
Energy Efficient True Random Number
Generator

Conrad Georg Foik

Master of Science in Electronics

Supervisor: Per Gunnar Kjeldsberg, IET
Co-supervisor: Alf Petter Syvertsen, Silicon Labs Norway AS

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology

Project Description

Student: Conrad Georg Foik

Project Title: Energy Efficient True Random Number Generator

Project Definition: Silicon Labs is a world leader in analog-intensive, mixed sig-
nal semiconductors, and the design offices in Oslo are the hub for developing the
next generation of energy-efficient microcontrollers. The microcontrollers are based
on ARM cores with best-in-class energy friendly peripherals.

In a world of connected hardware, true random numbers are needed for proper cryp-
tography. Getting entropy from on-chip sources with some random variations, such
as thermal noise in the ADC, true random numbers can be generated using software
algorithms. This software implementation is however costly in terms of energy and
CPU-time and too expensive for a node with limited energy budget.

During an autumn project a literature study has been performed with focus on the
theoretical background for true random number generators. Based on this different
hardware approaches for true random number generation have been studied and
the hardware complexity of a selected set of techniques has been evaluated bearing
energy efficiency in mind.

This work shall be continued towards a master thesis. The two most promising true
random number generator hardware solutions shall be studied in more detail and
an energy efficient design shall be implementation for at least one of them. As part
of the considerations, entropy sources will be studied in more detail to enable also
a trade-off between energy consumption in the source and for post-processing.

Supervisor 1: Professor Per Gunnar Kjeldsberg (NTNU)
Supervisor 2: M.Sc. Alf Petter Syvertsen (Silicon Labs)

i

ii

Abstract

For modern cryptography, the availability of true random numbers is indispensable.
While recent technology trends require secure communication, they combine this
requirement with the need for energy efficient solutions. As a result, true random
number generators (TRNG) which satisfy both aspects have to be developed.

Based on this motivation, the here presented project has been focused on the
realization of a TRNG for a mixed-signal microcontroller unit (MCU) environment.
These kind of MCUs generally contain an analog-to-digital converter (ADC), which
is well known to be influenced by random noise processes, as for example thermal
noise. To avoid unnecessary design and prototype costs, it is therefore reasonable
to try to implement the entropy source of a TRNG based on the existing ADC
design. Possible non-random imperfections in the output of the source can be mask
by deterministic post-processor algorithms. Two possible post-processors are the
von Neumann corrector (VNC) and an extractor based on pairwise independent
hash functions (IHF).

To evaluate the proposed concept, during this project the ADC of a typical MCU
has been set up to function as an entropy source. The so generated data has been
used as a basis for further simulations and analyses of the statistical characteristics
of different TRNG designs. To ease these analyses, a novel test has been devel-
oped, which can be used to test a bit stream for the existence of special statistical
characteristics, required by the VNC.

In addition, both the VNC and IHF have been analyzed with regard to their
complexity and implemented in SystemVerilog. In order to find an energy efficient
implementation of the IHF, two different algorithmic solutions have been considered
and the chosen design has been kept generic to be tunable. For the VNC different
approaches of clock gating have been explored to reduce unnecessary dynamic power
consumption. After the verification of the proposed designs, both post-processors
have been synthesized in a standard 65 nm technology, in order to estimate their
power performance.

Finally, in connection with the ADC based source, both post-processor designs
have been evaluated with regard to both randomness and energy performance. While
the output of the approach using the VNC is classified as not random, the IHF based
design passes the so called NIST test suite for random numbers, and can therefore
be considered to be random. Hence the connection of the ADC based entropy
source and the IHF depicts a functional TRNG solution. By tuning the IHF, it has
been able to reach an approximated minimum energy consumption of 5.9 nJ for this
approach.

iii

iv

Preface

The in the following presented master thesis summarizes a project performed in the
spring of 2015 and marks the end of a five year master program in electronics at the
Norwegian University of Science and Technology (NTNU). During the project, the
energy efficient generation of true random numbers in a microcontroller has been
explored. The project has been supervised by Professor Per Gunnar Kjeldsberg
(NTNU) and M.Sc. Alf Petter Syvertsen from Silicon Laboratories (Silicon Labs).

As the project specification combines two extremely complex subjects, the project
has had to cover a wide range of different topics, which has made the project both ex-
citing and challenging. Examples are the mathematical and information theoretical
background to understand the concept of randomness and possible post-processing
approaches; statistical hypothesis testing to be able to evaluate testing results; a
basic understanding of analog circuitry to consider entropy sources; digital design
techniques to develop energy efficient solutions; and practical aspects as the setup
of simulation and synthesis tools.

Many of this aspects are in this report presented in rather great detail. The
motivation behind this is twofold. First, the presented background is considered
necessary to understand the during the project developed designs and methodolo-
gies. Second, it has been my aim during the writing process to not only enable the
reader to understand the here presented implementations but to ease the access to
other related projects. As a result, while the theoretical background is kept as gen-
eral as possible, a number of illustrating examples have been included. Being aware
that this might exhaust reader familiar with the topics, it is nevertheless believed
to be helpful for others.

To prepare the the performance of this project, a literature study has been performed
during the fall of 2014. For convenience, it has been chosen to include some of the
findings of this study in the here given report. Readers familiar with the concluding
report of the literature study might therefore recognize some of the sections in this
thesis. This applies mainly to Chapter 1, which has only been slightly adapted to
this project. The in Section 2.1 presented concepts have also been considered during
the literature study. However, the section has been revised to give a more intuitive
access to the discussed topic. Section 2.3 has with minor variations been introduced
during the fall of 2014. It should be noted that, while the two post-processors have
been discussed during the literature study, additional aspects - including a new al-
gorithmic solution for the extractor based on pairwise independent hash functions
- have been incorporated into Section 2.4. This is also true for the corresponding
complexity analysis in Section 4.1.1 and Section 4.1.2. The rest of the report is novel.

Generally, great care has been taken to reference external sources, in order to clearly
distinguish the from my own work. However, two cases should be considered in more
detail.

The in Section 2.4.2 presented Equation 2.43 and Equation 2.44 are in this form
not stated in the original article, “True Random Number Generators Secure in a
Changing Environment” by Barak, Shaltiel and Tromer. However, due to discrep-

v

ancies between the notation of the in the article presented corresponding equations
and additional inconsistencies between these equations and their related mathemat-
ical explanations it is suspected that minor printing errors exists in the equations
of the article. As an attempt to contact the authors has been unsuccessful and
proving the validity of either one of the equations is out of the scope of this project,
this suspicion has had to be accepted, out of a lack of alternatives. Both equation
have therefore been modified by me, based on my understanding of the mathemat-
ical background presented in the article. Nevertheless, the reader is encouraged to
evaluate this decision for him- or herself.

Further, I want to stress at this point, that the basic idea of the in Section 3.2
introduced test, has been proposed by Professor Øyvind Bakke (NTNU).

Finally, on a more personal note, I would like to thank my supervisors Professor
Per Gunnar Kjeldsberg (NTNU) and M.Sc. Alf Petter Syvertsen (Silicon Labs) for
consistent support and motivation throughout both this project and the preceding
literature study; Professor Ingelin Steinsland, Professor H̊akon Tjelmeland and the
already mentioned Professor Øyvind Bakke (all NTNU) for increasing my under-
standing of statistical hypothesis testing; and finally, but in no way less important,
my friends and family for utterly support, motivation, exhortation and distractions,
not only throughout this project but the entire past five years.

Trondheim, June 12, 2015

Conrad G. Foik

vi

Contents

Project Description i

Abstract iii

Preface v

List of Figures xii

List of Tables xiv

List of Mathematical Symbols xv

List of Acronyms xix

1 Introduction 1

1.1 Random data . 2

1.2 Pseudorandom and true random number generators 2

1.3 This project . 3

1.4 Outline . 5

2 Background 7

2.1 Random Data . 7

2.2 Statistical Testing . 13

2.2.1 Testing of a statistical hypothesis 14

2.2.2 The NIST test suite for random number generators 24

2.3 Random Noise in an ADC . 29

2.4 Post-processing algorithms . 34

2.4.1 Von Neumann corrector . 36

2.4.2 Extractor based on pairwise-independent hash functions . . . 38

2.5 Dynamic Power in Digital Systems 46

3 ADC as an Entropy Source 51

3.1 Implementation of an Entropy Source Using an ADC 51

3.2 A Test for von Neumann Conditions 53

3.3 Output Analysis of the Entropy Source 59

vii

4 Post-Processing Algorithms 65
4.1 Complexity of the TRNG Post-Processing Algorithms 65

4.1.1 Complexity analysis of TRNG post-processing algorithms . . . 66
4.1.2 Discussion on the growth of complexity 71
4.1.3 Choice of an IHF algorithm suited for implementation 78

4.2 Implementation of Post-Processing Algorithms 80
4.2.1 General aspects of the design and simulation process 82
4.2.2 Implementation of the von Neumann corrector 87
4.2.3 Implementation of an extractor based on pairwise independent

hash functions . 95

5 Evaluation of Randomness 105
5.1 Analysis of the VNC Output . 105
5.2 Analysis of the IHF Output . 116

6 Estimation of Power and Energy Performance 123
6.1 Power and Energy Performance of the VNC 124
6.2 Power and Energy Performance of the IHF 129

7 Discussion, Conclusion and Further Work 135
7.1 Comparison of the VNC and the IHF 135
7.2 Conclusion and Further Work . 137

8 References 141

A Extended Background on Information Theory 145
A.1 Entropy and the Uniform Distribution 145
A.2 Entropy and Statistical Dependencies 146

A.2.1 Conditional entropy of a 2-bit vector 146
A.2.2 Conditional entropy of an n-bit vector 149

B Setup of an ADC as an Entropy Source 151

C Statistical Testing 159
C.1 The von Neumann Condition Test . 159
C.2 Results of Statistical Testing . 163

C.2.1 Results for the Entropy Source 163
C.2.2 Results for the VNC . 165
C.2.3 Results for the IHF . 170

D SystemVerilog Code of Post-Processing Implementations 175
D.1 Submodules for General Purposes . 175
D.2 VNC Implementation . 178

D.2.1 Definitions for the VNC . 178
D.2.2 vnc.sv . 178
D.2.3 vnc ctrl.sv . 179
D.2.4 vnc input if.sv . 183
D.2.5 vnc output memory.sv . 186

viii

D.3 IHF Implementation . 193
D.3.1 Definitions for the IHF . 193
D.3.2 ihf.sv . 193
D.3.3 ihf ctrl.sv . 195
D.3.4 ihf input if.sv . 199
D.3.5 ihf comp.sv . 200
D.3.6 ihf output memory.sv . 202

D.4 Simulation Setup . 203
D.4.1 Definitions . 203
D.4.2 Example of a test bench . 204
D.4.3 Example of a simulation routine 209

E User Guide for Logical Verification and Synthesis for Power Esti-
mations 213
E.1 Work flow . 213
E.2 Setup . 215

E.2.1 Setup of sysvlog . 215
E.2.2 Setup of ncsim . 216
E.2.3 Setup of rtl compiler . 217

E.3 Execution . 218

F Synthesis of Post Processing Implementations 221

ix

x

List of Figures

1.1 Block schematic of a TRNG . 3

2.1 Example of a reference distribution for H0 15
2.2 Critical regions of the reference distribution 16
2.3 Relationship of the reference distribution and the true distribution of s 17
2.4 P-value for the observed test statistic so 20
2.5 The chi-squared distribution with nine degrees of freedom 22
2.6 Example of a quantization imperfection 32
2.7 Model of an ADC with thermal noise 33
2.8 ADC transformation with thermal noise 34
2.9 D-flip-flop with enable signal . 48
2.10 A simple clock gate . 49

3.1 Approximation of the binomial distribution by the normal distribu-
tion for ovN = 128 . 58

3.2 Results of the Frequency test for the source data 62
3.3 Results of the von Neumann condition test for the source data 64

4.1 Number of operations of the IHF-algorithms as functions of nIHF . . . 72
4.2 Lower bounds of the number of operations of the IHF-algorithms as

functions m . 73
4.3 Number of input bits required by the VNC and the IHF as functions

of m . 74
4.4 Slopes of nVNC and nIHF as functions of p 74
4.5 Number of operations of the VNC and the IHF-algorithms as func-

tions of m . 76
4.6 Indication of the number of operations for the VNC and the IHF-

algorithms as functions of p . 77
4.7 Work flow of the post-processor implementation process 81
4.8 System environment for post-processor implementations 83
4.9 Simulation setup for post-processing implementations 85
4.10 Flow diagram of a VNC module . 88
4.11 Block schematic of a VNC module . 89
4.12 Block schematic of vnc ctrl . 91
4.13 Block schematic of vnc input if . 92
4.14 Block schematics of vnc output memory 93
4.15 Waveform of the first VNC verification simulation 94
4.16 Waveform of the second VNC verification simulation 96

xi

4.17 Flow diagram of a IHF module . 97
4.18 Block schematic of a IHF module . 98
4.19 Block schematic of ihf input if . 99
4.20 Block schematic of ihf comp . 100
4.21 Block schematic of ihf output memory 101
4.22 Waveform of the first IHF verification simulation 102
4.23 Waveform of all four generated output words 103

5.1 Results of the Frequency test for the VNC 107
5.2 Results of the von Neumann condition test for the VNC 108
5.3 Observed p-values of the first-level von Neumann condition tests for

the VNC . 109
5.4 Illustration of the second VNC iteration approach 110
5.5 Results of the Frequency test for the second VNC iteration 111
5.6 Observed p-values of the first-level Frequency tests for the second

VNC iteration . 112
5.7 Observed p-values of the first-level von Neumann condition tests for

the second VNC iteration . 114

6.1 Power estimates for the VNC . 125
6.2 Power estimates for vnc output memory 126
6.3 Power estimates for the IHF . 130
6.4 Power and time per sample for the IHF 131
6.5 Energy estimates for an IHF based TRNG solution 133

C.1 Results of the von Neumann condition test for the second VNC iteration169

E.1 Work flow of the verification and synthesis process 214

xii

List of Tables

2.1 Possible scenarios arising from hypotheses testing 18
2.2 Expected and observed frequencies of p-values for the chi-squared

goodness-of-fit test . 24
2.3 The NIST test suite . 27
2.4 Extended truth table of the XOR-operation in a VNC 37
2.5 Output probabilities of the mainpluated ensemble X 40
2.6 Example for Equation 2.44 . 46

3.1 Summary of the used ADC parameters 53
3.2 Contingency table . 54
3.3 Used parameters for the NIST test suite 61

4.1 Number of inner loop iterations for IHF-1 69
4.2 List of input and output for the post-processing modules 84
4.3 Summary of simulations for logical verification 87
4.4 Overview over the different VNC design approaches 90

5.1 Results of the NIST test suite for the output of the second VNC-
iteration . 113

5.2 Summary of the statistical tests of VNC 115
5.3 Upper bound of the min-entropy . 118
5.4 Results of the NIST test suite for the output of the IHF with nIHF =

32 and mIHF = 1 . 119
5.5 Summary of the results of the NIST test suite for the IHF withmIHF =

64 . 120
5.6 Summary of the results of the NIST test suite for the IHF withmIHF =

128 . 121

6.1 Energy estimates for the VNC . 128
6.2 Energy estimates for the VNC . 134

C.1 Results of the Frequency test for the source data 163
C.2 Results of the von Neumann condition test for the source data 164
C.3 Results of the Frequency test for the VNC 165
C.4 Results of the von Neumann condition test for the VNC 166
C.5 Results of the Frequency test for the second VNC iteration 167
C.6 Results of the von Neumann condition test for the second VNC iteration168
C.7 Results of the NIST test suite for the IHF with nIHF = 64 and mIHF = 1170
C.8 Results of the NIST test suite for the IHF with nIHF = 64 and mIHF = 2171

xiii

C.9 Results of the NIST test suite for the IHF with nIHF = 64 and mIHF = 4171
C.10 Results of the NIST test suite for the IHF with nIHF = 64 and mIHF = 8172
C.11 Results of the NIST test suite for the IHF with nIHF = 128 and

mIHF = 2 . 172
C.12 Results of the NIST test suite for the IHF with nIHF = 128 and

mIHF = 4 . 173
C.13 Results of the NIST test suite for the IHF with nIHF = 128 and

mIHF = 8 . 173
C.14 Results of the NIST test suite for the IHF with nIHF = 128 and

mIHF = 16 . 174
C.15 Results of the NIST test suite for the IHF with nIHF = 128 and

mIHF = 32 . 174

F.1 Synthesis results for the VNC modules 221
F.2 Synthesis results for the vnc output memory sub-modules 221
F.3 Synthesis results for the IHF modules with nIHF = 64 222
F.4 Synthesis results for the IHF modules with nIHF = 128 222

xiv

List of Mathematical Symbols

Symbol Explanation First reference

ai An arbitrary element of AX . Section 2.1
AX AX = {a0, ..., ak−1}, the set of X. It

contains k different discrete data values,
which all are possible to be taken by x. In
the binary case, AX = {0, 1}n denotes the
set containing all 2n possible combinations
of n bits.

Section 2.1

α The level of significance for a statistical test Equation 2.19
β The tuning parameter of the IHF Equation 4.5
c−/+ The critical value(s) for a statistical test Equation 2.19
γ The switching activity of a digital gate Equation 2.47
dist(X, Y) The statistical distance between the

ensembles X and Y
Equation 2.6

e The expected frequency of occurrence for a
given value. In Section 2.3, e[n] is
incoherently used to illustrate the influence
of thermal noise.

Section 2.2.1

E[x] The expected value for the outcome x Section 2.2.1
ε A measure of the statistical distance of two

ensembles. In this report also often referred
to as the quality parameter of the IHF

Section 2.1,
Section 2.4.2

g(z) A polynomial in GF (2n) Equation 2.35
G(z) A irreducible polynomial that defines

GF (2n)
Section 2.4.2

GF ((2n)) A Galois field with 2n elements Section 2.4.2
H A pairwise independent family of hash

functions
Section 2.4.2

h(x = ai) The Shannon information content
associated with the event of x taking on the
value ai

Equation 2.1

H(X) The Shannon entropy associated with the
ensemble X

Equation 2.2

H0 The null-hypothesis of a statistical test Section 2.2.1
k Number of elements in AX Section 2.1

xv

Symbol Explanation First reference

κ The associated amount of min-entropy in
bits

Equation 2.3

l The level of independence between multiple
variables

Equation 2.14

m The number of elements in −→y . Also more
loosely used as the number of output bits of
a test or an algorithm

Section 2.1

min-Ent(X) The min-entropy associated with the
ensemble X

Equation 2.3

N The number of performed first-level tests Section 2.2.2
n The number of elements in −→x . Also more

loosely used as the number of input bits to
a test or an algorithm

Section 2.1

norm(s;µ, σ) The normal distribution of s with mean µ
and standard deviation σ

Section 2.2.2

o The observed frequency of occurrence for a
given value

Section 2.2.1

O An abstract measure of the number of
operations required by an algorithm

Section 4.1

p(i) pi is the probability that x takes on the
value ai, pi = Pr(x = ai). If AX = {0, 1}, p
is used to denote the probability that x is
equal to 0, p = Pr(x = 0).

Section 2.1

P The power dissipation of a digital gate Equation 2.45
PX PX = {p0, ..., pk−1}, a set that defines the

probabilities of x taking a particular value
of AX

Section 2.1

pdf(s;H0) The pdf of the reference distribution of s for
a given H0

Section 2.2.1

π The public parameter of the IHF Section 2.4.2
Π A set from which π is randomly selected Section 2.4.2
s The test statistic of a statistical test. s is a

unknown variable. The observed test
statistic is denoted so

Equation 2.18

t The security parameter of the IHF Equation 2.34
x The outcome of X. A discrete variable

taking a value out of AX with a probability
defined in PX

Section 2.1

X The ensemble X contains the triple
(x,AX ,PX). In this report, X is usually
used to model a source of discrete data.

Section 2.1

xvi

Symbol Explanation First reference

−→x −→x = 〈x0, ..., xn−1〉, the concatenation of n
data values. Frequently used vectors are: −→x
used to model the output stream of a data
source / input to a post-processor or
statistical test; −→y = 〈y0, ..., ym−1〉 denoting
the output of a post-processor.

Section 2.1,
Section 2.4

χ2(s; k − 1) The chi-squared distribution of s with k − 1
degrees of freedom

Section 2.2.1

xvii

xviii

List of Acronyms

Acronym Description

ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
CMOS Complementary Metal-Oxide Semiconductor
DUT Device under Test
FPGA Field-Programmable Gate Array
IHF Extractor based on pairwise Independent Hash Functions
IoT Internet of Things
LSB Least Significant Bit
MCU Microcontroller Unit
NIST The National Institute of Standards and Technology
NTNU Norwegian University of Science and Technology
pdf Probability Density Function
PRNG Pseudorandom Number Generator
RNG Random Number Generator
RSA Rivest-Shamir-Adleman Public Key Cryptosystem
RTL Register-Transfer Level
SAR Successive Approximation Register
TRNG True Random Number Generator
VNC von Neumann Corrector

xix

xx

Chapter 1

Introduction

Random numbers are a fundamental part of modern cryptography. They are mainly
used to determine keys in cryptographic algorithms, as the Rivest-Shamir-Adleman
Public Key Cryptosystem (RSA), the Diffie-Hellman algorithm or the Advanced En-
cryption Standard (AES) [1][2]. However, they find also use in the generation of, for
example, padding bits, which are used to extend short messages to a fixed number of
bits without weakening the used cipher [3]. Due to the importance of random num-
bers for the security of cryptographic systems, Random Number Generators have to
satisfy a number of strict demands. Most importantly, they have to deliver random
data that is suitable to be used in cryptographic applications. For instance, if the
generated data is not truly random, but rather biased or in other form predictable,
an adversary might easily guess the key of a cipher from a reduced number of pos-
sibilities. It is also possible that an adversary tries to actively attack the RNG in
order to determine or even manipulate the generated data. Hence, RNGs should
provide an ability to resist these kinds of attacks. A further requirement that has
to be taken into consideration is the speed at which random data can be produced,
as some applications are time-critical.

The above mentioned requirements have been known for a long time. However,
a rather new demand is introduced by current technology trends: During the last
decades more and more devices have been connected to the internet. Whereas, in the
past, this mostly affected stationary computer systems and later on also applied to
mobile devices (e.g. smartphones, laptops), today an increasing number of gadgets
is connected to the internet. This trend is generally referred to as the Internet of
Things (IoT) [4]. The resulting advanced connectivity is accompanied by the same
need for security as more traditional systems. One might, for instance, picture a
personal medical device, which measures and transmits sensitive data to an external
computer system. This data obviously should be shielded from any possible third
party. Another example are home security systems. They need to secure that an
adversary neither observes the communication nor actively manipulates the system.
While the need for security, and thus reliable RNGs, in these systems is the same
as for desktop computers, they generally have stricter requirements with regard to
power consumption. Most IoT-devices are wireless embedded systems with limited
sources of energy as, for example, batteries. Thus, when designing RNGs that
are to be used in IoT related gadgets or other kinds of embedded systems, energy

1

1.1. RANDOM DATA

efficiency has become a more and more important factor that has to be taken into
consideration.

An illustrative example of typical components used in IoT gadgets is the EFM32
Gecko family, which is a series of Microcontroller Units developed by Silicon Labora-
tories [5]. On one hand, these MCUs are designed for ultra low energy consumption
and thus easily integrated in battery driven systems. On the other hand, the EFM32
Geckos support hardware execution of the widely used AES-algorithm, meeting the
increasing costumer requirements for security.

An example of an on jitter based RNG that meets the energy requirements
of IoT applications is presented in [3]. The proposed design has a throughput of
1.74 Mbits/s and a power consumption of roughly 240µW, using a 90 nm Comple-
mentary Metal-Oxide Semiconductor (CMOS) technology. As a result, the RNG
requires approximately 138 pJ per single output bit. However, modern cryptogra-
phy standards require normally a large number of random bits. For example the
AES uses a key length of at least 128 bits [6]. Thus, creating for instance an AES
key would require a total of roughly 18 nJ.

1.1 Random data

The concept of randomness is the subject of complex discussions in both mathemat-
ics and philosophy. However, for a cryptographic approach it is sufficient to think
of randomness as uncertainty [7, p. 155]. Using random data to construct a cipher
key should leave any adversary as uncertain about the key value as possible. Un-
certainty is as such related to the amount of information on the key the adversary
is missing, or in other words, the amount of information she would earn, if the key
was revealed to her. In information theory, this kind of uncertainty is referred to as
entropy. At this point it is sufficient to mention that the higher the entropy value
associated with a process is, the more uncertain an observer is about the outcome.
In Section 2.1, a more detailed definition of entropy is given.

Random data is accompanied by certain statistical characteristics. Most impor-
tantly, random data should ideally be independent and uniformly distributed (see
Section 2.1). However, even though this characteristics are important, they should
not be confused with randomness [3]. For example, deterministic algorithms exist
to model uniform outcomes. This does not necessarily mean that an observer is
uncertain about the next output value.

1.2 Pseudorandom and true random number gen-

erators

Modern RNGs are realized as electronic systems, either by means of software, hard-
ware or a hybrid solution. However, electronic devices are in general deterministic
systems. By definition, generating any kind of truly random data using a pure deter-
ministic system is impossible [8][9, p. 44]. This simple but important fact describes
the key challenge of designing modern RNGs and gives reason to divide them into
two main classes: Pseudorandom Number Generators and True Random Number

2

1.3. THIS PROJECT

Figure 1.1: Block schematic of a TRNG

Generators .
PRNGs are deterministic systems. They use an input, called seed, to generate

data that for an external observer appears to be random. However, if the seed
becomes known, the output data is exactly predictable. Moreover, if the same seed
is used for a sufficient long time, patterns start to arise in the output data, which
destroys the illusion of randomness. It should nonetheless be noted that PRNGs in
general play an important role in cryptography. So called “cryptographically strong”
approaches exist, which prevent an adversary from gaining knowledge about the
seed. They also provide satisfying long streams of data without patterns. However,
they do not solve the original problem of generating random data as they rely on
the existence of a random seed.

TRNGs generate random data by observing random processes inside or outside
the system. In general, TRNGs consists of three parts [10][11], as depicted in Fig-
ure 1.1:

Entropy-source: The entropy-source is the process to be observed. Examples of
such processes range from user interactions over thermal noise in electronic
resistors to phenomena in quantum physics. It is important to note that the
entropy-source is the only true random part of a TRNG. This means that no
other part of the system can increase the amount of entropy associated with
the data.

Harvesting: In this step the observed entropy is transformed into a digital data
representation. In other words, it can be illustrated as the observation process.
A common example is an Analog-to-Digital Converter (ADC) which converts
an analog noise signal into a digital data stream. As the entropy-source and
the harvesting process are closely related, in the literature harvesting is often
included in the term entropy-source. This approach is adopted for the purpose
of this report.

Post-processing: Most TRNGs use some kind of digital post-processing, even
though this is not strictly necessary. The purpose of post-processing varies.
Most commonly, it is used to reshape the statistical characteristics of the data,
but may also be implemented to increase, for example, the resistance against
attacks on the TRNG.

1.3 This project

Motivated by the above discussed, this project focuses on an energy efficient imple-
mentation of a TRNG in a mixed-signal MCU environment. Generally, this kind of

3

1.3. THIS PROJECT

MCUs are equipped with an ADC. It is therefore reasonable to try to use the existing
ADC as an entropy source for the TRNG, due to two reasons. First, additional de-
sign cost for the construction of an alternative source can be omitted. Second, with
regard to Section 1.2 it is clear that the truly random characteristics of an entropy
source cannot be simulated by means of deterministic computer-aided tools, but
must be directly observed from prototypes. MCUs are typically realized by means
of advanced CMOS technologies which make the production of single prototypes
extremely expensive. Thus, by using the existing ADC as a source of entropy, the
functionality of the TRNG can be tested and verified before production, without
the need of expensive prototyping.

However, ADCs are generally designed to behave as deterministic as possible.
Therefore, they must be considered to be rather weak entropy sources. As a result,
post-processing is necessary in order to not compromise the quality of the TRNG.
During a preceding literature study [12], the most common post-processing algo-
rithms have been considered in a similar context as given for this project. Based on
this study, two algorithms appear to be most suited for the given scenario: the von
Neumann Corrector (VNC) and the Extractor based on pairwise Independent Hash
Functions (IHF). Both algorithms are based on firm mathematical proofs, and can
thus guarantee randomness for the right circumstances. The VNC is a very simple
algorithm with a minimum of complexity. However, its functionality is dependent
on very specific statistical characteristics of the used source. In contrast, the IHF
is a more advanced algorithm, accompanied by more complexity, but, at the same
time, it works for a wider range of source characteristics.

With regard to this project specification, the following has been achieved and is
discussed in this report:

• A weak entropy source has been implemented using the ADC of an EFM32
Wonder Gecko

• A test for the source characteristics required by the VNC has been proposed
and implemented in MATLAB

• A complexity analysis of both the VNC and the IHF has been performed

• A work flow for logical verification and synthesis for the purpose of power
estimation has been composed

• Functional version of both the VNC and the IHF have been implemented in
SystemVerilog

• Different combinations of the entropy source and post-processing have been
evaluated both with respect to randomness and energy performance

• A functional TRNG has been designed, which passes the NIST test suite and
uses approximately 5.9 nJ per output bit

4

1.4. OUTLINE

1.4 Outline

The here presented report is structured in the following manner. Chapter 2 covers
the background of some of the most fundamental aspects of this report. This includes
the introduction of the concept of entropy as a measure of randomness, presenting
the procedure of statistical hypothesis testing, a short discussion of the possible
use of an ADC as an entropy source, the presentation of the two in the project
considered post-processors and a brief background on power dissipation in digital
systems. In Chapter 3, the setup of an entropy source based on an ADC is pre-
sented. In addition, a test to analyze the output data of the source is proposed and
the corresponding analysis is performed. Chapter 4 focuses on the post-processors
by first performing an complexity analysis and then presenting the implementation
of both post-processors in SystemVerilog. After the implementation, the output of
the post-processors in combination with the ADC based entropy source is tested for
whether it can be considered to be random. This is presented in Chapter 5. Chap-
ter 6 focuses on the power and energy performance of the different post-processors
and their combination with the entropy source. Finally, Chapter 7 presents a com-
parison of the most important aspects of the VNC and the IHF, a conclusion and a
proposal of topics that could be explored in a subsequent project.

5

1.4. OUTLINE

6

Chapter 2

Background

This chapter covers the theoretical background of some of the most fundamental
aspects of this project. Section 2.1 explores the concept of randomness and Sec-
tion 2.2 introduces statistical testing, which can be used to test if a data stream
can be considered random. The basic concept that enable the use of an ADC as
an entropy source are presented in Section 2.3 and Section 2.4 introduces the two
in this project considered post-processors. Finally, Section 2.5 focuses on dynamic
power dissipation in digital systems.

2.1 Random Data

In Section 1.1, a first informal definition of the concept of randomness has been
given. It has been pointed out that randomness depends on the amount of available
information about an event, which can be shown to be directly connected to the
probability of the event. As such, randomness is closely related to both information
theory and probability theory. The following section presents therefore some basic
concepts of these fields which are used repeatedly throughout this report. Most
importantly, the concept of entropy is introduced and established as a measure of
randomness.

To be able to discuss the concept of random data in more detail, it is necessary to
introduce a mathematical model for a source of data. A first approach is given by
the definition of an ensemble X as stated in [13, p. 22]: It defines X to be the triple
(x,AX ,PX), where x is the outcome of the data source, which takes on one of the k
values included in the set AX = {a0, ..., ak−1}. The probabilities of x taking on any
particular value in AX are defined in PX = {p0, ..., pk−1}, where pi is the probability
that x takes on the value of ai, pi = Pr(x = ai). Generally, Pr(x = ai) is referred
to as the marginal probability of x = ai. Note that pi ≤ 0 for all i in [0, k − 1] and∑k−1

i=0 pi = 1.
Based on this model of a data source, it is possible to discuss the concept of

randomness in a more formal manner. As mentioned in Section 1.1, during this
project, randomness is considered to be the amount of uncertainty an observer has
about some data. Using the ensemble X to model a source of data, randomness is
thus the level of uncertainty an observer associates with the outcome x. Uncertainty
can be depicted as the lack of information an observer has about x, or, seen from a

7

2.1. RANDOM DATA

different perspective, the amount of information she earns about x when the concrete
value of x is revealed to her.

It is common, to measure the amount of information associated with x taking on
a particular value ai by means of the Shannon information content, which is defined
as [13, p. 32],

h(x = ai) ≡ log2(
1

pi
). (2.1)

It is out of the scope of this report to give a detailed discussion about Equation 2.1.
However, it is worth noticing the following three properties:

• The value of h(x = ai) increases with decreasing pi. This means that the more
unlikely a particular event is the more information is earned if it actually
occurs. This fits the human understanding of information.

• If pi = 1, h(x = ai) = 0. In other words, if an event is certain to happen, no
information is gained by observing it. Also this fact is intuitively true.

• Any base might be chosen for the logarithmic function in Equation 2.1. Choos-
ing the base to be 2 allows to use bits as the unit of measurement, which is
convenient for this project.

Using Equation 2.1, it is possible to measure how uncertain an observer is about
one particular outcome. However, this is not sufficient to analyze the source char-
acterized by X. Even though one event might occur with low probability, another
value might occur frequently (i.e., with high probability). In such a situation an
observer would be rather certain about the outcome - at least most of the time.

As an example, one might consider the ensemble X with AX = {0, 1} and PX =
{0.0625, 0.9375}. Using Equation 2.1, the Shannon information content associated
with x = 0 is with 4 bits quiet high. However, it is expected that x = 1 most of the
time and an observer can be close to certain that also the next outcome of X is 1.

It follows from the example, that, in order to find a meaningful measure for
the source, all possible outcomes have to be taken into consideration. This can
be achieved by using Shannons definition of entropy1 [13, p. 32] as the average
information content of an ensemble X,

H(X) ≡
k−1∑
i=0

pi · log2(
1

pi
). (2.2)

Analyzing a source by means of Equation 2.2 allows to determine how uncertain an
observer is about the outcome on the average. For the purpose of this project, a
source with a high entropy value is considered to be closer to a perfectly random
outcome than a source with a lower associated entropy.

For the sake of completeness, it is necessary to mention that an alternative to
entropy as the measure of randomness exists, which is frequently used in related

1For readability, Shannons definition of entropy as given in Equation 2.2 is simply referred to
as “entropy”, throughout the rest of this report.

8

2.1. RANDOM DATA

literature [14]. It is referred to as min-entropy and defined for any ensemble X by
[14],

min-Ent(X) ≡ max(κ : Pr(x = ai) ≤ 2−κ, ∀i ∈ [0, k − 1]). (2.3)

In other words, the min-entropy of an ensemble X is the maximum value of κ such
that the possibility for any possible outcome is at most 2−κ. This means that, with
regards to Equation 2.1, min-Ent(X) is equal to the smallest information content
associated with the ensemble. It is worth noticing that the min-entropy is smaller
or equal to the Shannon entropy, and it is therefore a more conservative method to
evaluate randomness.

To give a simple example, assuming an ensemble X with PX = {1
2
, 1
4
, 1
8
, 1
8
}, the

maximal probability is pmax = 1
2
. Using pmax and solving Equation 2.3 for κ results

in,

κ = log2(
1

pmax

), (2.4)

which yields to κ = 1 for pmax = 1
2
.

Even though Equation 2.2 and Equation 2.3 are not equivalent, it should be
noted that concept of entropy and min-entropy are fairly similar. Through out
the reminder of this section and in large parts of this report, the focus is on en-
tropy. However, in some special cases the min-entropy has to be considered. It is
therefore essential to note that the in the following derived principles also hold for
min-entropy, even though not explicitly stated [14].

Having established the concept entropy as a measure of randomness, it is natural to
establish which characteristics of X yield H(X) to reach its maximum value. While
this can be achieved by means of mathematical computations, a more intuitive
approaches is chosen here, leaving a formal proof to Appendix A.

A first characteristic can be disclosed by considering once more the ensemble
X with the set AX = {0, 1}. Assuming that an observer would be completely
uncertain about the outcome x, she would expect to observe x = 0 with the same
probability as x = 1. By the definition of an ensemble as given above, this means
that Pr(x = 0) = Pr(x = 1) = 1

2
. In the same manner, this statement can be

formulated for any arbitrary data source with AX = {a0, ..., ak−1}. The outcome x
is associated with the maximum amount of uncertainty if the probability of x taking
on a particular value is the same for all possible values. In other words, in order to
maximize H(X), x must be uniform distributed over AX . This means that pi = 1

k

for all i in the range [0, k − 1]. Combining this statement with Equation 2.2 yields,

H(X) ≤ log2(k). (2.5)

Appendix A.1 shows that this is the maximum amount of entropy that can be
achieved by source which produces a single outcome.

As the main emphasis of this project lies on binary data, it is worth to consider
the consequences of using this kind of data. Denoting a source that produces a
n-bit outcome x as X with AX = {0, 1}n, where {0, 1}n is the set that contains
all 2n variants of a n-bit word, it follows that k = 2n. Thus, by Equation 2.5, the

9

2.1. RANDOM DATA

maximum amount of entropy associated with an n-bits binary source is n bits, which
matches the intuitive understanding of randomness.

A source that produces uniformly distributed data is frequently described as un-
biased. In contrast, a source that produces some outcomes with higher probabilities
than others is said to be biased towards those outcomes. It is obvious that, for the
purpose of this project, an unbiased outcome is desirable. However, this is rarely the
case. In practice, one must often consider using a slightly biased ensemble in lack of
a perfectly unbiased source. Therefore, it is of interest to find a method that can be
used to relate the distribution of an ensemble X with the uniform distribution, or,
more generally, with the distribution of any arbitrary ensemble Y , where AX = AY .
This can be achieved by means of the statistical distance between X and Y , defined
as [14],

dist(X, Y) ≡ 1

2
·
k−1∑
i=0

|Pr(x = ai)− Pr(y = ai)|. (2.6)

If dist(X, Y) = 0 the distributions are identical. Otherwise, for dist(X, Y) < ε,
the distributions PX and PY are said to be ε-close. As such, ε is a measure of the
statistical distance.

At this point of the discussion, it follows from Equation 2.5 that it would be desirable
to find a data source that produces a uniformly distributed n-bit outcome, with a
large n, in order to gather a large amount of entropy. However, most entropy sources
(see for instance Section 2.3) can in practice not deliver the amount of entropy
required by modern cryptography by means of a single outcome. It is therefore
often necessary to combine several single outcomes to one output stream. In this
report, an output stream that is constructed through the concatenation of the single
outcomes x0, ..., xn−1 is denoted as the vector −→x = 〈x0, .., xn−1〉. For simplicity, it is
assumed that each element xi is the outcome of an ensemble Xi, with the set AX of
size k, which is the same for all elements in −→x . (Even though this is not necessarily
true, this assumption is sufficient for the purpose of this project as it covers a large
number of scenarios, for example, outcomes that are produced by the same source.)
To analyze the effect of the concatenation on the entropy of the output stream, the
elements of −→x have to be considered in relation to each other, rather than separately.

It is convenient to first consider the simple case of a 2-element vector, −→x =
〈x0, x1〉, and establish some basic principles. Later in this section, are then general-
ized to a vector −→x with arbitrary length n.

The entropy associated with −→x is referred to as the joint entropy of X0 and X1.

It is in this report denoted as H(X0, X1) or simply H(
−→
X) and defined similar to

Equation 2.2 as [13, p. 138],

H(X0, X1) ≡
k−1∑
i=0

k−1∑
j=0

Pr(x0 = ai, x1 = aj) · log2(
1

Pr(x0 = ai, x1 = aj)
). (2.7)

Here, Pr(x0 = ai, x1 = aj) is used to denote the joint probability of x0 and x1. In
other words, Pr(x0 = ai, x1 = aj) is the probability of observing the combination
−→x = 〈ai, aj〉.

10

2.1. RANDOM DATA

In order to see how different relations between x0 and x1 affect H(
−→
X), one can,

for instance, think of a scenario where x0 is collected and added to −→x before x1 is
collected. If there exists a relation between x0 and x1, the occurrences of some event
x0 = ai will affect the probability of x1 = aj.

An example could be a source which produces a single bit outcome, where each
outcome has a 90% chance of being the logical inverse of the previous outcome. Col-
lecting a first bit, x0, from this source, it is reasonable to imply that the probabilities
of receiving a 0 or a 1 are equal, Pr(x0 = 0) = Pr(x0 = 1) = 1

2
. However, assuming

further that, without loss of generality, x0 = 0, the probability of observing x1 = 1
becomes 0.9.

Generally, the probability of x1 = aj given the knowledge of x0 is referred to as
the conditional entropy of x1 = aj given that x0 = ai, denoted as Pr(x0 = ai|x1 =
aj). It can be shown, that the conditional entropy is related to the joint and marginal
probability in the following manner [15, p. 63],

Pr(x0 = ai, x1 = aj) = Pr(x0 = ai) · Pr(x1 = aj|x0 = ai)

= Pr(x1 = aj) · Pr(x0 = ai|x1 = aj).
(2.8)

One might consider the conditional probability Pr(x1 = aj|x0 = ai) as an update
of the marginal probability Pr(x1 = aj) based on the knowledge that the event
x0 = ai has occurred [15, p. 64]. In other words, learning one of the outcomes
affects the expectation of the other one. Variables that affect each other in this
manner are generally said to be statistical dependent2 on each other.

However, if no relation between x0 and x1 exists, knowing one outcome does
not affect the expectation of the other. Thus, for such variables, the conditional
probability of an event equals the marginal probability of the event. In other words,
Pr(x1 = aj|x0 = ai) = Pr(x1 = aj),and Equation 2.8 simplifies to,

Pr(x0 = ai, x1 = aj) = Pr(x0 = ai) · Pr(x1 = aj). (2.9)

The two variables x0 and x1 are said to be statistical independent2, if and only if,
they satisfy Equation 2.9 [15, p. 65].

Since dependencies affect the expectations associated with an outcome, it is quite
natural to adopt the concept of dependencies also for the discussion of entropy.
Appendix A.2.1 shows that Equation 2.7 can be reformulated as,

H(X0, X1) = H(X0) + H(X1|X0), (2.10)

where the conditional entropy H(X1|X0) is defined as the average amount of infor-
mation associated with x1 given that x0 is known [13, p. 138], that is,

H(X1|X0) ≡
k−1∑
i=0

k−1∑
j=0

Pr(x0 = ai, x1 = aj) · log2(
1

Pr(x1 = aj|x0 = ai)
). (2.11)

2To increase readability, the term “statistical” is dropped in the context of (in-)dependencies
throughout most of the rest of this report.

11

2.1. RANDOM DATA

There are two major characteristics of the conditional entropy that should be
considered. First of all, the average amount of information associated with x1 given
that x0 is already known can not be greater than the entropy of the same variable
with x0 unknown [16, p. 41],

H(X1|X0) ≤ H(X1). (2.12)

Second, Equation 2.12 holds with equality if and only if the variables x0 and x1
are independent [16, p. 41]. A formal proof of this two statements is postponed to
Appendix A.2.1. However, considering them with regards to this project, they are
intuitively true. If there exists a relation between the two outcomes x0 and x1, an
adversary who knows x0 will be less uncertain about x1. But, if no such relation
exists, observing x0 does not influence the knowledge about x1.

Finally, combining the results of Equation 2.10 and Equation 2.12 yields,

H(X0, X1) = H(X0) + H(X1|X0) ≤ H(X0) + H(X1). (2.13)

In other words, the joint entropy of X0 and X1 reaches its maximum if and only if
their outcomes are independent from each other [1, p. 332].

Up to this point, only two concatenated variables have been considered in order to
increase readability. Appendix A.2.2 shows how the concept of joint and conditional
entropy can be extended to a data stream −→x = 〈x0, ..., xn−1〉 with arbitrary length
n, while this section is restricted to present the most important result.

However, it is worth to consider one special aspect regarding the use of multiple
inputs. While for a 2-element vector the two variables x0 and x1 are either dependent
or independent, a larger number of elements allows for larger number of variants. As
a result, the variables x0, ..., xn−1 are said to be l-wise independent if all l arbitrary
variables xi0 , ..., xil−1

are independent of each other [14], that is,

Pr(xi0 = ai0 , ..., xil−1
= ail−1

) = Pr(xi0 = ai0) · ... · Pr(xil−1
= ail−1

), (2.14)

where ai0 , ..., ail−1
are arbitrary elements in AX . The variables in −→x are said to be

mutual independent if all n variables are independent of each other, thus,

Pr(x0 = ai0 , ..., xn−1 = ain−1) = Pr(x0 = ai0) · ... · Pr(xn−1 = ain−1). (2.15)

It is worth noticing, that mutual independence implies l-wise independence for every
valid value of l, l ≤ n.

Having modified the concept of independence for multiple variables, Equation 2.13
can be restated as,

H(
−→
X) ≤

n−1∑
i=0

H(Xi), (2.16)

where H(
−→
X) denotes the joint probability associated with −→x . In other words, the

entropy associated with a concatenation of n elements is upper bounded by the
sum of the entropies which are associated with the single elements when they are

12

2.2. STATISTICAL TESTING

considered separately. It is shown in Appendix A.2.2 that Equation 2.16 holds with
equality if and only if the elements of −→x are mutual independent. As for Equa-
tion 2.12, this is intuitively true, since any dependencies must reduce the amount of
randomness associated with the outcomes.

Finally, by combining Equation 2.5 and Equation 2.16, it is possible to conclude
the following for this section: The entropy associated with a concatenation of single
outcomes, −→x = 〈x0, ..., xn−1〉, is maximized if and only if all elements of −→x are
independent of each other and uniformly distributed. Hence,

H(
−→
X) ≤ n · log2(k), (2.17)

where n is the number of elements in −→x and k the number of possible outcomes for
each element. It is worth noticing that if −→x depicts a concatenation of single bit
values, Equation 2.17 states that the maximum amount of entropy associated with
−→x is n-bits.

It is important to understand the impact of Equation 2.17 on this project. The
equation states that the entropy associated with some data is maximized if and
only if this data is (mutual) independent and uniformly distributed. In other words,
data that has these characteristics is considered to be perfectly random. As a result,
independence and an uniform distribution are the most desirable properties of data
generated by a TRNG.

2.2 Statistical Testing

Testing that a given TRNG design works as desired is a difficult task which differs
vastly from the approaches used to verify the functionality of deterministic systems.
In the latter case, the output of the system can be exactly predicted at any time.
This makes it possible to compare the observed output values against the expected
outcomes. The system then is declared functional if the observed values match the
expected values. Obviously, this method cannot be used to verify the functionality
of a TRNG, since the motivation behind the construction of a TRNG is that the
output shall be unknown (see Chapter 1). However, as determined in Section 2.1,
the output is expected to have specific statistical characteristics. It is therefore rea-
sonable to base the verification of a TRNG on whether or not the corresponding
output shows the desired statistical characteristics.

In general, testing whether or not a set of data has some statistical characteristics
is referred to as testing a statistical hypothesis3 [17, p. 275]. The following section
(Section 2.2.1) gives a brief background on statistical hypotheses and the related
testing procedure. Besides the theoretical background, the chi-squared goodness-of-
fit test is introduced to serve both as an example of a hypothesis test and as a basis
for further discussion in Section 2.2.2.

3As this report is mostly concerned with statistical hypotheses, for readability the term “hy-
pothesis” is used, unless explicitly mentioned, instead of “statistical hypothesis” throughout the
rest of the report.

13

2.2. STATISTICAL TESTING

In Section 2.2.2, the from The National Institute of Standards and Technology
(NIST) proposed statistical test suite for random and pseudorandom number gen-
erators for cryptographic applications [18] is introduced. For readability, this test
suite is in this report referred to as the NIST test suite for random numbers or
simply the NIST test suite. It is a frequently used approach to evaluate the output
of a TRNG [19][20] and includes 15 different hypothesis tests. Besides of giving a
summary of all tests included in the test suite, Section 2.2.2 describes one test in
detail, providing a concrete example of a random number test.

2.2.1 Testing of a statistical hypothesis

The principle of statistical hypothesis testing can be illustrated by considering the
ensemble X with outcome x. By concatenating several outcomes, a series of ob-
servable data, denoted as −→x = 〈x0, x1, ..., xn−1〉, can be constructed. It is assumed
that one or several of the statistical characteristics of X are unknown, but that
there exists a hypothesis about their nature. Such a hypothesis can be depicted as
a conjecture of the distribution of the elements in −→x and is as such referred to as
a statistical hypothesis [15, p. 319]. This hypothesis is the foundation of the here
presented testing procedure and traditionally referred to as the null-hypothesis, de-
noted as H0 [15, p. 320]. Ideally, the objective of the hypothesis test would be to
produce a conclusion about H0, by either rejecting or accepting it, based on the
observation of −→x .

A simple example of a null-hypothesis is a conjecture regarding the expected
outcome of X, E[x]. For instance, H0might predict that E[x] is the fixed value
µ0 = 70. In this report, the shorthand notation “H0: E[x] = µ0” is used to express
such a null-hypothesis. This example is used repeatedly in the following, in order
to illustrate the presentation of the theoretical background.

In order to test H0, it has to be related to the outcomes, −→x . This is done by the
formulation of a so called test statistic [17, p. 276], s, as a function of −→x ,

s = f(−→x). (2.18)

In addition to being a function of −→x , s must be affected by H0. In other words,
H0must imply a conjecture of s. The formulation of the test statistic differs from
hypothesis to hypothesis and finding a suitable s for a given H0is a non-trivial task.
Vastly simplified, s might be depicted as a measure of H0.

To illustrate this, the above given example is reused. Given H0: E[x] = µ0,
the average value of the elements in −→x , s = 1

n
·
∑n−1

i=0 xi, is a reasonable choice of
the test statistic [15, pp. 336-337]. Here, xi is the i-th element of −→x . It follows
from the definition of the expected value [15, p. 111], that s converges to E[x], as n
approaches infinity. Hence, given that H0is true, s approaches µ0 for large values of
n. In this way, s is affected by H0.

In order to understand how s is related to H0, it is convenient to ignore any
concrete solution of Equation 2.18 for the moment and rather think of s as an
unknown value. However, assuming that H0is true, the distribution of s, which is
referred to as the reference distribution of the test [18], is known. In other words,
the probability for every possible s-value is known, given that H0is true. It is worth

14

2.2. STATISTICAL TESTING

�
�
�
�

µ0

Figure 2.1: Example of a reference distribution for H0

noticing, that, for the purpose of this project, only continuous test statistics are of
interest. This means that the reference distribution, and every other distribution of s
(given that H0is not true), are described by their Probability Density Functions [15,
p.88]. The pdf of the reference distribution is in this report denoted as pdf(s;H0),
if not specified otherwise. For the example H0 : E[x] = µ0, with µ0 = 70, it can be
shown that pdf(s;H0) can be approximated by the normal distribution4 with mean
70, as depicted in Figure 2.1.

Taking now the observed outcomes −→x into consideration, it is possible to find a
concrete value of s. To avoid confusion, such a concrete value of the test statistic
s is in this report referred to as the observed test statistic, so. In other words, the
test statistic s is considered to be a variable which can take different values, while
the observed test statistic so is a fixed value.

Using the example of H0 : E[x] = µ0 and recalling that s = 1
n
·
∑n−1

i=0 xi, in
general, s can take on the value of any real number while the observed test statistic
is, for instance, fixed to so = 63.

It is possible to relate the observed test statistic to H0through the reference
distribution of s. Thus, by considering the reference distribution, it is possible
to make a statement on the probability of observing so given that H0is true, or,
in mathematical terms, calculate5 Pr(s = so|H0). Since so is a function of the

4It should be mentioned that the normal distribution is defined by both the mean of the data
and its standard deviation, σ. However, in order to not complicate the given example unnecessarily,
it has been chosen to ignore σ. The interested reader may note that σ = 5 has been used for the
numerical examples.

5In fact, as s is a continuous distributed variable, the exact computation of Pr(s = so|H0) is
impossible. However, throughout this section, it will become evident that an exact calculation of

15

2.2. STATISTICAL TESTING

�
�
�
�

critical region

(α
2
)A

A
A
A

critical region

(α
2
)

�
�
�
�

c−
A
A
A
A

c+

A
A
A
A

so

Figure 2.2: Critical regions of the reference distribution

observed outcome −→x , as stated in Equation 2.18, this is also an indirect indicator
of the probability of observing −→x , given that H0is valid. It is therefore reasonable
to base the conclusion of the hypothesis test on the observed test statistic, since the
confidence about H0increases if the by pdf(s,H0) defined probability of observing
so is large. In the same manner, if Pr(s = so|H0) is small, the observation of so
indicates that H0should be rejected.

Based on this, it is possible to evaluate the test by defining so called critical
regions of s-values, which correspond to a small Pr(s = so|H0), and reject the
hypothesis if so falls into such a region [15, p. 322]. This is illustrated in Figure 2.2.
It is essential to note, that a test has either one or two critical regions, depending
on the formulation of the null-hypothesis. For the used example, H0 : E[x] = µ0,
two critical regions exists, as H0is rejected if so � µ0 and so � µ0. A test that has
two critical regions is generally referred to as two-tailed [15, p. 330]. An example
of a one-tailed test is the chi-squared goodness-of-fit test, which is described at the
end of this section.

It can be seen from Figure 2.2, that each critical region has only one clearly
defined boundary. For instance, the critical region to the right is bounded by c+
and infinity. The fixed boundaries c− and c+ (or simply c in the case of a one-tailed
test) are referred to as the critical values of a test [15, p. 322]. Using the critical
values, the test can be evaluated by the following procedure: If so ≤ c− or so ≥ c+,
H0is rejected by the test. For the example of H0 : E[x] = µ0 with µ0 = 70, one
could, for instance, chose c− = 64 and c+ = 76. An observed test statistic of so = 63

Pr(s = so|H0) is not necessary for the evaluation of a hypothesis test. Until then, the reader may
note that Pr(s = so|H0) can be approximated by computing Pr(so ≤ s ≤ (so + ∆)|H0) for an
arbitrary small ∆.

16

2.2. STATISTICAL TESTING

A
A
A
A

µT

�
�
��

pdf(s; T)
A
A
A
AA

pdf(s;H0)

�
�
��

s1
A
A
A
A

s2

Figure 2.3: Relationship of the reference distribution and the true
distribution of s

would thus yield a rejection of H0as so < c−.

Two important consequences arise from the described test setup, which should be
noted before the evaluation procedure is described in more detail. First, s can take
on a range of values with a given probability. This makes it impossible to derive
a deterministic conclusion by means of a statistical hypothesis test [15, p. 319].
For instance, considering Figure 2.2, s might take on a value that corresponds to a
critical region, even if H0is true. Such an s-value would lead to a rejection of H0,
while in fact H0is true. In the same manner, it is possible that the observed so
yields a high value of Pr(s = so|H0), but H0is in fact false. Generally, considering a
larger set of data will decrease the chances of observing an s-value that is untypical
under the true circumstances. In other words, letting n grow large will increase the
confidence in the result produced by the test [15, p.324]. Nevertheless, complete
certainty can never be provided.

Second, a test of a hypothesis can yield to a conclusion that rejects the hy-
pothesis, but it cannot provide a conclusion that accepts the null-hypothesis [15,
pp. 320-321]. This is due to the fact that the true statistical characteristics of X are
unknown. As such, even if the observation of some so seems to be a typical event
given H0, it cannot rule out the possibility that so corresponds to data that has
different statistical characteristics. In other words, the observation of a test statistic
that is typical for given H0does not guarantee that the same observed test statistic
is untypical for some different (true) circumstances. In contrast, observing an so
that corresponds to a critical region is a valid indicator of H0being false, since such
a value would be untypical given that H0is true.

17

2.2. STATISTICAL TESTING

This concept can be illustrated by considering once more the exampleH0 : E[x] =
µ0 and the situation depicted in Figure 2.3. It is now assumed that the real value of
the expected outcome of X is not µ0 as predicted byH0, but some different value µT .
Hence, s is not distributed by the reference distribution, but by its true distribution,
described by its probability density function, pdf(s; T). Assuming first that the
observed test statistic is s1, it is evident that, while s1 is a typical value given the
true distribution of the data, the probability of observing s1 under the assumption
that H0is true,Pr(s = s1|H0), is low. As a result, H0is correctly rejected. However,
if the observed test statistic is s2, the probability of observing s2 given thatH0is true
is at its maximum even though H0is false. Therefore, even though Pr(s = s2|H0)
is large, accepting H0based on the observation of s2 would yield to an erroneous
conclusion.

Finally, it is worth noticing that s1 and s2 correspond to the same value of
pdf(s; T). This means that both observations are equally likely. It follows that the
conclusions that can be drawn from a statistic hypothesis test are either the rejec-
tion of H0or the failure to reject H0, rather than an acceptance of H0.

Since H0is either true or false, and since the test either yields a rejection of H0or
fails to reject the hypothesis, four possible scenarios arise. Table 2.1 summarizes
these situations. Of course, if the test fails to reject H0and the hypothesis is true
or if H0in fact is false and the test rejects it, the correct decision has been made.
Otherwise, the decision is erroneous. Rejecting H0when it is in fact true is referred
to as a type I error, while the conclusion to not reject H0even when it is false, is
called a type II error [15, pp. 322-323]. Obviously, it is beneficial to design a test,
that minimizes the probabilities of committing an error. Unfortunately, both error
types affect each other: A small probability of committing a type I error yields a
large probability of committing a type II error, and vice versa [15, p. 324]. For
instance, simply rejecting every hypothesis would make it impossible to commit a
type II error, while the probability of a type I error reaches its maximum. However,
as stated above, the confidence that the observed test statistic is a typical value
under the true circumstances increases with the size of the set of test data. This
reduces the probability of both error types.

Table 2.1: Possible scenarios arising from hypotheses testing

H0is true H0is false
Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

The probability of a type I error is referred to as the level of significance [15,
p. 323] and denoted by α. It is completely defined by the choice of the test statistic
and the critical values. Since a type I error implies that H0is true, s is truly dis-
tributed as described by the reference distribution. This means that it is possible
to calculate the probability of observing a test statistic that would yield a type I
error by rejecting H0. For the example H0 : E[x] = µ0, the hypothesis is rejected
if so ≤ c− or so ≥ c+. In order to keep the test unbiased, it is convenient to define
both critical values such that it is as likely to observe an so that corresponds to the

18

2.2. STATISTICAL TESTING

left critical region, as it is to observe an so that corresponds to the right critical
region. In other words, the probability of observing an s-value that falls in a specific
critical region should be exactly α

2
. This means, that for the given example, the

level of significance can be calculated as

α = 2 ·
∫ c−

−∞
pdf(s;H0)ds

= 2 ·
∫ ∞
c+

pdf(s;H0)ds.

(2.19)

It is worth noticing, that, even though Equation 2.19 has been derived from a specific
example, the equation holds for all two-tailed tests which make use of a continuous
distributed test statistic.

Figure 2.2 illustrates the relation between α and the critical values for H0 :
E[x] = µ0 for c+ = 76 and c− = 64. Using Equation 2.19 to calculate the level
of significance for the chosen critical values yields α ≈ 0.2301. Thus for the given
example, the probability of committing a type I error is approximated 23.01%, which
is quite high. To avoid this, it is in practice common to first specify the level of
significance desired by a test, and then solve Equation 2.19 for the critical values. A
typical value for the level of significance is, for example, α = 0.01 [15, p. 332] [18].
Using this level of significane for the given example, more appropriated critical values
would be c+ ≈ 82.88 and c− ≈ 57.12. It is worth noticing, that this would yield the
test to not reject H0for so = 64.

In contrast to the level of significance, the probability of a type II error cannot
be calculated solely based on the null-hypothesis [15, p. 323]. This is due to the
fact that the true distribution of s differs from the reference distribution, if H0is not
true. This is depicted in Figure 2.3. As a result, its not possible to calculate the
probability of observing s that yields the test to not rejectH0, given thatH0is false6.

Finally, instead of defining explicit critical values and basing the conclusion of the
test on the comparison of the observed test statistic and c+ or c−, an alternative
approach exists. The so called p-value is defined as the lowest level of significance
that would yield to a rejection of H0based on the observed test statistic, so [15,
p. 333]. For the example of H0 : E[X] = µ0, it follows from Equation 2.19 that,

p-value =

{
2 ·
∫ so
−∞ pdf(s;H0)ds if so ≤ µ0,

2 ·
∫∞
so

pdf(s;H0)ds if so > µ0.
(2.20)

As for Equation 2.19, it has been chosen to use a rather general notation and Equa-
tion 2.20 is therefore valid for any continuous distributed test statistic s with a
symmetrical pdf(s;H0) and mean µ0.

Considering Equation 2.20, the p-value can be illustrated as the probability of
observing an s-value that differs at least as much from µ0 as so. Figure 2.4 depicts the
p-value for the example of H0 : E[x] = µ0, with µ0 = 70 and so = 63. The resulting

6IfH0is tested against a concrete alternative hypothesis, it is possible to calculate the probability
of an erroneous failure to reject H0in favor of the alternative hypothesis. However, this is of no
concern for the purpose of the here presented project and only mentioned for completeness.

19

2.2. STATISTICAL TESTING

�
�
�
�

so �
�
�
�

p-value
2

�
�
�
�

c+
A
A
A
A

c−

A
A
A
A

p-value
2

Figure 2.4: P-value for the observed test statistic so

p-value is approximately 0.1615. This means that the probability of observing a test
statistic that is either equal or smaller than 64 or equal or larger than 76 is roughly
16.15%.

The benefits of an approach which uses a p-value is that it can give a more differ-
entiated indication of the validity of the null-hypothesis than a simple rejection/no-
rejection decision based on the critical values. However, it should be noted that, by
its definition, the p-value can be used to directly evaluate a test for a given level
of significance, α. Comparing Figure 2.2 with Figure 2.4, it is not difficult to see
that the p-value exceeds the level of significance, if the observed test statistic, so,
does not correspond to one of the critical regions. This can also be seen by solving
Equation 2.20 with, for instance, so = c− and realizing that the equation becomes
equivalent to Equation 2.19. Thus, if the observed test statistic equals a critical
value, the corresponding p-value equals α. In the same manner, if the p-value is
smaller than α, the observed test statistic lies in a critical region. Hence, for a
given level of significance the test can be evaluated directly by using the p-value and
rejecting H0 if the p-value is smaller than α.

An additional benefits of using the p-value is the fact that the p-value is a
normalized parameter. This means that it can more easily be compared across
different tests with different test statistics. Furthermore, even though exploring this
fact in detail is out of the scope of this report, it can be shown that the p-value
of a test with a continuous distributed test statistic, follows a uniform distribution,
if the null-hypothesis is true [18][21]. This means that the reliability of a test can
be increased by running the test on N different data sets and examine whether
or not the observed p-values are distributed according to an uniform distribution.
Such an approach is referred to as a second-level test. An example of a second-level

20

2.2. STATISTICAL TESTING

test is given at the end of this section and the procedure is further discussed in
Section 2.2.2.

In order to execute an approach based on a second-level test, it is necessary to be
able to evaluate whether or not the p-values are uniformly distributed. One possible
way to test if a set of p-values or, more generally, any kind of data follows an uniform
distribution is the chi-squared goodness-of-fit test, which is described next.

The chi-squared goodness-of-fit test

The chi-squared goodness-of-fit test is designed to evaluate whether an outcome of
an ensemble X follows a hypothesized distribution or not. It is an example of a one-
tailed statistical hypothesis test and follows the theoretical procedure, as described
above. In general, the test can be executed for any hypothesized distribution. How-
ever, the main focus of the here given presentation is to check if the outcome of X is
uniformly distributed. This is partly done to keep the discussion as simple as possi-
ble, and partly since the uniform distribution has a central role in the second-level
test procedure discussed in Section 2.2.2.

As above, the source of the data, that is to be considered, is described by the
ensemble X, which produces a set of outcomes, −→x = 〈x0, x1, ..., xn−1〉. Each element
in −→x takes on one of the values defined in the set7, AX = {a0, a1, ..., ak−1}. The
true distribution of X is unknown. However, a null-hypothesis exists, stating that
X follows an uniform distribution. This can be expressed as,

H0 : Pr(xi = aj) =
1

k
, (2.21)

which holds for all i in [0, n− 1] and j in [0, k − 1].
It is convenient to base the evaluation of H0on the number of appearances of

each element of the set in −→x . The number of appearances of the element aj is widely
referred to as the frequency of occurrence [15, p. 370], or simply the frequency, of
aj. Under the assumption that H0is true, the expected frequency of aj is simply
the product of the number of elements in −→x and the in Equation 2.21 described
probability of observing aj. Thus,

ej =
n

k
, (2.22)

where ej denotes the expected frequency of aj.
The corresponding actually observed frequency of aj is denoted as oj. If H0is

true, it is anticipated that the difference between the expected frequencies and the
observed frequencies for all elements of AX should be small [17, p. 285]. As a result,
the test statistic s might be defined as [15, p. 371],

s =
k−1∑
j=0

(oi − ei)2

ei
. (2.23)

7Using AX to describe the source of data limits the presented discussion to sets of discrete data.
However, a possible way to apply the chi-squared goodness-of-fit test to a continuous data source
is presented at the end of this section

21

2.2. STATISTICAL TESTING

A
A
A
A

so

c

Figure 2.5: The chi-squared distribution with nine degrees of free-
dom

It can be shown that the reference distribution of s is approximated equal to a chi-
squared distribution with k − 1 degrees of freedom. This approximation yields to
valid results, as long as each of the used expected frequencies is at least equal to
5 [15, p. 371]. An example of an chi-squared distribution is shown in Figure 2.5.
The probability density function of s following a chi-squared distribution with k− 1
degrees of freedom is in this report denoted as χ2(s;k-1).

It is essential to note, that all s-values that are close to zero increase the confi-
dence in H0. In other words, for the observed test statistic so, H0is only rejected if
so � 0. As a result, only one critical value, c, is defined, as illustrated in Figure 2.5,
and the test is one-tailed. It is necessary to slightly modify Equation 2.19, in order
to be able to calculate the level of significance for a one-tailed test. Since a type I
error is only committed if H0is true and so is larger or equal to c, the level of sig-
nificance is equal to the probability of observing so ≥ c, as defined by χ2(s; k − 1).
Thus,

α =

∫ ∞
c

χ2(s; k − 1)ds. (2.24)

Modifying Equation 2.20 in the same manner, the p-value of the test for an observed
test statistic can be calculated as,

p-value =

∫ ∞
so

χ2(s; k − 1)ds. (2.25)

The presented test can thus be evaluated by either defining α and the corre-
sponding critical value and reject H0if so ≥ c, or by making a decision directly

22

2.2. STATISTICAL TESTING

based on the derived p-value. For instance, if so ≥ c, it would be concluded that
the data contained in −→x does not follow a uniform distribution.

As a final remark, it should be noted, that the chi-squared goodness-of-fit test
also works for sources of data that produce a continuous outcome instead of discrete
data defined by a set AX . An example of such a test is the above mentioned princi-
ple of a second-level test, which produces a set of p-values by executing a statistical
hypothesis test multiple times. Each p-value is a continuous value in the range
[0;1]. In principle, this would yield k to become infinite, and the null-hypothesis
as defined in Equation 2.21 would be meaningless. However, this problem can be
solved by combining similar data in a fixed number of non-overlapping groups [18].
For instance, p-values might be organized in 10 groups: The first group contains
all p-values in the range [0,0.1), the second group contains all p-values in [0.1,0.2),
and so on. The number of groups used is dependent on the size of the available
set of data and must be chosen with regards to the requirements of the chi-squared
distribution approximation, as stated in combination with Equation 2.23. Thus, for
each group, the expected frequency must exceed five. The created groups can be
considered as elements of the discrete ensemble-alphabet AX = {a0, ..., ak−1}, where
k equals the number of groups. After this “transformation” of the continuous data
source, the rest of the chi-squared goodness-of-fit test can be executed as described
above.

To illustrate the concept of the chi-squared goodness-of-fit test, it can be of interest
to consider an example of a second-level test. Assuming that some kind of statisti-
cal hypothesis test has been performed N = 1000 times, a set of 1000 p-values has
been generated. As mentioned above, this p-values should be uniformly distributed,
given that the underlying null-hypothesis is true. As such, it is of interest to eval-
uate whether or not the resulting p-values can be considered to follow the uniform
distribution.

As discussed above, each p-value is a continuous variable. It is therefore necessary
to group the values into equally sized, discrete ranges, in order to apply the chi-
squared goodness-of-fit test. For this example, it has been chosen to divide the
p-values in 10 groups. This yields the following groups: a0 = [0, 0.1), a1 = [0.1, 0.2),
and so on until a9 = [0.9, 1]. The notation aj has been chosen to keep the example
and the above given discussion consistent, even though a range of continuous values
is not a discrete value in the classical sense. However, each group can be thought of
as an element of the discrete set AX , which contains k = 10 elements. A complete
overview over the groups is given in Table 2.2.

After having established the 10 groups, it is possible to formulate the null-
hypothesis, H0. If the p-values are uniformly distributed, the probability that the
p-value of an arbitrary test is placed in one of the 10 groups should be equal for all
groups. Thus, by slightly reformulating Equation 2.21, the null-hypothesis for the
example can be expressed as, H0 : Pr(xi ∈ aj) = 1

k
, for all possible i and j, where

xi is in this case one of the 1000 p-values.

Using this null-hypothesis and recalling that for this example N = 1000, it
follows directly from Equation 2.22, that the expected frequency, ej, equals 100
for each group. The observed frequencies are established by considering the real
p-values delivered by the original 1000 test runs. An example of the expected and

23

2.2. STATISTICAL TESTING

observed frequencies is presented in Table 2.2.

Table 2.2: Expected and observed frequencies of p-values for the
chi-squared goodness-of-fit test

j aj ej oj

0 [0 , 0.1) 100 110
1 [0.1 , 0.2) 100 89
2 [0.2 , 0.3) 100 119
3 [0.3 , 0.4) 100 111
4 [0.4 , 0.5) 100 88
5 [0.5 , 0.6) 100 96
6 [0.6 , 0.7) 100 87
7 [0.7 , 0.8) 100 91
8 [0.8 , 0.9) 100 115
9 [0.9 , 1] 100 94

The appropriated test statistic, s, for H0has been presented in Equation 2.23.
Under the assumption that H0is true, s is distributed by a chi-squared distribution
with k − 1 degrees of freedom. In other words, the reference distribution for this
example is χ2(s; 9).

By solving Equation 2.24 for c and using k = 10 and a level of significance of
α = 0.01, the critical value can be computed as c ≈ 21.67. This means that the test
rejects H0if the observed test statistic exceeds c ≈ 21.67.

Using the in Table 2.2 presented frequencies and Equation 2.23, the observed test
statistic can be computed as so = 13.74. Since 13.74 < 21.67, this yields the test to
not rejectH0at a level of significance of 1%. By solving Equation 2.25 for so = 13.74,
the p-value for the test can be approximated as 0.1319, or roughly 13.2%. It should
be noted that the numerical values of this example correspond to the values used in
Figure 2.5.

As a result, the chi-squared goodness-of-fit test cannot reject the hypothesis that
the values in Table 2.2 follow an uniform distribution. For the second-level test, this
means that neither the underlying null-hypothesis of the 1000 originally executed
hypothesis tests can be rejected.

2.2.2 The NIST test suite for random number generators

Based on the in Section 2.2.1 presented background on statistical hypothesis testing,
it is now possible to discuss the by NIST proposed statistical test suite for random
and pseudorandom number generators for cryptographic applications [18]. This test
suite depicts are frequently used approach to test whether a data stream can be
considered to be truly random [19]. Given the complexity of the test suite, it is out
of the scope of this report to present the whole approach in detail. This section
presents therefore first some general aspects of the test suite and gives then a short
summary of the tests involved. Finally, at the end of this section one simple but
fundamental test of the test suite is introduced in detail, serving as an example.

24

2.2. STATISTICAL TESTING

Denoting an n-bit data stream as −→x = 〈x0, ..., xn−1〉, ideally a test for randomness
could clearly evaluate whether or not the data contained in −→x can be considered
as random. It has been stated during the introduction of this section, that such an
evaluation has to be based on the statistical characteristics of the data rather than on
the data directly [19]. Section 2.1 shows that the two main statistical characteristics
that are associated with random data are an uniform distribution of the data and
statistical independence. Thus, based on Section 2.2.1 it is reasonable to construct
a test for randomness by first using one or both of expected characteristics to define
a null-hypothesis and then perform a statistical hypothesis test, following the above
described procedure.

However, the fundamental problem of this approach is the above stated fact,
that a test of a hypothesis can only reject H0, but not verify the null-hypothesis.
For the null-hypothesis that −→x contains random data, this means that, while a test
can show that −→x is not random, it is impossible to prove that it in fact contains
random bits. Thus, the described test is rather a test for non randomness than the
desired test for randomness [19].

It should be mentioned that one approach to cope with this problematic, could
be to invert the null-hypothesis, which is frequently done in other fields that make
use of statistical testing [15, pp. 320-321]. For the here given scenario, H0 would
then state that −→x is not random and if the test rejects the hypothesis it could be de-
clared that −→x in fact is random. However, this approach is infeasible due to the fact
that, while randomness is associated with well defined statistical characteristics, an
infinite number of characteristics can be considered to be non random. For example,
random data should be uniform distributed, whereas data that is not random can
be distributed in any other possible way. It is therefore not possible to define a
reasonable sized set of null-hypothesis that evaluate −→x for non randomness.

As a result, it is not possible to create a test or a set of tests that could clearly
certify that a given data stream −→x is random [18][19]. Based on this, the NIST test
suite has to be considered to use a slightly different approach. It consists of a total
of 15 tests. Each test evaluates the null-hypothesis that −→x is random, by focusing
on different aspects of the data for which an expectation under the assumption of
randomness exists. If one of the tests reject the null-hypothesis based on the data, it
is concluded that −→x is not random. However, if the test succeeds, that is, H0is not
rejected, the confidence in the null-hypothesis is considered to be increased. Hence,
if all 15 test succeed, this fact can be used to argue for the hypothesis that −→x is
random. Nevertheless, it should be stressed, an absolute certain conclusion that −→x
is random cannot be drawn from the NIST test suite.

This means in practice, that in order to increase the confidence in the hypothesis
that −→x is random, it is desirable to increase the significance of the tests by applying
a possibly large amount of data. While it is possible to achieve this by simply
increasing the length n of the test sequence −→x , NIST proposes to rather use multiple
test sequences, −→x 0,...,

−→x N−1, all with the same fixed length n [18].

Using this approach, each of the 15 tests in the test suite is performed N times.
For the purpose of this report, this N tests are referred to as first-level tests. Fol-
lowing the procedure described in Section 2.2.1, each of the first level-tests results in
an observed test statistic, so, and a corresponding p-value. For a given (first-level)

25

2.2. STATISTICAL TESTING

level of significance α, the tests can then be evaluated based either so or the p-value.
Thus for each of the 15 tests in the suite, N conclusions exist that either indi-

cate that the test has succeeded or that H0 should be rejected. If all N first-level
tests reject the null-hypothesis, it can simply be stated that the test fails and the
considered data is not random. However, if the results of the first-level tests for one
test of the suite differ, it becomes more difficult to draw a meaningful conclusion.
One approach could be to declare the test to have failed if a single first-level test
fails. However, recalling from Section 2.2.1 that hypothesis testing yields not to
deterministic results but must rather be interpreted in a statistical way, a number
of first-level tests is actually expected to fail as N grows large, even if H0 is true.

Based on this aspect, it is common to unify the N results of the first-level tests
by a so called second-level approach [18][19], which has been mentioned briefly in
Section 2.2.1. It has been stated during the introduction of the p-value in the
previous section, that, if a statistical test is performed multiple times, the resulting
p-values are expected to be uniform distributed given that H0 is true. Hence, if it is
not possible to evaluate one of the 15 tests of the NIST test suite directly based on
the first-level tests, it is reasonable to evaluate if the N p-values can be considered
to be uniformly distributed over the range [0,1].

One possible way to perform such an evaluation is by means of the above pre-
sented chi-squared goodness-of-fit test. This second-level test results in a single
p-value which can be used to evaluate the test for a given second-level level of sig-
nificance, α′. The second-level test fails if its p-value is smaller then α′ and passes
otherwise.

Using the second-level approach, the NIST test suite is considered to be passed
if the second-level tests of all 15 tests in the test suite succeed. For the purpose of
this project, the applied data is then assumed to be random. However, if one or
more of the second-level tests is not passed, the NIST test suite fails and the data
must be considered to be not random.

Having presented the general testing procedure, it is now possible to consider the 15
tests contained in the NIST test suite. Table 2.3 presents an overview over all tests,
including a short description of the focus of the test and the by NIST recommended8

length of the applied test sequences, n.
It should be noted that some of the in Table 2.3 presented tests are actually

performed twice or several times for each applied test sequence, −→x . For example,
without going into detail, the Cumulative Sums test scans the test sequence −→x once
starting at x0 and once starting at xn−1. Thus the test is performed twice for the
single sequence −→x . However, it is common to only consider one of these tests per
sequence, if a test is performed multiple times [19]. For the purpose of this report, it
has been chosen to present the first performed test unless one of the other executed
tests fails the second-level test, in which case that test is presented.

8For some tests, the recommendation depends on specific test parameters, which are not dis-
cussed in this report. In that case the presented recommendation accords to the default test
parameters.

26

2.2. STATISTICAL TESTING

Table 2.3: The NIST test suite

Test Focus Recommended
sequence length
(n)

Frequency Proportion (frequency) of 1’s & 0’s
within the test sequence

n ≥ 100

Block Frequency Proportion (frequency) of 1’s & 0’s
within non-overlapping bit-blocks of
the test sequence

n ≥ 100

Cumulative
Sums

Maximal excursion from zero of the
cumulative sums of the test sequence

n ≥ 100

Runs Total number of uniterrupted
sub-sequences (runs) of identical bits
within the test sequence

n ≥ 100

Longest Run Length of the longsest uniterrupted
sub-sequence (run) of 1’s within
non-overlapping bit-blocks of the test
sequence

n ≥ 128

Matrix Rank Rank of disjoint sub-matrices of the
test sequence

n ≥ 38, 912

Discrete Fourier
Transform
(DFT)

Repetitive patterns that yield peaks in
the Discrete Fourier Transform of the
sequence

n ≥ 1000

Non-
Overlapping
Template
(NOT)

Number of occurrences of
pre-specified, non-overlapping
sub-sequences (templates) within the
test sequence

-

Overlapping
Template (OT)

Number of occurrences of
pre-specified, overlapping
sub-sequences (templates) within the
test sequence

n ≥ 106

Universal Number of bits between matching
patterns in the test sequence

n ≥ 387, 840

Approximate
Entropy

Number of occurrences of all possible
overlapping bit-patterns of a specified
length across the test sequence

n ≥ 32, 768

Random
Excursions

Number of times the cumulative sum
of the sequence takes a specific value
between two zero occurrences

n ≥ 106

Random
Excursions
Variant

Number of times the cumulative sum
of the sequence takes a specific value

n ≥ 106

Serial Number of occurrences of all possible
overlapping bit-patterns of a specified
length across the test sequence

n ≥ 262, 144

27

2.2. STATISTICAL TESTING

Table2.3 – continued
Test Focus Recommended

sequence length
(n)

Linear
Complexity

Length of linear feedback shift
registers that can be used to
characterise non-overlapping
sub-sequences of the test sequence

n ≥ 106

As stated at the beginning of this section, it is far beyond the scope of this
project to discuss the in Table 2.3 presented tests individually. The interested
reader is referred to [18], which gives a detailed introduction to each of the tests.
However, in the following the Frequency test is presented in more detail, due to its
importance and in order to give a general example of the build up of the tests in
the NIST test suite.

The Frequency test

The Frequency test is a very simple but nonetheless fundamental test for random-
ness [18][19]. It focuses on the proportion between the number (or frequencies) of
0’s and 1’s in the data stream under test. As stated in Section 2.1, randomness is
associated with an uniform distribution of the bits in the data. The frequency test
analyzes therefore whether or not the number of 0’s and 1’s is approximately equal.
It should be noted, that, since the test evaluates an important feature of a random
number, while having a low computational complexity, NIST recommends to apply
the Frequency test before applying other tests of the test suite. If the results of
the Frequency test support the hypothesis of randomness, the test procedure can be
continued. Otherwise, the data must be considered to be non-random and it is not
necessary to perform the other tests of the test suite.

Denoting the data stream that is to be analyzed by the test as −→x = 〈x0, ..., xn−1〉,
the null-hypothesis of the test can be formulated as,

H0 : Pr(xi = 0) = Pr(xi = 1), (2.26)

for all i in [0, n− 1].

A number of possible test statistics can be used for an evaluation of Equa-
tion 2.26. For the Frequency test, included in the NIST test suite, the test statistic
s is defined as [18]9,

9Actually, [18] uses the absolute value of Equation 2.27 as the test statistic. Doing so yields to
slightly different equations than presented in this report. This is omitted here, in order to keep
the notation consistent and to avoid extending the used mathematical background. However, the
here presented equations are correct and the final result in Equation 2.30 is identical to the one
presented in [18].

28

2.3. RANDOM NOISE IN AN ADC

s =
n−1∑
i=0

(2 · xi − 1). (2.27)

In other words, s is the number of 1’s in −→x minus the amount of 0’s. Obviously, if
H0is true, s is expected to be close to zero. Further, it can be shown that for large
values of n (see Table 2.3), the reference distribution of s is the normal distribution
centered at µ = 0 and with a standard deviation of σ =

√
n [19]. Thus,

pdf(s;H0) = norm(s; 0,
√
n), (2.28)

where norm(s;µ, σ) is in this report used to denote the pdf of the normal distribution
with mean µ and standard deviation σ.

Combining Equation 2.19 with Equation 2.28, the level of significance for the
test can be computed by,

α = 2 ·
∫ c−

−∞
norm(s; 0,

√
n)ds

= 2 ·
∫ ∞
c+

norm(s; 0,
√
n)ds.

(2.29)

As stated in Section 2.2.1, Equation 2.29 can be used to determine the critical
values, c− and c+, of the test, for a given level of significance, α. It is worth noticing
that, since norm(s; 0,

√
n) is symmetrical around s = 0, it holds that c− = −c+.

For example, setting the level of significance to α = 0.01 and analyzing a sequence
of n = 1048576 bits, the upper critical value can be computed by Equation 2.29 to
be c+ ≈ 2638. Thus, for the given example, H0of Equation 2.26 would be rejected
if the observed test statistic, so, is larger than 2638 or smaller than -2638. In other
words, the test yields the conclusion that the considered data is not random, if
|so| > 2638.

Finally, in order to enable a second-level test approach for the Frequency test,
it is of interest to calculate the p-value for a given observed test statistic. Combin-
ing Equation 2.20 and Equation 2.28, and using the established symmetry of the
reference distribution around s = 0, the p-value for a given so can be computed
by10,

p-value = 2 ·
∫ ∞
|so|

norm(s; 0,
√
n)ds. (2.30)

2.3 Random Noise in an ADC

It has been stated in Section 1.2, that TRNGs require a true random source of
entropy. As mentioned, a range of example of processes that can be considered to
be random exist. However, for the implementation of a TRNG in an MCU envi-
ronment, the number of possible choices is reduced. For instance, for some random

10Solving Equation 2.30, it can be shown that p-value = 2√
π
·
∫∞
|so|√
2n

exp(−u2)du, which is identical

to the result presented in [18].

29

2.3. RANDOM NOISE IN AN ADC

processes it is unreasonable that they can be observed by means of an MCU. An
example are user interactions. While technically possible to observe, a wide range
of MCU based applications does not directly communicate with (human) users. In
addition, it is desirable to use a random process that is embedded inside the MCU.
Considering, for example, it is reasonable to assume that most modern MCUs can
observe noise introduced by electromagnetic waves by using external radio anten-
nas. However, during the external transmission the gained random data can easily
be intercepted by an adversary, in which case the TRNG system must be considered
to be broken [22].

In general, the in literature most frequently discussed approaches use thermal noise
inside the system; either in form of variations in the voltage level of a signal or by
observing so called jitter in clock signals [3][23][24]. The latter can be achieved by
sampling a fast oscillating clock signal at a lower frequency. Due to the jitter in the
fast clock signal, the result of the sampling process varies for different samples. It
is worth noticing, that it is quite common to generate the high frequency clock by
using ring oscillators, which enables a fully digital implementation of this approach.

However, based on Section 1.3, this project focuses on methods that use the
ADC as a source of entropy. A common approach is to observe thermal noise in,
for example, resistors or diodes, increase the effect of the noise by amplifying it and
then sample it, in order to gain a digital representation [24]. Nevertheless, even
though this approach makes use of an ADC, it is not suitable for the purpose of
this project, due to two reasons. First, the described setup of an amplified thermal
noise source connected to the ADC is in that form generally not embedded in an
existing MCU. As such, the in Section 1.3 mentioned design and prototyping costs
would occur. Second, it is reasonable to assume that using an amplifier to increase
the noise signal yields an significant increase of the dissipated power of the TRNG.

To omit this undesirable consequences, the following section presents some well
known noise sources that are associated directly with an ADC, and explores how
they can be used to generate an entropy containing output. Based on this back-
ground, Section 3.1 shows how an ADC embedded in an MCU can be set up to work
as an entropy source.

Before turning the focus on the different types of noise introduced by an ADC, some
assumptions about the input signal have to be made. To simplify the following anal-
ysis, it is assumed that the input signal is noise-free. Even though this is unlikely in
practice, keeping in mind that a noisy input signal is likely to yield a larger amount
of entropy in the output signal, this assumption leads to a conservative result com-
pared to the real circumstances. Since for the design of a TRNG a larger amount of
entropy is more desirable than a smaller amount, this simplification is acceptable.
In addition, for most of the following discussion, the input signal is considered to
be constant, which yields to a simplification of the presented analysis. Also this
assumption is not necessary true. However, as stated above, it is desirable to use
MCU internal signals as an input for the ADC. In practice, most of the internal sig-
nals that are available to the MCU are ideally constant, as for example the supply
voltage or the reference voltage for the ADC [5]. As such, also this assumption is
acceptable for a first analysis of the ADC. Finally, it is assumed that it is known to

30

2.3. RANDOM NOISE IN AN ADC

an adversary which signal is used as an input. This is a reasonable assumption with
regards to Kerckhoffs’s principle, which is introduced in Section 2.4.

An ADC transforms an analog input signal into a digital representation which uses a
fixed number of bits, where the number of bits is called the resolution of the ADC [25,
p. 614]. Noise generally refers to any unwanted effect that disturbs the transmission
or processing of a signal [26, p. 3]. In other words, noise in an ADC yields the
output value to differ from the original input value. It is worth noticing that even
an ideal ADC would introduce noise by this definition, as the discrete nature of a
digital representation makes it impossible to exactly represent a continuous analog
signal. This effect is referred to as quantization noise [25, pp. 609-612].

However, even though quantization noise depicts a concern for signal processing,
it cannot be used as a source of entropy due to two reasons. First, since for the
assumed known signal, the mismatch of the analog input and the digital output
can be exactly predicted, quantization noise is not random but deterministic. It is
worth noticing that this implies that the effect of quantization noise is identical for
every ADC device with the same resolution. Second, quantization noise does not
vary with time. This means that a constant input signal yields a constant output
value. As such, even if one or some of the bits of the first output value would have
been unknown, none of the following output values would contain any entropy.

Besides quantization noise, practical ADCs introduce a number of other imper-
fections which add noise to the output signal. An overview of the most common
effects is given in [25, pp. 614-618]. It is out of the scope of this report to give a
detailed discussion of all of these effects. However, it is possible to state some gen-
eral facts: First, any timing uncertainty that affects the sampling time of an ADC
is irrelevant for the assumed constant input signal. Second, neither offset errors nor
gain errors nor any kind of nonlinearity in the quantization process can be used as
a source of entropy. This follows from the same argumentation that has been used
to disqualify quantization noise as an entropy source. Even though, imperfections
in the quantization process differ from device to device and they thus introduce an
unpredictable mismatch between the input and the output of the ADC, none of
these effects is time varying. As for quantization noise, this yields a constant output
stream, when a constant input is applied to the ADC. An illustrative example of
this fact is shown in Figure 2.6.

The above mentioned imperfections of the quantization process can be depicted
as a static mismatch of the analog to digital conversation, which leave the input sig-
nal unchanged. However, the quantizer also introduces noise that can be modeled
as directly affecting the input signal. For instance, [27] and [28] identify thermal
noise in the comparator (which is a part of the quantizer) of ADCs which use a
Successive Approximation Register (SAR) as the limiting factor of the achievable
resolution of the ADC. In other words, SAR ADCs introduce thermal noise, which
can be referred to the input of the quantizer and as such affects the input signal
directly. It is reasonable to assume that this is not only true for SAR ADCs but
for any type of ADC, since thermal noise is one of the dominating noise sources in
electronic systems [26, p. 58].

Ignoring all irrelevant noise sources and only focusing on thermal noise, an ADC

31

2.3. RANDOM NOISE IN AN ADC

Figure 2.6: Example of a quantization imperfection: The black
“staircase” depicts the ideal quantization function. The red “stair-
case” illustrates a gain error. The same analog input signal (de-
picted by the green arrow) results in two different digital output
values. However, if the analog input signal is constant, the digital
output value is as well constant.

32

2.3. RANDOM NOISE IN AN ADC

Figure 2.7: Model of an ADC with thermal noise

can for the purpose of this project be modeled as depicted in Figure 2.7. Here x(t)
is the analog input signal and x[n] the corresponding time sampled version11. The
time distinct thermal noise signal is marked e[n] and x̂[n] is the quantized value of
the noise contaminated version of x[n], i.e., the digital representation of x[n] + e[n].
It is important to note that both the sampler and the quantizer are ideal in this
model.

Thermal noise is a well known phenomena, which is commonly modeled as a
normally distributed process with zero mean which is independent over time [26,
p. 60]. The variance of the distribution depends on the power associated with the
noise source, which varies with, for example, temperature and the ADC architecture.
Using this model of thermal noise and assuming that x(t) is constant and noise-free,
it is possible to show that the ADC introduces entropy to the data. Considering first
x[n] without e[n], the quantization process transforms x[n] into a constant digital
value x̂[n]. The particular value of x̂[n] is not of interest, but for the purpose of
illustration it can be assumed, without loss of generality, that the Least Significant
Bit (LSB) of x̂[n] is 1. As a result, defining −→x LSB as a vector containing the LSBs of
a number of consecutive samples x̂[n], −→x LSB would consists of only 1s. For example,
8 samples of x[n] would result in −→x LSB = 〈1, 1, 1, 1, 1, 1, 1, 1〉.

However, since e[n] is normally distributed around zero, the sum of x[n] + e[n]
is normally distributed around the constant value x[n]. As a result, some values of
e[n] yield a quantization error, as the difference between x[n] and the sum x[n]+e[n]
becomes too large. In that case, the LSB of x̂[n] changes from 1 to 0. This is de-
picted in Figure 2.8. By reusing the example stated above, 8 samples of x[n] might
under the influence of e[n], for instance, result in −→x LSB = 〈1, 1, 1, 0, 1, 1, 0, 1〉. Since
e[n] is independent and identically distributed, this is also true for the elements con-
tained in −→x LSB. As such, the thermal noise of inside the ADC introduces random
variations in the data. In other words, the output −→x LSB contains some amount
of entropy. Nevertheless, it is reasonable to assume that the contained entropy is
rather low and that −→x LSB is, for the given example, biased towards 1. It is easy to
see the validity of this assumption by considering that ADCs in general are designed
in order to achieve an output that is as exact as possible and not too generate data
for which the LSB is close to random.

The above discussed illustration of the concept of thermal noise in an ADC is of
course an ideal model. In practice, usually other aspects have to be taken into

11The variables t and n are in this section, as common in digital signal processing, used to
distinguish between signals with continuous and discrete time characteristics. As such, n is for the
reminder of this section not used as the fixed length of a data stream.

33

2.4. POST-PROCESSING ALGORITHMS

Figure 2.8: ADC transformation with thermal noise: The constant
input x[n], depicted as a black arrow, yields an LSB of 1. The
distribution of the thermal noise signal e[n] is illustrated as a red
curve. The green dotted lines indicate the boarders for a quantiza-
tion error.

consideration. For example, other noise types inside the ADC or in surrounding
circuitry may affect the sampling process. In addition, it has been assumed that the
input signal is strictly constant. This is not necessarily true in a realistic scenario,
either because a varying signal has been chosen as an input by design, or because
the chosen input signal varies due to imperfections.

However, even in the presence of these or other effects, the above presented
concept is still valid and thermal noise will randomly affect the output data. Fur-
ther more, the mentioned influences can actually increase the amount of entropy
associated with the ADC output, if they can be considered to be random. The
main drawback of this variety of possible influences is that their character must be
considered to be unknown. As such, they can, for example, introduce undesired
dependencies into the output data.

2.4 Post-processing algorithms

It has been mentioned in Section 1.2 that most TRNGs use some kind of digital post-
processing step. While their purpose may vary, they are frequently used to mask
statistical imperfections of the entropy source. For example, Section 2.3 illustrates
how an ADC can generate an entropy containing but biased bit stream. Through-
out this project, post-processing algorithms are mainly considered with regards to
this feature, leaving other aspects, as, for example, resistance against attacks of an

34

2.4. POST-PROCESSING ALGORITHMS

adversary, to future work.

Before, presenting some known post-processing algorithms, it is essential to note
a common and majorly important fact. Post-processing algorithms are in general
clearly defined and exactly described processes and, as such, perfectly deterministic.
It has already been stated in Section 1.2 that generating any kind of entropy by
means of a deterministic system is impossible. It is fairly easy to convince oneself
of this fact by considering the extreme case, in which the input stream to a post-
processor, denoted as −→x , is completely known to an adversary. In that case, the
adversary could simply execute the same operations on −→x as performed by the
post-processor and thus derive the same output stream, described by −→y . This
argumentation is easily extended to a scenario in which −→x contains some amount
of entropy. Thus, the degree of uncertainty of the adversary can not be increased
by means of post-processing.

Obviously, the above presented argumentation is only valid in the case that the
adversary knows which post-processing algorithm is used. However, this assump-
tion is highly convenient. It is generally assumed in modern cryptography that an
adversary has detailed knowledge of the methods used in the system she wants to
attack. This concept is referred to as Kerckhoffs’s principle [1, p. 4] and includes
TRNGs.

As a result, for any input −→x and the corresponding output −→y it must hold,

H(−→x) ≥ H(−→y). (2.31)

This means that the total amount of entropy contained in −→y cannot exceed the
amount of entropy associated with −→x . However, the amount of entropy per bit,
called the entropy rate, can be increased. It follows directly from Equation 2.31,
that an increase in the entropy rate yields −→y to contain less bits than −→x . For exam-
ple, for a 128-bit input −→x associated with 32 bits of entropy, a ideal post-processor
would generate a 32-bit output with 32 bits of entropy. Thus, the entropy rate would
be increased from 0.25 to the maximum value of 1. As such, TRNG post-processing
algorithms can be classified as compressive algorithms. Another term frequently
used to describe TRNG post-processing is randomness extractor [14].

The related literature generally refers to three basic types of post-processing al-
gorithms: the von Neumann Corrector (VNC), cryptographic hash functions and
resilient functions [10][14][29]. Additional approach are block ciphers, which are
well known cryptographic algorithms and often mentioned alongside cryptographic
hash functions [14][30], and an Extractor based on pairwise Independent Hash Func-
tions (IHF) [14]. In a this project preceding literature study, all five approaches
have been considered and discussed [12]. Based on this discussion, the VNC and the
IHF have been selected for further investigation. Without going into detail here, two
main reasons motivated this decision. First, in contrast to cryptographic approaches
by means of hash functions or block ciphers, both the VNC and the IHF are based
on firm mathematical proofs. In principle, this enables the selection of a suitable
post-processing algorithm based on an analysis of the entropy source and the es-
tablishment of clearly defined boundaries in which the functionality of the TRNG
is guaranteed. Second, the VNC and especially the IHF have relaxed requirements

35

2.4. POST-PROCESSING ALGORITHMS

on the statistical characteristics of the used entropy source compared to the strict
requirements of resilient functions.

In the following, the VNC is presented in Section 2.4.1 and Section 2.4.2 introduces
the concept of the IHF. As they are not a part of the focus of this project, a explicit
presentation of both resilient functions and cryptographic approaches is omitted.

2.4.1 Von Neumann corrector

The von Neumann Corrector (VNC) is based on a mathematical observation formu-
lated by John von Neumann [8] regarding a biased bit stream, in which succeeding
bits are independent and identically distributed, which means that, for instance, the
probability of observing 0 is equal for both bits. The VNC provides a simple but
effective solution to transform such a stream into a perfectly unbiased bit stream.

Defining the input stream to the VNC as a binary vector with n elements, −→x =
〈x0,, xn−1〉, and the output stream in the same manner as the m-bit binary vector
−→y = 〈y0, ..., ym−1〉, the VNC can be described by Algorithm 1 [31].

Algorithm 1 The von Neumann algorithm

Input: −→x = 〈x0, ..., xn−1〉
Initialize: Empty output vector −→y = 〈〉
for all i in [0, bn

2
c − 1] do

if x2i xor x2i+1 then
Insert x2i at the end of −→y

end if
end for

It can be seen from Algorithm 1, that the VNC operates on pairs of succeed-
ing bits, x2i and x2i+1. If these bits are not identical, the XOR-operation results
in a logic one. In that case, x2i is inserted at the end of −→y . However, if x2i and
x2i+1 are equal, no element is added to −→y . As an example, the 8-bit input stream
−→x = 〈1, 1, 0, 1, 0, 0, 1, 0〉 would result in the 2-bit output −→y = 〈0, 1〉.

Verifying that Algorithm 1 is capable of transforming a biased input stream into
an unbiased output can be done by considering Table 2.4. The table presents the
truth table of an XOR-operation with input bits x2i and x2i+1. It further shows the
probabilities for the possible input combinations, Pr(x2i, x2i+1), and the resulting
output yj. Since it is required that x2i and x2i+1 are identically distributed, the
marginal probabilities of x2i and x2i+1 can be expressed as p = Pr(x2i = 0) =
Pr(x2i+1 = 0). Furthermore, due to their independence, the probability of the input
combinations can be expressed as a product of the marginal probabilities of the
corresponding input bits (Equation 2.9). As an example, Pr(x2i = 0, x2i+1 = 0) =
Pr(x2i = 0) · Pr(x2i+1 = 0) = p2.

It can be seen from Table 2.4 that Pr(yj = 0) = Pr(yj = 1) = p · (1 − p). In
other words, 0s and 1s are inserted into −→y with the same probability, and −→y is thus
unbiased.

36

2.4. POST-PROCESSING ALGORITHMS

Table 2.4: Extended truth table of the XOR-operation in a VNC

x2i x2i+1 x2i ⊕ x2i+1 Pr(x2i, x2i+1) yj

0 0 0 p2 -
0 1 1 p · (1− p) 0
1 0 1 p · (1− p) 1
1 1 0 (1− p)2 -

However, it should be stressed that Table 2.4 is only valid, if the data in −→x
satisfies the mentioned statistical requirements. This requirements are of great im-
portance for the purpose of this project and are therefore repeated here:

• The successive bits x2i and x2i+1 must be statistical independent.

• The successive bits x2i and x2i+1 must be identically distributed. This means
that p = Pr(x2i = 0) = Pr(x2i+1 = 0).

These characteristics of the input stream−→x are for the purpose of this report referred
to as the von Neumann conditions.

Given the importance of the conditions, it is worth to consider two aspects that
are closely related and easily confused with the von Neumann conditions, but not
necessary for a functional performance of the VNC. With regards to the identical
distribution of x2i and x2i+1, p does not have to be constant for all bits in −→x . For
example, considering four successive bits, x0, x1, x2 and x3, it is sufficient if the bit
pairs 〈x0, x1〉 and 〈x2, x3〉 are identically distributed, that is, p0 = Pr(x0 = 0) =
Pr(x1 = 0) and p1 = Pr(x2 = 0) = Pr(x3 = 0). It follows from Table 2.4 that the
probabilities of inserting 0 into −→y are p0 · (1 − p0) and p1 · (1 − p1), respectively,
which are possibly different. Nevertheless, the probability that a specific bit-pair
yields an insertion of 0 into −→y is still equal to the probability that 1 is inserted for
the given pair. Hence, the VNC still works as desired. This means that p is allowed
to vary between bits in the input stream, as long as p = Pr(x2i = 0) = Pr(x2i+1 = 0)
is satisfied.

Considering the statement about statistical independence between x2i and x2i+1,
it has been mentioned during the discussion of Table 2.4 that this is a necessary
characteristic since it allows the multiplication of the marginal probabilities of x2i
and x2i+1 to the joint probability Pr(x2i, x2i+1). However, the table states nothing
about other forms of dependencies in −→x . Thus as long as the used multiplication is
valid, the VNC functions as specified, even if dependencies in the data exist. Never-
theless, it should be stressed that the VNC is purely designed to remove the bias of
an input stream but not possible dependencies. Hence, if dependencies exist in the
input data, it is reasonable to assume that they as well exist in the output −→y . With
respect to Equation 2.17, which shows that the maximum amount of entropy for a
bit stream is associated with both unbiased and independent data, it is therefore
preferable if the data contained in the VNC-input is mutual independent, in order
to result in a true random output.

37

2.4. POST-PROCESSING ALGORITHMS

A final aspect of the VNC that should be considered is the ratio of the number
of input bits to the number of output bits. With respect to Algorithm 1, it is
obvious that a single output bit is generated from two input bits. As such, the
VNC requires at least two input bits per single output bit. However, this is a rather
unlikely scenario. Assuming, for instance, that the input −→x is unbiased12, it is
expected that all four possible constellations of the bit pair 〈x2i, x2i+1〉 in Table 2.4
occur with the same probability. Thus, for an unbiased input, the expected number
of input bits per single output bit is 4 bits.

In general, it can be stated, that the ratio of the number of input bits n to the
number of output bits m, is undeterministic and the expected value is dependent
on the bias of the input, characterized by p. A more detailed analysis of this aspect
is presented in Section 4.1.1.

2.4.2 Extractor based on pairwise-independent hash func-
tions

An approach of an Extractor based on pairwise Independent Hash Functions (IHF)
is presented in [14]13. The IHF can be proven to deliver a random output from any
source which provides a sufficient amount of min-entropy. It is essential to note that
this in principle also includes sources that produce an output with some kind of
dependencies.

Compared to the simple VNC of Section 2.4.1, the concept of the IHF must
be considered as more complicated. In order to give an as simple as possible in-
troduction of the IHF, this section is structured in the following manner: First, a
description of a hypothetical randomness extractor is presented, that works for an
output with a given amount of min-entropy and allows an adversary to have some
limited influence on the source. Second, the concept of pairwise independent hash
functions is introduced and related to the described randomness extractor. Finally,
two implementations of the IHF are presented; the first one is based on linear func-
tions in a Galois field and the second one uses a binary matrix.

Starting describing the desired extractor, it is appropriated to first consider a sce-
nario in which an adversary has some control over the entropy source, and as such,
over the input of the extractor, denoted as x. To achieve this, x is, for the mo-
ment, viewed as the n-bit outcome of one out of a number of possible ensembles,
X0, ..., X2t−1. While the sets of the ensembles, AX = {0, 1}n, are identically, the
distributions, P0, ...,P2t−1, are different for each of the ensembles. However, for
each i ∈ {0, ..., 2t − 1}, it must hold that min-Ent(Xi) > κ. By the definition of
min-entropy, given in Equation 2.3, this means that no element of Pi can exceed
2−κ.

Next, a public parameter π is chosen randomly and independently of X0, ..., X2t−1
from a (for the moment undefined) set Π. It is important to note two major char-

12This is of course an example with low practical relevance, as for an unbiased −→x , applying the
VNC has no recognizable benefits.

13It should be noted that [14] presents a general discussion of extractors based on l-wise indepen-
dent hash functions. However, the proposed algorithms use l = 2 and the here given presentation
is therefore restricted to the discussion of pairwise independent hash functions.

38

2.4. POST-PROCESSING ALGORITHMS

acteristics of π. First, π is public and thus known by any adversary. Second, it is
sufficient to chose π once and it is therefore not necessary to renew π at any given
point of time.

Finally, an adversary, with the knowledge of π, is allowed to chose an arbitrary
ensemble Xi ∈ {X0, ..., X2t−1}. The outcome of Xi is then passed on to the extractor
in form of the input x.

Based on this scenario, the desired extractor can be defined as the function,

f(x, π) = y, (2.32)

where y is the m-bit outcome of the ensemble Y , with the set AY = {0, 1}m and
the distribution PY . It follows from the observations made with regards to Equa-
tion 2.31, that m ≤ n, in order for Equation 2.32 to be a valid description of an
entropy extractor.

Given Equation 2.32, [14] defines f(x, π) to be “t-resilient14 if [...] with proba-
bility 1− ε over the choice of the public parameter the statistical distance between
[PY and the uniform distribution over the set AY] is at most ε”. The definition of
statistical distance has been presented in Equation 2.6. The parameter ε can be
considered as a measure of the quality of the extractor f(x, π); the smaller ε, the
more likely is the fact that PY is ε-close to a uniform distribution. In other words,
for f(x, π) = y with an randomly chosen π, it holds that,

Pr(dist(PY ,UY) ≤ ε) = 1− ε, (2.33)

where UY denotes the uniform distribution over the set AY = {0, 1}m. Obviously,
for a good extractor it is desirable that ε is as small as possible. Motivated by this
observation, ε is for the purpose of this report also frequently described as the quality
parameter of the IHF.

The above given description of the t-resilient extractor is rather abstract. To
illustrate the concept, it may be helpful to consider the following simple example.
Assuming a perfectly random source with a single 3-bit outcome x, the source can
be described as the ensemble X = {x,AX ,UX}, where AX = {0, 1}3 and UX is the
uniform distribution over AX . This means that x can take on 8 different values with
the same probability, 1/8. This is depicted in Table 2.5, where Pr(x|x ∈ X) has been
used to denote the probability of the corresponding x-value in the case that x is the
outcome of X. It follows from Equation 2.3 that the min-entropy of the source is
min-Ent(X) = 3.

To show how the extractor can cope with a limited influence of an adversary,
it is now assumed that an adversary is able to fix the middle bit of x either to
0 or to 1. The resulting, manipulated versions of X are X0 = {x,AX ,P0} and
X1 = {x,AX ,P1}, respectively. The effect of the manipulation on the distributions
P0 and P1 are shown in Table 2.5. Both X0 and X1 contain 2 bit of min-entropy.

14For the sake of completeness, it should be mentioned that the here given definition of resilience
is not equivalent to the definition of the same term used to describe resilient functions (see the
introduction of Section 2.4), even though similarities exist [29]. Since resilient functions are not
part of the focus of this project, the term “(t-)resilient” is throughout this report used according
to the definition of [14], which is repeated here.

39

2.4. POST-PROCESSING ALGORITHMS

Table 2.5: Output probabilities of the mainpluated ensemble X

x Pr(x|x ∈ X) Pr(x|x ∈ X0) Pr(x|x ∈ X1)

000 1/8
1/4 0

001 1/8
1/4 0

010 1/8 0 1/4
011 1/8 0 1/4
100 1/8

1/4 0
101 1/8

1/4 0
110 1/8 0 1/4
111 1/8 0 1/4

Thus based on the choice of the adversary, the input to the extractor, x, arises
from one of two possible ensembles: X0 or X1. As such, the adversary freely
“chooses” an ensemble, which appears to be less random compared to original X,
out of the set {X0, X1}. It is important to note two main aspects of this choice.
First, the adversary is allowed to make her choice based on the knowledge of the
used extractor f(x, π), including the concrete value of the public parameter, π. Sec-
ond, which choice the adversary makes remains unknown to the extractor. In other
words, the extractor cannot adapt to the given choice by, for example, changing its
public parameter.

With regards to the given example, the extractor f(x, π) = y is said to be t-
resilient with t = 1, if y can be considered to be the outcome of the ensemble
Y = {y,AY ,PY }, where PY satisfies the conditions described in Equation 2.33.
Whether x arises from X0 or X1, in both cases x contains 2 bit of min-entropy.
Thus, for reasonable small values of ε it follows from Equation 2.31 that the size of
y, m, cannot exceed 2 bits, for the given example.

It is shown in the above example, that the parameter t describes the number
of manipulations of the source by an adversary that the extractor can handle. It
is reasonable to assume that the character of the manipulations is binary and that
t manipulations thus result in 2t different ensembles. As such, t can be considered
to characterize the security performance of the extractor f(x, π) and is therefore in
this report referred to as the security parameter of the IHF.

Before moving on to find possible realizations of a t-resilient extractor, it must
be stressed that the discussed example is extremely simple and only used for an
illustrative purpose. It is essential to note, that the nature of the adversary’s attack
has not been specified. She may, as illustrated in the example, try to fix single bits
of the source outcome. However, by the above presented formal description of the
extractor, the adversary is not limited to such an attack. Again, the demand stated
by the described extractor is that min-Ent(Xi) > κ for all 2t possible ensembles. In
the following, it is shown how the required min-entropy, κ, relates to the length of
the output of the extractor, m, the security parameter, t, and the quality parameter,
ε.

It is now of interest to find a group of functions, that meet the requirements of
the above described extractor, f(x, π). As indicated during the introduction of

40

2.4. POST-PROCESSING ALGORITHMS

this section, this can be achieved by means of pairwise independent hash functions.
Considering an n-bit input x (x ∈ {0, 1}n) and an m-bit output y (y ∈ {0, 1}m), the
set of hash functions H = {h(x, π) : π ∈ Π} is defined such that h(x, π) = y. H is
said to be a pairwise independent hash function, if for an arbitrary but fixed x and a
at random chosen π, the output y is uniformly distributed over {0, 1}m and pairwise
independent [14]. The definition of pairwise independence is given in Equation 2.14
for l = 2.

Given now that x is the outcome of one of the ensembles X0, ..., X2t−1 and that for
each ensemble min-Ent(Xi) > κ, it is shown in [14] that for at least a 1−ε fraction of
Π, the output of h(x, π) is ε-close to uniform. In other words, by randomly selecting
π from Π, the probability that the distribution of the m-bit output y = h(x, π)
is ε close to the uniform distribution over {0, 1}m is 1 − ε. From Equation 2.33,
it follows therefore that a function that is a member of the pairwise independent
family of hash functions H can be used as a t-resilient extractor.

Using a pairwise independent hash function, h(x, π), to realize the t-resilient
extractor f(x, π), the different parameters of the extractor are related by [14],

t =
κ−m

2
− 2 · log2(

1

ε
)− 1, (2.34)

where κ is the amount of min-entropy delivered by the input, m is the length of the
output of the extractor, ε is the quality parameter of the extractor and t the security
parameter. It is worth noticing that Equation 2.34 enables the extractor to be tuned
in order to match different environments. For example, by increasing the amount of
entropy delivered to the extractor, the security parameter can be increased. In the
same manner, the security parameter can be increased by keeping κ at a fixed level
and reduce the number of output bits.

Before moving on to consider concrete approaches to realize pairwise indepen-
dent hash functions, it is worth to notice two more general aspects of the resilient
extractor. Up to this point, it has only be assumed that a single n-bit input x is
used to derive a single m-bit output. It is possible to derive a longer output by
running the extractor for several different inputs and concatenate the outputs to an
output with a length that is a multiple of m. However, to satisfy the principle that
has been stated with regards to Equation 2.10, each input x must contain at least
κ bits of conditional min-entropy with respect to the other inputs in order for the
extractor to work as desired. Conditional min-entropy is defined analogously to the
conditional entropy in Equation 2.11.

In the same manner, also the input x can be generated by the concatenation
of shorter inputs as long as the associated min-entropy exceeds the minimum of κ.
For example, using the notation introduced in Section 2.1, a source that produces a
single bit at a time can be used to generate an input for the IHF by concatenating
these bits to −→x = 〈x0, ..., xn−1〉, where each element in −→x is a single bit, and then
passing −→x as an input to Equation 2.32.

To complete the discussion of the IHF, the following presents two approaches to
realize such an extractor. The first one is based on linear functions in a Galois field.
The second one can be considered to make use of a binary matrix.

41

2.4. POST-PROCESSING ALGORITHMS

IHF implementation using linear functions in a Galois field

One possible approach of realizing pairwise independent hash functions is by means
of linear functions in a Galois field GF (2n) [14]. Galois fields are a rather compli-
cated topic of number theory and far beyond the scope of this project15. However,
for the purpose of this project, it is sufficient to think of GF (2n) as a set of size 2n

containing all the polynomials gi(z) of degree n− 1 such that,

gi(z) = c0 + c1 · z + c2 · z2 + ...+ cn−1 · zn−1, (2.35)

where all coefficients c0, ..., cn−1 are in modulo 2. Further, a polynomial G(z) of
degree n has to be selected for GF (2n), such that it can not be represented by
the multiplication of any two polynomials gi(z) and gj(z) in GF (2K). A polynomial
G(z) that meets this requirement is said to be irreducible. It is possible to show that
as long as the addition, subtraction, multiplication and division of two polynomials
in GF (2n) is executed modulo G(z), the result is as well a polynomial of the form
specified in Equation 2.35 and, as such, an element of GF (2n) [9, p. 255].

In order to relate GF (2n) to the above presented extractor, it is essential to
note that any n-bit number can be represented by means of a polynomial gi(z).
This can be illustrate by the example of the extractor input x. Up to this point,
the n-bit input has been denoted as x for simplicity. However, in order to increase
the consistency between the notations used to describe the different post-processing
algorithms, the input x may as well be described as −→x = 〈x0, ..., xn−1〉, where each
bit of x is one element of −→x . This notation appears especially appropriated if x has
been created by the concatenation of n single bits, as discussed above. Using this
vector notation, −→x can be described as an element of GF (2n) by the polynomial
gx(z), defined as,

gx(z) = x0 + x1 · z + ...+ xn−1 · zn−1. (2.36)

Choosing π randomly from Π = {0, 1}n, the vector notation can be adopted, such
that the public parameter is denoted as −→π = 〈π0, ..., πn−1〉, where each bit of π
is an element in −→π . In accordance to Equation 2.36, −→π can be expressed by the
polynomial gπ(z), given as,

gπ(z) = π0 + π1 · z + ...+ πn−1 · zn−1. (2.37)

Using Equation 2.36 and Equation 2.37, a set of pairwise independent hash
functions can be created by using the hash functions defined as,

−→y = h(−→x ,−→π) ≡ (gπ(z) · gx(z))0,...,m−1(mod G(z)), (2.38)

where the vector notation −→y = 〈y0, ...ym−1〉 has been adopted for the output of the
hash function, y, in the same way as for x and π, and the notation (·)0,...,m−1 is used
to describe that only the m first bits of the result are used for the output −→y .

Implementing Equation 2.38 is rather simple, since addition, subtraction and mul-
tiplication are easily executed in GF (2n). Since all coefficients are modulo 2, both

15For a basic introduction, the interested reader is referred to [1, pp. 93-101].

42

2.4. POST-PROCESSING ALGORITHMS

additions and subtractions are executed by a bit-wise XOR-operation. To give a
simple example, the 8-bit Galois field GF (28), defined by the well known irreducible
polynomial G(z) = 1 + z+ z3 + z4 + z8, is considered. Picking the arbitrary polyno-
mials g1(z) = 1 + z+ z3 + z6 + z7 and g2(z) = 1 + z3 + z4 , the result of the addition
is g1(z) + g2(z) = z+ z4 + z6 + z7. It is worth noticing that the result is as expected
a member of GF (28) and that subtracting the polynomials from each other would
yield the same result.

Also the multiplication of any element of GF (2n) by z is rather simple. By
considering Equation 2.35, it follows that,

gi(z) · z = 0 + c0 · z + ...+ cn−2 · zn−1 + cn−1 · zn. (2.39)

This means that the multiplication with z can be performed by a simple shift op-
eration. However, if cn−1 = 1, the result as shown in Equation 2.39 is no longer a
member of GF (2n). In that case it is therefore necessary to change the result to
modulo G(z) by subtracting the irreducible polynomial G(z) from the result of the
multiplication.

To give an example, the above introduced Galois field GF (2n) is reused with the
same irreducible polynomial G(z). For this field, multiplying g1(z) by z would yield,

g1(z) · z = (1 + z + z3 + z6 + z7) · z = z + z2 + z4 + z7 + z8

= (1 + z2 + z3 + z7) + (1 + z + z3 + z4 + z8)

≡ 1 + z2 + z3 + z7(mod 1 + z + z3 + z4 + z8).

(2.40)

Based on this, it is possible to multiply any polynomial gi(z) by any arbitrary
power zj, by simply multiplying gi(z) j-times with z following the above introduced
procedure. For the given example, g1(z) · z2 could be computed by,

g1(z) · z2 = (1 + z + z3 + z6 + z7) · z2 ≡ (1 + z2 + z3 + z7) · z
= z + z3 + z4 + z8 = 1 + (1 + z + z3 + z4 + z8)

≡ 1(mod 1 + z + z3 + z4 + z8),

(2.41)

where the result of Equation 2.40 has been reused.
Finally, since the polynomials in GF (2n) have binary coefficients, any polyno-

mial g1(z) can be multiplied by any arbitrary other polynomial in GF (2n), gj(z),
by separately multiplying gi(z) with any power of z that corresponds to a non-zero
coefficient of gj(z) and then adding the results. To illustrate this, the above given
example is considered once more. Using the results of Equation 2.40 and Equa-
tion 2.41, multiplying g1(z) with g3(z) = z + z2 yields,

g1(z) · g3(z) = (1 + z + z3 + z6 + z7) · (z + z2)

= (1 + z + z3 + z6 + z7) · z + (1 + z + z3 + z6 + z7) · z2

≡ (1 + z2 + z3 + z7) + 1

≡ z2 + z3 + z7(mod 1 + z + z3 + z4 + z8).

(2.42)

43

2.4. POST-PROCESSING ALGORITHMS

To give an example of the in Equation 2.38 defined pairwise independent hash
function based on the example presented in Equation 2.42, it is possible to con-
sider g1(z) as the polynomial representation of the input −→x = 〈1, 1, 0, 1, 0, 0, 1, 1〉,
and g3(z) to be the public parameter −→π = 〈0, 1, 1, 0, 0, 0, 0, 0〉. The result of Equa-
tion 2.42 in vector form is 〈0, 0, 1, 1, 0, 0, 0, 1〉. Using, for instance, m = 2 as the
output length, the 2-bit output of the has function would be −→y = 〈0, 0〉.

Having established the methodology to multiply two polynomials of GF (2n), it is
possible to derive an algorithmic solution of the IHF as described by Equation 2.38.
One possibility is depicted in Algorithm 2. To keep the notation compatible that
of Algorithm 1, a vector notation has been used instead of polynomials (by revers-
ing the statement of, for instance, Equation 2.37). This means that −→π contains

the coefficients of the public parameter gπ and
−→
G contains the coefficients of the

irreducible polynomial G(z). It is worth noticing that the coefficient corresponding

to the highest degree in G(z) is always one and irrelevant for the algorithm.
−→
G is

therefore only of length n instead of n + 1, in order to avoid confusion during the

bit-wise XOR-operation that involves
−→
G . The notation

−→
x′ >> 1 in Algorithm 2 is

used to denote a one bit right shift of
−→
x′ .

Algorithm 2 IHF solution using linear functions in GF (2n)

Input: −→x = 〈x0, ..., xn−1〉
Initialize: all-zero output: −→y = 〈y0, ..., ym−1〉 =

−→
0

public parameter: −→π = 〈π0, ..., πn−1〉
irreducible polynomial:

−→
G = 〈G0, ..., Gn−1〉

all-zero interim result:
−→
x′ = 〈x′0, ..., x′n−1〉 =

−→
0

for all i in [0, n− 1] do
if −→π (i) = 1 then
−→
x′ = −→x
if i ≥ 1 then

for i times do
if
−→
x′ (n− 1) = 1 then
−→
x′ =

−→
x′ >> 1−→

x′ =
−→
x′ xor

−→
G

else−→
x′ =

−→
x′ >> 1

end if
end for

end if
−→y = −→y xor (

−→
x′)0,...m−1

end if
end for

44

2.4. POST-PROCESSING ALGORITHMS

IHF implementation using a binary matrix

Another possible solution for the IHF can be found by randomly selecting the public
parameter π out of Π = {0, 1}m+n−1. Using again vector notation, the public pa-
rameter is thus denoted as −→π = 〈π0, ..., πm, ..., πn, ..., πm+n−2〉. As before, the input
and output are presented as −→x = 〈x0, ..., xn−1〉 and −→y = 〈y0, ..., ym−1〉, respectively.
Given this scenario, the function −→y = h(−→x ,−→π) can be shown to be part of a pair-
wise independent family of hash functions H, if it maps the bits of −→x and −→π to −→y
by [14],

yj =
n−1∑
i=0

xi · πi+j, (2.43)

for all j in the range [0,m − 1]. It is worth noticing that a function that satisfies
Equation 2.43 can be depicted as the multiplication of the vector −→x with an m× n
matrix, where the first row of the matrix contains the elements π0, ..., πm−1 and
all subsequent m − 1 rows are an 1-bit shifted version of the preceding row. This
observation is the origin of the name of the here presented solution. However, to
keep the discussion as simple as possible, a matrix based notation is omitted here.

For the here considered case of binary number representations, Equation 2.43
can be further simplified. Since each element of −→x and −→π is either 0 or 1, the multi-
plication xi ·πi+j reduces to a simple AND-operation with xi and πi+j. Further more,
also the result, yj, must either be 0 or 1. In mathematical terms, this means that yj
is a member of the 2-bit Galois field GF (2). Since, as discussed above, an addition
in a Galois field can be executed by means of an XOR-operation, Equation 2.43 can
be simplified to [14],

yj =⊕n−1
i=0 (xi ∧ πi+j), (2.44)

where ∧ denotes a bitwise AND-operation and ⊕n−1
i=0 denotes an XOR-operation

over all i results of the subsequent term.
To give an illustration of Equation 2.44, the example used during the discussion

of Algorithm 2 can be partly reused. Thus, the input is −→x = 〈1, 1, 0, 1, 0, 0, 1, 1〉 and
the length of the output is set to m = 2. However, since the input length n equals
8 bit, the public parameter −→π has to be of length n + m − 1 = 9. This makes it
necessary to use a different public parameter than for the previous example and the
arbitrary vector −→π = 〈0, 1, 0, 0, 0, 1, 0, 1, 1〉 is used. The computation of the 2-bit
output −→y = 〈y0, y1〉 according to Equation 2.44 is shown in Table 2.6.

Based on Equation 2.44, an algorithmic solution of the IHF using a binary matrix
might be defined as the one shown in Algorithm 3.

45

2.5. DYNAMIC POWER IN DIGITAL SYSTEMS

Table 2.6: Example for Equation 2.44

j = 0

−→x 1 1 0 1 0 0 1 1
−→π (0,7) 0 1 0 0 0 1 0 1
−→x ∧ −→π (0,7) 0 1 0 0 0 0 0 1 y0 = 0

j = 1

−→x 1 1 0 1 0 0 1 1
−→π (1,8) 1 0 0 0 1 0 1 1
−→x ∧ −→π (1,8) 1 0 0 0 0 0 1 1 y1 = 1

Algorithm 3 IHF solution using a binary matrix

Input: −→x = 〈x0, ..., xn−1〉
Initialize: all-zero output: −→y = 〈y0, ..., ym−1〉 =

−→
0

public parameter: −→π = 〈π0, ..., πm+n−2〉

for all j in [0,m− 1] do
for all i in [0, n− 1] do
yj = yj xor (xi and πi+j)

end for
end for

2.5 Dynamic Power in Digital Systems

In order to derive meaningful power estimates from the post-processor implemen-
tations, which are proposed during this project, and to be able to explore power
saving design techniques, it is necessary to consider the causes of power dissipation
in digital systems. While a detailed discussion is far beyond the scope of this report,
this section introduces the reader to some basic concepts. In addition, clock gating,
which is an example of a simple but effective design technique to minimize power
requirements in a digital circuit, is presented at the end of this section.

Generally, the power consumption of a digital system depends on a wide range of
factors, as for example temperature, the used technology, the functional purpose of
the system or the applied data. However, it is common to classify total power dissi-
pation of a single digital gate into two main categories [32]. The first part describes
power dissipation that can be considered to be caused by direct currents from the
supply voltage of a gate to its ground level. The associated power dissipation is de-
noted PtextDC and frequently referred to as leakage power. The second component,
Pswitch, describes the power that is consumed due to the switching activity of a logic
gate. Pswitch is commonly called the dynamic power component. Thus, the total
power required by a digital gate, Ptot, can be described by [32],

Ptot = PDC + Pswitch. (2.45)

Examples of power consuming effects that are a part of PDC are sub-threshold
leakage currents in the transistors of the gate or “short-circuit” currents from the
supply voltage to the ground level during switching [32, pp. 257-258][33]. In general,

46

2.5. DYNAMIC POWER IN DIGITAL SYSTEMS

these effects can be affected by choices made with respect to the global architecture
of a system or by considering the process technology used to realize the CMOS tran-
sistors of the logical gates [34, p. 11.2]. As both these aspects are out of the scope
of this project, it is at this point omitted to further explore PDC.

Focusing on Pswitch, this component of the total power consumption is mainly due
to the fact that the switching of the output of a logical gate yields the charge and
discharge of capacitances in the circuit. It can be illustrated by the example of
a simple logical inverter [33]. If the output of the inverter is high, this means in
practice that the output of the inverter is connected to the supply voltage, commonly
denoted VDD. As such, the inverter charges capacitances that exist in the circuit,
typically modeled as one single capacitance C. If the inverter switches its output
back to logic zero, the output of the inverter is connected to the ground level of
the digital circuit. Hence the capacitance C is discharged. It can be shown, that
the energy dissipated during the process of charging and discharging C is equal to
C · V 2

DD.
It is quite common to assume that C is charged and discharged once per period

of the clock that drives the digital circuit. This would, for instance, be the case if
the respective clock is used as an input to the considered inverter. Denoting the
frequency of the clock as fclk, it follows that [32, p. 259],

Pswitch = fclk · C · V 2
DD. (2.46)

However, Equation 2.46 is a rather rough estimation of Pswitch, since most logical
gates in a digital system do not change their output value twice per clock period.
As the output of a gate directly depends on the applied input values, the number of
output transitions for a given gate is actually a function of the statistical character
of the applied input data [33]. To cope with this fact, it is common to include
the switching activity, γ, into Equation 2.46, which is used to describe the average
number of changes in the output value. Since the capacitance C is charged during the
transition from logic zero to logic one, and as each charge must at some point result
in a discharge, γ is commonly computed as the average number of transitions from
low to high of the gate output during a clock cycle. Based on this, Equation 2.46
can be reformulated as [33],

Pswitch = γ · fclk · C · V 2
DD. (2.47)

In general, decreasing any of the components of Equation 2.47 yields to a reduc-
tion of the consumed switching power. While this can be achieved at many different
stages during the design of digital systems, it is for the purpose of this project
reasonable to concentrate on techniques that can be applied during the Register-
Transfer Level (RTL) phase of an implementation. Such techniques normally focus
on the reduction of the switching activity, γ.

An example of an Register-Transfer Level (RTL)-technique for power reduction
is the so called guarded evaluation [34, p. 11.17]. The concept of this technique is to
reduce γ by preventing non-valid or irrelevant data to propagate into combinational
blocks of a system, where they would lead to unnecessary computations, and as such,
to an unnecessary high switching activity. One possible way to implement guarded

47

2.5. DYNAMIC POWER IN DIGITAL SYSTEMS

evaluation into a system is by means of latches that are inserted at the input of the
considered combinational block.

However, it should be noted that the insertion of latches increases the number of
gates in the system, which, with respect to Equation 2.45 yields to an increase of the
power. This trade-off between a potential increase in the power consumption due
to additional logic against a decrease of the power dissipation through a reduction
of γ is a typical aspect of RTL-techniques for power reduction.

Another example of such a technique is the so called clock gating, which is espe-
cially useful if to interconnected sub-systems operate at different clock frequencies.

Clock gating

One well known design approach to reduce dynamic power consumption is the so
called clock gating [34, pp. 11.5-11.13]. Simplified, a clock gate is a digital compo-
nent, which can be used to suppress an applied clock signal and thus prevents it
from propagating into connected synchronous blocks.

A major part of modern digital systems are synchronous registers, used to store
data. The most basic example of such a storage element is the D-flip-flop, which
loads the applied input to its output on each positive clock edge of the connected
clock signal [32, pp. 431-436]. However, it is often undesirable to load a new value
to the register each time a positive clock edge occurs. Therefore, many storage
elements use an approach which makes it possible to chose to either load a new
input or to keep the current data by reloading it.

Figure 2.9: D-flip-flop with enable signal [34]

Figure 2.9 shows a common realization of such an enabled register [34, p. 11.8].
If the enable signal is set, the applied multiplexer selects the data input as an input
to the D-flip-flop. In the case that the enable signal is low, the current data is
reloaded. It should be noted, that this approach introduces an overhead in form of
the introduced multiplexer.

However, even though the in Figure 2.9 depicted design works as desired, it is not
a very power efficient solution. For instance, even if the D-flip-flop does not load a
new value, dynamic power is dissipated on each positive clock edge. A possible way

48

2.5. DYNAMIC POWER IN DIGITAL SYSTEMS

(a) Schematic of a clock gate [34]

clk in

ctrl

q

clk out

(b) Waveform of a clock gate

Figure 2.10: A simple clock gate

to omit this is to suppress the applied clock signal, whenever no new value is loaded
into the register. In this way, redundant switching activity can be reduced.

This can be achieved by means of clock gates. As stated above, clock gates are
digital components that can be controlled to suppress a clock signal. In other words,
by deactivating the clock gate, the applied clock is prevented from transferring
to the output of the gate. If the clock gate is activated, the clock signal passes
unobstructed. An example of a simple clock gate is presented in Figure 2.10.

49

2.5. DYNAMIC POWER IN DIGITAL SYSTEMS

50

Chapter 3

ADC as an Entropy Source

It has been mentioned during the motivation of this project (see Section 1.3), that
its is desirable to explore the possibility of using an ADC as an entropy source of a
TRNG.

From Section 2.3, it seems possible to generate entropy containing data based
on the internal thermal noise of an ADC, even though the amount of entropy per
single output bit is likely to be low. The following chapter presents therefore the
implementation and analysis of such a weak source of entropy, using an ADC em-
bedded on an EFM32 Wonder Gecko (EFM32) from Silicon Laboratories [5]. This
source implementation is used to generate entropy containing data streams neces-
sary to evaluate the TRNG designs presented during this report (see Chapter 5).
In addition, the power and timing performance of the used ADC is adopted as a
reference, in order to estimate the energy requirements of the introduced TRNGs.

During this project, an entropy source has been implemented by programming an
EFM32 using the C programming language. This is presented in Section 3.1. After
the implementation process, it is of interest to perform a short analysis of the output
data, in order to be able to choose a appropriated post-processing algorithm. It has
been mentioned in Section 2.4, that, while the IHF post-processor can operate on
data streams as long as they contain a sufficient amount of min-entropy, the VNC
requires its input to meet rather strict requirements on its statistical characteristic.
To test the output of the source for these von Neumann conditions, Section 3.2
proposes a novel statistical hypothesis test, which can be used to evaluate whether
the VNC is an appropriate post-processing algorithm for the tested entropy source.
Finally, Section 3.3 presents a short analysis of the output of the in Section 3.1
introduced entropy source.

3.1 Implementation of an Entropy Source Using

an ADC

It has been shown in Section 2.3, how thermal noise in an ADC yields to random
variations and thus to an entropy containing output. Even though it has been con-
cluded that this is generally true, an illustrative example has been considered, which
uses a constant input signal. It has been stated during the discussion around Fig-

51

3.1. IMPLEMENTATION OF AN ENTROPY SOURCE USING AN ADC

ure 2.8 that, for this simple model, the expected output bits are both identically
distributed and independent. Recalling from Section 2.4.1 that these are the statis-
tical conditions that enable the use of the VNC as a post-processor, it is desirable
to try to realize an entropy source, which is as closely related to the in Section 2.3
presented model as possible. Based on this, the following section introduces an
entropy source which uses the ADC of an EFM32 Wonder Gecko with a constant
input signal.

The EFM32 includes a SAR ADC with a resolution of up to 12 bits [5]. Since the
in Figure 2.8 described variations due to noise affect mostly the LSB of the output
data, the full 12-resolution is needed in order to use the ADC as an entropy source.
With regards to the input signal, the ADC can be connected to 6 internal signals,
including the supply voltage and the reference voltage of the ADC divided by a
factor of 2. Both these signals should ideally be constant, and it is therefore chosen
to use the halved reference voltage as an input. The expected LSB for this input
signal is 1 [5].

Considering the timing and the choice of the frequencies of the applied clocks,
it is reasonable to assume that a large number of sampling operations has to be
performed by the ADC. For instance, to generate a key for the AES, 128 bits are
required. Even if the ADC could produce one bit of entropy per sample, 128 sampling
operations would be required. However, as stated in Section 2.3, it is expected
that the generated entropy is far below one per single output bit. Hence, some
kind of post-processing is needed, which in general is of compressing nature (see
Section 2.4) and thus require an even larger number of input bits and, as such,
sampling operations. As a result, in order to keep the time required by the TRNG
in a practical range, it is tried to keep the time spend to generate one ADC sample
as short as possible.

The EFM32 supports a main clock frequency of up to 48 Mhz. However, this
clock signal is too fast to drive the ADC and the clock applied to the ADC must
thus be downscaled. As a result, using 48 MHz for the main clock of the MCU, the
maximum clock frequency for the ADC is 12 MHz. Further more, the ADC requires
several clock cycles to generate a single sample. For the required 12-bit resolution,
a minimum of 13 clock cycles is needed. Hence, for the given parameters, the ADC
can generate approximately one sample per 1.08µs. In other words, using the ADC
as an entropy source, it produces one output bit per 1.08µs.

Appendix B presents a C-code routine which sets the EFM32 up to use the
discussed parameters and then produces and exports an arbitrary large amount of
output data.

Having established a a setup for an entropy source, it is of interest to derive the
estimates of its power and energy performance, to be able to compare it to the
estimates gathered for the implementations of the post-processors (see Chapter 6).
Ideally, precise results could be found by measuring the MCU required voltage and
current. However, the technology used to realize the EFM32 is kept secrete by
the vendor. As such, comparing the energy required by the ADC directly to the
corresponding results for the post-processors is not possible.

For the purpose of this project, the power and energy performance of the ADC

52

3.2. A TEST FOR VON NEUMANN CONDITIONS

in the EFM32 is therefore rather considered to be an indicator of in practice typical
values and not as concrete measurements. It is therefore suitable to base the estima-
tion of the dissipated power and energy on the data provided in the documentation
of the device [5][35]. With respect to these, the EFM32 is supplied with 3.3 V and
the ADC has an active current of roughly 351µA. Hence, the power dissipated in
the ADC can be approximated at 1.16 mW. Recalling that the sampling period is
estimated to be 1.08µs, this means that the here presented entropy source requires
roughly 1.25 nJ per output bit.

Table 3.1 summarizes the most important parameters of the presented setup.

Table 3.1: Summary of the used ADC parameters

Main clock frequency 48 MHz
ADC clock frequency 12 MHz
Samplings frequency 926 kHz
Sampling periode 1.08µs
Supply voltage 3.3 V
Active current 351µA
Dissipated power 1.16 mW
Energy per bit (LSB) 1.25 nJ

Before moving on to further analyze the proposed entropy source, it can be
stated that the in Table 3.1 presented data indicate that using the ADC as a source
is quite costly with regards to both time and energy per bit. A possible alternative
approach that would hide this costs could be to store the LSBs of previous sampling
processes in a buffer. In other words, assuming that the ADC is first used to sample
a signal independently of the process of generating random data, the LSBs of this
conversions would be stored in a buffer. Due to the thermal noise in the ADC,
the stored LSBs would contain some amount of entropy. When the TRNG then is
activated it could use this buffer as an “entropy source”. In this way, the ADC does
not have to be run again in order to generate bits for the TRNG.

However, it is reasonable to assume that the so gained LSBs do not correspond
to a constant input signal to the ADC. As such, their statistical characteristics are
rather unknown and it is harder to find an appropriated post-processor and select
reasonable parameters for it.

Even though this approach promises a drastically reduction of the time and
energy used to generate the source bits of a TRNG, exploring it in more detail is
left for further work, due to the limited time frame of this project.

3.2 A Test for von Neumann Conditions

As stated during its presentation in Section 2.4.1, the VNC requires its input to
meet two statistical characteristics, in order to function properly. For convenience,
this von Neumann conditions are restated here. First, denoting the input stream
as −→x = 〈x0, ..., xn−1〉, where each element in −→x is a single bit, the elements of
each successive bit-pair, 〈x2i, x2i+1〉, must be statistical independent. Second, the

53

3.2. A TEST FOR VON NEUMANN CONDITIONS

probability of x2i taking a concrete value must be equal to the probability that x2i+1

takes the same value. For instance, Pr(x2i = 0) = Pr(x2i+1 = 0) = p.
It is also worth to recall that, while the von Neumann conditions must be satisfied

in order for the VNC to work as described in Table 2.4, two related aspects are not
required. First, p is allowed to vary between bit-pairs. Second, the −→x can contain
forms of dependencies, as long as it is given that x2i and x2i+1 are independent.

Since only an input with von Neumann conditions guarantees that the VNC
works properly, it is of interest to be able to test an entropy source for these condi-
tions in the same manner as the NIST test suite tests a source output for randomness.
If such a test concludes that a source provides von Neumann conditions, the VNC
can be used as a post-processing algorithm for the given source. However, if the test
result is negative, a different source or post-processing algorithm has to be used.
The following section proposes a possible test for von Neumann conditions, which
is used to evaluate the entropy source presented in Section 3.1

As independence between successive bits is one of the von Neumann conditions,
a first approach for a von Neumann condition test could be based on tests that
are designed to test for independence. Examples of such tests are the well known
Fisher-Irwin test [17, pp. 297-302] or an alternative test, presented in [15, pp. 373-
376], which is closely related to the chi-squared goodness-of-fit test, as discussed
in Section 2.2.1. While a detailed presentation of these tests is omitted here, the
following gives a brief background on the basic concept of these test, before their
suitability for a von Neumann condition test is discussed.

Both tests have a similar approach. They are designed to test the null-hypothesis,
that two events are independent. For a von Neumann condition test, it would there-
fore be appropriated to formulate the null-hypothesis, that x2i and x2i+1 are indepen-
dent. The tests base the evaluation of this hypothesis on the observed frequencies of
the four possible outcomes for the bit-pair 〈x2i, x2i+1〉. This is depicted in Table 3.2,
where the observed frequency of the pair 〈x2i = 0, x2i+1 = 0〉 is referred to as o00,
〈x2i = 0, x2i+1 = 1〉 corresponds to o01, and so on. It is also shown in Table 3.2
that the addition of appropriated observed frequencies yields the number of pairs
for which one bit takes a specific value. For instance, the number of pairs for which
x2i = 1 is o1x = o10 + o11. In other words, o1x is the number of times that x2i = 1
without consideration of x2i+1. With regards to the marginal probability, introduced
in Section 2.1, it is therefore common to refer to o1x as the marginal frequency of
x2i = 1 [15, p. 374].

Table 3.2: Contingency table

x2i+1 Total
0 1

x2i
0 o00 o01 o0x = o00 + o01
1 o10 o11 o1x = o10 + o11

Total ox0 = o00 + o10 ox1 = o01 + o11
n
2

Both above mentioned tests for independence use the marginal frequencies to
express expectations for the observed frequencies given that x2i and x2i+1 are inde-

54

3.2. A TEST FOR VON NEUMANN CONDITIONS

pendent. Without going into detail, it is fairly easy to understand the motivation
of this approach: It follows directly from the definition of statistical independence,
as presented in Equation 2.9, that the probability of observing two statistical in-
dependent bits is given by the product of their marginal probabilities. Since the
marginal frequencies consider only one isolated bit, they are a reasonable choice for
an estimate of the corresponding marginal probability. For instance, the marginal
probability of x2i = 0 can be estimated as,

Pr(x2i = 0) =
o0X
n/2

. (3.1)

Accepting this estimation and letting e00 be the expected frequency of the pair
〈x2i = 0, x2i+1 = 0〉 given that the bits are independent, it follows that,

e00 =
n

2
· Pr(x2i = 0) · Pr(x2i+1 = 0) =

o0X · oX0

n/2
. (3.2)

It is worth noticing that Equation 3.1 and Equation 3.2 depict specific examples,
but can be used for any arbitrary bit pair 〈x2i, x2i+1〉 through slight modification.
Even though the Fisher-Irwin test and the in [15, pp. 373-376] presented test use
different test statistics, both test can be considered to relate the observed frequencies
to the expected frequencies. The evaluation of the test is then based on the match
or mismatch of expectation and observation.

The above presented tests seem to be a valid approach to test whether to succes-
sive bits are independent. However, the main drawback of using one of the tests is
that they are designed to test solely for independence. While independence between
x2i and x2i+1 is an important aspect of von Neumann conditions, it is as important
that both bits are identically distributed, that is, Pr(x2i = 0) = Pr(x2i+1 = 0) = p.
One possible approach to modify the tests could be to use once more Equation 3.1
and estimate Pr(x2i = 0) and Pr(x2i+1 = 0) by means of their observed frequencies,
o0X and oX0, respectively. Thus, if the source has von Neumann conditions and
Pr(x2i = 0) = Pr(x2i+1 = 0), it would be expected that o0X = oX0.

However, this approach is unsatisfying for a von Neumann condition test. This
is due to the fact that, while the von Neumann algorithm requires that Pr(x2i =
0) = Pr(x2i+1 = 0) = p, it allows for p to vary between different bit pairs. But using
Equation 3.1 to estimate the marginal probabilities yields rather an average value
of, for instance, Pr(x2i = 0) over n

2
bit pairs. An approach that compares o0X and

oX0 can therefore not cope with variations of p.
This can be illustrated by considering a bit stream of 100 bits for which p varies

fast and differs from bit to bit. However, it is not impossible that for the observed 100
bits o0X and oX0 are equal or at least in the same range. Thus by using Equation 3.1,
one would conclude that Pr(x2i = 0) = Pr(x2i+1 = 0), even though this is in fact
not the case.
Having established that tests of independence, as those discussed above, are rather
unfit to be used as a von Neumann condition test, an alternative approach has to
be found. In the following, such a novel alternative test procedure is proposed.
It is directly based on the concept of the von Neumann corrector, as presented in
Section 2.4.1. It is worth to recall that the foundation of the VNC post-processor
is a simple observation regarding Table 2.4. The table states that the probability

55

3.2. A TEST FOR VON NEUMANN CONDITIONS

of observing a von Neumann pair, that is, either 〈x2i = 0, x2i+1 = 1〉 or 〈x2i =
1, x2i+1 = 0〉, is equal for both constellations, if the von Neumann conditions are
satisfied. As a result, it is expected that, in such a situation, the observed frequency
of one von Neumann pair type, say o01, is close to o01+o10

2
. As this expectation is

a direct result of the assumption of von Neumann conditions in the source X, it
makes sense to use it as the basis of a von Neumann condition test.

At the beginning of the development of a test stands, as described in Sec-
tion 2.2.1, the formulation of the null-hypothesis, H0. To be able to test both
aspects of the von Neumann conditions, the null-hypothesis is formulated as,

H0 :

{
Pr(x2i, x2i+1) = Pr(x2i) · Pr(x2i+1) (independence),
Pr(x2i = 0) = Pr(x2i+1 = 0) = p (identical distribution),

(3.3)

where the independence statement holds for all possible combinations of x2i and
x2i+1. It should be noted, that in contrast to the above discussed tests for indepen-
dence, the in Equation 3.3 specified null-hypothesis of the here presented alternative
test approach covers both von Neumann conditions.

Based on H0, a appropriated test statistic s has to be found. As the focus of the
test lies on the frequencies of the outcomes 〈x2i = 0, x2i+1 = 1〉 and 〈x2i = 1, x2i+1 =
0〉, the test statistic, s, is chosen to be the frequency of 〈x2i = 0, x2i+1 = 1〉, that is,

s = Number of 〈x2i = 0, x2i+1〉 occurrences. (3.4)

There are two important aspects of this choice. First, s is neither the observed
frequency, o01, nor the expected frequency, e01. As discussed in Section 2.2.1, the
test statistic s is required to be a variable that can take different values with a
given probability. However, both o01 and e01 are fixed values. Using the notation
established in Section 2.2.1, the expected frequency can be considered to be the
mean of the reference distribution of s, E[s] = e01, while the observed frequency
corresponds to the observed test statistic, so = o01. Second, it should be stressed,
that this choice of s is arbitrary and the frequency of 〈x2i = 1, x2i+1 = 0〉 could have
been chosen in the same manner. This is due to the fact that both frequencies are
supposed to be approximately equal.

Having defined s, it is necessary to find the corresponding reference distribution.
In order to do so, it is reasonable to first find the mean of the distribution, E[s],
which is equal to the expected frequency e01, and then establish how s is distributed
around E[s]. A first approach could be based on the probability of observing 〈x2i =
0, x2i+1 = 1〉 as stated in Table 2.4. The table shows that Pr(x2i = 0, x2i+1 = 1) =
p · (1 − p). Assuming that the test is conducted over an input stream −→x with n
elements, the number of bit pairs is n

2
. As a result, the expected frequency for

〈x2i = 0, x2i+1 = 1〉 is,

e01 = E[s] =
n

2
· p · (1− p). (3.5)

The obvious problem of using Equation 3.5 is that p is unknown. Further more,
during the discussion of the test for independence it has been pointed out that it
is rather difficult to find an appropriated estimate of p that allows for variations
between bit pairs.

56

3.2. A TEST FOR VON NEUMANN CONDITIONS

However, it is possible to avoid the use of p. It follows from Table 2.4 that the
probability of observing 〈x2i = 0, x2i+1 = 1〉 is equal to the probability of observing
〈x2i = 1, x2i+1 = 0〉. Thus, the expected frequency of observing 〈x2i = 0, x2i+1 = 1〉
is equal to half the number of observed von Neumann pairs. Denoting the number
of observed von Neumann pairs as ovN = o01 + o10, this yields,

e01 = E[s] =
ovN
2
. (3.6)

Even though p is affecting the expected frequency of von Neumann pairs, Equa-
tion 3.6 is completely independent of p. Seen from a different perspective, Equa-
tion 3.6 formulates the simple expectation that 〈x2i = 0, x2i+1 = 1〉 is observed
as often as 〈x2i = 1, x2i+1 = 0〉, regardless of how many von Neumann pairs are
expected to be observed.

To establish how s is distributed around the in Equation 3.6 stated mean E[s],
it may be helpful to consider the following model: The input stream −→x contains
of n

2
bit-pairs of which ovN are von Neumann pairs. Focusing merely on the von

Neumann pairs, X simplifies to a source that produces either 〈x2i = 0, x2i+1 = 1〉
or 〈x2i = 1, x2i+1 = 0〉, both with equal probability, given that H0is true. Assuming
that the bit pairs are generated independently from each other, such a model is in
the literature classified as a Bernoulli process [15, p. 144].

It is important to note that the assumption that the bit pairs are independent
is not part of the von Neumann conditions, but rather implies some stricter form
of independence in the data. As such, this assumption yields the proposed test to
evaluate the sourceX for stricter characteristics than required by the VNC. However,
it has been discussed in Section 2.4.1 that mutual independence is a desirable feature
of −→x in order to achieve an output with maximum entropy rate. Thus, designing the
test to evaluate the data for a stricter form of independence by using the mention
assumption is acceptable at this point.

It can be shown that the frequency of one specific outcome of a Bernoulli process
is binomially distributed [15, p. 145]. Since, given that H0is true, the generation
of von Neumann pairs can be modeled as a Bernoulli process, this means that
the frequency of the outcome 〈x2i = 0, x2i+1 = 1〉 is binomially distributed over
the range [0, ovN] with probability 1

2
. Thus, the reference distribution of s is the

binomial distribution over the same range and with the same probability. The
mean and standard deviation of the distribution can be shown to be ovN

2
and

√
ovN
2

,
respectively [15, p. 147].

Without going into detail here, it should be mentioned that the binomial distri-
bution with mean ovN

2
and standard deviation

√
ovN
2

can be approximated for large
values of ovN by the normal distribution with the same mean and standard devi-
ation [15, pp. 172-192]. This is illustrated in Figure 3.1, which shows the validity
of the approximation for ovN = 128. An explicit choice of the number of by the
test considered bits, n, which directly affects ovN is postponed to the execution of
the test in Section 3.3. In the meanwhile however, it is simply assumed that n is
selected in a way that guarantees the approximation to be valid. In other words, for
the rest of this discussion, the pdf of the reference distribution of s is considered to
be the normal distribution,

57

3.2. A TEST FOR VON NEUMANN CONDITIONS

Figure 3.1: Approximation of the binomial distribution by the nor-
mal distribution for ovN = 128

pdf(s;H0) = norm(s;
ovN
2
,

√
ovN
2

), (3.7)

Based on the established reference distribution of s, it is now possible to conduct
the test by relating the observed test statistic to the reference distribution. As
stated above, for this test, the observed test statistic is the observed frequency of
〈x2i = 0, x2i+1 = 1〉, so = o01. It is essential to note that both an observed frequency
that is much larger than the expected frequency and an observed frequency that is
much less than the expected value are unlikely given that H0is true. Thus, the test
should reject H0either if o01 << e01 or o01 >> e01. This means that the given test
is two-sided.

As a result, one possible way to evaluate the test based on o01 is to select a level
of significance, α, and use it to define two critical values c− and c+. Since the normal
distribution is a constant distribution, it is possible to combine Equation 2.19 and
Equation 3.7 and derive the following relation between α and the critical values,

α = 2 ·
∫ c−

−∞
norm(s;

ovN
2
,

√
ovN
2

)ds

= 2 ·
∫ ∞
c+

norm(s;
ovN
2
,

√
ovN
2

)ds.

(3.8)

As discussed in Section 2.2.1, the test would then yield a rejection of H0, if
o01 ≤ c− or o01 ≥ c+.

58

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

For example, observing ovN = 225000 von Neumann pairs, the expected test
statistic, E[s] = e01, equals 112500 pairs. Setting the level of significance of the test,
for instance, to α = 0.01, the critical values can be computed from Equation 3.8 to
be c− ≈ 1118990 and c+ ≈ 113110. In other words, for the given example, the test
would fail if the observed test statistic o01 differs with more than approximately 610
pairs from the expected value of 112500.

However, in order to increase the significance of the test, it is reasonable to perform
the test for a number of N sequences instead of a single sequence, in the same man-
ner as done for the NIST test suite presented in Section 2.2.2. Since this approach
opens for the possibility of contradicting test results of the single (first-level) tests,
it is necessary to be able to derive a single test result. As for the NIST test suite,
it is chosen to use a second-level approach based on the p-values of the first-level
tests, using the chi-squared goodness-of-fit test, as described in Section 2.2. Since
the presented test is two-sided and it can be shown that the normal distribution is a
symmetrical continuous distribution, it follows from combining Equation 2.20, Equa-
tion 3.6 and Equation 3.7 that the p-value of the first-level tests can be computed
by,

p-value =

{
2 ·
∫ o01
−∞ norm(s; ovN

2
,
√
ovN
2

)ds if o01 ≤ ovN
2
,

2 ·
∫∞
o01

norm(s; ovN
2
,
√
ovN
2

)ds if o01 >
ovN
2
.

(3.9)

An implementation of the here introduced von Neumann condition test, using
MATLAB, is presented in Appendix C.1. The script performs the test by first scan-
ning through the applied data sequences and counting the number of von Neumann
pairs, ovN, and the number of observations of the bit-pair 〈x2i = 0, x2i+1 = 1〉, o01,
in the data. Based on these counts, the test is evaluated for each applied sequences.
It is worth noticing, that the script does not explicitly compute the critical values,
by means of Equation 3.8. Instead, the p-value for each sequence is calculated by
solving Equation 3.9. However, recalling from Section 2.2.1, that a observed test
statistic that corresponds to a critical region results in a p-value below the level of
significance α, the test can directly be evaluated from the p-value for a given α.
After the p-value has been found, the test script exports the results of each applied
sequence to an output file. If the different sequences yield to different conclusions,
the script can be enabled to run a second-level test. In that case, the chi-squared
goodness-of-fit test, as described in Section 2.2.1, is used to evaluate whether the
first-level p-values are uniformly distributed. This results in a single second-level
p-value, computed as described in Equation 2.25.

3.3 Output Analysis of the Entropy Source

Having established a basic entropy source in Section 3.1, it is necessary to perform
an analysis of the generated output, in order to be able to choose an appropriated
post-processing algorithm, later during this project.

It is reasonable to start the analysis of the entropy source, by running the output
through the NIST test suite, as presented in Section 2.2.2. Even if the introduced

59

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

source implementation does not pass the test suite without post-processing, execut-
ing these series of tests can yield valuable information about the statistical charac-
teristic of the source data, which can be useful for the choice of a post-processing
algorithm.

Before performing the NIST test suite, some basic test parameters have to be
determined. Most importantly, the number of input bits has to be chosen. It has
been stated in Section 2.2.2, that each selected test is performed N times and for
each run a different n-bit input is considered. Thus, a total of N · n bits is used as
an input. With regards to the in Table 2.3 stated requirements on the length of the
input sequences, it is reasonable to choose n = 1 Mbit (1Mbit = 1048576 bits). This
choice is further encouraged, as a sequence length in the range of 106 is a frequently
used value [19].

The decision of the number of sequences, N , is more complex. As discussed in
Section 2.2.2, the significance of the test procedure is strengthened with an increasing
number of input bits. Thus, it is beneficial to choose a large value of N . For
example, [19] suggests N to be in the range of 20000 sequences. However, given
the circumstances of this project, such large value of N is not suitable. Using,
for instance, N = 20000 would make it necessary to generate a total of 20 Gbit. In
addition, for the sake of consistency, it is appropriated to determine N in a way that
makes it possible to use the same value during the evaluation of the post-processors
(Chapter 5). Keeping the compressing nature of the post-processing algorithms
in mind (see Section 2.4), it is reasonable to assume that using n = 1 Mbit and
N = 20000 would yield the necessity of generating more than 100 Gbit of source
data. Considering both the limited time frame and the hardware resources available
during this project, using such a large value of N is therefore clearly unrealistic.

Based on this argumentation, it has been chosen to use N = 64 for the purpose
of this project. While this clearly reduces the significance of the executed tests, the
amount of data that has to be generated is more suitable for the given circumstances.
In addition, in the case that a second-level test must be performed to evaluate the
test results of the first-level tests, the NIST test suite groups the p-values of the
first-level test by default into k = 10 groups. Thus, with regards to Section 2.2.1,
N = 64 yields the chi-squared goodness-of-fit test to lead to valid results, for k = 10
(see Equation 2.23).

Having established the number of input bits, it remains to determine the level of
significance both for the first-level tests (α) and the second-level tests (α′). For the
purpose of this project, it has been chosen to set α = 0.01 and α′ = 0.0001, motivated
by the fact that these are frequently used values for the NIST test suite [18][19].
Table 3.3 summarizes the parameter choices for the NIST test suite.

Based on the chosen parameters, the NIST test suite is performed on a 64 Mbit in-
put stream, generated by the in Section 3.1 presented source implementation. It is
worth noticing, that all bits have been generated at room temperature. Following the
recommendation of NIST, the Frequency test, as presented in Section 2.2.2, is per-
formed first, in order to evaluate if other tests of the test suite have to be performed.

The main results of the Frequency test for the 64 source sequences are presented in
Table C.1 in Appendix C.2.1. The table shows, that the observed test statistic so, as
defined in Equation 2.27, is in the range of approximately 400,000 for each of the 64

60

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

Table 3.3: Used parameters for the NIST test suite

Parameter Value

Bits per input sequence (n) 1,048,576
Number of input sequences (N) 64
Level of significance for first-level tests (α) 0.01
Level of significance for second-level tests (α′) 0.0001
Number of p-value groups (k) 10

performed tests. This means, that the number of 1’s in the data exceeds the number
of 0’s by roughly 400,000, in each sequence. Recalling from the example given during
the presentation of the Frequency test in Section 2.2.2, that, for a sequence of length
n = 1, 048, 576, the test fails at a significance level of α = 0.01 if |so| > 2, 638, it is
obvious that each of the 64 tests fails. Due to this clear result of the first-level tests,
a second-level test is not necessary. However, it is worth noticing that the observed
test statistics differ so extremely from the expected value E[s] = 0, that the p-value
of each test equals zero.

Based on the observed test statistics, it is possible to derive the percentage of 0’s
in the corresponding sequence. They are presented in Table C.1 and further illus-
trated in Figure 3.2a. The minimal percentage of 0’s is approximately 25.94%, and
the maximum is at roughly 30.93%. The average percentage over all 64 sequences is
at approximately 28.75%. Hence, the data is clearly biased towards 1, as expected
based on the used input signal for the implementation (see Section 3.1).

Figure 3.2a shows that the bias of the data varies between the sequences. With
regards to Figure 2.8, a possible reason for this variations of the bias could be changes
in the variance of the thermal noise process, due to variations in the temperature.
However, this variations can be considered to be minor. The difference between the
maximal and minimal percentage of 0’s in the data is approximately 5%. In addition,
the bias varies rather slowly between sequences. This is depicted in Figure 3.2b,
which presents the absolute value of the difference in the percentage of 0 occurrences
in the data between to subsequent sequences. The graph shows that the bias of the
data rarely differs with more than 1% between two sequences.

Following the recommendation of NIST, other tests of the test suite are not per-
formed for the data delivered by the source, as the Frequency test fails.

Given the bias of the analyzed data, it is of interest to evaluate whether the VNC
of Section 2.4.1 can be used to correct this statistical flaw. It is worth to recall from
Section 3.1 that the used input signal for ADC has been chosen for the purpose of
deriving von Neumann conditions in the output stream. While Chapter 5 analyses
the data produced by a VNC implementation using the here discussed data as a
source input, a first expectation of the success of this approach is at this point gained
by performing the test for von Neumann conditions, which has been presented in
Section 3.2.

In order to perform the test for von Neumann conditions, it is necessary to
determine the test parameters, in the same manner as done above for the NIST test
suite. It is worth noticing that the von Neumann condition test is designed in a

61

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

(a) Percentage of 0’s in the sequences of the source data: The red line depicts the average
of approximately 28.75%.

(b) Absolute value of the difference in percentage of 0’s in subsequent sequences: The red
line depicts 1%.

Figure 3.2: Results of the Frequency test for the source data

manner fairly similar as the tests contained in the NIST test suite for randomness,
as for example, the Frequency test presented in Section 2.2.2. As a result, the same
type of test parameters have to be defined for both tests.

It is reasonable to use the test parameters determined for the NIST test suite, as
stated in Table 3.3, as well for the von Neumann condition test, due to two reasons.
First, using the same test parameters increases consistency between the different
test procedures. Second, using n = 1 Mbit yields to a total of 524,288 bit-pairs per
sequence. Even though it cannot be stated with absolute certainty, it is reason-
able to assume that this yields the number of observed von Neumann pairs, ovN, to
be in the range of several ten thousands or even hundred thousands. Taking into
consideration that the for the von Neumann condition test used approximation of
the binomial distribution by means of the normal distribution yields valid results
for ovN = 128 (see Figure 3.1), using an ovN in the range of the thousands pairs
guarantees the validity of the approximation.

The results of running the von Neumann condition test on the source data are
presented in Table C.2, in Appendix C.2.1. The number of observed von Neumann
pairs, ovN, in the sequences ranges from 214,591 to 243,063. The average value of ovN
is approximately 228,960. The average number of occurrences of the bit-pair 〈0, 1〉,

62

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

o01, is 61,143 and o01 ranges from 51,884 to 69,603. With regards to the example
given at the end of Section 3.2, it is known that the von Neumann condition test
fails for ovN = 225, 000 and α = 0.01 if o01 is smaller than 111,890 or larger than
113,110. Based on this, it is obvious from the data presented in Table C.2 that each
of the 64 performed first-level tests fails. This can also be seen from the fact that
the p-value of each test is equal to zero, which clearly would yield a second-level
test to reject the underlying null-hypothesis.

Considering the null-hypothesis of Equation 3.3 and the assumptions that have
been made during the definition of the test, two factors can cause the von Neumann
condition test to fail. First, the bias of the data can vary to quickly, such that the
probability p of observing 0 is not equal for two successive bits. Second, the bits in
the data are in some kind dependent on each other.

Evaluating which of the mentioned reasons yield the test to fail is a nontrivial
task. However, some first indicators exist. With respect to the in Figure 3.2 pre-
sented results of the Frequency test, it has been stated that the bias of the tested
sequences varies slowly and in a minor manner. Keeping in mind that this is a
major simplification, it is possible to assume that the bias in the sequences vary in
a similar manner. Based on this assumption, it is unlikely that the von Neumann
condition test fails because of too fast variations of the source bias.

In addition, it is striking that all observed test statistics are in the same range.
This is illustrated in Figure 3.3a, which shows the number of von Neumann pairs,
ovN, the observed test statistics, o01, and the expected test statistics, e01 = ovN

2
(see

Section 3.2) for all 64 tested sequences. All three entities can be considered to be
rather constant over all tests. For ovN and e01, this behavior is expected due to the
minor variations of the bias. For a close to constantly towards 1 biased bit stream,
the number of bit pairs containing a 0 is supposed to be as well unvarying. Since
e01 is a linear function of ovN, this obviously holds also for the expectation of the
test statistic.

However, also o01 is close to constant for all 64 sequences. Further more, the small
variations of the observed test statistics are in accordance with similar variations of
e01. This is illustrated in Figure 3.3b, which depicts the normalized difference be-
tween e01 and o01, that is, 1− o01

e01
. Thus, the observed test statistics are continuously

smaller than the corresponding expected value, with a close to constant percentage.

As a result, observing the bit-pair 〈1, 0〉 is much more likely than observing 〈0, 1〉.
Due to the limit time frame of this project, investigating the cause of this fact is left
for further work. Nevertheless, it is a strong indicator of dependencies in the data.
This is easiest seen by assuming for a moment that the data is independent. In that
case, a fast, random changes of the source bias would have to be the cause of the
failure of the von Neumann condition test. However, while this is a valid reason for
o01 differing from the expected value e01, it does not give any explanation for o01
being continuously smaller than e01, especially not at a constant rate. Thus, it is
reasonable to assume, that the high occurrence of the bit-pair 〈1, 0〉 is due to some
system related behavior which causes this bit-pair to be more likely than 〈0, 1〉,
and not to random variations of the bias. As such systematical behavior causes
the expectation for the second bit in a pair to be affected by the first bit, it causes,
from a statistical point of view, the data to be dependent, as discussed in Section 2.1.

63

3.3. OUTPUT ANALYSIS OF THE ENTROPY SOURCE

(a) Frequencies of von Neumann pairs and the expected and the observed test statistics
for the tested sequences

(b) Normalized difference between the observed and expected test statistics for the tested
sequences

Figure 3.3: Results of the von Neumann condition test for the
source data

In conclusion, based on the Frequency test it is obvious that the data delivered by the
entropy source implementation of Section 3.1 cannot be considered to be random,
due to its strong bias towards 1. The bias varies marginally around a zero-ratio of
approximately 29%.

Also the von Neumann condition test for the data fails clearly. As such, the
in Figure 2.7 depicted model is not fit to describe the used source implementation.
Analyzing the results of the test in more detail yields to the conclusion that depen-
dencies between bits exist in the data stream. Based on this, the successful use of
the VNC post-processor for the given entropy source seems unlikely.

It exists a variety of reasons that could cause the observed dependencies. One
possible explanation could be systematic noise from digital circuitry surrounding
the ADC. A detailed exploration of this aspect is left for further work.

64

Chapter 4

Post-Processing Algorithms

In Section 2.4, two different approaches for a TRNG post-processing algorithm have
been presented: Section 2.4.1 introduces the von Neumann Corrector (VNC) in
form of Algorithm 1. The Extractor based on pairwise Independent Hash Functions
(IHF) is discussed in Section 2.4.2, yielding two possible algorithms, Algorithm 2
and Algorithm 3.

In the following section, this algorithms are considered in more detail, with the
objective to create one functional implementation of both the VNC and the IHF.
With regards to the motivation of this project (see Chapter 1), the main focus during
the implementation of the post-processing algorithms lies on energy efficiency. Since
the implementation of an algorithm can be time consuming, it is therefore of interest
to find a first indicator on the energy performance of the different algorithms, before
the implementation step. In that way, it is possible to select only the most energy
efficient solutions and it is avoided to spend time on rather inefficient solutions. In
addition, it is important to be able to compare the complexity of the VNC and
the IHF during the discussion of different solutions of complete TRNG-systems,
presented in Section 7.1.

The in this section derived post-processor implementations can then be used
to both test whether the post-processors can be used for the ADC based source
(Chapter 5) and to estimate the energy performance of the different TRNG solu-
tions (Chapter 6).

As a result, the following section is divided in two main parts. First, the complexities
of the in this report discussed post-processing algorithms is analyzed and compared.
This is presented in Section 4.1. Second, Section 4.2 introduces the implementations
of the VNC and the IHF.

4.1 Complexity of the TRNG Post-Processing Al-

gorithms

The following section presents a discussion of the complexity of the different, in Sec-
tion 2.4 introduced, solutions for the VNC (Algorithm 1) and the IHF (Algorithm 2
and Algorithm 3) post-processing algorithms. The main objective of this section is
to find an indication of the energy performance of the different approaches, to be

65

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

used during further discussions.

Denoting the input of a TRNG post-processing algorithm as −→x = 〈x0, ..., xn−1〉
and the output as −→y = 〈y0, ..., ym−1〉, a classical approach of a complexity analysis
is to relate the input size n to the number of operations, O, required by the consid-
ered algorithm. However, for a TRNG post-processing algorithm the significance of
such an approach is reduced. This is due to the reason that, most practical systems
require a TRNG to generate a fixed output size m, rather than operating on a fixed
n-value. As an example, the AES cryptography algorithm requires a key of at least
128 random bits [6]. With regards to this observation, two aspects are of main in-
terest when analyzing the complexity of a TRNG post-processing algorithm: First,
the number of input bits that are required by the algorithm to generate m output
bits should be considered. In other words, the input size n should be expressed as
a function of the output size m, n(m). This aspect is especially interesting as an
indicator of the energy consumption of an entropy source that is used in combi-
nation with the considered post-processing algorithm, since, in general, the energy
consumption of the source increases with n. Second, instead of relating the number
of operations, O, of an algorithm to n, it is more suited to formulate O as a function
of m, O(m). In that way, using O as a energy performance indicator, it can directly
be related to practical systems settings.

As a result, the complexity of the different algorithms is analyzed both with re-
spect to n(m) and O(m). Section 4.1.1 separately presents the analyses for the
three considered algorithms. In Section 4.1.2, these results are related to each other
and discussed. Finally, based on the discussion and considering concrete param-
eter values, it is decided whether to use Algorithm 2 or Algorithm 3 for an IHF
implementation. This decission is presented in Section 4.1.3.

4.1.1 Complexity analysis of TRNG post-processing algo-
rithms

A solution for a VNC has been presented in Algorithm 1. The algorithm basically
conducts an XOR-operation on two input bits in order to decide whether or not to
add a single output bit. Hence, in an ideal situation, the algorithm converts two
input bits into one input bit. However, as stated in Section 2.4.1, this is unlikely.
A more realistic measure can be found by considering Table 2.4. It states that the
probability for adding a bit to the output is 2·p·(1−p). This means that the average
amount of output bits generated by two input bits is 2 ·p ·(1−p). It follows, that the
average amount of output bits generated per single input bit is p·(1−p). For n input
bits, the expected number of output bits is therefore m = n·p·(1−p). Reformulating
this statement, the expected number of input bits required by Algorithm 1 in order
to generate m output bits,nVNC, can expressed as,

nVNC =
m

p · (1− p)
. (4.1)

This means that nVNC grows linearly with m and approximately inversely pro-
portional with p.

66

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

It must be stressed, that Equation 4.1 depicts an expectation. However, to
simplify both the notation and the comparison with the IHF algorithms, it has been
chosen to consider nVNC as a deterministic value of the input size for most of the
rest of this report.

From Equation 4.1, it is fairly simple to derive the number of operations executed
by Algorithm 1, OVNC, as a function of m. Since one XOR-operation is executed for
two input bits, the number of operations executed for nVNC input bits is OVNC =
nVNC

2
. Combining this statement with Equation 4.1 yields,

OVNC =
m

2 · p · (1− p)
. (4.2)

As such, OVNC grows for m and p approximately in the same manner as nVNC,
presented in Equation 4.1.

To complete the analysis of the complexity of the VNC, it should be noted
that both Equation 4.1 and Equation 4.2 are symmetric around p = 0.5. This
makes sense, since whether the data is biased towards 0 or 1 is irrelevant from a
information theoretical point of view. Thus, throughout the rest of this section, p
is only considered over the range [0 0.5].

Further, to simplify the interpretation of Equation 4.1 and Equation 4.2, the
probability p is assumed to be constant at least over the nVNC input bits required to
generate m output bits. In contrast, the VNC allows for variations of p between suc-
ceeding bit-pairs. However, allowing for this feature here would require Equation 4.1
and Equation 4.2 to include some kind of measure of the variation of p, which ex-
ceeds the scope of this analysis. It is worth noticing that both Equation 4.1 and
Equation 4.2 can still be used as valid indicators, even if p varies, by approximating
a constant p value. For instance, the minimum or average probability Pr(xi = 0)
over the input bits might be chosen as an appropriated approximation of p.

Relating the number of output bits to the number of input bits for the IHF algorithms,nIHF

is a more difficult task than for the VNC. By its definition (see Section 2.4.2), the
IHF is more concerned about the amount of min-entropy delivered by the entropy
source than about the concrete number of input bits. In other words, nIHF must
be chosen such that the input −→x contains a certain amount of min-entropy, κ. It
is known from Equation 2.17 that the amount of min-entropy contained in a nIHF

bit input cannot exceed nIHF. Thus, the number of input bits for the IHF can be
related to κ by,

nIHF ≥ κ. (4.3)

Equation 4.3 can hold with equality if and only if the input bits are mutual inde-
pendent and each single input bit is uniformly distributed.

Obviously, this equation is a rather general statement. This is due to the fact,
that the IHF works for a variety of entropy sources with different statistical charac-
teristics. To be able to formulate a more concrete version of Equation 4.3, it would
therefore be necessary to have detailed knowledge of the source characteristics. In
order to keep the analysis as general as possible, it has been chosen to, for the mo-
ment, use the general relation between nIHF and κ as stated in Equation 4.3, leaving
a more specific analysis for von Neumann conditions to the end of this section.

67

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Equation 2.34 in Section 2.4.2 relates the security parameter of the IHF, t, to the
number of output bits, m, the security parameter, ε, and κ. Solving Equation 2.34
for κ and combining it with Equation 4.3 yields,

nIHF ≥ κ = m+ β, (4.4)

where the tuning parameter of the IHF has been defined as,

β = 2 ·
(
2 · log2

1

ε
+ t+ 1

)
, (4.5)

in order to keep the notation simple.

It follows from Equation 4.4 that κ increases linearly with both m and β. An
increase in κ must in its turn result in an increase of nIHF in a generally unknown
manner. However,as a concrete example, if the entropy source produces mutual
independent output bits, it follows from Equation 2.16 that the min-entropy of a
concatenation of several outputs is the sum of the min-entropy of the single out-
puts. If in addition the min-entropy of all outcomes is equal, the min-entropy of
the concatenation can thus be doubled by concatenate twice as many bits. Hence,
if m increases by a factor of two, nIHF must be increased by the same factor, for the
given example.

Whereas Equation 2.34 and therefore Equation 4.4 are valid for any IHF approach,
the number of operations required by Algorithm 2 and Algorithm 3 differs. Con-
sidering first the approach depicted in Algorithm 2, the algorithm needs to execute
a number of XOR and shift operations. However, assuming for a moment that the
above discussed parameters of the IHF (m, nIHF, β and κ) are fixed, the number
of executed operations of Algorithm 2, OIHF-1, varies. This is due to the fact, that
whether or not an operation should be executed depends on the concrete values of
the input, −→x , and the public parameter, −→π . For simplicity, a worst case scenario has
been considered for the here presented analysis. In other words, it is assumed that
every possible operation has to be executed. Even though its conservative nature
should be kept in mind, this assumption is a valid foundation for finding OIHF-1 as
a function of m and nIHF.

Given that each possible operation must be performed, Algorithm 2 reduces
mainly to two nested for-loops. While the outer loop performs a static number of
nIHF iterations, the number of iterations of the inner loop is dynamic. It increases
by one for each iteration of the outer loop. An example for nIHF = 6 is given in
Table 4.1.

For the here conducted analysis of the complexity of Algorithm 2, the number
of inner loop iterations is a appropriated measure of OIHF-1 due to two reasons.
First, the main amount of work of Algorithm 2 is executed inside the inner loop,
in form of XOR and shift operations. Second, as can be seen from Table 4.1, the
number of inner loop iterations increases rapidly with nIHF. As a result, the number
of operations performed in the inner loop becomes fast dominating. Based on this,
an indicator of the number of operations required by Algorithm 2, OIHF-1 can be
expressed as,

68

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Table 4.1: Number of inner loop iterations for IHF-1, for the ex-
ample of n = 6

State of the algorithm Number of inner loop iterations

1st outer loop iteration -
2nd outer loop iteration 1
3rd outer loop iteration 2
4th outer loop iteration 3
5th outer loop iteration 4
6th outer loop iteration 5

Total 15

OIHF-1 =

nIHF−1∑
i=0

i =
nIHF · (nIHF − 1)

2
, (4.6)

where the right hand side follows from [36]. This means that OIHF-1 increases ap-
proximately quadratic with the number of input bits, nIHF. Combining Equation 4.4
and Equation 4.6, the lower bound of OIHF-1 can be expressed as,

OIHF-1 ≥
(m+ β) · (m+ β − 1)

2
. (4.7)

Equation 4.7 depicts as such the minimum amount of operations that have to be
performed by Algorithm 2. It should be noted that, with regards to Equation 4.3,
the presented lower bound can only be reached if the input to the IHF already
is perfectly random. As such, the practical interest in Equation 4.7 is reduced.
However, for the here presented analysis, considering this lower bound gives some
valuable insight of the general development of OIHF-1.

In contrast to Algorithm 2, the number of operations for Algorithm 3, OIHF-2, is
explicitly defined by the number of input and output bits. Algorithm 3 states that
for each of the m output bits, nIHF simple XOR and AND operations have to be
performed. Hence, it is reasonable to formulate,

OIHF-2 = m · nIHF . (4.8)

Combining Equation 4.4 and Equation 4.8 in the same manner as for OIHF-1, it
follows that OIHF-2 is lower bounded by,

OIHF-2 ≥ m · (m+ β). (4.9)

Until this point, the complexity of the IHF algorithms has been considered in a gen-
eral manner. However, it is of interest to be able to directly compare the complexity
of the IHF approaches to the VNC solution. Since the VNC is only a valid solution
if the used entropy source has von Neumann conditions, as defined in Section 3.2,

69

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

it is, for the sake of comparison, reasonable to adopt this source characteristic also
for the IHF algorithms.

In addition, mutual independence between the output bits is assumed, since,
as stated before, this is a desirable characteristic for the use of the VNC (see Sec-
tion 2.4.1) and it simplifies the analysis of the IHF-algorithms. In the following,
the complexity analysis of the IHF is therefore repeated for an entropy source that
generates an output bit-stream of mutual independent bits, with a bias, specified by
p = Pr(xi = 0).

Under the assumption that the input bits are mutual independent and that p is
a constant over nIHF input bits, each input bit contains the same amount of min-
entropy per bit, κb (see Equation 2.3). Using Equation 2.16, the relation of nIHF
and κ depicted in Equation 4.3 can thus be restated more specific as,

κ = nIHF · κb. (4.10)

Assuming, as above and without loss of generality, that p is in the range [0 0.5]
and recalling that the min-entropy is equal to the smallest information content of
the considered data source X (see Equation 2.1 and Equation 2.3), the min-entropy
per bit can be computed by,

κb = h(xi = 1) = log2(
1

1− p
), (4.11)

where h(xi = 1) is the information content associated with observing that an arbi-
trary bit xi takes the value 1. Combining Equation 4.4, Equation 4.10 and Equa-
tion 4.11, it is possible to express the required numbers of input bits for the IHF,
nIHF, as a function of the requested number of output bits, m, as

nIHF =
κ

κb
= − m+ β

log2(1− p)
. (4.12)

Thus, for a source with mutual independent and identically distributed output
bits, nIHF increases linearly with m and β. As p increases from 0 to 0.5, log2(1− p)
decreases from 0 to -1. Over this short range, it is reasonable to approximate the
logarithmic character of log2(1−p) as a linear decrease. Accepting this simplification,
nIHF increases in an inversely proportional manner with decreasing p.

By combining Equation 4.6 and Equation 4.12, the number of operations for
Algorithm 2, OIHF-1, can be restated as a function of m, p and β,

OIHF-1 =
1

2
·
((m+ β

log2(1− p)
)2

+
m+ β

log2(1− p)

)
. (4.13)

Since the quadratic part of the right hand side of Equation 4.13 becomes fast
dominating, it is reasonable to describe the increase of OIHF-1 as quadratically with
both m and β. In addition, accepting the simplification of log2(1− p) as it has been
stated for Equation 4.12, OIHF-1 grows approximately with 1

p2
, for an increasing bias.

Finally, by inserting Equation 4.12 into Equation 4.8, OIHF-2 can be expressed
as,

OIHF-2 = −m
2 +m · β

log2(1− p)
. (4.14)

70

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

It follows that OIHF-2 increases approximately quadratically with m and linearly
with β. Using the same assumptions about the growth of log2(1 − p) as for Equa-
tion 4.12 and Equation 4.13, OIHF-2 increases inversely proportional with a decreasing
p.

4.1.2 Discussion on the growth of complexity

Based on the in Section 4.1.1 presented analysis, it is now possible to relate the com-
plexity of the different post-processing algorithms to each other. Since the IHF can
be realized both by Algorithm 2 and Algorithm 3, it is natural to begin a discussion
on the complexity by comparing the complexity of Algorithm 2 and Algorithm 3 in
order to find out which algorithm yields a more suitable implementation.

Measures of the number of operations required by Algorithm 2 and Algorithm 3
are presented in Equation 4.6 and Equation 4.8, respectively. Both equations are
functions of the number of input bits. While it has been pointed out at the beginning
of this section that OIHF-1 and OIHF-2 as functions of nIHF are of rather reduced
interest for the purpose of this report, it is nevertheless possible to gain some useful
insight by considering both equations together. By equalizing Equation 4.6 and
Equation 4.8, a situation in which both algorithms perform the same amount of
operations can be expressed as,

n2
IHF − nIHF

2
= nIHF ·m, (4.15)

By solving Equation 4.15 for nIHF it follows,

nIHF = 2 ·m+ 1. (4.16)

In other words, both algorithms have the same complexity if the number of input
bits is roughly twice as large as the number of output bits. However, if nIHF exceeds
2 ·m+1, OIHF-1 is larger than OIHF-2. Thus, in a situation in which the IHF operates
on more than twice as many input bits than requested output bits, using Algorithm 3
yields a solution with reduced complexity compared to Algorithm 2. In the same
manner, Algorithm 2 depicts the more appropriated approach if nIHF < 2 ·m + 1.
Figure 4.1 shows the results of plotting OIHF-1 and OIHF-2 as functions of nIHF , for
the example of m = 32. It is worth noticing, that the difference between OIHF-1 and
OIHF-2 increases the more nIHF differs from 2 ·m+ 1.

Having established a relation of Algorithm 2 and Algorithm 3 in terms of nIHF
and m, it remains to investigate the impact of the tuning parameter β. Even though
it is not possible to find a general expression of OIHF-1 and OIHF-2 in terms of β,
Equation 4.7 and Equation 4.9 define the lower limits of the number of operations for
both algorithms with respect to m and β. Repeating the above presented procedure
and equalizing Equation 4.7 and Equation 4.9 yields,

(m+ β) · (m+ β − 1)

2
= m · (m+ β). (4.17)

By solving the equation for m, it can be stated that the lower bounds of OIHF-1 and
OIHF-2 are equal if,

71

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Figure 4.1: Number of operations of the IHF-algorithms as func-
tions of nIHF

m = β − 1. (4.18)

Thus, if Equation 4.18 is satisfied, the complexity of Algorithm 2 and Algorithm 3
have the same lower bound. However, in the case that β exceeds the number of out-
put bits by more than one, Algorithm 3 has a smaller lower bound than Algorithm 2
and can therefore theoretically yield a less complex implementation. On the other
hand, if m > β − 1, Algorithm 2 is bounded by a lower number of operations than
Algorithm 3. Figure 4.2 illustrates this fact for β = 20, which could, for example,
corresponds to ε = 0.0625 and t = 1.

It is worth noticing that, while OIHF-2 is lower bounded by zero for m = 0, the
bound of OIHF-1 has an β related offset. By considering Equation 4.7 the offset can
be evaluated to be β2−β

2
, which equals 190 for the in Figure 4.2 depicted situation.

After having established some general relations between the complexity of Algo-
rithm 2 and Algorithm 3, the focus of the discussion turns to considering the effi-
ciency of the VNC in comparison to the IHF. It is convenient to start by comparing
the number of required input bits. For an entropy source that produces mutual
independent bits with a bias defined by p, the numbers of input bits, nVNC and
nIHF, are presented in Equation 4.1 and Equation 4.12, respectively. It follows from
these equations that both nVNC and nIHF increase linearly with m. Equation 4.12
shows further that nIHF additionally increases linearly with β. However, since the
VNC does not have a comparable tuning parameter, it is reasonable to depict β as
a constant throughout the rest of this discussion.

Figure 4.3 plots nVNC and nIHF as functions of m for β = 20 and different values

72

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Figure 4.2: Lower bounds of the number of operations of the IHF-
algorithms as functions m

of p. It is essential to note that the existence of β yields nIHF to have a constant off-
set, which increases with decreasing p. Thus for small values of m, nVNC is smaller
than nIHF. However, it can also be seen from Figure 4.3 that nVNC increases with a
steeper gradient than nIHF for the same bias p. As a result, for large values of m,
the IHF requires less input bits than the VNC. For example, for the in Figure 4.3
depicted situation, the VNC is requiring a lower number of input bits than the IHF
for p = 0.1 as long as m < 29. If m > 29, nVNC exceeds nIHF by an with m increasing
difference.

As depicted in Figure 4.3, the gradients for both nVNC and nIHF increase as p
approaches zero. From Equation 4.1 and Equation 4.12, it follows that the gradients
of nVNC and nIHF are 1

p·(1−p) and −1
log2(1−p)

, respectively. It is worth noticing that the

gradients of nVNC and nIHF can be interpreted as the number of input bits that has to
be added to the input in order to generate a single extra output bit. Figure 4.4 shows
the gradients of nVNC and nIHF as functions of p. As stated during the introduction
of Equation 4.1 and Equation 4.12, both gradients grow approximately inversely
proportional with p. In addition, the gradient of nVNC is constantly larger than the
corresponding gradient of nIHF, which is in accordance to the observations made for
Figure 4.3. To give a theoretical example, for p = 0.5 four additional input bits
would have to be passed to the VNC in order to generate a single extra output bit.
In contrast, the IHF requires only a single additional input bit per extra output bit,
given the same input bias.

Besides the gradients themselves, Figure 4.4 does also depict the ratio of the

gradients,
1

p·(1−p)/ −1
log2(1−p)

, which can be interpreted as a measure of the efficiency of

the IHF in terms of input bit requirements compared to the IHF. Reconsidering the

73

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Figure 4.3: Number of input bits required by the VNC and the IHF
as functions of m

Figure 4.4: Slopes of nVNC and nIHF as functions of p

74

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

above presented example with p = 0.5, the IHF requires only a single extra input
bit to create an additional output bit, whereas the VNC requires four bits in the
same situation. Thus, the ratio between the gradients is four. One can therefore
say that the IHF is four times more efficient in converting input bits to output bits
than the VNC. Figure 4.4 shows that the ratio of the gradients reaches its maximum
for the discussed example of p = 0.5. The ratio decreases with p and approaches a
minimum of approximately 1.445 for a close-to-constant input.

Finally, it is worth noticing that, by Equation 4.12, the gradient of nIHF, shown
in Figure 4.4, also describes the growth of the β-related offset of nIHF. Thus, the
offset of nIHF increases fast with an increasing bias of the input (decreasing p). This
observation is in accordance to what is depicted in Figure 4.3.

To complete the comparison of nVNC and nIHF, the following can be concluded:
Even though nIHF has a β-related offset, due to the fact that its gradient is lower
than the gradient of nVNC the IHF is a more suitable approach in terms of input
bit efficiency, at least for a more practical amount of output bits. However, if β
increases, the number of output bits required in order for the IHF to be the more
efficient solution increases by the same amount. Further, both the offset and the
gradient of nIHF increase vastly as p decreases. As a result, the VNC might be the
preferable approach for a strongly biased source and a large β.

The number of input bits that are required by the VNC and the IHF are important
measures of the efficiency of TRNG solutions that use one of these algorithms. How-
ever, since the input bits are generated by the entropy source of the TRNG, both
nVNC and nIHF are rather indicators of the energy requirements of the used source.
To get a impression of the energy performance of the post-processing algorithms
themselves, it is therefor of interest to compare the number of operations required
by the three different algorithms. Assuming the same source conditions as for the
above presented comparison of nVNC and nIHF, Equation 4.2, Equation 4.13 and
Equation 4.14 can be used to express OVNC, OIHF-1 and OIHF-2, respectively. Fig-
ure 4.5 shows OVNC, OIHF-1 and OIHF-2 as functions of m for different source biases
(defined by p) and the tuning parameter of the IHF fixed to β = 20.

As expected by considering the corresponding equations, the number of opera-
tions for the two IHF solutions, OIHF-1 and OIHF-2, increases approximately quadrat-
ically with m, while OVNC increases linearly. Since OVNC does not have an offset and
m is an integer, it follows that OVNC is smaller than both OIHF-1 and OIHF-2 for all
valid values of β, and that the difference between the number of operations executed
by the VNC and the corresponding measures of the IHF solutions increases vastly
for an increasing m.

For example, given an input bias described by p = 0.3, the VNC has to perform
approximately 38 operations in order to create 16 output bits, while Algorithm 2
and Algorithm 3 have to execute 2412 and 1119 operations, respectively. Increasing
the required output to m = 32 bits yields OVNC to increase to roughly 76 operations.
However, for the same output OIHF-1 increases to 5055 and OIHF-2 becomes 3234.

It can also be seen from Figure 4.5 that, as for the number of input bits in Fig-
ure 4.3, the rates at which the numbers of operations grow increase with decreasing
p.

In contrast to identifying the VNC as the most appropriated approach in terms

75

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Figure 4.5: Number of operations of the VNC and the IHF-
algorithms as functions of m

of the amount of required operations, it cannot generally be determined whether
Algorithm 2 or Algorithm 3 is more efficient for the given input characteristics.
Starting by considering OIHF-1 and OIHF-2 for p = 0.5, it should be noted that
OIHF-1 and OIHF-2 are in this situation equal to their lower bounds as described in
Equation 4.7 and Equation 4.9, since Equation 4.3 reduces to an equality. Thus,
by recalling the observations made with regards to Equation 4.18, it is expected
that OIHF-2 exceeds OIHF-1 for m > β − 1. This is in accordance with the situation
depicted in Figure 4.5. Hence, if the input characteristics allow the IHF to operate
closely to the in Equation 4.4 defined bound of nIHF, it follows that OIHF-1 < OIHF-2

if m exceeds β.

However, it has been stated with regards to Equation 4.16 that Algorithm 3
requires less operations than Algorithm 2 if the number of input bits exceeds ap-
proximately twice the size of the number of output bits. As can be seen from
Figure 4.4, the IHF requires two additional input bits in order to generate one extra
output bit for p ≈ 0.3. This means that for p = 0.3, nIHF must be approximately
twice the size of m, even in the unrealistic case of β = 0. In other words, OIHF-2

must be smaller than OIHF-1 if p decreases below roughly 0.3, independently of β.
Even though Figure 4.5 uses β = 20, it illustrates this point, as OIHF-1 and OIHF-2

grow in a fairly similar manner for p = 0.3.

An additional factor that works in favor of Algorithm 3 is the β-related offset of
OIHF-1. While the offset is considerably small for values of p close to 0.5, it follows
from Equation 4.13 that it increases roughly with 1

p2
as p decreases. Thus, the offset

increases fast as the input becomes more biased, as shown in Figure 4.5.

Finally, the influence of the input bias on the number of required operations

76

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

Figure 4.6: Indication of the number of operations for the VNC
and the IHF-algorithms as functions of p

should be considered. To do so, Figure 4.6 shows the plots ofOVNC, OIHF-1 andOIHF-2

as functions of p, for fixed values of m and β. From the discussion of Figure 4.5, it
is known that especially OIHF-1 and OIHF-2 grow fast with m and β. Thus, in order
to keep the focus of Figure 4.6 on the development of the functions in terms of p,
it has been chosen to use m = 1 and β = 0. The reader should nevertheless keep
in mind, that, while valid for this illustration, m = 1 and β = 0 are in practice
unrealistic values.

It can be seen from Figure 4.6 that all three functions grow in similar manner
and increase vastly as p approaches zero. This is in accordance to the discussions
of Equation 4.2, Equation 4.13 and Equation 4.14, where it has been stated that
OVNC and OIHF-2 increase approximately with 1

p
, while OIHF-1 increases with roughly

1
p2

. As a result, the growth of OVNC and OIHF-2 is nearly identical. OIHF-1, on the
other side, increases slightly faster for small p-values. For instance, while OVNC and
OIHF-2 equal 20 operations for p ≈ 0.025 and p ≈ 0.034 respectively, OIHF-1 reaches
the same amount of operations already for p ≈ 0.096.

In conclusion, the VNC is the preferable solution with regards to the number
of operations that have to be executed. This is due to the fact that OVNC has a
linearly increase over m instead of the quadratic increase of OIHF-1 and OIHF-2. An
increase in the input bias has approximately the same influence on the VNC as it
has on the IHF realized by means of Algorithm 3. Algorithm 2 performs slightly
worse for small p-values. A general statement on whether a IHF solution for von
Neumann conditions should be realized by using Algorithm 2 or Algorithm 3 cannot
be made. Algorithm 2 is, dependent on m, likely to achieve a lower complexity for
p close to 0.5 and small values of β. However, for an increasing β and decreasing

77

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

p-values, Algorithm 3 becomes more efficient. If p decreases below approximately
0.3, Algorithm 3 uses less operations than Algorithm 2, independently of the chosen
tuning parameter, β.

4.1.3 Choice of an IHF algorithm suited for implementation

In contrast to the single solution for the VNC, two possible solutions of the IHF
have been presented in form of Algorithm 2 and Algorithm 3. As an implementation
of both algorithms would be too time consuming for the frame of this project, it is
therefore first necessary to identify which of the two algorithms is better suited for
a hardware implementation. Besides comparing the algorithms directly, it is reason-
able to based this decision on the findings on the complexity of the two solutions,
as discussed in Section 4.1.1 and Section 4.1.2. However, it is worth to recall that
the number of input bits required by the solutions, nIHF , is equal for Algorithm 2
and Algorithm 3. This is due to the fact that nIHF is dependent to the amount
of min-entropy requested by the extractor (see Equation 4.3). The min-entropy is
related to the different parameters of the IHF by means of Equation 2.34, which
is generally true for any IHF solution. Thus, to decide which of the two solutions
is more suited for a implementation, it is sufficient to only focus on aspects that
directly influence the size of the implementation of the IHF.

A first indication follows directly from comparing Algorithm 2 and Algorithm 3,
as stated in Section 2.4.2. While Algorithm 3 is a rather simple algorithm, which
executes the same operations for every output bit, Algorithm 2 is more complex and
executes different operations, depending on the concrete input −→x and the chosen
public parameter −→π . As a result, Algorithm 2 would require a larger control over-
head than the one needed to execute Algorithm 3. It is reasonable to assume that
this overhead is close to constant for varying lengths of the input and the output.
Hence, it becomes negligible as the algorithms operate on an increasing amount of
data and has therefore not be considered during the analysis of the complexity in
Section 4.1.1. However, for small inputs and outputs, the difference in the amount
of control logic should be taken into consideration.

Another aspect that votes in favor of Algorithm 3 is the fact that the algorithm
generates the output −→y bit-wise. As a result, only one single bit, yj, has to be kept
track of between single operations. In contrast, Algorithm 2 computes all elements of
−→y in parallel. It can be seen from the definition of Algorithm 2, that this makes the

use of an nIHF-bit interim variable,
−→
x′ , necessary. For a hardware implementation

of the algorithm, such an interim variable is likely to cause an additional nIHF-bit
memory element in comparison to Algorithm 3.

Turning the attention to the results presented in Section 4.1.2, it has been stated
with respect to Equation 4.16 that Algorithm 2 requires more operations than Al-
gorithm 3 if the number of input bits, nIHF, is roughly twice as large as the number
of output bits, m. Obviously, making a decision based on this property with com-
plete certainty would require the knowledge of the concrete parameters used for the
implementation of the IHF. For the purpose of this project, it is desirable to avoid
such a commitment to a certain tuning of the IHF at this stage. However, it is worth
to recall, that, by Equation 4.4, the nIHF input bits must contain κ = m + β bits
of min-entropy. Thus, even by using the unrealistic tuning parameter β = 0, each

78

4.1. COMPLEXITY OF THE TRNG POST-PROCESSING ALGORITHMS

input bit would have to contain an average of 0.5 bits of min-entropy

While such an amount of entropy can be delivered by high-entropy sources, the
source that is in the focus of this project is rather unlikely to achieve this amount
of entropy per bit. For instance, considering the results of Section 3.3, p could be
approximated as 0.29. Hence, even under the assumption that the generated bits
would be independent, by Equation 2.3, the min-entropy of the source would be
roughly 0.49 per bit. Recalling that based on the performed analysis, dependencies
have been observed in the source data, the actual amount of min-entropy is further
reduced. Based on this, for the context of this report, Algorithm 3 seems the
appropriate choice for an implementation based on the number of operations that
have to be performed.

This statement is further strengthened by briefly considering the effect of the
tuning parameter of the IHF, β, on the complexity of Algorithm 2 and Algorithm 3.
Generally, β is not considered in detail in this report, as the VNC lacks such a
tuning parameter and focusing on other aspects seems therefore more appropriated
for a comparison of the two solutions. However, in order to achieve a working
implementation of the IHF, it is necessary to find an approximated order for a
minimum value of β for which the IHF is functional. In Section 4.1.2, β = 20 has
been chosen as an example, which, by Equation 4.5 corresponds to ε = 0.0625 and
t = 1. A security parameter of t = 1 correlates to a low level of resilience of the
IHF, which is reasonable for this project, as, again, the VNC cannot be tuned for
security.

Considering the quality parameter, ε = 0.0625 is rather high value. Equation 2.33
states that for ε = 0.0625, the statistical distance (see Equation 2.6) between the
distribution of the output of the extractor, PY , and the corresponding uniform dis-
tribution, UY , is upper bounded by 0.0625. With respect to the fact that the output
of a TRNG should be as uniform distributed as possible, a statistical distance of
0.0625 seems large, especially for the strict requirements of TRNGs in a crypto-
graphic context. Equation 2.33 states further that, with a probability of ε, selecting
the public parameter π at random does not yield a functional extractor design. In
other words, for ε = 0.0625, roughly 6 out of 100 public parameters will not satisfy
dist(PY ,UY ≤ ε). It is therefore common to use smaller values for ε. An example is
given in [14], which sets ε = 2−35. However, keeping the energy performance of the
design in mind, it is at this point chosen to accept ε = 0.0625, and rather decrease
the value if latter performed test with focus on randomness (see Chapter 5) indicate
the necessity. Thus, for the moment it is assumed that β = 20. Nevertheless, it
should be stressed that this is considered to be the minimum value of β.

Using this assumption, it has been stated with regards to Figure 4.2 and Equa-
tion 4.18 that, even though the lower bound of the number of operations required
by Algorithm 2, OIHF-1, increases slower with β for a fixed m, the lower bound of
Algorithm 3 is smaller as long as m < β (see Equation 4.18). As mentioned before,
it is omitted to determine the number of output bits, m, at this stage of the im-
plementation process. However, since for both algorithms the number of operations
that have to be performed increases vastly with m, it is reasonable to assume that
m is chosen to be less than 20 bits. Thus, also the lower bound of the number of
operations indicates that Algorithm 3 is the preferable algorithm for the purpose of
this project.

79

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

In conclusion, Algorithm 3 appears to be more suitable for an energy efficient
hardware implementation than Algorithm 2, based on the number of operations, the
required control logic and additional memory requirements. The rest of the report
focuses therefore on a possible implementation of the IHF by means of Algorithm 3.

4.2 Implementation of Post-Processing

Algorithms

After Section 4.1 has established a basic understanding of the complexity of the
different discussed algorithms, the focus of this section is on the implementation
of both a VNC and a IHF solution in SystemVerilog. The purpose of these imple-
mentations is twofold. First, implementing the algorithms allows to use them in
combination with data gathered from the entropy source (Section 3.1) to simulate
the behavior of a TRNG design. The output that results from such simulations can
then be used to verify the true random character of the design by applying it to the
NIST test bench, presented in Section 2.2.2. Second, concrete power estimates can
be derived from the implementations.

On the first sight, implementing the algorithms, verifying their random behavior
in connection with an entropy source and estimating their power performance ap-
pear like three clearly separated processes. However, in practice, the three processes
are interactive, as illustrated in Figure 4.7. During the design phase of the imple-
mentation, the RTL description of a given post-processing algorithm is generated,
using SystemVerilog. To test if the RTL implementation matches the algorithmic
description of the post-processor (as given in Section 2.4), the RTL design has to
be logical verified. This is done, by running RTL simulations with a known input
and evaluating whether the outcome matches the expectations. The for the simula-
tions necessary setup (simulation routines and testbenches ; see Section 4.2.1) are in
this project created in SystemVerilog. As such, their generation can simplified be
considered to be a part of the design phase. All RTL simulations are in this project
performed using Incisive (commonly referred to as NCSim) from Cadence.

When the logical behavior of the created design is verified, the RTL implemen-
tation can be used to evaluate the post-processor in connection with the entropy
source for randomness. For this purpose, it is necessary to first generate the output
of the post-processor, which then can be passed on to, for instance, the NIST test
suite. This can be easily achieved by once more running RTL simulations similar
to those used for the logical verification of the design. It is therefore possible to
reuse most of the above mentioned simulation setup. However, instead of using a
known input, data generated by the entropy source of Section 3.1 is passed to the
simulation as an input.

The RTL description of a design does not contain any information of the tech-
nology used for the implementation. Since, as mentioned in Section 2.5, the power
performance of a digital design is directly dependent on the underlying technology,
the technology has to be taken into consideration in order to derive power estima-
tions of the implementation. This is achieved by synthesizing the design, which

80

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.7: Work flow of the post-processor implementation process

transforms the RTL description into a technology dependent netlist. The synthesis
tool used during this project is the Encounter RTL Compiler from Cadence.

While it is possible to derive power estimates based on the created netlist, it is
stated in Equation 2.47 that the switching activity, γ, of the signals in the imple-
mentation affect the dynamic power performance of the design. Since γ depends on
the statistical characteristics of the applied input data, to include the switching ac-
tivity in the power estimation a third round of simulations has to be run. The setup
of the used simulations is basically equivalent to the one used for the simulations
described above. The main difference is that the third round simulations are run
using the netlist description of the design instead of the RTL implementation. As
the focus of these simulations is on the switching activity of the signals and not on
the generated output values, it is not of importance whether the used input data is
known or derived by using an entropy source. However, in order to get significant
power estimates the used input data should yield to a switching activity that is
typical for the design.

In order to execute the in Figure 4.7 described work flow, a system setup has
been created, using a server environment at Norwegian University of Science and
Technology (NTNU). Even though the setup has originally been implemented for
the here presented project, many aspects are of a rather general nature and the
setup can therefore serve as a starting point for other projects using a similar work
flow. An introduction to the system setup is presented in Appendix E.

Based on the in Figure 4.7 presented work flow, the rest of this section is structured
in the following manner: Section 4.2.1 introduces some general aspects of the design
and the simulation setup that are alike for both post-processors. A detailed descrip-
tion of the implementation of the VNC and the IHF including the logical verification
of their behavior is presented in Section 4.2.2 and Section 4.2.3, respectively.

The presentation of the simulations used to evaluate the ability of the post-

81

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

processors to generate a random output is postponed to Chapter 5. In the same
manner, Chapter 6 covers the simulations concerned with the energy performance
of the designs.

A detailed discussion of the synthesis process is omitted in this report, due to
several reasons. First, synthesis is generally considered to be a rather complicated
design process, which makes use of complex computer-aided design tools. As such,
a detailed discussion is out of the scope of this report. Second, the synthesis process
is highly dependent on the underlying technology. Thus, focusing on this design
step would be inconsistent with the rather general nature of this project. Third,
most of the technology related information are confidential and can therefore not be
presented in the context of this report. For instance, revealing the used technology
library would prohibit the possibility to present concrete values of the power esti-
mates. The latter, however, is considered to be of more interest for the purpose of
this report. As a result, this report restricts itself to present only the basic setup
and results of the synthesis process. For all implementations in this project, the
synthesis process has been executed using a standard 65 nm technology.

4.2.1 General aspects of the design and simulation process

To be able to design meaningful implementations of a TRNG post-processing al-
gorithm, it is necessary to define a system environment. In other words, it has to
be established how the TRNG is build up and how it communicates with other
surrounding systems.

In general, the system architecture of an MCU must be considered to be rather
complicated. For example, resources are often shared. Using, for instance, the
ADC as an entropy source, the ADC is likely to be usable by other modules as
well and to have a wide range off possible settings. Thus, in order to be used
by a TRNG, it would have to be ensured that the ADC is not used by another
module and the ADC would have to be set up to work as an entropy source (see
Section 3.1). Another example of the complexity of MCU systems is the fact that
modules in an MCU in common not communicate directly but through data buses.
This would make it necessary to adapt the here presented implementations to the
communication protocol which accompanies the bus system. Several other examples
exists and in general it can be stated that integrating an implementation into an
MCU environment requires a substantial overhead in form of additional control logic.

However, while being aware of this fact, it has been chosen to design the in this
section presented implementations for a much simpler system environment. This
is mainly motivated by two arguments. First, different MCUs use different system
architectures. Thus, by not integrating the presented implementations into a specific
MCU architecture, the results are kept rather general. Second, it is reasonable to
assumed that the VNC and the IHF would require roughly the same amount of
system architecture related overhead. This means that for a comparison of the
power consumption of the two approaches, this kind of overhead is not of interest.

Figure 4.8 shows the simple system model which is used during the implemen-
tation process. It is assumed that some kind of superior system exists, which, for
instance, is controlled by some end-user. This superior system supplies a main clock
signal to the TRNG, sys clk, and is able to reset the device by pulling an asyn-

82

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.8: System environment for post-processor implementa-
tions

chronous reset signal, rst n, to logic zero. The TRNG itself persists of two parts:
the entropy source and the post-processing module which is to be implemented.

The communication between the superior system and the TRNG is executed
through the post-processing module of the TRNG. As such, the post-processing can
be considered to not only execute the post-processing of the data but to serve as
the control unit of the TRNG as well. This is motivated by the fact that using the
ADC as an entropy source, the ADC depicts a rather memoryless module which
continuously produces a single bit output. The post-processing algorithms on the
other side need at least a minimum of state control logic and it makes therefore sense
to combine the control logic of the post-processor with the control unit of the TRNG.
This will become clearer during the implementation processes in Section 4.2.2 and
Section 4.2.3.

The superior system can start the TRNG by setting the synchronous signal start
to high. This triggers the TRNG to generate 32 random bits. Even though the
amount of output bits is in principle arbitrary, setting it to 32 bits is reasonable,
since 32 bits is a commonly used word width for modern MCU architectures [5]. It
has been mentioned in Chapter 1 that a larger amount of random bits is needed
for the purpose of modern cryptography. The obvious solution is to run the TRNG
several times and concatenate several 32-bit outputs. From Equation 2.16 it is
known that as long as each 32-bit output can be considered as random and the
outputs are dependent of each other, this concatenation is a random data string.
Chapter 5 evaluates this aspect further.

Once the TRNG has been activated by the superior system, any activity of the
start signal is ignored until the 32-bit output is generated. During the generation
process, the post-processing module can request single bit data values from the
entropy source by setting the samp req signal to logic one. The entropy source
reacts on this request by transmitting a single bit output over the data in channel
to the post-processor.

However, since the ADC based entropy source generates an output bit at a slower

83

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

rate than the clock cycles of the fast system clock (Table 3.3), it must be guaranteed
that the post-processor does not read invalid data from data in. In order to do so,
the entropy source signals the arrival of new data on data in by setting the flag-signal
samp flg high for the duration of one clock cycle of sys clk. Finally, if the TRNG
has generate the required 32 output bits, the post-processing module indicates this
to the superior system by setting data valid flg to a logic one. The superior system
can then simultaneously read the requested output from the 32-bit output channel
data out, before it eventually restarts the system by triggering start.

Table 4.2: List of input and output for the post-processing modules

Name Type Bit width Description

Superior system

sys clk Input 1 Main clock signal of the
system

rst n Input 1 Asynchronous negative
reset signal

start Input 1 Synchronous flag,
triggering generation of
random data

data out Output 32 32-bit word of random
data

data valid flg Output 1 Synchronous flag,
signaling to the system
that data out is valid
and can be read

Entropy source
data in Input 1 Data from entropy

source
samp flg Input 1 Synchronous flag,

signaling new data on
data in

samp req Output 1 Signal, requesting data
from source

Table 4.2 summarizes the different inputs and outputs of the post-processing
modules. It is worth to recall that these signals are the same for both the VNC and
the IHF implementation.

After the design of the post-processing modules is completed, it is necessary to be
able to run simulations on the implementations. While the purpose of the simula-
tions varies, it has been stated during the introduction of this section, that the setup
of the different simulations are similar. Further, since both the VNC and the IHF
have been designed with regards to the same system environment, it is reasonable
to use a similar simulation setup for both post-processors. As a result, one main
simulation setup is created for the purpose of this project, which can be adjusted to
the given circumstances by means of minor modifications.

Figure 4.9 shows a schematic overview of the used setup. The implementation
that is the subject of the test, frequently referred to as the Device under Test (DUT),

84

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.9: Simulation setup for post-processing implementations

is placed on a test bench together with the models of a clock generator and of an
entropy source. The SystemVerilog codes for the two models and an example of a test
bench are presented in Appendix D.4.2. The test bench is controlled by a simulation
routine, which in many ways can be interpreted as the superior system of Figure 4.8.
Even though, the exact behavior of the used simulation routine is different for each
simulation, their principle build-up is identical. Their main objective is to read some
input data from an external file and pass it to the source model. Then it activates
the DUT and runs it once or several times in order to generate a specified number
of output words. Finally, the simulation writes the gathered words to an external
output file, which can be used to evaluate the DUT. An example of a simulation
routine is presented in Appendix D.4.3.

Even though the simulation setup of Figure 4.9 is quite similar to the used system
environment depicted in Figure 4.8, some differences exists. For instance, while the
simulation routine controls the test bench in a similar manner as the superior system
of Figure 4.8 controls the TRNG, the simulation routine does not provide the clock
signal sys clk. On the contrary, sys clk is generated by the clock generator model of
the test bench and passed to the simulation routine. The reason that the generation
of the clock is left to the test bench is that it is practical to develop the simulation
routine in a software-like high-level approach (see the example in Appendix D.4.3).
Such an approach is in general less concerned about timing constraints and it is
therefore reasonable to leave the generation of a clock signal to the test bench models
which are more closely related to a hardware description. However, a minimum of

85

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

synchronization between the test bench and the simulation routine is necessary and
sys clk must therefore be passed to the simulation routine.

An additional difference between the superior system of Figure 4.8 and the sim-
ulation routine of Figure 4.9 is the communication with the entropy source. In the
system model of Figure 4.8, the superior system does not communicate with the
entropy source besides of resetting the module. In contrast, the simulation routine
passes some information about the input file, source file, to the source model, which
is used by the model to read the data from the input file. This approach makes it
possible to reuse the test bench for different simulation routines with different input
files, without having to adapt the source model. The source, in turn, reports the
number of bits, samp count, that have been read from the input file and passed on
the the DUT and signals if the whole file has been read by setting the empty flg flag
signal. This signals can be used by the simulation routine to, for example, abort
the simulation if the number of requested output bits exceed the amount that can
be generated from a given input file.

As mentioned above, the presentation of the simulations for the purpose of random-
ness and power evaluations are postponed to Chapter 5 and Chapter 6, respectively.
Hence, the focus of this section is on simulations for logical verification. For the pur-
pose of this project, the main focus of the logical verification step is to verify that
the implementations work as defined by their respective algorithms. This is partly
motivated by the simplicity of the in Figure 4.8 presented system environment, and
partly by the fact that the designs have been implemented for the purpose of eval-
uating the respective algorithm. The later aspect makes it highly important that a
given design behaves in accordance to its algorithmic specification. In contrast, it is
not of particular interest for this project to test if the system behaves well defined
if, for example, control signals are applied in an unexpected manner. This would
normally be verified in an industrial implementation context.

Thus, focusing mainly on the functionality of the implemented modules, it has
been chosen to execute two verification simulations per implementation. First, con-
sidering only the execution of the corresponding algorithm, a short known input is
applied to the DUT, generating only a few output bits. With regards to the examples
presented for during the introduction of the VNC and the IHF (see Section 2.4.1
and Section 2.4.2), it is suitable to use an 8-bit input resulting in 2 output bits.
Based on the short input length, the complexity of the executed computations and
control sequences is reasonably low. This makes it possible to analyze the behavior
of the DUT in detail, for instance, by considering the waveforms that result from
the simulation.

If this first simulation yields the conclusion that the DUT behaves as desired,
a second simulation is executed. During this simulation, a larger known input is
applied to the DUT resulting in four output words. It is worth noticing that the
number of input bits required to generate 4 32-bit words varies between the VNC
and the IHF. The motivation behind this simulation is twofold. On one hand,
successfully generating several words shows that the control unit of the DUT can
handle the typical flow of generating the 32-bit output word, informing the superior
system and being restarted. On the other hand, if all the 128 output bits match
the expectation based on the input file, the confidence that the DUT executes the

86

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

computation of the output data as described by the corresponding algorithm.
Table 4.3 summarizes the two simulations used for logical verification.

Table 4.3: Summary of simulations for logical verification

Input Output Purpose
Short simulation 8 bits 2 bits Detailed evaluation of

algorithmic behavior
using waveforms

Long simulation Varies 128 bits Verification of control
flow; evaluation of
algorithmic behavior
based on large data set

4.2.2 Implementation of the von Neumann corrector

In order to establish an implementation of a VNC, it is meaningful to first derive
a abstract description of its functionality. The VNC can be described as shown in
Algorithm 1 in Section 2.4.1. However, Algorithm 1 is based on an input stream,
denoted as the vector −→x , with a fixed length, n. The length, m, of the output, −→y ,
is as a result undetermined and varies with the applied input stream. This is rather
unpractical, as most real applications use a determined number of requested bits,
and m is as such fixed. It makes therefore sense to reformulate Algorithm 1 in order
to work with a fixed m and varying n. This is presented in Algorithm 4.

Algorithm 4 The von Neumann algorithm with fixed output length

Input: −→x = 〈x0, ..., xn−1〉
Initialize: Empty output vector −→y = 〈〉

bit counter i = 0
repeat

if x2i xor x2i+1 then
Insert x2i at the end of −→y

end if
Increase i by one

until Length of −→y equals requested m

Instead of executing an XOR-operation on all successive bit pairs in −→x , Algo-
rithm 4 executes as many XOR-operations as needed to create an output of length
m. As a result, the input stream must be of sufficient length, n. Equation 4.1
describes an expectation of n for a fixed m. However, for the purpose of implemen-
tation, this aspect is negligible and it is simply assumed that −→x is of infinite length.
This assumption is justifiable, since the in Section 3.1 discussed entropy source can
create an unlimited amount of data.

Based on Algorithm 4 and with regards to the assumed system environment,
depicted in Figure 4.8, a simple flow diagram for a VNC module can be defined as
described in Figure 4.10. During the beginning of the operation the module is in its

87

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.10: Flow diagram of a VNC module

initial state, called IDLE. The module is kept in this state, until the superior system
activates the module, by setting the start signal. If the start signal is received, the
module changes to a operational state, OPERATE, which executes Algorithm 4.
The module retains in this state, until an output of 32 bits has been produced.

In OPERATE, the VNC-module constantly reads bits from the entropy source.
Following the notation of Algorithm 4, the first bit of a successive bit pair is re-
ferred to as x2i, and x2i+1 denotes the second bit of the pair. To keep track of
which bit has been read from the source, OPERATE has two sub-states, called
READ 1 and READ 2. After x2i+1 has been read during READ 2, Algorithm 4 is
executed by performing an XOR-operation with x2i and x2i+1. If the result of the
XOR-operation is logic one, x2i is written to an output memory block of the VNC
module. It is important to note, that this writing process is executed on a transition
between two sub-states and is not considered to be an autonomous sub-state. If the
XOR-operation results in a logic zero, x2i is discarded. In both cases, the module
returns to sub-state READ 1. However, if writing x2i yields the module to reach
the requested amount of 32 bits, it returns from OPERATE to IDLE.

Considering the in Figure 4.10 presented flow-diagram, it makes sense to base the im-
plementation of the VNC-module on three sub-modules. This approach is depicted
in Figure 4.11, which uses the input and output signals as defined in Table 4.2.
The control sub-module, vnc ctrl, determines in which of the main states, IDLE or
OPERATE, the VNC is. While in OPERATE, the sub-module activates the other
sub-modules and requests data from the entropy source. In addition, it evaluates if

88

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.11: Block schematic of a VNC module

enough data has been gathered and communicates with the superior system.

While vnc ctrl handles the main state control of the VNC module, most of the in
OPERATE required operations are performed in the input interface of the module,
vnc input if. This sub-module has a single state register and is either in READ 1
and READ 2. In addition, it contains a single data register to store the first bit
of a bit-pair, x2i. The purpose of the sub-module is to execute the in Algorithm 4
described procedure. In the case that the in the algorithm included XOR-operation
results in a logic 1, vnc input if qualifies the current bit (x2i) and informs the other
sub-modules about this decision.

If the bit x2i is qualified by vnc input if, it is stored in the output memory of the
VNC module, vnc output memory. This sub-module reads the bit from vnc input if
and stores it in a 32-bit output register bank. The register bank is directly con-
nected to the 32-bit output of the VNC, data out. Besides of the output register
bank, vnc output memory contains a 5-bit counter, which is increased each time a
new bit is stored. The purpose of this counter is twofold. First, as the count equals
the number of qualified input bits, it is used internal in vnc output memory to derive
the address of the register in the output register bank to which the next qualified
bit should be written to. Second, the counter is passed on to vnc ctrl, which uses
it to keep track of the amount of bits collected. This information can then be used
to determine if vnc ctrl should stay in OPERATE or if it should return to IDLE
and signal to the superior system that the generated data can be read from data out.

Before presenting the detailed implementations of the sub-modules, it is of interest
to note that, in contrast to the IHF (see Section 2.4.2 and Section 4.2.3), the VNC
as presented is not tunable by, for instance, adjusting the ratio of the number of
required input bits per output bit or by the IHF tuning parameter β. Hence, the
influence of changing a tunable parameter on the final implementation does not
have to be analyzed. This enables the exploration of the effect of different design
approaches on the energy performance of the implementation.

Considering the above given approach of a VNC implementation, it is reasonable
to assume that the principle of clock gating, as presented in Section 2.5, should
have a positive effect on the power consumption of the module. For instance, most
registers in the module are not updated unless a new bit arrives from the entropy

89

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

source. Thus, considering Table 3.1, which states that the ADC based entropy
source provides a new bit roughly every 50th clock cycle of the main clock (sys clk
of Figure 4.11), during most clock cycles the registers of the implementation are
updated unnecessarily. It is worth noticing that this effect is further increased for
some registers. For instance, each single register of the output register bank in
vnc output memory is only updated once during the generation of 32 bits. Hence,
it is reasonable to assume that the introduction of clock gates in the design can
decrease the dissipated dynamic power, as defined by Equation 2.47, drastically.

However, each clock gate comes at the cost of additional hardware that poten-
tially increases the power consumption of the module. It is therefore of interest to
explore whether adding clock gates to the design improves the power efficiency of
the module or if it influences the performance negatively. In order to do so, four
different approaches to implement the sub-modules of the VNC are introduced. The
first one makes exhaustive use of the principle of clock gating, by applying a clock
gate to every register that can have an individual clock signal. This should reduce
the switching activity, γ, of the registers to a level close to the minimum. The sec-
ond approach uses clock gating only if at least four registers can be connected to
one clock gate1. In the third approach, no clock gate is explicitly included during
the design phase, but the synthesis tool is enabled to add clock gates as it sees fit.
Finally, the fourth approach avoids the use of clock gates altogether. It should be
noted that, for the following presentation of the design of the sub-modules, the third
and the fourth approach are equivalent, since the clock gates of the third approach
are not included before the synthesis process. An overview over all four approaches
is presented in Table 4.4. The SystemVerilog realization of the in Approach 1 and
Approach 2 used clock gates is presented in Appendix D.1

Table 4.4: Overview over the different VNC design approaches

Approach 1 Exhaustive use of clock gates
Approach 2 Clock gates used four or more registers
Approach 3 Clock gates inserted by synthesis tool
Approach 4 No use of clock gates

Figure 4.12 shows the implementation of vnc ctrl for an approach that clock gates
each single register and an approach that uses no explicit defined clock gates. Since
the sub-module contains only two registers, this are the only two approaches con-
sidered for this module. The two registers are the status register, which is either in
IDLE or OPERATE, and a register that contains the current value of data valid flg.

The main difference between the two in Figure 4.12 depicted approaches is the
existence of a clock gate that controls the clocks applied to the two registers. During
IDLE, sys clk passes the gate unopposed. This is necessary, because the status
register must be able to handle the start signal, which is unpredictably applied by
the superior system. However, during OPERATE, the clock gate blocks sys clk,

1This approach is based on a design “rule of thumb” of Silicon Laboratories, which depicts a
trade-off between the reduced switching activity and the increased overhead which accompany the
introduction of clock gates.

90

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.12: Block schematic of vnc ctrl : The green illustrated ver-
sion depicts a clock gated solution, used in Approach 1. Red depicts
an approach without clock gates used in Approach 2, Approach 3
and Approach 4

unless all 32 requested bits have been generated. This means that neither register
is updated during the entire duration of OPERATE aside from the last clock cycle
of the state. It is worth noticing that this makes it possible to simplify the next
state logic of the state register. Since the only positive clock edge that is applied
to the register in OPERATE indicates that OPERATE is completed, it is sufficient
to design the next state logic such that the status register returns from OPERATE
immediately to IDLE. The gated clock, however, prevents that this state transition
is executed before all 32 output bits are generated. In contrast, when clock gating
is not applied, more information has to be used to in the next state logic in order
to evaluate if OPERATE should be left. This is depicted in Figure 4.12 by an
additional input to the next state logic.

The implementation of vnc input if is presented in Figure 4.13. As for vnc ctrl,
only two registers are used in the sub-module and therefore only a totally clock gated
approach and a approach with no explicit clock gates is discussed. The registers are
respectively used to store the state of the sub-module (READ 1 and READ 2) and
the first bit of a bit pair (x2i).

Compared to Figure 4.12, the main difference of the clock gated approach of
vnc input if is that two nested clock gates are used. The first one supplies the
status register which changes its state each time a new source bit is received. The
second one is applied to the register that contains x2i, which only has to be updated
for every second input bit. If an approach without clock gates is used, registers have
to be used for which the load operation can be controlled by an enable signal. As
illustrated in Section 2.5, the ability to control the register in this way comes at the
cost of some minor logical overhead, which is not explicitly depicted in Figure 4.13.
Appendix D.1 presents SystemVerilog codes of memory elements both with and
without an enable signal. The control signals used to enable the registers are the
same as used to control the corresponding clock gate in the alternative approach.

In contrast to vnc ctrl and vnc input if, the output memory sub-module vnc-

91

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.13: Block schematic of vnc input if : The green illustrated
version depicts a clock gated solution, used in Approach 1. Red de-
picts an approach without clock gates used in Approach 2, Approach
3 and Approach 4

output memory contains more than two registers. These registers are used to realize
the output bit counter and the output memory bank, which is connected to data out.
This means that a total of 37 registers is embedded in vnc output memory. As
a result, three different approaches are presented. Figure 4.14a shows both an
approach which uses exhaustive clock gating and an approach without any explicit
defined clock gates. In Figure 4.14b, a third approach is depicted which uses clock
gates to supply at least four registers per clock gate.

Before focusing on the difference between the three approaches, it should be
noted that they all use the same basic concept. The data received from vnc input if
is directly connected to each register of the output register bank. Thus, in order to
only load the input bit to the appropriated register, some kind of control signal is
required. This is provided by the counter of the sub-module, which keeps track of
how many bits have been stored already. The resulting 5-bit count is then passed
through a combinatorial address decoder, which converts it into 32 control signals,
one for each register. As only one register is activated at the time, the 32-bit output
of the address decoder can be thought of as the one-hot representation of the output
counter. Since the counter, as such, controls the sub-module, it can be, from an
analytic point of view, considered to be the status register of vnc output memory.

Based on this, the approaches depicted in Figure 4.14a are quite similar to the
approaches used to implement vnc input if, shown in Figure 4.13. For the clock
gate version, a main clock gate is used to suppress sys clk unless the sub-module is
activated and a new bit has to be stored. The gate clock is applied to the counter,
which thus only increases its count on the arrival of a new bit. In addition, each
register of the memory bank has its own clock gate, which blocks the applied clock,
unless it is activated by the respective control signal from the address decoder. In
this way, each register of the memory bank receives only a single positive clock edge
during a normal generation procedure of 32 output bits. If no clock gates are used,
enable signals must be added to the both the registers of the memory bank and the
counter. This is depicted in Figure 4.14a and, again, quite similar to Figure 4.13.

92

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

(a) Block schematic of vnc output memory : Green depicts a exhaustive clock gated solu-
tion used in Approach 1. The red version makes no use of explicit defined clock gates and
is used in Approach 3 and Approach 4

(b) Block schematic of vnc output memory using one clock gate for at least for registers.
This solution is used in Approach2. Note that only the first four registers of the output
register bank are depicted.

Figure 4.14: Block schematics of vnc output memory

93

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.15: Waveform of the first VNC verification simulation

Figure 4.14b shows an implementation of vnc output memory, which uses clock
gates to supply groups of at least four registers. As the counter contains five registers,
one clock gate is applied to it. This clock gate is essentially equivalent to the main
clock gate, of the clock gated approach of Figure 4.14a. However, for the output
memory bank, the approach differs from the above presented solution. Figure 4.14b
shows how four registers are grouped and applied to the same clock gate. As a result,
the clock gate is activated, which means that the clock is not suppressed, whenever
one of the four corresponding control signals delivered by the address decoder is high.
It is important to note, that this makes it necessary to enable the registers explicitly,
as otherwise all four registers would load the delivered data simultaneously.

At this point, multiple approaches of an implementation of a VNC have been
presented. Before turning the focus on the logical verification of these implemen-
tations, it is worth to note a tendency that is similar for the three presented sub-
modules. Considering Figure 4.12, Figure 4.13 and Figure 4.14a, it is depicted, that
slightly less control logic, in form of additional gates and registers with enable sig-
nals, is needed if clock gating is applied. Thus, while the clock gates themselves
depict an overhead in hardware, the design itself can be slightly simplified. As such,
the relative overhead between a solution using exhaustive clock gating and an ap-
proach without clock gates, is reduced. However, by comparing Figure 4.14a and
Figure 4.14b, it is evident that this not the case if clock gating is only applied partly.

As presentd in Table 4.3, the verification of the presented VNC implementations is
first based on a short simulation which results in only a two output bits. In this
way, it can be checked whether or not the VNC-algorithm is executed as described
in Algorithm 1, by analyzing the executed process in detail. Since such a simula-
tion thus mainly considers the execution of the algorithm, it focuses mainly on the
vnc input if sub-module, which performs Algorithm 1. The other sub-modules are
considered in more detail in a succeeding simulation.

A simple example of a 8-bit input of the VNC and the corresponding output has
been given in Section 2.4.1. It is restated here for convenience: Applying Algorithm 1
on the 8-bit input −→x = 〈1, 1, 0, 1, 0, 0, 1, 0〉 yields the output −→y = 〈0, 1〉. It should
be noted that, for the given example, −→x contains all possible combinations of the
bit pair 〈x2i, x2i+1〉. It is therefore suitable to use the given example as a first, short
simulation to verify the behavior of the VNC implementation. Figure 4.15 shows the
resulting, correct waveform for an implementation that uses no clock gating. The
corresponding waveforms for the other implementations are essentially equivalent to
the here presented results, and thus verify the functionality of the proposed designs.

In order to further increase the confidence in the functionality of the imple-
mentation and to widen the scope of the simulation to include also vnc ctrl and
vnc output memory in a direct manner, a second, larger simulation is executed.

94

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

During this simulation a longer sequence of known input bits is applied to the VNC
and the simulation routine is running the VNC 4 times in order to produce a total
of 128 bits.

The results of this simulation are shown in Figure 4.16, for the VNC implemen-
tation without clock gates. Corresponding results have been found for the other
implementations. As before, all results are correct and essentially equivalent.

After the functionality of the proposed VNC implementations has been verified, each
proposal has to be synthesized. As stated in Section 4.2.1, a presentation of this
step is omitted here. The basic results are presented in Appendix F, including the
power estimations of the implementations, which are further discussed in Chapter 6.

However, since the difference between Approach 3 and Approach 4 (see Table 4.4)
is highly dependent on the synthesis process, it should be mentioned that the syn-
thesis tool inserts one single clock gate into Approach 3. The clock gate controls the
clock connected to the counter of vnc output memory and is as such similar to the
clock gate on the left hand side of the block schematics presented in Figure 4.14.

4.2.3 Implementation of an extractor based on pairwise in-
dependent hash functions

Before discussing a possible implementation of the IHF, it is worth to consider an
aspect that differs from the implementation procedure of the VNC. While the VNC
operates on single bit pairs and adds one and one bit to the output until the output
reaches the desired length of 32 bits, the IHF can be considered to operate on n-bit
input blocks in order to generate an m-bit output. It should be stressed that these
are parameters determined by the IHF and not by the chosen system architecture
(Figure 4.8). To make this explicit, the number of input and output bits for the
IHF are for the rest of this project denoted as nIHF and mIHF, respectively.

For the implementation of the IHF, it is desirable to leave the parameters mIHF

and nIHF undetermined. In the case of nIHF this is mainly due to the reason, that
the amount of input bits required depends on the amount of entropy per bit, which
is determined by the source. Thus, in order to keep the implementation as general
as possible, nIHF is considered a variable that can be tuned with respect to the used
source.

For the output length mIHF it would be possible to simply fix mIHF = 32. How-
ever, the complexity of Algorithm 3 increases drastically with increasing mIHF, as,
for instance, can be seen from the discussion presented with regards to Figure 4.5
in Section 4.1.2. It has been stated in Section 2.4.2, that the outputs of multiple
IHF-operations can be concatenated to one output, as long as the (conditional) min-
entropy requirements of the extractor are satisfied by the input of each operation.
Thus, it might be possible to reduce the total number of operations by executing
an IHF-algorithm multiple times, for example 8 times for mIHF = 4, and then con-
catenate the results to one 32-bit output. In order to be able to test this method
and analyze its effect on the energy performance of the design, mIHF is kept unde-
termined in the same manner as nIHF for the rest of this implementation.

A flow diagram of a possible IHF module based on Algorithm 3 is presented in

95

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

(a) Waveform for the first generated output word

(b) Waveform for all four generated output words

Figure 4.16: Waveform of the second VNC verification simulation

96

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

yj = ⊕n−1
i=0 (xi ∧ πi+j)

Figure 4.17: Flow diagram of a IHF module

97

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.18: Block schematic of a IHF module

Figure 4.17. As the VNC module (Figure 4.10), the IHF module is initial in the
IDLE state, where it remains until it is activated by a start signal. Once the module
is started it switches to the state READ. In this state, the module requests input bits
from the entropy source and stores them into a input memory. The module remains
in this state until the entire nIHF-bit input required by Algorithm 3 is received.
When this is the case, the module begins to compute the outcome of the IHF, by
changing to the COMP state. While in COMP, the module executes Algorithm 3
by repeatedly performing Equation 2.44. It is worth noticing, that this means that
the module generates one output bit per time interval which it spends in COMP.
After having generated the mIHF output bits of the algorithm in this manner, the
module changes to a state referred to as LOAD. During this state transition, the
public parameter, −→π , of Algorithm 3 is reset. Why this is necessary is related to
the method COMP uses to execute Equation 2.44 and will become clear when the
implementation is presented in more detail, below in this section. In LOAD, the
module stores the mIHF output bits in an output memory block and evaluates how
many bits already have been gathered in this way. If the number of bits stored in
the output memory does not equal the requested 32 output bits, the module returns
to READ, in order to generate the remaining bits. However, once the 32 output bits
have been generated, the module returns from LOAD to IDLE, where it remains
until it is reactivated.

Based on the flow diagram of Figure 4.17, it is appropriated to divide an IHF
implementation into four sub-modules, quite similar to the approach used to im-
plement the VNC (see Figure 4.10). This is depicted2 in Figure 4.18. It might be
helpful to recall that the input and output signals are defined in Table 4.2. As for
the VNC, a control sub-module, ihf ctrl, is used as a communication interface to the
superior system and to control the other sub-modules of the implementation. The
sub-module can therefore be considered to be a state machine used to realize the in
Figure 4.17 depicted flow diagram.

Once activated by the start signal, ihf ctrl activates ihf input if and starts re-
questing bits from the entropy source. The ihf input if sub-module is basically a
simple input register, used to store the nIHF required input bits. When all nIHF input
bits have been gathered, ihf ctrl activates ihf comp, which runs Algorithm 3 on the

2For convenience, the subscript “IHF” is not used in the in this section presented figures.

98

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

nIHF bits stored in ihf input if. This computation results in the mIHF-bit output vec-
tor out, which is stored in ihf output memory. As illustrated in Figure 4.17, ihf ctrl
repeats this process until a total of 32 bits has been loaded into ihf output memory.

It has been discussed during the beginning of this section, that the parameters nIHF

and mIHF of the presented IHF implementation are left generic, in order to be able
to analyze the effect of different parameter choices on the design. To keep the
focus of the analysis on the effect of the parameter choices, exploring the impact of
design techniques on the power performance of the design, as it has been done with
clock gating for the VNC implementation (see Section 4.2.2), is omitted here. As a
consequence, only a single implementation approach is presented here. Furthermore,
since no low level design techniques are applied, it is not necessary to consider the
sub-modules of the IHF solution in the same amount of detail as it has been done
in Section 4.2.2. This is due to the reason, that changing the parameters mIHF and
nIHF in most cases just affects the number of registers used in the sub-modules, but
not the logical structure.

The SystemVerilog implementation of ihf ctrl is shown in Appendix D.3.3. The
sub-module is basically a direct realization of a state machine with a behavior as
specified in Figure 4.17. As such it contains some next-state logic, output logic and
state-registers. In addition it makes use of two counter. The first counter counts,
depending on the state, the number of bits that have been stored into ihf input if or
how many of the mIHF required bits have been generated by ihf comp. Reusing the
same counter for both purposes reduces the amount of hardware resources necessary
to implement the sub-module. The second counter is used to count the number
of bits already stored in ihf output memory. It is worth noticing that the only
component in ihf ctrl that is dependent on the parameter choice is the first counter,
which has to count up to nIHF and mIHF, respectively. Further, as nIHF always
must be larger than mIHF (see, for instance, Equation 4.4), the number of registers
necessary to realize this counter is only dependent on nIHF.

As mentioned above, the ihf input if sub-module is a simple input memory block,
used to store the nIHF bits that are required to execute Algorithm 3. To keep the im-
plementation simple, a basic nIHF-bit shift-register is used to realize the sub-module.
This is depicted in Figure 4.19 and the related SystemVerilog implementation can be
found in Appendix D.3.4. Obviously, the number of register elements in ihf input if
is directly affected by the choice of the parameter nIHF.

Figure 4.19: Block schematic of ihf input if

99

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

A block schematic of the used realization of ihf comp is presented in Figure 4.20
(see Appendix D.3.5 for the SystemVerilog RTL-description.). As specified during
the presentation of Figure 4.17, the sub-module generates one output bit per clock
cycle, by executing Equation 2.44. This is done by first performing a bitwise AND-
operation with the nIHF input bits (x0, ..., xnIHF−1) and the nIHF first bits of the
public parameter (π0, ..., πnIHF−1) and then combining the results by applying them
to an XOR network. The resulting output bit, yj, can then be loaded into a shift
output register. On the next positive clock edge, the content of the public parameter
register is shifted towards the LSB and the procedure is repeated. It should be noted
that using a shift register for the public parameter makes it necessary to reset the
register before ihf comp can be reused, as illustrated in Figure 4.17. It is easy to
see from Figure 4.20 that both the size of the register and the complexity of the
combinatorial logic depends on the choice of the parameters mIHF and nIHF.

Figure 4.20: Block schematic of ihf comp

The realization of ihf output memory is illustrated in Figure 4.21 and the cor-
responding SystemVerilog implementation can be found in Appendix D.3.6. The
sub-module contains 32 register elements to store the generated output. The sin-
gle register elements are arranged in mIHF shift registers. This makes it possible
to simultaneously load the entire mIHF-bit input, vector out, while using a shift
register approach, similar to ihf input if. The number of shift registers and the
number of register elements per shift register is of course dependent on the param-
eter mIHF. However, it is important to note, that mIHF only affects the structure
of ihf output memory, but not the number of totally used register elements. As
the effect of the different structures on the power performance of the sub-module
should be reasonable small, it is reasonable to consider the power performance of
ihf output memory to be independent of the choice of the parameter mIHF.

Finally, before moving on to the verification of the design, some important as-
pects should be noted. First, while the number of registers and other logical gates in
ihf comp is directly dependent on mIHF, the other sub-modules are only negligible or
not at all affected by the choice of this parameter. Second, even though implemented
in a different manner, the functionality of ihf input if and ihf output memory are
quite similar to the output memory of the VNC, vnc output memory. As such, the
memory sub-modules of the IHF could be realized in the same manner as for the
VNC (see Figure 4.14). It should be noted that this would enable for all four clock
gating approaches, which are discussed in Section 4.2.2. Third, the combinatorial
elements of Figure 4.21 are directly connected to the input registers of the IHF.

100

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

Figure 4.21: Block schematic of ihf output memory : Example for
mIHF = 2

This yields to unnecessary switching in ihf comp during READ. A simple method
to avoid this is the in Section 2.5 mentioned guarded evaluation. However, as men-
tioned, such design techniques are not considered in this project and left for further
work.

Having presented the implementation of the IHF module, the focus turns to verify-
ing its correct logical behavior. Since the verification simulation has to be executed
on a non-generic version of the IHF module, it is necessary to choose some explicit
values for the parameters nIHF and mIHF. However, it is reasonable to assume that
the choice of the parameters does not affect the logical behavior of the implemen-
tation, due to two reasons. First, for the sub-modules ihf ctrl, ihf input ihf and
ihf output memory, the parameters influence only the number or the structure of
the used register elements. Second, the combinatorial logic in ihf comp which is
used to execute Algorithm 3 is extremely regular. As a result, the presented IHF
implementation can easily be scaled according to the used parameters. It is therefore
sufficient to verify the behavior of the implementation using a single set of parameter
values.

Further, since the at this point chosen parameters are for verification purposes
only, and not used for, for instance, the evaluation of the random character of the
output, the parameters can be chosen freely as long as nIHF > mIHF. In order to
simplify the simulation procedure, it is therefore suitable to choose rather small
values. Table 2.6 in Section 2.4.2 presents a simple example of Algorithm 3, using
an input length of nIHF = 8 and an output length of mIHF = 2. To keep the example
and the simulation process consistent, it has been chosen to adopt these parameter
values for the verification process.

Using the same argumentation as for the parameters mIHF and nIHF, the public

101

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

parameter −→π = 〈0, 1, 0, 0, 0, 1, 0, 1, 1〉 has been chosen according to the example
presented in Table 2.6.

For a first short simulation (see Table 4.3), that aims to verify the correct ex-
ecution of Algorithm 3 in the ihf comp sub-module, it is suitable to use the 8-bit
input which has been used in the example of Table 2.6. Thus, the input −→x =
〈1, 1, 0, 1, 0, 0, 1, 1〉 is applied to the module. The expected output is −→y = 〈0, 1〉.
Figure 4.22 shows the resulting correct waveform for the relevant signals in ihf comp
for the given stimuli. The generated output is 〈0, 1〉 and thus equals the expected
outcome. Note that only the time interval of the actual computation state, COMP
is shown, since ihf comp is deactivated during all other states.

Figure 4.22: Waveform of the first IHF verification simulation

In order to include the other sub-modules into the scope of the simulation and
to further increase the confidence in the correct execution of Algorithm 3 by the
module, a second simulation with a larger input is performed.

With regards to Table 4.3 the used simulation triggers the IHF implementation
to generate four 32-bit words. Thus, a total of 128 bits is created during this second
verification simulation. Based on the used parameters mIHF = 2 and nIHF = 8, this
means that the simulation requires an input of 512 bits.

The result of the simulation in form of a waveform for the most relevant signals
of the IHF module is presented in Figure 4.23. It shows that the module behaves
according to its specification.

Having verified that the presented IHF implementation behave in accordance to
its specification, the module is synthesized. As for the VNC this is not presented in
detail. In order to explore their effect on the implementation, the synthesis process
has been performed with a number of different combinations of the parameters mIHF

and nIHF. The basic results of the process are presented in Appendix F, including
the power estimates which are discussed in more detail in Chapter 6.

102

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

(a) Waveform of the first generated output word

(b) Work flow of the post-processor implementation process

Figure 4.23: Waveform of all four generated output words

103

4.2. IMPLEMENTATION OF POST-PROCESSING ALGORITHMS

104

Chapter 5

Evaluation of Randomness

Having established functional implementations of both the VNC and the IHF in
Section 4.2, it is of interest to evaluate if the implementations can be used to produce
a random output when applied to the ADC based entropy source of Section 3.1. In
order to do so, it is first necessary to generate a sufficient amount of output data for
the two post-processors. As discussed with regards to Figure 4.7, this can easily be
achieved by running RTL simulations of the post-processor designs, using input data
that is generated by the ADC. The resulting output data can then be evaluated by
using the NIST test suite (Section 2.2.2) and, in case of the VNC, the von Neumann
condition test, presented in Section 3.2.

As for the analysis of the entropy source output in Section 3.3, the parameters
for the NIST test suite and the von Neumann condition test have to be determined
before the tests can be performed. The test parameters for the source analysis are
presented in Table 3.3. In order to keep the different tests consistent, and recalling
that the small number of test sequences, N = 64, has been chosen to cope with the
compressing nature of the post-processing algorithms, it is reasonable to reuse these
test parameters for the in this chapter presented analysis.

Section 5.1 evaluates the possibility of using the VNC as a post-processor for the
ADC based entropy source. The results of using the IHF is presented in Section 5.2.

5.1 Analysis of the VNC Output

Before performing an analysis of the output of the VNC using data provided by the
source implementation of Section 3.1, it is worth to recall the main results of the
corresponding analysis of the source data. Section 3.3 shows that the source output
is biased towards 1 and has a percentage of 0’s of roughly 29%. The performed
von Neumann condition test fails, in all likelihood due to dependencies in the data.
Thus, it is rather unlikely that applying the ADC data to the VNC results in the
desired random output. However, the here performed analysis is of interest with
regards to two aspects. First, proving that the generated data in fact is not random
increases the confidence in the proposed von Neumann condition test. Second, ex-
ploring how the VNC affects the input data potentially increases the understanding
of the statistical characteristics of the entropy source.

105

5.1. ANALYSIS OF THE VNC OUTPUT

Using the test parameters as stated in Table 3.3, a total of 64 Mbits has to be
generated, by using the simulation setup presented in Section 4.2.1. It is worth
to recall from Section 2.4.1, that the exact number of the input bits requested by
the VNC depends on the statistical characteristics of the input. However, if the
von Neumann conditions are satisfied, the expected number of input bits, nVNC,
is described by Equation 4.1. It states that nVNC is a function of p, which is the
probability of a bit being equal to 0. Even though, p is unknown, it has been stated
that the average percentage of 0’s in the source data is roughly 29%. It is reasonable
to use this observation to derive an approximated expectation of nVNC. Thus by
setting p = 0.29, Equation 4.1 predicts that the VNC requires an average of 4.86
input bits from the ADC, in order to generate a single output bit.

Running a simulation routine that triggers the VNC to generate a 64 Mbits out-
put from the source data yields the VNC to request a total of 303,121,314 bits from
the ADC. In other words, for the given circumstances, the VNC requires approxi-
mately 4.52 input bits per single output bit, which accords to roughly 93% of the
expected 4.86 input bits.

Based on the generated output of the VNC, it is possible to run the data through
the NIST test suite. Following the recommendation of NIST (see Section 2.2.2), the
data is first only applied to the Frequency test. If the test is successful, the other
test of the test suite are executed.

The results of the Frequency test for the 64 generated output sequences are
presented in Table C.3 in Appendix C.2.2. It shows that the observed test statistic,
so, which is defined in Equation 2.27, is larger than 450,000 for each of the performed
tests. Recalling from the example given during the presentation of the Frequency
test in Section 2.2.2, that the test fails for a sequence of n = 1048576 at a significance
level of α = 0.01 if the observed test statistic, so, either exceeds 2638 or is smaller
than -2638, it is evident that the test fails for all 64 applied sequences. This is also
implied by the fact, that the p-value of each test equals zero. As the result of the
first-level tests is a clear rejection of the null-hypothesis, a second-level test is not
performed.

In the same manner as done in Section 3.3, so can be used to derive the per-
centage of 0’s in the used sequences. The results are presented in Table C.3 and
in Figure 5.1a. The percentage varies between approximately 25.26% and 28.34%
and has an average value of roughly 27.2%. Compared to the corresponding results
for the source data (Figure 3.2a), which has an average percentage of 0’s around
28.75%, this depicts a slight increase in the bias of the data. However, with regards
to its input data, the output of the VNC has a reduced variation of the bias. This
is further illustrated in Figure 5.1b, which shows that the percentage of 0’s between
two successive sequences only in three cases is larger than 1% and never exceeds the
2% mark. As a result, the bias of the generated output can be assumed to be rather
constant, based on the same argumentation as of Section 3.3.

Even though the observed increase in the data is undesirable, it is worth noticing,
that the observed average percentage of 27.2% is consistent with the analysis of the
source data. During the performance of the von Neumann condition test for the out-
put of the entropy source, it has been stated that on average 228,960 von Neumann
pairs are observed (ovN) per test sequence. The average number of obsered bit-pars

106

5.1. ANALYSIS OF THE VNC OUTPUT

(a) Percentage of 0’s in the sequences of the VNC output data: The red line depicts the
average of approximately 27%. The green line depicts the average for the source data
(29%).

(b) Absolute value of the difference in percentage of 0’s in subsequent sequences: The red
line depicts 1%.

Figure 5.1: Results of the Frequency test for the VNC

of the type 〈0, 1〉, o01, is 64,143. In other words, the VNC produces on the average
64,143 bits that are equal to 0 per 228,960 generated output bits. This corresponds
to an expected percentage of 0’s of roughly 26.7%, which is approximately equal to
the observed 27.2%.

At this point of the analysis, it can be clearly stated that the Frequency test re-
jects the hypothesis that the generated output data of the VNC is random. It is
therefore not necessary to perform any of the other tests of the NIST test suite.
Again, it should be stressed, that this result is expected based on the in Section 3.3
performed von Neumann condition test. However, during the corresponding discus-
sion of the results of the von Neumann condition test, it has been stated, that this
incompatibility most likely is due to dependencies in the source data, which cause
the observation of 〈0, 1〉 to be less likely than the occurrence of 〈1, 0〉. As the VNC
compresses the input data by only selecting certain bits, it affects the structure
and, as such, potentially the dependencies between bits. To explore this effect, it is
therefore of interest to perform the von Neumann condition test also for the output
of the VNC and compare the results to those of Section 3.3.

The results of the 64 performed first-level von Neumann condition tests are pre-
sented in Table C.4 in Appendix C.2.2. The table shows that the observed number

107

5.1. ANALYSIS OF THE VNC OUTPUT

of von Neumann pairs varies between 215,855 and 229,770 and has an average of
approximately 225,050. The corresponding observed test statistics, so = o01 (see
Equation 3.4), which is the frequency of the bit-pair 〈0, 1〉 in the respective se-
quence, ranges from 107,764 to 115,117, with an average of roughly 112,540. It is
essential to note, that the observed test statistics of the single first-level tests are
close to their expected values of e01 = ovN

2
, introduced in Equation 3.6. Figure 5.2a

illustrates this and shows that the observed test statistics, o01, are close to identical
to their expected values. This can also be seen from Figure 5.2b, which depicts the
normalized difference between o01 and e01. In contrast to the corresponding results
for the source data (see Figure 3.3b), which is in the range of 0.5, the normalized
difference for the VNC output is close to zero for all tested sequences. This points
towards the conclusion that the VNC output satisfies the von Neumann conditions,
as defined in Equation 3.3.

(a) Frequencies of von Neumann pairs and the expected and the observed test statistics
for the tested sequences

(b) Normalized difference between the observed and expected test statistics for the tested
sequences

Figure 5.2: Results of the von Neumann condition test for the VNC

The hypothesis that the VNC output satisfies the von Neumann conditions is fur-
ther strengthened by considering the p-values of the performed tests. Eventhough,
the values vary vastly for different sequences, none of them is equal to 0. To unify
the results of the 64 first-level tests to one concrete conclusion, it is reasonable to
perform a second-level test, as discussed, for instance, in Section 2.2.2. With respect
to Table 3.3, the p-values are therefore grouped into 10 equally size groups over the

108

5.1. ANALYSIS OF THE VNC OUTPUT

interval [0,1]. This is illustrated in Figure 5.3. Given that the null-hypothesis of
the test is true, which means that the von Neumann conditions are satisfied by
the data, the depicted p-values are expected to follow an uniform distribution. To
evaluate if this is the case of the observed data, the chi-squared goodness-of-fit test
of Section 2.2.1 is performed. The resulting second-level p-value is approximately
0.99. Recalling from Table 3.3 that for the purpose of this report a second-level test
is considered to be successful if the p-value exceeds α′ = 0.0001, it is obvious that
the VNC output data passes the von Neumann condition test.

Figure 5.3: Observed p-values of the first-level von Neumann con-
dition test for the VNC: The red line marks a uniform distribution.

Before moving on to discuss a suitable reaction to the positive result of the von
Neumann condition test, it is worth to consider one final aspect of the observed data.
With regards to Figure 5.2b, it has been stated that the magnitude of the difference
between o01 and e01 is significantly reduced with respect to Figure 3.3b. In addition,
it should be noted, that the normalized difference for the VNC output varies around
0. That means that, while for some sequences the observed test statistic exceeds its
expected value, for other sequences o01 is smaller than e01. In contrast, for the data
generated by the ADC, the considered difference is continuously positive. It has
been argued in Section 3.3 that this is an indicator for dependencies in the source
data. As Figure 5.2b does not show the same systematic tendencies, it is reasonable
to conclude that this specific kind of dependencies has been removed from the data.

Based on the result of the von Neumann condition test, it seems likely that the
output data of the VNC satisfies the von Neumann conditions. It is therefore rea-
sonable to investigate the possibility of generating a set of random data, by running
the generated output data once more through the VNC, as illustrated in Figure 5.4.

109

5.1. ANALYSIS OF THE VNC OUTPUT

Figure 5.4: Illustration of the second VNC iteration approach

In order to investigate this second iteration approach, it is first necessary to create
a sufficient amount of data during the first iteration, which then can be used by the
second iteration to generate a 64 Mbits output. This output can then be applied to
the NIST test suite, in the same way as done above for the first iteration.

Running a simulation routine that triggers the VNC to produce a 64 Mbits out-
put, it is observed that the VNC uses 308,584,632 bits of the data, which has been
produced by the first iteration. This corresponds to an average of roughly 4.6 input
bits per single output bit. Recalling that the expected number of input bits, nVNC,
can be calculated by means of Equation 4.1, and using the average percentage of
0’s in the input as an estimate of the bias p, nVNC can be computed in the same
manner as during the beginning of this section. The average percentage of 0’s in
the output of the first VNC iteration is approximately 27.2%. Hence by setting
p ≈ 0.27, the ratio between the number of input and output bits for the second it-
eration is roughly 5.07, which differs with slightly more than 9% from the observed
value. Thus, the observation of the input-output-ratio of the second VNC-iteration
matches the expected value decently. Since Equation 4.1 is only valid if von Neu-
mann conditions are satisfied, this can be considered to strengthen the hypothesis
that these conditions are satisfied for the input of the second iteration. However,
it should be noted, that the expectation and the observation of the correspond-
ing ratio for the input of the first VNC-iteration differ with only 7%, even though
it has been shown that von Neumann conditions are not satisfied for this set of data.

As before, the evaluation of the output of the second iteration by the NIST test suite
is initiated by running the Frequency test. The results of the test are summarized
in Table C.5 in Appendix C.2.2. The table shows that the observed test statistic, so
(see Equation 2.27), varies between -2,872 and 2,250. It has been stated above and
during the example given in Section 2.2.2, that the Frequency test does not fail for
the given circumstances and at a level of significance of α = 0.01, if |so| ≤ 2, 638.
Thus, considering Table C.5 in detail, it can be seen that the Frequency test is
successful for all 64 sequences, with the exception of sequence 56.

Figure 5.5a shows the percentage of 0’s, which has been computed based on the
corresponding so. The figure shows, that the bias of the data has been clearly re-
duced during the second iteration of the VNC. The average portion of 0’s in the data
is roughly 50.01% and differs thus only with 0.01% from a perfectly unbiased bit
stream. In addition, the bias of the data can be considered to be nearly absolutely
constant, varying between approximately 49.89% and 50.14%. This is further illus-
trated in Figure 5.5b, which shows that the bias difference between two successive
sequences is below 0.5%, for all tested sequences.

The in Figure 5.5 presented data clearly supports the hypothesis that the fre-

110

5.1. ANALYSIS OF THE VNC OUTPUT

(a) Percentage of 0’s in the sequences of the output of the second VNC iteration. The
red and the green line mark the average for the source data and the first VNC iteration,
respectively.

(b) Absolute value of the difference in percentage of 0’s in subsequent sequences: The red
line depicts 1%.

Figure 5.5: Results of the Frequency test for the second VNC iter-
ation

quencies of 0’s and 1’s in the output of the second VNC iteration are equal, which
would mean that the Frequency test is successful. However, as stated, sequence 56
fails the test. In order to derive a clear result for the test, it is therefore reasonable
to perform a second-level test, as previously performed during the von Neumann
condition test for the first VNC-iteration.

Figure 5.6 shows the distribution of the 64 observed p-values of the first-level
tests. To evaluate if the depicted situation could correspond to an uniform distri-
bution, the chi-squared goodness-of-fit test is performed, resulting in a second-level
p-value of approximately 0.83. As this value clearly exceeds the for this project
determined second-level level of significance, α′ = 0.0001 (Table 3.3), the Frequency
test is considered to be successful for the output of the second iteration of the VNC.

Based on this result, the other tests of the NIST test suite are performed, in
order to evaluate whether the output of the second iteration can be considered to
be random. The most important results of the performed tests are summarized
in Table 5.1. It is worth to recall from Section 2.2.2, that it is common to only
consider one result for tests that are performed several times for the 64 sequences.
Therefore, only one result per test is presented in Table 5.1. Further, it should
be noticed that some of the NIST tests require the specification of individual test

111

5.1. ANALYSIS OF THE VNC OUTPUT

Figure 5.6: Observed p-values of the first-level Frequency tests for
the second VNC iteration: The red line marks a uniform distribu-
tion.

parameters, which have not been discussed in this report, due to the time frame of
the project. However, the here presented tests use mainly the in the NIST test suite
set default values1.

With respect to the in Table 5.1 presented results, 8 of the 15 performed tests
fail. Hence, it is concluded that also the data generated by the second iteration
of the VNC cannot be considered to be truly random. It is out of the scope to
analyze the results of each of the performed tests. However, the results of the Block
Frequency test and the Runs test should be explored in slightly more detail.

The Block Frequency test passes as clearly as the Frequency test. With regards
to Table 2.3, both tests are quite similar. While the Frequency test compares the
expected number of 0’s in the sequence to the observed frequency, the Block Fre-
quency test evaluates the same measure but over smaller bit-blocks of the sequence.
Thus, the fact that the Block Frequency test is successful shows that the numbers
of 0’s and 1’s are in the same range, even if shorter intervals are considered. This
increases the confidence in the conclusion that the tested data is constantly unbi-
ased, as stated during the discussion of the in Figure 5.5 presented results of the
Frequency test.

In contrast to the two frequency related tests, the Runs test rejects the null-
hypothesis for all 64 performed first-level tests, and thus clearly fails. This test
focuses on the number of uninterrupted sub-sequences of identical bits (runs) in the
data (see Table 2.3). In other words, the test determines whether the oscillation

1The interested reader may note that the block length of the Frequency Block test has been set
to 16,384, following the NIST recommendation for the used n value

112

5.1. ANALYSIS OF THE VNC OUTPUT

Table 5.1: Results of the NIST test suite for the output of the
second VNC-iteration

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 63 0.834308 Passed
BlockFrequency 64 63 0.468595 Passed
CumulativeSums 64 63 0.407091 Passed
Runs 64 0 0.000000 Failed
LongestRun 64 32 0.000000 Failed
Rank 64 61 0.178278 Passed
DFT 64 58 0.000000 Failed
NOT 64 0 0.000000 Failed
OT 64 0 0.000000 Failed
Universal 64 25 0.000000 Failed
Approx.Entropy 64 0 0.000000 Failed
Rand.Excur. 37 35 0.009998 Passed
Rand.Excur.Var. 37 36 0.001084 Passed
Serial 64 0 0.000000 Failed
LinearComplexity 64 62 0.637119 Passed

between 0’s and 1’s in the data is either too slow or too fast compared to the expec-
tations for a random bit stream. While a detailed presentation of the mathematical
background and the explicit results of the test is omitted in this report, it is never-
theless possible to draw a simple but important conclusion. Since the test fails, the
number of runs of identical bits must either be too small or too large.

One possible explanation of this observation could be that the data is biased.
For example, the towards 1 biased 10-bit stream 〈1, 1, 1, 1, 1, 0, 1, 1, 1, 1〉 contains,
due to its bias, only 3 runs, which is too low for a sequence of 10 bits. However,
the here considered output of the second VNC-iteration passes both the Frequnecy
test and the Block Frequency test. Thus, as stated above, the data is unbiased. As
a result, it is reasonable to conclude that the for random data untypical number of
runs is due to some kind of dependencies. For instance, if observing a bit that is
equal to 1 increases the probability that the next bit is also equal to 1, it is likely
that the data contains only a few long runs. In the same manner, a dependency
that makes it likely that a bit is the logical inverse of the preceding bit yields a too
high number of runs.

Based on this first, short analysis of the results of the NIST test suite, as pre-
sented in Table 5.1, the following can be concluded: Both the Frequency and the
Block Frequency test show that by performing a second iteration of the VNC the
bias of the data can successfully be removed. However, as the data still contains de-
pendencies, it fails the NIST test suite and cannot be considered to be truly random.

To complete the analysis of the output of the second VNC-iteration, the von Neu-

113

5.1. ANALYSIS OF THE VNC OUTPUT

mann condition test is performed for the data. The results are presented in Ta-
ble C.6. Even though the average number of observed von Neumann pairs is slightly
increases compared to the outcome of the first VNC iteration, the in Table C.6 pre-
sented data is fairly alike to the corresponding data in Table C.4. In order to keep
the here presented discussion focused, a detailed analysis of the test results is there-
fore omitted at this point. However, a graphical illustration of the most relevant
data is presented in Figure C.1 in Appendix C.2.2. It is worth noticing, that the
figures show the same main characteristics as the corresponding graphs for the first
VNC iteration, presented in Figure 5.2a.

Figure 5.7: Observed p-values of the first-level von Neumann con-
dition tests for the second VNC iteration: The red line marks a
uniform distribution.

As for the first iteration, the p-values of all 64 performed first-level von Neumann
condition tests for the second iteration vary for each sequence. To derive a final re-
sult of the test, once more, a second-level test is performed. Figure 5.7 shows the
distribution of the p-values over the range [0,1]. The resulting second-level p-value
is approximately 0.07. Even though this value is much smaller than the second-level
p-value of the von Neumann condition test for the first iteration of 0.99, it is well
beyond the defined second-level level of significance, α′ = 0.0001. Thus, the output
of the output of the second VNC iteration passes the test and it is therefore con-
cluded that the data satisfies the von Neumann conditions.

In order to derive a general conclusion of the in this section presented analysis, it
is helpful to consider all the performed test in relation to each other. Table 5.2
summarizes the the main results of the executed tests for the output of the entropy
source (Section 3.3) and the outcomes of the two VNC-iterations. The by the entropy

114

5.1. ANALYSIS OF THE VNC OUTPUT

source delivered data is strongly biased (the percentage of 0’s is roughly 29%). It
does therefore not pass the Frequency test and fails, as such, the NIST test suite.
Further more, do to dependencies in the data stream, the von Neumann condition
test fails, which indicates that the VNC is not a suitable post-processor for the given
entropy source.

Table 5.2: Summary of the statistical tests of VNC

von Neumann
condition test

Frequency test NIST test suite

Source data Failed Failed Failed
First VNC-iteration Succeeded Failed Failed
Second VNC-iteration Succeeded Succeeded Failed

Running the source data through a first VNC-iteration confirms the result of
the von Neumann condition test. Instead of eliminating the bias of the applied
data, the output of the first iteration has a slightly increased bias compared to the
input, which yields the Frequency test to fail. As such, the proposed von Neumann
condition test successfully identifies the absence of von Neumann conditions in the
source data.

However, performing the von Neumann condition test on the output of the first
iteration yields an acceptance of the null-hypothesis. In other words, the test con-
cludes that the data generated by the first iteration satisfies the von Neumann
conditions. Based on the related analysis, it seems likely that this positive test
result is due to the compressing property of the VNC. Since the VNC only selects
some of its input bits as an output, it changes the structure of the data. This seems
to eliminate the dependencies that yields the von Neumann condition test to fail
during the analysis of the source data. It should be stressed at this point, that this
feature of the VNC is rather a “side effect” of Algorithm 1 that works for the here
presented entropy source. A general, firm mathematical proof does not exist.

As expected from the result of the von Neumann condition test, performing a
second VNC-iteration generates a close to perfectly unbiased output that passes
the Frequency test. This means that the introduced von Neumann condition test
has correctly detected the desired conditions in the data that yield to a successful
performance of the VNC. However, executing the other test of the NIST test suite
leads to the conclusion that the output of the second VNC-iteration can still not be
considered to be random. The performed analysis of the test results indicates this
is due to remaining dependencies in the bit stream.

In conclusion, by running two iterations of the VNC it is possible to transform
the biased data of the in this project used entropy source to a nearly perfectly
unbiased bit stream. However, even though it has been observed that the VNC
removes some dependencies in the data, the final output still contains too many
dependencies to be considered truly random. As such, the VNC must be considered
to be an unsuited post-processor for the purpose of this project.

The in Section 3.2 proposed von Neumann condition test has been shown to suc-
cessfully identify both the presence and the absence of von Neumann conditions. In
other words, for data that passes the test, the VNC is able to generate an unbiased

115

5.2. ANALYSIS OF THE IHF OUTPUT

output. As such, the test works in accordance to its definition. However, it does not
take dependencies in the data into consideration. Hence, data that passes the test
does not necessary result in a true random output, when applied to the VNC. As
a result, it is questionable how useful it is in practice to execute the von Neumann
condition test in order to evaluate if the VNC can be used for a given source.

As a final remark, it is at this point naturally to consider the performance of a
third VNC-iteration. The von Neumann condition test for the output of the second
iteration succeeds and it can therefore be concluded that the output of a third
iteration would pass the frequency related tests of the VNC test suite. In addition,
it is possible, that a further compression of the data by means of the VNC would
further reduce the remaining dependencies in the data. However, exploring the
possibility of a third iteration is omitted in this report, due to two reasons. First,
as mentioned, no mathematical background exists that indicates that the VNC is
suited to remove statistical dependencies. Hence, running a third iteration with the
purpose of removing dependencies lacks a mathematical motivation. Second, to be
able to evaluate the output of the third iteration, it would be necessary to generate
64 Mbits of data. With regards to the compressive character of the VNC-algorithm,
this would require an enormous amount of source data, which cannot be provided
by means of this project. As a result, considering a third VNC-iteration is left for
further work.

5.2 Analysis of the IHF Output

The evaluation of the output of the IHF for randomness differs vastly from the
corresponding analysis of the VNC presented in Section 5.1. The main reason for
this is the fact that the used IHF-algorithm (Algorithm 3) can be tuned by choosing
different values for the number of input bits, nIHF, the number of bits generated
per execution, mIHF, and the tuning parameter β, defined in Equation 4.5. In
contrast, the VNC-algorithm (Algorithm 1) is fixed to operate on two input bits,
which possibly result in one output bit, and does not provide the possibility of any
kind of tuning.

Hence, due to the variety of different possible parameter combinations for the
IHF, it is out of the scope of this report to perform an as detailed analysis of the
IHF as the one of the VNC, presented in Section 5.1. This section focuses therefore
rather on finding combination of IHF-parameters, that yield the output data to pass
the NIST test suite, and less on the detailed analysis of the statistical characteristics
of the data.

In order to find a first indication of suitable parameters, it is worth to recall the
functionality of the in Section 4.2.3 presented IHF-implementation. The designed
implementation uses input blocks of nIHF bits to generate output blocks of mIHF

bits, which then are concatenated to derive an output of fixed output length of 32
bits. Finally, in order to generate the by the NIST test suite required number of bits
(see Table 3.3), the simulation routine of Figure 4.9 concatenates the 32-bit output
of the IHF to create 64 test sequences of length n = 1 Mbits.

116

5.2. ANALYSIS OF THE IHF OUTPUT

Two important consequences derive from this concept. First, considering only
the operation of the IHF on a single input block, it is important that the parameters
of the post-processor satisfy Equation 4.4. The equation states that the nIHF-bit
input to the IHF must contain an amount of min-entropy, κ, that is equal to the
sum of the output length mIHF and the tuning parameter β. Second, in order to be
able to concatenate the mIHF-bit outputs to a truly random bit stream, each input
block must actually contain κ bits of conditional min-entropy, which follows from
the concept introduced during the discussion of Equation 2.10. This means that
dependencies between the blocks must be taken into consideration during the choice
of the parameter. For instance, as strong dependencies between the blocks result
in a lower amount of conditional entropy in the input blocks, the block length nIHF

must be increase to gather the same amount of conditional min-entropy.

Thus, the relation of the IHF-parameter can in theory be computed based on
the conditional min-entropy in the source data. However, in practice, estimating
κ for the input blocks is a non-trivial task. For example, ignoring for a moment
the aspect of possible dependencies between blocks, a value of the min-entropy of
the individual input blocks could be estimated, by considering a large number of
nIHF-bit blocks of the source data. By counting the number of occurrences of each
of the 2nIHF possible values of a block, the probability of the most frequently block
value can be approximated. This probability could then be related to the min-
entropy of the blocks, by means of Equation 2.3. However, this approach becomes
fast unpractical. A block size of, for instance, nIHF = 32 would result in 232 possible
outcomes. As a result, the amount of memory necessary to keep even the count of
each outcome clearly exceeds the hardware resources of this project. In addition,
taking the dependencies between the input blocks into consideration, it has been
shown during discussion presented in Section 5.1 that the specific nature of statistical
dependencies is hard to identify, even if their existence can be detected by means of
statistical tests. This further impedes the estimation of the conditional min-entropy
of the input data.

In order to cope with this problematic, it is therefore necessary to find a simpler
approach to derive an useful estimate of the conditional min-entropy. Starting by
eliminating the necessity of performing a complicated analysis of the dependencies
in the source data, it is for the here presented analysis suitable to consider the
conditional min-entropy to be a constant value of κ bits for all blocks. With regards
to the concept described in Equation 2.11, this is of course a simplification, as the
conditional (min-)entropy of a block is dependent of possible dependencies between
the considered block and previous blocks. However, for long data stream, it is not
unreasonable to assume that dependencies between blocks are similar for all blocks
in the data. This simplification is therefore accepted at this point in order to ease
the presented analysis. It should be noted, that by the concept of Equation 2.10, this
means that if a nIHF block of data has an estimated conditional min-entropy of κ, a
block of the double size is considered to contain 2κ bit of conditional min-entropy.

Further more, an indication of the amount of conditional min-entropy in the
source data can be derived by assuming that the data consists of biased but mutual
independent bits. Recalling the results of the von Neumann condition test for the
source data, which indicates the existence of dependencies in the data (see for in-
stance Figure 3.3 in Section 3.3), this assumption is clearly not valid. Nevertheless,

117

5.2. ANALYSIS OF THE IHF OUTPUT

keeping its invalidity in mind, using this assumption at this point makes it possible
to find at least an upper bound for κ. This bound can then be used as an indicator
for suitable parameter combinations.

As stated in Section 3.3, the percentage of 0’s in the source data varies insignif-
icantly around roughly 29%. Using this value to approximate the bias of the data,
the probability that any arbitrary bit equals zero becomes p = 0.29. Hence, the
most likely value taken by an nIHF-bit input block is the sequence which contains
nIHF 1’s. Denoting the probability of observing this outcome as pmax and considering
Equation 2.9, it follows that pmax = 0.71nIHF . By inserting this into Equation 2.4,
the upper bound of the conditional min-entropy, denoted κmax, for an nIHF-bit input
block can be found. Table 5.3 presents this value for some suitable choices of nIHF,
where κmax has been rounded to the next lowest integer.

Table 5.3: Upper bound of the min-entropy

nIHF 8 16 32 64 128
κmax 4 7 15 31 63

Starting by considering an input block length of nIHF = 32, the upper bound of
the conditional min-entropy per block is κmax ≈ 15. Based on the argumentation
presented in Section 4.1.3, which states that reasonable minimum value of β should
at least be in the range of β ≈ 20, and taking Equation 4.4 into consideration, it
seems unlikely that an input block length of nIHF can result in even a single true
random output bit. However, to verify this statement, the IHF is set up to generate
a 64 Mbit output, with nIHF = 32 and mIHF = 1. The for the IHF required public
parameter π has been chosen randomly2. The created output is then applied to the
NIST test suite. Table 5.4 presents the main results of the tests.

Based on the presented results, the Cumulative Sums test fails the second-level
approach at a level of significance of α′ = 0.0001. As such, the data does not pass
the NIST test suite and cannot be considered to be truly random. It should further
be noted that the Frequency test for the given data fails for more than 10% of the
performed first-level tests. Given the significance of this test (see Section 2.2.2), this
is an additional implication of the non-random character of the data, even though
the Frequency test passes the second-level test. Hence, considering the results as
presented in Table 5.4, it is concluded, that for the given entropy source an input
block of nIHF = 32 bits does not contain enough conditional min-entropy to enable
the IHF to extract a single truly random output bit.

As a result, nIHF must be increased. Considering nIHF = 64, it follows from Ta-
ble 5.3 that the conditional min-entropy per input block is bounded by κmax = 31.
Assuming once more that β ≈ 20 and using κmax as an estimate of the available
min-entropy, Equation 4.4 can be solved for mIHF = 11. Thus, the number of output
bits that can be generated by a 64-bit input block is upper bounded by 11 bits, even
though a successful generation of 11 bits seems unlikely, since κmax does not take
dependencies in the source data into consideration. However, based on the stated,

2In this project, all concrete values of π used for simulations have been randomly selected by
means of either coin tossing or rolling dices.

118

5.2. ANALYSIS OF THE IHF OUTPUT

Table 5.4: Results of the NIST test suite for the output of the IHF
with nIHF = 32 and mIHF = 1

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 57 0.002971 Passed
Block Frequency 64 63 0.706149 Passed
Cumulative Sums 64 58 0.000068 Failed
Runs 64 64 0.706149 Passed
Longest Run 64 63 0.299251 Passed
Rank 64 64 0.602458 Passed
DFT 64 62 0.706149 Passed
NOT 64 64 0.468595 Passed
OT 64 61 0.074177 Passed
Universal 64 64 0.500934 Passed
Approx.Entropy 64 62 0.964295 Passed
Rand.Excur 34 33 0.804337 Passed
Rand.Excur.Var. 34 34 0.299251 Passed
Serial 64 64 0.949602 Passed
Linear Complexity 64 63 0.834308 Passed

it is reasonable to explore the possibility of running the IHF with nIHF = 64 and
mIHF < 11. To evaluate this and in order to find an as large as possible value of
mIHF, the IHF is therefore simulated 4 times with nIHF = 64, while mIHF equals
respectively 1, 2, 4 and 8 bits. The in that way generated data is then applied to
the NIST test suite and a summary of the results is depicted in Table 5.5. The
detailed results of each simulation are presented in Appendix C.2.3.

Table 5.5 shows that all tested output block sizes smaller or equal to mIHF = 4
passes the NIST test suite for the in Table 3.3 defined test parameters. This means,
that, for the entropy source of Section 3.1 and the parameters nIHF = 64 and mIHF =
4, the in Section 4.2.3 presented implementation of the IHF generates data that can
be considered to be truly random, based on the evaluation of a 64 Mbit bit stream.
Even though it is desirable to further verify this result by applying an increased
number of test sequences, N , to the NIST test suite, this is left for further work,
due to the large amount of source data necessary for such an investigation. Thus,
for the purpose of this project, the in Table 5.5 presented conclusions are accepted.

However, for nIHF = 64 and mIHF = 8 the IHF output data clearly fails the
second-level test of the Random Excursions Variant test and, as a result, does not
pass the NIST test suite. This means that, while a 64-bit input block of the source
data contains enough conditional min-entropy to generate 4 random bits, the actual
value of κ is not large enough to extract 8 true random bits. Using the assumption
that β ≈ 20, it follows from Equation 4.4 that the average amount of conditional
min-entropy per bit is 0.375 ≤ κb < 0.4375.

119

5.2. ANALYSIS OF THE IHF OUTPUT

Table 5.5: Summary of the results of the NIST test suite for the
IHF with mIHF = 64

Test
Second-level p-values

mIHF = 1 mIHF = 2 mIHF = 4 mIHF = 8

Frequency 0.017912 0.862344 0.017912 0.931952
Block Frequency 0.213309 0.253551 0.162606 0.054199
Cumulative Sums 0.602458 0.911413 0.275709 0.602458
Runs 0.964295 0.568055 0.637119 0.178278
Longest Run 0.122325 0.500934 0.706149 0.028181
Rank 0.671779 0.671779 0.949602 0.834308
DFT 0.468595 0.407091 0.407091 0.568055
NOT 0.407091 0.407091 0.025193 0.500934
OT 0.350485 0.671779 0.407091 0.134686
Universal 0.637119 0.324180 0.637119 0.706149
Approx.Entropy 0.637119 0.976060 0.834308 0.671779
Rand.Excur. 0.275709 0.003804 0.195163 0.275709
Rand.Excur.Var. 0.739918 0.000500 0.195163 0.000001
Serial 0.534146 0.772760 0.060239 0.350485
Linear Complexity 0.178278 0.350485 0.090936 0.253551

Conclusion Passed Passed Passed Failed

Having established a combination of the parameters nIHF and mIHF that yields the
IHF to pass the NIST test suite, it is of interest to find on this basis other combina-
tions that yield a positive test result. This is motivated by two facts. First, further
exploring possible parameter combinations might yield a better estimate of the in
the source data contained conditional min-entropy.

Second, while Section 4.1 shows that the number of operations performed by the
IHF increases with nIHF and mIHF, accepting the for this section used simplification
that κ is constant for all blocks, the number of required input bits per output bit can
be reduced by increasing the parameters. To see this, the combination nIHF = 64
and mIHF = 4 is considered. Clearly, 16 input bits are required per output bit.
Assuming once more that a minimum value of β should be in the range of β ≈ 20,
the conditional min-entropy per block can be estimated as approximately κ ≈ 24,
by using Equation 4.4. Recalling that by the assumption that the min-entropy is
constant, a block of double length has a doubled amount of conditional min-entropy,
the conditional min-entropy per block for nIHF = 128 is roughly κ ≈ 48. Using this
value and solving Equation 4.4 for the output block length yields mIHF = 28 for
β = 20. Hence, even by picking a for a digital implementation more suited output
length of mIHF = 16, using an input block length of nIHF = 128 reduces the number
of required input bits per output bit to 8.

In order to evaluate this statement, the IHF is simulated again, this time with
nIHF = 128. Based on the above discussed, it seems suitable to use output block
lengths of mIHF ≤ 16. However, it has been shown during the discussion of Table 5.5
that the average amount of conditional min-entropy per bit is upper bounded by

120

5.2. ANALYSIS OF THE IHF OUTPUT

0.4375. This means that the upper bound of κ for nIHF = 128 is κ < 56. Using once
more β ≈ 20 and Equation 4.4 yields mIHF < 36 for 128 bits per input block. It
seems therefore reasonable to also evaluate nIHF = 128 with mIHF = 32. As a result,
the IHF simulation for nIHF = 128 is performed with output block sizes of 2, 4, 8,
16 and 32 bits3. Each simulation results in a total of 64 Mbit output bits, which are
as before applied to the NIST test suite. While a detailed presentation of the test
results is postponed to Appendix C.2.3, Table 5.6 summarizes the most important
results.

Table 5.6: Summary of the results of the NIST test suite for the
IHF with mIHF = 128

Test
Second-level p-values

mIHF = 2 mIHF = 4 mIHF = 8 mIHF = 16 mIHF = 32

Frequency 0.568055 0.060239 0.253551 0.500934 0.031497
Block Frequency 0.195163 0.299251 0.637119 0.275709 0.100508
Cumulative Sums 0.602458 0.739918 0.015963 0.407091 0.195163
Runs 0.500934 0.671779 0.602458 0.534146 0.437274
Longest Run 0.772760 0.324180 0.025193 0.437274 0.350485
Rank 0.195163 0.324180 0.253551 0.772760 0.437274
DFT 0.534146 0.637119 0.350485 0.706149 0.534146
NOT 0.213309 0.706149 0.500934 0.378138 0.834308
OT 0.437274 0.275709 0.043745 0.082177 0.772760
Universal 0.407091 0.178278 0.911413 0.671779 0.407091
Approx.Entropy 0.671779 0.082177 0.437274 0.500934 0.862344
Rand.Excur. 0.330628 0.004715 0.739918 0.611108 0.378138
Rand.Excur.Var. 0.330628 0.414525 0.392456 0.953553 0.888137
Serial 0.299251 0.568055 0.299251 0.378138 0.035174
Linear Complex. 0.007880 0.931952 0.739918 0.739918 0.739918

Conclusion Passed Passed Passed Passed Passed

The results of Table 5.6 show that the five applied parameter combinations for
nIHF = 128 pass the second-level approaches of all tests in the NIST test suite. As
a result, for the used entropy source, all five combinations yield the IHF to extract
a data stream that can be considered to be truly random, based on the performed
tests.

It should be noted that the parameter combinations of nIHF = 128 with mIHF = 2
and mIHF = 4 are of minor practical relevance, as the same amount of output bits
also can be generated by a smaller input block size (see Table 5.5). Nevertheless, the
positive test results for mIHF = 2 and mIHF = 4 further strengthen the confidence in
the other test results. For example, if the NIST test suite would fail for nIHF = 128
and mIHF = 4, this would indicate that the source actually does not provide enough
min-entropy to the IHF in order to extract 4 true random bits. That would also
mean, that the tests for mIHF = 8, mIHF = 16 and mIHF = 32 pass the test suite by

3It would be reasonable to also evaluate the combination nIHF = 128 and mIHF = 1. However,
this is omitted in this project, due to the large amount of necessary source data.

121

5.2. ANALYSIS OF THE IHF OUTPUT

chance and would eventually fail, if a larger number of test sequences, N , would be
applied. However, since no such indications exist, the in Table 5.6 presented results
are at this point accepted for this project, leaving a more detailed verification to
further work.

Based on this, since the combination nIHF = 128 and mIHF = 32 passes the NIST
test suite, it follows from Equation 4.4 that a 128-bit input block contains at least
52 bits of conditional min-entropy, assuming again that β ≈ 20. Thus, the aver-
age amount of conditional min-entropy per bit is bounded by 0.40625 ≤ κb, which
is in accordance to the results presented with regards to an input block length of
nIHF = 64.

To summarize the in this section presented analysis, it can be concluded that, based
on the performed tests, the IHF can be used to extract true random data from the
in Section 3.1 presented entropy source. For a input block length of nIHF = 64, the
IHF passes the NIST test suite for output block sizes up to mIHF = 4. Increasing
the input block size to nIHF = 128 makes it possible to increase the output block
length mIHF up to 32 bits. The latter corresponds to a ratio of 4 input bits per
generated output bit.

Under the in this project used assumption that the tuning parameter of the IHF is
in the range of β ≈ 20, the average conditional min-entropy per bit is approximated
to be bounded by 0.40625 ≤ κb < 0.4375

At this point, it would be reasonable to explore the possibility of using, for
instance, nIHF = 256 in order to further increase nIHF. However, this is omitted here,
due to two reasons. First, the digital implementation of the IHF (Section 4.2.3) is
embedded in a system that uses a fixed amount of 32 output bits. Thus increasing
mIHF above 32 would require an adjustment of both the post-processor module and
the system model. Second, the limited time frame of this project makes it necessary
to postpone an investigation of nIHF = 256 to further work.

122

Chapter 6

Estimation of Power and Energy
Performance

After having analyzed the post-processor implementations with regards to the sta-
tistical characteristics (Chapter 5), it remains to derive some concrete estimates of
their power and energy performance. The following chapter focuses on this aspect,
by first deriving power estimates from the post-processor implementations, following
the procedure presented in Figure 4.7. Then, these power estimates are related to
the timing and energy performance of the ADC setup of Section 3.1. This results
in estimations of the energy performance for the in this report considered combina-
tions of an ADC and the different post-processors. However, it should be recalled
from Section 3.1 that the ADC cannot directly be compared to the in this report
presented implementations, since the used technology is unknown. The resulting
performance estimates are nevertheless considered to be sufficient for the purpose
of this project.

As stated in Equation 2.47, the switching activity γ has to be taken into con-
sideration, in order to derive meaningful power estimates from the post-processor
implementations. Figure 4.7 illustrates how this can be achieved through netlist
simulations. However, it has been stated during the introduction of the switching
activity in Section 2.5, that γ depends on the statistical behavior of the applied
input values. Thus, to be able to estimate a valid value for γ, it is important to
choose the simulation parameters to match the realistic circumstances in the best
possible way.

For the main clock of the system (sys clk in Figure 4.8) a frequency of 50 MHz has
been used during the simulations. The sampling frequency of the source module that
is used to model the ADC entropy source has been 1 MHz. These values are a better
fit for a computer-aided simulation than the in Table 3.1 listed values of 48 MHz and
926 kHz, respectively, that have been used during the setup of the entropy source.
However, recalling once more that the ADC cannot directly be compared to the post-
processor implementations and given the small difference between the simulated and
the in practice used values, this simplification is considered to be acceptable.

Further more, to capture a realistic picture of the switching activity due to the
statistical behavior of the source data, it has been chosen to use data that has been
generated by the in Section 3.1 presented entropy source. This is especially impor-

123

6.1. POWER AND ENERGY PERFORMANCE OF THE VNC

tant for the evaluation of the VNC implementation, since the number of operations
performed by this post-processor is undeterministic and directly dependent on the
statistics of the input data (see Section 2.4.1).

In order to assure, that γ depicts a statistical significant average, the applied
post-processor has been triggered to generate 1024 words during the simulation.
This corresponds to a total of 32 kBits (32,768 bits), which is considered to be a
sufficient amount of data to approximate γ, while keeping the computation require-
ments of the necessary simulations in a reasonable bound. It should be noted that
the performed simulations restart the considered post-processor immediately after
the last word has been generated. Obviously this scenario is not realistic, as most
TRNGs are typically used to generate one or several words and then stay in the idle
state for long time intervals. However, for modern MCUs it is not unreasonable to
assume that modules as the TRNG are disabled when not needed, by disconnecting
them from the supply voltage [5]. As a result, power and thus energy consumption
of the post-processors can be assumed to be negligible when ever the TRNG is not
active.

In the following, the power and energy performance of the VNC is analyzed in
Section 6.1. Section 6.2 presents similar considerations for the IHF-implementation.
A direct comparison of both implementations is postponed to Section 7.1.

6.1 Power and Energy Performance of the VNC

It has been shown in Section 5.1 that the VNC clearly does not pass the NIST
test suite for the given source data. As such, implementing the VNC for an ADC
based entropy source is pointless, as the desired functionality cannot be achieved.
However, it is nevertheless of interest to analyze the VNC for its energy performance,
due to three reasons.

First, four different approaches of the VNC-implementation (see Table 4.4) have
been realized, in order to explore the benefits of clock gating in a digital system.
Analyzing and comparing the related results is likely to increase the understanding
of the effect of clock gating. Based on this, appropriated design choices can be made
during future implementation processes of other digital systems.

Second, with respect to the in Section 4.1.2 presented comparison of the VNC
and the IHF, the VNC is the more effective implementation in terms of performed
operations. Hence, it is expected, that the VNC consumes less power than the IHF.
Evaluating this assumption and finding a concrete measure of the difference might
motivate the implementation of an alternative entropy source, which fits the VNC.

Third, Section 5.1 indicates that multiple iterations of the VNC yield improved
statistical characteristics of the final output data, even though it has not been shown
that in this way generated data can pass the NIST test suite. However, if this ap-
proach has a beneficial energy performance, it might be considerable to explore this
possibility further, during a future project.

The most important results of the synthesis process are presented in Table F.1
and Table F.2 in Appendix F. This includes the results of the power estimations.

124

6.1. POWER AND ENERGY PERFORMANCE OF THE VNC

Figure 6.1 presents the estimated power of the VNC module for the four considered
approaches, divided into leakage and dynamic power (see Equation 2.45).

Figure 6.1: Power estimates for the VNC

Approach 4, which uses no clock gating, dissipates with approximately 24,357 nW
in total the larges amount of power. The in total smallest power consumption is
achieved by Approach 2, which uses clock gates for four or more register elements.
This approach uses round about 10,002 nW, which corresponds to roughly 41% of
the power consumed by Approach 4.

Recalling that Approach 3 uses only one single clock gate, which has been in-
serted by the synthesis tool into the output memory sub-module, the power compo-
nent that is due to leakage increases with the number of clock gates. This matches
the expectations, as clock gates depict additional logic gates which yield an increase
in the leakage currents of the module. However, the difference is relatively small,
ranging approximately from 7,356 nW to 10,595 nW. Further more, it is worth notic-
ing, that the difference between the leakage power of Approach 2 and Approach 4
is less than 530 nW.

In contrast, the dynamic power consumption decreases approximately from
17,001 nW to 1331 nW as the number of clock gates increases. In other words,
Approach 1 dissipates only around 8% of the dynamic power consumed by Ap-
proach 4. As such the clock gates achieve their purpose (see Section 2.5). It should
be noted that, the difference of the dynamic power dissipation between Approach 1
and Apprach 2 and the same difference between Approach 3 and Approach 4 is with
786 nW and 1,656 nW, respectively, rather low. However, the dynamic component
of the consumed power in Approach 2 and Approach 3 differ vastly with approxi-
mately 13,228 nW.

125

6.1. POWER AND ENERGY PERFORMANCE OF THE VNC

At this point, it can be stated, that from the four considered approaches, Approach
2 depicts the best trade-off between increased leakage power due to additional logic
used in the clock gates and reduced dynamic power. Considering that Approach
2 only inserts clock gates in the output memory of the VNC (see Section 4.2.2),
and is therefore equivalent to Approach 3 and Approach 4 with regards to the
other sub-modules, it is of interest to explore vnc output memory in more detail.
Figure 6.2 presents the power estimates of the vnc output mem sub-module for the
four approaches.

Figure 6.2: Power estimates for vnc output memory

The in Figure 6.2 presented data depicts a similar situation as shown in Fig-
ure 6.1. It is essential to note that the total power of the output memory sub-module
stands in the case of Approach 1, Approach 3 and Approach 4 for roughly 80% of
the total power dissipated in the VNC. Even though this ratio is slightly reduced
to 74% for Approach 2, vnc output memory has thus a major impact on the total
power performance of the VNC module.

As for Figure 6.1, the leakage power of the output memory increases with the
number of used clock gates. However, the dynamic power consumption behave
slightly different. As before, Approach 3 consumes less dynamic power than Ap-
proach 4, and from Approach 3 to Approach 2 the dynamic component is majorly
reduced. Nevertheless, in contrast to Figure 6.1, Approach 1 dissipates slightly more
dynamic power than Approach 2, even though the difference is negligible at approx-
imately 17 nW. There are several reasons that could cause this observation. One
possible explanation is the fact that clock gates, as presented in Figure 2.10a, con-
tain logical gates, and as such consume some dynamical power themselves. Given
the insignificant difference of only 17 nW, it is also possible that this observation
is due to inaccuracies during the estimation process. However, with regards to the

126

6.1. POWER AND ENERGY PERFORMANCE OF THE VNC

limited time frame of this project, exploring this issue in detail is left for further
work.

Disregarding the difference in dynamical power between Approach 1 and Ap-
proach 2, it is worth to recall that both approaches use clock gates to control the
output registers of vnc output memory, as depicted in Figure 4.14. Thus, with re-
spect to Figure 6.2, using clock gating for the output register bank seems to account
for the main reduction of the dynamical component of the power consumption of
the sub-module. For Approach 2, the dynamical power reaches a minimum of ap-
proximately 365 nW, which corresponds to roughly 3% of the dynamical power of
Approach 4. In contrast, the by the synthesis tool inserted clock gate of Approach
3, which controls the counter of the output memory sub-module (Section 4.2.2),
reduces the dynamical power only with roughly 1496 nW, to about 89% of the cor-
responding power component in Approach 4.

As a result, it can be clearly stated, that for the presented VNC-implementation,
Approach 2 describes the most beneficial solution with regards to power consump-
tion. Therefore, only a realization based on Approach 2 is considered during the
following estimation of the energy performance of the VNC.

However, before focusing on the energy requirements of the VNC, it is reason-
able to summarize the main conclusions drawn from the comparison of the four
approaches. Considering Figure 6.1 and Figure 6.2, it can be clearly stated that the
output memory dissipates the largest amount of the by the VNC consumed power.
From Section 4.2.2, it is known that this sub-module contains 32 output registers
that are accessed at an undeterministic rate far below of the applied clock frequency.
The above considered data shows that by clock gating this registers and the in the
sub-module embedded counter, the dynamic power of the output memory can be re-
duced to roughly 3% compared to a solution that uses no clock gates. However, the
minimum total power dissipation for vnc output memory is achieved when groups
of four registers are applied to one common clock gate (Approach 2). Using one
clock gate per output register (Approach 1) yields a significant increase in leakage
power. Further more, the data indicates the possibility that exhaustive clock gating
actually increases the dynamical power consumption when compared to Approach
2.

Taking the whole VNC module into consideration, Approach 1 further reduces
the dynamical power. Nevertheless, the introduced leakage power exceeds the re-
duction in the dynamic component. It is worth noticing that this indicates that the
in Section 4.2.2 observed slight reduction of necessary control logic for Approach 1
compared to the other approaches has no noteworthy effect on the overall power
consumption.

As such, Approach 2 is the optimal tested solution, reducing the total power
consumption to approximately 10,002 nW, which corresponds to about 41% of the
power dissipated by a VNC solution that does not use clock gates.

As a final remark, it should be stressed that, while Approach 2 is the most suit-
able solution of the here tested approaches, it is possible that even more efficient
solutions exist. For instance, approaches that uses a common clock gate for register
groups of two or eight registers or even an approach that uses one clock gate for the
entire 32-bit register bank could possibly derive better results. Even though this is

127

6.1. POWER AND ENERGY PERFORMANCE OF THE VNC

a highly interesting aspect, exploring this issue is left for further work, due to the
limited time frame of the project.

To estimate the energy performance of the VNC, it is necessary to find the time
interval during which the VNC consumes the above discussed power. As mentioned
during the introduction of this chapter, it is assumed that the post-processors only
consume power during the generation of a word. Even though a small number of
control steps are performed before the entropy source is activated and after it is de-
activated, the time interval needed to generate an output word is clearly dominated
by the sampling periods of the ADC.

Using the in Table 3.1 summarized data for the ADC based entropy source, the
time the ADC uses to generate a single input bit for the VNC is roughly 1.08µs.
However, considering the in Section 5.1 presented observations, an average of 4.52
input sample are required to produce a single output bit during the first iteration
of the VNC. Thus, the average time required by the VNC to produce a single bit
is approximately 4.88µs. Considering the above discussed power consumption, it
follows that the average energy required by the VNC to generate a single output bit
is roughly 48.8 pJ.

Widening the focus to the energy performance of the entire TRNG design, the
entropy source has to be taken into consideration. Table 3.1 states that the ADC
uses approximately 1.25 nJ to create a single VNC input. Hence, the required energy
to create the 4.52 bits that are on average needed by the VNC is around 5.65 nJ. As
a result, the total energy consumed by a TRNG which is realized by the combination
of the ADC and the VNC amounts to approximately 5.7 nJ per single output bit.
This means that the energy required by the VNC corresponds to under 1% of the
total energy consumption of the TRNG. Table 6.1 summarizes the main results of
this estimation.

Table 6.1: Energy estimates for the VNC

First iteration Second iteration Third iteration

Input bits per output bit 4.52 20.8 83,2
Time per output bit 4.88µs 22.46µs 89.86µs
VNC energy per output bit 48.8 pJ 224.6 pJ 898.6 pJ
ADC energy per output bit 5.65 nJ 26 nJ 104 nJ

Total energy per output bit 5.7 nJ 26.2 nJ 104.9 nJ

As mentioned during the introduction of this section, it is reasonable to also
consider the energy performance of an approach that uses several iterations of the
VNC. However, to do so, some simplifying assumptions with regards to the power
and timing characteristics are required.

Considering first the power performance of such an approach, it is clearly depen-
dent on the method used to realize the iterations. One possibility is, for instance, to
first use the VNC implementation to perform the first iteration and store the output
in some form of external memory. For further iterations the VNC can then operate
on the data stored in the memory. While this does not effect the VNC implemen-

128

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

tation directly, it is reasonable to assume that the external memory has a shorter
response time per requested bit than the ADC, which yields a different switching
activity γ. Another possibility is to change the VNC implementation to directly
perform two or several implementations on the data, by inserting some additional
logic and registers into the system, which of course effects the power requirements.
However, due to the limited time frame of this project, these different approaches
and the corresponding effect of the power performance cannot be explored in this re-
port. For simplicity it is therefore assumed that the above presented power estimate
is also valid in the case of several iterations.

With respect to the timing performance, it is reasonable to assume that the
timing is still dominated by the ADC. Thus the time necessary to generate one bit
is the product of the ADC sampling period and the average number of input bits per
output bit. It has been presented in Section 5.1 that approximately 4.6 input bits per
output bit are requested during the second iteration. With respect to the amount of
bits required by the first iteration, this yields a total of roughly 20.8 source bits per
output bit of the second iteration. A simulation of a possible third iteration has not
been performed and thus no observed input-output-ratio exists. However, recalling
from Section 5.1 that the output of the second iteration satisfies the von Neumann
conditions and is unbiased, it can be assumed with regards to Equation 4.1 that a
third iteration requires roughly 4 input bits per output. Hence, the total amount of
ADC requests per third iteration output bit can be approximated to 83.2.

Table 6.1 summarizes the energy performance of the second and a possible third
iteration. It can be concluded that the energy consumption of an iteration based
TRNG increases by a factor of roughly 4 for each additional iteration. It is reasonable
to assume that this statement also holds for cases in which more than three iterations
are used. It should be noted, that the energy performances of the ADC and the VNC
increase with the same factor. Thus, the ratio of the two components is unaffected,
and the VNC in general accounts for less than 1% of the energy consumption of the
discussed TRNG solution.

6.2 Power and Energy Performance of the IHF

It has been shown in Section 4.1 that the number of operations performed by the
IHF, and as such the power and energy requirements of the post-processor, depends
on the choice of parameters used to realize the algorithm. During this project, the
main focus has been on the size of the input blocks, nIHF, and the corresponding
number of output bits, mIHF. This yields in principle to a huge number of possible
combinations that could be considered. However, for convenience, the following sec-
tion focuses on those combinations which have successfully passed the in Section 5.2
presented NIST test suite. In addition, the combination nIHF = 128 and mIHF = 1
is considered. Even though this combination has not been tested explicitly, with re-
gards to the in Table 5.6 presented results, it is reasonable to assume that it would
pass the NIST test suite.

The power estimates of the IHF for different parameters can be found in Table F.3
and Table F.4 and are summarized in Figure 6.3. The figure shows that the dissi-

129

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

pated power of the IHF module increases with both nIHF and mIHF. This observation
is in accordance with both the complexity analysis and the description of the imple-
mentation, presented in Chapter 4, which imply that an increase of the parameter
leads to additional hardware in form of combinatorial logic and registers. With re-
gards to Equation 2.45, the result is an increase in the total power consumption of
the IHF module. Thus, the smallest power dissipation of approximately 107,308 nW
is achieved by the solution that uses nIHF = 64 and mIHF = 1. The combination of
nIHF = 128 and mIHF = 32 consumes with roughly 219,880 nW the largest amount
of power.

Figure 6.3: Power estimates for the IHF

In general, the in Appendix F presented data indicates that both the dynamical
and the leakage power increase with the parameter choice. Nevertheless, it should
be noted that for some modules with similar parameter choices the data does not
support this statement. For instance, for nIHF = 64 the estimated leakage power
with mIHF = 4 is slightly smaller than for mIHF = 2. However, it is likely that
this observation is caused by differences in the length of the the simulations used to
estimate the switching activity γ. Recalling that both modules have been simulated
to generate a total of 32 kBits, due to the different parameter choices, the simulation
of the modules differ both in length and in the number of used source bits. For
example, while the combination nIHF = 64 and mIHF = 2 requires 1,048,576 bits
from the entropy source, mIHF = 4 uses only 524,288 source bits. This difference
in the simulations is likely to yield variations in the power estimates. As a result,
it is in this report assumed that the discussed unexpected decreases in power are
due to inconsistencies during the power estimation. Given the negligibleness of the
differences, this aspect is therefore ignored for the purpose of this project.

Another general factor that should be noted from Figure 6.3 is the fact that the

130

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

dynamic power component is more than twice as large for all considered combina-
tions. With regards to Equation 2.47, one reasonable explanation for this observa-
tion is a high switching activity in the module.

Before focusing on the time needed by the different parameter combinations to gen-
erate a single bit, it is of interest to consider the rate at which the power consumption
for the IHF increases with mIHF. Figure 6.4 illustrates1 the growth of the dissipated
power as a function of mIHF for nIHF = 128. The figure shows that the power con-
sumption growths approximately linear from 187,286 nW to 219,881 nW. This rather
minor growth can be explained by the fact that, as stated in Section 4.2.3, only one
sub-module, vnc comp, is directly affected by mIHF.

At first sight, a linear growth of the consumed power seems to contradict the
corresponding statements of Section 4.1, which indicate a quadratic growth of the
required number of operations (see for instance Figure 4.2). However, this can be
explained by comparing the formulation of Algorithm 3 in Section 2.4.2 with its in
Figure 4.20 depicted implementation, ihf comp. Only the inner loop of Algorithm 3
is explicit realized in hardware. simplified, this means that only this loop affects
the power consumption of the module. The number of iterations for the inner loop
is dependent of nIHF. Even though the relation between nIHF and mIHF is rather
loosely defined by means of Equation 4.4, it is reasonable to assume a close to linear
relation. Hence, the linear growth of the power dissipation matches the expectations
for the used implementation.

Figure 6.4: Power and time per sample for the IHF

The outer loop of Algorithm 3 is realized by running ihf comp mIHF times in a

1A similar plot could have been derived from nIHF = 64. However, this is omitted here as only
three estimates are available.

131

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

row, while shifting the public parameter register in accordance to the description of
the algorithm. Since this computation cycle is not performed in parallel with the
process of gathering data from the entropy source (see Figure 4.17), the time the
IHF uses to generate the output data, and hence the time during which it consumes
power, increases with mIHF. However, it is essential to note that this does not affect
the time used to generate an output bit. For example, for nIHF = 128 and mIHF = 1,
the outer loop of Algorithm 3 has to be performed only once, which corresponds to
one clock cycle. Nevertheless, for this parameter combination, the algorithm has to
be performed 32 times. Thus the total time spend performing the algorithm equals
32 clock periods. It is evident that this equals the time used by the combination
nIHF = 128 and mIHF = 32, which performs the algorithm once but with 32 outer
loop iterations.

Thus, since the time required to perform Algorithm 3 corresponds to one clock
cycle per output bit, and considering the relation between the clock frequency and
the sampling frequency presented in Table 3.1, it is suitable to adopt the approach
of Section 6.1, which approximates the time during which the post-processor con-
sumes power with the time the ADC requires to produce the necessary input bits.
As stated in Table 3.1, the ADC spends roughly 1.08µs for the generation of one
output bit. The number of required input bits per output bit is equal to the ratio of
the input and output parameters, nIHF

mIHF
. Hence, the time used to generate one output

bit can be approximated by 1.08 · nIHF

mIHF
µs. The results of this approximation for the

tested parameter combinations are presented in Table 6.2 and Figure 6.4 illustrates
the required time as a function of mIHF. The figure shows that the time required per
output bit decreases inversely proportional with mIHF, from approximately 138µs
to 4µs.

Comparing the two functions in Figure 6.4 it is evident that the time factor domi-
nates the growth of the energy performance of the IHF. While the consumed power
increases with a factor less than 1.2, the required time can be decreased by a factor
of roughly 34.5 by increasing mIHF from 1 to 32. Hence, the energy of the IHF is
more strongly affected by its time factor than by its power component, and decreases
with an increasing mIHF. This is illustrated in Figure 6.5, and the corresponding
results for each considered combination can be found in Table 6.2. Note that the
minimum energy requirements of the IHF correspond to the parameter combination
nIHF = 128 and mIHF = 32, which requires approximately 946 pJ per output bit.

In addition to the IHF, the energy performance of the ADC has to be taken
into consideration in order to derive a full picture of the requirements of the whole
TRNG. The energy required by the ADC per single generated bit is roughly 1.25 nJ
as stated in Table 3.1, and the energy dissipated to produce the required input
bits for a single IHF output bit can thus be found as 1.25 · nIHF

mIHF
nJ. It is evident

that this means that also the energy used to supply the ADC decreases inversely
proportional with mIHF, as depicted in Figure 6.5. Hence, the total energy of the
considered TRNG design, which is the sum of the energy required by the IHF and
the ADC, decreases with mIHF. For the in this project considered cases the minimum
energy per bit is reached for nIHF = 128 and mIHF = 32. This combination requires
approximately 5.9 nJ per bit.

Finally, it should be noted that, while the power dissipated by the IHF increases

132

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

Figure 6.5: Energy estimates for an IHF based TRNG solution

slowly with mIHF (Figure 6.4), the power component of the energy consumed by the
ADC is independent of mIHF. Hence, the required energy decreases faster for the
ADC than for the IHF, for the same increase of mIHF, as can be seen in Figure 6.4.
As a result, the percentage of the total energy used to supply the TRNG that
corresponds to the IHF increases with mIHF. However, the contribution of the IHF
to the total energy consumption is in general rather low. For nIHF = 128, it decreases
from roughly 14% for mIHF = 1 to 16% for mIHF = 32, and for nIHF = 64 it accounts
for around 8.5%.

Table 6.2 depicts a summary of the for the energy estimation relevant data, for
all considered parameter combinations of the IHF.

In conclusion, the obtained power estimates for the IHF show that the dissipated
power increases with both nIHF and mIHF. Generally, this growths affects both the
leakage power and the dynamic power components. Further, it can be stated that
the dynamic power consumed by the IHF is more than twice as large as the leakage
power, for the same parameter choice.

Even though the power requirements slightly grow, increasing mIHF while keeping
nIHF fixed decreases the time used to generate a single bit drastically. This has
a major impact on the energy performance of both the IHF and the ADC. As
a result, the minimum consumption of the in this project considered parameter
combinations is achieved by nIHF = 128 and mIHF = 32. This combination yields a
total energy dissipation of approximately 5.9 nJ per output bit. It is worth to recall
from Section 5.2, that this combination passes the NIST test suite for the given test
parameters.

133

6.2. POWER AND ENERGY PERFORMANCE OF THE IHF

Table 6.2: Energy estimates for the VNC

Power
Time per Energy per bit
output bit IHF ADC Total

nIHF = 64
mIHF = 1 107µW 69.1µs 7.4 nJ 80 nJ 87.4 nJ
mIHF = 2 108µW 34.5µs 3.7 nJ 40 nJ 43.7 nJ
mIHF = 4 108µW 17.2µs 1.9 nJ 20 nJ 21.9 nJ

nIHF = 128
mIHF = 1 187µW 138.2µs 25.8 nJ 160 nJ 185.8 nJ
mIHF = 2 188µW 69.1µs 13 nJ 80 nJ 93 nJ
mIHF = 4 189µW 34.6µs 6.5 nJ 40 nJ 46.5 nJ
mIHF = 8 192µW 17.3µs 3.3 nJ 20 nJ 23.3 nJ
mIHF = 16 201µW 8.6µs 1.7 nJ 10 nJ 11.7 nJ
mIHF = 32 220µW 4.3µs 946 pJ 5 nJ 5.9 nJ

134

Chapter 7

Discussion, Conclusion and
Further Work

In this chapter, the most important aspects of the VNC and IHF for this project
are compared and discussed (Section 7.1). In Section 7.2, a final conclusion of the
presented project is given, including a list of topics suitable for further investigation.

7.1 Comparison of the VNC and the IHF

Comparing the VNC to the IHF is a non-trivial task, due to the reasons that both
post-processors require different statistical characteristics in the source data (Sec-
tion 2.4). While the IHF can operate on data as long as it contains a sufficient
amount of min-entropy, the VNC requires explicit statistical conditions, in form
of independent and identically distributed bits. However, with regards to the per-
formed analyses in Section 3.3 and Chapter 5, it can be stated that the requirements
of the VNC are not satisfied by the entropy source used in this project. Further
more, considering the results of a performed second VNC iteration (see Section 5.1),
it has been observed that while the VNC generates an unbiased output for data that
satisfies the von Neumann conditions, the output cannot necessarily be considered
to be random, due to dependencies. In contrast, as shown in Section 5.2, the IHF
can easily be tuned to pass the NIST test suite, by increasing the number of input
bits per output bit.

Due to the fact that the IHF passes the performed test for randomness, while
the output of the VNC is rejected by the NIST test suite, it is difficult to di-
rectly compare their performance with regards to power and energy consumption.
A first indication is given in Section 4.1.2, which compares the theoretical number
of operations and the number of required input bits for both algorithms, under the
assumption of von Neumann conditions. With regards to Figure 4.5, this analysis
shows that the VNC is expected to perform a much smaller number of operations
compared to the IHF. This is an indication of a lower energy consumption in the
VNC post-processor. However, Figure 4.3 and Figure 4.4 show that the number
of input bits per output bit is lower for the IHF, which reduces the number of re-
quired source bit requests, and as such, the energy dissipated in the entropy source.
It should be recalled from Chapter 6 that the used entropy source consumes more

135

7.1. COMPARISON OF THE VNC AND THE IHF

than 99% and 84% for a VNC and an IHF based design, respectively. Hence, re-
ducing the dominating energy requirements of the entropy source by improving the
ratio between input and output bits seems more suitable for the purpose of this
project.

Considering the estimated power consumption of the two implemented post-
processors, the VNC consumes with 10µW below 5% of the approximately 220µW
dissipated by the most energy efficient variant of the IHF. This observation can
be considered to be in accordance with the situation as depicted in Figure 4.5.
However, these numbers can be used only as a fist indicator and not for direct
comparison, due to two reasons. First, the IHF has been tuned to pass the NIST
test suite, which the VNC fails. Assuming a different entropy source which fits the
VNC, it is reasonable to assume that the input data would contain a larger amount
of min-entropy due to reduced dependencies. As such, in a scenario where both
post-processors could be used, the IHF might be tuned to a more power efficient
solution. Second, power saving clock gates have been included into the design of
the VNC, which reduce the dissipated power with roughly 59% (see Section 6.1).
Recalling that this is mainly due to the reduction of the power consumption in the
memory element of the VNC and with regard to the fact that the IHF makes use
of two similar storage sub-modules (Figure 4.18), it is reasonable to assume that
introducing clock gates into the IHF module would lead to a reduction in the power
consumption. Thus for a fair comparison of the two post-processor implementations,
clock gates should be inserted into the IHF in a similar manner as for Approach 2
for the VNC implementation (Section 4.2.2). Nevertheless, given the fact that the
IHF performs more complex computations than the VNC and in addition requires
both input and output memory, it is reasonable to assume that its power dissipation
exceeds that of the VNC.

Finally, with regard to the energy consumption, the most efficient solution of
the tested IHF approaches, uses approximately 5.9 nJ per output bit, where the
energy consumed by the ADC is included. This is roughly equivalent to the VNC
approach which requires around 5.7 nJ. However, it should be once more stressed,
that the latter result is irrelevant as the output of the VNC cannot be considered to
be random. Section 5.1 and Section 6.1 briefly consider the possibility of deriving
a random output by iterating the VNC post-processing several times. Even though
this approach has no mathematical proof and as such it must be considered to be
rather a pseudorandom solution, Table 5.1 shows some first improvements in the
data, with respect to randomness. Nevertheless, while the second iteration still not
passes the NIST test suite and it has not been possible to evaluate the test suite
for a third iteration, the energy consumption of a third VNC iteration has been
approximated to be 105 nJ per output bit. As such, while it has not been shown
that the output of a third iteration can be considered as random, performing this
iteration requires more than 20 times more energy per output bit than the IHF
based approach. Hence, lacking both a formal mathematical proof and a motivation
based on an improved energy consumption, a further investigation of the possibility
of using multiple VNC iterations is not of interest for this project.

136

7.2. CONCLUSION AND FURTHER WORK

7.2 Conclusion and Further Work

During the here presented project, it has been shown that an ADC embedded in a
typical MCU can be used as an entropy source for a TRNG, without modifying the
existing implementation of the ADC. Nevertheless, the low entropy rate of the data
generated by the ADC makes post-processing necessary. While the von Neumann
Corrector (VNC) cannot be used to mask the statistical imperfections of the source
data, applying the Extractor based on pairwise Independent Hash Functions (IHF)
results in an output which can be considered as random, based on the evaluation of a
64 MBit output, using the NIST test suite. The energy consumption of the resulting
combination of the ADC and the IHF is approximated to be 5.9 nJ per output bit.
This value must be considered to be quite high compared with existing solutions.
For example, the design proposed in [3] requires approximately 128 pJ per output bit.

Considering the entropy source as proposed in this report, three main disadvantages
can be identified when using an unmodified ADC as a source. First, the delivered
data is biased and contains dependencies, which yields a low entropy rate. This
makes the use of the VNC impossible and makes it necessary to use a large number
of input bits for the IHF. Second, the ADC consumes approximately 1.25 nJ per
source output bit. As such, the entropy sources dominates the energy consumption
of the TRNG designs, dissipating at least 84% of the total energy, for the considered
solutions. Third, the sampling period of the ADC is long compared to the clock
that drives the post-processors, which increases the dissipated energy unnecessarily.
Hence, even though possible, the implementation of an entropy source purely based
on an ADC must be considered unsuited for an energy efficient TRNG design.

To ease the analysis of the source data and enable a choice of a suitable post-
processor early on in the design phase, a novel statistical test for von Neumann
conditions has been proposed. For the performed analyses, the test proved to be
able to identify both the absence and the presence of von Neumann conditions in the
data. In that manner, it works as specified. However, even though the results of the
test are correct and useful for the analysis of the source, passing the test does not
imply that the corresponding output of the VNC passes the NIST test suite. This
is due to the reason that dependencies in the data can exist even in the presence of
von Neumann conditions.

Comparing the VNC and the IHF, the presented project illustrates the benefits of a
tunable post-processor. While the VNC simply fails the NIST test suite, the IHF can
be adapted to the low level of entropy in the source data, by increasing the number
of input bits per operation. Further more, Section 6.2 shows how the IHF can be
tuned to find a trade-off between power efficiency of the post-processor on one hand
and an improved ratio between the number of input bits and the number of output
bits. This enables the optimization of the energy performance of the overall TRNG
design by choosing appropriated parameters for the IHF. In contrast, the VNC has
a low, but fixed power consumption and its input-output-ratio is dependent on the
statistical characteristics of the source. Hence, the IHF seems in practice more
suitable for the realization of a TRNG.

In order to improve the energy performance of the post-processors, two ap-

137

7.2. CONCLUSION AND FURTHER WORK

proaches have been explored separately. On one hand, for the IHF energy opti-
mizations have been performed by first selecting an appropriated algorithm out of
two choices and then finding an optimal parameter combination. This yields the
above mentioned TRNG solution, consuming 5.9 nJ per output bit. One the other
hand, the impact of clock gating on the power dissipation has been explored for the
VNC. The results show that, while introducing clock gates for all possible registers
reduces the dynamic power, it yields a noticeable increase in leakage power. How-
ever, using one clock gate for blocks of at least four registers leads to a nearly as
low dynamical power component, while at the same time keeping the increase of
leakage power at a minimum. For a considered 32-bit memory element, containing
infrequently accessed registers, this approach yields a reduction of the dynamical
power of roughly 97%. Even though, this has not been tested, it is reasonable to
assume that adopting clock gating in a similar manner to the IHF will lead to a
drastic decrease in the power consumption.

Based on the analysis presented in this project, the proposed TRNG using an ADC
and the IHF, with an input of 128 bits and an output size of 32 bits, can be considered
to produce random data. However, it should be stressed that a further investigation
of this statement is desirable. During this project, evaluating data by means of the
NIST test suite has been limited to blocks of data of 64 Mbit, due to limitations in
time and hardware. In practice, this is a rather small amount of data, and exhaustive
testing is necessary to increase the confidence in the proposed design.

In addition, it is reasonable to try to further optimize the presented design in
terms of energy performance. One possible approach could be to increase the number
of both the input and the output bits of the IHF. While this is expected to increase
the power dissipated by the IHF, it can possibly yield a further improvement of the
input-output-ratio and thus decrease the overall energy consumption of the TRNG.

It has been shown that roughly 66% of the power consumption of the IHF is due
to dynamic power dissipation. Besides optimizing the design by tuning, the for the
VNC tested clock gating should therefore be applied to the memory sub-modules
of the IHF. As they are similar to the memory block of the VNC, it is reasonable
to expect a large decrease in the dissipated power. If this design technique is used,
it should be kept in mind that further investigation of the number of registers per
clock gate could yield to even more optimized results. In addition to clock gating, it
has been mentioned in Section 4.2.3, that guarded evaluation is likely to reduce the
dynamic power component of the IHF. Also this design technique should therefor
be explored.

However, even though the above presented further optimizations of the given design
might yield a minor improvement of the energy performance, the main focus of
further investigations should be to reduce the energy consumption of the source.
An alternative solution of using the ADC by storing the LSBs of sampling processes
that precede the activation of the TRNG has been briefly introduced in Section 3.1.
This would hide the cost of producing the source data, does not require noteworthy
modifications of the ADC and could be evaluated by first using a software based
approach, as done for the source, considered in this report. However tuning the IHF
to fit the data and meet strict energy requirements is a non-trivial task, due to the

138

7.2. CONCLUSION AND FURTHER WORK

uncertainty about the output data.
Generally, it should be evaluated if an alternative for the ADC should be used

as an entropy source. One possibility is the use of jitter in clock signals produced
by digital ring oscillators, as briefly presented in Section 2.3. This approach is
frequently discussed in the literature and is likely to have an output with an higher
entropy rate, a shorter sampling period and a lower power consumption. In addition,
it should be noted that this approach can be implemented using digital circuitry.
It is therefore possible to perform a first analysis of the source by using a Field-
Programmable Gate Array (FPGA), which is much simpler and cheaper than to
create a CMOS prototype.

139

7.2. CONCLUSION AND FURTHER WORK

140

Chapter 8

References

[1] W. Trappe and L. C. Washington, Introduction to Cryptography with Coding
Theory, 2nd ed. Pearson Prentice Hall, 2006.

[2] B. Jun and P. Kocher, “The intel random number generator”, Cryptography
Research Inc, Tech. Rep., 1999.

[3] M. Bucci and R. Luzzi, “Fully digital random bit generators for cryptographic
applications”, IEEE Transactions on Circuits and Systems - I: Regular Papers,
vol. 55, no. 3, pp. 861–875, 2008.

[4] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Editorial: Internet of things”,
International Journal of Communication Systems, vol. 25, no. 9, pp. 1101–
1102, 2012.

[5] Silicon Laboratories. (2013). EFM32WG Reference Manual, [Online]. Avail-
able: www.silabs.com/Support\%20Documents/TechnicalDocs/EFM32WG-
RM.pdf.

[6] NIST, “Advanced encryption standard”, Federal Information Processing Stan-
dards Publication, 2001.

[7] B. Schneier and N. Ferguson, Practical Cryptography. John Wiley & Sons,
2003.

[8] J. von Neumann, “Various techniques used in connection with random digits”,
Applied Math Series, pp. 36–38, 1951.

[9] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, 1996.

[10] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks”, IEEE Transac-
tions on Computers, vol. 56, no. 1, pp. 109–119, 2007.

[11] F. Pareschi, G. Setti, and R. Rovatti, “Implementation and testing of high-
speed CMOS true random number generators based on chaotic systems”, IEEE
Transactions on Circuits and Systems - I: Regular Papers, vol. 57, no. 12,
pp. 3124–3136, 2010.

[12] C. G. Foik, Analysis of Hardware Solutions for True Random Number Pro-
cessing, NTNU, 2014.

[13] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

141

[14] B. Barak, R. Shaltiel, and E. Tromer, “True random number generators se-
cure in a changing environment”, Workshop on Cryptographic Hardware and
Embedded Systems, pp. 166–180, 2003.

[15] R. E. Walpole, R. H. Myers, S. L. Meyers, and K. Ye, Probability & Statistics
for Engineers and Scientits, 9th ed. Pearson.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John
Wiley & Sons, 2006.

[17] J. L. Hodges, Jr. and E. L. Lehmann, Basic Concepts of Probability and Statis-
tics. Holden-Day, 1964.

[18] NIST, “A statistical test suite for random and pseudorandom number gener-
ators for cryptographic applications”, NIST Special Publication 800-22, 2010.

[19] F. Pareschi, R. Rovatti, and G. Setti, “Second-level NIST randomness test for
improving test reliability”, IEEE International Symposium on Circuits and
Systems, pp. 1437–1440, 2007.

[20] K. Wold and C. H. Tan, “Analysis and enhancement of random number gener-
ator in FPGA based on oscillator rings”, Internationl Journal of Reconfigurable
Computing, 2009.

[21] D. J. Murdoch, Y.-L. Tsai, and J. Adcock, “P-values are random variables”,
The American Statistican, vol. 62, no. 3, pp. 242–245, 2008.

[22] D. Naccache and D. M’Räıhi, “Cryptographic smart cards”, IEEE Mirco, vol.
16, no. 3, pp. 14–24, 1996.

[23] N. C. Göv, M. K. Mıhçak, and S. Ergün, “True random number generation
via sampling from flat band-limited gaussian processes”, IEEE Transactions
on Circuits and Systems - I: Regular Papers, vol. 58, no. 5, pp. 1044–1051,
2011.

[24] W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/dig-
ital random noise source”, IEEE Transactions on Circuits and Systems - I:
Fundamental Theory and Applications, vol. 44, no. 6, pp. 521–528, 1997.

[25] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design,
2nd ed. John Wiley & Sons, 2012.

[26] S. Haykin, Communication Systems, 4th ed. John Wiley & Sons, 2001.

[27] P. Harpe, E. Cantatore, and A. van Roermund, “A 10b/12b 40 kS/s SAR
ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2
fJ/conversation-step”, IEEE Journal of Solid-State Circuits, vol. 48, no. 12,
pp. 3011–3018, 2013.

[28] D. Zhang, C. Svensson, and A. Alvandpour, “Power consumption bounds for
SAR ADCs”, in 20th European Conference on Circuit Theory and Design,
2011.

[29] B. Chor, O. Goldreich, J. Hastad, J. Freidmann, S. Rudich, and R. Smolensky,
“The bit extraction problem or t-resilient functions”, 26th IEEE Symposium
on Foundations of Computer Science, pp. 396–407, 1985.

142

[30] NIST, “Recommendation for random number generation using deterministic
random bit generators”, NIST Special Publication, 2012.

[31] M. Blum, “Independent unbiased coin flips from a correlated biased source -
a finite state markov chain”, Combinatorica, vol. 6, no. 2, pp. 97–108, 1986.

[32] J. P. Uyemura, Introduction to VLSI Circuits and Systems. John Wiley &
Sons, 2002.

[33] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in
digital CMOS circuits”, Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523,
1995.

[34] C. Piguet, Low-Power CMOS Circuits. CRC Press, 2005.

[35] Silicon Laboratories. (2012). EFM32WG990 Datasheet, [Online]. Available:
www.silabs.com/Support\%20Documents/TechnicalDocs/EFM32WG990.

pdf.

[36] K. Rottmann, Matematisk Formelsamling, 11th ed. Spektrum forlag, 2003.

[37] Cadence, Cadence NC-Verilog simulator tutorial, 2003.

[38] A. Hasanbegovic, Tutorial: Digital logic design and verification flow using a
standard cell library, 2013.

143

144

Appendix A

Extended Background on
Information Theory

In the following an extended background of the in Section 2.1 introduced concepts
is presented. Appendix A.1 proves the statements with regards to entropy and the
uniform distribution, and Appendix A.2 demonstrates the validity of the statements
with respect to statistical (in-)dependencies. Note that the here presented proofs
are mainly identical to those presented in [13] and [16].

A.1 Entropy and the Uniform Distribution

In order to prove the validity of Equation 2.5, it is suitable to first show that the
upper bound of H(X) is log2(k), and then prove that this bound is reached if and
only if the ensemble X is associated with an uniform distribution.

In order to find an upper boundary, Jensen’s inequality proves to be useful [13,
p. 35]. It states that, for some concave function f(z), it holds that,

E[f(z)] ≤ f(E[z]). (A.1)

In other words, the expectation of the result of f(z) for some variable z is always
less or equal than the result of f using the expectation of z as an input. Further,
it holds that, if f is strictly concave and Equation A.1 solves to an equality, then
z is a constant. It is worth noticing that Jensen’s inequality also holds for convex
functions. However, in that case the inequality sign in Equation A.1 is reversed.

By choosing,

f(z) = log2(z), (A.2)

which is a strictly concave function for all z greater than zero, Equation 2.2 can be
rewritten as,

H(X) =
k−1∑
i=0

pi · f(
1

pi
) = E[f(

1

pi
)]. (A.3)

Inserting Equation A.3 into Equation A.1 and solving the right hand side with
regards to Equation A.2 yields,

145

A.2. ENTROPY AND STATISTICAL DEPENDENCIES

H(X) ≤ f(E[
1

pi
]) = f(

k−1∑
i=0

pi ·
1

pi
) = log2(k), (A.4)

where k is the number of elements in AX .

Having found the desired upper bound of the entropy, it remains to show that
Equation A.4 solves with equality if and only if X is associated with an uniform
distribution. To do so, Jensen’s inequaltiy should be considered once more. It states,
that since f is strictly concave, pi must be a constant if Equation A.4 solves to an
equation. By the definition of PX given in Section 2.1, it follows that if pi is constant
for all i, then pi must be equal to 1

k
, which means that PX describes an uniform

distribution. Thus, if Equation A.4 solves to an equality, X follows an uniform
distribution. Showing that this implication also holds the other way around can be
easily done by solving Equation 2.2 with pi = 1

k
, as done during the discussion of

Equation 2.5 in Section 2.1. As a result, H(X) reaches it maximum H(X) = log2(k)
if and only if X os associoated with an uniform distribution.

A.2 Entropy and Statistical Dependencies

In order to prove the in Section 2.1 presented statements regarding the joint and
conditional entropy, it is suitable to adapt the in that section used approach and
first focus on the 2-bit vector vectorx0, x1 (Appendix A.2.1) and then expend the
concept to a data stream −→x = 〈x0, ..., xn−1〉 of arbitrary length n (Appendix A.2.2).
Note that this section is mainly concerned with the sums of the probabilities of all
possible outcomes of the ensemble X, and less concerned with a specific outcome ai.
Thus in order to increase the readability of the equations, the term ai is dropped
whenever not explicitly necessary and the short hand notation

∑
x0

is used to denote
a summation over all possible values of x0. For example,

∑
x0

Pr(x0|x1 = aj) =∑k−1
i=0 Pr(x0 = ai|x1 = aj).

A.2.1 Conditional entropy of a 2-bit vector

To show that the joint entropy, H(X0, X1) (Equation 2.7), can be expressed as the
sum of H(X0) and the conditional entropy H(X1|X0) (Equation 2.11), Equation 2.7
can be rewritten as,

146

A.2. ENTROPY AND STATISTICAL DEPENDENCIES

H(X0, X1) ≡
k−1∑
i=0

k−1∑
j=0

Pr(x0 = ai, x1 = aj) · log2(
1

Pr(x0 = ai, x1 = aj)
)

=
∑
x0

∑
x1

Pr(x1|x0) · Pr(x0) · log2(
1

Pr(x0)
)

+
∑
x0

∑
x1

Pr(x1|x0) · Pr(x0) · log2(
1

Pr(x1|x0)
)

=
∑
x0

[
Pr(x0) · log2(

1

Pr(x0)
) ·
∑
x1

Pr(x1|x0)
]

+
∑
x0

∑
x1

Pr(x0, x1) · log2(
1

Pr(x1|x0)
)

= H(X0) + H(X1|X0),

(A.5)

where Equation 2.8 has been used alongside with the fact that,

∑
x1

Pr(x1|x0 = ai) = 1, (A.6)

which follows from the definition of probability [15, p. 53].

To show that H(X1|X0) is upper bounded by H(X1) the relation between H(X1|X0)
and H(X1) has to be considered. By means of Equation A.6, H(X1) can be rewritten
as,

H(X1) =
∑
x1

Pr(x1) · log2(
1

Pr(x1)
)

=
∑
x1

[
Pr(x1) · log2(

1

Pr(x1)
) ·
∑
x0

Pr(x0|x1)
]

=
∑
x0

∑
x1

Pr(x0, x1) · log2(
1

Pr(x1)
).

(A.7)

Using Equation A.7 the difference between H(X1) and H(X1|X0) can be expressed
as,

147

A.2. ENTROPY AND STATISTICAL DEPENDENCIES

H(X1)− H(X1|X0) =
∑
x0

∑
x1

Pr(x0, x1) · log2(
1

Pr(x1)
)

−
∑
x0

∑
x1

Pr(x0, x1) · log2(
1

Pr(x1|x0)
)

=
∑
x0

∑
x1

Pr(x0, x1) · log2

(Pr(x1|x0)
Pr(x1)

)
=
∑
x0

∑
x1

Pr(x0, x1) · log2

(Pr(x0, x1)

Pr(x0) · Pr(x1)

)
= −

∑
x0

∑
x1

Pr(x0, x1) · log2

(Pr(x0) · Pr(x1)

Pr(x0, x1)

)
.

(A.8)

Since the negative logarithmic function in Equation A.8 is a strictly convex function,
Jensen’s inequality as stated in Equation A.1 (note that the inequality is reversed
in this situation since a convex functions is considered), can be used to find a lower
bound for Equation A.8,

H(X1)− H(X1|X0) ≥ − log2

(∑
x0

∑
x1

Pr(x0, x1) ·
Pr(x0) · Pr(x1)

Pr(x0, x1)

)
= − log2

(∑
x0

[
Pr(x0) ·

∑
x1

Pr(x1)
])

= − log2(1) = 0.

(A.9)

It is easy to see that Equation 2.10 follows directly from Equation A.9.

The next goal is to prove that Equation 2.10 holdes with equality if and only if x0
and x1 are independent. Since the negative logarithmic function is strictly convex,
one can once more make use of Jensen’s inequality as presented in Equation A.1,
which states that if Equation 2.10 solves to an equality then,

ζ =
Pr(x0 = ai) · Pr(x1 = aj)

Pr(x0 = ai, x1 = aj)
, (A.10)

where ζ is a constant for all possible combinations of ai and aj. Using Equation 2.8,
Equation A.10 can be rewritten to,

ζ =
Pr(x0 = ai) · Pr(x1 = aj)

Pr(x1 = aj|x0 = ai) · Pr(x0 = ai)
=

Pr(x1 = aj)

Pr(x1 = aj|x0 = ai)
,

⇒ ζ · Pr(x1 = aj|x0 = ai) = Pr(x1 = aj),

(A.11)

which means that Pr(x1 = aj|x0 = ai) is proportional to Pr(x1 = aj). However, this
cannot be true for any α 6= 1, since both probabilities must add up to one, that is,

148

A.2. ENTROPY AND STATISTICAL DEPENDENCIES

∑
x1

Pr(x1) =
∑
x1

ζ · Pr(x1|x0 = ai) = ζ ·
∑
x1

Pr(x1|x0 = ai) = ζ,

⇒ ζ = 1, ⇒ Pr(x1 = aj) = Pr(x1 = aj|x0 = ai).

(A.12)

It follows from Equation A.12 that if Equation 2.10 solves with equality then x0
and x1 are independent. This implication holds also the other way around, which is
easily shown by solving Equation 2.11 for the two independent outcomes x0 and x1,

H(X1|X0) =
∑
x0

∑
x1

Pr(x0, x1) · log2(
1

Pr(x1|x0)
)

=
∑
x0

∑
x1

Pr(x0) · Pr(x1) · log2(
1

Pr(x1)
)

=
∑
x1

[
Pr(x1) · log2(

1

Pr(x1)
) ·
∑
x0

Pr(x0)
]

= H(X1),

(A.13)

where Equation 2.9 has been used.

A.2.2 Conditional entropy of an n-bit vector

To extend the in Appendix A.2.1 presented concept to an n-bit vector−→x = 〈x0, ..., xn−1〉,
it is reasonable to first define the joint probability of the n ensembles X0, X1, ..., Xn−1
as,

H(X0, X1, ...Xn−1) ≡
∑
x0

∑
x1

...
∑
xn−1

Pr(x0, x1, ...xn−1) · log2(
1

Pr(x0, x1, ..., xn−1)
).

(A.14)

Rearranging the right hand side of Equation A.14 in the same manner as it has been
done in Equation A.5 yields [16, p. 22],

H(X0, X1, ..., Xn−1) = H(X0) +
n−1∑
i=1

H(Xi|X0, ..., Xi−1), (A.15)

where H(Xi|X0, ..., Xi−1) is the extended version of the conditional entropy [16,
p. 23],

H(Xi|X0, ..., Xi−1) =
∑
x0

...
∑
xi

Pr(x0, ..., xi) · log2(
1

Pr(xi|x0, ..., xi−1)
). (A.16)

The notation Pr(xi|x0, ..., xi−1) denotes the conditional probability of xi given x0, x1, ..., xi−1.

Now, using the same approach as for Equation A.8 and Equation A.9 yields,

149

A.2. ENTROPY AND STATISTICAL DEPENDENCIES

H(Xi)− H(Xi|X0, ..., Xi−1) =
∑
x0

...
∑
xi

Pr(x0, ..., xi) · log2(
1

Pr(xi)
)

−
∑
x0

...
∑
xi

Pr(x0, ..., xi) · log2(
1

Pr(xi|x0, ..., xi−1)
)

=
∑
x0

...
∑
xi

Pr(x0, ..., xi) · log2

(Pr(xi|x0, ..., xi−1)
Pr(xi)

)
=
∑
x0

...
∑
xi

Pr(x0, ..., xi) · log2

(Pr(x0, ..., xi)

Pr(xi) · Pr(x0, ..., xi−1)

)
≥ − log2

(∑
x0

..
∑
xi

Pr(x0, .., xi) ·
Pr(xi) · Pr(x0, .., xi−1)

Pr(x0, .., xi)

)
= − log2

(∑
xi

Pr(xi) ·
∑
x0

...
∑
xi−1

Pr(x0, ..., xi−1)

)
= − log2(1)

= 0,

(A.17)

where it has been used that,

Pr(xi|x0, ..., xi−1) =
Pr(x0, ..., xi)

Pr(x0) · Pr(x1|x0) · ... · Pr(xi−1|x0, ..., xi−2)

=
Pr(x0, ..., xi)

Pr(x0, ..., xi−1)
.

(A.18)

From Equation A.17 it follows that,

H(Xi) ≥ H(Xi|X0, ..., Xi−1), (A.19)

which is the equivalent to Equation 2.12 for an arbitrary number of variables.
By repeating the procedure presented in Equation A.10 till Equation A.13 with
Pr(xi)·Pr(x0,...,xi−1)

Pr(x0,...,xi)
, it is possible to show that Equation A.19 holds with equality if

and only if,

Pr(xi = aji) = Pr(xi = aji |x0 = aj0 , ..., xi−1 = aji−1
), (A.20)

which means that xi is independent of all previous values x0, ..., xi−1. Equation 2.16
follows from combining Equation A.15 and Equation A.19.

150

Appendix B

Setup of an ADC as an Entropy
Source

The following presents a C-code routine, used to set up the ADC of an EFM32
Wonder Gecko to function as an entropy source [5]. The EFM32 exports the data
via an serial communication protocol. A script that can be used to receive the data
via MATLAB is included in the zip-file which accompanies this report.

Even though the presented code has not been directly created by Silicon Labora-
tories, it makes exhaustive use of design examples and includes libraries published
by the company.

Main routine

//−−−
// Inc lude l i b r a r y s
//−−−

#include ” V i r t u a l S e r i a l . h”
#include ”em cmu . h”

//−−−
// De f i n i t i o n s and d e c l a r a t i on s
//−−−

// CMU sta tu s−reg : HFXO i s enab led and ready
#define HFXO EN AND RDY (CMU STATUS HFXORDY |

CMU STATUS HFXOENS)

// Clock f r e qu en c i e s
#define ADC CLK FREQ 12000000 // in Hz
#define HFPER CLK FREQ 48000000 // in Hz

// ADC ac q u i s i t i o n time
#define ADC ACQUISITION TIME ADC SINGLECTRL AT 1CYCLE

// ADC s t a t e s f o r i n t e r r u p t hand l ing
#define ADC SAMPLE WAIT 0
#define ADC SAMPLE RDY 1

// S i z e o f sample b u f f e r in RAM

151

#define SAMPLE BUFFER SIZE 8192 // in by t e

// Number o f r e que s t ed b u f f e r
#define NUM REQ BUFFER 65536

// ADC s t a t u s v a r i a b l e f o r i n t e r r u p t hand l ing
u i n t 8 t adcSampleStatus ;

// Function d e c l a r a t i o n s
void switch2HFXO(void) ;
void initADC (void) ;
void exportSampleBuffer (u i n t 8 t [] , int) ;
void waitForGo (void) ;

//−−−

//−−−
// switch2HFXO :
// + Enables HFXO
// + Swi tches HFCLK−source from HFRCO to HFXO
// + Disab l e s HFXO
//−−−

void switch2HFXO(void) {

// Var iab l e f o r r e g i s t e r acces s
u i n t 3 2 t regWord ;

// Set HFXO timeout to 16k c y c l e s
regWord = CMU−>CTRL;
regWord &= ˜ CMU CTRL HFXOTIMEOUT MASK;
regWord |= CMU CTRL HFXOTIMEOUT 16KCYCLES;
CMU−>CTRL = regWord ;

// Enable HFXO
CMU−>OSCENCMD = CMU OSCENCMD HFXOEN;

// Wait f o r HFXO to be ready
regWord = CMU−>STATUS;
while (! (regWord & HFXO EN AND RDY)) {regWord = CMU−>STATUS;}

// Switch HFCLK to HFXO
CMU−>CMD = CMU CMD HFCLKSEL HFXO;

// Disab l e HFRCO
CMU−>OSCENCMD = CMU OSCENCMD HFRCODIS;

}

//−−−

//−−−
// initADC :
// + Enables ADC and s e t s mode :
// − WarmUpMode: KeepWarm
// − ADC c l o c k f r e q : ADC CLK FREQ (see ” De f i n i t i o n s ”)
// − Input S i gna l : Vref / 2

152

// − Acqu i s i t i on time : ADC ACQUISITION TIME (see ”
De f i n i t i o n s ”)

// + Enables i n t e r r u p t f o r s i n g l e convers ion
//−−−

void initADC (void) {

// Var iab l e f o r r e g i s t e r acces s
u i n t 3 2 t regWord ;

// Ac t i va t e HFPER and ADC c l o c k
CMU ClockEnable (cmuClock HFPER , true) ;
CMU ClockEnable (cmuClock ADC0 , t rue) ;

// Presca l e the ADC c l o c k & s e t keep−warm−mode
regWord = ADC0−>CTRL;
regWord &= ˜(ADC CTRL WARMUPMODE MASK | ADC CTRL PRESC MASK) ;
regWord |= ((HFPER CLK FREQ / ADC CLK FREQ) − 1) <<

ADC CTRL PRESC SHIFT ;
regWord |= ADCCTRLWARMUPMODEKEEPADCWARM;
ADC0−>CTRL = regWord ;

// Set up S ing l e Sample op t i ons
regWord = ADC0−>SINGLECTRL;
regWord &= ˜(ADC SINGLECTRL INPUTSEL MASK |

ADC SINGLECTRL AT MASK) ;
regWord |= ADC SINGLECTRL INPUTSEL VREFDIV2 ;
regWord |= (ADC ACQUISITION TIME << ADC SINGLECTRL AT SHIFT) ;
ADC0−>SINGLECTRL = regWord ;

// Enable i n t e r r u p t f o r s i n g l e convers ion complete
ADC0−>IFC = ADC IFC SINGLE ;
ADC0−>IEN = ADC IEN SINGLE ;
NVIC EnableIRQ (ADC0 IRQn) ;

}

//−−−

//−−−
// ADC0 IRQHandler (In t e r rup t rou t ine f o r s i n g l e convers ion i n t e r r u p t) :
// + Set s adcSampleStatus to ADC SAMPLE RDY
//−−−

void ADC0 IRQHandler (void) {

// Clear i n t e r r u p t f l a g
ADC0−>IFC = ADC IFC SINGLE ;

// Disab l e i n t e r r u p t
ADC0−>IEN = ADC IEN RESETVALUE;

// Set adcSampleStatus to ready
adcSampleStatus = ADC SAMPLE RDY;

}

153

//−−−

//−−−
// main rou t ine
//−−−

int main (void)
{

// Buf fer form ADC samples
u i n t 8 t sampleBuf fer [SAMPLE BUFFER SIZE] ;

// Counter f o r ADC samples
u i n t 3 2 t sampleCounter = 0 ;

// Counter f o r expor ted b u f f e r s
u i n t 3 2 t buf ferCount = 0 ;

// De le te me
u i n t 8 t testCount = 0 ;
u i n t 3 2 t dummy = 0 ;
u i n t 8 t dummyBuffer [SAMPLE BUFFER SIZE] ;

// Chip e r ra ta
CHIP Init () ;

// Switch c l o c k to HFXO
switch2HFXO () ;

// I n i t i a l i z e ADC
initADC () ;

// Set up hardware f o r PC communication
SetupHardware () ;

// Wait f o r s t a r t s i g n a l from r e c e i v e r
waitForGo () ;

// Set adcSampleStatus to wai t
adcSampleStatus = ADC SAMPLE WAIT;

// Trigger ADC s i n g l e convers ion
ADC0−>CMD = ADC CMD SINGLESTART;

while (1) {

// Wait f o r sample to be ready
while (adcSampleStatus == ADC SAMPLE WAIT) {}

// Read sample from ADC
sampleBuf fer [sampleCounter] = ADC0−>SINGLEDATA;

// Export b u f f e r i f f u l l
i f (sampleCounter == SAMPLE BUFFER SIZE−1){

154

// Send sample b u f f e r to r e c e i v e r
exportSampleBuffer (sampleBuffer , SAMPLE BUFFER SIZE) ;

// Clear sampleCounter
sampleCounter = 0 ;

// Increase bu f f e rCounter
bufferCount++;

} // i f : sampleCount == SAMPLE BUFFER SIZE−1

// Otherwise inc rea se sampleCounter
else sampleCounter++;

// Trigger ADC fo r s i n g l e convers ion
i f (buf ferCount != NUM REQ BUFFER) ADC0−>CMD =

ADC CMD SINGLESTART;

// Set ADC s t a t u s to WAIT
adcSampleStatus = ADC SAMPLE WAIT;

// Re−enab l e ADC in t e r r u p t
ADC0−>IEN = ADC IEN SINGLE ;

}

}

//−−−

//−−−
// exportSampleBuf fer : Exports b u f f e r to r e c e i v e r v ia s e r i a l

communication
//−−−

void exportSampleBuffer (u i n t 8 t sampleBuf fer [] , int sampleBuf f e rS i ze) {

int sample i =0;
int sent = 0 ;

u i n t 8 t byte ;

char TX RDY = ’X ’ ;
char RX RDY = ’Q’ ;

// S i gna l to r e c e i v e r t ha t data can be expor ted
Endpoint Se lectEndpoint (CDC TX EPADDR) ;
Endpoint Write 8 (TX RDY) ;
Endpoint ClearIN () ;
while (! Endpoint IsINReady ()) ;

while (! s ent) {

// Wait f o r r e p l y from r e c e i v e r
Endpoint Se lectEndpoint (CDC RX EPADDR) ;
i f (Endpoint IsOUTReceived ()) {

155

// Check i f r e c e i v e r i s ready
i f (Endpoint Read 8 () == RX RDY) {

// Switch to TX mode
Endpoint ClearOUT () ;

// Loop through sample b u f f e r
for (sample i = 0 ; sample i < sampleBuf f e rS i ze ; sample i

++){

// Read sample from bu f f e r and add LSB to by t e
byte = byte + (sampleBuf fer [sample i] % 2) ;
byte = byte << 1 ;

// I f by t e i s f u l l , wr i t e i t to TX termina l
i f ((sample i % 8) == 7) {

Endpoint Se lectEndpoint (CDC TX EPADDR) ;
Endpoint Write 8 (byte) ;
Endpoint ClearIN () ;
while (! Endpoint IsINReady ()) ;

// Reset by t e
byte = 0 ;

} // end i f : by t e i s f u l l

} // end f o r : samp le i

// Set f l a g i f b u f f e r i s expor ted
sent = 1 ;

} // end i f : RX RDY

else Endpoint ClearOUT () ;

} // end i f : package r e c e i v ed

} // end wh i l e : ! s en t

} // end vo id : exportSampleBuf fer

//−−−

//−−−
// waitForGo : Waits f o r s t a r t s i g n a l from r e c e i v e r
//−−−

void waitForGo (void) {

int go = 0 ;

char r ep ly = ’A ’ ;

Endpoint Se lectEndpoint (CDC RX EPADDR) ;

156

while (! go) {

i f (Endpoint IsOUTReceived ()) {

Endpoint ClearOUT () ;

Endpoint Se lectEndpoint (CDC TX EPADDR) ;
Endpoint Write 8 (r ep ly) ;
Endpoint ClearIN () ;
while (! Endpoint IsINReady ()) ;

go = 1 ;

}
}

}
//−−−

157

158

Appendix C

Statistical Testing

C.1 The von Neumann Condition Test

%% −−
% vNeumannTest .m
% Scr i p t to run t e s t f o r v .Neumann cond i t i on s

%% −−
% Close prev ious f i g u r e s
close a l l ;

%% −−
% Def ines

SOURCE = ’C:\ Users \Conrad\Documents\MATLAB\TRNG\ adc data \data .
adc 010415 500Mb ’ ; % Address o f the source f i l e

TARGET = [SOURCE, ’ vNeumman test res ’] ; % Target address f o r r e s u l t s

NUM OF SEQUENCES = 64 ; % Number o f t e s t sequences
SEQUENCE LENGTH = 1048576; % Bi t s per t e s t sequence
BIT PER LINE = 8 ; % Number o f b i t s per l i n e in the source f i l e
NUM OF LINES = SEQUENCE LENGTH/BIT PER LINE ; % Number o f l i n e s per

sequence in source f i l e

ENABLE 2 LEVEL TEST = f a l s e ; % Enables second− l e v e l t e s t
NUM OF P GROUPS = 10 ; % Number o f i n t e r v a l s used to group p−va l u e s

during second− l e v e l t e s t

%% −−
% Counter f o r v .Neumann pa i r s

num vN pairs = zeros (NUM OF SEQUENCES, 1) ; % Vector f o r number o f
vNeumann−pa i r s

num 01 pairs = zeros (NUM OF SEQUENCES, 1) ; % Vector f o r number o f 01−
pa i r s

num 10 pairs = zeros (NUM OF SEQUENCES, 1) ; % Vector f o r number o f 10−
pa i r s

%% −−
% Fetch number o f vNeumann−pa i r s from source f i l e

159

C.1. THE VON NEUMANN CONDITION TEST

% Print i n f o msg to termina l
disp (’ Fetching data from source f i l e ’) ;

% Open source f i l e
s o u r c e i d = fopen (SOURCE) ;

% Read each sequence
for s e q i = 1 :NUM OF SEQUENCES

% Print i n f o msg to termina l
disp ([’ Reading sequence : ’ ,num2str(s e q i)]) ;

% Read each l i n e o f the sequence & count vNeumann pa i r s
for l i n e i = 1 : (NUM OF LINES)

% Read l i n e from source
l ine = fget l (s o u r c e i d) ;

% Convert ASCII to b inary
l ine = l ine − 48 ;

% Check each b i t pa i r in l i n e
for p a i r i = 1 : 2 : BIT PER LINE

% Read b i t pa i r s from l i n e
b i t 1 = l ine (p a i r i) ;
b i t 2 = l ine (p a i r i +1) ;

% Evaluate b i t pa i r
i f ((b i t 1 == 0) && (b i t 2 == 1))

% Update vNeumann b i t pa i r counter
num vN pairs (s e q i) = num vN pairs (s e q i) + 1 ;
num 01 pairs (s e q i) = num 01 pairs (s e q i) + 1 ;

e l s e i f ((b i t 1 == 1) && (b i t 2 == 0))

% Update vNeumann b i t pa i r counter
num vN pairs (s e q i) = num vN pairs (s e q i) + 1 ;
num 10 pairs (s e q i) = num 10 pairs (s e q i) + 1 ;

end % i f : vN−pa i r

end % for : p a i r i

end % for : l i n e i

end % for : s e q i

%c l o s e source f i l e
fc lose (s o u r c e i d) ;

%% −−
% Run f i r s t − l e v e l vNeumann−hypo t h e s i s t e s t

% Print i n f o msg to termina l

160

C.1. THE VON NEUMANN CONDITION TEST

disp (’ Running f i r s t −l e v e l v . Neumann hypothes i s t e s t ’) ;

% In i t . empty p−va lue vec to r
p va lue s = zeros (NUM OF SEQUENCES, 1) ;

% Check hypo t h e s i s f o r each sequence
for s e q i = 1 :NUM OF SEQUENCES

% Mean and stand . d e v i a t i on o f the norm . pdf . approximation
mean norm = 0.5∗ num vN pairs (s e q i) ;
std norm = sqrt ((0 . 5 ˆ 2) ∗num vN pairs (s e q i)) ;

% Set observed t e s t s t a t i s t i c f o r the sequence
o b s t e s t s t a t = num 01 pairs (s e q i) ;

% Compute p−va lue f o r the sequence
i f (o b s t e s t s t a t <= mean norm)

p va lue s (s e q i) = 2∗normcdf (o b s t e s t s t a t , mean norm , std norm) ;
else

p va lue s (s e q i) = 2∗(1−normcdf (o b s t e s t s t a t , mean norm , std norm
)) ;

end

end

% Plot p−va lue his togram
f igure (1)
t i t l e (’P−va lue s f o r the vNeumann−hypothes i s t e s t ’) ;
h = histogram (p values ,NUM OF P GROUPS) ;
xlabel (’p−va lue s ranges ’) ;
ylabel (’Number o f p−va lue s ’) ;

%% −−
% Run second− l e v e l vNeumann−hypo t h e s i s t e s t (chi−squared
% goodness−of− f i t)
% NOTE: Test must be enab led by s e t t i n g ENABLE 2 LEVEL TEST

i f (ENABLE 2 LEVEL TEST == true)

% Compute degrees o f freedom
deg r e e s o f f r e e dom = NUM OF P GROUPS − 1 ;

% Set expec ted and observed f r e qu en c i e s
e x p p f r e q = NUM OF SEQUENCES/NUM OF P GROUPS;
o b s p f r e q = h . Values ;

% Compute observed t e s t s t a t i s t i c
o b s t e s t s t a t = 0 ;
for group = 1 :NUM OF P GROUPS

o b s t e s t s t a t = o b s t e s t s t a t + (((o b s p f r e q (group) −
e x p p f r e q) ˆ2) / e x p p f r eq) ;

end

o b s t e s t s t a t ;

% Compute p−va lue o f the second l e v e l t e s t

161

C.1. THE VON NEUMANN CONDITION TEST

s e c l v l p v a l u e = c h i 2 c d f (o b s t e s t s t a t , deg ree s o f f r e edom , ’ upper ’)
;

end % i f : ENABLE 2 LEVEL TEST

%% −−
% Print t e s t r e s u l t s to t a r g e t f i l e

% Open t a r g e t f i l e
t a r g e t i d = fopen (TARGET, ’w ’) ;

% Print t a b l e header
fpr intf (t a r g e t i d , ’ Sequence \ t Num. vN p a i r s \ t Num. 01 p a i r s \ t p−

value \n ’) ;
fpr intf (’ \n ’)

% Print r e s u l t s f o r each sequence
for s e q i = 1 :NUM OF SEQUENCES

fpr intf (t a r g e t i d , ’%−8d \ t %−13d \ t %−13d \ t %−1.4 f \n ’ , s e q i ,
num vN pairs (s e q i) , num 01 pairs (s e q i) , p va lue s (s e q i)) ;

end

% Print p−va lue o f second− l e v e l t e s t
i f (ENABLE 2 LEVEL TEST == true)

fpr intf (t a r g e t i d , ’ \n\n ’) ;
fpr intf (t a r g e t i d , ’ Second−l e v e l p−value : %1.4 f \n ’ , s e c l v l p v a l u e) ;

end

% Close t a r g e t f i l e
fc lose (t a r g e t i d) ;

% Clear l i n e v a r i a b l e
clear l ine ;

162

C.2. RESULTS OF STATISTICAL TESTING

C.2 Results of Statistical Testing

C.2.1 Results for the Entropy Source

Table C.1: Results of the Frequency test for the source data

Se-
quence

so Percentage
of 0’s

p-value Se-
quence

so Percentage
of 0’s

p-value

1 427600 29.6105% 0.00000 33 485274 26.8604% 0.00000
2 403234 30.7723% 0.00000 34 493022 26.4909% 0.00000
3 399974 30.9277% 0.00000 35 475860 27.3092% 0.00000
4 403494 30.7599% 0.00000 36 455432 28.2833% 0.00000
5 407322 30.5774% 0.00000 37 478238 27.1959% 0.00000
6 409438 30.4764% 0.00000 38 464754 27.8388% 0.00000
7 411772 30.3652% 0.00000 39 447858 28.6444% 0.00000
8 421722 29.8908% 0.00000 40 433690 29.3200% 0.00000
9 419680 29.9881% 0.00000 41 452690 28.4141% 0.00000
10 420960 29.9271% 0.00000 42 466270 27.7665% 0.00000
11 423778 29.7927% 0.00000 43 454218 28.3412% 0.00000
12 441366 28.9540% 0.00000 44 455060 28.3011% 0.00000
13 429766 29.5071% 0.00000 45 470680 27.5562% 0.00000
14 434140 29.2986% 0.00000 46 445466 28.7585% 0.00000
15 452494 28.4234% 0.00000 47 438754 29.0786% 0.00000
16 470864 27.5475% 0.00000 48 450494 28.5188% 0.00000
17 456220 28.2458% 0.00000 49 467046 27.7295% 0.00000
18 459254 28.1011% 0.00000 50 464218 27.8643% 0.00000
19 449836 28.5501% 0.00000 51 471890 27.4985% 0.00000
20 448144 28.6308% 0.00000 52 475522 27.3254% 0.00000
21 443820 28.8370% 0.00000 53 488498 26.7066% 0.00000
22 457614 28.1792% 0.00000 54 452432 28.4263% 0.00000
23 492188 26.5307% 0.00000 55 404426 30.7155% 0.00000
24 466834 27.7396% 0.00000 56 411782 30.3647% 0.00000
25 441290 28.9577% 0.00000 57 426384 29.6684% 0.00000
26 445334 28.7648% 0.00000 58 424800 29.7439% 0.00000
27 454490 28.3283% 0.00000 59 416994 30.1162% 0.00000
28 459418 28.0933% 0.00000 60 417966 30.0698% 0.00000
29 466398 27.7604% 0.00000 61 411816 30.3631% 0.00000
30 457792 28.1708% 0.00000 62 421494 29.9016% 0.00000
31 475718 27.3160% 0.00000 63 414278 30.2457% 0.00000
32 504578 25.9398% 0.00000 64 422648 29.8466% 0.00000

163

C.2. RESULTS OF STATISTICAL TESTING

Table C.2: Results of the von Neumann condition test for the source
data

Sequence ovN o01 p-value Sequence ovN o01 p-value
1 233120 64051 0.0000 33 219117 54818 0.0000
2 241763 69138 0.0000 34 217755 53581 0.0000
3 243063 69603 0.0000 35 221478 56467 0.0000
4 241571 68576 0.0000 36 226100 59044 0.0000
5 240375 68246 0.0000 37 220231 55563 0.0000
6 239237 67622 0.0000 38 223097 57432 0.0000
7 238142 66815 0.0000 39 227651 60208 0.0000
8 235647 65033 0.0000 40 231865 63315 0.0000
9 235308 65230 0.0000 41 226011 59272 0.0000
10 235656 65027 0.0000 42 223461 57914 0.0000
11 234033 64492 0.0000 43 226495 59614 0.0000
12 229973 62075 0.0000 44 225902 59527 0.0000
13 232681 63351 0.0000 45 222462 57044 0.0000
14 231238 62789 0.0000 46 228317 60876 0.0000
15 226405 59565 0.0000 47 230219 61903 0.0000
16 222142 56662 0.0000 48 226403 60322 0.0000
17 225200 58697 0.0000 49 222793 57068 0.0000
18 224911 58678 0.0000 50 223301 58021 0.0000
19 227134 60196 0.0000 51 221965 56886 0.0000
20 227566 60419 0.0000 52 220609 55727 0.0000
21 228514 60957 0.0000 53 217907 53840 0.0000
22 224771 58919 0.0000 54 226698 59648 0.0000
23 217402 53816 0.0000 55 241601 68840 0.0000
24 223275 57567 0.0000 56 239239 67495 0.0000
25 228881 61469 0.0000 57 234330 64317 0.0000
26 228307 60774 0.0000 58 234792 64967 0.0000
27 226573 59572 0.0000 59 237007 66407 0.0000
28 224537 58208 0.0000 60 237157 66275 0.0000
29 222851 57334 0.0000 61 239084 67462 0.0000
30 225838 59103 0.0000 62 235651 65468 0.0000
31 220635 55989 0.0000 63 238067 66804 0.0000
32 214591 51884 0.0000 64 235466 65145 0.0000

164

C.2. RESULTS OF STATISTICAL TESTING

C.2.2 Results for the VNC

Table C.3: Results of the Frequency test for the VNC

Se-
quence

so Percentage
of 0’s

p-value Se-
quence

so Percentage
of 0’s

p-value

1 454272 28.3386 0.00000 33 463818 27.8834 0.00000
2 462426 27.9498 0.00000 34 477712 27.2209 0.00000
3 474978 27.3513 0.00000 35 492016 26.5389 0.00000
4 499724 26.1713 0.00000 36 498048 26.2512 0.00000
5 497392 26.2825 0.00000 37 496668 26.3170 0.00000
6 498352 26.2367 0.00000 38 494608 26.4153 0.00000
7 514520 25.4657 0.00000 39 485028 26.8721 0.00000
8 518798 25.2618 0.00000 40 478984 27.1602 0.00000
9 496046 26.3467 0.00000 41 485364 26.8560 0.00000
10 499164 26.1980 0.00000 42 484110 26.9158 0.00000
11 499126 26.1998 0.00000 43 478258 27.1949 0.00000
12 496234 26.3377 0.00000 44 487578 26.7505 0.00000
13 464746 27.8392 0.00000 45 472618 27.4638 0.00000
14 463618 27.8929 0.00000 46 487230 26.7671 0.00000
15 461906 27.9746 0.00000 47 490476 26.6123 0.00000
16 466998 27.7318 0.00000 48 477230 27.2439 0.00000
17 467952 27.6863 0.00000 49 476332 27.2867 0.00000
18 467494 27.7081 0.00000 50 489714 26.6486 0.00000
19 461558 27.9912 0.00000 51 471692 27.5080 0.00000
20 458934 28.1163 0.00000 52 479506 27.1354 0.00000
21 459330 28.0975 0.00000 53 477658 27.2235 0.00000
22 455454 28.2822 0.00000 54 484448 26.8997 0.00000
23 461406 27.9984 0.00000 55 473732 27.4107 0.00000
24 456818 28.2172 0.00000 56 466878 27.7375 0.00000
25 458136 28.1544 0.00000 57 469546 27.6103 0.00000
26 455870 28.2624 0.00000 58 469364 27.6190 0.00000
27 467514 27.7072 0.00000 59 476550 27.2764 0.00000
28 471118 27.5354 0.00000 60 487882 26.7359 0.00000
29 459702 28.0797 0.00000 61 481972 27.0178 0.00000
30 466810 27.7408 0.00000 62 487282 26.7646 0.00000
31 476406 27.2832 0.00000 63 490004 26.6348 0.00000
32 475214 27.3400 0.00000 64 487714 26.7440 0.00000

165

C.2. RESULTS OF STATISTICAL TESTING

Table C.4: Results of the von Neumann condition test for the VNC

Sequence ovN o01 p-value Sequence ovN o01 p-value

1 229770 115177 0.2231 33 227743 114072 0.4008
2 227703 113802 0.8356 34 225448 113043 0.1791
3 225617 112885 0.7474 35 221988 110988 0.9797
4 221210 110469 0.5630 36 220904 110422 0.8984
5 222190 111081 0.9526 37 221208 110156 0.0568
6 220976 110195 0.2125 38 222004 110989 0.9560
7 217002 108057 0.0566 39 223408 111727 0.9225
8 215855 107764 0.4815 40 225066 112219 0.1856
9 221439 110484 0.3169 41 223974 112003 0.9461
10 220668 110371 0.8748 42 223851 112435 0.0313
11 221027 110562 0.8365 43 225365 112656 0.9111
12 220231 109729 0.0995 44 223833 111898 0.9377
13 227473 113826 0.7074 45 226707 113028 0.1715
14 227565 113673 0.6462 46 223589 112188 0.0960
15 228973 114566 0.7397 47 223756 112119 0.3082
16 226445 113555 0.1623 48 226063 113351 0.1790
17 227154 113171 0.0884 49 225636 112630 0.4286
18 226467 113093 0.5549 50 223043 111470 0.8274
19 228073 114336 0.2097 51 226524 113638 0.1141
20 228915 114293 0.4917 52 224959 112387 0.6965
21 228595 114328 0.8985 53 225663 112862 0.8978
22 229279 114739 0.6777 54 224344 112413 0.3089
23 227577 113711 0.7452 55 225890 112961 0.9463
24 229081 114292 0.2991 56 227307 113828 0.4642
25 228732 114110 0.2844 57 226611 112919 0.1044
26 228847 114296 0.5940 58 226954 113317 0.5018
27 226731 113523 0.5083 59 225881 113286 0.1460
28 226599 113391 0.7007 60 224107 112544 0.0382
29 228045 114294 0.2555 61 224712 112484 0.5892
30 226943 113573 0.6700 62 224011 111899 0.6527
31 225771 113091 0.3870 63 222500 111532 0.2318
32 225477 112678 0.7989 64 223907 112072 0.6165

166

C.2. RESULTS OF STATISTICAL TESTING

Table C.5: Results of the Frequency test for the second VNC iter-
ation

Se-
quence

so Percentage
of 0’s

p-value Se-
quence

so Percentage
of 0’s

p-value

1 -572 50.0273 0.57643 33 824 49.9607 0.42100
2 2250 49.8927 0.02800 34 -410 50.0196 0.68886
3 866 49.9587 0.39771 35 -352 50.0168 0.73103
4 314 49.9851 0.75911 36 -1220 50.0581 0.23349
5 -318 50.0151 0.75614 37 240 49.9885 0.81469
6 798 49.9620 0.43580 38 1578 49.9248 0.12331
7 -1130 50.0539 0.26980 39 802 49.9618 0.43350
8 -10 50.0005 0.99220 40 -552 50.0263 0.58984
9 -320 50.0153 0.75466 41 520 49.9752 0.61158
10 -824 50.0393 0.42100 42 508 49.9758 0.61982
11 -746 50.0355 0.46629 43 -456 50.0217 0.65609
12 -876 50.0417 0.39229 44 578 49.9725 0.57244
13 -616 50.0293 0.54746 45 196 49.9906 0.84820
14 -444 50.0212 0.66458 46 1132 49.9460 0.26895
15 -498 50.0237 0.62673 47 14 49.9993 0.98909
16 -96 50.0046 0.92530 48 -942 50.0449 0.35761
17 -122 50.0058 0.90516 49 -192 50.0092 0.85126
18 530 49.9748 0.60475 50 -1752 50.0836 0.08709
19 -2162 50.1031 0.03474 51 -580 50.0277 0.57111
20 682 49.9675 0.50540 52 -248 50.0119 0.80863
21 306 49.9854 0.76507 53 -510 50.0243 0.61845
22 1236 49.9410 0.22742 54 -1338 50.0638 0.19133
23 -1114 50.0531 0.27664 55 1046 49.9501 0.30702
24 -844 50.0403 0.40981 56 -2872 50.1369 0.00503
25 438 49.9791 0.66884 57 -1272 50.0606 0.21416
26 234 49.9888 0.81924 58 656 49.9687 0.52176
27 854 49.9593 0.40429 59 200 49.9904 0.84514
28 -1424 50.0679 0.16433 60 -542 50.0259 0.59660
29 -2228 50.1062 0.02957 61 -160 50.0077 0.87583
30 -88 50.0042 0.93151 62 394 49.9812 0.70041
31 -18 50.0008 0.98597 63 -190 50.0091 0.85280
32 -1142 50.0544 0.26475 64 954 49.9545 0.35152

167

C.2. RESULTS OF STATISTICAL TESTING

Table C.6: Results of the von Neumann condition test for the sec-
ond VNC iteration

Sequence ovN o01 p-value Sequence ovN o01 p-value

1 250322 125023 0.5812 33 251996 125720 0.2680
2 249029 124359 0.5331 34 251885 126069 0.6142
3 249599 124878 0.7533 35 252358 126026 0.5424
4 251395 125348 0.1633 36 252226 126270 0.5318
5 252519 125867 0.1183 37 251788 125854 0.8733
6 251129 125978 0.0989 38 252575 126274 0.9572
7 251517 125774 0.9507 39 252013 125870 0.5866
8 250387 125212 0.9411 40 251942 125700 0.2802
9 249512 124334 0.0911 41 251994 125968 0.9080
10 250082 125397 0.1545 42 251912 125963 0.9777
11 250617 125710 0.1087 43 251440 125204 0.0396
12 250562 125481 0.4242 44 251771 125916 0.9032
13 250500 125327 0.7583 45 251762 125565 0.2078
14 250274 125045 0.7130 46 251430 125520 0.4367
15 252155 126414 0.1802 47 251501 125589 0.5195
16 251536 125777 0.9714 48 251249 125745 0.6307
17 250799 125024 0.1337 49 251244 125592 0.9047
18 250831 124813 0.0161 50 250594 125232 0.7951
19 250697 125823 0.0580 51 251402 125661 0.8732
20 250545 125178 0.7057 52 251514 125776 0.9396
21 249997 124588 0.1006 53 251277 125583 0.8248
22 250296 125435 0.2512 54 251403 125626 0.7633
23 249875 124842 0.7024 55 251379 125907 0.3856
24 249798 124965 0.7917 56 250820 125292 0.6375
25 251093 125833 0.2528 57 251346 125300 0.1368
26 250125 124756 0.2203 58 250936 125143 0.1944
27 250871 125869 0.0835 59 251170 125421 0.5128
28 250644 125419 0.6984 60 251641 125677 0.5672
29 252706 126584 0.3581 61 252010 126505 0.0464
30 251762 126021 0.5768 62 250945 125458 0.9538
31 252225 126269 0.5331 63 251237 125899 0.2630
32 252331 125878 0.2523 64 251125 125730 0.5038

168

C.2. RESULTS OF STATISTICAL TESTING

(a) Frequencies of von Neumann pairs and the expected and the observed test statistics
for the tested sequences

(b) Normalized difference between the observed and expected test statistics for the tested
sequences

Figure C.1: Results of the von Neumann condition test for the
second VNC iteration

169

C.2. RESULTS OF STATISTICAL TESTING

C.2.3 Results for the IHF

Table C.7: Results of the NIST test suite for the IHF with nIHF = 64
and mIHF = 1

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 64 0.017912 Passed
BlockFrequency 64 62 0.213309 Passed
CumulativeSums 64 64 0.602458 Passed
Runs 64 63 0.964295 Passed
LongestRun 64 63 0.122325 Passed
Rank 64 64 0.671779 Passed
DFT 64 64 0.468595 Passed
NOT 64 64 0.407091 Passed
OT 64 63 0.350485 Passed
Universal 64 63 0.637119 Passed
Approx.Entropy 64 64 0.637119 Passed
Rand.Excur. 42 40 0.275709 Passed
Rand.Excur.Var. 42 42 0.739918 Passed
Serial 64 64 0.534146 Passed
LinearComplexity 64 64 0.178278 Passed

170

C.2. RESULTS OF STATISTICAL TESTING

Table C.8: Results of the NIST test suite for the IHF with nIHF = 64
and mIHF = 2

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 62 0.862344 Passed
BlockFrequency 64 64 0.253551 Passed
CumulativeSums 64 64 0.911413 Passed
Runs 64 64 0.568055 Passed
LongestRun 64 63 0.500934 Passed
Rank 64 64 0.671779 Passed
DFT 64 62 0.407091 Passed
NOT 64 63 0.407091 Passed
OT 64 61 0.671779 Passed
Universal 64 63 0.324180 Passed
Approx.Entropy 64 64 0.976060 Passed
Rand.Excur. 39 36 0.003804 Passed
Rand.Excur.Var. 39 39 0.000500 Passed
Serial 64 63 0.772760 Passed
LinearComplexity 64 64 0.350485 Passed

Table C.9: Results of the NIST test suite for the IHF with nIHF = 64
and mIHF = 4

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 63 0.017912 Passed
BlockFrequency 64 64 0.162606 Passed
CumulativeSums 64 63 0.275709 Passed
Runs 64 63 0.637119 Passed
LongestRun 64 64 0.706149 Passed
Rank 64 64 0.949602 Passed
DFT 64 63 0.407091 Passed
NOT 64 63 0.025193 Passed
OT 64 63 0.407091 Passed
Universal 64 63 0.637119 Passed
Approx.Entropy 64 64 0.834308 Passed
Rand.Excur. 39 39 0.195163 Passed
Rand.Excur.Var. 39 39 0.195163 Passed
Serial 64 64 0.060239 Passed
LinearComplexity 64 62 0.090936 Passed

171

C.2. RESULTS OF STATISTICAL TESTING

Table C.10: Results of the NIST test suite for the IHF with nIHF =
64 and mIHF = 8

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 64 0.931952 Passed
BlockFrequency 64 63 0.054199 Passed
CumulativeSums 64 64 0.602458 Passed
Runs 64 63 0.178278 Passed
LongestRun 64 63 0.028181 Passed
Rank 64 63 0.834308 Passed
DFT 64 63 0.568055 Passed
NOT 64 63 0.500934 Passed
OT 64 64 0.134686 Passed
Universal 64 64 0.706149 Passed
Approx.Entropy 64 64 0.671779 Passed
Rand.Excur. 39 37 0.275709 Passed
Rand.Excur.Var. 39 39 0.000001 Failed
Serial 64 62 0.350485 Passed
LinearComplexity 64 64 0.253551 Passed

Table C.11: Results of the NIST test suite for the IHF with nIHF =
128 and mIHF = 2

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 64 0.568055 Passed
BlockFrequency 64 63 0.195163 Passed
CumulativeSums 64 63 0.602458 Passed
Runs 64 61 0.500934 Passed
LongestRun 64 64 0.772760 Passed
Rank 64 64 0.195163 Passed
DFT 64 64 0.534146 Passed
NOT 64 63 0.213309 Passed
OT 64 64 0.437274 Passed
Universal 64 63 0.407091 Passed
Approx.Entropy 64 63 0.671779 Passed
Rand.Excur. 41 40 0.330628 Passed
Rand.Excur.Var. 41 41 0.330628 Passed
Serial 64 64 0.299251 Passed
LinearComplexity 64 62 0.007880 Passed

172

C.2. RESULTS OF STATISTICAL TESTING

Table C.12: Results of the NIST test suite for the IHF with nIHF =
128 and mIHF = 4

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 64 0.060239 Passed
BlockFrequency 64 64 0.299251 Passed
CumulativeSums 64 64 0.739918 Passed
Runs 64 63 0.671779 Passed
LongestRun 64 64 0.324180 Passed
Rank 64 64 0.324180 Passed
DFT 64 63 0.637119 Passed
NOT 64 63 0.706149 Passed
OT 64 64 0.275709 Passed
Universal 64 63 0.178278 Passed
Approx.Entropy 64 64 0.082177 Passed
Rand.Excur. 45 45 0.004715 Passed
Rand.Excur.Var. 45 45 0.414525 Passed
Serial 64 63 0.568055 Passed
Linear Complexity 64 64 0.931952 Passed

Table C.13: Results of the NIST test suite for the IHF with nIHF =
128 and mIHF = 8

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 63 0.253551 Passed
BlockFrequency 64 64 0.637119 Passed
CumulativeSums 64 64 0.015963 Passed
Runs 64 64 0.602458 Passed
LongestRun 64 64 0.025193 Passed
Rank 64 62 0.253551 Passed
DFT 64 64 0.350485 Passed
NOT 64 63 0.500934 Passed
OT 64 63 0.043745 Passed
Universal 64 64 0.911413 Passed
Approx.Entropy 64 63 0.437274 Passed
Rand.Excur. 40 40 0.739918 Passed
Rand.Excur.Var. 40 40 0.392456 Passed
Serial 64 63 0.299251 Passed
LinearComplexity 64 63 0.739918 Passed

173

C.2. RESULTS OF STATISTICAL TESTING

Table C.14: Results of the NIST test suite for the IHF with nIHF =
128 and mIHF = 16

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 64 0.500934 Passed
BlockFrequency 64 64 0.275709 Passed
CumulativeSums 64 64 0.407091 Passed
Runs 64 64 0.534146 Passed
LongestRun 64 64 0.437274 Passed
Rank 64 64 0.772760 Passed
DFT 64 64 0.706149 Passed
NOT 64 62 0.378138 Passed
OT 64 63 0.082177 Passed
Universal 64 64 0.671779 Passed
Approx.Entropy 64 64 0.500934 Passed
Rand.Excur. 41 41 0.611108 Passed
Rand.Excur.Var. 41 41 0.953553 Passed
Serial 64 63 0.378138 Passed
LinearComplexity 64 64 0.739918 Passed

Table C.15: Results of the NIST test suite for the IHF with nIHF =
128 and mIHF = 32

Test Number of
performed
first-level
tests

Number of
succeeded
first-level
tests

Second-
level
p-value

Conclusion

Frequency 64 63 0.031497 Passed
BlockFrequency 64 64 0.100508 Passed
CumulativeSums 64 63 0.195163 Passed
Runs 64 61 0.437274 Passed
LongestRun 64 63 0.350485 Passed
Rank 64 63 0.437274 Passed
DFT 64 64 0.534146 Passed
NOT 64 63 0.834308 Passed
OT 64 64 0.772760 Passed
Universal 64 64 0.407091 Passed
Approx.Entropy 64 62 0.862344 Passed
Rand.Excur. 33 33 0.378138 Passed
Rand.Excur.Var. 33 32 0.888137 Passed
Serial 64 63 0.035174 Passed
LinearComplexity 64 64 0.739918 Passed

174

Appendix D

SystemVerilog Code of
Post-Processing Implementations

In the following the generated SystemVerilog code of the post-processor implemen-
tations and the simulation setup is presented. For modules and codes that are
essentially equivalent and differ only trivially, only one example is presented. This
is for example the case for the different approaches of the VNC.

Note that in the following codes for the VNC, “all cg” is used to describe Ap-
proach 1 and “some cg” describes Approach 2. “syn cg” and “no cg” mark Approach
3 and Approach 4, respectively.

D.1 Submodules for General Purposes

General parameter

// Time un i t f a c t o r
// (Use to compute ps/ns/us . . from sec va l u e s)
‘define US FACT 1 000 000
‘define NS FACT 1 000 000 000
‘define PS FACT 1 000 000 000 000

// Timescale parameter
‘define TIME UNIT 1ns
‘define TIME FACT ‘NS FACT// NOTE: Adjust to TIME UNIT
‘define TIME PREC 1ps
‘define TIMESCALE ‘timescale ‘TIME UNIT/‘TIME PREC

// Clock ing parameter
‘define SYS CLK FREQ 50 000 000 // System c l o c k f requency : 50MHz
‘define SYS CLK PER (‘TIME FACT / ‘SYS CLK FREQ) // System c l o c k

per iod

// Source parameter
‘define SOURCE SAMP CYCL 50 // Number o f s y s c l k c y c l e s per ADC sample

: 50 (1MHz sampl ings f r e q)

// Source input f i l e parameter
‘define MAX BIT PER LINE 32

175

D.1. SUBMODULES FOR GENERAL PURPOSES

// Post−proce s s ing parameter
‘define OUTPUT MEM SIZE 32

// I /O Handling
‘define NULL 0
‘define EOF −1

Simple clock gate

// Timescale
‘TIMESCALE

module c l k g a t e (c l k i n , c t r l , c l k o u t) ;

// Inputs
input c l k i n ;
input c t r l ;

// Output
output c l k o u t ;

// Latch
reg q l a t c h ;

a lways l a t ch begin

i f (! c l k i n) q l a t c h = c t r l ;

end // a lway s l a t c h

assign c l k o u t = q l a t c h & c l k i n ;

endmodule // c l k g a t e

Simple register

// Timescale
‘TIMESCALE

module memory reg (c lk ,
r s t n ,
data in ,
data out) ;

// inpu t s
input c l k ;
input r s t n ;
input data in ;

// output
output data out ;

// r e g i s t e r
reg data reg ;

176

D.1. SUBMODULES FOR GENERAL PURPOSES

a l w a y s f f @(posedge c l k or negedge r s t n) begin

i f (! r s t n) data reg = 0 ;

else data reg = data in ;

end

assign data out = data reg ;

endmodule // da ta r eg

Simple register with enable signal

// Timescale
‘TIMESCALE

module memory en reg (c lk ,
r s t n ,
data in ,
en ,
data out) ;

// inpu t s
input c l k ;
input r s t n ;
input data in ;
input en ;

// output
output data out ;

// r e g i s t e r
reg data reg ;

a l w a y s f f @(posedge c l k or negedge r s t n) begin

i f (! r s t n) data reg = 0 ;

else begin

i f (en) data reg = data in ;

else data reg = data reg ;

end

end

assign data out = data reg ;

endmodule // da ta r eg

177

D.2. VNC IMPLEMENTATION

D.2 VNC Implementation

D.2.1 Definitions for the VNC

VNC parameter

// VNC Contro l S t a t e s
‘define VNC CTRL STATUS IDLE 0
‘define VNC CTRL STATUS OPERATE 1

// Clock ga te parameter
‘define REG PER CG 4
‘define NUM OUTPUT CG (‘OUTPUT MEM SIZE / ‘REG PER CG)

D.2.2 vnc.sv

The VNC top-module

//−−−
// VNC ALL CG.SV
// Top module o f the VNC. Exhaus t ive c l o c k ga te use
//−−−

// Timescale
‘TIMESCALE

module v n c a l l c g (s y s c l k ,
r s t n ,
s ta r t ,
data in ,
samp flg ,

samp req ,
data out ,
d a t a v a l i d f l g) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s y s c l k ;
input r s t n ;
input s t a r t ;
input data in ;
input samp f lg ;

// Outputs
output samp req ;
output [‘OUTPUT MEM SIZE−1:0] data out ;
output d a t a v a l i d f l g ;

// Intern wires
wire o p e r a t e c t r l ;
wire q u a l f l g ;

178

D.2. VNC IMPLEMENTATION

wire qua l data ;
wire [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;

//−−
// Connect sub modules

v n c c t r l a l l c g VNC CTRL ALL CG (. s y s c l k (s y s c l k) ,
. r s t n (r s t n) ,
. s t a r t (s t a r t) ,
. q u a l f l g (q u a l f l g) ,
. mem count (mem count) ,
. samp req (samp req) ,
. d a t a v a l i d f l g (d a t a v a l i d f l g) ,
. o p e r a t e c t r l (o p e r a t e c t r l)) ;

v n c i n p u t i f a l l c g VNC INPUT IF ALL CG (. s y s c l k (s y s c l k) ,
. r s t n (r s t n) ,
. da ta in (da ta in) ,
. samp f lg (samp f lg) ,
. o p e r a t e c t r l (o p e r a t e c t r l) ,
. q u a l f l g (q u a l f l g) ,
. qua l data (qua l data)) ;

vnc output memory a l l cg VNC OUTPUT MEMORY ALL CG(. s y s c l k (s y s c l k) ,
. r s t n (r s t n) ,
. q u a l f l g (q u a l f l g

) ,
. qua l data (

qua l data) ,
. o p e r a t e c t r l (

o p e r a t e c t r l) ,
. data out (data out

) ,
. mem count (

mem count)) ;

endmodule // v n c a l l c g

D.2.3 vnc ctrl.sv

vnc ctrl for Approach 1

//−−−
// VNC CTRL ALL CG.SV
// VNC con t r o l sub−module . Exhaus t ive c l o c k ga te use
//−−−

// Timescale
‘TIMESCALE

module v n c c t r l a l l c g (s y s c l k ,
r s t n ,
s t a r t ,
q u a l f l g ,
mem count ,
samp req ,

179

D.2. VNC IMPLEMENTATION

d a t a v a l i d f l g ,
o p e r a t e c t r l) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s t a r t ;
input q u a l f l g ;
input [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;
input s y s c l k ;
input r s t n ;

// Outputs
output samp req ;
output o p e r a t e c t r l ;
output d a t a v a l i d f l g ;

// Intern wires
wire c t r l s t a t u s r e g c l k ;
wire c t r l s t a t u s r e g c l k e n ;
wire n x c t r l s t a t u s ;
wire operate done ;

// Intern r e g i s t e r
reg p r c t r l s t a t u s ;
reg d a t a v a l i d f l g r e g ;

//−−
// Assign input v a r i a b l e s

assign operate done = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) &
(mem count == ‘OUTPUT MEM SIZE−1) & q u a l f l g ;

//−−
// Clock ga te f o r in t e rn r e g i s t e r c l o c k

assign c t r l s t a t u s r e g c l k e n = operate done | (p r c t r l s t a t u s ==
‘VNC CTRL STATUS IDLE) ;

c l k g a t e c t r l s t a t u s r e g c l k g a t e (. c l k i n (s y s c l k) ,
. c t r l (c t r l s t a t u s r e g c l k e n) ,
. c l k o u t (c t r l s t a t u s r e g c l k)) ;

//−−
// Next s t a t e l o g i c and r e g i s t e r f o r con t r o l s t a t u s

assign n x c t r l s t a t u s = ((p r c t r l s t a t u s == ‘VNC CTRL STATUS IDLE) &
s t a r t) ? ‘VNC CTRL STATUS OPERATE : ‘VNC CTRL STATUS IDLE ;

a l w a y s f f @(negedge r s t n or posedge c t r l s t a t u s r e g c l k) begin

i f (! r s t n) p r c t r l s t a t u s = 0 ;

else p r c t r l s t a t u s = n x c t r l s t a t u s ;

180

D.2. VNC IMPLEMENTATION

end

//−−
// Reg i s t e r f o r d a t a v a l i d f l g

a l w a y s f f @(negedge r s t n or posedge c t r l s t a t u s r e g c l k) begin

i f (! r s t n) d a t a v a l i d f l g r e g = 0 ;

else d a t a v a l i d f l g r e g = operate done ;

end

assign d a t a v a l i d f l g = d a t a v a l i d f l g r e g ;

//−−
// Assign output v a r i a b l e s

assign samp req = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) ? 1 :
0 ;

assign o p e r a t e c t r l = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) ?
1 : 0 ;

endmodule // v n c c t r l a l l c g

vnc ctrl for Approach 2, Approach 3 and Approach 4

//−−−
// VNC CTRL NO CG.SV
// VNC con t r o l sub−module . No c l o c k ga t e s
//−−−

// Timescale
‘TIMESCALE

module v n c c t r l n o c g (s y s c l k ,
r s t n ,
s t a r t ,
q u a l f l g ,
mem count ,
samp req ,
d a t a v a l i d f l g ,
o p e r a t e c t r l) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s t a r t ;
input q u a l f l g ;
input [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;
input s y s c l k ;
input r s t n ;

// Outputs
output samp req ;

181

D.2. VNC IMPLEMENTATION

output o p e r a t e c t r l ;
output d a t a v a l i d f l g ;

// Intern wires
wire operate done ;

// Intern r e g i s t e r
reg p r c t r l s t a t u s ;
reg d a t a v a l i d f l g r e g ;
reg n x c t r l s t a t u s ;

//−−
// Assign input v a r i a b l e s

assign operate done = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) &
(mem count == ‘OUTPUT MEM SIZE−1) & q u a l f l g ;

//−−
// Next s t a t e l o g i c f o r CTRL STATUS r e g i s t e r

always comb begin

case (p r c t r l s t a t u s)

// Switch to OPERATE i f s t a r t s i g n a l i s r e c e i v ed in IDLE
‘VNC CTRL STATUS IDLE : n x c t r l s t a t u s = (s t a r t) ?

‘VNC CTRL STATUS OPERATE : ‘VNC CTRL STATUS IDLE ;

// Switch to IDLE i f opera te done i s s e t in OPERATE
‘VNC CTRL STATUS OPERATE: n x c t r l s t a t u s = (operate done) ?

‘VNC CTRL STATUS IDLE : ‘VNC CTRL STATUS OPERATE;

// De fau l t (not r eachab l e)
default : n x c t r l s t a t u s = ‘VNC CTRL STATUS IDLE ;

endcase // case (p r c t r l s t a t u s)

end // always comb beg in

//−−
// CTRL STATUS r e g i s t e r

a l w a y s f f @(negedge r s t n or posedge s y s c l k) begin

i f (! r s t n) p r c t r l s t a t u s = 0 ;

else p r c t r l s t a t u s = n x c t r l s t a t u s ;

end

//−−
// d a t a v a l i d f l g r e g i s t e r

a l w a y s f f @(negedge r s t n or posedge s y s c l k) begin

i f (! r s t n) d a t a v a l i d f l g r e g = 0 ;

182

D.2. VNC IMPLEMENTATION

else d a t a v a l i d f l g r e g = operate done ;

end

assign d a t a v a l i d f l g = d a t a v a l i d f l g r e g ;

//−−
// Assign output v a r i a b l e s

assign samp req = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) ? 1 :
0 ;

assign o p e r a t e c t r l = (p r c t r l s t a t u s == ‘VNC CTRL STATUS OPERATE) ?
1 : 0 ;

endmodule // vn c c t r l n o c g

D.2.4 vnc input if.sv

vnc input if for Approach 1

//−−−
// VNC INPUT IF ALL CG.SV
// VNC input i n t e r f a c e sub−module . Exhaus t ive c l o c k ga t i n g .
//−−−
// Timescale
‘TIMESCALE

module v n c i n p u t i f a l l c g (s y s c l k ,
r s t n ,
data in ,
samp flg ,
o p e r a t e c t r l ,

q u a l f l g ,
qua l data) ;

//−−
// Define module v a r i a b l e s

// Inputs
input data in ;
input samp f lg ;
input r s t n ;
input s y s c l k ;
input o p e r a t e c t r l ;

// Outputs
output qua l data ;
output q u a l f l g ;

// Intern wires
wire i n t e r n c l k ;
wire d a t a r e g c l k ;
wire q u a l f l g r e g c l k ;
wire vn xor ;

183

D.2. VNC IMPLEMENTATION

wire operate en ;

// Intern r e g i s t e r s
reg d a t a l o a d e n r e g ;
reg data reg ;

//−−
// Assign input v a r i a b l e s

assign operate en = o p e r a t e c t r l & samp f lg ;

//−−
// Clock ga te f o r in t e rn c l o c k s i g n a l

c l k g a t e i n t e r n c l k g a t e (. c l k i n (s y s c l k) ,
. c t r l (operate en) ,
. c l k o u t (i n t e r n c l k)) ;

//−−
// Reg i s t e r f o r da ta l oad en (Enable s i g n a l f o r input data r e g i s t e r)

a l w a y s f f @(posedge i n t e r n c l k or negedge r s t n) begin

i f (! r s t n) d a t a l o a d e n r e g = 1 ;

else d a t a l o a d e n r e g = ˜ d a t a l o a d e n r e g ;

end

//−−
// Clock ga te f o r data r e g i s t e r

c l k g a t e d a t a r e g c l k g a t e (. c l k i n (i n t e r n c l k) ,
. c t r l (d a t a l o a d e n r e g) ,
. c l k o u t (d a t a r e g c l k)) ;

//−−
// Data r e g i s t e r f o r input data from source

a l w a y s f f @(posedge d a t a r e g c l k or negedge r s t n) begin

i f (! r s t n) data reg = 0 ;

else data reg = data in ;

end

//−−
// Assign von Neumann XOR opera t ion

assign vn xor = data in ˆ data reg ;

//−−
// Assign output v a r i a b l e s

assign q u a l f l g = vn xor & (˜ d a t a l o a d e n r e g) ;

184

D.2. VNC IMPLEMENTATION

assign qua l data = data reg ;

endmodule // v n c i n p u t i f a l l c g

vnc input if for Approach 2, Approach 3 and Approach 4

//−−−
// VNC INPUT IF NO CG.SV
// VNC input i n t e r f a c e sub−module . No c l o c k ga t i n g .
//−−−
// Timescale
‘TIMESCALE

module v n c i n p u t i f n o c g (s y s c l k ,
r s t n ,
data in ,
samp flg ,
o p e r a t e c t r l ,

q u a l f l g ,
qua l data) ;

//−−
// Define module v a r i a b l e s

// Inputs
input data in ;
input samp f lg ;
input r s t n ;
input s y s c l k ;
input o p e r a t e c t r l ;

// Outputs
output qua l data ;
output q u a l f l g ;

// Intern wires
wire vn xor ;
wire operate en ;
wire data load en ;

// Intern r e g i s t e r
reg d a t a l o a d e n r e g ;
reg data reg ;

//−−
// Assign input v a r i a b l e s

assign operate en = o p e r a t e c t r l & samp f lg ;

//−−
// Reg i s t e r f o r da ta l oad en (Enable s i g n a l f o r input data r e g i s t e r)

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

i f (! r s t n) d a t a l o a d e n r e g = 1 ;

185

D.2. VNC IMPLEMENTATION

else d a t a l o a d e n r e g = (opera te en) ? ˜ d a t a l o a d e n r e g :
d a t a l o a d e n r e g ;

end

assign data load en = d a t a l o a d e n r e g & operate en ;

//−−
// Data r e g i s t e r f o r input data from source

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

i f (! r s t n) data reg = 0 ;

else data reg = (data load en & operate en) ? data in : data reg
;

end

//−−
// Assign von Neumann XOR opera t ion

assign vn xor = data in ˆ data reg ;

//−−
// Assign output v a r i a b l e s

assign q u a l f l g = vn xor & (˜ d a t a l o a d e n r e g) ;
assign qua l data = data reg ;

endmodule // vn c i n p u t i f n o c g

D.2.5 vnc output memory.sv

vnc output memory for Approach 1

//−−−
// VNC OUTPUTMEMORYALL CG.SV
// VNC output memory sub−module . Exhaus t ive c l o c k ga t i n g used .
//−−−
// Timescale
‘TIMESCALE

module vnc output memory a l l cg (s y s c l k ,
r s t n ,
q u a l f l g ,
qual data ,
o p e r a t e c t r l ,
data out ,
mem count) ;

//−−
// Define module v a r i a b l e s

186

D.2. VNC IMPLEMENTATION

// Input
input s y s c l k ;
input r s t n ;
input q u a l f l g ;
input qua l data ;
input o p e r a t e c t r l ;

// Outputs
output [0 : ‘OUTPUT MEM SIZE−1] data out ;
output [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;

// Intern wires
wire [‘OUTPUT MEM SIZE−1:0] data reg addr ;
wire [‘OUTPUT MEM SIZE−1:0] d a t a r e g c l k ;
wire output mem clk ;
wire operate en ;

// Intern r e g i s t e r s
reg [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count reg ;

//−−
// Assing input s i g n a l s

assign operate en = o p e r a t e c t r l & q u a l f l g ;

//−−
// Inc lude c l o c k ga te f o r a l l r e g i s t e r s in the submodule

c l k g a t e output mem clk gate (. c l k i n (s y s c l k) ,
. c t r l (operate en) ,
. c l k o u t (output mem clk)) ;

//−−
// Memory counter

a l w a y s f f @(posedge output mem clk or negedge r s t n) begin

// Reset
i f (! r s t n) mem count reg = 0 ;

// Increase counter
else mem count reg = mem count reg + 1 ;

end

// Assign to output
assign mem count = mem count reg ;

//−−
// Memory address decoder

generate

genvar addr i ;

187

D.2. VNC IMPLEMENTATION

for (addr i =0; addr i < ‘OUTPUT MEM SIZE; addr i++) begin

// Set b i t in da ta r eg addr accord ing to curren t memory count
assign data reg addr [addr i] = (addr i == mem count reg) ? 1 :

0 ;

end // f o r : add r i < ‘OUTPUT MEM SIZE

endgenerate

//−−
// Memory r e g i s t e r bank

generate

genvar r e g i ;

for (r e g i =0; r e g i < ‘OUTPUT MEM SIZE; r e g i++) begin

c l k g a t e d a t a r e g c l k g a t e i (. c l k i n (output mem clk) ,
. c t r l (data reg addr [r e g i]) ,
. c l k o u t (d a t a r e g c l k [r e g i])) ;

memory reg d a t a r e g i (. c l k (d a t a r e g c l k [r e g i]) ,
. r s t n (r s t n) ,
. da ta in (qua l data) ,
. data out (data out [r e g i])) ;

end // f o r : r e g i < ‘OUTPUT MEM SIZE

endgenerate

endmodule // vnc ou tpu t memory a l l c g

vnc output memory for Approach 2

//−−−
// VNCOUTPUTMEMORY SOMECG.SV
// VNC output memory sub−moudle . Clock ga t e s f o r at l e a s t 4 r e g i s t e r s
//−−−
// Timescale
‘TIMESCALE

module vnc output memory some cg (s y s c l k ,
r s t n ,
q u a l f l g ,
qual data ,
o p e r a t e c t r l ,
data out ,
mem count) ;

//−−
// Define module v a r i a b l e s

188

D.2. VNC IMPLEMENTATION

// Input
input s y s c l k ;
input r s t n ;
input q u a l f l g ;
input qua l data ;
input o p e r a t e c t r l ;

// Outputs
output [0 : ‘OUTPUT MEM SIZE−1] data out ;
output [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;

// Intern wires
wire [‘OUTPUT MEM SIZE−1:0] data reg addr ;

wire [‘OUTPUT MEM SIZE−1:0] d a t a r e g c l k ;
wire [‘NUM OUTPUT CG−1:0] g a t e d c l k ;

wire output mem clk ;
wire operate en ;

wire [‘NUM OUTPUT CG−1:0] d a t a r e g c l k g a t e a d d r ;

// Intern r e g i s t e r s
reg [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count reg ;

//−−
// Assing input s i g n a l s

assign operate en = o p e r a t e c t r l & q u a l f l g ;

//−−
// Inc lude c l o c k ga te f o r a l l r e g i s t e r s in the submodule

c l k g a t e output mem clk gate (. c l k i n (s y s c l k) ,
. c t r l (operate en) ,
. c l k o u t (output mem clk)) ;

//−−
// Memory counter

a l w a y s f f @(posedge output mem clk or negedge r s t n) begin

// Reset
i f (! r s t n) mem count reg = 0 ;

// Increase counter
else mem count reg = mem count reg + 1 ;

end

// Assign to output
assign mem count = mem count reg ;

//−−
// Memory address decoder

189

D.2. VNC IMPLEMENTATION

generate

genvar addr i ;

for (addr i =0; addr i < ‘OUTPUT MEM SIZE; addr i++) begin

// Set b i t in da ta r eg addr accord ing to curren t memory count
assign data reg addr [addr i] = (addr i == mem count reg) ? 1 :

0 ;

end // f o r : add r i < ‘OUTPUT MEM SIZE

endgenerate

//−−
// Output r e g i s t e r c l o c k ga te bank

generate

genvar c g i ;

for (c g i =0; c g i < ‘NUM OUTPUT CG; c g i++) begin

// S e l e c t a c t i v e c l o c k ga te
assign d a t a r e g c l k g a t e a d d r [c g i] = (c g i == mem count reg [

$c log2 (‘OUTPUT MEM SIZE)−1: $c log2 (‘REG PER CG)]) ?
operate en : 0 ;

// Clock ga te
c l k g a t e d a t a r e g c l k g a t e i (. c l k i n (s y s c l k) ,

. c t r l (d a t a r e g c l k g a t e a d d r [c g i
]) ,

. c l k o u t (g a t e d c l k [c g i])) ;

assign d a t a r e g c l k [c g i ∗‘REG PER CG] = g a t e d c l k [c g i] ;
assign d a t a r e g c l k [c g i ∗‘REG PER CG + 1] = g a t e d c l k [c g i] ;
assign d a t a r e g c l k [c g i ∗‘REG PER CG + 2] = g a t e d c l k [c g i] ;
assign d a t a r e g c l k [c g i ∗‘REG PER CG + 3] = g a t e d c l k [c g i] ;

end

endgenerate

//−−
// Memory r e g i s t e r bank

generate

genvar r e g i ;

for (r e g i =0; r e g i < ‘OUTPUT MEM SIZE; r e g i++) begin

memory en reg d a t a r e g i (. c l k (output mem clk) , //
d a t a r e g c l k [r e g i]

. r s t n (r s t n) ,

. da ta in (qua l data) ,

190

D.2. VNC IMPLEMENTATION

. en (data reg addr [r e g i]) ,

. data out (data out [r e g i])) ;

end // f o r : r e g i < ‘OUTPUT MEM SIZE

endgenerate

endmodule // vnc output memory some cg

vnc output memory for Approach 3 and Approach 4

//−−−
// VNCOUTPUTMEMORYNOCG.SV
// VNC output memory sub−module . No c l o c k ga t i n g
//−−−
// Timescale
‘TIMESCALE

module vnc output memory no cg (s y s c l k ,
r s t n ,
q u a l f l g ,
qual data ,
o p e r a t e c t r l ,
data out ,
mem count) ;

//−−
// Define module v a r i a b l e s

// Input
input s y s c l k ;
input r s t n ;
input q u a l f l g ;
input qua l data ;
input o p e r a t e c t r l ;

// Outputs
output [0 : ‘OUTPUT MEM SIZE−1] data out ;
output [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count ;

// Intern wires
wire [‘OUTPUT MEM SIZE−1:0] data reg addr ;
wire [‘OUTPUT MEM SIZE−1:0] l oad en ;
wire operate en ;

// Intern r e g i s t e r s
reg [$c log2 (‘OUTPUT MEM SIZE) −1:0] mem count reg ;

//−−
// Assing input s i g n a l s

assign operate en = o p e r a t e c t r l & q u a l f l g ;

//−−
// Memory counter

191

D.2. VNC IMPLEMENTATION

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) mem count reg = 0 ;

// Increase counter
else mem count reg = (opera te en) ? mem count reg + 1 :

mem count reg ;

end

// Assign to output
assign mem count = mem count reg ;

//−−
// Memory address decoder

generate

genvar addr i ;

for (addr i =0; addr i < ‘OUTPUT MEM SIZE; addr i++) begin

// Set b i t in da ta r eg addr accord ing to curren t memory count
assign data reg addr [addr i] = (addr i == mem count reg) ? 1 :

0 ;

end // f o r : add r i < ‘OUTPUT MEM SIZE

endgenerate

//−−
// Memory r e g i s t e r bank

generate

genvar r e g i ;

for (r e g i =0; r e g i < ‘OUTPUT MEM SIZE; r e g i++) begin

assign l oad en [r e g i] = data reg addr [r e g i] & operate en ;

memory en reg d a t a r e g i (. c l k (s y s c l k) ,
. r s t n (r s t n) ,
. da ta in (qua l data) ,
. en (load en [r e g i]) ,
. data out (data out [r e g i])) ;

end // f o r : r e g i < ‘OUTPUT MEM SIZE

endgenerate

endmodule // vnc output memory no cg

192

D.3. IHF IMPLEMENTATION

D.3 IHF Implementation

D.3.1 Definitions for the IHF

IHF parameter

// IHF Contro l S t a t e s
‘define IHF CTRL STATUS IDLE 2 ’ b00
‘define IHF CTRL STATUS READ 2 ’ b01
‘define IHF CTRL STATUS COMP 2 ’ b11
‘define IHF CTRL STATUS LOAD 2 ’ b10

// IHF parameter
‘define IHF INPUT SIZE 128
‘define IHF OUTPUT SIZE 32
‘define IHF PUBLIC PARA SIZE (‘IHF INPUT SIZE + ‘IHF OUTPUT SIZE − 1)
‘define IHF OUTPUT MEM BLOCK SIZE (‘OUTPUT MEM SIZE / ‘IHF OUTPUT SIZE)

// Pub l i c parameter
// NOTE : Format i s [MSB LSB]
// ‘ d e f i n e IHF PUBLIC PARA 129 ’ h19dd2c957f1ea49d3382e5d09c529f2cd
// ‘ d e f i n e IHF PUBLIC PARA 128 ’ h9dd2c957f1ea49d3382e5d09c529f2cd
// ‘ d e f i n e IHF PUBLIC PARA 131 ’ h69dd2c957f1ea49d3382e5d09c529f2cd
‘define IHF PUBLIC PARA 159 ’ h1aee655c9dd2c957f1ea49d3382e5d09c529f2cd
// ‘ d e f i n e IHF PUBLIC PARA 135 ’ h1A9dd2c957f1ea49d3382e5d09c529f2cd
// ‘ d e f i n e IHF PUBLIC PARA 143 ’ h1aee9dd2c957f1ea49d3382e5d09c529f2cd
// ‘ d e f i n e IHF PUBLIC PARA 64 ’ h9dd2c957f1ea49d3
// ‘ d e f i n e IHF PUBLIC PARA 65 ’ h19dd2c957f1ea49d3
// ‘ d e f i n e IHF PUBLIC PARA 67 ’ h19dd2c957f1ea49d3
// ‘ d e f i n e IHF PUBLIC PARA 71 ’ h9dd2c957f1ea49d33
// ‘ d e f i n e IHF PUBLIC PARA 33 ’ h19dd2c957
// ‘ d e f i n e IHF PUBLIC PARA 32 ’ h9dd2c957
// ‘ d e f i n e IHF PUBLIC PARA 9 ’h1A2

D.3.2 ihf.sv

The IHF top-module

//−−−
// IHF .SV
// IHF top−module
//−−−
// Timescale
‘TIMESCALE

module i h f (s y s c l k ,
r s t n ,
s ta r t ,
data in ,
samp flg ,
samp req ,
data out ,
d a t a v a l i d f l g) ;

//−−
// Define module v a r i a b l e s

193

D.3. IHF IMPLEMENTATION

// Inputs
input s y s c l k ;
input r s t n ;
input s t a r t ;
input data in ;
input samp f lg ;

// Outputs
output samp req ;
output [0 : ‘OUTPUT MEM SIZE−1] data out ;
output d a t a v a l i d f l g ;

// Intern wires
wire i n p u t l o a d c t r l ;
wire comp ctr l ;
wire p u b l i c p a r a l o a d c t r l ;
wire o u t p u t l o a d c t r l ;
wire [‘IHF INPUT SIZE−1:0] v e c t o r i n ;
wire [‘IHF OUTPUT SIZE−1:0] v e c to r ou t ;

//−−
// Connect sub−modules

// Contro l un i t
i h f c t r l IHF CTRL (. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. s t a r t (s t a r t) ,

. samp f lg (samp f lg) ,

. d a t a v a l i d f l g (d a t a v a l i d f l g) ,

. samp req (samp req) ,

. i n p u t l o a d c t r l (i n p u t l o a d c t r l) ,

. comp ctr l (comp ctr l) ,

. o u t p u t l o a d c t r l (o u t p u t l o a d c t r l) ,

. p u b l i c p a r a l o a d c t r l (p u b l i c p a r a l o a d c t r l)) ;

// Input i n t e r f a c e
i h f i n p u t i f IHF INPUT IF (. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. da ta in (da ta in) ,

. samp f lg (samp f lg) ,

. i n p u t l o a d c t r l (i n p u t l o a d c t r l) ,

. v e c t o r i n (v e c t o r i n)) ;

// Computation Unit
ihf comp IHF COMP(. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. comp ctr l (comp ctr l) ,

. p u b l i c p a r a l o a d c t r l (p u b l i c p a r a l o a d c t r l) ,

. v e c t o r i n (v e c t o r i n) ,

. v e c to r ou t (ve c to r ou t)) ;

// Output memory
ihf output memory IHF OUTPUT MEMORY(. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. v e c to r ou t (ve c to r ou t) ,

194

D.3. IHF IMPLEMENTATION

. o u t p u t l o a d c t r l (
o u t p u t l o a d c t r l) ,

. data out (data out)) ;

endmodule // i h f

D.3.3 ihf ctrl.sv

The ihf ctrl sub-module

//−−−
// IHF CTRL.SV
// IHF con t r o l sub−module
//−−−
// Timescale
‘TIMESCALE

module i h f c t r l (s y s c l k ,
r s t n ,
s ta r t ,
samp flg ,
d a t a v a l i d f l g ,
samp req ,
i n p u t l o a d c t r l ,
comp ctr l ,
o u t p u t l o a d c t r l ,
p u b l i c p a r a l o a d c t r l) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s y s c l k ;
input r s t n ;
input s t a r t ;
input samp f lg ;

// Outputs
output d a t a v a l i d f l g ;
output samp req ;
output i n p u t l o a d c t r l ;
output comp ctr l ;
output o u t p u t l o a d c t r l ;
output p u b l i c p a r a l o a d c t r l ;

// Intern wires
wire c l e a r c o u n t ;
wire i nput loaded ;
wire comp count reached ;
wire comp done ;
wire output count reached ;
wire output count en ;

// Intern r e g i s t e r s
reg [$c log2 (‘IHF INPUT SIZE) −1:0] count reg ;
reg [$c log2 (‘IHF OUTPUT MEM BLOCK SIZE) −1:0] output count reg ;

195

D.3. IHF IMPLEMENTATION

reg [1 : 0] i h f c t r l s t a t u s ;

reg d a t a v a l i d f l g r e g ;

reg [1 : 0] i h f c t r l s t a t u s n x ;

//−−
// Assign in t e rn s t a t u s f l a g s

assign i nput loaded = samp f lg & (count reg == ‘IHF INPUT SIZE−1) ?
1 : 0 ;

assign comp count reached = (count reg == ‘IHF OUTPUT SIZE−1) ? 1 :
0 ;

assign comp done = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS COMP) ?
comp count reached : 0 ;

assign output count reached = (output count reg ==
‘IHF OUTPUT MEM BLOCK SIZE −1) ? 1 : 0 ;

//−−
// Next s t a t e l o g i c

always comb begin

case (i h f c t r l s t a t u s)

// IDLE
‘IHF CTRL STATUS IDLE : begin

i f (s t a r t) i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS READ ;
else i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS IDLE ;

end

// READ
‘IHF CTRL STATUS READ : begin

i f (input loaded) i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS COMP ;
else i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS READ ;

end

// COMP
‘IHF CTRL STATUS COMP : begin

i f (comp done) i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS LOAD ;
else i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS COMP ;

end

// LOAD
‘IHF CTRL STATUS LOAD : begin

i f (output count reached) i h f c t r l s t a t u s n x =
‘IHF CTRL STATUS IDLE ;

else i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS READ ;
end

// De fau l t (not r eachab l e)
default : i h f c t r l s t a t u s n x = ‘IHF CTRL STATUS IDLE ;

endcase // case (i h f c t r l s t a t u s)

196

D.3. IHF IMPLEMENTATION

end // always comb

//−−
// S ta t e r e g i s t e r f o r i h f c t r l s t a t u s

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) i h f c t r l s t a t u s = ‘IHF CTRL STATUS IDLE ;

// Update s t a t u s on pos . edge s y s c l k
else i h f c t r l s t a t u s = i h f c t r l s t a t u s n x ;

end // a l w a y s f f

//−−
// Reg i s t e r f o r d a t a v a l i d f l g

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) d a t a v a l i d f l g r e g = 0 ;

else d a t a v a l i d f l g r e g = ((i h f c t r l s t a t u s ==
‘IHF CTRL STATUS LOAD) & output count reached) ? 1 : 0 ;

end // a l w a y s f f

//−−
// Assign in t e rn con t r o l s i g n a l s

assign c l e a r c o u n t = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS LOAD) ? 1
: 0 ;

assign output count en = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS LOAD)
? 1 : 0 ;

assign c o u n t c l e a r = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS IDLE) ? 1
: 0 ;

//−−
// General purpose counter
// Behaviour o f counter i s dependent on i h f c t r l s t a t u s
// IDLE: Set to zero (d e f a u l t)
// READ: Increase count on pos . edge s y s c l k i f samp f l g
// COMP: Set count to 0 on pos . edge s y s c l k i f c l e a r coun t . E lse

inc rea se .
//
// NOTE: Counter ov e r f l ows on IHF INPUT SIZE

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) count reg = 0 ;

// Pos edge s y s c l k
else begin

197

D.3. IHF IMPLEMENTATION

case (i h f c t r l s t a t u s)

// Increase count on samp f l g i f s t a t u s = READ
‘IHF CTRL STATUS READ : begin

i f (samp f lg) count reg = count reg + 1 ;
else count reg = count reg ;

end

// Increase count on s y s c l k i f s t a t u s = COMP
// Reset on c l e a r coun t
‘IHF CTRL STATUS COMP : begin

i f (c l e a r c o u n t) count reg = 0 ;
else count reg = count reg + 1 ;

end

// De fau l t (IDLE)
default : count reg = 0 ;

endcase

end // pos . edge s y s c l k

end // a l w a y s f f

//−−
// Counter f o r output l oads

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) output count reg = 0 ;

// Pos c l k egde
else begin

i f (c o u n t c l e a r) output count reg = 0 ;
else output count reg = (output count en) ? output count reg +

1 : output count reg ;

end // e l s e

end // a l w a y s f f

//−−
// Assign output v a r i a b l e s

assign i n p u t l o a d c t r l = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS READ)
? 1 : 0 ;

assign comp ctr l = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS COMP) ? 1 :
0 ;

assign p u b l i c p a r a l o a d c t r l = s t a r t | (comp done & !
output count reached) ;

assign o u t p u t l o a d c t r l = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS LOAD)
? 1 : 0 ;

assign d a t a v a l i d f l g = d a t a v a l i d f l g r e g ;

198

D.3. IHF IMPLEMENTATION

assign samp req = (i h f c t r l s t a t u s == ‘IHF CTRL STATUS READ) ? 1 :
0 ;

endmodule // i h f c t r l

D.3.4 ihf input if.sv

The ihf input if sub-module

//−−−
// IHF INPUT IF .SV
// IHF input i n t e r f a c e sub−module
//−−−
// Timescale
‘TIMESCALE

module i h f i n p u t i f (s y s c l k ,
r s t n ,
data in ,
samp flg ,
i n p u t l o a d c t r l ,

v e c t o r i n) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s y s c l k ;
input r s t n ;
input data in ;
input samp f lg ;
input i n p u t l o a d c t r l ;

// Outputs
output [‘IHF INPUT SIZE−1:0] v e c t o r i n ;

// Intern wires
wire i npu t l oad en ;

// Intern r e g i s t e r s
reg [‘IHF INPUT SIZE−1:0] v e c t o r i n r e g ;

//−−
// Assign input v a r i a b l e s

assign i npu t l oad en = i n p u t l o a d c t r l & samp f lg ;

//−−
// S h i f t r e g i s t e r f o r input data
// On pos . edge o f s y s c l k da ta in i s loaded as MSB i f i npu t l o ad en

.
// Other b i t s are s h i f t e d towards LSB.

a l w a y s f f @ (posedge s y s c l k or negedge r s t n) begin

199

D.3. IHF IMPLEMENTATION

// Reset
i f (! r s t n) v e c t o r i n r e g = 0 ;

// Pos . edge s y s c l k
else begin

i f (i nput l oad en) begin
v e c t o r i n r e g = v e c t o r i n r e g >> 1 ;
v e c t o r i n r e g [‘IHF INPUT SIZE−1] = data in ;

end
else v e c t o r i n r e g = v e c t o r i n r e g ;

end // pos . edge s y s c l k

end // a l w a y s f f

//−−
// Assign output v a r i a b l e s

assign v e c t o r i n = v e c t o r i n r e g ;

endmodule // i h f i n p u t i f

D.3.5 ihf comp.sv

The ihf comp sub-module

//−−−
// IHF COMP.SV
// IHF sub−module to perform the IHF a lgor i thm
//−−−

// Timescale
‘TIMESCALE

module ihf comp (s y s c l k ,
r s t n ,

comp ctr l ,
p u b l i c p a r a l o a d c t r l ,

v e c to r i n ,
v e c to r ou t) ;

//−−
// Define module v a r i a b l e s

// Input
input s y s c l k ;
input r s t n ;
input comp ctr l ;
input p u b l i c p a r a l o a d c t r l ;
input [‘IHF INPUT SIZE−1:0] v e c t o r i n ;

// Output

200

D.3. IHF IMPLEMENTATION

output [‘IHF OUTPUT SIZE−1:0] v e c to r ou t ;

// Intern r e g i s t e r
reg [‘IHF OUTPUT SIZE−1:0] v e c t o r o u t r e g ;
reg [‘IHF PUBLIC PARA SIZE−1:0] p u b l i c p a r a r e g ;

// Intern wire
wire [‘IHF INPUT SIZE−1:0] p roduct vec to r ;
wire sum ;

//−−
// Reg i s t e r f o r p u b l i c parameter
// S h i f t s towards LSB on pos . edge o f s y s c l k i f comp ct r l
// Loads IHF PUBLIC PARAMETER on pos . edge o f s y s c l k i f

p u b l i c p a r a l o a d c t r l
// Load o f IHF PUBLIC PARA has p r i o r i t y over s h i f t

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) p u b l i c p a r a r e g = ‘IHF PUBLIC PARA ;

// Pos . edge s y s c l k
else begin

i f (p u b l i c p a r a l o a d c t r l) p u b l i c p a r a r e g = ‘IHF PUBLIC PARA ;
else i f (comp ctr l) p u b l i c p a r a r e g = p u b l i c p a r a r e g >> 1 ;
else p u b l i c p a r a r e g = p u b l i c p a r a r e g ;

end

end // a l w a y s f f

//−−
// Execute computat ions f o r the IHF

assign product vec to r = p u b l i c p a r a r e g [‘IHF INPUT SIZE−1:0] &
v e c t o r i n ;

assign sum = ˆ product vec to r ;

//−−
// Reg i s t e r f o r v e c t o r ou t
// On pos . edge o f s y s c l k i t l oads curren t sum as MSB and s h i f t s

towards
// LSB i f comp ctr l

a l w a y s f f @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) v e c t o r o u t r e g = 0 ;

// Pos . edge s y s c l k
else begin

i f (comp ctr l) begin
v e c t o r o u t r e g = v e c t o r o u t r e g >> 1 ;

201

D.3. IHF IMPLEMENTATION

v e c t o r o u t r e g [‘IHF OUTPUT SIZE−1] = sum ;
end
else v e c t o r o u t r e g = v e c t o r o u t r e g ;

end
end // a l w a y s f f

//−−
// Assign output v a r i a b l e s

assign vec to r ou t = v e c t o r o u t r e g ;

endmodule // ihf comp

D.3.6 ihf output memory.sv

The ihf output memory sub-module

//−−−
// IHF OUTPUTMEMORY.SV
// IHF output memory sub−module
//−−−
// Timescale
‘TIMESCALE

module ihf output memory (s y s c l k ,
r s t n ,
vector out ,
o u t p u t l o a d c t r l ,
data out) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s y s c l k ;
input r s t n ;
input [‘IHF OUTPUT SIZE−1:0] v e c to r ou t ;
input o u t p u t l o a d c t r l ;

// Output
output [0 : ‘OUTPUT MEM SIZE−1] data out ;

// Intern wires
wire [‘IHF OUTPUT SIZE−1 : 0] [‘IHF OUTPUT MEM BLOCK SIZE−1:0]

da ta out r eg ;

//−−
// Multi−dimensiona l s h i f t r e g i s t e r f o r da ta ou t
// The output memory i s dev ided in IHF OUTPUT MEM BLOCK SIZE b l o c k s

wi th
// IHF OUTPUT SIZE r e g i s t e r s each . The ” top ” r e g i s t e r o f each b l o c k

i s loaded
// wi th one b i t o f output v e c t o r on pos . edge s y s c l k i f

l o a d o u t p u t c t r l .

202

D.4. SIMULATION SETUP

// The o ther r e g i s t e r s are loaded in a top−to−buttom manner . I f the
whole

// output has been loaded , the r e g i s t e r s at the buttom of the b l o c k s
conta in

// the LSBs o f the output , the top r e g i s t e r s conta in the MSBs.

generate

genvar b l o c k i ;
genvar r e g i ;

for (b l o c k i =0; b l o c k i < ‘IHF OUTPUT SIZE ; b l o c k i++) begin

for (r e g i=‘IHF OUTPUT MEM BLOCK SIZE−1; r e g i >= 0 ; r e g i −−) begin
i f (r e g i == ‘IHF OUTPUT MEM BLOCK SIZE−1) begin

// Top r e g i s t e r o f each b l o c k
memory en reg d a t a r e g b l o c k i r e g t o p (. c l k (s y s c l k) ,
. r s t n (r s t n) ,
. da ta in (ve c to r ou t [b l o c k i]) ,
. en (o u t p u t l o a d c t r l) ,
. data out (da ta out r eg [b l o c k i] [‘IHF OUTPUT MEM BLOCK SIZE−1])) ;

end

else begin

// Other r e g i s t e r s are loaded by s h i f t opera t ion
memory en reg d a t a r e g b l o c k i r e g i (. c l k (s y s c l k) ,
. r s t n (r s t n) ,
. da ta in (da ta out r eg [b l o c k i] [r e g i +1]) ,
. en (o u t p u t l o a d c t r l) ,
. data out (da ta out r eg [b l o c k i] [r e g i])) ;

end

// Assign r e g i s t e r bank to output
assign data out [r e g i ∗‘IHF OUTPUT SIZE + b l o c k i] = data out r eg [

b l o c k i] [r e g i] ;

end // f o r r e g i

end // f o r b l o c k i

endgenerate

endmodule // ihf output memory

D.4 Simulation Setup

D.4.1 Definitions

Definition of src

‘ i fndef TYPES

203

D.4. SIMULATION SETUP

‘define TYPES

// Define source s t r u c t
typede f s t r u c t { s t r i n g f i leName ;

i n t b i tPerL ine ;
i n t f i l e I D ;
i n t scanID ;
} s r c ;

‘endif // TYPES

D.4.2 Example of a test bench

Test bench for the IHF

//−−−
// IHF TESTBENCH.SV
// Testbench f o r the IHF module
//−−−
// Timescale
‘TIMESCALE

module i h f t e s t b e n c h (r s t n ,
s t a r t i h f ,

s o u r c e f i l e ,

s y s c l k ,
empty f lg ,
data out ,
d a t a v a l i d f l g ,
samp count) ;

//−−
// Define v a r i a b l e s

// Inputs / Simulat ion i n t e r f a c e
input r s t n ;
input s t a r t i h f ;
input s r c s o u r c e f i l e ;

// Outputs / Simulat ion i n t e r f a c e
output s y s c l k ;
output empty f lg ;
output [0 : ‘OUTPUT MEM SIZE−1] data out ;
output d a t a v a l i d f l g ;
output i n t samp count ;

// Intern wires
wire b i t r e q ;
wire source data ;
wire samp f lg ;

//−−
// Connect modules

204

D.4. SIMULATION SETUP

// Connect c l o c k genera tor
c l k gen CLK GEN(. s y s c l k (s y s c l k)) ;

// Connect the data source
source SOURCE(. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. b i t r e q (b i t r e q) ,

. s o u r c e f i l e (s o u r c e f i l e) ,

. s ource data (source data) ,

. samp f lg (samp f lg) ,

. empty f lg (empty f lg) ,

. samp count out (samp count)) ;

// Connect to dev i c e under t e s t (IHF)
i h f IHF (. s y s c l k (s y s c l k) ,

. r s t n (r s t n) ,

. s t a r t (s t a r t i h f) ,

. da ta in (source data) ,

. samp f lg (samp f lg) ,

. samp req (b i t r e q) ,

. data out (data out) ,

. d a t a v a l i d f l g (d a t a v a l i d f l g)) ;

endmodule // i h f t e s t b e n c h

Model of a clock generator

// Timescale
‘TIMESCALE

// Define the c l o c k genera tor
module c l k gen (output reg s y s c l k) ;

i n i t i a l s y s c l k = 0 ;

always
begin

#(‘SYS CLK PER/2) s y s c l k = 1 ;
#(‘SYS CLK PER/2) s y s c l k = 0 ;

end //

endmodule // c l k g en

Model of the entropy source

//−−−
// SOURCE.SV
// Model o f the entropy source
//−−−
// Define t imes ca l e
‘TIMESCALE

//−−−
// S p e c i f i e des i gn

205

D.4. SIMULATION SETUP

module source (s y s c l k ,
r s t n ,
b i t r e q ,

s o u r c e f i l e ,

source data ,
samp flg ,
empty f lg ,
samp count out) ;

//−−
// Define module v a r i a b l e s

// Inputs
input s y s c l k ;
input r s t n ;
input b i t r e q ;

input s r c s o u r c e f i l e ;

// Outputs
output reg source data ;
output reg samp f lg ;
output reg empty f lg ;

output i n t samp count out ;

// Intern v a r i a b l e s
i n t s y s c l k c o u n t = 0 ;
i n t b i t count = 0 ;
i n t samp count ;
b i t empty = 0 ;
b i t [‘MAX BIT PER LINE−1:0] l i n e ;

//−−
// Source c l o c k p r e s c a l e r
// Uses s y s c l k to c r ea t e a downscaled p e r i o d i c s i g n a l samp f l g
// Samp f lg i n d i c a t e s t ha t a sample can be read from the source

always @(posedge s y s c l k or negedge r s t n) begin

// Reset
i f (! r s t n) begin

samp f lg = 0 ;
s y s c l k c o u n t = 0 ;

end // i f ! r s t n

// On posedge s y s c l k
else begin

// I f a b i t i s r e que s t ed
i f (b i t r e q) begin

206

D.4. SIMULATION SETUP

// Increase s y s c l k counter
s y s c l k c o u n t ++;

// I f number o f s y s c l k c y c l e s f o r a sample i s reached
i f (s y s c l k c o u n t == ‘SOURCE SAMP CYCL) begin

// Reset s y s c l k counter
s y s c l k c o u n t = 0 ;

// Set samp f l g
samp f lg = 1 ;

end // i f : s y s c l k c o un t e r == SOURCE SAMP CYCL

// I f number o f s y s c l k c y c l e s f o r a sample i s NOT reached
else samp f lg = 0 ;

end // i f : b i t r e q

// I f no b i t i s r e que s t ed
else begin

// Keep count s y s c l k c oun t , samp f l g low
s y s c l k c o u n t = 0 ;
samp f lg = 0 ;

end // e l s e : ! b i t r e q

end // i f r s t n

end // always @ (posedge s y s c l k or negedge r s t n)

//−−
// Source b u f f e r reader
// On each samp f l g one b i t i s read from sou r c e b u f f e r and wr i t t en

to
// source da ta .
// I f a l l b i t s are read from sou r c e b u f f e r emp ty f l g i s s e t

always @(posedge samp f lg or negedge r s t n) begin

// Reset
i f (! r s t n) begin

source data = 0 ;
empty f lg = 0 ;
samp count out = 0 ;

end // i f : ! r s t n

// One posedeg samp f l g
else begin

// I f the b u f f e r i s NOT empty
i f (! empty) begin

207

D.4. SIMULATION SETUP

// I f new l i n e i s reached
i f (b i t c ount == 0) begin

// Read next l i n e form source f i l e
s o u r c e f i l e . scanID = $ f s c a n f (s o u r c e f i l e . f i l e I D , ”%b\n” ,

l i n e) ;

end // i f : b i t c o un t == 0

// Set empty f l g i f end o f source f i l e has been reached
i f (s o u r c e f i l e . scanID == ‘EOF) begin

empty = 1 ;
empty f lg = 1 ;
source data = 0 ;

end

// I f end o f source not reached
else begin

// Write b i t from l i n e to source da ta
source data = l i n e [s o u r c e f i l e . b i tPerL ine − 1 −b i t count

] ;

// Keep emp ty f l g low
empty f lg = 0 ;

// Increase sample counter
samp count++;

// Update b i t c o un t
i f (b i t c ount == s o u r c e f i l e . b i tPerLine −1) b i t count = 0 ;
else b i t count++;

end

// Set samp count to output
samp count out = samp count ;

end // i f (! empty)

// I f the b u f f e r i s empty
else begin

// Set ou tpu t s
source data = 0 ;
empty f lg = 1 ;
samp count out = samp count ;

end // e l s e : empty

end // e l s e : r s t n

end // always : posedge samp f l g or negedge r s t n

208

D.4. SIMULATION SETUP

endmodule // source

D.4.3 Example of a simulation routine

Simulation routine for the IHF

// Simulat ion to ga ther t o g g l e data f o r power e s t ima t ion
// Run IHF on data from the ADC to produce 1024 words .

// Timescale
‘TIMESCALE

module i h f s i m () ;

// S p e c i f i e s imu la t i on parameters
const i n t REQ NUM WORDS = 1024 ;
const s t r i n g OUTPUT FILE = ” s imu la t i onResu l t s / data .

i h f a d c e n e r g y s i m r e s ” ;
const s t r i n g INPUT FILE = ”/home/ f o i k /MASTER PRJ/ t r n g d e s i g n / sy sv l og

/models / sourceData /adc 010415 500Mb . txt ” ;
const i n t INPUT BIT PER LINE = 8 ; // Number o f b i t s per l i n e in

INPUT FILE

// Test bench i n t e r f a c e (Test bench ou tpu t s)
wire s y s c l k ;
wire empty f lg ;
wire [0 : ‘OUTPUT MEM SIZE−1] data out ;
wire d a t a v a l i d f l g ;
i n t samp count ;

// Test bench i n t e r f a c e (Test bench inpu t s)
reg r s t n ;
reg s t a r t i h f ;
s r c s o u r c e f i l e ;

// Connect to the IHF t e s t bench
i h f t e s t b e n c h IHF TESTBENCH(. r s t n (r s t n) ,

. s t a r t i h f (s t a r t i h f) ,

. s o u r c e f i l e (s o u r c e f i l e) ,

. s y s c l k (s y s c l k) ,

. empty f lg (empty f lg) ,

. data out (data out) ,

. d a t a v a l i d f l g (d a t a v a l i d f l g) ,

. samp count (samp count)) ;

// Run s imu la t i on
i n i t i a l begin

// Simulat ion v a r i a b l e s
b i t e x i t ;
i n t word count ;
i n t b i t count ;
s t r i n g e x i t s t a t u s ;

209

D.4. SIMULATION SETUP

i n t o u t p u t f i l e i d ;

// Disp lay in fo−msg
$display (”\n\n\nRunning i h f s i m . sv\n”) ;

// S p e c i f i e source input f i l e
s o u r c e f i l e . f i leName = INPUT FILE ;
s o u r c e f i l e . b i tPerL ine = INPUT BIT PER LINE ;

// Open source input f i l e
$display (”Opening : %s ” , s o u r c e f i l e . f i leName) ;
s o u r c e f i l e . f i l e I D = $fopen (s o u r c e f i l e . f i leName , ” r ”) ;

// Exi t s imu la t i on i f source f i l e f a i l e d to open
i f (s o u r c e f i l e . f i l e I D == 0) begin

$display (”ERROR s o u r c e i d handle was NULL. Exit s imu la t i on ! ”) ;
$ f inish ;

end

// Open output f i l e
o u t p u t f i l e i d = $fopen (OUTPUT FILE, ”w”) ;

// I n i t i a l s t imu l a t i on va l u e s
r s t n = 1 ;
s t a r t i h f = 0 ;

// I n i t i a l i n t e rn va l u e s
word count = 0 ;
b i t count = 0 ;
e x i t = 0 ;

// Reset t e s t bench
@(posedge s y s c l k) ;
r s t n = 0 ;

// S ta r t IHF
@(posedge s y s c l k) ;
r s t n = 1 ;
s t a r t i h f = 1 ;

// Run main s imu la t i on un t i source b u f f e r i s empty or r eque s t ed
number o f b i t s has been ga thered

while (! e x i t) begin

// Wait f o r next pos edge o f s y s c l k
@(posedge s y s c l k) ;

// Clear s t a r t i h f
i f (s t a r t i h f) s t a r t i h f = 0 ;

// Exi t s imu la t i on i f source b u f f e r i s empty
i f (empty f lg) begin

// Print un q u a l i f i e d data from IHF to output f i l e
$fdisplay (o u t p u t f i l e i d , ”%32b” , data out) ;

210

D.4. SIMULATION SETUP

e x i t = 1 ;
e x i t s t a t u s = ” Source b u f f e r has been emptied” ;

end // i f : emp t y f l g

// I f output data from IHF i s ready
i f (d a t a v a l i d f l g) begin

// Write word to output f i l e
$fdisplay (o u t p u t f i l e i d , ”%32b” , data out) ;

// Increase word count
word count++;

// Disp lay in fo−msg to termina l
$display (”Number o f c o l l e c t e d words : %d” , word count) ;

// Exi t s imu la t i on i f r e que s t ed number o f words has been
ga thered

i f (word count == REQ NUM WORDS) begin

e x i t = 1 ;
e x i t s t a t u s = ” Requested number o f output words has been

c o l l e c t e d ” ;

end

// Otherwise r e s t a r t IHF
else begin

@(posedge s y s c l k) ;
s t a r t i h f = 1 ;

end // e l s e : ! i f (word count == REQNUMWORDS)

end // i f : d a t a v a l i d f l g

end // wh i l e : ! e x i t

// Eva luate t e s t
$display (” Test has been e x i t : %s \n” , e x i t s t a t u s) ;
$display (”Number o f used source samples : %d\n” , samp count) ;

// Close output f i l e
$ fclose (o u t p u t f i l e i d) ;

// Stop s imu la t i on
$stop ;

end

endmodule

211

D.4. SIMULATION SETUP

212

Appendix E

User Guide for Logical Verification
and Synthesis for Power
Estimations

This user guide is a short description on how to setup and use the Cadence tool chain
available through the Mercury server environment at the Norwegian University of
Science and Technology (NTNU) for the purpose of logical verification and synthesis
for power estimations. It should be stressed that, while the here introduced methods
are a functional solution, other more suitable approaches may exist, depending on
the specific project. The purpose of this documentation is therefore rather to serve
as an example of a working setup, which should be adapted to fit a certain project.

Most of the here presented information can be found in [37][38]1 and the reader
is encouraged to consider these documentations for a more detailed background on
the used tools. The tools which are considered in this documentation are Incisive
(commonly referred to as NCSim) and Encounter RTL Compiler (or simply RTL
Compiler), both parts of the Cadence tool chain. It is assumed that RTL level
design has been performed in SystemVerilog. Note that the here presented setup
makes partly use of the example setup that accompanies [38], and this example must
therefore be available. The here presented setup and some simple example files are
contained in a zip-file that accompanies this documentation.

This documentation is structured as follows: First, in Appendix E.1, the basic
work flow and its motivation is presented. Second, the reader is introduced to how to
set up the tool chain for the given work flow (Appendix E.2). Finally, Appendix E.3
shows how the work flow is executed.

E.1 Work flow

As mentioned, this documentation focuses on two steps of a digital implementation.
First, logical verification is considered to test whether or not the considered design
behaves in accordance with its specifications. Second, the design is synthesized in
order to achieve an estimation of the power requirements of the design.

1Note that [38] is an NTNU intern documentation and, as such, not publicly available.

213

E.1. WORK FLOW

Figure E.1: Work flow of the verification and synthesis process

Figure E.1 illustrates the work flow for a minimal working example. It is assumed
that during some preceding design process three SystemVerilog files have been cre-
ated: rtl design.sv, testbench.sv and simulation.sv. Each file contains a module with
the same name. For example, rtl design.sv declares the module design. Further
more, simulation.sv is the top level instance which includes testbench.sv. The test-
bench in its turn includes rtl design.sv, which is the target of both the verification
and the synthesis steps.

To verify the logical behavior of rtl design.sv, the three SystemVerilog files are
passed on to NCSim which runs simulation.sv on the design file. If the verification is
successful, the design can be synthesized by RTL Compiler. Besides of rtl design.sv,
the synthesize tool needs some information about the design constraints, which are
specified in constraints.sdv, and the used technology library, which is not specified
in this documentation (please refer to [38] for more information about the library).
Based on this inputs, RTL Compiler performs the synthesis for rtl design.sv, which
results in a Verilog netlist of the design, net design.v. The netlist can then be used
for the “place and route” implementation step, which is described in [38].

In addition to the netlis, RTL Compiler can deliver reports on the estimated
power, area and timing requirements of the design. For the purpose of this docu-
mentation, the power estimates are of main interest. However, it is a well known fact
that the power that is required by a digital design depends directly on the toggling
activity of the design. Since the RTL Compiler, at this point of the work flow, does
not have any information about the toggling behavior of rtl design.sv, it uses some
default assumptions about the signal activities. These default assumptions are in
general not good enough for useful power estimations, especially if most signals of

214

E.2. SETUP

the design are updated at a much slower rate than the main clock signal. To cope
with this problem, a second simulation of the design is performed by passing sim-
ulation.sv, testbench.sv and net design.v (the nestlist not the RTL description!) to
NCSim. The purpose of this second simulation is to gather information about the
toggle activity of the design2, which is exported from NCSim in form of a tcf -file.
Using the tcf -file, the synthesis of rtl design.sv can be repeated to achieve a more
accurate power estimation.

E.2 Setup

For consistency, the here presented setup is based on the example directory, tutorial,
of [38]. Thus, tutorial should be downloaded and unpacked on the Mercury server.
Opening the directory, it contains five sub-directories. In addition, the two directo-
ries, sysvlog and ncsim, which can be found in the zip-file that accompanies this user
guide, should be included. The directory sysvlog contains three SystemVerilog files,
which depict a simple example of a simulation-testbench-design hierarchy. The sec-
ond directory, ncsim, contains the setup used to access NCSim and run simulations
on the SystemVerilog files.

At this point, tutorial should thus contain the following seven sub-directories:

/ t u t o r i a l
/ncsim
/ r t l c o m p i l e r
/ soc encounte r
/ sy sv l og
/ t e c h l e f
/ vhdl
/ v i r t u o s o

For the purpose of this documentation, soc encounter, tech lef and vhdl are not
of interest and can be ignored. The directory rtl compiler is used to access RTL
Compiler in order to synthesize the design file. To avoid confusion, one might
consider deleting the content of rtl compiler, rtl.tcl and seq det.sdc, as this files
belong to the example presented in [38].

E.2.1 Setup of sysvlog

Opening sysvlog, the directory contains the three example files, rtl design.sv, test-
bench.sv and simulation.sv. To simplify the further work flow, it makes sense to
create a compile list of all simulation related SystemVerilog files, called simCom-
pList.sh. For the used example, such a list would for instance look like the one
presented below.

#!/ bin / bash

SIM COMP LIST=(
”/home/YOUR USER NAME/ t u t o r i a l / sy sv l og / tes tbench . sv ”
”/home/YOUR USER NAME/ t u t o r i a l / sy sv l og / s imu la t i on . sv ”

2In order to get significant power estimates, the used simulation, simulation.sv, should run the
design in a typical scenario, i.e. with a typical toggling activity.

215

E.2. SETUP

)

In the case that this setup is used with a design that consists of more than one
SystemVerilog file, it should be considered to create a compile list for the design
files as well, for instance, designCompList.sh. This can be done in the same manner
as for simCompList.sh.

E.2.2 Setup of ncsim

Returning to tutorial and entering ncsim the basic setup has already been created.
If it for some reason should be desirable to repeat the setup from ground up, please
refer to [37]. The directory contains a single file, init.sh, and two sub-directories, sim-
ulations and netlist simulations. For this basic introduction, init.sh can be ignored.
The sub-directories simulations and netlist simulations are used to respectively run
simulations on the SystemVerilog files and the netlists. Entering first simulations, a
couple of path variables have to be adopted to the used system environment. Open
for this purpose first cds.lib and hdl.var and change the defined paths so that they
match the used system environment.

In the same manner, open compile.sh and change the paths in the upper part of
the script. It is worth noticing that, in the case that a compile list for design related
SystemVerilog files (designCompList.sh, see Appendix E.2.1) has been created in
sysvlog, compile.sh can easily be adapted to use this list instead of a single design
file. This is done by uncomment all lines using the variable DESIGN COMP LIST
and comment each line that uses DESIGN.

The purpose of the compile.sh script is to compile all the specified SystemVerilog
files. This is necessary in order to simulate the files. For the here described work
flow, compile.sh is as such rather a sub-script that is called by another script that
executes the simulation (see below). However, if it is of interest to simply check the
compilablity of the created SystemVerilog files, it is possible to do so by calling the
script directly from the terminal by typing:

bash compi le . sh

The script then compiles the specified SystemVerilog files and returns error mes-
sages to the terminal if the compiling process is unsuccessful.

Having setup the content of the simulations sub-directory, ncsim/netlist simulations
must be setup in a similar manner. Opening the sub-directory, the paths in cds.lib
and hdl.var have to be changed in the same way as described above.

Further, the script netlist sim.sh has to be adapted. This requires slightly more
complicated changes than for the other files. First, adapt the paths described by
CDS LIB and SIM COMP LIST, similar to the way it has been done for compile.sh.
Second, the netlist that should be simulated must be defined by DESIGN NETLIST.
Following the earlier used example, it is assumed that the netlist, net design.v, will
be contained in the directory sysvlog, after the synthesis process has been executed
for the first time. Third, the used technology library has to be specified by setting
TECH LIB. Finally, some information has to be specified in order to extract the
desired toggling activity data in form of a tcf -file. This includes the name of the

216

E.2. SETUP

instances of the design and the testbench as declared in the superior SystemVerilog
file.3 For the example of rtl design.sv, it is included into testbench.sv by using capital
letters for the instance name:

r t l d e s i g n RTL DESIGN (. en (en) ,
. c l k i n (c l k i n) ,
. c l k o u t (c l k o u t)) ;

As a result, the instance name of the design file has to be specified in netlist sim.sh
in the same manner, using capital letters:

export DESIGN MODULE=RTL DESIGN

In addition, a target directory has to be specified to which the simulation tool
will export the toggling information in form of a tcf -file. This is done, by setting
TCF OUTPUT FILE. Since the tcf -file is latter on used by RTL Compiler, it is
reasonable to specify the tutorial/rtc compiler sub-directory.

E.2.3 Setup of rtl compiler

At this point, the simulation tool is completely set up and it remains to create
files that are needed by the RTL Compiler. For this purpose, the sub-directory
tutorial/rtl compiler should be entered. Two files must be created in this directory.

First, create rtl design.tcl. This file is later on passed to the synthesis tool and
defines which operations should be executed.

For the here presented example, a working version of rtl design.tcl can be found
in the zip-file which is attached to this documentation4. However, if, for instance,
another technology library or different SystemVerilog files are used, rtl design.tcl
has to be modified accordingly. In any case, it is important that the in rtl design.tcl
specified technology library and the to be created netlist (net design.v) are in accor-
dance to the in netlist sim.sh specified related instances. It is worth noticing that
the last four commands of rtl design.tcl are commented. The motivation behind this
will become evident below, when the functionality of the file is discussed in more
detail.

As discussed in Appendix E.1, the RTL Compiler needs some information about
the design constraints. This information is specified in the constraints.sdc file, which
should be created next. However,the nature of the information contained in con-
straints.sdc depends strongly on the specific project. It is therefore out of the scope
of this documentation to discuss the general content of sdc-files. A version of con-
straints.sdc that works for the here presented design example, rtl design.sv, can be
found in the attached zip-file. For other examples, please refer to [38].

3If the used project setup differs from the here described simulation-testbench-design hierarchy,
this part of netlist sim.sh has to be modified. In addition, changes have to be performed for
togsim.tcl which is contained in the netlist simulations directory. As the nature of this changes
depend on the used project setup, this is not further described in this documentation.

4This file is in many ways equivalent to rtl.tcl of [38]. Both files can, if desired, be combined.

217

E.3. EXECUTION

E.3 Execution

After having set up the tool environment, the in Appendix E.1 described work flow
can be executed. As depicted in Figure E.1, it is first of interest to verify the logical
behavior of rtl design.sv. To do so, the simulate.sh script in the ncsim/simulations
sub-directory can be used. This script first compiles every available SystemVerilog
file (by calling compile.sh) and then elaborates and starts the simulation. It is simply
called from the terminal by typing

bash s imulate . sh s imu la t i on −gui

Note that the input “simulation” refers to simulation.sv. In the same manner,
the script can be called with possible other SystemVerilog simulations, as long as
they are specified in simCompList.sh (see the setup of Appendix E.2.1). The second
input argument, “-gui”, is optional. Using it starts a graphical user interface for the
simulation, which can be used to, for example, extract waveforms. If simulate.sh is
called without this input, NCSim runs the simulation in the terminal.

After having verified the correct behavior of rtl design.sv, the design can be synthe-
sized in order to generate the netlist, net design.v. In order to do this, first enter
the tutorial/virtuoso directory and type:

tc sh
source . c shrc

These commands set path variables that are needed by the RTL Compiler, which
now can be used to generate rtl design.v, by entering tutorial/rtl compiler. However,
before calling the RTL Compiler, it should be verified, that the current rtl design.tcl
file specifies that the netlist should be created. This is the case, if the lower part of
the file looks equivalent to:

. . .
Writes a t echno logy dependent n e t l i s t
wr i t e −mapped > . . / sy sv l og / n e t d e s i g n . v
Read t o g g l e f i l e f o r power e s t ima t ion
#r e a d t c f . / s imu l a t i o n . t c f
Write out area and t iming r epo r t s
#repor t area > r t l d e s i g n a r e a r e p o r t . r e p
#repor t t iming > r t l d e s i g n t im i n g r e p o r t . r e p
#repor t power > r t l d e s i g n p ow e r r e p o r t . r e p
exit

If this is the case, the synthesis step can be executed by calling:

rc < r t l d e s i g n . t c l

This commands calls the RTL Compiler, which executes the synthesis, while
printing the status to the terminal. When the synthesis has been successful, the
RTL Compiler reports “Synthesis succeeded” to the terminal and creates the netlist,
net design.v, in tutortial/sysvlog.

Using the netlist, it is now possible to run simulations to gather the toggling in-
formation. To do so, enter the sub-directory tutorial/ncsim/netlist simulations and
type:

218

E.3. EXECUTION

bash n e t l i s t s i m . s h s imu la t i on

This runs the netlist sim.sh script with the simulation.sv simulation. As for
simulate.sh, the script netlist sim.sh can easily be run with other SystemVerilog
simulation files, by including them in simCompList.sh in the sysvlog sub-directory
and passing their name as an input to netlist sim.sh. However, in contrast to simu-
late.sh, netlist sim.sh does not support the “-gui” input argument and always runs
the simulation in the terminal.

If the simulation has been successful, NCSim creates the desired tcf -file in the
tutorial/rtl compiler sub-directory. The tcf -file has the same name as the simulation
that has been used to generate it. In the case of the here given example, the tcf -file
is therefore called simulation.tcf.

This file can now be used to estimate the power requirements of the design by
once more using RTL Compiler. Note that the simulations scripts change some
path variables and it is therefore necessary to once more enter the virtuoso sub-
directory and source the .cshrc file as described above. After that is accomplished,
the rtl design.tcl file has to be slightly modified. First, since the netlist net design.v
already exists, it does not have to be created again and the related command can
be prevented from execution by commenting it. Second, simulation.tcf must be
passed to the RTL Compiler, and the corresponding command line must therefore
be uncommented. Finally, uncomment the lines that correspond to desired reports.
After the modification, the lower part of rtl design.tcl should look similar to this:

. . .
Writes a t echno logy dependent n e t l i s t
#wr i t e −mapped > . . / s y s v l o g / n e t d e s i g n . v
Read t o g g l e f i l e f o r power e s t ima t ion
r e a d t c f . / s i m u l a t i o n . t c f
Write out area and t iming r epo r t s
r epor t area > r t l d e s i g n a r e a r e p o r t . r e p
repor t t iming > r t l d e s i g n t i m i n g r e p o r t . r e p
repor t power > r t l d e s i g n p o w e r r e p o r t . r e p
exit

At this point, the RTL Compiler can be called, by once more typing:

rc < r t l d e s i g n . t c l

This triggers the tool to once more run the synthesis process. However, in-
stead of generating a new netlist, the RTL Compiler creates three reports in the
tutorial/rtl compiler directory. The desired power estimates can be found in the
rtl design power report.rep file.

219

E.3. EXECUTION

220

Appendix F

Synthesis of Post Processing
Implementations

Table F.1: Synthesis results for the VNC modules

Approach 1 Approach 2 Approach 3 Approach 4

Power
Leakage 10595.030 nW 7885.180 nW 7395.500 nW 7356.075 nW
Dynamic 1330.703 nW 2116.530 nW 15344.476 nW 17000.895 nW
Total 11925.733 nW 10001.711 nW 22739.976 nW 24356.970 nW

Cells 180 108 112 115
Area 932µm2 667µm2 678µm2 684µm2

Time slack 15806 ps 15739 ps 15529 ps 15493 ps
Max. frequency 238.1 MHz 232.6 MHz 222.2 MHz 222.2 MHz

Table F.2: Synthesis results for the vnc output memory sub-
modules

Approach 1 Approach 2 Approach 3 Approach 4

Power
Leakage 9485.628 nW 7037.110 nW 6547.448 nW 6508.011 nW
Dynamic 381.501 nW 364.913 nW 11832.848 nW 13329.273 nW
Total 9867.129 nW 7402.023 nW 18380.296 nW 19837.284 nW

Cells 160 94 98 101
Area 837µm2 593µm2 605µm2 611µm2

221

Table F.3: Synthesis results for the IHF modules with nIHF = 64

mIHF = 1 mIHF = 2 mIHF = 4

Power
Leakage 34186.729 nW 34517.347 nW 34502.028 nW
Dynamic 73121.548 nW 73568.466 nW 74010.662 nW
Total 107308.278 nW 108085.813 nW 108512.691 nW

Cells 403 414 409
Area 2877µm2 2904µm2 2906µm2

Time slack 15634 ps 15631 ps 15654 ps
Max. frequency 227.3 MHz 227.3 MHz 232.6 MHz

Table F.4: Synthesis results for the IHF modules with nIHF = 128

mIHF = 1 mIHF = 2 mIHF = 4

Power
Leakage 60394.166 nW 60305.850 nW 60778.523 nW
Dynamic 126892.068 nW 127300.007 nW 128469.588 nW
Total 187286.234 nW 187605.858 nW 189248.111 nW

Cells 726 719 725
Area 5083µm2 5081µm2 5121µm2

Time slack 15575 ps 15488 ps 15569 ps
Max. frequency 227.3 MHz 222.2 MHz 227.3 MHz

mIHF = 8 mIHF = 16 mIHF = 32

Power
Leakage 61496.940 nW 63843.692 nW 69488.932 nW
Dynamic 130534.049 nW 136793.082 nW 150391.854 nW
Total 192030.989 nW 200636.774 nW 219880.786 nW

Cells 728 751 809
Area 5179µm2 5387µm2 5859µm2

Time slack 15571 ps 15556 ps 15554 ps
Max. frequency 227.3 MHz 227.3 MHz 227.3 MHz

222

