

4.2 Cost function

vector is found. For each vector product nine complex multiplications is needed. The final
operation of the calculation of the (1 x 9) - (9 x 9) - (9 x 1) term as well as the calculation
of the two other non-scalar terms is also vector products. This means that the calculations
mostly consists of complex vector products with vector length nine. The resources in the
FPGA are limited. The time consumption of the algorithm is critical for the performance
of the design. There will always be a trade off between latency, delay and resource usage
when it comes to circuit design. Finding a vector product module that is a good balance
between performance and resource usage is crucial to the design.

4.2.1 Complex Multiplier

A complex multiplier is the building block for any complex vector product method. Mul-
tiplication of two complex numbers is shown in (4.2).

(a4 1ib) - (c+id) = ac — bd + i(ad + be) 4.2)

In (4.2) 4 is used for v/—1 and a,b,c and d are scalar real fixed point numbers. As one can
see from (4.2), the complex multiplication consists of four real multiplications followed
by two real additions or subtractions. Real multiplication can be performed in the FPGAs
DSPs. As mentioned in chapter 2 the width of operands of the built in multipliers in the
DPSs are 25 x 18. One real multiplication with operands with less width than this can be
executed in one cycle by one DSP. Figure 4.5 shows the simple complex multiplier design.

31

Chapter 4. Hardware Design

S
DSP

.

)—) Register 39— |
Real part

lc,
]

DSP

DSP

| Register 3~

Imaginary part

]U
.

DSP

Figure 4.5: Complex multiplier design.

As figure 4.5 shows an output register is included in the design. This means that the output
signal does not come with a computational delay. This design policy is used in all the
modules of the design of this thesis. This complex multiplier is fully pipelined and has a
latency of two clock cycles.

4.2.2 Complex Vector Product

When calculating the complex vector product using the complex multiplier from section
4.2.1, two alternatives were considered.

Fast and Pipelined Vector Product Module

A fast but resource consuming method to calculate a length n complex vector product is
to use n complex multipliers and two tree adders. One for the real part and one for the
complex part. This consept is shown in figure 4.6.

32

4.2 Cost function

Vector A element 1
\ S—
Vector B element 1 ltioli
multiplier
— P >

Complex

Adder —p register
Vector A element 2 >
C |
Vector B element 2 omp 'ex o
— multiplier .
° L] . I_>
o . . Adder register
: . . —>
Vector A element n-1 ..
L= compl K
Vector B element n-1 o:‘:pl?x
multiplier
[>—» P — —
Adder —» register
Vector A element n
\ — >
Complex

Vector B element n e
> > multiplier

Figure 4.6: Fast and pipelined vector product module.

Figure 4.6 shows the concept of vector product calculation with a tree adder. Vector A
and Vector B are complex vectors of length n. In the figure only one adder and one
register is shown for each stage in the adder tree. It is also only drawn one line from
each of the complex multipliers. As mentioned earlier it will be one tree adder for the
imaginary part and one for the real part. The figure is simplified to be easier to understand.
The adder tree can be pipelined by having memory for every sum as shown in the figure
above. With a fully pipelined adder tree, new data can be set to the inputs of the adder tree
every cycle. The complex multiplier is also fully pipelined, therefore the resulting vector
product module can receive new input data on every clock cycle. The latency of an adder
tree is [loga(n)]. The total latency through this fully pipelined vector product module is
[log2(n)] + 2. The number of DSPs needed are four for each element of the vectors or
4.-n.

Slow and non-Pipelined Vector Product Module

The number of DSPs available in an FPGA is limited, to use one DSP for each of the
multiplications in the vector product calculation might not be beneficial. Another method
to calculate the vector product in hardware is to use two accumulators and less DSPs. The
DSPs are used to calculate one part of the vector product on each clock cycle. This result
of one part of the vector product is then added to the current results in the two accumula-
tor. One of the accumulators holds the real part of the result and one accumulator holds
the imaginary part of the result. When all the parts of the vector product are added in
the accumulators, the result is valid. As shown in figure 4.7 one complex multiplier from
section 4.2.1 can be used in combination with the two accumulators.

33

Chapter 4. Hardware Design

<2

Accumulator | Imaginary part of result every n+1 cycle

Element of vector A Imaginary part — >
[S— —_—>
Complex Real part

Element of vector B

| Multiplier

Accumulator

Real part of result every n+1 cycle
L —

Figure 4.7: Slow and non-pipelined vector product module.

One could use one complex multiplier (four DSPs) and two accumulators for the vector
product calculation, independent of the vector length n. The module is not pipelined and
the delay of the module is n 4 1. New data can be put to the input of the circuit every n+ 1
clock cycles. n + 1 clock cycles because n cycles is used to accumulate the result and one
cycle is used to empty the accumulator.

4.2.3 Calculation of the Cost Function

To calculate the cost function as fast as possible and fully pipelined one can use multiple
instances of the fast and pipelined vector product module. Figure 4.8 shows how the fast
and pipelined vector product module can be used to implement the cost function.

34

4.2 Cost function

Pipelined vector

’ product module |

+
ry — |
i Pipelined vector () cost
I -/ >

product module

w A
:
w— 3 ‘
9 x Pipelined
g —p vector product
module — Pipelined vector

product module
w —> bely >

Figure 4.8: Fast and pipelined cost function module.

As one can see in figure 4.8, delay elements are used. The delay elements are used to
balance the delays of the different calculations. This is done so that the cost function cal-
culation can be fully pipelined. This method for cost function calculation uses 3 - n + n?
complex multipliers, is fully pipelined and has a latency of 2 - ([log2(n)] +2) + 1.

A different method to calculate the cost is to use a combination of the slow and non-
pipelined vector product module and the fast and pipelined vector product module. In the
cost function the term (w)Jf -T'zq - W is the most complex calculation. As mentioned earlier
this calculation consists of n vector products that must be calculated first, then a vector
product using the result of these n vector products. The other non-scalar terms consist of
just one vector product. One could save resources, by using the slow and non-pipelined
vector product module for the terms which is just one vector product. This means that
the cost function module only can receive new input data every n + 1 clock cycles. A
combination of the to different vector product modules can be used to calculate the most
complex term of the cost function. Fast and pipelined multipliers can be used to calculate
the first vector products and a slow and non-pipelined module can accumulate the result.
Since the fast vector product module is pipelined and the slow and non-pipelined vector
product module does not use all the elements of the input vectors at the same time. A
combinations where less than n fast vector product modules can be used. One could for
instance use one fast vector product module and one slow vector product module. This
scheme is shown in figure 4.9.

35

Chapter 4. Hardware Design

P1
w' —» Non pipelined
vector product

Fx — 3 module -—HTlay

'« ——» Non pipelined

vector product +>—}

w —7> module A

W . .
Pipelined vector

—>
rd — MUX > product module |) Non pipelined

vector product

Figure 4.9: Slow cost function calculation.

This is a much slower and much less resource demanding method. 3+ n complex multipli-
ers are used for a cost function calculation with delay of n + 1 and latency of [loga(n)] +
n + 3. A lot of resources is saved by making the cost function non-pipelined. One could
use more than one of these non-pipelined cost function modules to make the delay smaller
and the resource usage higher. It is a trade off between throughput and use of resources.
By adjusting the number of complex multipliers per vector product module, the number
of vector product modules per cost function module and the number of cost function mod-
ules, one could adjust delay and resource usage. For the specific implementation of this
thesis the n is 9 and 640 DSPs are available. A fully pipelined implementation of the
cost function will use 3 - 9 + 92 = 108 complex multipliers, with four DSPs per complex
multiplier, this results in 432 DSPs. This is almost % of the available DSPs in the target
FPGA. Since the genetic algorithm module is only one part of the FPGA design and the
rest of the system is not designed yet, it is not clear if so many DSPs can be used in the
genetic algorithm module. One could create multipliers in the general logic of the FPGA,
but this is resource demanding. Instead a cost function module with delay 9 + 1 = 10
and latency [log2(9)] + 9 + 3 = 17 with the use of 3 + 9 = 12 complex multipliers
as described above was implemented. One could use a number m of these cost function
modules in parallel to make a throughput of m - 10 individuals per clock cycle. This makes
it easier to adjust the resource usage of the circuit if the other parts of the design is depen-
dent on a lot of resources. The final implementation of this thesis uses ten instances of
this module, which give a throughput of one individual per clock cycle. This is the same
throughput as for the fully pipelined implementation. If one compare the two implementa-
tions the fully pipelined implementation have less latency and use less resources. But the
final implementation is easier to scale down and modify than the fully pipelined one and

36

4.2 Cost function

was therefore chosen. Figure 4.10 shows how the cost function calculation is implemented.

Non pipelined
cost function 1

) 4

Non pipelined

] cost function 2
w —r"— ° ’ -
. . “~e—— cost
p— .
 — e]
Non pipelined
— | cost function 10

Address in ————p Address shift register —— Address out

Figure 4.10: Implemented cost function calculation.

As figure 4.10 shows one set of weights are sent to one cost function calculation module at
atime. This is done to achieve not only a throughput of one individual per clock cycle, but
an input rate and output rate of one individual per clock cycle. A constant data flow will
simplify the flow of data in the other parts of the circuit. The thought is that one individual
flows from each module to the next on every clock cycle. In the FPGA the modules will be
spread and not have their own designated area. But since the calculations of the modules
often are related they will, to some degree, be gathered. By having the same amount of
data flow from each module to the next module on every clock cycle, the number of paths
needed from one module gathering to the next module gathering is minimized. One can
also see an address shift register in figure 4.10. This will be described in section 4.2.4

4.2.4 Flow of Individuals through Cost Function Module and Sorting
Module

In the breeding module and the mutation module, the individuals are used and modified
before they are sent to the next module. In the cost function module and the sorting mod-
ule on the other hand the individuals are used to find the cost, before sorted and then sent
to the next module. The individuals are not modified, and they are only used for the first
n + 1 clock cycles of the cost function calculation directly. When calculating the cost, one
needs to keep control of what individual the cost is calculated for. When the individuals
are sorted with respect to their cost, knowing what cost corresponds to which individual
is crucial. As seen in section 4.2.3 there is used an address shift register in the cost func-
tion. When the individuals arrive at the cost function module they are also sent to a block
memory. The address in the block memory where the individual is put is sent into the cost
function module. This address is delayed as many clock cycles as the latency of the cost

37

Chapter 4. Hardware Design

function using an address shift register, then it is set on the output of the cost function
module. This means that the cost of an individual is sent to the sorting module together
with the address where the individual is located in the block memory. The addresses are
then sorted with respect to their cost. Finally the sorted addresses are sent to the block
memory and the corresponding individuals are sent to the next module. Figure 4.11 shows
how the individuals,w , flow through the two modules.

» |__Address 3
Cost function . Address
Address . Tealie | Cost Sorting module
»
w — Control logic
i
)
.
»
Block memory
> Sorted w
»

Figure 4.11: Implemented cost function calculation.

Another alternative would be to skip the block memory and to shift the whole individuals
through the cost function. One would also need to keep the whole individuals together
with the cost during the sorting. Let us assume that one uses a memory which can store
all m individuals to avoid overwriting an individual before it is read after the sorting.
Then the address length will be [loga(m)]. For 65 to 128 individuals this results in an
address length of seven bits. This is a very short word length compared to the 180 bit wide
individuals. As mentioned the individual or address will have to be delayed 17 clock cycles
to be synchronized with the cost after the cost function. To do delay a word of length W
17 clock cycles fully pipelined will take W - 17 registers. This means 3060 registers if one
use the individuals and 119 registers if one uses the addresses instead. There will be some
extra routing and extra logic if one uses a block memory. There is also a latency when one
uses a block memory. It usually takes one or two clock cycles from when a read signal
is sent to the block memory, to when the result from that memory location is returned.
Register usage is not the biggest problem of this design, but the savings are significant.
The savings mentioned are just for the cost function, for the sorting it will also be savings
in register usage. It might also be easier to route the address elements than the individual
elements, simply because of the difference in width. Therefore the design of this thesis
is implemented with a block memory, such that shorter addresses can be used in the cost
module and the sorting module.

38

4.3 Sorting Individuals

4.3 Sorting Individuals

After the cost of the individuals is calculated, the individuals or addresses of the individu-
als needs to be sorted. This needs to be done to be able to perform evolutionary processes
on the populations. Because of the parallel nature of the FPGA, FPGAs are well suited for
sorting. It is desired to have a sorting algorithm with an input rate and an output rate of
one individual per clock cycle. This is as mentioned earlier done to simplify routing of the
data flow between the modules. If one entire population is buffered, one could use one of
many sorting algorithms well suited for sorting on an FPGA. It is however possible to sort
on the fly using insertion sort in linear time on an FPGA. This will give the possibility to
naturally receive one individual per clock cycle. The idea is, as always for the insertions
sort algorithm, to insert every new element in the correct position in relation to the already
sorted elements. It is several possibilities in how to technically fill an element into a list.
One could use pointers. The pointer of the last element is updated to point at the element
that is filled in. The element one fills in is set to point to where the last element was already
pointing. This is shown in figure 4.12.

39

Chapter 4. Hardware Design

New element to be inserted between element 1 and element 2:

Address 1 ke
element 1

New
/ D E— element

Sorted .
Address 2 element 2 pointer

e

Sorted .
Address 3 element 3 pointer

pointer ‘

Element is inserted by simply changing pointers:

Address 1 golied pointer
element 1

New
element

L

Address 2 ke
element 2

/

Sorted .
Address 3 element 3 pointer

New
address

pointer

pointer

Figure 4.12: One sorting element.

The pointer would for instance be the memory address where the next element is placed.
This is a typical solution in software. In an FPGA a shift register inspired method can be
used. The elements which have larger cost that the new element can be physically shifted
to make room for the new element. This concept is shown in figure 4.13.

40

4.3 Sorting Individuals

New element to be inserted between element 1 and element 2:

New element

Element 1 Element 2 Element 3 Element 4

L (...-

.................................... »

Element 2 through element 3 is shifted, new element is inserted:

Element1 |New element| Element?2 Element 3 Element 4

Figure 4.13: Connection of sorting elements.

Comparators and MUXes are used to decide what element is going to go into each
sorting element on every clock cycle. A function diagram for what should go into one
sorting element is shown in figure 4.14.

41

Chapter 4. Hardware Design

New element
arrives

yes _~Forceshift(current . ho

. element)
yes -~ " Forceshift(last no yes “Cost(new element) <. o

element) Cost(current)

Input: current
element

yes “Cost(new element) < .
. Cost(last element)

Tro
——{ Input: last element | |—h Input: new element |

Figure 4.14: What the sorting element should be next.

As mentioned this is realised by a combination of MUXes and comparators. The force
shift signal in figure 4.14 comes from a shift register. This shift register, called the force
shift register, is used to transmit the result of the sorting. The force shift register is also
used to force the sorted elements out of the sorting element. When a sorting is complete
the highest cost individuals address is located in the last sorting element. The lowest cost
individuals address is located in the first sorting element. The force shift register is one bit
wide and have the same length as the number of elements to be sorted. The force shift reg-
ister is filled with ones when each sorting is finished. Each of the bits in the shift register
is connected to one of the sorting elements force shift input. For each clock cycle a zero
is shifted into the force shift register. As long as a sorting element have a one at the force
shift signal it can not keep its address. The next address will as seen in figure 4.14 come
from either the last sorting element or the new element to be sorted. When filling the force
shift register with ones, a new sorting will begin which is no longer connected to the old
elements. The output of the sorting module is connected to the last sorting element. When
a sorting is done all elements are force shifted out. This means that the output will be the
elements sorted from high cost to low cost. One address of one individual per clock cycle.
Figure 4.15 shows the process of emptying and filling the sorting elements.

42

4.4 Data Buffer

Force shift register: ‘0‘0‘0‘0‘0‘0‘0 1|1‘1|1‘1‘

'

'

___________)
New element % IRSEEELEE)
'

Sorting register: Elements are sorted Elements shifted out 1

Output address

Figure 4.15: The sorting process.

As long as one wants to have all the elements sorted, the length of the force shift register
and the number of sorting elements must be the same as the number of elements to be
sorted. The output element will always be a valid element, as long as a new sorting is
started every time a sorting is finished. If one however does not need all the elements
sorted. One could simply lower the number of sorting elements and the length of the force
shift register. The last bit of the force shift register can be used to tell when the data is
valid. In the specific design of this thesis, half the population is discarded after sorting to
make room for new individuals after breeding. There is no point in sorting elements before
discarding them. This means that the number of sorting elements can be half as many as
there is individuals in one population. This saves around half the hardware of the sorting
process and simplifies routing and timing. If one assumes a population of an even number
m individuals. The result is that the sorting algorithm transmits the 7 best individuals,
highest cost first, for 4 clock cycles. Then elements that is not good enough to make the
next top 3 are sent in the next 7 clock cycles. This have a m clock cycle period.

4.4 Data Buffer

The idea of the pipeline architecture of this algorithm is that it is fully pipelined to enhance
operational speed. This means that it can receive one individual per clock cycle and that it
finishes processing one individual every cycle. If the latency, L, of the pipeline had been
the same as the number of individuals, m, the finished elements could start a new process-
ing cycle at once. But since this is not always the case a memory buffer is needed. This
can be solved by a 180 bit wide shift register with length m — L. This works if the delay
of the pipeline is not changed.

Another possibility is to make a more complex data buffer. One could have a block mem-
ory that can hold all the individuals. This buffer could send individuals in the rate best
suited for the breeding module. A new population signal could be sent every time the first
individual of a new population is sent. This new population signal would then flow through
the other modules and back to the buffer again. This signal can then be used to know where
in the memory the received data should be placed. Because it is a block memory there is
a delay between when signals are set to read data and when the data is ready from the
block memory. The breeding module, which is the next module, uses two individuals at
a time to produce children. The breeding module transmit both the two parents and the
two children to the next module. The breeding module should have an output rate of one

43

Chapter 4. Hardware Design

individual per cycle. This means that two new parents are needed by the breeding mod-
ule every forth clock cycle. The data buffer therefore transmits in this rate to the breeding
module. The data buffer also handles migration. Instead of transmitting the two worst indi-
viduals of each population, the two best individuals from the last population is transmitted.

This data buffer is a more complex solution which include counters, MUXes and a block
memory. However, as long as the total number of individuals is higher than the delay
of the pipeline, this data buffer module is independent of the delay of the pipeline. This
means that changes in the pipeline usually does not effect the design of the data buffer.
The data buffer just pushes data into the pipeline and receives at the other end when the
data is valid. The first population is assumed to be the main population, which usually has
low mutation rate. When the best individual of the first population is received in the data
buffer, this individual is set to the output of the design. Figure 4.16 sums up the operations
of the data buffer module.

— pipeline €
Receives
individuals Pushes individuals
from into pipeline
pipeline DataBuffer

—> —

B Best individual
memory

Figure 4.16: Data buffer oprations.

4.5 Breeding and Mutation

Breeding and mutation can be realised in simple hardware. Breeding of two individuals per
clock cycle and mutation of one individual per clock cycle, can be realised by a reasonable
amount of MUXes and LUTs. One problem however is that a lot random bits are needed
to perform these processes. This is especially a problem for the mutation. If one individual
should be mutated with a mutation rate of %, seven random bits are needed per bit of the
individual. This means 1260 random bits per clock cycle. It is challenging to generate that

many random bits. There are several strategies to generate random bits, but generating

44

4.6 Simulation and Verification

that many random bits every clock cycle demands a lot of resources. In general the more
random the bits need to be, the more effort is needed to generate them. It is assumed that
the genetic algorithm module can receive this amount of random bits on every cycle from
surrounding logic. The problem of randomness and the degree of randomness needed in
the algorithm are severely complex topics. The focus of this thesis have been implementing
the algorithm itself. A solution for how to generate this amount of random bits is therefore
not presented in this thesis.

4.5.1 Breeding

The breeding module receives two individuals, or parents on every fourth clock cycle.
During this period both the parents and the two children are transmitted, one individual on
each clock cycle. The one of the parents which is assumed to be the best parent is sent first,
then the other parent, then the two children. Each bit of the children is randomly selected
from one of the two parents corresponding bits. A new population signal is sent together
with the best parent after a new population signal is received from the data buffer.

4.5.2 Mutation

The mutation module receives one individual per sample and transmits one individual
per sample. The mutation module takes mutation rates of the different populations as
inputs. When a new population signal is received the mutation rate is changed and the first
individual is not mutated.

4.6 Simulation and Verification

Most of the modules in the design of this thesis have the same test structure, which will be
described later in this section and will be called standard test structure. Table 4.1 shows
an overview of how the different modules are tested.

45

Chapter 4. Hardware Design

Module Description Test status

GeneticAlg The entire design Visual testing for ran-
dom data

DelayDataBuf fer The data buffer Visual testing for ran-
dom data

Breeding The breeding module Standard test structure

Mutation The mutation module Standard test structure

SerialCostFunction 10 cost function cores Standard test structure

CostFunction The cost function module Standard test structure

ComplexHV ecMatrixVecMul

Calculates the hermitian
conjugate of vector multi-
plied with matrix multiplier
with vector

Standard test structure

ComplexVector Mul Fast vector product module | Standard test structure

ComplexAdderTree Part of fast vector product Not separatly tested

ComplexVector MulSlow Slow vector product module | Standard test structure

Complex Mul Complex multiplier Standard test structure

Sorting Register The Standard test structure

InsertionSort Insertion sort module Standard test structure

SortingRegister Shift register used in the in- | Not tested separatly
sertion sort

Accumulator Generated from Xilinx core- | Not tested separatly
gen

Blockmemory Generated from Xilinx core- | Not tested separatly

gen

Table 4.1: Testing of the different modules.

4.6.1 Modules Generated using Xilinx Coregen

Both the Accumulator module and the differently sized Blockmemory modules are gen-
erated using Xilinx software called Coregen. It has not been prioritized to test these mod-
ules separately. They are all part of tests which include modules that instantiate the coregen
modules.

4.6.2 Modules Tested with Standard Test Structure

As mentioned most of the modules of this design have been tested using the same test
structure. Procedures have been written in VHDL to simplify testing. These procedures
take one set of data that the module is to be tested for. The procedures then drives the
module with this set of data. The correct output of this set of data is then calculated and
compared with the output from the module. If the output does not match the expected
output, warnings are sent out from the test bench. By making such procedures for the
modules, it is simple to test the modules with any input data. The modules are all tested

46

4.7 Synthesis and Place and Route

with loops that apply random data to the module. Some of the modules have also been
specifically tested for corner cases.

4.6.3 Visual Testing of Modules

For the DelayDataBuf fer module and the GeneticAlg module there have been per-
formed visual testing. It is seen in the waveforms that the circuit operates as expected.
The cost is gradually decreasing and increase only when the input is changed. The indi-
vidual that is sent into the data buffer comes out at the correct time.

4.7 Synthesis and Place and Route

The genetic algorithm of this thesis is to be part of an FPGA design. The genetic algorithm
module have a lot of inputs; auto correlation, cross correlation, random bits and p;. The
genetic algorithm can, because of its number of inputs and output, not be routed by itself
on the target FPGA. The other parts of the FPGA design have not been available for the
work done this spring. Therefore the genetic algorithm had to be wrapped before it was
synthesised. Figure 4.17 shows how the design is wrapped to be able to do synthesis on
the genetic algortihm design.

A
; By Weight 1
: r
: = » Weight 2 Tl
: ° .
; .
' Large * Genetic algorithm ° -~
: shift ® .
! | register ¢ °
’ >
: Random ——
i bits Weight n
g
T«

Figure 4.17: Wrapping the genetic algorithm module.

As one can see from figure 4.17 a large shift register is used. The shift register receives
data from the different outputs of the genetic algorithm module in turn. The shift registers
values are used as input for the genetic algorithm module. This is done to make sure that
the input data to the genetic algorithm module are random. Another advantage of this de-
sign is that the outputs of the genetic algorithm module are being used. If the inputs are
not varying or the output is not used, parts of or the whole module might be simplified.
This will make the synthesis results worthless. To synthesize the module by itself, when

47

Chapter 4. Hardware Design

it is going to part of a bigger FPGA design, might give unrealistic results. But the parts
of design that will be challenging to synthesize might be reveled. A limit to how fast the
module can be run on the target FPGA is also found.

Under place and route, routing soon became a problem in the design. This was especially
for the cost function where a lot of data is used in the DSPs. The first place and route
results had a maximum clock cycle frequency of around 80 MHz, which is far from the
200 MHz goal. Path delay was the main problem, a lot of data were going to the same
location. The cross correlation and auto correlation matrices are at most changed every
generation. It was therefore allowed for this change to take three clock cycles. The shift
register used to simulate the inputs to the genetic algorithm module might give the mod-
ule an extra challenge compared to if the inputs were coming from a module. The inputs
from a different module might be less dependant on each other. Timing problems for all
the inputs of the genetic algorithm module were therefore ignored. This will create even
more ideal conditions for the genetic algorithm module. Again the goal is to find a limit of
how fast the genetic algorithm module can be run and not the exact speed of which it can
run. By ignoring the timing problems of the input signals the maximum frequency of the
synthesised module increased to around 130 MHz. To further increase the clock frequency
rate at which the genetic algorithm module can be run, one could delay difficult paths with
registers as shown in figure 4.18.

Long path

v

A\ 4

Start Destination

Shorter paths

P s,
; AN
i .,
‘ *

Start —}@—} Destination

Figure 4.18: Splitting path with register.

When path delay is the main problem, as it was for this design, this is the main technique
to improve clock frequency if not redesigning the module itself. By using this technique
the max clock frequency of the place and route was increased to 180 MHz(Appendix A).

48

Chapter

Discussion

The discussion is divided into two section. Section 5.1 contains the general discussion
regarding the parameters of the algorithm and the algorithms performance compared to
the DMI method. Section 5.2 contains the general discussion regarding the hardware im-
plementation of the algorithm.

5.1 Algorithm for Implementation

There is still a lot of work that can be done on improving the algorithm in this thesis. As
explained in chapter 3 it has only been attempted to find good parameters for the algorithm
and not the optimal parameters. The number representation of the weights in the imple-
mentation limits the size of the weights. This actual limit used in the implementation does
not effect the simulation results because the optimal weights for the sample data set is
not bigger than this limit. This limit is not general. To determine how large weights are
needed, knowledge about the specific antenna system is needed. This includes information
about antenna geometry, sampling and reception hardware and specifications of what the
antenna system should handle.

5.1.1 Performance

For the measuring of the performance of the algorithm, it is used a generation frequency
equal to the sample rate. This is not a reasonable generation frequency. As seen in chapter
4 the achieved throughput of the hardware design of this thesis is one individual per clock
cycle. For a population of 100 individuals and a clock cycle rate of 200 MHz this would
mean a generation rate of 2 MHz. With a typical sample rate of 100 MHz of a GPS antenna
system. The generation rate should be 50 times lower than the sample rate. This means
that the result of one generation of the genetic algorithm needs to be used on 50 samples.
In the performance simulation the result from each generation of the genetic algorithm is
used on only one sample. This will effect the resulting performance of the algorithm. The
algorithm is run 50 times as fast as it can be run in the hardware design compared to the

49

Chapter 5. Discussion

sample rate. This means that the measured performance is likely to be a lot better than the
actual performance will be.

For performance comparison the DMI is used. The DMI method finds the optimal weights
for K samples. As for the genetic algorithm it is not reasonable to run the DMI once
per sample, as was done in the performance simulations. The time consumption of the
DMI algorithm is even bigger than generation period of the genetic algorithm. This means
that the performance of the DMI algorithm in the performance simulations is better than
it should be. Both the performance approximation of the DMI and the genetic algorithm
are invalid when it comes to actual performance of the system. However, when comparing
the performance of the genetic algorithm to the DMI method, the actual relation between
them can be assumed to be better than or equal to what the simulations have shown.

5.2 Hardware Design

A student is not an experienced hardware designer. The different alternatives compared in
the hardware design chapter might therefore not be the absolute best alternatives. It has
been attempted to look at other designs and find good solutions to the problems that have
been encountered and to compare them. As the design have been run through place and
route one have seen that some of the solutions in the the design have worked well and
other have not.

5.2.1 Bottleneck

Under synthesis it is one data path that have been the limiting factor for the maximum
frequency of the design. This is the data path for the individuals sent from the mutation
module to the cost function module. Figure 5.1 shows the data path where there have been
routing problems.

50

5.2 Hardware Design

Cost function module

—)1 Cost function core 1 ‘

Cost function core 2 ‘

Bottle neck data path

v

Mutation module

[]
Individual -
—)‘ Cost function core n+1

Block memory

\ 4

Figure 5.1: Bottle neck data path.

As one can see from figure 5.1 the individuals that come from the mutation module are
connected to both the block memory and the cost function module. Figure 5.1 also shows
that the individuals are connected to all the n + 1 cost function cores. Remembering that
one individual is 180 bit wide, this is a lot of connections. Figure 5.2 shows the attempt to
solve the problem.

51

Chapter 5. Discussion

Cost function module

—)1 Cost function core 1 ‘

Cost function core 2 ‘

Shorter bottle neck data path

<--------

.
[)
o °
o [)
Mutation module | — Registers et °
ndividua —)‘ Cost function core n+1
> Block memory

Figure 5.2: Bottle neck data path, divided by registers.

As described in the hardware design chapter, inserting register elements in long data paths
can reduce the length of each data path. However, if too many registers are inserted it
is difficult to route because of the number of paths and registers. For each register step
inserted one clock cycle of latency is also added to the path.

To realise a pipelined cost function two alternatives were discussed. One were to use mul-
tiple slow cost function cores with a delay of ten clock cycles. The other were to use one
fast and fully pipelined cost function module. The main argument for using multiple cost
function cores was scalability. The fast cost function module solution will for the realised
throughput of one individual per clock cycle save both DSPs and LUTs. The fast cost
function module solution might use some extra registers because all the data paths have
to be balanced to the same latency. In resource usage the two solutions are similar and
they both have advantages and disadvantages. When it comes to their impact on the data
path of the individuals coming in to the module, this was not considered when the design
choice was made. It is not unlikely that the fully pipelined cost function module, that
simply takes one set of weights to the same DSPs on every clock cycle, might be easier
to route effectively than the more complex input of the multiple cost function core solution.

Another alternative is to use the scalability of the chosen cost function module to reduce
the throughput of the module. This means less bits that need to be connected to the cost
function module. Less bits to connect means easier routing, so this could simplify the
problem. One could also experiment more with putting registers into the longest data path.
In this thesis it has only been attempted to put the same amount of registers into the same
place of all these long paths. It might be beneficial to place the registers different places in

52

5.2 Hardware Design

the different paths to avoid that the paths are so similar. When paths are similar, the best
hardware path is more likely to be the best hardware path for many of these paths.

5.2.2 Verification

The verification of the design is not finished. It has not yet been written good test benches
for the top level design and the main data buffer. Although all the modules that is instanti-
ated in the top level design is tested, one can not be sure that all parts work well together
just by visual inspection.

The procedures produced for the tested modules are easy to use and the modules can easily
be tested with more random data, corner cases or fully covered. A lot of work was put into
generating these self testing test benches. When changes are made to the design it is very
convenient to be able to verify the design without much extra work. As long as inputs and
outputs of the modules are not changed, the test procedures allow for the modules to be
tested without visually inspecting waveforms or changing test bench code.

It has not been found time to do hardware testing of the design. Two options were con-
sidered. One could physically build an antenna system and design all the other modules
needed to test the design. One could also use the available test data set, stream the data
from a computer into the FPGA, run the data through the genetic algorithm design and
stream the results out to a computer. The computer could then be used to look at the re-
sults and verify that this is the same results as under simulation. Figure 5.3 shows how this
can be done.

FPGA

Receive Transmit
—» Data Data
module module

\4

f

| memory | memory |
I

Apply Genetic Receive
data » algorithm —» data
module module module

Figure 5.3: Hardware testing using a computer.

53

Chapter 5. Discussion

Such a test would not give much more coverage than the VHDL simulations. The testing
of the module in a real antenna system can give a lot more coverage. Since the main goal
of this thesis is to see if the genetic can replace the DMI algorithm. The verification of the
design have not been the main focus. If the design is used in a real antenna system, the
design should be more thoroughly tested and verified first.

5.2.3 Performance

The performance of the design is basically one individual per clock cycle of throughput
and a maximum clock frequency of 180 MHz. Can this performance be increased?

The throughput of the circuit of one individual per clock cycle is quite good when one
remember how many calculations one individual needs for each generation. For instance
the 109 complex multiplications and the effort needed to sort one individual for each clock
cycle. The genetic algorithm module itself is using around 75% of the available DSPs and
maximum 17% of the LUTs and the registers. This means that there is a lot of resources
left in the FPGA. These resources could have been used to improve the throughput of the
design. One have to remember that the target FPGA will be used for more than just the
genetic algorithm module. It is also already difficult to reach the 200 MHz maximum fre-
quency goal.

The nature of the algorithm with a lot of data flow is a challenge. This challenge will only
increase if it is attempted to increase the throughput of the design. The memory archi-
tecture chosen for this design will become more complex if the throughput is increased.
More than one individual need to be per clock cycle. The pipeline architecture used is
clearly well suited for the throughput of one individual per clock cycle. If the throughput
is changed, the more traditional memory architecture might be better suited. In general
the more traditional memory architecture, with one main memory and multiple different
cores for the operations, are easier scaled than the pipeline architecture. This might make
it easier to reach a specific maximum frequency goal for the circuit. On the other hand,
it will be hard to make a more traditional design with a throughput of one individual per
clock cycle or more on the target hardware.

5.2.4 Scalability

The design is scalable by constants in the main VHDL package. The constants set the
number of antennas, taps per antenna, populations and individuals per population. The
width of the data types used for the individuals in the VHDL code is also set from the
main package. The idea was to make the design scalable such that only the cost function
module and the data types had to be changed to make a genetic algorithm that calculated a
different problem. Writing generic code might reduce hard coded optimization that could
have been done if the actual numbers were used instead of constants. But such optimiza-
tions are usually done by the synthesis tool anyway.

The scaling of the number of antennas and taps per antenna is done simply by reducing
or increasing the number of multipliers in the cost function and the number of resources

54

5.2 Hardware Design

used in the other modules. This is a very simple way of scaling the design and this will
only work as long as there is enough resources in the FPGA to do the calculations and
as long as the design is possible to route. If the number of antennas and taps per antenna
is scaled down the design becomes ineffective and a lot of resources will be unused. If
the number of antennas and taps per antenna is scaled up the design might be too resource
demanding or not possible to route. A better way of scaling the design would be preferable.

The scaling of the number of populations and number of individuals per population is only
possible within the size of the block memories which are set in the design. These can
easily be replaced if the memory needed exceeds the memory available in the block mem-
ories. The total number of individuals also have to be larger than the latency of the pipeline.

As mentioned the chosen vector multiplier scheme sacrifices resource usage and route
ability for scalability. The memory architecture sacrifices scalability for throughput.

55

Chapter 5. Discussion

56

Chapter

Conclusion

A genetic algorithm has been implemented in VHDL, synthesised and partially verified.
The algorithm performs adaptive nulling and reduce the power of the output. When im-
plementing the algorithm trade offs between scalability, max frequency, throughput and
flexibility have been made. The genetic algorithm design needs surrounding logic which
is not in the scope of this thesis. This surrounding logic have not yet been designed, so the
genetic algorithm module have been synthesised by itself. A maximum clock cycle rate of
180 MHz has been achieved for place and route, which is simplified because the essential
surrounding logic of the final FPGA design is not included. The 200 MHz clock cycle rate
goal has not been achieved, but changes to the design have been discussed which might
increase the maximum clock cycle rate.

In hardware design it is always trade offs. In this particular design a lot of choices have
been made. Both choices of parameters for the algorithm and different opportunities for the
hardware design have been discussed. In this thesis, the algorithm have just been limited
to genetic algorithm. The hardware design have just been limited to the target FPGA. This
gives a lot of freedom. With so many design and parameter choices, it is not attempted
to find the absolute best solution. But it is shown, that an FPGA implementation of a
genetic algorithm can be used in a real time system. It is also achieved an approximately
20 dB increase in SNR for the sample data set, although this was done with a too high
generation rate. The genetic algorithm can not find weights close to the optimal solution
found by the DMI algorithm in real time. There is no question to the potential of the
genetic algorithm used in a non-real-time system. The genetic algorithm can run faster
than the DMI algorithm, but can for this problem not realistically meet the performance of
the DMI in real time. The number of possible solutions is simply to wast.

57

Chapter 6. Conclusion

58

Chapter

Future Work

It is now shown that the algorithm can be implemented on an FPGA. The performance
of the algorithm can be improved by finding the optimal constellation of populations with
different mutation rates, sizes and migration schemes for the specific problem to be solved.
One can use information of the actual antenna system to determine the best number repre-
sentation of the weights. More accurate performance simulations can be done by including
the time consumption of the algorithms. The time consumption of the genetic algorithm
was found in this thesis. An FPGA implementation of the DMI method can be made to
find the time consumption of the method. The more precise simulations will give actual
performance. The results can be used to more accurately compare the solutions.

The hardware design can be further improved to reach desired clock cycle rate of 200
MHz. The hardware design verification can also be improved. A solution to the problem
of the number of random bits needed and the required randomness of this bits needs to be
found. The surrounding modules needs to be developed before a hardware test can be run.

59

Chapter 7. Future Work

60

Bibliography

[1] Chen, P. Y., Chen, R. D., Chang, Y. P,, Shieh, L. S., Malki, H. A., 2008. Hardware
implementation for a genetic algorithm. IEEE Transactions on Instrumentation and
Measurement 57 (4), 699-705.

[2] Kreyszig, E., 2006. Advanced engineering mathematics (9th edition). John Wiley &
Sons, Inc.

[3] Mitchell, M., 1998. An Introduction to Genetic Algorithms. MIT Press.

[4] Monzingo, R. A., Haupt, R. L., Miller, T. W., 2011. Introduction to Adaptive Arrays
(2nd edition). SciTech Publishing.

[5] Myrick, W. L., Zoltowski, M. D., 1999. Anti-jam space-time preprocessor for gps
based on multistage nested wiener filter. Military Communications Conference Pro-
ceedings 1 (1), 675-681.

[6] Rosado, A., Iakymchuk, T., Bataller, M., Wegrzyn, M., 2008. Hardware-efficient ma-
trix inversion algorithm for complex adaptive systems. The 19th IEEE International
Conference on Electronics, Circuits and Systems(ICECS) 1 (1), 41-44.

[7] Tang, W., Leslie, Y., 2004. Hardware implementation for a genetic algorithms using
fpga. The 47th IEEE International Midwest Symposium on Circuits and Systems 1 (1),
549-552.

[8] Xilinx Inc., 2012. Virtex-6 family overview.
URL http://www.xilinx.com/support/documentation/data_
sheets/ds150.pdf

61

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

62

Appendix

Electronic Appendix

The VHDL code, MATLAB code and the timing report of the final FPGA design is located
in the electronic appendix for this thesis. The electronic appendix contains three folders.
One for each of the three mentioned categories.

A.1 VHDL Code Folder

In the VHDL code folder there is two folders. One called simulation and one called source.

A.1.1 Simulation Folder

The simulation folder contains all simulation entity files which ends with “ent.vhd”, all
simulation files which ends with”’sim.vhd” and a package consisting of ComplexPrivateTb_bdy.vhd
and ComplexPrivateTb_pck.vhd. The package contains all simulation procedures and sim-

ulation constants.

A.1.2 Source Folder

The source folder contains all the VHDL source code for the final design. Each module is
divided into one entity file ending with “ent.vhd” and one structural level description file
ending with “’str.vhd” or a rtl level description file ending with “rtl.vhd”. Figure A.1 shows
how the different modules are used in the final design.

63

GeneticAlg.vhd

DelayDataBuffer.vhd — 3| Breedingvhd — Mutation.vhd

Blockmemory.vhd

A

InsertionSort.vhd

SortingRegister.vhd

Blockmemory.vhd

4 v

SerialCostFunction.vhd

CostFunction.vhd

ComplexHVecMatrixVecMul1610.vhd

ComplexVectorMul1610Slow.vhd | | ComplexVectorMul1610.vhd
ComplexMul16b10b.vhd 2x| ComplexAdderTree.vhd

2x Accumulator.vhd nx| ComplexMull6b10b.vhd

n+1 X

ComplexVectorMul1610Slow.vhd
ComplexMul16b10b.vhd

2 X Accumulator.vhd

Figure A.1: Structure of VHDL code.

In figure A.1 the module names does not include the endings “ent.vhd”,’rtl.vhd” and
”str.vhd”. The “Blockmemory.vhd” name is simplified.

64

A.2 MATLAB Code Folder

The MATLAB code folder contains all the MATLAB code developed for this project.
The MATLAB code folder includes a input generation folder. The input generation folder
contains all the MATLAB files provided by Kongsberg Aerospace & Defence. These
MATLARB files generates the input for the generic algorithm module.

A.3 Timing Report Folder

In the timing report folder the timing report for the final design can be found. This report
shows a minimum period of 5.534 ns. This corresponds to a maximum frequency of
approximately 180 MHz.

65

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

	
	

