gorithm, which is a Matlab script that generates
a set of filters and sorts them based on how eligi-
ble they are for hardware implementation. The
flow of the AFGEC algorithm is illustrated in
Figure 4.1. The script can be read in its entirety
in Appendix B.1. Section 4.1 and 4.2 describes
the automated filter generation, Section 4.3 de-
scribes the calculation of the eligibility factor,
while Section 4.4 carry out the results of the
AFGEC algorithm.

4.1 Automated filter generation

This section explains the filter generation algo-
rithm, states the filter requirements and elabo-
rates on the filter types and structures that are
chosen.

25

26 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

4.1.1 Filter requirements

The filter to be generated should be a low-pass filter with cut-off frequency close to
1MHz and sampling frequency of 16MHz. The gain/attenuation at 1MHz should
be as close to 0 dB as possible, within 3 dB deviation. The attenuation at 2MHz
and 3MHz should be more than 6 dB and 12 dB, respectively. There are no strict
requirements with regards to phase linearity of the filter, other than the fact that it
should be close to linear in passband. The requirements are summarized in Table 4.1.

Factor Requirement
Characteristic Low pass
Sampling frequency 16MHz
Cut-off frequency 1MHz
Max att./gain at 1MHz 3 dB
Min attenuation at 2MHz 6 dB
Min attenuation at 3MHz 12 dB

Table 4.1: Filter requirements

4.1.2 Filter type

An advantage of FIR filters is the possibility of having linear phase response. However,
there are no strict requirements regarding phase linearity in this work, which makes
the IIR filters just as applicable. As described in Section 2.2.1, a disadvantage of
FIR filters is that they require a relatively high order in order to obtain steep curves
in the frequency response. A high filter order implies a large amount of registers
and multipliers, which again will have a significant impact on the area and power
dissipation. Therefore, since energy is of the essence in this work, it is decided to
focus on IIR filters. All of the commonly used IIR filters presented in Section 2.2.2
will be generated in the AFGEC algorithm. That is the Butterworth, Elliptic and
Chebyshev Type I filters. It is interesting to see if either of the IIR filters are more
eligible for hardware implementation than the others.

4.1.3 Filter structure

Obviously, implementing the IIR filters in a Direct Form I structure is a suboptimal
solution. As described in Section 2.2.2, it requires the double amount of registers
as for instance the Direct Form II structure, which clearly would effect the power
dissipation. Moreover, we read that both Direct Form structures are extremely
sensitive to quantization and was not recommended for practical applications. Hence,
all the generated filters will be structured as first- and second-order sections in the
Cascade-Form, which exploits the robustness of low order filters. This structure may

4.1. AUTOMATED FILTER GENERATION 27

also be well suited for a dynamic approach, where subsections can be enabled or
disabled based on the current filter requirement. This topic will be addressed in
Chapter 7.

4.1.4 Filter generating algorithm

The filter generating algorithm is the first part of the AFGEC script, which can be
read in its entirety in Appendix B.1. The script is a Matlab program which takes
use of the functions butter, cheby1 and ellip in order to design digital IIR filters.

Initial values

The purpose of the filter generating algorithm is to generate a large number of filters,
which eventually will be compared against each other. However, the filters are not
intended to range from very poor performance to excellent performance. It is rather
important that the filters are just slightly different, with almost identical performance.
Hence, when generating the filters, it is decided to keep the filter order nord fixed
at 3 for all solutions, and rather focus on the more fine-grained variations that rise
when sweeping the cut-off frequency of the filter over a certain interval. The initial
frequency fc is set according to the specifications, to 1MHz, and the frequency step
interval is set to 8 kHz. This is the interval which the cut-off frequency increases
from one filter solution to the next. Hence, as 100 filters of each type are generated,
their cut-off frequencies range from 1MHz to 1.8MHz. All filters are converted from
transfer function representation to second-order section representation in Matlab,
using the tf2sos function, before quantizing the coefficients. The initial values are
summarized in Table 4.2.

Parameter Value Description
Tb 100 Number of Butterworth filters to be generated
Tc 100 Number of Chebyshev Type I filters to be generated
Te 100 Number of Elliptic filters to be generated
nord 3 Filter order
fc 1MHz The initial filter cut-off frequency
fstep 8 kHz Frequency step interval

Table 4.2: Parameters in the filter generating algorithm

Definitions

A total of T filters are generated, grouped into a vector Y , defined as

Y = {y1, y2, · · · , yT −1}

28 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

where yi is the ith filter solution, and T is derived from

T = Tb + Tc + Te

The cut-off frequencies of the implementations are given by the initial value fc,
the step value fstep and the filter implementation number i, as

f i
c =


fc + fstep(i− 1) if 0 < i ≤ Tb

fc + fstep(i− Tb − 1) if Tb < i ≤ Tb + Tc

fc + fstep(i− Tb − Tc − 1) if Tb + Tc < i ≤ T

Each filter solution can be described by its N coefficients, defined in vector Ai, as

Ai = {ai
0, a

i
1, · · · , ai

Ni−1}

The number of coefficients N in a cascaded biquadratic structured filter depends
on the filter order nord, as

N = dnord

2 e ∗ 6

4.2 Coefficient quantization algorithm

The coefficient quantization algorithm is the second step of the AFGEC algorithm.
Its purpose is to represent the filter coefficients from the previous section with as
few bits as possible, without changing the original values more than a predefined
tolerance value. The coefficient quantization algorithm is visualized in Figure 4.2.

The quantization algorithm starts with zero fraction bits, and increases the
number of bits after the decimal point as long as the quantization error εij is greater
than the tolerance τ . A smaller tolerance value implies more accurate coefficients
and hence a higher number of bits per coefficient. In this work, a tolerance value
of 2−3 is used. The number of fraction bits will also be increased if the filter after
quantization has infinite gain for some frequency. This will occur if a pole is moved
to the unit circle, i.e. if one of the feedback coefficients ak are -1. Infinite gain
can also occur at DC if the sum of ak-coefficients are -1, since this implies that the
denominator in Equation 2.2 is zero. If this occurs, the property will be tested again,
with an increased number of fraction bits for all coefficients.

4.2. COEFFICIENT QUANTIZATION ALGORITHM 29

Start Quantization

Set tolerance

Set number of
fraction bits

Calculate quan-
tization error

εij > τ?
or

Pole on unit
circle?

Increase frac-
tion bits

Store quan-
tized value(s)

Infinite gain
at DC?

Increase frac-
tion bits in
entire section

Stop Quantization

yes

no

yes

no

Figure 4.2: Flow chart of the coefficient quantization algorithm

Definitions

Ȳ is the set of quantized filters, defined as

Ȳ = {ȳ1, ȳ2, · · · , ȳT −1}

And Āi is the vector of quantized coefficients in the ith filter solution, defined as

30 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

Āi = {āi
0, ā

i
1, · · · , āi

Ni−1}

The quantization error of the jth coefficient in the ith filter implementation, εij ,
is defined as

εij = ai
j − āi

j

When each quantization is finished, the number of bits used to represent the
coefficients in the ith filter is stored in the vector B̄i, which is defined as

B̄i = {b̄i
0, b̄

i
1, · · · , b̄i

Ni−1}

4.3 Eligibility calculation

As the set of filters is generated and quantized, it is of interest to sort them based on
how eligible they are for hardware implementation. For this, it is first necessary to
extract some characteristics that can indicate how expensive it will be to implement
each filter solution with regards to area and power dissipation.

4.3.1 Characteristics

As the structure and order of the filters are selected, the coefficients are the only
variables left which separate the solutions. The filter coefficients will define the number
of multipliers, adders and shift operators used in the filter, and their complexity,
which will have a significant impact on the filter’s power dissipation. The following
explains how these metrics can be extracted from the coefficient numbers.

Zero- and one-coefficients

The number of coefficients that are zero or one, are important parameters, as either
of them implies that the circuit will require a multiplier less. For instance, if the
coefficient bk2 in Figure 2.6 is 1, that multiplier can been removed, and the output
from the second delay element can be wired directly to the following adder. And if
bk2 is 0, not only the multiplier can be removed, but also the adder in front of bk1.
Hence, a zero-coefficient will also imply one less adder. The characteristics ci

0 and ci
1

are the rates of zero-coefficients and one-coefficients, respectively. These are defined
as

4.3. ELIGIBILITY CALCULATION 31

ci
0 = 1

N i

Ni−1∑
j=0

α(ai
j)

and

ci
1 = 1

N i

Ni−1∑
j=0

β(ai
j)

with the functions α(x) and β(x) defined as

α(x) =
{

1 if x = 0
0 if x 6= 0

and

β(x) =
{

1 if x = 1
0 if x 6= 1

As the number of zero- and one-coefficients are found, the remaining coefficients
should be investigated, as these are the ones that will be implemented as multipliers
and shift operators. When excluding the zero- and one-coefficients in Ai, we get the
set of remaining coefficients Âi, defined as

Âi = {âi
0, â

i
1, · · · , âi

Mi−1}

and the corresponding vector with number of bits after quantization

B̂i = {b̂i
0, b̂

i
1, · · · , b̂i

Mi−1}

where M i = N i(1− ci
0 − ci

1).

Single-one coefficients

If a coefficient have a binary representation that is all zeros except for a single-one bit,
it will be implemented as a shift operation. For instance, the binary representation

32 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

of the number 2 is 010.00, and the binary representation of the number 0.5 is 000.10.
Coefficients that hold this property will have a smaller contribution to the power
dissipation compared to a coefficient that is implemented as a multiplier, as a shift
operator is less complex. The number of single-one-coefficients out of remaining
coefficients is the characteristic ci

2, defined as

ci
2 = 1

M i

Mi−1∑
j=0

γ(âi
j)

with the function γ(x) defined as

γ(x) =
{

1 if x ∈ {2i}; where i ∈ Z
0 otherwise

Bits per coefficient

The parameter affecting the complexity of the multipliers and the shift operators, is
the number of bits per coefficient, as this determines the amount of combinational
logic. This describes the last characteristic ci

3 which is the average number of bits in
the remaining coefficients, defined as

ci
3 = 1

M i

Mi−1∑
j=0

b̂i
j

4.3.2 Eligibility function

The eligibility function Ei combines all the characteristics described above, in order
to find the filter solution most eligible for hardware implementation. The solution
yielding the highest number is considered most eligible. Parameters related to filter
performance, like phase linearity, ripple and attenuation, are inspected visually from
the results generated in Matlab. Note that ci

3 is inverted since fewer bits shall have
a positive impact on the eligibility.

Ei = ci
0 + ci

1 + ci
2 + 1

ci
3

4.4. RESULTS OF THE AFGEC 33

4.4 Results of the AFGEC

Figure 4.3 shows the calculated eligibility when generating 300 filters. Filter imple-
mentations 1 to 100 are Butterworth filters, 101 to 200 are Chebychev Type 1 filters,
and 201 to 300 are Elliptic filters. The first implementation of each filter type, i.e.
implementation number 1, 101 and 201, all have the same cut-off frequency of 1MHz.

Figure 4.3: Calculated eligibility for each of the 300 filter implementations

It is observed that the Butterworth filters yield the overall best results, while
the Elliptic filters have the worst results. The reason for this can be found when
studying Figure 4.4, which illustrates each parameter affecting the eligibility function.
First of all, it is observed that the number of zero-coefficients and one-coefficients are
constant at 2 and 6, respectively. An odd order number implies that one first-order
section will be present, which is represented as a second-order section with two
zero-coefficients in Matlab. And since all filter solutions have their zeroes at 8MHz,
they all get the same number of one-coefficients.

Moreover, the number of single-one-coefficients range from 2 for some Butterworth
filters, to 0 for some Elliptic filters. When looking at the corresponding characteristic
ci
2 in Figure 4.5, it can be seen that this number makes half of the remaining
coefficients in most of the Butterworth filters. These coefficients may be implemented
as shift operators, which might have a significant impact on the area and the power
dissipation. In the eligibility function in Figure 4.3, the contribution of ci

2 is easily
recognized in the plot.

34 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

From Figure 4.4 it can be seen that the total number of bits spans from 14 for
some of the Butterworth filters, to 19 for some of the Elliptic filters. The inverted
characteristic ci

3 have a small but significant impact on the eligibility function, making
it possible to trade between fairly similar solutions.

Figure 4.4: The parameters which influence the four characteristics, of each filter
implementation

4.4.1 Winner candidates from the AFGEC

The six unique highest scoring filter solutions have the following filter implementation
numbers: 46, 21, 29, 30, 120 and 296, where 46 is the best and 296 is the worst. These
filters will be referred to as IIRFilt46 to IIRFilt296, and their frequency response
is depicted in Figures 4.6 to 4.11. Since all filters are of third order, they consist
of one First Order Section (FOS) and one Second Order Section (SOS). The plots
show the frequency response of each subsection separately and combined in order

4.4. RESULTS OF THE AFGEC 35

Figure 4.5: The four characteristics yielding the Eligibility function, of each filter
implementation

to decide whether the filter has potential for dynamic implementation or not. The
four highest scoring candidates are all Butterworth filters, while the fifth and sixth
candidate are Chebyshev and Elliptic filters, respectively. The passband gain is
not of relevance when comparing the filters, but rather the shape of the frequency
response. All filters will be scaled such that they have unity gain when proceeding
to RTL implementation.

Figure 4.6 shows the frequency response of IIRFilt46, a third order Butterworth
filter with cut-off frequency at 1.36MHz. This solution came out with the highest
eligibility score, having two single-one-coefficients and only 14 bits in total. The
frequency response is rather linear in passband, from 0 to 1MHz, for both subsections
and the resulting third order filter. The subsections have slightly different cut-off

36 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

frequencies, and less attenuation at 2MHz, but may be used separately in a dynamic
approach. Figure 4.12 shows the phase response in passband for all six candidates,
and it is observed that IIRFilt46 seems most linear in this interval. The attenuation
from 1MHz to 2MHz is 8.4 dB.

Figure 4.6: Frequency response of IIRFilt46

The second highest scoring candidate is IIRFilt21, whose frequency response is
depicted in Figure 4.7. From the figure, a large bump at 1.3MHz is observed, caused
by the frequency response of the SOS. In Figure 4.12, its phase response is overlapped
by the yellow line of IIRFilt296. The linearity is affected, but mostly after 1MHz.
The attenuation from 1MHz to 2MHz is 10 dB, slightly better than the IIRFilt46.

IIRFilt29 is the third most eligible Butterworth filter, with its frequency response
showed in Figure 4.8. This filter has a slightly lower cut-off frequency than the
IIRFilt46, which implies more attenuation in passband, but also more attenuation at
2MHz. The attenuation difference from 1 to 2MHz is therefore slightly better, of
13.5 dB. The subsections have the same qualities as for the IIRFilt46, which makes
them suitable for dynamic implementation. IIRFilt29 has however the least linear
phase response of all candidates.

IIRFilt30 is the fourth highest scoring filter. Its quantization seems to have
shifted the cut-off frequency of 1.23MHz to a slightly higher frequency, which results
in less attenuation at both 1 MHz and 2 MHz. This affects the relative attenuation
at 2MHz, of 8.9 dB. The filter’s SOS is also slightly less linear in passband, which

4.4. RESULTS OF THE AFGEC 37

Figure 4.7: Frequency response of IIRFilt21

makes it less eligible for dynamic implementation. The phase response is rather
linear.

IIRFilt120 is the highest scoring Chebyshev filter. It has a fairly linear passband,
and a very steep curve in stopband. The attenuation from 1MHz to 2MHz is 12.4 dB,
and the phase response is also linear in passband. The only drawback is that the
frequency responses of the subsections are non-linear in passband, which makes the
filter less suited for dynamic implementation.

IIRFilt296 is the highest scoring Elliptic filter. It has the largest attenuation
from 1MHz to 2MHz, of 20 dB, but not as much attenuation at for instance 3MHz.
Moreover, its frequency and phase responses are quite linear in passband. However,
its drawback is that the subsections are less eligible separately, similarly to the
IIRFilt120 and the IIRFilt21.

4.4.2 Conclusion of the AFGEC

Based on the frequency and phase responses of the six highest scoring filter solutions,
two candidates remark themselves as particularly promising. These are IIRFilt46
and IIRFilt29, which yield linear characteristics in passband for both their first- and
second-order sections and their resulting third-order filter.

38 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

Figure 4.8: Frequency response of IIRFilt29

Figure 4.9: Frequency response of IIRFilt30

4.4. RESULTS OF THE AFGEC 39

Figure 4.10: Frequency response of IIRFilt120

Figure 4.11: Frequency response of IIRFilt296

40 4. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

Figure 4.12: Phase response in passband of winner candidates

Chapter 5

RTL implementation of winner
candidates

In order to ensure that the AFGEC algorithm in Chapter 4 makes precise predictions,
each of the six highest scoring filter solutions are implemented in RTL. Then, the
RTL implementations are passed through the tool-flow in Chapter 3, and compared
against each other in terms of area and power dissipation.

5.1 Framework

Since all the candidates are third order IIR filters, they have the exact same framework
consisting of one FOS and one SOS. The top level module is called u_IIRFilt, and
is depicted in Figure 5.1. The main inputs and outputs of the top level module are
the dataIn and dataOut buses, which hold 12 bits each. The inter-module bitwidth
B is a local parameter which may be changed in order to affect the quantization
noise in the filter. The subsections in the filter are designed to use the same input
and output word lengths, and to perform their own separate scaling to unity gain of
their data output. The reason for this is twofold. First of all, as every subsection has
the same interface, it is simple to combine different biquadratic sections at a later
stage. With unity gain, it is also possible to cascade as many biquadratic sections as
desired without having to concern about the signal to over- or underflow. Secondly,
the common word length and separate scaling allow us to more easily bypass parts
of the filter in a dynamic approach. This will be adressed in Chapter 7.

41

42 5. RTL IMPLEMENTATION OF WINNER CANDIDATES

Figure 5.1: Top level block diagram of the IIRFilt implementations

The top level module has a Prolong-section, which prolongs the input signal to
match the bitwidth of the u_FOS interface. It also has a Round and scale-section
at the end, which downscales the output of the last biquadratic section to match the
12 bit output signal.

Figure 5.2 and Figure 5.3 show the framework of the FOS and the SOS, respectively.
As mentioned, they have the same bitwidth externally, but internally they have some
differences. The internal bitwidth is determined by the inter-module bitwidth, B,
and the bitwidth of the coefficients, C. These variables decide the bitwidth of the
multiplier outputs. Hence, the input to u_FOS is prolonged to B + C bits, which is
the internal word length of that section. In order to obtain full precision at the adder
outputs, the bitwidth should be increased by one bit when adding two terms, and
two bits when adding three terms. This is impossible to realise for the first adder, as
it is part of a feedback loop. This is part of the quantization level exploration, which
will be addressed in Chapter 6. The second adder in u_FOS however, may obtain
full precision by increasing the output bitwidth of one bit. The FOS has a total of
2B+C registers: B+C for the Z01 registers and B for its output register Zint. The
multipliers A01 and B01 may also be implemented as shift operators or simply not
implemented at all, based on the coefficients determining the filter characteristics.
This will be explained more thoroughly in the next section.

Due to the adders operating with three terms in u_SOS, the internal bitwidth is
increased by one bit compared to u_FOS. Moreover, the output of the second adder
is increased by two bits to obtain full precision. Counting the delay elements and
the output register Zout, the SOS has a total of 3B + 2C + 2 registers.

The inter-module bitwidth B of the winner candidate implementations is chosen
to be 20 bits. This can be regarded as an initial value, and will be further investigated
in Chapter 6.

5.2. COEFFICIENTS 43

Figure 5.2: Block diagram of the first order section in IIRFilt

Figure 5.3: Block diagram of the second order section in IIRFilt

5.2 Coefficients

The only factor distinguishing one filter implementation from the next, is the set
of coefficients shown in Table 5.1. As described in Chapter 4, the filters are sorted
based on their coefficients, and how eligible they are for hardware implementation.
Table 5.2 shows how the coefficients are implemented in RTL. Coefficients that are 1
implies that no multiplier is implemented. Coefficients that are powers of two are
implemented as left or right shift operations, represented as << or >>, respectively.
The remaining binary numbers imply that multipliers of the specified bitwidth are
implemented. From the table, it can be seen that IIRFilt46 and IIRFilt21 are
implemented with two shift operators and two 25-bit multipliers (B = 20, C = 4),
while IIRFilt29 and IIRFilt30 need 26-bit multipliers. Moreover, IIRFilt120 and
IIRFilt296 require three multipliers. The SystemVerilog implementation of IIRFilt46
can be read in its entirety in Appendix C.1. The remaining filter implementations
are not included as appendices, since all of them share the same framework.

44 5. RTL IMPLEMENTATION OF WINNER CANDIDATES

Filter A01 B01 A11 A12 B11 B12
IIRFilt46 0.50 1.00 1.250 −0.500 2.00 1.00
IIRFilt21 0.50 1.00 1.500 −0.750 2.00 1.00
IIRFilt29 0.50 1.00 1.500 −0.625 2.00 1.00
IIRFilt30 0.50 1.00 1.375 −0.625 2.00 1.00
IIRFilt120 0.75 1.00 1.500 −0.750 2.00 1.00
IIRFilt296 0.50 1.00 1.500 −0.750 −1.25 1.00

Table 5.1: Quantized filter coefficients in decimal

Filter A01 B01 A11 A12 B11 B12
IIRFilt46 >> 1 01.01 11.10 << 1
IIRFilt21 >> 1 01.10 11.01 << 1
IIRFilt29 >> 1 01.100 11.011 << 1
IIRFilt30 >> 1 01.011 11.011 << 1
IIRFilt120 00.11 1 01.10 11.01 << 1
IIRFilt296 >> 1 01.10 11.01 10.11 1

Table 5.2: Quantized filter coefficients in binary and hardware implementation

5.3 Power scenarios

The power scenarios in the analysis are called active and inactive. The active scenario
performs an average power estimation of three time windows in simulation. The
first window when applying a 1MHz sine tone to the input of the filter, the second
window when applying 2MHz, and the last window for 3MHz. The inactive scenario
performs an average power estimation of the filter in a time window where the data
input is zero for the entire period. However, the clock is still running in this scenario.
How the power scenarios are connected to the simulation testbench is summarized in
Table 3.1.

5.4 Results of the RTL implementations

Figure 5.4 shows the resulting area of the RTL implementations. It can be seen that
the prediction made in AFGEC is reflected to a great extent: IIRFilt46 has the
smallest area, and the area increases in the order of the winner candidates in Section
4.4.1, at least for the Butterworth filters. However, IIRFilt120 and IIRFilt296 come
out with smaller areas than IIRFilt30, even though the latter has one multiplier
less. This may be the result of IIRFilt30 having larger multipliers. The figure
shows a small increase in sequential area for IIRFilt29 and IIRFilt30, but the main

5.4. RESULTS OF THE RTL IMPLEMENTATIONS 45

Figure 5.4: Cell area of IIRFilt implementations

contribution is due to combinational cell area.

Figure 5.5 shows that the number of sequential cells is right above 100. This corre-
sponds to the calculation of 5B + 3C + 2, which results in 117 registers for IIRFilt29
and IIRFilt30, and 114 registers for the remaining implementations. The major
difference is in the number of combinational cells, where the largest implementation
contains 700, or 40% more than the smallest implementation. This indicates that
the synthesis tool has not been able to do as many simplifications for the multipliers
in IIRFilt30, as in IIRFilt29 whose RTL is almost identical. It is noted that the
implementations have slightly different number of clock tree buffers inferred. While
IIRFilt21 and IIRFilt120 have 2 buffers, the rest have 3. This might affect the power
dissipation.

The resulting power dissipation in the active scenario is depicted in Figure 5.6.
The result looks very much as expected, reflecting the area in Figure 5.4. The
only difference from the area results is that the power dissipation of IIRFilt30 is
slightly less than for the IIRFilt296. Apparently, the combinational logic causing the
additional area of IIRFilt30 do not have a high toggle rate in this scenario. When
sorting the implementations with regards to power dissipation, the results yield the
same order as predicted in Section 4.4.1, except for IIRFilt120 which comes out
slightly better than expected.

46 5. RTL IMPLEMENTATION OF WINNER CANDIDATES

Figure 5.5: Number of logic cells in IIRFilt implementations

Figure 5.6: Average power dissipation in active scenario for IIRFilt implementations

5.4. RESULTS OF THE RTL IMPLEMENTATIONS 47

Figure 5.7: Average power dissipation in inactive scenario for IIRFilt implementations

The average power dissipation in the inactive scenario is shown in Figure 5.7.
Since the reset and clock signals are the only sources of switching activity in this
scenario, the power dissipation is mainly due to the clock distribution network. When
comparing the results with the implementation details in Table 5.2, we see a clear
pattern: IIRFilt46 and IIRFilt21 have the same number of registers and multipliers,
and yield the same power dissipation. The same applies for IIRFilt29 and IIRFilt30,
which have a slightly larger number of registers, and for IIRFilt120 and IIRFilt296,
which have one additional multiplier.

The frequency responses in Figure 5.8 are computed from the filters impulse
response extracted from simulation. This means that the plot is reflecting the function
of the actually implemented filters. When comparing the frequency responses with
the ones obtained in Chapter 4, the characteristic of each filter can be recognized.
This indicates that the filters are implemented correctly.

5.4.1 Conclusion of the RTL implementations

The work in this chapter is carried out in order to confirm that the AFGEC algorithm
is performing accurate predictions, and in order to ensure that the right candidate
is chosen for further exploration. The AFGEC algorithm has proved to yield good
indications of filter eligibility with regards to area and power dissipation. The most
eligible candidate with regards to area and power dissipation is IIRFilt46, which

48 5. RTL IMPLEMENTATION OF WINNER CANDIDATES

Figure 5.8: Frequency response of IIRFilt implementations, computed from impulse
response in simulation

also was found by the algorithm. We also recall from Chapter 4 that IIRFilt46
and IIRFilt29 had the best potential for dynamic implementation, due to the
linearity of their subsection frequency responses. This concludes that IIRFilt46 is the
most eligible filter at this point, and will be used as framework when investigating
quantization levels and dynamic approaches in the next chapters.

Chapter 6

Quantization level exploration

This chapter describes the exploration of the signal bitwidths internally to the
IIRFilt46, and the resulting amount of quantization noise that rise as these parameters
are altered.

6.1 Quantization noise analysis

The quantization noise sources in IIRFilt46 are shown in Figures 6.1 to 6.3. As
described in Section 2.3, the amount of quantization noise depends on whether we
perform rounding or truncation on a signal. Q1, Q2, Q4, Q5 and Q6 are quantization
noise sources due to bit truncation, while Q3, Q7 and Q8 are sources due to rounding.
This gives the following equation for the total quantiation noise power:

Figure 6.1: Quantization noise sources at top level

49

50 6. QUANTIZATION LEVEL EXPLORATION

Figure 6.2: Quantization noise sources in the first order section

Figure 6.3: Quantization noise sources in the second order section

σ2
e = ∆2

1
3 + ∆2

2
3 + ∆2

3
12 + ∆2

4
3 + ∆2

5
3 + ∆2

6
3 + ∆2

7
12 + ∆2

8
12

where ∆i is the smallest difference between numbers represented by the ith
quantization noise source. When filling in the bitwidth of the respective signals after
quantization, we get the following equation:

σ2
e =2−2(B+C−1)

3 + 2−2(B+C−1)

3 + 2−2(B−1)

12 + 2−2(B+C)

3

+ 2−2(B+C)

3 + 2−2(B+C)

3 + 2−2(B−1)

12 + 2−2(11)

12

(6.1)

where B is the inter-module bitwidth, and C is the bitwidth of the coefficients in
the multipliers. Figure 6.4a shows how σ2

e develops as the inter-module bitwidth is

6.2. IMPLEMENTATION 51

increased from 12 to 20 bits, with C being fixed at 4. The Matlab source code of the
quantization noise analysis and illustration, is found in Appendix D.1.

The Signal-to-Quantization-Noise Ratio (SQNR) is given by

SQNR = 10 log10
Px

Pn

where the power of the quantization noise Pn = σ2
e , and the signal power is

defined as Px = 1. Figure 6.4b shows that the SQNR improves significantly in the
interval 12 to 15 bits, and that the improvement flattens after this. The reason why
the amount of noise flattens, is due to fact that the last term in Equation 6.1 is a
constant. We may eliminate all other terms by increasing the inter-module bitwidth
sufficiently, but due to the filter specifications we will always have to perform a
rounding at 12 bits on the data output.

(a) Total quantization noise power (b) Signal-to-quantization-noise ratio

Figure 6.4: Total quantization noise power and SQNR for different inter-module
bitwidths

6.2 Implementation

In order to choose the optimal inter-module bitwidth, it is interesting to explore the
reduction in area and power as B is decreased. Hence, six RTL implementations of
IIRFilt46 with different B-values are passed through the area and power estimating
tool-flow, listed in Table 6.1. All implementations share the same RTL source code,
shown in Appendix C.1, but with a different value for the inter-module bitwidth
parameter, named wlinout in RTL.

52 6. QUANTIZATION LEVEL EXPLORATION

Name Inter-module bitwidth B
IIRFiltQ12 12
IIRFiltQ13 13
IIRFiltQ14 14
IIRFiltQ15 15
IIRFiltQ16 16
IIRFiltQ20 20

Table 6.1: Implementations during quantization level exploration

6.3 Results of the quantization level exploration

Figures 6.5 to 6.8 show the results of the implementations with different inter-module
bitwidths. Figure 6.5 shows that the area is affected in a linear manner as B increases.
Note that IIRFiltQ17, IIRFiltQ18 and IIRFiltQ19 are not implemented, which is
the reason why there appears a larger step in the results between IIRFiltQ16 and
IIRFiltQ20 compared to the rest of the implementations.

The power dissipation in the active and inactive scenarios are, similarly to the
cell area, also developing in a linear manner as B increases. This is illustrated in
Figure 6.6 and 6.7.

Figure 6.8 shows that the frequency response is maintained for all implementations.
According to the figure, the increased amount of noise mostly affects the gain at
frequencies above 5MHz, where the attenuation is more than 40 dB anyway.

6.3.1 Conclusion of the quantization level exploration

Neither of the implementations stand out as extraordinary in terms of area, power
dissipation or performance. Since the area and power dissipation develops linearly
as B increases, it is chosen to determine the inter-module bitwidth based on the
theoretical SQNR values. Hence, the inter-module bitwidth for further exploration is
chosen to be 15 bits, since this is where the SQNR in Figure 6.4b saturates.

6.3. RESULTS OF THE QUANTIZATION LEVEL EXPLORATION 53

Figure 6.5: Cell area of IIRFiltQ implementations

Figure 6.6: Average power dissipation in active scenario, for the IIRFiltQ implemen-
tations

54 6. QUANTIZATION LEVEL EXPLORATION

Figure 6.7: Average power dissipation in inactive scenario, for the IIRFiltQ imple-
mentations

Figure 6.8: Frequency response of IIRFiltQ implementations, computed from impulse
response in simulation

Chapter 7

Dynamic RTL

This part of the work aims to design a channel filter which adapts its performance
dynamically according to its surroundings. For instance, the filter may degrade its
performance under ideal conditions in order to save energy, while it under worse
conditions might need to use all its resources in order to perform satisfactory. This
chapter describes two main approaches in making the filter dynamic with regards
to performance and power dissipation. Each approach is realised in several slightly
different implementations, which is passed through the area and power estimating
toolflow in order to find the optimal solution.

7.1 Implementation

An effective way of saving energy is to reduce the amount of switching activity.
Switching activity in registers can be eliminated by preventing the clock to propagate,
using integrated clock gating cells. Unwanted switching activity in combinational
cells however, can be eliminated with datapath gating. As described in Section
2.5.2, this can be realised by inserting latches at the data input. However, other
constructs can provide the same functionality. For instance, by inserting a MUX at
the input of the combinational block which selects a signal of all zeros when disabled,
or by clock gating a register at the input of the combinational block. The following
two ideas take use of these methods in order to reduce the power dissipation while
systematically adjusting aspects of the filter performance:

55

56 7. DYNAMIC RTL

Dynamic Filter Order Disabling all switching activity in an entire biquadratic
section with clock and/or datapath gating in order to reduce power dissipation.
Disabling the sections will affect the order of the filter, and hence the slope of
the frequency response. Increased area will be due to multiplexers, ICG cells
and control logic.

Dynamic Quantization Noise Disabling the N least significant bits in every reg-
ister in both subsections in order to save power. This will affect the arithmetic
precision of the filter, and hence the amount of quantization noise. Increased
area will be due to multiplexers, ICG cells and control logic.

7.1.1 Modes of performance

In order for the filter to know what mode of performance that is needed at all times,
it is added an input control signal, mode, to the module. As illustrated in Figure 7.1,
the control signal is assumed to originate from a Mode selector. The mode selector
receives a signal from a module further down the signal chain, here called the Link
quality estimator, which holds a quantized value of the quality of the radio link, for
instance the bit error rate. This signal is passed on to the mode selector which then
decides which mode of performance that is required. As seen in the figure, the mode
signal is imagined to not only be passed on to the channel filter, but also to other
dynamic modules using the same interface. This would allow an entire system to
become dynamic, and hence save even more energy in the typical case. Designing
the link estimator is considered to be out of the scope of this thesis, so the mode
signal is therefore treated as a known input signal. The signal has two bits, which
represents the following four modes:

High Performance The high performance mode will utilize all available resources,
and hence consume the most power. It will provide the same performance as
the non-dynamic filter IIRFiltQ15 in Chapter 6, but is expected to have a
slightly larger power dissipation due to the overhead of the dynamic logic. The
channel filter will take use of this mode only when the radio link is poor.

Moderate The moderate mode will free some of the available resources. It will
provide slightly worse performance, but is expected to have a noticeably lower
power dissipation. It is assumed that the channel filter will use this mode of
performance when the radio link is decent.

Low Performance The low performance mode will free a larger part of the available
resources. It will just provide an adequate performance, but is expected to
have a significantly lower power dissipation. It is assumed that the channel
filter will use this mode when the radio link is very good.

7.1. IMPLEMENTATION 57

Bypass The bypass mode will free all resources except the dynamic logic overhead.
The performance is equivalent to not using any filter at all, and the power
dissipation should therefore be close to zero. It is assumed that the channel
filter will use this mode only when the radio link is so good that an all-pass
filter will do the job.

Figure 7.1: Link quality estimator and mode selector provides the dynamic modules
with the current mode of operation

7.1.2 Dynamic filter order

All the dynamic filter order implementations take use of the same control signals,
shown in Table 7.1. enaSOS is the control signal that enables the second-order section,
while enaFOS enables the first-order section. The highest performance is achieved
when enabling both sections, which yields a third order filter. The second best
performance is achieved when enabling only the SOS, yielding a second order filter.
The third best performance when enabling only the FOS, resulting in a first order
filter. This can be realised with a direct mapping of the bits in the mode signal.

mode Mode name enaSOS enaFOS
11 High performance 1 1
10 Moderate 1 0
01 Low performance 0 1
00 Bypass 0 0

Table 7.1: Control signals in dynamic filter order implementations

DynOrder

The basic implementation is called DynOrder, and is illustrated in Figure 7.2. It
takes use of two integrated clock cells, one for each of the sections in the filter. The
clock gates are enabled by the control signals in Table 7.1. As the registers are gated,
they also need to be reset in order to ensure that the output freeze at zero. This
is done by the Reset Logic blocks, which also are enabled by enaFOS and enaSOS.
The reset logic blocks hold the simple boolean expressions:

58 7. DYNAMIC RTL

rst_gate0 = rst OR !enaFOS
rst_gate1 = rst OR !enaSOS

Figure 7.2: Implementation with dynamic filter order, DynOrder

As the registers are freezed at zero, no toggling will occur in the multipliers, as
shown in Figure 7.3. This implies that dataIn will flow through the circuit, as only
zeroes are added in both junctions. However, due to the Round and scale block,
dataOut would have become a downscaled version of dataIn in the case where u_SOS
is bypassed. This would have degraded the SQNR. Hence, the multiplexers at the
output of the FOS and SOS in Figure 7.2 are added to the circuit. The drawback of
this is that it will increase the total area, but the gain from it is twofold: Firstly, we
may clock gate the output register in Figure 7.3 and save additional power. Secondly,
the input of a bypassed section may be passed on to the output without any increase
in noise.

Figure 7.3: Analysis of second order section in DynOrder when inactive

7.1. IMPLEMENTATION 59

DynOrderMux

The implementation named DynOrderMux is an extention of DynOrder, illustrated
in Figure 7.4. It aims to reduce the switching activity even more by introducing
additional logic. As seen in Figure 7.3, there will still occur some toggling in the
adders and scaling logic even though the registers are clock gated. This toggling
can be eliminated by gating the input datapath. This is done in DynOrderMux
by inserting a multiplexer at the input of each section, which selects only zeroes
if the section is disabled. The additional multiplexers will imply larger area and
also slightly increased power dissipation, but the total power reduction are expected
to be larger. Figure E.1 shows how the clock and reset signals are distributed to
the registers of DynOrder and DynOrderMux. The SystemVerilog source code of
DynOrderMux is shown in Appendix E.1.

Figure 7.4: Implementation with dynamic filter order, including datapath gating
using input MUX, DynOrderMux

DynOrderReg

The implementation named DynOrderReg has the same motivation as DynOrderMux,
but has a different architecture. Instead of using input multiplexers to gate the
datapath, it uses input registers. The output registers internally to each section are
moved to the input of the section, as shown in Figure 7.5. Hence, the datapath is
automatically gated as the input register is clock gated. However, when removing the
output register of u_SOS, the combinational logic depth prior to the global output
will increase. Hence, an additional register is inserted at the output of the filter to
make the implementation more comparable. Figure E.2 shows how the clock and
reset signals are distributed to the registers of DynOrderReg.

60 7. DYNAMIC RTL

Figure 7.5: Implementation with dynamic filter order, including datapath gating
using input registers, DynOrderReg

7.1.3 Dynamic quantization noise

All dynamic quantization noise implementations takes use of the same control signals,
listed in Table 7.2. Here, each control signal is assigned to a set of registers based on
their significance. enaMSB enables the most significant bits, enaLSB enables the least
significant bits, and enaMid enables the remaining bits in the middle.

mode Mode name enaMSB enaMid enaLSB
11 High performance 1 1 1
10 Moderate 1 1 0
01 Low performance 1 0 0
00 Bypass 0 0 0

Table 7.2: Control signals in dynamic quantization noise implementations

Figure 7.6 illustrates how a register of wordlength WL is divided into sections
MSB,Mid and LSB using the limit parameters Llim and Rlim. By changing the values
of the limit parameters, the amount of quantization noise will change accordingly in
the different modes of performance. Implementations with different limit values will
be explored. Gating the LSBs or Mids implies a truncation at index Rlim or Llim
respectively. This creates more quantization noise than rounding, but does not require
any additional logic. Hence, implementations are made with both truncation and
rounding in order to do trade-offs with regards to noise, area and power dissipation.

Table 7.3 lists all the implementations exploiting dynamic quantization noise,
and states which limit values and quantization technique that are used in each
case. All implementations have the same framework, illustrated in Figure 7.7. From
the figure, it can be seen that three ICG cells are utilized: one for each section of
significance in the registers. The ICG cells are enabled by a decoder module, which
translates the mode signal into control signals according to Table 7.2. The same

7.1. IMPLEMENTATION 61

Figure 7.6: Register of wordlength WL is divided into sections of significance

Name Llim Rlim Trn/Rnd
DynNoise8Trn 8 4 Truncation
DynNoise12Trn 12 6 Truncation
DynNoise8Rnd 8 4 Rounding
DynNoise12Rnd 12 6 Rounding

Table 7.3: Dynamic quantization noise implementations

control signals are passed on to the Reset Logic block, similar to the one in the
DynOrder implementations. All reset and clock signals are then fed to both the
FOS and the SOS, since all registers in the entire filter will be gated equally. The
multiplexer at the end ensures that dataIn is passed through the filter as the bypass
mode is selected. In Figure E.3 in Appendix E.3, a more detailed overview is given
of how the clock and reset signals are distributed to the registers in the design. Here,
the registers named Zxx represents both Z11 and Z12. The SystemVerilog source
code of DynNoiseRnd12 is shown in Appendix E.2.

62 7. DYNAMIC RTL

Figure 7.7: Implementations with dynamic quantization noise, DynNoise

7.1.4 Power gating

In order to further reduce the power dissipation in some of the performance modes,
one could introduce power gating. This can be done by gathering all cells that are
clock- and datapath gated by the same enable signal, into a separate power domain.
One power domain should be on at all times, while the rest could be controlled by
power switches. Inserting the power switches would introduce some leakage power
and slightly increase the area. However, the power reduction obtained from shutting
down all cells that are inactive, should be larger. A complete implementation of power
gating is considered to be beyond the scope of this thesis. However, a theoretical
analysis of how one of the implementations would be affected by power gating is
carried out. This analysis is made based on the reports generated by PrimeTime-PX,
which logs the power dissipation of every cell in the design. Estimating the effect of
power gating is done in the following order:

1. Find all cells that have zero switching power, and set the internal and leakage
power of these cells to zero as well. These cells are most likely clock gated,
datapath gated or disabled ICG cells.

2. Find out how many power switches that are required in order to drive the
amount of cells in the design. Add the leakage of the power switches to the
total power dissipation. Table 7.4 lists some typical details of a power switch
cell in 180 nm technology.

3. Find the unused clock tree buffers in each scenario, and set its switching-,
internal- and leakage power to zero.

7.2. RESULTS OF THE DYNAMIC IMPLEMENTATIONS 63

Parameter Value
Leakage power 40 pW
Area 126µm2

Fanout 100 cells

Table 7.4: 180 nm technology power switching cell details

The analysis is carried out for the DynOrderMux implementation, and Figure 7.8
shows how the design would look with power switches and power domains included.
Three power domains are established: PD_FOS and PD_SOS are assigned to each of the
sections, and are controlled by separate power switches PS_fos and PS_sos. PD_ON
in an always on domain, where the cells that should be powered on at all times
should be placed, like the power switches and the output multiplexers of each section.

Note that isolation cells are not included in the analysis, although this should be
done when implementing the power gated design. This will imply a slight increase in
area.

Figure 7.8: Power gating analysis of the DynOrderMux implementation

7.2 Results of the dynamic implementations

This section presents the results of the dynamic DynOrder and DynNoise implementa-
tions, and the theoretical results of the power gated implementation DynOrderMuxPG.

7.2.1 Dynamic filter order results

Figure 7.9 shows the resulting frequency responses of the dynamic filter order imple-
mentations. It can be seen that all implementations yield identical characteristics.

64 7. DYNAMIC RTL

This is due to the fact that they all perform the same calculations with the same
internal bitwidths, yielding the same impulse response from RTL simulation. What
differentiates the implementations is only the way they perform gating of redundant
switching activity.

It can be seen from the figure that the different modes of performance yield
different levels of attenuation. High Performance has the steepest curve and the
largest attenuation in stopband. The Moderate and Low Performance modes have
more relaxed curves with less attenuation in stopband. These modes also provide
evenly shaped frequency responses, without bumps or irregularities. The Bypass
mode is indeed true bypass, which provides 0 dB attenuation for all frequencies.

In Figure 7.10c, the total cell area in the dynamic order implementations are
compared against the static reference implementation IIRFiltQ15, whose performance
is identical to the High Performance mode in this chapter. It can be seen that
DynOrder requires the smallest increase in area, since this implementation do not
include datapath gating. DynOrderReg requires the largest increase in area due to
additional output registers. However, all dynamic order implementations can be
implemented with less than 10% increase in area.

Figure 7.10a shows the total average power dissipation of each of the dynamic
filter order implementations, for each of the modes of performance. The horizontal
red line marks the power dissipation of the reference implementation, IIRFiltQ15.
The figure shows that all implementations consume around 10% more power in High
Performance than the static reference. This is of course expected due to the overhead
logic that is required to make the implementations dynamic, which is also seen in
the total area results. Moreover, it can be seen that DynOrderMux yields the best
results in terms of power reduction. Except from the High Performance mode, it has
the lowest power dissipation in all modes of performance, yielding 28%, 55% and
88% reduction from reference.

In the inactive scenario results, visualized in Figure 7.10b, we see that the power
dissipation in idle state can be reduced drastically by implementing the dynamic order
approach. DynOrder and DynOrderMux have the largest savings in this scenario,
with a reduction of 77% from reference.

7.2. RESULTS OF THE DYNAMIC IMPLEMENTATIONS 65

(a) DynOrder implementation (b) DynOrderMux implementation

(c) DynOrderReg implementation

Figure 7.9: Frequency responses of the dynamic filter order implementations

66 7. DYNAMIC RTL

(a) Total average power

(b) Total average power in inactive scenario (c) Cell area

Figure 7.10: Power and area results of the dynamic filter order implementations

7.2. RESULTS OF THE DYNAMIC IMPLEMENTATIONS 67

7.2.2 Dynamic quantization noise results

The frequency responses of the dynamic quantization noise implementations are shown
in Figure 7.11. Unlike the dynamic order implementations, which provided different
levels of attenuation, the dynamic noise implementations offer the same attenuation
for every mode of performance. However, the Moderate and Low Performance modes
introduce more quantization noise, which affects the impulse response and thus the
frequency response.

It can be seen that DynNoiseTrn12 and DynNoiseRnd12 have larger fluctuations
in the frequency response for the Moderate and Low Performance modes than
DynNoiseTrn8 and DynNoiseRnd8. This is due to the different number of inactive
registers, given by Mid and LSB. Moreover, it is observed that DynNoiseRnd12, which
perform rounding, yields a smoother frequency response in Low Performance mode
than DynNoiseTrn12, which performs truncation. This is expected, as truncation
generally implies more noise than rounding.

Figure 7.12c shows the total cell area of the dynamic noise implementations,
compared against the static reference implementation IIRFiltQ15. The figure shows
that the dynamic noise approach can be implemented with less than 5% overhead if
truncation is used. However, if rounding is preferred, the overhead is increased to
almost 20%. Anyhow, the amount of additional logic is at an acceptable level. The
results also show that the partitioning of MSB, Mid and LSB have minimal impact
on the total area. This is also expected, as the amount of registers and control logic
are close to identical when performing the same quantization method.

The total average power dissipation of the dynamic noise implementations are
shown in Figure 7.12a. The resulting power is given for each mode of performance,
with the IIRFiltQ15 reference illustrated as the horizontal red line. As for the
dynamic order implementations, the dynamic noise implementations also yield
increased power dissipation around 10% for the High Performance mode, naturally.
Moreover, it can be seen that the Moderate and Low Performance modes are not
able to provide the same reduction as in the dynamic order approach. However, the
dynamic noise implementations offer the attenuation of a third order filter for every
mode of performance. Out of the implementations in Figure 7.12a, DynNoiseTrn12
and DynNoiseRnd12 yield the best results in terms of power reduction. They both
provide low power modes where the power dissipation is significantly reduced for each
mode. More specifically, the reductions are 9%, 34% and 83% for DynNoiseTrn12,
and 11%, 32% and 81% for DynNoiseRnd12.

Figure 7.12b shows the total power dissipation in inactive scenario. It can be
seen that all implementations succeed in reducing the power dissipation in this state,
similarly to the dynamic order approach, all yielding reductions around 75%.

68 7. DYNAMIC RTL

(a) DynNoiseTrn8 implementation (b) DynNoiseTrn12 implementation

(c) DynNoiseRrn8 implementation (d) DynNoiseRrn12 implementation

Figure 7.11: Frequency responses of the dynamic quantization noise implementations

7.2. RESULTS OF THE DYNAMIC IMPLEMENTATIONS 69

(a) Total average power

(b) Total average power in inactive scenario (c) Cell area

Figure 7.12: Power and area results of the dynamic quantization noise implementa-
tions

70 7. DYNAMIC RTL

7.2.3 Power gating results

Figure 7.13 compares the results of the dynamic order implementation DynOrderMux,
and the theoretical results of power gating the same implementation. Figure 7.13c
shows that the increase in area is negligible. The increase is due to additional power
switching cells, which is estimated to be one per hundred leaf cell. This adds up
to 5 power switches in this particular design. However, it is important to take into
account that the cells would have to be physically separated into different power
domains. This will restrict the optimization in layout, which again will affect the
total area. How much the area will increase due to this is however hard to predict,
but an additional 5-10% can be assumed.

The total average power dissipation in each mode of performance is shown in
Figure 7.13. From the figure, it can be seen that the power dissipation may be
reduced by 58% in Bypass mode. The effect of power gating is negligible in the other
modes of performance.

However, in the inactive scenario, the power gating may potentially eliminate the
power dissipation completely, as shown in Figure 7.13b. Normally, the only activity
in this scenario is due to the propagating clock signal, where the main consumer
is the primary clock buffer. However, when the clock buffers are power gated, the
power dissipation is driven to a minimum.

7.2.4 Conclusion of the dynamic implementations

All dynamic implementations yield promising results, with less than 10% increase in
power dissipation for the High Performance mode, and within 20% increase in area.
Most of the solutions provide significant power reduction in each of the performance
modes.

The dynamic order implementations yield the largest reductions in each mode.
Especially DynOrderMux, which manages to reduce the power dissipation of 28%,
55% and 88% in each of the low power modes, with an area penalty of only 8%.
However, the performance is reduced to second order, first order and all pass filters,
respectively.

The dynamic noise implementations do not manage to provide reductions at
the level of the dynamic order implementations. However, they provide the perfor-
mance of third order filters in all modes, although the amount of noise is increased.
DynOrderRnd12 manages to maintain the frequency response in Low Performance,
while providing significant power reductions in each mode, at an acceptable area
increase of 18%.

Power gating has shown to have minimal effect on the power dissipation in the

7.2. RESULTS OF THE DYNAMIC IMPLEMENTATIONS 71

(a) Total average power (b) Total average power in inactive scenario

(c) Cell area

Figure 7.13: Estimated power and area results of a power gated implementation

High, Moderate and Low Performance modes. In the Bypass mode however, it
manages to reduce the power dissipation of 58% when the data input is active, and
almost 100% when the data input is inactive. Although the power dissipation in this
scenario already is of a small magnitude, the possible energy saving may become
significant over time. The increase in area is also negligible at first glance, although
the area increase of separating the logic into different power domains needs to be
taken into account.

Chapter 8

Discussion

8.1 Algorithm-architecture co-design and platform level
implementation

The fundamental challenge in algorithm-architecture co-design is to find the right
balance between two disciplines, which requires in-depth knowledge in both. That
is, just the right abstraction level in the algorithm, and just the right flexibility in
the architecture. One step in the wrong direction for one discipline can diminish the
achievements made on the other one.

In this work, the filter algorithm is generalized to a cascade of first- and second-
order sections, whose abstraction allows for any filter requirement. This modular
structure eases the flexibility in performance and energy consumption, which is
required for dynamic implementation. The same reasoning can be applied to other
parts of the radio, mainly to those handling the digital baseband processing. Typically,
the modules in the digital baseband processing are dictated by a high throughput,
with little or no control, and few, very specialized DSP cores.

The modular construction of the proposed solution allows for the various perfor-
mance modes (High Performance, Moderate, Low Performance and Bypass) that can
be shared among other parts of an entire product or platform, which was illustrated
in Figure 7.1.

Most radio communication standards provide means to measure the quality of the

73

74 8. DISCUSSION

communication link, as Bluetooth’s RSSI [2] and LTE’s CQI [6]. While these metrics
are typically used to dictate the amount of energy used on the power amplifiers, it
can also be used to regulate internal energy consumption.

The number and types of modes needed in the entire platform are a consequence
of the combination of two factors: namely, the communication quality metrics and the
throughput requirements. The first given by the environment the radio is immersed
into, and the latter given by the user or application requirements. These modes are
used as potential energy regulators for the entire radio.

Similar studies to the one detailed in this thesis are needed to other parts of
the radio in order to define the correct partition of all modules involved in the
communication, so that a complete solution at platform level can be achieved.

8.2 Evaluation of dynamic implementations

8.2.1 Dynamic order

The dynamic filter order approach in Chapter 7 showed that the cascade-form
structure made it easy to bypass parts of the filter in order to alter its performance.
The results in the same chapter also showed that the saving in power dissipation was
significant when disabling a biquadratic section.

The disadvantage with this approach is that the stopband attenuation becomes
significantly decreased when shutting down an entire second-order section. However,
this may be tolerated in some applications where there are small chances of interfering
signals appearing on the channel.

The filter structure is also scalable, as the dynamic third order filter easily could
have been extended to a dynamic filter of a higher order, by increasing the number
of second-order sections in series. Instead of switching between filters of order 1, 2
and 3, one could implement three second-order sections and switch between filters
of order 2, 4 and 6. By disabling two or more biquadratic sections for each mode
of performance, instead of one, the modes could also provide larger differences in
terms of power reduction. This would of course increase the total area and the power
dissipation when all resources are active.

8.2.2 Dynamic noise

The dynamic quantization noise approach in Chapter 7 do not depend as much on
the cascade-form structure. Its principle is more generic, and does not require a
serially structured data flow. This approach could have been implemented in any
module where the amount of quantization noise is an issue.

8.2. EVALUATION OF DYNAMIC IMPLEMENTATIONS 75

The disadvantage of this approach is that the power reductions are more moderate
compared to the dynamic order approach. In order to obtain large power reductions,
a relatively large part of the registers needs to be clock gated, which greatly affects
the amount of quantization noise. For instance, we saw that in order to achieve a
power reduction of 35% in Low Performance mode, as much as 60% of all registers
needed to be gated. And if more than 60% of the registers were to be clock gated,
the quantization noise would eventually become too dominant.

A great advantage with the dynamic noise approach is that it offers the same
stopband attenuation for each mode of performance. Consequently, the filter may
maintain its function in each of the modes, as long as a certain amount of noise can
be tolerated. This may be preferred in some applications, where the attenuation at
certain frequencies is of high importance.

The implementation could of course be extended to a filter of higher order in order
to improve the stopband attenuation additionally. The power reduction principle
would be the same in either implementation.

8.2.3 Possible combined solution

A possible cross-layer solution could be to combine the dynamic order approach and
the dynamic noise approach. A natural implementation would be to provide different
amount of quantization noise for each filter order configuration. With the current
implementations, this would mean 4 performance modes for each of the 2 biquadratic
sections, which would imply a total of 16 possible modes of performance. Such a
large number of modes is of course inconvenient, and would increase the complexity
of the control logic significantly.

However, the implementations could be adjusted to provide a more suiting number
of modes. For instance, the first-order section could be implemented with the dynamic
order approach, while the second-order section could be implemented with a two-step
dynamic quantization noise approach. This would give the four modes given in Table
8.1, which would require one clock gate for each of the biquadratic sections.

Mode FOS SOS
High performance 3rd order On Minimal noise
Low performance 3rd order On Moderate noise
High performance 2nd order Off Minimal noise
Low performance 2nd order Off Moderate noise

Table 8.1: Possible combined dynamic order and dynamic noise solution

76 8. DISCUSSION

8.3 Thoughts around future work

8.3.1 Fine-tune the AFGEC algorithm

The filter generation and eligibility calculation algorithm in Chapter 4 managed to
find the most area and energy efficient filter solutions. The six solutions with the
highest eligibility score were implemented in RTL, where five of the solutions were
ranked in the same order as predicted. However, the algorithm could perhaps be
calibrated even better, such that six out of six solutions are predicted in the correct
order. In order to improve the prediction, the eligibility calculation could be adjusted
with scaling factors for each of the characteristics. A possible solution could be to
decrease the impact of single-one coefficients, or increase the impact of number of
bits. Such a fine-tuning of the eligibility calculation in the AFGEC algorithm could
provide an even higher percentage of accurate predictions.

8.3.2 Include power gating in tool-flow and implement

The theoretical analysis of power gating in Chapter 7 showed that power gating might
potentially eliminate the power dissipation of the channel filter when it is inactive, and
that the increase in area might be negligible. However, it would have been interesting
to put these results to the test by actually implementing the DynOrderMuxPG. But
first, the area and power estimating tool-flow should be adjusted to support power
gating. This could be done by creating a default setup of power domains and power
switches according to the modes of performance. Afterwards, the power gated design
could be run through the updated tool-flow.

8.3.3 Extended quantization level exploration

The quantization level exploration in Chapter 6 was helpful in selecting the optimal
inter-module bitwidth. It showed that the SQNR could only be improved to a certain
point when working with a fixed data output requirement of 12 bits, and that the
improvement saturated around the inter-module bitwidth of 15. What could have
been interesting however, was to analyze the design in a more fine-grained manner.
This could be done by creating a program that analyzed every possible combination
of bitwidths for each of the noise sources in the design. Certain constraints regarding
the bitwidths should of course be set, like the maximum bitwidth allowed, in order
for the program to finish within a reasonable amount of time. Such an extended
quantization level exploration could lead to find an even more optimized solution in
terms of SQNR, area and power dissipation.

8.3. THOUGHTS AROUND FUTURE WORK 77

8.3.4 Similar studies

The dynamic filter is envisioned to be a part of a larger dynamic system, which share
the same control logic for the modes of performance. Reducing the power dissipation
of a single channel filter results only in a small reduction in the total power dissipation
of an entire radio. However, if the modules which share the modes of performance
are many, the total power reduction may eventually become significant. In order for
this to be realised, other IPs within the radio, whose performance may depend on
the circumstances, should be evaluated for dynamic implementation. Similar studies
to the one elaborated in this thesis should be performed for these as well.

8.3.5 Link quality estimator and mode selector

In this thesis, the control signal selecting the current mode of performance is con-
sidered as a known signal. This is a simplification which needs to be addressed for
the dynamic approach to be realised in practice. This requires that a link quality
estimator is defined, which provides a metric that is readable in digital logic and able
to tell something about the quality of the radio link. When the source for calculating
the quality of the radio link is found, the mode selector in Figure 7.1 should also be
implemented. Its function should be to translate the link quality estimate into mode
control signals.

Chapter 9

Conclusion

The methodology of algorithm-architecture co-design is used to find the most area
and energy efficient filter solution, and to optimize the hardware architecture for
energy efficiency. The main contributions of this work can be summarized as follows:

• An automated area and power estimating tool-flow is created, which has proven
to obtain accurate and comparable results of 500 gate designs within 5 minutes.
The tool-flow is generic, and may be used for Design-for-Power purposes, and
as a tool when performing similar studies in the future.

• An automated filter generation and eligibility calculation algorithm is created
and implemented as a Matlab program. The filter sorting algorithm manages
to predict the filter solution that yields the smallest area and least amount of
power dissipation. The program is also generic and may hence be used to find
the optimized solution of any filter requirement.

• A dynamic filter architecture is proposed, which alters the filter order, and
hence the stopband attenuation, in order to adapt its performance to the
requirements in real time. The best out of three implementations is found: It
requires only an 8% area increase, and a 10% increase in power dissipation
compared to the non-dynamic filter architecture of the same performance,
while providing low power modes with 28%, 55% and 88% reduction in power
dissipation. This dynamic approach is applicable for any filter requirement.

79

80 9. CONCLUSION

• Another dynamic filter architecture is proposed, which alters the quantization
level, and hence the amount of quantization noise introduced by the filter,
in order to adjust the filter performance in real time. The best out of four
implementations is found: It requires an 18% area increase, and a 12% increase
in power dissipation compared to the non-dynamic filter architecture of the
same performance, while providing low power modes with 11%, 32% and 81%
reduction in power dissipation. This dynamic approach is applicable for any
filter requirement, and any other DSP module where the SQNR requirements
may depend on the surroundings.

The dynamic channel filter is suggested to be a part of a larger dynamic system,
where several modules share the same control interface. This will reduce the fraction
of overhead due to additional control logic, and potentially lead to significant power
reductions in the case where all the dynamic modules may operate in one of the low
power modes.

9.1 Future work

The objectives for future work, discussed in the previous chapter, can be summarized
as follows:

• Fine-tune the eligibility calculation in the AFGEC algorithm such that it
provides an even higher percentage of accurate predictions.

• Adjust the area and power estimating tool-flow to support power gating by
creating a default setup of power domains and switches according to the modes
of performance.

• Implement the power gated design, DynOrderMuxPG, and run it through the
updated tool-flow. Compare the results against the results from the theoretical
analysis.

• Create a program that analyzes every possible combination of bitwidths (under
certain constraints) for each of the noise sources in the design, in order to settle
for an optimized solution in terms of SQNR, area and power dissipation.

• Find other IPs within the radio whose performance may depend on the circum-
stances, and perform similar studies to the one elaborated in this thesis.

• Find a source for calculating the quality of the radio link, and create the link
quality estimator and the mode selector.

References

[1] A. Amara and P. Royannez. Low-Power CMOS Circuits. Taylor & Francis Group,
1st edition, 2006. ISBN 0-8493-9537-2.

[2] Bluetooth. Specification of the Bluetooth System, 1.1 edition, February 2001.

[3] A. P. Chandrakasan and R. W. Brodersen. Minimizing power consumption in
digital CMOS circuits. Proceedings of the IEEE, 83(4):498–523, Apr. 1994.

[4] I. Diaz. Algorith-Architecture Co-Design for Digital Front-Ends in Mobile Re-
ceivers. PhD thesis, Lund University, April 2014. URL http://lup.lub.lu.se/
record/4355293.

[5] Ericsson. More than 50 billion connected devices (White Paper), February 2011.

[6] ETSI. ETSI Technical Specification 136 213, 8.8.0 edition, October 2009.

[7] W.-S. Gan and S. M. Kuo. Embedded Signal Processing with the Micro Signal
Architecture. John Wiley & Sons, 1st edition, 2007. ISBN 9780471738411.

[8] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power Methodology
Manual. Springer, 2007. ISBN 9780387718194.

[9] F.-L. Luo. Digital Front-End in Wireless Communications and Broadcasting:
Circuits and Signal Processing. Cambridge University Press, 1st edition, 2011.
ISBN 978-1-107-00213-5.

[10] D. M. Pozar. Microwave and RF Design of Wireless Systems. John Wiley &
Sons, Inc, 1st edition, 2011. ISBN 978-0-471-32282-5.

[11] J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Al-
gorithms, and Applications. Pearson Education, 4th edition, 2007. ISBN 0-13-
187374-1.

81

http://lup.lub.lu.se/record/4355293
http://lup.lub.lu.se/record/4355293

82 REFERENCES

[12] Synopsys. Library Compiler Timing, Signal Integrity, and Power Modeling User
Guide, J-2014.09 edition, September 2014.

[13] Synopsys. Using RMgen and Reference Methodology Scripts Application Note,
2.10 edition, January 2015.

[14] J. N. Talstad. Early Stage Power Estimation and Analysis on a Multi-Voltage
Design. Specialization project report, Norwegian University of Science and Tech-
nology, December 2014.

Appendix A

Automated area and power
estimating tool-flow

A.1 Makefile for the automated tool-flow

SHELL = csh

runsim:
cd sim/run/rtl; RUN_ALL --clean
date > runsim

runsyn: runsim
cd syn; make clean; make compile
date > runsyn

runlay: runsyn
cd lay; make clean; make outputs_cts
date > runlay

runpow: runlay
cd pow; make clean; make power_analysis
date > runpow

allstatic:
setenv FILE_LIST "IIRFilt46"; rm run*; make runpow;
setenv FILE_LIST "IIRFilt21"; rm run*; make runpow;
setenv FILE_LIST "IIRFilt29"; rm run*; make runpow;
setenv FILE_LIST "IIRFilt30"; rm run*; make runpow;
setenv FILE_LIST "IIRFilt120"; rm run*; make runpow;

83

84 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

setenv FILE_LIST "IIRFilt296"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltQ12"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltQ13"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltQ14"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltQ15"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltQ16"; rm run*; make runpow;
date > allstatic

alldynamic:
setenv FILE_LIST "IIRFiltDynOrder"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynOrderMux"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynOrderReg"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynNoiseTrn8"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynNoiseRnd8"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynNoiseTrn12"; rm run*; make runpow;
setenv FILE_LIST "IIRFiltDynNoiseRnd12"; rm run*; make runpow;
date > alldynamic

A.2 IIRFilt testbench in SystemVerilog

‘timescale 1ns / 1ns

module test_IIRFilt;

parameter test_cycles = 500;
parameter wl = 12;
parameter SRATE = 16e6;
parameter M_PI = 3.141592654;
parameter TESTFREQ = 1e6;
parameter AMP = 2000;

logic arst;
logic ck;
logic [wl -1:0] dataIn;
logic signed [wl -1:0] dataOut ,dataOutpre;
logic [1:0] ctrl;

integer i,j,k,error;
integer dout_handle ,dout_handle1 ,dout_handle2;
integer ampmaxpre ,ampminpre;
logic log;

real phaseaccu ,tonefreq ,tempval ,att;

logic start =0;

// NOT DYNAMIC
IIRFilt
u_IIRFilt

(
.dataOut (dataOut),

A.2. IIRFILT TESTBENCH IN SYSTEMVERILOG 85

.arst (arst),

.ck (ck),

.dataIn (dataIn));

// DYNAMIC
/* IIRFilt

u_IIRFilt
(

. dataOut (dataOut),

. arst (arst),

.ck (ck),

. dataIn (dataIn),
. ctrl (ctrl)); */

// Include single phase clock generator
parameter

CkPeriod = 20, // Clock period
Setuptime = 4, // Input event generator toggle

ref:ck
StrobeDelay = 4; // Output event generator toggle

ref:ck
‘include "/pro/nrf4360/lib/verilog/CK_GEN_1P.v"

task delay_periodes;
input [32:0] n;
integer i;
for (i=0; i<n; i=i+1)

@DefineInputs;
endtask

initial
begin

dout_handle=$fopen("${FILE_LIST}_dump.mat"); // JOTA
dout_handle1=$fopen("${FILE_LIST}_impresp.mat"); // JOTA

for (i=3; i>-1; i=i-1)
begin

ctrl = i;
error =0;
arst = 0;
dataIn =0;
delay_periodes (1);
arst = 1;
delay_periodes (2);
arst = 0;

for (j=0; j<test_cycles; j=j+1)
begin

@(posedge ck)
begin

86 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

if(j==10)
dataIn = AMP;

else
dataIn = 0;

$fdisplay(dout_handle1 ,"%d",dataOut);
end

end

arst = 0;
dataIn =0;
delay_periodes (1);
arst = 1;
delay_periodes (2);
arst = 0;

for (j=0; j<test_cycles; j=j+1)
begin

@(posedge ck)
begin

dataIn = 0;
end

end

for (k=1; k<=3; k=k+1)
begin

arst = 0;
dataIn =0;
phaseaccu =0;
tonefreq=TESTFREQ*k;
delay_periodes (1);
arst = 1;
log = 0;
delay_periodes (2);
arst = 0;

for (j=0; j<test_cycles; j=j+1)
begin

@(posedge ck)
begin

dataIn=int ’($cos(phaseaccu)*
AMP);

$fdisplay(dout_handle ,"%d",
dataOut);

if (j>100 && j<400)
log = 1;

else
log = 0;

// $fdisplay (dout_handle2 ,"% d
", u_IIRFilt .

A.2. IIRFILT TESTBENCH IN SYSTEMVERILOG 87

dataOutRounded);
end

end

// check the response
tempval=real ’(2* AMP)/(real ’(ampmaxpre)-real ’(

ampminpre));
att =20* $log10(real ’(tempval));
$display("Attenuation␣is␣%f␣dB␣@␣%f␣Hz",att ,

tonefreq);
end

end

$fclose(dout_handle);
$fclose(dout_handle1);
$stop;

end

always_ff @(posedge ck or posedge arst)
begin

if(arst)
begin

phaseaccu =0;
end
else begin

// increment phaseaccu
if(phaseaccu > 2*M_PI)

phaseaccu = phaseaccu - 2*M_PI + 2*M_PI*(real ’(tonefreq))/
SRATE;

else
phaseaccu = phaseaccu + 2*M_PI*(real ’(tonefreq))/SRATE;

end
end

always_ff @ (posedge ck or posedge arst)
begin

if (arst)
begin

ampmaxpre <=0;
ampminpre <=0;

end
else

begin
if(dataOut >ampmaxpre && log ==1)

begin
ampmaxpre <=

dataOut;
end

if(dataOut <ampminpre && log ==1)
begin

ampminpre <=
dataOut;

88 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

end
end

end

endmodule

A.3 Makefile for synthesis
setup:

mkdir -p logs
mkdir -p reports
mkdir -p results
@date > $@

elaborate: setup
dc_shell -f dc_scripts/dc_$@.tcl | tee logs/dc_$@.log
@make -s summary ARG=$@
@date > $@

compile: elaborate
dc_shell -f dc_scripts/dc_$@.tcl | tee logs/dc_$@.log
@make -s summary ARG=$@
@date > $@

clean:
rm -fr elaborate
rm -fr compile
rm -fr logs/*
rm -fr reports /*
rm -fr results /*
rm -fr WORK/

A.4 Synthesis design constraints
create_clock -name "ck16M" -p 62.5 -w [list 0 31.25] [get_port "ck"] \

-comment "16␣MHz␣clock"
set_dont_touch_network "ck16M"
set_clock_transition 0.2 ck16M
set_clock_uncertainty -setup 0.20 -rise_from [get_clocks "ck16M"]

-rise_to [get_clocks "ck16M"]
set_clock_uncertainty -setup 0.20 -fall_from [get_clocks "ck16M"]

-fall_to [get_clocks "ck16M"]
set_clock_uncertainty -setup 0.80 -rise_from [get_clocks "ck16M"]

-fall_to [get_clocks "ck16M"]
set_clock_uncertainty -setup 0.80 -fall_from [get_clocks "ck16M"]

-rise_to [get_clocks "ck16M"]
set_clock_uncertainty -hold 0.10 [get_clocks "ck16M"]
set high_fanout_net_threshold 0
set_input_transition 5.0 [all_inputs]
set_load 0.05 [all_outputs]
set_max_transition 2.0 [find design "*"]

A.5. MAKEFILE FOR LAYOUT 89

A.5 Makefile for layout
ICC_EXEC = icc_shell -64bit
LOGS_DIR = logs_zrt
REPORTS_DIR = reports
RESULTS_DIR = results
PNA_OUTPUT_DIR = pna_output
DESIGN_LIB = ${DESIGN_NAME}_LIB

init_design_icc:
mkdir -p $(REPORTS_DIR) $(RESULTS_DIR) $(LOGS_DIR)
$(ICC_EXEC) $(OPTIONS) -f rm_icc_scripts/init_design_icc.tcl |

tee -i $(LOGS_DIR)/init_design_icc.log
date > init_design_icc

place_opt_icc: init_design_icc
mkdir -p $(REPORTS_DIR) $(RESULTS_DIR) $(LOGS_DIR)
$(ICC_EXEC) $(OPTIONS) -f rm_icc_scripts/place_opt_icc.tcl |tee

-i $(LOGS_DIR)/place_opt_icc.log
date > place_opt_icc

clock_opt_cts_icc: place_opt_icc
mkdir -p $(REPORTS_DIR) $(RESULTS_DIR) $(LOGS_DIR)
$(ICC_EXEC) $(OPTIONS) -f rm_icc_scripts/clock_opt_cts_icc.tcl

|tee -i $(LOGS_DIR)/clock_opt_cts_icc.log
date > clock_opt_cts_icc

clock_opt_psyn_icc: clock_opt_cts_icc
mkdir -p $(REPORTS_DIR) $(RESULTS_DIR) $(LOGS_DIR)
$(ICC_EXEC) $(OPTIONS) -f rm_icc_zrt_scripts/clock_opt_psyn_icc

.tcl |tee -i $(LOGS_DIR)/clock_opt_psyn_icc.log
date > clock_opt_psyn_icc

outputs_cts: clock_opt_psyn_icc
mkdir -p $(REPORTS_DIR) $(RESULTS_DIR) $(LOGS_DIR)
$(ICC_EXEC) $(OPTIONS) -f rm_icc_zrt_scripts/outputs_cts.tcl |

tee -i $(LOGS_DIR)/outputs_cts.log
date > outputs_cts

clean:
rm -f init_design_icc flat_dp dp init_design_icc_dp

place_opt_icc clock_opt_cts_icc clock_opt_psyn_icc
clock_opt_route_icc route_icc route_opt_icc chip_finish_icc
metal_fill_icc signoff_drc_icc outputs_icc ic

rm -rf $(DESIGN_LIB) $(LOGS_DIR) $(RESULTS_DIR)/*sbpf* $(
RESULTS_DIR)/*.def $(RESULTS_DIR)/*pg* $(REPORTS_DIR)/
place* $(REPORTS_DIR)/clock* $(REPORTS_DIR)/route* $(
REPORTS_DIR)/sign* $(REPORTS_DIR)/chip* *_map \.* \

net.acts *.attr .zr* Milkyway.cmd.*_*_*_* Milkyway.log.*
**_* \.vers* port_mapping .* pna_output

rm -f snapshot /* legalizer */*
rm -f command.log icc_output.txt
rm -f outputs_cts

90 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

A.6 Makefile for power analysis
clean:

rm -rf command.log
rm -f power_analysis
rm -rf reports/power_analysis_${DESIGN_NAME}_*
rm -rf log/*

power_analysis:
pt_shell -f power_analysis.tcl | tee -i log/power_analysis.log
date > power_analysis

A.7 Power analysis script

set FILE_LIST [getenv "FILE_LIST"]
set DESIGN_NAME [getenv "DESIGN_NAME"]
set DESIGN_DIR "/pri/jota/workspace/master/ip/IIRFilt"
set LAY_REPORT_DIR "$DESIGN_DIR/lay/reports"
set SCORE_DIR "$DESIGN_DIR/score"

sh rm -f $SCORE_DIR/${FILE_LIST}_score.csv

set READ_SDC true
set READ_SAIF false
set READ_VCD true
set READ_TOGGLE false
set REPORT_DETAILS true
set MODE_AVERAGED true

set DESIGN_IS_READ false
set DYNAMIC_RTL true

if {$DYNAMIC_RTL} {
set scenarios {ctrl3 ctrl2 ctrl1 ctrl0 inactive}

} else {
set scenarios {active inactive}

}

foreach my_power_scenario $scenarios {
set POWER_SCENARIO $my_power_scenario
echo ":␣POWER_SCENARIO␣IS:␣$POWER_SCENARIO"

##
--

Design files and locations (modify to meet your flow)

A.7. POWER ANALYSIS SCRIPT 91

##
--

set POWER_REPORT_DIR "$DESIGN_DIR/pow/reports/power_analysis_${
FILE_LIST}_${POWER_SCENARIO}"

set POWER_SAIF_FILE "$DESIGN_DIR/pow/${FILE_LIST}_${
POWER_SCENARIO }.saif"

set POWER_ACTIVITY_FILE "$POWER_REPORT_DIR/_power_activity.tcl"
set POWER_VCD_FILE "/pri/jota/workspace/master/ip/$DESIGN_NAME/

sim/run/rtl/IIRFilt.vcd"
set POWER_STRIP_PATH "test_IIRFilt/u_IIRFilt"
set power_rail_output_file $POWER_REPORT_DIR/

poCalculatePower_VctFreeRptFile
set POWER_SDC_FILE "/pri/jota/workspace/master/ip/IIRFilt/lay/

results/$DESIGN_NAME.output.sdc"
set POWER_VERILOG_FILE "/pri/jota/workspace/master/ip/IIRFilt/lay/

results/$DESIGN_NAME.output.v"
set POWER_STAR_FILE "/pri/jota/workspace/master/ip/IIRFilt/lay/

results/$DESIGN_NAME.output.sbpf.max"

##
--

Parameters (dont_change)
##

--

set power_enable_analysis true
set power_ccsp_use_zero_for_missing_leakage true
set power_enable_multi_rail_analysis true
if {$MODE_AVERAGED} {

echo ":␣power_analysis_mode␣averaged" l
set power_analysis_mode averaged

} else {
echo ":␣power_analysis_mode␣time_based"
set power_analysis_mode time_based

}
set power_read_activity_ignore_case true

##
--

Paths and Libraries (modify to meet your flow)
##

--

set VC_WORKSPACE [getenv VC_WORKSPACE]
set search_path { \

/pro/lode4377/library/OPCOND \
/cad/synopsys/ICCompiler /2013.03 - SP5/libraries/syn \
/cad/synopsys/ICCompiler /2013.03 - SP5/dw/syn_ver \

92 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

/cad/synopsys/ICCompiler /2013.03 - SP5/dw/sim_ver \
/n/library/artisan/tsmc018/sc/2004 q3v1/synopsys_jota /20110526 \
/n/library/artisan/tsmc018/sc/2004 q3v1/synopsys_jota /20130220 \
/n/library/nvlsi/tsmc/tsmc018/ICGLIB /1.3/ synopsys /20131114 \

}

set link_path {* \
/n/library/artisan/tsmc018/sc/2004 q3v1/synopsys_jota /20110526/

ARTISAN018G_SC_1V4FF -25 C_1V2.db \
/n/library/artisan/tsmc018/sc/2004 q3v1/synopsys_jota /20110526/

ARTISAN018G_SC_1V15SS85C_1V2.db \
/n/library/nvlsi/tsmc/tsmc018/ICGLIB /1.3/ synopsys /20131114/

ICGLIB_1V4FF -25 C_1V2.db \
/n/library/nvlsi/tsmc/tsmc018/ICGLIB /1.3/ synopsys /20131114/

ICGLIB_1V15SS85C_1V2.db \
}

if { [file exists [which $POWER_REPORT_DIR]] } {
echo "Report -directory␣already␣exists:␣$POWER_REPORT_DIR"

} else {
echo "Create␣report -directory:␣$POWER_REPORT_DIR"
sh mkdir $POWER_REPORT_DIR

}

##
--

Read Design Data_ Verilog , UPF , Extraction (modify to meet your flow
)

##
--

if {! $DESIGN_IS_READ} {
read_verilog $POWER_VERILOG_FILE
current_design $DESIGN_NAME
link
load_upf $POWER_UPF_FILE
read_parasitics $POWER_STAR_FILE
set DESIGN_IS_READ true

}

##
--

Operating Conditions TYP (modify to meet your flow)
##

--

A.7. POWER ANALYSIS SCRIPT 93

set_operating_conditions -analysis_type on_chip_variation LIB_1V4FF -25C
-library ARTISAN018G_SC_1V4FF -25 C_1V2

##
--

Activity (modify to meet your flow)
##

--

if {$READ_SDC} {
echo "-------------------------------"
echo ":Read␣sdc␣file"
echo "-------------------------------"
set sdc_write_unambiguous_names t

read_sdc $POWER_SDC_FILE
set_propagated_clock [all_clocks]

}

if {$READ_TOGGLE} {
echo "-------------------------------"
echo ":Read␣TOGGLE␣file"
echo "-------------------------------"
echo "POWER_SCENARIO␣is␣$POWER_SCENARIO"
source /pri/jota/workspace/master/ip/IIRFilt/syn/results/${

DESIGN_NAME }. mapped.SAIF.namemap
set power_default_toggle_rate 0.0
set_switching_activity -toggle_rate 0.5 -static_probability 0.2 -

type [list registers] -hierarchy
set_switching_activity - toggle_rate 0.5 - static_probability 0.2 [

get_pin u_FOS / Z01_reg_7_ /RN]
set_switching_activity -toggle_rate 0.5 -static_probability 0.0001 [

get_port arst]
update_power

}

if {$READ_SAIF} {
echo "-------------------------------"
echo ":Read␣SAIF␣file"
echo "-------------------------------"
source / pri / jcs / project /ip/ CORTEXM0 / syn/ results .21/ CORTEXM0 . mapped .

SAIF . namemap
read_saif -strip_path $POWER_STRIP_PATH $POWER_ACTIVITY_FILE
set power_default_toggle_rate 0.00
update_power

}

if {$READ_VCD} {
echo "-------------------------------"

94 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

echo ":Read␣VCD␣file"
echo "-------------------------------"
if {! $MODE_AVERAGED} {

echo ":save␣waveform␣to␣be␣opened␣with␣nWave:␣$POWER_REPORT_DIR/
powerWaves_$POWER_SCENARIO.RX"

set_power_analysis_options -waveform_interval 620 -
waveform_output $POWER_REPORT_DIR/powerWaves_$POWER_SCENARIO
.RX

echo ":Read␣VCD␣file ,␣look␣at␣the␣activities␣with␣nWave"
read_vcd -format SystemVerilog -strip_path $POWER_STRIP_PATH -

time {12000 16000} $POWER_VCD_FILE
Analyze your wave - data with %nwave ,
read data : $POWER_REPORT_DIR /

powerWaves_$POWER_SCENARIO .RX
read signal - list :

} else {
echo ":Read␣VCD␣file"
write_activity_waveforms -vcd $POWER_VCD_FILE -output ./ power /

$POWER_SCENARIO . vcd_waves -peak_window 6250 -interval 625 -
hierarchical_levels 8

HERE
source /pri/jota/workspace/master/ip/IIRFilt/syn/results/${

DESIGN_NAME }. mapped.SAIF.namemap

if {! $DYNAMIC_RTL} {
if {$POWER_SCENARIO == "active"} {

read_vcd -rtl -format SystemVerilog -
strip_path $POWER_STRIP_PATH -time
{20000 26000 30000 36000 40000
46000} $POWER_VCD_FILE ;#
power_test *

} elseif {$POWER_SCENARIO == "inactive"} {
read_vcd -rtl -format SystemVerilog -

strip_path $POWER_STRIP_PATH -time
{10000 16000} $POWER_VCD_FILE

;# power_test *
}

} else {
if {$POWER_SCENARIO == "ctrl3"} {

read_vcd -zero_delay -rtl -format
SystemVerilog -strip_path
$POWER_STRIP_PATH -time {20000
26000 30000 36000 40000 46000}
$POWER_VCD_FILE ;#
power_test *

} elseif {$POWER_SCENARIO == "ctrl2"} {
read_vcd -rtl -format SystemVerilog -

strip_path $POWER_STRIP_PATH -time
{70000 76000 80000 86000 90000
96000} $POWER_VCD_FILE ;#

A.7. POWER ANALYSIS SCRIPT 95

power_test *
} elseif {$POWER_SCENARIO == "ctrl1"} {

read_vcd -rtl -format SystemVerilog -
strip_path $POWER_STRIP_PATH -time
{120000 126000 130000 136000 140000
146000} $POWER_VCD_FILE ;

power_test *
} elseif {$POWER_SCENARIO == "ctrl0"} {

read_vcd -rtl -format SystemVerilog -
strip_path $POWER_STRIP_PATH -time
{170000 176000 180000 186000 190000
196000} $POWER_VCD_FILE ;

power_test *
} elseif {$POWER_SCENARIO == "inactive"} {

read_vcd -rtl -format SystemVerilog -
strip_path $POWER_STRIP_PATH -time
{160000 166000} $POWER_VCD_FILE

;# power_test *
}

}
}
update_power
set power_default_toggle_rate 0.00
echo ":Write␣SAIF␣file"
write_saif $POWER_SAIF_FILE

}

set timing_save_pin_arrival_and_slack true

##
--

Annotate power
##

--

update_timing
check_power
update_power

##
--

Standard Reports
##

--

set power_clock_network_include_register_clock_pin_power true

if {$REPORT_DETAILS} {

96 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

foreach current_clock {ck16M \
} {

echo ":Report␣power␣for:␣$current_clock"
report_power -group clock_network -hierarchy -clocks

$current_clock -cell_power -nosplit > $POWER_REPORT_DIR/
power_clk_$current_clock

report_power -group clock_network -hierarchy -clocks
$current_clock -cell_power -leaf -nosplit > $POWER_REPORT_DIR/
power_clk_$current_clock.leaf

}
}

set power_rail_output_file .poCalculatePower_VctFreeRptFile
report_switching_activity -list_not_annotated -include_only rtl -

show_pin > $POWER_REPORT_DIR/power_list_nonannotated_rtl.rpt
report_switching_activity -list_not_annotated > $POWER_REPORT_DIR/

power_list_nonannotated.rpt
report_switching_activity -list_annotated > $POWER_REPORT_DIR/

power_list_switching.rpt
report_switching_activity -list_annotated -include_only rtl -show_pin >

$POWER_REPORT_DIR/power_list_switching2.rpt
report_power -verbose > $POWER_REPORT_DIR/

power_summary.rpt
report_annotated_power -rails {VDD VSS} -list > $POWER_REPORT_DIR/

power_list_annotated.rpt
report_annotated_power -list_annotated > $POWER_REPORT_DIR/

power_list_annotated2.rpt

report_power -net_power -leaf -nosplit > $POWER_REPORT_DIR/
power_all_nets.rpt

report_power -cell_power -leaf -nosplit > $POWER_REPORT_DIR/
power_all_cells.rpt

report_power -hierarchy -nosplit > $POWER_REPORT_DIR/
power_hierarchy.rpt

report_power -cell_power -groups clock_network -nosplit >
$POWER_REPORT_DIR/power_clock_network.rpt

report_power -cell_power -leaf -groups clock_network -nosplit >
$POWER_REPORT_DIR/power_clock_network_leaf.rpt

sh echo "Name␣Internal␣Switching␣Leakage␣Total␣Percent" >> $SCORE_DIR/$
{FILE_LIST}_score.csv

sh echo $POWER_SCENARIO >> $SCORE_DIR/${FILE_LIST}_score.csv
sh grep "IIRFilt␣" $POWER_REPORT_DIR/power_hierarchy.rpt >> $SCORE_DIR/

${FILE_LIST}_score.csv
}

sh echo $FILE_LIST >> $SCORE_DIR/${FILE_LIST}_score.csv
sh grep "Combinational␣Cell␣Count:" $LAY_REPORT_DIR/clock_opt_cts_icc.

qor >> $SCORE_DIR/${FILE_LIST}_score.csv
sh grep "Sequential␣Cell␣Count:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor

>> $SCORE_DIR/${FILE_LIST}_score.csv

A.8. MATLAB SCRIPT FOR VISUALIZING SCORE RESULTS 97

sh grep "CT␣Buf/Inv␣Cell␣Count:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor
>> $SCORE_DIR/${FILE_LIST}_score.csv

sh grep "ADDFXL_1V2␣" $LAY_REPORT_DIR/init_design_icc.sum >> $SCORE_DIR
/${FILE_LIST}_score.csv

sh grep "Combinational␣Area:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor >>
$SCORE_DIR/${FILE_LIST}_score.csv

sh grep "Noncombinational␣Area:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor
>> $SCORE_DIR/${FILE_LIST}_score.csv

sh grep "Buf/Inv␣Area:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor >>
$SCORE_DIR/${FILE_LIST}_score.csv

sh grep "Cell␣Area:" $LAY_REPORT_DIR/clock_opt_cts_icc.qor >>
$SCORE_DIR/${FILE_LIST}_score.csv

quit

A.8 Matlab script for visualizing score results

close all; clear all;

N = 6;

names = cell (1:N);

names {1} = ’IIRFilt46 ’;
names {2} = ’IIRFilt21 ’;
names {3} = ’IIRFilt29 ’;
names {4} = ’IIRFilt30 ’;
names {5} = ’IIRFilt120 ’;
names {6} = ’IIRFilt296 ’;

All = cell(N,1);
formatSpec = ’%s’;
for i=1:N

A = textscan(fopen ([’../../../ score/’ names{i} ’_score.csv’]),
formatSpec ,200);

All{i}=A{1};
end

fclose all;

% Power : Internal Switching Leakage Total
% Cell count : Combinational Sequential CT_Buf /Inv Adders
% Cell area : Combinational Noncombinational Buf /Inv Total
activePow = zeros(N,4);
inactivePow = zeros(N,4);
cellCount = zeros(N,4);
cellArea = zeros(N,4);
for i = 1:N

activePow(i,:) = [str2num(All{i}{9}) str2num(All{i}{10}) str2num(
All{i}{11}) str2num(All{i}{12})];

98 A. AUTOMATED AREA AND POWER ESTIMATING TOOL-FLOW

inactivePow(i,:) = [str2num(All{i}{22}) str2num(All{i}{23}) str2num
(All{i}{24}) str2num(All{i}{25})];

cellCount(i,:) = [str2num(All{i}{31}) str2num(All{i}{35}) str2num(
All{i}{40}) str2num(All{i}{43})];

cellArea(i,:) = [str2num(All{i}{50}) str2num(All{i}{53}) str2num(
All{i}{56}) str2num(All{i}{59})];

end

figure
bar(activePow ’)
colormap summer
grid on
title(’Average␣Power␣in␣Active␣Scenario ’)
ylabel(’Average␣Power␣[W]’)
set(gca ,’XTickLabel ’,{’Internal ’, ’Switching ’, ’Leakage ’, ’Total’})
legend(names{1}, names{2}, names {3}, names{4}, names{5}, names {6}, ’

Location ’, ’northwest ’)

figure
bar(inactivePow ’)
colormap summer
grid on
title(’Average␣Power␣in␣Inactive␣Scenario ’)
ylabel(’Average␣Power␣[W]’)
set(gca ,’XTickLabel ’,{’Internal ’, ’Switching ’, ’Leakage ’, ’Total’})
legend(names{1}, names{2}, names {3}, names{4}, names{5}, names {6}, ’

Location ’, ’northwest ’)

figure
bar(cellCount ’)
colormap summer
grid on
title(’Cell␣Count’)
ylabel(’Number␣of␣cells’)
set(gca ,’XTickLabel ’,{’Combinational ’, ’Sequential ’, ’CT␣Buf/Inv’, ’

Adders ’})
legend(names{1}, names{2}, names {3}, names{4}, names{5}, names {6}, ’

Location ’, ’northeast ’)

figure
bar(cellArea ’)
colormap summer
grid on
title(’Cell␣Area’)
ylabel(’Area␣[\mum^2]’)
set(gca ,’XTickLabel ’,{’Combinational ’, ’Sequential ’, ’Buf/Inv’, ’Total ’

})
legend(names{1}, names{2}, names {3}, names{4}, names{5}, names {6}, ’

Location ’, ’northwest ’)

impresp = cell(N,1);
for i=1:N

A.8. MATLAB SCRIPT FOR VISUALIZING SCORE RESULTS 99

impresp{i} = load ([’../../ run/rtl/’ names{i} ’Unity_impresp.mat’],
’-ascii’);

end

figure
col = gray(N+3);
AMP = 2000;
for i=1:N

f=(0:1:511) /1024*16 e6;
M=20* log10(abs(fft(impresp{i}(1:500)/AMP ,1024)));
plot(f,M(1:512) , ’color’, col(i,:))
hold on

end

xlabel(’Frequency␣[Hz]’);
ylabel(’Gain␣[dB]’);
legend(names{1}, names{2}, names {3}, names{4}, names{5}, names {6}, ’

Location ’, ’northeast ’)
title(’Frequency␣Response ’);

Appendix B

Automated filter generation and
eligibility calculation

B.1 Matlab script for AFGEC

clear all; close all

%% Settings

Wn = 0.125; % Normalized cutoff
order = 3;
sweep = ’freq’;
freqStep = 0.001;
orderStep = 1;
T = 300;
numButter = 100;
numCheby = 100;
numEllip = 100;
plotTop = 6;
tolerance = 2^(-3);

%% Generate filters

A = cell(1,T);
B = cell(1,T);
Y = cell(1,T);
Yorig = cell(1,T); % original
Yq = cell(1,T); % quantized

101

102 B. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

Yqr = cell(1,T); % reduced
YqFracbits = cell(1,T);
YqrFracbits = cell(1,T);
Ytype = cell(1,T);
Yfreq = cell(1,T);
Yorder = cell(1,T);
gain = zeros(1,T);
gainq = zeros(1,T);
gainqFracbits = zeros(1,T);

for i=1:T

if i < numButter
type = ’butter ’;

elseif ((i > numButter) && (i < numButter+numCheby +1))
type = ’cheby1 ’;

elseif (i > numButter+numCheby)
type = ’ellip ’;

end

Ytype{i} = type;

if strcmp(type ,’butter ’)
if strcmp(sweep ,’order’)

order = i*orderStep;
freq = Wn;
[B{i} A{i}] = butter(order ,freq);

elseif strcmp(sweep ,’freq’)
freq = Wn+freqStep *(i-1);
[B{i} A{i}] = butter(order ,freq);

end

elseif strcmp(type ,’cheby1 ’)
if strcmp(sweep ,’order’)

order = (i-numButter)*orderStep;
freq = Wn;
Rp = 1; %dB peak -to - peak passband ripple
[B{i} A{i}] = cheby1(order ,Rp,freq); %T =100

elseif strcmp(sweep ,’freq’)
Rp = 1; %dB peak -to - peak passband ripple
freq = Wn+freqStep *(i-1-numButter);
[B{i} A{i}] = cheby1(order ,Rp,freq);

end

elseif strcmp(type ,’ellip’)
if strcmp(sweep ,’order’)

order = (i-numButter -numCheby)*orderStep;
freq = Wn;
Rp = 1; %dB peak -to - peak passband ripple

B.1. MATLAB SCRIPT FOR AFGEC 103

Rs = 20; %dB of stopband attenuation
[B{i} A{i}] = ellip(order ,Rp ,Rs,freq); %T =100

elseif strcmp(sweep ,’freq’)
Rp = 1; %dB peak -to - peak passband ripple
Rs = 20; %dB of stopband attenuation
freq = Wn+freqStep *(i-1-numButter -numCheby);
[B{i} A{i}] = ellip(order ,Rp ,Rs,freq);

end
end

Yorder{i} = order;
Yfreq{i} = freq;

% Convert to second -order - sections
[Y{i} gain(i)] = tf2sos(B{i},A{i});

% Sign invert for A coefficients
[totSec coefPerSec] = size(Y{i});
Yorig{i} = Y{i};
for j=1: totSec

Y{i}(j ,5:6) = -Y{i}(j ,5:6);
end

end

%% Quantize

for i=1:T

[totSec coefPerSec] = size(Y{i});
for j=1: totSec

for m=1: coefPerSec
k = 0;
err = 1000;
while ((abs(err) > tolerance) || (m==6 && dec==-1))

cur = Y{i}(j,m);
fix = dec2fix(cur ,k,k+2);
dec = fix2dec(fix);
err = cur -dec;
Yq{i}(j,m) = dec;
YqFracbits{i}(j,m) = k;
if m==6

sumA = Yq{i}(j,4)-Yq{i}(j,5)-Yq{i}(j,6);
while sumA ==0

YqFracbits{i}(j,5) = YqFracbits{i}(j,5) + 1;
YqFracbits{i}(j,6) = YqFracbits{i}(j,6) + 1;
Yq{i}(j,5) = fix2dec(dec2fix(Y{i}(j,5),

YqFracbits{i}(j,5) , YqFracbits{i}(j,5)+2)
);

104 B. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

Yq{i}(j,6) = fix2dec(dec2fix(Y{i}(j,6),
YqFracbits{i}(j,6) , YqFracbits{i}(j,6)+2)
);

sumA = Yq{i}(j,4)-Yq{i}(j,5)-Yq{i}(j,6);
end

end
k = k+1;

end
end

end
end

%% Gather filter characteristics

totCoefs = zeros(1,T);
oneCoefs = zeros(1,T);
zeroCoefs = zeros(1,T);
remCoefs = zeros(1,T);
totBits = zeros(1,T);
singleOnes = zeros(1,T);
repeatedCoefs = zeros(1,T);
filtersSharingCoefs = zeros(1,T);

for i=1:T

% Number of 1- coefficients , 0- coefficients , remaining
coefficients

totCoefs(i) = numel(Y{i});
oneCoefs(i) = length(find(Yq{i}==1));
zeroCoefs(i) = length(find(Yq{i}==0));
Yqr{i} = Yq{i};
Yqr{i}(Yq{i} == 1 | Yq{i} == 0) = [];
YqrFracbits{i} = YqFracbits{i};
YqrFracbits{i}(Yq{i} == 1 | Yq{i} == 0) = [];
remCoefs(i) = numel(Yqr{i});

% Number of bits per filter , and number of single - ones
sum = 0;
for j=1: numel(Yqr{i})

k = YqrFracbits{i}(j);
cur = Yqr{i}(j);
bin = dec2fix(cur ,k,k+2);
bits = length(bin) -1;
sum = sum + bits;

numberOfOnes = length(strfind(bin ,’1’));
if numberOfOnes == 1

singleOnes(i) = singleOnes(i) + 1;
end

end
totBits(i) = sum;

B.1. MATLAB SCRIPT FOR AFGEC 105

end

%% Eligibility function

a = zeros(1,T);
b = zeros(1,T);
c = zeros(1,T);
e = zeros(1,T);

E = zeros(1,T);
aW = 1;
bW = 1;
cW = 1;
eW = 1;
for i=1:T

a(i) = oneCoefs(i)/totCoefs(i);
b(i) = totBits(i)/remCoefs(i);
c(i) = singleOnes(i)/remCoefs(i);
e(i) = zeroCoefs(i)/totCoefs(i);
E(i) = aW*a(i) + bW*(1/b(i)) + cW*c(i) + eW*e(i);

end

[sortedE , sortedIndex] = sort(E, ’descend ’);

%% Convert best filters back and plot

figs = 0;
previous = [];
for i=1:T

if ((isequal(Yq{sortedIndex(i)}, previous) == 0) && (figs < plotTop
))
figure
figs = figs +1;

[totSec coefPerSec] = size(Yq{sortedIndex(i)});

Asos = cell(1,totSec);
Bsos = cell(1,totSec);

col = summer(totSec +1);
for j=1: totSec

Bsos{j} = Yq{sortedIndex(i)}(j,1:3);
Asos{j} = Yq{sortedIndex(i)}(j,4:6);
Asos{j}(2:3) = -Asos{j}(2:3);

[h w] = freqz(Bsos{j},Asos{j} ,1024 ,16000000);
plot(w,20* log10(abs(h)),’color’, col(j,:))
hold on

106 B. AUTOMATED FILTER GENERATION AND ELIGIBILITY CALCULATION

end

Btemp = [1];
Atemp = [1];
for j=1: totSec

Btemp = conv(Btemp , Bsos{j});
Atemp = conv(Atemp , Asos{j});

end

Bout = Btemp; % remember gain
Aout = Atemp;

disp ([’Filter␣implementation:␣’ num2str(sortedIndex(i)) ’,␣
Rank:␣’ num2str(i)])

for j=1: numel(Yqr{sortedIndex(i)})
k = YqrFracbits{sortedIndex(i)}(j);
cur = Yqr{sortedIndex(i)}(j);
disp(dec2fix(cur ,k,k+2))

end

[h w] = freqz(Bout ,Aout ,1024 ,16000000);

plot(w,20* log10(abs(h)),’color’, col(totSec +1,:))
xlabel(’Frequency␣[Hz]’)
ylabel(’Magnitude␣[dB]’)
title([’Filter␣implementation:␣’ num2str(sortedIndex(i)) ’,␣

Type:␣’ Ytype{sortedIndex(i)} ’,␣Order:␣’ num2str(Yorder{
sortedIndex(i)}) ’,␣Cutoff:␣’ num2str(Yfreq{sortedIndex(i)
}*8) ’MHz ,␣Rank:␣’ num2str(i)])

axis ([0 8000000 -50 50])
legend(’FOS’, ’SOS’, ’FOS+SOS’, ’Location ’, ’northeast ’)
set(gca ,’Color’ ,[0.3 0.3 0.3]);
grid on

col2 = lines(plotTop);
figure (100)
hold on
plot(w ,360/(2* pi)*angle(h), ’color’, col2(figs ,:))
xlabel(’Frequency␣[Hz]’)
ylabel(’Phase␣[degrees]’)
title(’Phase␣response␣in␣passband ’)
axis ([0 5500000 -200 0])
legend(’IIRFilt46 ’, ’IIRFilt21 ’, ’IIRFilt29 ’, ’IIRFilt30 ’, ’

IIRFilt120 ’, ’IIRFilt296 ’, ’Location ’, ’northeast ’)
grid on

previous = Yq{sortedIndex(i)};
end

end

%% Plot characteristics

B.1. MATLAB SCRIPT FOR AFGEC 107

figure
subplot (411)
plot(zeroCoefs , ’.-’)
ylabel(’zeroCoefs ’)
subplot (412)
plot(oneCoefs , ’.-’)
ylabel(’oneCoefs ’)
subplot (413)
plot(singleOnes , ’.-’)
ylabel(’singleOnes ’)
subplot (414)
plot(totBits , ’.-’)
ylabel(’totBits ’)
xlabel(’Filter␣implementation␣number ’)

figure
subplot (411)
plot(zeroCoefs ./totCoefs , ’.-’)
ylabel(’c_0(i)’)
subplot (412)
plot(oneCoefs ./totCoefs , ’.-’)
ylabel(’c_1(i)’)
subplot (413)
plot(singleOnes ./remCoefs , ’.-’)
ylabel(’c_2(i)’)
subplot (414)
plot(remCoefs ./totBits , ’.-’)
ylabel(’1/c_3(i)’)
xlabel(’Filter␣implementation␣number ’)

figure
plot(E,’.-’)
ylabel(’Eligibility ’)
xlabel(’Filter␣implementation␣number ’)

Appendix C

RTL implementation of winner
candidates

C.1 SystemVerilog code for IIRFilt46

module IIRFilt #(parameter wl = 12)

(
// Outputs
output logic signed [wl -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed[wl -1:0] dataIn
);

parameter wlinout = 20;
parameter wlcoef = 4;
parameter wlint1 = wlinout+wlcoef;

// Internal
logic signed [wlcoef -1:0] A11;
logic signed [wlcoef -1:0] A12;
logic signed [wlcoef -1:0] A22;

logic signed [wlinout -1:0] dataInProlong;
logic signed [wlinout -1:0] dataOutFOS;

109

110 C. RTL IMPLEMENTATION OF WINNER CANDIDATES

logic signed [wlinout -1:0] dataInt;
logic signed [wlinout -1:0] dataOutSOS;

logic signed [wl:0] dataOutRounded;

FOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef))
u_FOS(

// Outputs
.dataOut (dataOutFOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInProlong),
.A11 (A11)
);

SOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef))
u_SOS(

// Outputs
.dataOut (dataOutSOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInt),
.A12 (A12),
.A22 (A22)
);

always_comb
begin

A11 = 4’b00_10; // 0.5
A12 = 4’b01_01; // 1.25
A22 = 4’b11_10; // -0.5
dataInProlong = {dataIn , {(wlinout -wl){1’b0}}};
dataOutRounded = dataOutSOS[wlinout -1: wlinout -wl -1] +

{1’b1};
end

always_ff @(posedge ck or posedge arst)
begin

if(arst)
begin

dataOut <= 0;
dataInt <= 0;

end
else

begin
dataInt <= dataOutFOS;
dataOut <= dataOutRounded[wl:1];

end
end

C.1. SYSTEMVERILOG CODE FOR IIRFILT46 111

endmodule

module FOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A11

);

logic signed [wlint1 -1:0] Z01;
logic signed [wlint1 -1:0] Z01pre;
logic signed [wlint1 -1:0] prod_z01_a11;

logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 :0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1), .COEFF_WIDTH(wlcoef))
u_mult1_0(.dataOut(prod_z01_a11), .dataInA(Z01), .dataInB (

A11)); // A11

always_comb
begin
dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};
Z01pre = prod_z01_a11 + dataInProlong;
dataOutpre = Z01pre + Z01;
dataOutScale = dataOutpre[wlint1 :0] >> 3;
dataOutRounded = {{2{ dataOutScale[wlinout]}}, dataOutScale} +

{1’b1};

if ((dataOutRounded[wlinout +2] ^ dataOutRounded[wlinout]) || (
dataOutRounded[wlinout +2] ^ dataOutRounded[wlinout +1]))

dataOut = {dataOutRounded[wlinout +2], {wlinout -1{!
dataOutRounded[wlinout +2]}}};

else
begin

dataOut = dataOutRounded[wlinout :1];
end

end

always_ff @ (posedge ck or posedge arst)
begin

if(arst)

112 C. RTL IMPLEMENTATION OF WINNER CANDIDATES

begin
Z01 <= 0;

end
else

begin
Z01 <= Z01pre;

end

end
endmodule

module SOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A12 ,
input logic signed [wlcoef -1:0] A22

);

logic signed [wlint1 :0] Z11pre;
logic signed [wlint1 :0] Z11;
logic signed [wlint1 +1:0] Z11shifted;
logic signed [wlint1 :0] Z12;
logic signed [wlint1 :0] prod_z11_a12;
logic signed [wlint1 :0] prod_z12_a22;
logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 +2:0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_0(.dataOut(prod_z11_a12), .dataInA(Z11), .dataInB (

A12));

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_1(.dataOut(prod_z12_a22), .dataInA(Z12), .dataInB (

A22));

always_comb
begin

dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};
Z11shifted = Z11 << 1;
Z11pre = dataInProlong + prod_z11_a12 +

prod_z12_a22;
dataOutpre = Z11pre + Z11shifted + Z12;

C.1. SYSTEMVERILOG CODE FOR IIRFILT46 113

dataOutScale = dataOutpre[wlint1 +2:0] >> 5; // 5 for 4-
bit coef , 6 for 5- bit coef

dataOutRounded = {{2{ dataOutScale[wlinout]}},
dataOutScale} + {1’b1};

if ((dataOutRounded[wlinout +2] ^ dataOutRounded[wlinout
]) || (dataOutRounded[wlinout +2] ^ dataOutRounded[
wlinout +1]))

dataOut = {dataOutRounded[wlinout +2], {wlinout
-1{! dataOutRounded[wlinout +2]}}};

else
begin

dataOut = dataOutRounded[wlinout :1];
end

end

always_ff @(posedge ck or posedge arst)
begin

if(arst)
begin

Z11 <= 0;
Z12 <= 0;

end
else

begin
Z11 <= Z11pre;
Z12 <= Z11;

end
end

endmodule

module multiplier1 #(parameter INTERNAL_REG_WIDTH = 16, parameter
COEFF_WIDTH = 4)

(
output logic signed [INTERNAL_REG_WIDTH -1:0] dataOut ,
input logic signed [INTERNAL_REG_WIDTH -1:0] dataInA ,
input logic signed [COEFF_WIDTH -1:0] dataInB
);

logic signed [INTERNAL_REG_WIDTH+COEFF_WIDTH -1:0] res;

always_comb
begin

res = dataInA * dataInB;
dataOut = res[((INTERNAL_REG_WIDTH -1)+(COEFF_WIDTH -2))

:(COEFF_WIDTH -2)];
end

endmodule

Appendix D

Quantization level exploration

D.1 Matlab script for quantization noise analysis

Pq = zeros (1,20);
k=12;
d1 = 2^ -15;
d2 = 2^ -15;
d3 = 2^ -11;%
d4 = 2^ -16;
d5 = 2^ -16;
d6 = 2^ -16;
d7 = 2^ -11;%
delta = [d1 d2 d3 d4 d5 d6 d7];
sigma2 = zeros (1,7);
for i=1:7

if (i==3 || i==7)
sigma2(i) = (delta(i)^2) /12; % Rounding

else
sigma2(i) = (delta(i)^2)/3; % Truncating

end
end
Pq(k)=sum(sigma2);
disp ([’Noise␣in␣new␣implementation␣is␣’ num2str(sum(sigma2))])
x(k) = k;

for k=13: length(Pq)
C = 4;
B = k;

115

116 D. QUANTIZATION LEVEL EXPLORATION

int = C+B;
d1 = 2^-(int -1);
d2 = 2^-(int -1);
d3 = 2^-(B-1);%
d4 = 2^-(int);
d5 = 2^-(int);
d6 = 2^-(int);
d7 = 2^-(B-1);%
d8 = 2^ -(11);
delta = [d1 d2 d3 d4 d5 d6 d7 d8];
sigma2 = zeros(1, length(delta));
for i=1: length(sigma2)

if (i==3 || i==7 || i==8)
sigma2(i) = (delta(i)^2) /12; % Rounding

else
sigma2(i) = (delta(i)^2)/3; % Truncating

end
end
Pq(k)=sum(sigma2);
disp ([’Noise␣in␣newer␣implementation␣is␣’ num2str(sum(sigma2))])
x(k) = inout;

end

Px = 1;
SQNR = 10.* log10(Px./Pq);

figure
plot(x(12:20) , Pq (12:20))
grid on
title(’Total␣quantization␣noise’)
ylabel(’\sigma_e ^2’)
xlabel(’Inter -module␣bitwidth ,␣B’)

figure
plot(x(12:20) , SQNR (12:20))
grid on
title(’Signal -to-quantization -noise␣ratio’)
ylabel(’SQNR␣[dB]’)
xlabel(’Inter -module␣bitwidth ,␣B’)

Appendix E

Dynamic RTL

E.1 SystemVerilog code for DynOrderMux

module IIRFilt #(parameter wl = 12)

(
// Outputs
output logic signed [wl -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed[wl -1:0] dataIn ,
input logic [1:0] ctrl
);

parameter wlinout = 15;
parameter wlcoef = 4;
parameter wlint1 = wlinout+wlcoef;

// Internal
logic ctrlFOS , ctrlSOS;
logic signed [wlcoef -1:0] A11;
logic signed [wlcoef -1:0] A12;
logic signed [wlcoef -1:0] A22;
logic signed [wlinout -1:0] dataInProlong;
logic signed [wlinout -1:0] dataOutFOS;
logic signed [wlinout -1:0] dataInt;
logic signed [wlinout -1:0] dataOutSOS;

117

118 E. DYNAMIC RTL

logic signed [wl:0] dataOutRounded;

FOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef))
u_FOS(

// Outputs
.dataOut (dataOutFOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInProlong),
.A11 (A11),
.ctrl (ctrlFOS)
);

SOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef))
u_SOS(

// Outputs
.dataOut (dataOutSOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInt),
.A12 (A12),
.A22 (A22),
.ctrl (ctrlSOS)
);

always_comb
begin

ctrlFOS = ctrl [0];
ctrlSOS = ctrl [1];
A11 = 4’b00_10; // 0.5
A12 = 4’b01_01; // 1.25
A22 = 4’b11_10; // -0.5
dataInProlong = {dataIn , {(wlinout -wl){1’b0}}};
dataInt = dataOutFOS;
dataOutRounded = dataOutSOS[wlinout -1: wlinout -wl -1] +

{1’b1};
dataOut = dataOutRounded[wl:1];

end

endmodule

module FOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,

E.1. SYSTEMVERILOG CODE FOR DYNORDERMUX 119

input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A11 ,
input logic ctrl

);

logic signed [wlint1 -1:0] Z01;
logic signed [wlint1 -1:0] Z01pre;
logic signed [wlint1 -1:0] prod_z01_a11;
logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 :0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;
logic signed [wlinout -1:0] dataOutreg;
logic arstctrl , ck_g , obs , tm;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1), .COEFF_WIDTH(wlcoef))
u_mult1_0(.dataOut(prod_z01_a11), .dataInA(Z01), .dataInB (

A11)); // A11

‘ifdef HINST_RTL
always_latch

if (!ck)
obs = ctrl;

assign ck_g = ck && (obs || tm);
‘elsif HINST_TSMC_180_ARM_1V2

TLATNCOAX2_1V2 u_SizeOnlyHinstTlatncoa (.ECK(ck_g), .CK(ck), .E(ctrl),
.OBS(obs), .TM(tm));

‘endif

always_comb
begin

tm = 0;

if (ctrl == 1)
dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};

else
dataInProlong = ’0;

Z01pre = prod_z01_a11 + dataInProlong;
dataOutpre = Z01pre + Z01;
dataOutScale = dataOutpre[wlint1 :0] >> 3;
dataOutRounded = {{2{ dataOutScale[wlinout]}},

dataOutScale} + {1’b1};

arstctrl = (arst || !ctrl);

if (ctrl ==1)
dataOut = dataOutreg;

else

120 E. DYNAMIC RTL

dataOut = dataIn;

end

always_ff @ (posedge ck_g or posedge arstctrl)
begin

if(arstctrl)
begin

Z01 <= 0;
dataOutreg <= 0;

end
else

begin
Z01 <= Z01pre;

if ((dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout]) || (
dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout +1]))

dataOutreg <= {dataOutRounded[
wlinout +2], {wlinout -1{!
dataOutRounded[wlinout
+2]}}};

else
dataOutreg <= dataOutRounded[

wlinout :1];
end

end

endmodule

module SOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A12 ,
input logic signed [wlcoef -1:0] A22 ,
input logic ctrl

);

logic signed [wlint1 :0] Z11pre;
logic signed [wlint1 :0] Z11;
logic signed [wlint1 +1:0] Z11shifted;
logic signed [wlint1 :0] Z12;
logic signed [wlint1 :0] prod_z11_a12;
logic signed [wlint1 :0] prod_z12_a22;

E.1. SYSTEMVERILOG CODE FOR DYNORDERMUX 121

logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 +2:0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;
logic signed [wlinout -1:0] dataOutreg;
logic arstctrl , ck_g , obs , tm;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_0(.dataOut(prod_z11_a12), .dataInA(Z11), .dataInB (

A12));

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_1(.dataOut(prod_z12_a22), .dataInA(Z12), .dataInB (

A22));

‘ifdef HINST_RTL
always_latch

if (!ck)
obs = ctrl;

assign ck_g = ck && (obs || tm);
‘elsif HINST_TSMC_180_ARM_1V2

TLATNCOAX2_1V2 u_SizeOnlyHinstTlatncoa (.ECK(ck_g), .CK(ck), .E(ctrl),
.OBS(obs), .TM(tm));

‘endif

always_comb
begin

tm = 0;

if (ctrl == 1)
dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};

else
dataInProlong = ’0;

Z11shifted = Z11 << 1;
Z11pre = dataInProlong + prod_z11_a12 +

prod_z12_a22;
dataOutpre = Z11pre + Z11shifted + Z12;
dataOutScale = dataOutpre[wlint1 +2:0] >> 5;
dataOutRounded = {{2{ dataOutScale[wlinout]}},

dataOutScale} + {1’b1};
arstctrl = (arst || !ctrl);

if (ctrl == 1)
dataOut = dataOutreg;

else
dataOut = dataIn;

end

122 E. DYNAMIC RTL

always_ff @(posedge ck_g or posedge arstctrl)
begin

if(arstctrl)
begin

Z11 <= 0;
Z12 <= 0;
dataOutreg <= 0;

end
else

begin
Z11 <= Z11pre;
Z12 <= Z11;

if ((dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout]) || (
dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout +1]))

dataOutreg <= {dataOutRounded[
wlinout +2], {wlinout -1{!
dataOutRounded[wlinout
+2]}}};

else
dataOutreg <= dataOutRounded[

wlinout :1];
end

end

endmodule

module multiplier1 #(parameter INTERNAL_REG_WIDTH = 16, parameter
COEFF_WIDTH = 4)

(
output logic signed [INTERNAL_REG_WIDTH -1:0] dataOut ,
input logic signed [INTERNAL_REG_WIDTH -1:0] dataInA ,
input logic signed [COEFF_WIDTH -1:0] dataInB
);

logic signed [INTERNAL_REG_WIDTH+COEFF_WIDTH -1:0] res;

always_comb
begin

res = dataInA * dataInB;
dataOut = res[((INTERNAL_REG_WIDTH -1)+(COEFF_WIDTH -2))

:(COEFF_WIDTH -2)];
end

endmodule

E.2. SYSTEMVERILOG CODE FOR DYNNOISERND12 123

E.2 SystemVerilog code for DynNoiseRnd12
module IIRFilt #(parameter wl = 12)

(
// Outputs
output logic signed [wl -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed[wl -1:0] dataIn ,
input logic [1:0] ctrl
);

parameter wlinout = 15;
parameter wlcoef = 4;
parameter wlint1 = wlinout+wlcoef;

parameter Llimit = 12;
parameter Rlimit = 6;

// Internal
logic gateLSBits , gateMiddle , gateMSBits;
logic obs0 , obs1 , obs2;
logic [2:0] ck_g , arstctrl;
logic signed [wlcoef -1:0] A11;
logic signed [wlcoef -1:0] A12;
logic signed [wlcoef -1:0] A22;
logic signed [wlinout -1:0] dataInProlong;
logic signed [wlinout -1:0] dataOutFOS;
logic signed [wlinout -1:0] dataInt;
logic signed [wlinout -1:0] dataOutSOS;
logic signed [wl:0] dataOutRounded;

‘ifdef HINST_RTL
always_latch

if (!ck)
obs0 = !gateLSBits;

assign ck_g [0] = ck && obs0;
‘elsif HINST_TSMC_180_ARM_1V2

TLATNCOAX2_1V2 u_SizeOnlyHinstTlatncoa0 (.ECK(ck_g [0]), .CK(ck
), .E(ctrl0), .OBS(obs0), .TM(1’b0));

‘endif

‘ifdef HINST_RTL
always_latch

if (!ck)
obs1 = !gateMiddle;

assign ck_g [1] = ck && obs1;

124 E. DYNAMIC RTL

‘elsif HINST_TSMC_180_ARM_1V2
TLATNCOAX2_1V2 u_SizeOnlyHinstTlatncoa1 (.ECK(ck_g [1]), .CK(ck

), .E(ctrl1), .OBS(obs1), .TM(1’b0));
‘endif

‘ifdef HINST_RTL
always_latch

if (!ck)
obs2 = !gateMSBits;

assign ck_g [2] = ck && obs2;
‘elsif HINST_TSMC_180_ARM_1V2

TLATNCOAX2_1V2 u_SizeOnlyHinstTlatncoa2 (.ECK(ck_g [2]), .CK(ck
), .E(ctrl2), .OBS(obs2), .TM(1’b0));

‘endif

FOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef), .
Llimit(Llimit), .Rlimit(Rlimit))

u_FOS(
// Outputs
.dataOut (dataOutFOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInProlong),
.A11 (A11),
.arstctrl (arstctrl),
.ck_g (ck_g),
.ctrl (ctrl)
);

SOS #(. wlinout(wlinout), .wlint1(wlint1), .wlcoef(wlcoef), .
Llimit(Llimit), .Rlimit(Rlimit))

u_SOS(
// Outputs
.dataOut (dataOutSOS),
// Inputs
.arst (arst),
.ck (ck),
.dataIn (dataInt),
.A12 (A12),
.A22 (A22),
.arstctrl (arstctrl),
.ck_g (ck_g),
.ctrl (ctrl)
);

always_comb
begin

E.2. SYSTEMVERILOG CODE FOR DYNNOISERND12 125

gateLSBits = !ctrl [0] || !ctrl [1];
gateMiddle = !ctrl [1];
gateMSBits = !ctrl [0] && !ctrl [1];

arstctrl [0] = arst || gateLSBits;
arstctrl [1] = arst || gateMiddle;
arstctrl [2] = arst || gateMSBits;

A11 = 4’b00_10; // 0.5
A12 = 4’b01_01; // 1.25
A22 = 4’b11_10; // -0.5
dataInProlong = {dataIn , {(wlinout -wl){1’b0}}};
dataInt = dataOutFOS;
dataOutRounded = dataOutSOS[wlinout -1: wlinout -wl -1] +

{1’b1};

if (ctrl == 0)
dataOut = dataIn;

else
dataOut = dataOutRounded[wl:1];

end

endmodule

module FOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4, parameter Llimit = 16, parameter
Rlimit = 8)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A11 ,
input logic [2:0] arstctrl ,
input logic [2:0] ck_g ,
input logic [1:0] ctrl

);

logic signed [wlint1 -1:0] Z01;
logic signed [wlint1 -1:0] Z01pre , Z01preRound;
logic signed [wlint1 -1:0] prod_z01_a11;
logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 :0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;
logic signed [wlinout -1:0] dataOutreg;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1), .COEFF_WIDTH(wlcoef))
u_mult1_0(.dataOut(prod_z01_a11), .dataInA(Z01), .dataInB (

A11)); // A11

126 E. DYNAMIC RTL

always_comb
begin

dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};
Z01pre = prod_z01_a11 + dataInProlong;

if (ctrl ==3)
begin
Z01preRound = Z01pre;
end

else if (ctrl ==2)
begin
// Z01preRound = Z01pre + {{1 ’ b1}, {(Rlimit -1)

{0’ b0 }}};
Z01preRound = Z01pre + {{1’b1}, {5’b0}};
end

else if (ctrl ==1)
begin
// Z01preRound = Z01pre + {{1 ’ b1}, {(Llimit -1)

{0’ b0 }}};
Z01preRound = Z01pre + {{1’b1}, {11’b0}};
end

else if (ctrl ==0)
begin
Z01preRound = Z01pre;
end

dataOutpre = Z01pre + Z01;
dataOutScale = dataOutpre[wlint1 :0] >> 3;
dataOutRounded = {{2{ dataOutScale[wlinout]}},

dataOutScale} + {1’b1};

if ((dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout]) || (
dataOutRounded[wlinout +2] ^
dataOutRounded[wlinout +1]))

dataOutreg <= {dataOutRounded[
wlinout +2], {wlinout -1{!
dataOutRounded[wlinout
+2]}}};

else
dataOutreg <= dataOutRounded[

wlinout :1];
end

always_ff @ (posedge ck_g [2] or posedge arstctrl [2])
begin

if (arstctrl [2])
begin
Z01[wlint1 -1: Llimit] <= 0;
dataOut[wlinout -1:0] <= 0;
end

E.2. SYSTEMVERILOG CODE FOR DYNNOISERND12 127

else
begin
Z01[wlint1 -1: Llimit] <= Z01preRound[wlint1 -1:

Llimit];
dataOut[wlinout -1:0] <= dataOutreg[wlinout

-1:0];
end

end

always_ff @ (posedge ck_g [1] or posedge arstctrl [1])
begin

if (arstctrl [1])
begin
Z01[Llimit -1: Rlimit] <= 0;
end

else
begin
Z01[Llimit -1: Rlimit] <= Z01preRound[Llimit -1:

Rlimit];
end

end

always_ff @ (posedge ck_g [0] or posedge arstctrl [0])
begin

if (arstctrl [0])
begin
Z01[Rlimit -1:0] <= 0;
end

else
begin
Z01[Rlimit -1:0] <= Z01preRound[Rlimit -1:0];
end

end

endmodule

module SOS #(parameter wl = 12, parameter wlinout = 12, parameter
wlint1 = 16, parameter wlcoef = 4, parameter Llimit = 16, parameter
Rlimit = 8)

(
// Outputs
output logic signed [wlinout -1:0] dataOut ,
// Inputs
input logic arst ,
input logic ck ,
input logic signed [wlinout -1:0] dataIn ,
input logic signed [wlcoef -1:0] A12 ,
input logic signed [wlcoef -1:0] A22 ,
input logic [2:0] arstctrl ,
input logic [2:0] ck_g ,
input logic [1:0] ctrl

);

128 E. DYNAMIC RTL

logic signed [wlint1 :0] Z11pre , Z11preRound;
logic signed [wlint1 :0] Z11;
logic signed [wlint1 +1:0] Z11shifted;
logic signed [wlint1 :0] Z12;
logic signed [wlint1 :0] prod_z11_a12;
logic signed [wlint1 :0] prod_z12_a22;
logic signed [(wlinout -1)+(wlcoef -2) :0] dataInProlong;
logic signed [wlint1 +2:0] dataOutpre;
logic signed [wlinout :0] dataOutScale;
logic signed [wlinout +2:0] dataOutRounded;
logic signed [wlinout -1:0] dataOutreg;

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_0(.dataOut(prod_z11_a12), .dataInA(Z11), .dataInB (

A12));

multiplier1 #(. INTERNAL_REG_WIDTH(wlint1 +1), .COEFF_WIDTH(wlcoef))
u_mult2_1(.dataOut(prod_z12_a22), .dataInA(Z12), .dataInB (

A22));

always_comb
begin

dataInProlong = {dataIn , {(wlcoef -2){1’b0}}};
Z11shifted = Z11 << 1;
Z11pre = dataInProlong + prod_z11_a12 +

prod_z12_a22;

if (ctrl ==3)
begin
Z11preRound = Z11pre;
end

else if (ctrl ==2)
begin
// Z11preRound = Z11pre + {{1 ’ b1}, {(Rlimit -1)

{0’ b0 }}};
Z11preRound = Z11pre + {{1’b1}, {5’b0}};
end

else if (ctrl ==1)
begin
// Z11preRound = Z11pre + {{1 ’ b1}, {(Llimit -1)

{0’ b0 }}};
Z11preRound = Z11pre + {{1’b1}, {11’b0}};
end

else if (ctrl ==0)
begin
Z11preRound = Z11pre;
end

dataOutpre = Z11pre + Z11shifted + Z12;
dataOutScale = dataOutpre[wlint1 +2:0] >> 5;

E.2. SYSTEMVERILOG CODE FOR DYNNOISERND12 129

dataOutRounded = {{2{ dataOutScale[wlinout]}},
dataOutScale} + {1’b1};

if ((dataOutRounded[wlinout +2] ^ dataOutRounded[wlinout
]) || (dataOutRounded[wlinout +2] ^ dataOutRounded[
wlinout +1]))

dataOutreg <= {dataOutRounded[wlinout +2], {
wlinout -1{! dataOutRounded[wlinout +2]}}};

else
dataOutreg <= dataOutRounded[wlinout :1];

end

always_ff @ (posedge ck_g [2] or posedge arstctrl [2])
begin

if (arstctrl [2])
begin
Z11[wlint1:Llimit] <= 0;
Z12[wlint1:Llimit] <= 0;
dataOut[wlinout -1:0] <= 0;
end

else
begin
Z11[wlint1:Llimit] <= Z11preRound[wlint1:Llimit

];
Z12[wlint1:Llimit] <= Z11[wlint1:Llimit];
dataOut[wlinout -1:0] <= dataOutreg[wlinout

-1:0];
end

end

always_ff @ (posedge ck_g [1] or posedge arstctrl [1])
begin

if (arstctrl [1])
begin
Z11[Llimit -1: Rlimit] <= 0;
Z12[Llimit -1: Rlimit] <= 0;
end

else
begin
Z11[Llimit -1: Rlimit] <= Z11preRound[Llimit -1:

Rlimit];
Z12[Llimit -1: Rlimit] <= Z11[Llimit -1: Rlimit];
end

end

always_ff @ (posedge ck_g [0] or posedge arstctrl [0])
begin

if (arstctrl [0])
begin
Z11[Rlimit -1:0] <= 0;
Z12[Rlimit -1:0] <= 0;

130 E. DYNAMIC RTL

end
else

begin
Z11[Rlimit -1:0] <= Z11preRound[Rlimit -1:0];
Z12[Rlimit -1:0] <= Z11[Rlimit -1:0];
end

end

endmodule

module multiplier1 #(parameter INTERNAL_REG_WIDTH = 16, parameter
COEFF_WIDTH = 4)

(
output logic signed [INTERNAL_REG_WIDTH -1:0] dataOut ,
input logic signed [INTERNAL_REG_WIDTH -1:0] dataInA ,
input logic signed [COEFF_WIDTH -1:0] dataInB
);

logic signed [INTERNAL_REG_WIDTH+COEFF_WIDTH -1:0] res;

always_comb
begin

res = dataInA * dataInB;
dataOut = res[((INTERNAL_REG_WIDTH -1)+(COEFF_WIDTH -2))

:(COEFF_WIDTH -2)];
end

endmodule

E.3. CLOCK AND RESET DISTRIBUTION OF DYNAMIC RTL IMPLEMENTATIONS
131

E.3 Clock and reset distribution of dynamic RTL
implementations

Figure E.1: Registers and clock signals in the DynOrder and DynOrderMux imple-
mentations

132 E. DYNAMIC RTL

Figure E.2: Registers and clock signals in the DynOrderReg implementation

E.3. CLOCK AND RESET DISTRIBUTION OF DYNAMIC RTL IMPLEMENTATIONS
133

Figure E.3: Registers and clock signals in the dynamic quantization noise approach

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Algorithm-architecture co-design
	Previous work
	Objectives
	Thesis overview

	Background and Theory
	The channel filter in wireless communication systems
	Digital filters
	FIR filters
	IIR filters

	Quantization noise
	Truncation
	Rounding

	CMOS Power Dissipation
	Static Power
	Dynamic Power

	Low power techniques
	Clock gating
	Datapath gating
	Power gating

	Automated area and power estimating tool-flow
	The steps of a complete design cycle
	RTL Design
	Commands in terminal
	Simulation
	Synthesis
	Layout
	Power Analysis
	Visualization in Matlab

	Automated filter generation and eligibility calculation
	Automated filter generation
	Filter requirements
	Filter type
	Filter structure
	Filter generating algorithm

	Coefficient quantization algorithm
	Eligibility calculation
	Characteristics
	Eligibility function

	Results of the AFGEC
	Winner candidates from the AFGEC
	Conclusion of the AFGEC

	RTL implementation of winner candidates
	Framework
	Coefficients
	Power scenarios
	Results of the RTL implementations
	Conclusion of the RTL implementations

	Quantization level exploration
	Quantization noise analysis
	Implementation
	Results of the quantization level exploration
	Conclusion of the quantization level exploration

	Dynamic RTL
	Implementation
	Modes of performance
	Dynamic filter order
	Dynamic quantization noise
	Power gating

	Results of the dynamic implementations
	Dynamic filter order results
	Dynamic quantization noise results
	Power gating results
	Conclusion of the dynamic implementations

	Discussion
	Algorithm-architecture co-design and platform level implementation
	Evaluation of dynamic implementations
	Dynamic order
	Dynamic noise
	Possible combined solution

	Thoughts around future work
	Fine-tune the AFGEC algorithm
	Include power gating in tool-flow and implement
	Extended quantization level exploration
	Similar studies
	Link quality estimator and mode selector

	Conclusion
	Future work

	References
	Automated area and power estimating tool-flow
	Makefile for the automated tool-flow
	IIRFilt testbench in SystemVerilog
	Makefile for synthesis
	Synthesis design constraints
	Makefile for layout
	Makefile for power analysis
	Power analysis script
	Matlab script for visualizing score results

	Automated filter generation and eligibility calculation
	Matlab script for AFGEC

	RTL implementation of winner candidates
	SystemVerilog code for IIRFilt46

	Quantization level exploration
	Matlab script for quantization noise analysis

	Dynamic RTL
	SystemVerilog code for DynOrderMux
	SystemVerilog code for DynNoiseRnd12
	Clock and reset distribution of dynamic RTL implementations

