

Chapter 5. Simulations 45

those values, they would distort the whole estimation process, but more about that in

chapter 6. The next part of the path is the triangulation and will be shown next.

5.5.3 Triangulation

Now that the radar measurements from the two radars has been through gating, GNN

and Kalman filtering, it is time to join the two paths with the triangulation function.

There is no magic to this function. It uses the two radar measurements d̂1 and d̂2 and

the two radar positions s1 = (−0.5, 0) and s2 = (0.5, 0) to find the actual position (x̂, ŷ).

The main part of the triangulation formula is shown below. Note that d0 is the distance

between the radars divided by two, d0 = |s2−s1|
2 .

x̂(k) =
d̂1(k)2 − d̂2(k)2

4d0

ŷ(k) =

√
d̂2(k)2 − d2

0 +
d̂1(k)2 − d̂2(k)2

2
−
(
d̂1(k)2 − d̂2(k)2

4d0

)2

(5.8)

Because of the independent noise from both radars the final target might be in two

different positions depending on if d1 or d2 is prioritized. Depending on the target

position compared to s1 and s2 the function prioritizes different values. The function

prioritizes the measurements from the radar that is closest to the target and therefore

minimizes the error.

The next figure shows the result of the triangulation function from the same path as

before, shown in 5.1(a).

Chapter 5. Simulations 46

(a) Triangulated x values

(b) Triangulated y values

(c) Triangulated final position

Figure 5.10: Triangulated values

Chapter 5. Simulations 47

Figure 5.10 shows three subfigures that represents the final position (x̂, ŷ) after the

triangulation. Figure 5.10(b) holds the y values, 5.10(a) holds the x values and 5.10(c)

holds both the x and y values.

Since the estimated position (x̂, ŷ) is generated from a combination of both radars R1

and R2, the accuracy of the final estimated positions will be effected by the accuracy

of either of the radars. If for instance R1 gives a good estimation, but R2 does not, the

triangulated final position (x̂, ŷ) will also be inaccurate . It can already be seen in both

figure 5.10(b) and 5.10(a) that the radar measurements x and y start becoming bigger

than the range that the gates allows. For example if R1 has really noisy measurements

after 5m, the whole system will be affected by that. Since this system is based around

origo this will result in very noisy measurements already at 4.5m distance. Imagine that

the simulated track just follows the x-axis in the positive direction. So when the target

is 4m away from origo, it is actually 4.5m away from R1 and 3.5m away from R2. R1

will in this case be the main contributor of really noisy measurements since the noise

model varies with distance.

The way the noise model is defined, the resulting filtered measurement x̂, ŷ does not

give any position worth trusting after about 4m distance on both axis. This amounts to
√

4m2 + 4m2 = 4×
√

2m = 5.66m distance from the origo.

When only looking at the radar measurements, the blue lines, the position becomes

untrustworthy way sooner than the estimated position, red lines, in all three figures in

figure 5.10. This means that the gate, GNN and kalman filters contributes positively

towards a better position estimate.

The figure 5.10(c) gives out reasonable values compared with the triangulation simu-

lations from section 5.4. At the position (2.8, 2.8) the target is about 4 m away from

origo. As the simulation shows in figure 5.5(b), the expected error is about 0.8 m in the

x-direction. This is in the same ballpark as the difference between the radar measure-

ments (x, y) and the original track in figure 5.10(c). It was not expected that the error

was exactly what was predicted, but it helps to know that they are not too far off.

As mentioned before, the necessity of the gate shows itself when looking at figure 5.10(c)

compared to the next figure

Chapter 5. Simulations 48

Figure 5.11: Triangulation without gating

Figure 5.11 shows the triangulation results when no gating is being used. This is much

worse than what is seen in figure 5.10(c). The radar measurements, blue lines, are all

over the plot and the filtered measurements are also worse.

Having worked with the filters a lot, it has become evident that it is possible to tweak

the filters into giving more accurate estimations. By altering Q, R and some of the

initial conditions one can get a even better estimation than what has been shown here.

The problem is that these settings and performances are based on unrealistic settings,

and almost psychic initial guesses. Given that the goal of these simulations were not to

provide the best estimation of the position, but rather the best estimates given realistic

settings and noises, the result is more than acceptable.

The reason the simulations are set to be realistic is because the simulation process is

merely a means to develop algorithms that can be used in real situations with real radars.

If the simulations only focused on giving the best possible estimations, the algorithms

would most likely not work in real situations. The way the author use the simulations is

to provide the most robust algorithms to be used in said real situations. This is easier

to do in a simulation environment when the inputs are controlled and the outputs are

predictable.

The next step is to use the system of algorithms in a real situation where a walking

person is tracked using the real radars.

Chapter 6

True Radar Tracking

Now that the complete path from radar to position (x̂, ŷ), shown in figure 5.4, has been

proven to work during simulation, it is time to try it out with real radars.

This will be done with the same radar setup as shown in figure 5.4, step by step starting

out with only one radar at the time, testing out gating, GNN and kalman filtering.

In the end the two paths will be joint in the triangulation function. The real radar

measurement functions can be found in appendix B.

Before the results are shown it is important to note that for the actual radar measurement

the time between samples is 1 second, compared to the simulated 0.1 seconds. That is

just the way the radars are programmed at the moment, but it is enough as long as the

person is walking. Therefore, the simulation samples are spaced closer together and can

in theory handle faster targets. Another note is that the radar operates in the space 1.5

m- 4.5 m. So values outside those ranges will not be detected.

6.1 Radar Results and Discussion

The results will be divided into two sections, one for the single radar and another for

both radars working simultaneously. First, it will be shown that 1 radar works properly

by itself. In other words, that one of the paths gives reasonable values d̂.

6.1.1 Gating, GNN and Kalman Filter for One Radar

Figure 6.1 shows how the raw values from the radar comes in to be processed. It

represents a track made of a person walking in a straight path, starting close to the

radar, walking away from it and then walking back to it.

49

Chapter 6. True Radar Tracking 50

Figure 6.1: Raw values

It is seen that multiple measurements can appear at the same instant. This means

that the GNN is highly necessary. Without it the algorithm would not know which

measurements to filter. The cluster of values up in the top right and top left corner of

the figure, pointed at by the arrows, are unfortunate false values. These appear because

the current radar still has some unresolved bugs when the target is outside the given

range 1.5−4.5m. These false values will somewhat be resolved by the gating algorithms.

Figure 6.2: Raw values and GNN

Figure 6.2 above shows the effect of the GNN. The measurements closest to the predicted

state x(k) will be stored and colored like a green ring. Only the green rings will be

considered by the Kalman filter and the two clusters of measurements are not corrupting

the system as much anymore.

Chapter 6. True Radar Tracking 51

Now, the values can be run through the filter as shown in the next figure.

(a) Radar 1 without gating

(b) Radar 1 with gating

Figure 6.3: Walking path without and with gating

In figure 6.3 there are two subfigures 6.3(a) and 6.3(b) which represents the complete

system of algorithms before triangulation without and with gating, respectively.

In the first figure 6.3(a) the red crosses, representing the filtered position d̂, does a decent

job of finding a reasonable position for a person walking back and forth. Still, it can be

seen at several points in the graph, showed with arrows, that the filtered positions gets

pulled away from what is most likely the correct path. For example, after 3 seconds the

green circle pulls the filtered measurements away from the rest of the values. The same

happens again after 26 seconds. This may be because there are few values at those times

and the closest measurement given by the GNN is still really far away from the path.

Chapter 6. True Radar Tracking 52

To fix this problem, the gating is activated. This has been done in the second figure

6.3(b). It can be seen that the previous green circles at for example the 3rd and 26th

second is no longer green, but blue. This means that they will no longer be evaluated

by the Kalman filter and as a result gives a better filtered measurement representing the

targets position. The improvement is clear when comparing the evenness of the path

made by the red crosses in bot figures.

After about 25 seconds, in both 6.3(a) and 6.3(b) there seems to be no values for a long

time. This may be because the person has walked outside the set range of the radar.

There, the Kalman filter uses its previous estimations and the F matrix from chapter 3.

It does this until the person appears again in the range of the radar at the 42nd second.

So far the the system path, starting from the radar to the triangulation function, has

worked properly. Some problems have appeared, but they have been solved by different

parts of the path, either gating, GNN or filtering. Some of these problems has occurred

because of how the radar is not completely tuned to be doing tracking.

Individually the radars works properly and it is time to test out two radars at the same

time.

6.1.2 Two Radars and Triangulation

During the simulations, the radars were stationed 1 m apart from each other. Due to

space limitations in the office, it was decided to place them 0.6 m apart for the actual

radar measurements. This is still a perfectly good placement and going from 1 m to 0.6

m will not have a critical impact on the results.

The target used was a average sized person. His starting position was about (x, y) =

(0, 2). He was told to walk away from the radars and stop, then turn around and walk

back towards the radars. There was not used a secondary system to track the person,

so there is no original track to compare the results to, other than the description of the

path above.

The results are shown in the next figure

Chapter 6. True Radar Tracking 53

(a) From radar R1

(b) Fron radar R2

(c) Triangulated final position

Figure 6.4: Triangulated values

Chapter 6. True Radar Tracking 54

Figure 6.4 contain three subfigures. The two first are figure 6.4(a) and 6.4(b). These

should show familiar values as the ones seen in figure 6.3(b) and what we see in them has

previously been discussed. The two first figures are also quite similar. This is because

the walked path has been in the middle of both radars and the distances are supposed

to be similar. The reason figure 6.4(a) and 6.4(b) is shown, is because they are the exact

values that was used to create the third figure 6.4(c).

Figure 6.4(c) shows the final position estimate that is calculated by the triangulation

function. The dotted black line is there as a visual tool to imagine where the supposedly

walked path was. As the distance increases, the estimated (x̂, ŷ) stray further from

the path, which is as expected, and backed up by the simulations. At about (0, 2) the

difference between the original path and filtered measurement is really accurate. About

0.1 m from the supposed track.

The radar measurements, blue circles, are at most up to 2 m away from the original

path, and the algorithms do a decent job to correct for this. The difference between

the radar measurements and the original path in figure 6.4(c), are a bit higher than

predicted by the simulated in section 5.4. This means that the actual SNR might be a

bit lower than what was simulated with in figure 5.5.

6.1.3 Comparison to Simulations

Comparing the final position (x̂, ŷ) from the real radars to the simulated final position

is not a trivial problem. For the true radar tracking, values for a original path is not

available and it is hard to directly compare how similar the performances are to the

simulation. The simulation has been used as a tool to create a safe environment to

build the algorithms used in the true radar tracking, where the outputs and inputs are

controlled. The point was not to make the simulation perform exactly as the true radar

tracking, but rather make them work in the same manner, and have similar values.

Therefore a direct comparison has not been made in this thesis between the results from

the simulation and the true radar tracking.

Using the various figures from chapter 5 and 6, some important points can still be made

when comparing the results from the two chapters.

The results show that the simulated noise acts close to realistic. Looking at figure 6.4(c)

and figure 5.10(c) the noise increases greatly in both figures as the distance from origo

increases. When the target is about 2-3 m away from origo, the radar measurements

are about 0.1-0.2 m away from the original tracks. As seen in figure 5.10(c), the noise

increases a lot when the target is more than 4 m away from origo. The position (x̂, ŷ) is

Chapter 6. True Radar Tracking 55

about 1-2 m away from the original track. This is what we see in figure 6.4(c) as well,

but the filtered estimate (x̂, ŷ) is a lot better in the simulation at that distance.

The figures in 6.4 and 5.10 also show that the gating, GNN and kalman filters work

properly and improve the (x̂, ŷ). Still, it seems that the kalman filters do a better job

with the simulation values. The simulations gives a better general performance than the

real radar setup, but this is to be expected.

Chapter 7

Further Work

The investigations and results made in this thesis show that there are several areas for

further work that may lead to some improvements. These topics might be interesting

to follow up on at a later time.

First of all, in this thesis the focus has been on tracking one target. In advanced

tracking systems, it is normal to have the ability to keep track of multiple targets. The

implementation of multiple target is definitely worth looking into.

Another part of the system that has room for improvement is the gating. The gating

function used in this thesis is a circular one. Tracking can be done with for example

elliptical or asymmetrical gating which is better when the target is maneuvering. It

might at least be worth trying out different gating methods.

The global nearest neighbour (GNN) method is well suited for the tracking of one target.

If the goal is to track multiple targets, a closer look into different data association

methods is needed. In this area there are a lot of different association methods that

would be worth researching further.

This thesis did not focus on the actual performance of the sensors. It is still important to

note that the radars used has not been optimized to be used in tracking. If these radars

are to be used for tracking in the future, the radars themselves has a lot of potential to

improve and a lot of further work could be done with these.

56

Chapter 8

Conclusive Remarks

The study set out to create a target tracking system using two stationary pulse Doppler

radars. Using range and Doppler speed, a walking person was to be tracked. Key

elements, such as Kalman filtering, data association and triangulation has been imple-

mented and tested in simulations and with real radar measurements.

The Kalman filter is used to filter out noise from the measurements and provide a better

estimation of the position of the target. It is found that a extended kalman filter (EKF)

is needed in this system. With the inclusion of radial velocity into the EKF, there is a

considerable improvement in the estimated position.

Two data association methods proves to be crucial to the tracking system. The gat-

ing shows great synergy with the Kalman filter by using components calculated in the

filter in its own gating functions. During the real tracking, the gate shows that it can

remove false and really noisy measurements preventing these measurements from dis-

torting the estimated track. The global nearest neighbour method shows its usefulness

in the real radar tracking as well, being able to chose the measurement that is closest

to the predicted position among many potential values.

The simulation and true radar tracking results has a lot of similar values. The simulation

does give a better estimation of the track, which means the simulated noise is most likely

smaller that for the real radars.

Individually, the simulated radars are able to follow the original track up to about 6m

distance seen in figure 5.7(a) and 5.8(a). After triangulation, this distance is reduced to

4 m on each axis which accumulates to 5.66 m from origo, seen in figure 5.10.

The true radar tracking is able to follow the target up to about 4.5 m from origo, as

seen in figure 6.4(c). At 4 m distance the estimated position is about 1 m away from

57

Chapter 8. Conclusive Remarks 58

the original track. That is a big error, but it is about the same error that the simulation

predicts. To improve the tracking and minimize the error there has to be less noise from

the actual radars.

The proposed tracking system proves to perform well in both the simulations and for

the real tracking, but at these given SNR levels it is not be beneficial to use the system

to track targets. By improving the SNR in the radars themselves and following some of

the proposed suggestions for further work, a robust system that can be used in many

different tracking applications, may be developed.

Appendix A

Matlab Simulation Code

A lot of different codes and versions of those codes has been made in this thesis. It has

been chosen to only include the most essential ones and also leave out the plot functions.

In appendix A, the simulation codes will be presented.

A.1 Main code

%%%

%%% Morten Aasheim, filter then gather with gating, GNN Triangulate %%%

%%%

clear all

close all

T=0.1;

for t=1:1

%% Values from the two sensors

out=XY sim(); % [x;y;vx;vy]

[d1, d2]=twoSensorSim(out); % change radar pos here.make the original sim

% into two sensors worth

%% Add realistic noise

x1 1=noise gen(d1);

%x1 1=d1; % test without noise

x1 2=noise gen(d2);

%x1 2=d2; % test without noise

%% gate, GNN and filter the two sensor readings

59

Appendix A. Matlab Simulation Code 60

single=1; % decides if we use more signals or just a single signal

L=length(x1 1);

if (single==1)

x2 1=zeros(2,L);

x2 2=zeros(2,L);

x3 1=zeros(2,L);

x3 2=zeros(2,L);

end

[Nearest 1,X upd 1,X next 1]=gate GNN filter(x1 1,x2 1,x3 1,single); % first sensor

[Nearest 2,X upd 2,X next 2]=gate GNN filter(x1 2,x2 2,x3 2,single); % second sensor

%% Gather the two sensor measurements

L=length(Nearest 1);

x upd=zeros(1,L);

y upd=zeros(1,L);

x=zeros(1,L);

y=zeros(1,L);

for i=1:L

[x upd(i), y upd(i)]=angleTriangle(X upd 1(1,i),X upd 2(1,i),-0.5,0.5); %from 2 sensors

%to one from origo

[x(i), y(i)]=angleTriangle(Nearest 1(1,i),Nearest 2(1,i),-0.5,0.5); %from 2 sensors

%to one from origo

end

A.2 Track simulation

%%%

%Morten Aasheim simulation of movement of walking human

%%

function out=XY sim()

%% Startup %%

x start=0; %m

y start=0; %m

vx start=0.1; %m/s

vy start=0.1; %m/s

v abs=sqrt(vx startˆ2 + vy startˆ2); %no more than 0.2 m/s

T=0.1; %step time s

turn=0; %degrees , counterclockwise

turn start=10; %when the maneuver is starting seconds

turn stop=20; %when the maneuver is stopping seconds

Appendix A. Matlab Simulation Code 61

turn rate=turn/(turn stop-turn start); %degrees/s

turn rate rad=turn rate*(pi/180);

T tot=50; % total amount of seconds

%%

%% Storage

L=T tot/T;

x=zeros(1,L);

y=zeros(1,L);

vx=zeros(1,L);

vy=zeros(1,L);

%% simulate

vx temp=vx start;

vy temp=vy start;

x(1)=x start;

y(1)=y start;

vx(1)=vx start;

vy(1)=vy start;

rad=atan2(vy start,vx start); %start angle

for t=2:L

if((t*T) >=turn start && (t*T)<turn stop)

rad=(turn rate rad*T)+rad;

vx temp=v abs*cos(rad);

vy temp=v abs*sin(rad);

end

x(t)= x(t-1)+(vx temp*T);

y(t)= y(t-1)+(vy temp*T);

vx(t)=vx temp;

vy(t)=vy temp;

end

out=[x;y;vx;vy];

end

A.3 Two Radars Track simulation

%%

%%% %%%

%%% Morten Aasheim, simulation with two sensors %%%

%%% %%%

%%

Appendix A. Matlab Simulation Code 62

function [d1, d2]=twoSensorSim(out)

%out=XY sim(); % [x;y;vx;vy]

L=length(out);

%% Sensor position

s1=[-0.5,0]; %[x,y]

s2=[0.5,0];

%% find distance to the sensors

d1=zeros(2,L); % [r,vr]

d2=zeros(2,L);

T=0.1; % seconds between samples

for i=1:L

temp=[out(1,i), out(2,i)];

d=temp-s1;

d1(1,i)= sqrt(sum(d.ˆ2)); %sensor 1 distance

d=temp-s2;

d2(1,i)=sqrt(sum(d.ˆ2)); %sensor 2 distance

end

%% sensor velocity

for j=1:L-1

% sensor 1

d1(2,j)=(d1(1,j+1)-d1(1,j))/T; %speed in sensor 1

% sensor 2

d2(2,j)=(d2(1,j+1)-d2(1,j))/T; %speed in sensor 2

end

d1(2,L)=d1(2,L-1); %just make the last speed equal to the previous one...

d2(2,L)=d2(2,L-1);

end

A.4 Generate Noise

%%%

%%% Morten Aasheim , Generate noise based on distance from radar %%%

%%%

%% Test

% out=XY sim();

% x(1,:)=out(1,:);

% x(2,:)=out(3,:);

function y=noise gen(x) %take in a vector of range and velocity

Appendix A. Matlab Simulation Code 63

pulse length ns=1;

dR=3e8*pulse length ns*1e-9/2; % range resolution

lambda=0.0429; % lambda=3e8/7GHz= 0.4929 m - RF radar wavelength

T=1; % integrasjonstid i PulseDoppler (6 sekund dettype1 og 1 sekund dettype 2)

dV=lambda/(2*T); % speed resolution

L=length(x);

E d=zeros(1,L);

E v=zeros(1,L);

y=zeros(2,L);

for i=1:L

R=x(1,i);

SNR=10ˆ((52-R*12)/10); % function to decide linear SNR based on range

sigma d=dR/sqrt(2*SNR); % make sigma for the range

error d=sigma d*randn(1,1); % random distance error with this sigma

sigma v=dV/sqrt(2*SNR);

error v=sigma v*randn(1,1);

y(1,i)=x(1,i)+error d;

y(2,i)=x(2,i)+error v;

E d(i)=error d;

E v(i)=error v;

end

end

A.5 Gate, GNN and Kalman Filter

%%

%%% Morten Aasheim, apply gating, GNN and filtering %%%

%%

function [Nearest,X upd,X next]=gate GNN filter(x1,x2,x3,single)

L=length(x1);

%% matrixes

T=0.1; % seconds per measurement

F=[1 T; 0 1]; % transition matrix, Newton

s x=0.2; % sigma r

s v=0.1; % sigma v

Q=0.1*[(Tˆ2)/3 T/2; T/2 1]; % Process noise,liten Q - lite avvik,

% stor Q - stort avvik

%Q=1*[s x 0; 0 s v];

bUseVr=1; % 0 - dont use vr measurement, 1 -use vr measurement

Appendix A. Matlab Simulation Code 64

%% predict the first P next

P upd=0.1*[0.1 0; 0 0.1];

x upd=1.0*x1(:,1); % MULIG FEIL HER

%% the loop

X next=zeros(2,L);

X upd=zeros(2,L);

Nearest=zeros(2,L);

first=1; % takes care of the first iteration skip

if (single==1)

non gated=x1;

else

non gated=[x1;x2;x3]; %[x1;vx1,x2,vx2,x3,vx3];

end

nearest=x1(:,1); % just for the first iteration

for i=1:L

if (first==0)

nearest=gate and GNN(P upd,H1,H2,F,Q,s x,s v,non gated(:,i),x pred);% find nearest neighbour

end

first=0;

%% Kalman

[x upd,P upd,x pred,H1,H2]= ...

extended Kalman pseudo multivar(nearest(:,1),x upd,P upd,F,Q,s x,s v,bUseVr);

X next(:,i)=x pred;

X upd(:,i)=x upd;

Nearest(:,i)=nearest;

end

end

A.6 Gate and GNN

%%%

%%%% Morten Aasheim, gate and Global nearest neighbour %%%%

%%%

function nearest=gate and GNN(P upd,H1,H2,F,Q,s r,s v,non gated,x pred)

[row, col]=size(non gated);

gated=zeros(row,1);

%nearest=[NaN;NaN];

nearest=non gated(:,1);

%% Gate the position

Appendix A. Matlab Simulation Code 65

bound=1e20; % set so high it will pass no matter what the first time

for k=1:2:row % go through the three different xes

P pred=F*P upd*transpose(F)+Q;

%% Range gate

S r=H1*P pred*transpose(H1)+ s r; % predict S

z r=non gated(k,1)-x pred(1,1); % the current residual in x

dr2=z r'*inv(S r)*z r; % use predicted S

Gr=4*s r*inv(S r); % Gate for distance

% Gr=1.0e20;

%% velocity gate

S v=H2*P pred*transpose(H2);

z v=non gated(k+1,1)-x pred(2,1);

dv2=z v'*inv(S v)*z v;

Gv=4*s v*inv(S v); % Gate for velocity

% Gv=1.0e20;

if(dr2<Gr && dv2<Gv) % keep value if d2 is within the gates

gated(k)=non gated(k,1); % x

gated(k+1)=non gated(k+1,1); % vx

else % outside the gate, replaced with NaN

gated(k)=NaN;

gated(k+1)=NaN;

end

%% GNN

if (dr2<bound) % the nearest point is found

nearest(1,1)=gated(k);

nearest(2,1)=gated(k+1);

bound=dr2;

end

end

end

A.7 Kalman Filter w/Radial Velocity

%%%

% Morten Aasheim, extended kalman filter w/radial velocity %

%%%

function [x upd, P upd, x pred, H1, Hk4]=...

extended Kalman pseudo multivar(z,x prev,P prev,F,Q,sigma r,sigma vr,bUseVr)

%% Predict

x pred=F*x prev; %2x1 %State pred

Appendix A. Matlab Simulation Code 66

P est=F*P prev*transpose(F)+Q; %2x2 %State pred. cov.

%% Calculations

h= x pred; %2x1

H1=[1 0];

%% Check if the value is NaN

if (isnan(z))

x upd=x pred;

P upd=P est;

Hk4=H1; % So velocity gate can be used even if the value is NaN

return;

end %1x2

%% Update

z upd=z(1,1) -h(1,1); %1x1

S=H1*P est*transpose(H1)+ sigma r; %1x1 % Innovation cov.

K=P est*transpose(H1)*inv(S);%2x1 % Kalman gain

x upd=x pred+ K*z upd;%2x1 % Updated state estimate

P upd=P est-K*S*K'; %2x2 JRP % Updated state covariance

if (bUseVr==0) %if we only want to use x, not Vr

x pred=F*x upd; % not pseudo % State prediction to next time

Hk4=H1;

%P pred=F*P upd*transpose(F)+Q; % not pseudo % State pred. cov. to next time

return;

end

%% Radial velocity update

xk3=x upd; %temporal storage

Pk3=P upd; %temporal

Yk k=xk3(1,1); % x values

Ypk k=xk3(2,1); % vr values

DirCosk k=(Yk k'*Yk k)ˆ(-0.5)*Yk k'; % Directional cosine, eq 11

I=eye(1); % identity matrix

Ak=(Yk k'*Yk k)ˆ(-0.5)*(I-DirCosk k'*DirCosk k); % text after eq 14

Bk=[zeros(1,1) 0.5*Ak;0.5*Ak zeros(1,1)]; % 2x2, eq 15

Ck=Bk*Pk3; %2x2

Hck2=[(Ak*Ypk k)' DirCosk k]; % text after eq 17

Hk4=Hck2;

l=length((diag(Ck))); %length of diagonal

sum cij=0.0;

for i1=1:l %2 atm

for j1=1:l

sum cij=sum cij+Ck(i1,j1)ˆ2; % text after eq 17

Appendix A. Matlab Simulation Code 67

end

end

Rck2=sigma vrˆ2+2*sum cij; % eq 18

sigma2 4=Rck2;

Sk4=(Hk4*Pk3*Hk4'+sigma2 4); %eq 30, innovation cov

Kk4=Pk3*Hk4'/Sk4; %eq 30, kalman gain

trace Ck=trace(Ck); % the diagonal vector of Ck

Zck=z(2)-trace Ck; % text after eq 17

xk4=xk3+Kk4*(Zck-Hck2*xk3); %eq 28, updated state estimate

Pk4=Pk3-Kk4*Sk4*Kk4'; %eq 29, updated cov,Pk4=Pk3-Kk4*Hck2*Pk3;?

x upd=xk4; % new x with radial velocity included

P upd=Pk4; % new P with radial velocity included

x pred=F*x upd; % State prediction to next time

end

A.8 Triangulation

% find the angles of the triangle given the side lengths

% d1 and d2 are lengths of the "legs", s1 and s2 are the koorrdinates of the sensors

function [x,y]=angleTriangle(d1,d2,s1,s2)

d0=abs(s1)+abs(s2); %s1 and s2 are the koordinates of the two sensors on the x axis

d=d0/2; % distance to origo

% %use the cosine rule

% a1=real(acos((d1ˆ2 + d0ˆ2 -(d2ˆ2))/(2*d1*d0))); % in radians, only real values

% a2=real(acos((d2ˆ2 + d0ˆ2 -(d1ˆ2))/(2*d2*d0))); % in radians

%% fix1, if value d2 is empty

if(isempty(d2))

d2=NaN;

end

if(isempty(d1))

d1=NaN;

end

%% Main

%x= (1/2)*(d2ˆ2+d0ˆ2-d1ˆ2)/d0-d0/2;

%y= (1/2)*sqrt(4*(d2ˆ2)-(d2ˆ2+d0ˆ2-d1ˆ2)ˆ2/(d0ˆ2));

Appendix A. Matlab Simulation Code 68

x=real(((d1ˆ2)-(d2ˆ2))/(4*d));

y=real(sqrt((d2ˆ2)-(dˆ2)+ 2*(((d1ˆ2) - (d2ˆ2))/4) - ((((d1ˆ2) - (d2ˆ2))/(4*d))ˆ2)));

%% Main

% if (d2<=d1 | | isnan(d1)) % use the most accurate angle

% x= s2-cos(a2)*d2;

% y= sin(a2)*d2;

% elseif (d1<d2 | | isnan(d2))

% x= s1+cos(a1)*d1;

% y= sin(a1)*d1;

% end

%% fix2, if x and y is empty

if(isempty(x))

x=NaN;

end

if(isempty(y))

y=NaN;

end

end

Appendix B

Matlab Real Radar Measurement

Code

In appendix B, the real radar measurement codes will be presented and they are intended

to perform the same task as the ones in appendix A.

B.1 Main Code, 1 Radar

%%

%%%% %%%%

%%% Morten Aasheim , find values from radar %%%

%%% Used with : Radar gate GNN filter.m %%%

%%% Radar gate and GNN.m %%%

%%% extended Kalman pseudo radar.m %%%

%%%% %%%%

%%

close all

clear all

% function

%% original

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2Just1.mat')

%% Test

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R1.mat');

Ndet2=length(AccumDetList2); % decided to use detlList2

onlyHighestSNR=0; % 1-only use the value with the highest SNR, 0- use all

% for i=1:Ndet2-2 % makes the sets start at the same time

% AccumDetList2{i}=AccumDetList2{i+2};

69

Appendix B. Matlab Real Radar Measurement Code 70

% end

[Nearest,X upd,X next]=Radar gate GNN filter(AccumDetList2,onlyHighestSNR);

%% for the legend only

figure();

plot(-1,1.5,'bo');

hold on

plot(-1,1.5,'go');

hold on

plot(-1,1.5,'r+');

%% Lets plot stuff

plot trix=0;

for i=1:Ndet2-6 % chose what values to plot

time=AccumDetList2{i}.Time+1; % It starts at 0

%% plots all the possible values

rangevec=AccumDetList2{i}.DetList2.Range m;

if (isempty(rangevec)==false) % if it is not empty

len=length(rangevec);

index=1:len;

plot(time-plot trix,rangevec(index),'bo','linewidth',2);

hold on

end

%% plots the nearest

time=AccumDetList2{i}.Time+1; % It starts at 0

if (isempty(Nearest{1,i})==false) % if its not empty

plot(time-plot trix,Nearest{1,i},'go','linewidth',2)
end

hold on

%% Plots the filtered

plot(time-plot trix,X upd(1,i),'r+','linewidth',2);

hold on

end

a=axis;

axis([0 a(2) a(3) a(4)])

h=legend('Radar measurements','Nearest radar measurements','Filtered measurement');

%h=legend('Radar measurements','Nearest radar measurement');

set(h,'Position',[0.4044 0.1317 0.3787 0.1517])

set(h,'Fontsize',20)

xlabel('Time [s]','Fontsize',20)

ylabel('Distance [m]','Fontsize',20)

set(gca,'Fontsize',20);

%end

Appendix B. Matlab Real Radar Measurement Code 71

B.2 Main Code, 2 Radars

%%

%%%% %%%%

%%% Morten Aasheim , find values from two radars %%%

%%% Used with : Radar gate GNN filter.m %%%

%%% Radar gate and GNN.m %%%

%%% extended Kalman pseudo radar.m %%%

%%%% %%%%

%%

close all

clear all

%% Load radars , gate, GNN and Filter

%% R1

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2twoRadarsR1.mat')

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R1.mat');

Ndet1=length(AccumDetList2); % decided to use detlList2

onlyHighestSNR=0; % 1-only use the value with the highest SNR, 0- use all

tempR1=AccumDetList2; % Length of R1

%% R2

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2twoRadarsR210sec.mat')

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R2.mat');

Ndet2=length(AccumDetList2); % decided to use detlList2. Length of R2

Diff=Ndet1-Ndet2;

for i=1:Ndet2-2 % makes the sets start at the same time

AccumDetList2R2{i}=AccumDetList2{i+2};
AccumDetList2R1{i}=tempR1{i+Diff-1+1}; % remember the .time is still be off

AccumDetList2R1{i}.Time=AccumDetList2R1{i}.Time-Diff+1; % time is fixed

end

%% R1

[Nearest 1,X upd 1,X next 1]=Radar gate GNN filter(AccumDetList2R1,onlyHighestSNR);

%% R2

[Nearest 2,X upd 2,X next 2]=Radar gate GNN filter(AccumDetList2R2,onlyHighestSNR);

%% Triangulate

X upd=zeros(1,Ndet2);

Y upd=zeros(1,Ndet2);

X=zeros(1,Ndet2);

Y=zeros(1,Ndet2);

%figure();

for i=1:Ndet2-2

[x upd, y upd]=angleTriangle(X upd 1(1,i),X upd 2(1,i),0.3,-0.3); %from 2 sensors

Appendix B. Matlab Real Radar Measurement Code 72

% to one from origo

[x, y]=angleTriangle(Nearest 1{1,i},Nearest 2{1,i},0.3,-0.3); %from 2 sensors

% to one from origo

X upd(i)=x upd;

Y upd(i)=y upd;

X(i)=x;

Y(i)=y;

% plot(x upd,y upd,'r+','linewidth',2)

% hold on

% plot(x,y,'bo','linewidth',2)

% hold on

end

B.3 Radar Gate, GNN and Kalman Filter

%%%

%%%% %%%%

%%% Morten Aasheim,radar gate, GNN and filter with the actual radar %%%

%%%% used in: XY realRadar.m %%%%

%%%

function [Nearest,X upd,X next]=Radar gate GNN filter(AccumDet2,onlyHighestSNR)

%% matrixes

T=1; % 1 seconds per measurement, THIS is different from sim

F=[1 T; 0 1]; % transition matrix, Newton

s x=0.2; % sigma r

s v=0.1; % sigma v

Q=0.1*[(Tˆ2)/3 T/2; T/2 1]; % Process noise,liten Q - lite avvik,

% stor Q - stort avvik

bUseVr=1; % 0 - dont use vr measurement, 1 -use vr measurement

Ndet2=length(AccumDet2);

X next=zeros(2,Ndet2);

X upd=zeros(2,Ndet2);

Nearest{2,Ndet2}=[]; % this is a cell array

for i=1:Ndet2

%% Find the values to be gated

speedvec=AccumDet2{i}.DetList2.Speed m s;

rangevec=AccumDet2{i}.DetList2.Range m;

SNRvec=AccumDet2{i}.DetList2.SNR dB;

if (isempty(rangevec)==false) % go in if there are values here

[~,predIndex]=max(SNRvec); % used to predict the first x upd

if (onlyHighestSNR)

[~,indexvec]=max(SNRvec);

Appendix B. Matlab Real Radar Measurement Code 73

else

indexvec=1:length(rangevec);

end

non gated=[rangevec(indexvec); -speedvec(indexvec)]; % speed negative because

% they were the wrong way

else

non gated=[rangevec; -speedvec]; % these are supposed to be empty

end

%% predict the first P next

if (i==1) % only go in here the first iteration

P upd=0.1*[0.1 0; 0 0.1];

if (isempty(rangevec)==false) % enter if it has values

x upd=[rangevec(predIndex) ; -speedvec(predIndex)]; % minus because they were the wrong way

nearest=x upd; % set nearest for first iteration

else

x upd=[1.9; 0.1]; % supposed to be empty, if not set reasonable values

nearest=non gated; % its empty

end

end

%% Gate and GNN

if (i~=1) % dont go in the first iteration

nearest=Radar gate and GNN... % gives empty or 1 value(x;vx)

(P upd,H1,H2,F,Q,s x,s v,non gated,x pred); % find the nearest neighbour

end

%% Kalman filter

[x upd,P upd,x pred,H1,H2]= ...

extended Kalman pseudo radar(nearest,x upd,P upd,F,Q,s x,s v,bUseVr);

X next(:,i)=x pred;

X upd(:,i)=x upd;

if (isempty(nearest)) % if there is no values here

Nearest{1,i}=nearest; % this is now a cell, because some values are empty

Nearest{2,i}=nearest;
else

Nearest{1,i}=nearest(1,1);
Nearest{2,i}=nearest(2,1);

end

end %for

end %function

Appendix B. Matlab Real Radar Measurement Code 74

B.4 Radar Gate and GNN

%%

%%%% %%%%

%%% Morten Aasheim, gate and Global nearest neighbour, with the actual radar %%%

%%%% used in: Radar gate GNN filter.m %%%%

%%

function nearest=Radar gate and GNN(P upd,H1,H2,F,Q,s r,s v,non gated,x pred)

%% Empty

[~,len]=size(non gated); %mulig feil her !!!!!!!!!!!!!!!%!%!%!%%!

if (isempty(non gated)) % go in if its empty

nearest=non gated; % if there are no values, then just pass that on

return;

end

%% Gate the position

bound=1e20; % set so high it will pass no matter what the first time

for i=1:len

P pred=F*P upd*transpose(F)+Q;

%% Range gate

S r=H1*P pred*transpose(H1)+ s r; % predict S

z r=non gated(1,i)-x pred(1,1); % the current residual in x

dr2=z r'*inv(S r)*z r; % use predicted S

Gr=4*s r*inv(S r); % Gate for distance

% Gr=1.0e20; % infinite gate

%% velocity gate

S v=H2*P pred*transpose(H2);

z v=non gated(2,i)-x pred(2,1);

dv2=z v'*inv(S v)*z v;

Gv=4*s v*inv(S v); % Gate for velocity

% Gv=1.0e20; % infinite gate

if(dr2<Gr && dv2<Gv) % keep value if d2 is within the gates

gated=non gated(:,i);

else % outside gate

gated=[];

end

%% GNN

if (dr2<bound) % the nearest point is found

nearest=gated;

bound=dr2;

end

end

end

Appendix B. Matlab Real Radar Measurement Code 75

B.5 Radar Kalman filter

%%%

%%%% %%%%

%%% Morten Aasheim, extended kalman filter w/radial velocity, with the actual radar %%%

%%%% used in: Radar gate GNN filter.m %%%%

%%%

function [x upd, P upd, x pred, H1, Hk4]=...

extended Kalman pseudo radar(z,x prev,P prev,F,Q,sigma r,sigma vr,bUseVr)

%% Predict

x pred=F*x prev; %2x1 %State pred

P est=F*P prev*transpose(F)+Q; %2x2 %State pred. cov.

%% Calculations

h= x pred; %2x1

H1=[1 0];

%% Check if its empty

if (isempty(z))

x upd=x pred;

P upd=P est;

Hk4=H1; % So velocity gate can be used even if the value is empty

return;

end %1x2

%% Update

z upd=z(1,1) -h(1,1); %1x1

S=H1*P est*transpose(H1)+ sigma r; %1x1 % Innovation cov.

K=P est*transpose(H1)*inv(S);%2x1 % Kalman gain

x upd=x pred+ K*z upd;%2x1 % Updated state estimate

P upd=P est-K*S*K'; %2x2 JRP % Updated state covariance

if (bUseVr==0) %if we only want to use x, not Vr

x pred=F*x upd; % not pseudo % State prediction to next time

Hk4=H1;

%P pred=F*P upd*transpose(F)+Q; % not pseudo % State pred. cov. to next time

return;

end

%% Radial velocity update

xk3=x upd; %temporal storage

Pk3=P upd; %temporal

Appendix B. Matlab Real Radar Measurement Code 76

Yk k=xk3(1,1); % x values

Ypk k=xk3(2,1); % vr values

DirCosk k=(Yk k'*Yk k)ˆ(-0.5)*Yk k'; % Directional cosine, eq 11

I=eye(1); % identity matrix

Ak=(Yk k'*Yk k)ˆ(-0.5)*(I-DirCosk k'*DirCosk k); % text after eq 14

Bk=[zeros(1,1) 0.5*Ak;0.5*Ak zeros(1,1)]; % 2x2, eq 15

Ck=Bk*Pk3; %2x2

Hck2=[(Ak*Ypk k)' DirCosk k]; % text after eq 17

Hk4=Hck2;

l=length((diag(Ck))); %length of diagonal

sum cij=0.0;

for i1=1:l %2 atm

for j1=1:l

sum cij=sum cij+Ck(i1,j1)ˆ2; % text after eq 17

end

end

Rck2=sigma vrˆ2+2*sum cij; % eq 18

sigma2 4=Rck2;

Sk4=(Hk4*Pk3*Hk4'+sigma2 4); %eq 30, innovation cov

Kk4=Pk3*Hk4'/Sk4; %eq 30, kalman gain

trace Ck=trace(Ck); % the diagonal vector of Ck

Zck=z(2)-trace Ck; % text after eq 17

xk4=xk3+Kk4*(Zck-Hck2*xk3); %eq 28, updated state estimate

Pk4=Pk3-Kk4*Sk4*Kk4'; %eq 29, updated cov,Pk4=Pk3-Kk4*Hck2*Pk3;?

x upd=xk4; % new x with radial velocity included

P upd=Pk4; % new P with radial velocity included

x pred=F*x upd; % State prediction to next time

end

B.6 Triangulation

% find the angles of the triangle given the side lengths

% d1 and d2 are lengths of the "legs", s1 and s2 are the koorrdinates of the sensors

function [x,y]=angleTriangle(d1,d2,s1,s2)

d0=abs(s1)+abs(s2); %s1 and s2 are the koordinates of the two sensors on the x axis

d=d0/2; % distance to origo

% %use the cosine rule

Appendix B. Matlab Real Radar Measurement Code 77

% a1=real(acos((d1ˆ2 + d0ˆ2 -(d2ˆ2))/(2*d1*d0))); % in radians, only real values

% a2=real(acos((d2ˆ2 + d0ˆ2 -(d1ˆ2))/(2*d2*d0))); % in radians

%% fix1, if value d2 is empty

if(isempty(d2))

d2=NaN;

end

if(isempty(d1))

d1=NaN;

end

%% Main

%x= (1/2)*(d2ˆ2+d0ˆ2-d1ˆ2)/d0-d0/2;

%y= (1/2)*sqrt(4*(d2ˆ2)-(d2ˆ2+d0ˆ2-d1ˆ2)ˆ2/(d0ˆ2));

x=real(((d1ˆ2)-(d2ˆ2))/(4*d));

y=real(sqrt((d2ˆ2)-(dˆ2)+ 2*(((d1ˆ2) - (d2ˆ2))/4) - ((((d1ˆ2) - (d2ˆ2))/(4*d))ˆ2)));

% if (d1 > d2)

% x=abs(x);

% else

% x=-abs(x);

% end

% y=abs(y);

%% Main

%% fix2, if x and y is empty

if(isempty(x))

x=NaN;

end

if(isempty(y))

y=NaN;

end

end

Appendix C

Matlab Triangulation Error

This function was provided by the supervisor at Novelda AS, but few minor tweeks has

been done.

C.1 Triangulation Concept

d=1.0; % distance between radar 0 and 1. Assumed placed at (0,0) and (0,d)

pulse length ns=1;

SNR dB=10;

xt=0;

yt=4;

% xt=1;

% yt=0;

Nsigma=3;

%%%%%%%%%%%%%%%%%%%%%

dR=3e8*pulse length ns*1e-9/2; % range resolution

SNR=10ˆ(SNR dB/10);

sigma r=dR/sqrt(2*SNR);

R0=sqrt((xt-(-d/2))ˆ2+ytˆ2);

R1=sqrt((xt-d/2)ˆ2+ytˆ2);

xt= (1/2)*(R1ˆ2+dˆ2-R0ˆ2)/d-d/2;

yt= (1/2)*sqrt(4*R1ˆ2-(R1ˆ2+dˆ2-R0ˆ2)ˆ2/dˆ2);

78

Appendix C. Matlab Triangulation Error 79

if (R0 > R1)

xt=abs(xt);

else

xt=-abs(xt);

end

yt=abs(yt);

xt

yt

xvec0n=[];

yvec0n=[];

xvec0=[];

yvec0=[];

xvec0p=[];

yvec0p=[];

xvec1n=[];

yvec1n=[];

xvec1=[];

yvec1=[];

xvec1p=[];

yvec1p=[];

for (theta deg=0:0.01:180)

theta=theta deg*pi/180;

xvec0n=[xvec0n abs(R0-Nsigma*sigma r)*cos(theta)-d/2];

yvec0n=[yvec0n abs(R0-Nsigma*sigma r)*sin(theta)];

xvec0=[xvec0 R0*cos(theta)-d/2];

yvec0=[yvec0 R0*sin(theta)];

xvec0p=[xvec0p abs(R0+Nsigma*sigma r)*cos(theta)-d/2];

yvec0p=[yvec0p abs(R0+Nsigma*sigma r)*sin(theta)];

xvec1n=[xvec1n abs(R1-Nsigma*sigma r)*cos(theta)+d/2];

yvec1n=[yvec1n abs(R1-Nsigma*sigma r)*sin(theta)];

xvec1=[xvec1 R1*cos(theta)+d/2];

yvec1=[yvec1 R1*sin(theta)];

xvec1p=[xvec1p abs(R1+Nsigma*sigma r)*cos(theta)+d/2];

yvec1p=[yvec1p abs(R1+Nsigma*sigma r)*sin(theta)];

end

figure(1);

plot(xvec0n,yvec0n,'b--',xvec0,yvec0,'b',xvec0p,yvec0p,'b--',xvec1n,yvec1n,'r--',xvec1,yvec1,'r',xvec1p,yvec1p,'r--',xt,yt,'g*','MarkerSize',30);

grid on;

axis([-2 2 0 5]);

figure(2);

Appendix C. Matlab Triangulation Error 80

plot(xvec0n,yvec0n,'b',xvec0p,yvec0p,'b',xvec1n,yvec1n,'r',xvec1p,yvec1p,'r',xt,yt,'g*','MarkerSize',30);

grid on;

axis([-4 4 0 7]);

title('Triangulation uncertainty area for 2 radars');

xlabel('x [m]','fontsize',20);

ylabel('y [m]','fontsize',20);

set(gca,'fontsize', 20);

Bibliography

[1] Heinrich Hertz. http://www.famousscientists.org/heinrich-hertz/. [Online;

accessed Feb-2015].

[2] Guglielmo Marconi. http://www.history.com/topics/inventions/

guglielmo-marconi. [Online; accessed Feb-2015].

[3] Christian Huelsmeyer. http://www.radarworld.org/huelsmeyer.html. [Online;

accessed Feb-2015].

[4] Chain Home Defense. http://www.radarpages.co.uk/mob/ch/chainhome.htm.

[Online; accessed Feb-2015].

[5] S. Blackman and R. Popoli. Design and analysis of modern tracking systems. pages

157–167, 1999.

[6] J. Elfring, R. Janssen, and R. Molengraft. Data association and tracking: A litter-

ature study. RoboEarth, pages 6–17, April 2010.

[7] X. R. Li and V. P. Jilkov. A survey of maneuvering target tracking: Dynamic mod-

els. SPIE CONFERENCE ON SIGNAL AND DATA PROCESSING OF SMALL

TARGETS, pages 1–7, April 2000.

[8] P. H. Olsen. Multisensor tracking of two flying targets in formation. pages 1–130,

2010.

[9] X. R. Li and V. P. Jilkov. A survey of maneuvering target tracking: Measure-

ment models. SPIE CONFERENCE ON SIGNAL AND DATA PROCESSING OF

SMALL TARGETS, pages 1–6, July-August 2001.

[10] J. Wang, P. He, and T. Long. Use of radial velocity measurement in target tracking.

IEEE TRANSACTIONON AEROSPACE AND ELECTRONIC SYSTEMS, 39(2):

401–413, April 2003.

[11] Supervisor at Novelda AS. [Conversation with supervisor Jan Roar Pleym].

81

http://www.famousscientists.org/heinrich-hertz/
http://www.history.com/topics/inventions/guglielmo-marconi
http://www.history.com/topics/inventions/guglielmo-marconi
http://www.radarworld.org/huelsmeyer.html
http://www.radarpages.co.uk/mob/ch/chainhome.htm

	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	

