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Problem description
NTNU is in the process of developing a system for automatic classification
of birdsong. The system involves several steps. In the first step the in-
coming acoustic signal gets decoded which gives a sequence of segments.
These segments may belong all lawful classes. The system then finds the
sequence of segments that gives the highest score (likelihood). In the next
step the found sequence of segments gets analyzed with respect to which
classes that are most frequently occurring. This information is then stored
in a histogram of the various classes. In the last step the histogram gets
normalized in order to eliminate the influence of the recordings total du-
ration. The normalized histogram is then applied to a static post classifier
which outputs the probability of each class. Such a N-best ranking of the
probabilities has been proven to give better performance compared to the
performance of using the histogram directly for decision.

In the current system the classes are modeled as a weighted sum of multidi-
mensional normal distributions (GMM). The first part of this thesis is about
investigating the performance of the system when GMM gets replaced with
so called hidden Markov models (HMM). One should investigate the per-
formance of the system when using different amounts of coefficients ex-
tracted out of the acoustic signal used for training and recognition and dif-
ferent lengths of the frames and corresponding window lengths used for
feature extraction done by short-time stationary frequency analysis. One
should also investigate the influence on the system performance when ad-
justing the penalty value, which is a system parameter set in the decoder
which allows to add a penalty for jumping from one class to another in the
recognition.

The current system assumes that the incoming acoustic signal comes from
one of the classes that the system is able to recognize. This implies that
signals from other (”unknown”) classes gets classified as one of the ”legal”
classes, i.e. misclassified. The second part of the thesis is about imple-
menting a so called ”Out-of-class” detector, and investigate whether such a
detector deals with the unknown birdsong in a good way or not. A separate
model for all the unknown classes is difficult to design because of the ex-
pected complexity and the lack of acoustic recordings. A technique based
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on thresholds for score (confidence) is therefore more realistic.

Assignment given: 16. January 2015
Supervisor: Magne Hallstein Johnsen, IET.
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Summary
It turns out that using a two-state-HMM model structure with appurtenant
GMM-based state distributions improves the system performance compared
to the use of just GMMs as model structure for each bird specie. Hence,
it is reasonable to say that birdsong contains temporary information which
HMMs deals with in a better way than GMMs. On average, 82.31% of the
birdsong in the test sets gets classified correct using HMMs. The use of
GMMs achieves an average correctness of 80.1% applying the same test
sets. However, further improvement of the resulting system performance
are dependent on a bigger database such that the models can be trained
with more example data which cover all sorts of recording surroundings
and cover more of the variances of birdsong that exists within a bird specie.

The penalty value set in the decoder which adds a ”penalty” when jump-
ing from one bird class to another should ideally be set in a way such that
the number of insertions (more segments) and deletions (less segments)
of the recognition gets equal. However, it turns out that these insertions
and deletions mainly concerns pause segments (silence and other sounds),
and therefore does not affect the birdsong classification results noteworthy.
One can also say that it is more important to not lose any information by
deletions compared to the disorientation we get from added segments by
insertions.

When it comes to frame length and corresponding window length used
in the short-time stationary frequency analysis, it turns out that the frame
length should at least be of 20 ms. The results where quite the same
with the use of a frame length of 20 ms and 25 ms with corresponding
window lengths of 30 ms and 40 ms, respectively. However, the use of
such ”big” frame lengths, leads to less example data per model distribution
which again leads to weaker models. Hence, ”big” frame lengths requires
more training data. The different amounts of coefficients extracted from the
acoustic signal does not vary the resulting system performance noteworthy.
15 coefficients turned out to give the best performance. It is reasonable to
think that less than 12 coefficients are insufficient and that more than 19
coefficients are unnecessary.
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The different bird species give different contributions to the total error. 9
out of 21 bird species gets recognized correct 100% of the time, while some
few bird species gets recognized correct only 50% of the time or lower. The
reason for this could be that birdsong from some bird species are very sim-
ilar, i.e. have similar frequency content, making it difficult to distinguish
between them. Insufficient amount or poor quality of the example data for
these bird species could also be one possible reason. It turns out that the
results achieved from the five different test sets used for testing the system
vary a lot. One of the test sets achieves an error of 12.4%, while another
test set achieves an error of 23.8%. Hence, it is reasonable to believe that
the test data applied in this thesis are not fully representative to the input
data applied the system later on, and conclusions of the system performance
based on this test data should not be trusted blindly. This gap between the
achieved results from the different test sets could also imply that the mod-
els are trained with an inadequate amount of example data, i.e. the database
used in this thesis is too small. The gap between the performance of the sys-
tem applying the training data and the test data implies that the system do
not generalize well, this supports the thought of a too small database.

The out-of-class detector implemented in order to deal with unknown bird-
song turns out to be a good idea. Setting thresholds for the log likeli-
hood score for each recognized segment corresponding to the different bird
classes from the test set makes it possible to classify 34% of the unknown
birdsong as unknown. However, such an out-of-class detector requires a
bigger database than we got today. In this thesis, the thresholds for the
log likelihood scores are set by investigating the scores achieved from the
training set and the test set. This is not optimal. With a bigger database, an
untouched data set could be spared for finding these thresholds. The bigger
database, the more likely it is that the thresholds get set from a data set that
is representative to later input data. With a bigger database the out-of-class
detector will work in a better way which also makes the total classifica-
tion system better. Alternatively, a separate model for all these unknown
bird classes could be designed, but this model is difficult to design because
of the expected complexity and the lack of acoustic recordings, both from
known and unknown bird species.

This thesis also discovers that setting the thresholds for use in the out-of-
class detector is difficult. It is a compromise between allowing false accepts
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and false rejects. However, with the database used in this thesis it turns out
that the system are very sensitive to false rejects. This is due to the way
the out-of-class detector are being tested in this thesis, where only a small
amount of the total birdsong files in the test set belongs to unknown bird
classes. Hence, the thresholds must be set such that no false rejects are al-
lowed while we are getting rid of as many false accepts as possible at the
same time. A system that knows few bird species out of the total amount of
bird species that exists in the nature are likely to face a lot of unknown bird-
song. It is therefore important to set the thresholds high enough in order to
avoid a lot of false accepts in this case. On the other hand, a system that
knows the most of the existing bird species that exists are not very likely to
face unknown birdsong. Hence, it is important that the thresholds are set
low enough such that false rejects are avoided in this case.
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Sammendrag på norsk:
Det viser seg at bruken av HMM med to tilstander hvor hver tilstand in-
neholder en GMM-basert tilstandsfordeling forbedrer systemets ytelse sam-
menlignet med bruken av GMM som modellstruktur for hver fugleklasse.
Det er derfor rimelig å si at fuglesang inneholder temporær informasjon
som HMM håndterer på en bedre måte enn GMM. 82.31% av fuglesan-
gen i testsettene blir korrekt klassifisert ved bruk av HMM. Ved bruk av
GMM blir 80.10% av den samme fuglesangen korrekt klassifisert. Uansett,
videre forbedring av den resulterende system ytelsen er avhengig av en
større database slik at modellene kan trenes med mer eksempel data som
dekker alle slags opptaksomgivelser og som dekker mer av de forskjellige
variantene av fuglesang som eksisterer innenfor en fugleart.

Verdien som legger til en straff når man hopper fra en fugleklasse til en
annen i gjenkjenningsprosessen skal ideelt settes slik at antall innsettinger
(flere segmenter) og slettinger (færre segmenter) i gjenkjenningen blir
omtrent lik. Uansett, det viser seg at disse innsettingene og slettingene i
hovedsak angår pause segmenter (stillhet og andre lyder), og påvirker der-
for ikke klassifiserings resultatene bemerkelsesverdig. Man kan også si at
det er viktigere å ikke miste noe informasjon på grunn av slettinger sam-
menlignet med å unngå forvirringen som oppstår fra innsettingene.

Når det kommer til rammelengder og tilhørende vinduslengder for å gjøre
kort-tids stasjonær frekvensanalyse, så viser det seg at rammelengden bør
være minst 20 ms. Resultatene ved bruk av rammelengder på 20 ms og
25 ms med respektive tilhørende vinduslenger på 30 ms og 40 ms var
omtrentlig de samme. Uansett, ved bruk av så store rammelengder får vi
mindre eksempeldata per modellfordeling som kan føre til dårligere mod-
eller. Derfor kan man si at større rammelengder krever mer treningsdata.
Det forskjellige antallet koeffisienter utvunnet fra det akustiske signalet
påvirker ikke den resulterende systemytelsen i stor grad. 15 koeffisien-
ter viser seg å gi de beste resultatene. Det er rimelig å tenke seg at mindre
enn 12 koeffisienter er for lite og at mer enn 19 koeffisienter er unødvendig.

De forskjellige fugleklassene bidrar i forskjellig grad til den totale feil-
raten. 9 av 21 fugleklasser blir gjenkjent 100% korrekt av tilfellene, mens
noen få fugleklasser blir gjenkjent korrekt bare 50% eller lavere av tilfel-
lene. Grunnen til dette kan være at fuglesang fra noen fuglearter ligner
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veldig, altså at de har lignende frekvensinnhold. Dette gjør det vanskelig å
skille mellom de. For lite treningsdata eller treningsdata av dårlig kvalitet
for disse fugleklassene kan også være grunn til dette. Det viser seg at re-
sultatene oppnådd fra de fem forskjellige testsettene brukt for testing av
systemet varierer mye. En av testsettene oppnår en feilrate på 12.4%, mens
et annet testsett bare oppnår en feilrate på 23.8%. Derfor er det rimelig å
tenke seg at testdataene brukt i denne oppgaven ikke er veldig representativ
i forhold til inngangsdata som blir påtrykt systemet senere, og vi kan der-
for ikke stole blindt på de oppnådde resultatene i denne oppgaven. Spriket
mellom de oppnådde resultatene fra de forskjellige testsettene tilsier også at
modellene er trent med en utilstrekkelig mengde av treningsdata. Altså er
databasen i denne oppgaven for liten. Forskjellen på systemytelse når man
påtrykker henholdsvis trenings- og testsett forteller oss at systemet gener-
aliserer dårlig. Dette støtter også teorien om at databasen er for liten.

”Out-of-class” detektoren som er implementert for å kunne håndtere uk-
jent fuglesang viser seg å være en god ide. Å sette terskler for log like-
lihood scoren for hvert gjenkjente segment som tilhører en av de kjente
fugleklassene ut i fra et av testsettene gjør det mulig å klassifisere 34% av
den ukjente fuglesangen påtrykt systemet som ukjent. Uansett, en slik out-
of-class detektor krever en større database enn den vi har i dag. I denne opp-
gaven er tersklene for log likelihood scoren satt ved å undersøke oppnådde
scorer for gjenkjenningen av treningsettet og testsettet. Dette er ikke opti-
malt. En større database ville gjort det mulig å bruke et urørt datasett for
å finne tersklene. Jo større database, jo mer sannsynlig er det at tersklene
blir satt ut i fra et datasett som er representativt for senere inngangdata.
Med en større database ville out-of-class detektoren fungert bedre, som ig-
jen ville ført til en forbedring av det totale klassifiseringssystemets ytelse.
Alternativt så kunne man designet en felles modell for alle de ukjente fu-
gleklassene, men dette lar seg vanskelig gjøre på grunn av den forventede
kompleksiteten og mangelen på akustiske opptak, både fra kjente og uk-
jente fuglearter.

En ting til som er observert ut fra denne oppgaven, er at det å sette terskler
for bruk i out-of-class detektoren er vanskelig. Man må gjøre et kompro-
miss i forhold til å akseptere ”false accepts” og ”false rejects”. Det viser seg
at systemet undersøkt i denne oppgaven med gjeldende database er veldig
sensitiv for ”false rejects”. Dette er på grunn av måten out-of-class detek-
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toren blir testet i denne oppgaven, hvor kun et fåtall av det totale antallet
av påtrykte fuglesangfiler tilhører ukjente fugleklasser. Derfor må tersk-
lene settes slik at man ikke aksepterer noen ”false rejects”, mens vi sam-
tidig kvitter oss med så mange ”false accepts” som mulig. Et system som
kjenner til få fuglearter sammenlignet med det totale antallet fuglearter som
eksisterer i naturen er sannsynlig å støte på fuglesang fra ukjente fuglearter.
Da må tersklene settes høye nok slik at man unngår ”false accepts”. Et sys-
tem som kjenner til de fleste av det totale antallet fuglearter som eksisterer i
naturen er ikke veldig sannsynlig å støte på fuglesang fra ukjente fuglearter.
Da må tersklene settes lave nok slik at man unngår ”false rejects”.
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Chapter 1
Introduction

This chapter is an introduction to the report. Section 1.1 presents a moti-
vation and the background for the thesis. Section 1.2 describes briefly the
work that has been done from the start to the end while section 1.3 gives an
outline of the report.

1.1 Motivation and background

The students at the Department of Electronics and Telecommunications
(IET) at the University of Science and Technology (NTNU) are supposed to
write a master thesis in their final semester of their fifth and last year of the
master degree program. The goal for this master thesis is to let the students
work with a well defined problem inside the area of their main profile, and
give them training and experience of such work for the upcoming work ca-
reer inside the technological industry.

This thesis is given by IET, and is about improving the performance of
a system for automatic classification of birdsong. A company called Able-
Magic are developing an application for Android and iPhone/iPad that are
supposed to let the users investigate birdsong while hiking in the Norwe-
gian nature. They asked IET for help with the signal processing needed for
such a classification system, and therefore they (IET) presented a master
thesis that concerns this type of problem. It should be mentioned that this
thesis is independent from AbleMagic and their application, and is mainly
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Chapter 1. Introduction

written for IET.

The whole idea behind such an application, which is illustrated by figure 1.1
below, is to be able to answer the question ”which type of bird is singing?”.
The user should take a recording of the birdsong of interest with a device
and the application should then process this recording and decide which
bird it is that sings. In order to obtain an application that will work satis-
fying, i.e. have an error rate that is low enough to make the users satisfied
and happy, one has to study and find a good way of modeling the different
bird species. One should also find a good way of dealing with birdsong
from bird species that are unknown to the classification system. This is the
essence of this thesis.

Figure 1.1: Idea of application

One can say that automatic classification of birdsong is quite similar to au-
tomatic classification of speech, i.e. speaker recognition. One distinguishes
between deterministic and physical signals. The former are characterized in
that they are described exactly by the use of mathematical formulas. Such
deterministic signals does not appear in the real world. It is of course not
possible to find a mathematical formula that describes birdsong. One must
therefore try to find a mathematical approximation that is ”good enough”.
Such an approximation is referred to as a model, both in general and in this
thesis.

Most time signals have information in temporary form. For speech it is
obvious that the order of sounds (phonemes) and words are essential for
the meaning of the speech. Speech is also directive, meaning that if we turn
around the time signal the meaning gets lost. It is reasonable to believe that
the content in one single stanza of birdsong also have some temporary in-
formation while repeated stanzas probably not provide further information.
Birdsong does not, as far as we know, contain a grammar similar to the one
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1.1 Motivation and background

that exists for speech.

It is developed a variety of model types for physical signals. The mod-
els in this thesis are based on the most common strategy, namely that one
assumes that the time signal have a stochastic nature. This is because differ-
ent songs from the same bird individual will have different form on the time
signal. This applies to an even greater extent between different individuals
from the same bird specie. Hopefully the variation between different bird
species are even bigger.

It is common to separate stochastic signals into stationary and non-stationary
signals. For non-stationary signals the frequency content changes with
time. Most of the physical signals, included birdsong, have logically a non-
stationary nature because they contain temporary information. On the other
hand, stationary signals have a fixed frequency content, and therefore it ex-
ists much better models for stationary signals compared to non-stationary
signals. However, one can assume that physical signals are short-time sta-
tionary, i.e. stationary over ”short” time. This assumption is of great help
in all signal processing of physical signals and such short-time stationary
frequency analysis are utilized in this thesis.

One has two different scenarios in speech recognition. One can either rec-
ognize single words or whole sentences. The latter problem is much harder
because one has to find the number of words, which words it is and some-
times the time limits between words. The former problem is called classifi-
cation while the latter is called recognition. When it comes to birdsong one
can say that this is something between classification and recognition. How-
ever, because the need of finding the number of stanzas and the start and
stop time for these do not exist for the application of interest, the birdsong
recognition can be simplified to classification in this thesis.

The main goal of this thesis is to optimize the system performance in order
to achieve a lower total error rate than the current system achieves. The first
part is about studying the system performance when modeling each bird
class with HMM’s instead of GMM’s and investigating the optimal choice
for a) the number of coefficients extracted from the acoustic signal used for
both training and decoding, b) the segment lengths and corresponding win-
dow lengths used for both training and decoding and c) the penalty value
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Chapter 1. Introduction

which is a parameter that allows to add a penalty for jumping from one
class to another inside the decoder. This penalty value should be adjusted
such that the number of deletions and insertions of recognized segments
gets pretty equal. The second part concerns the problem with unknown
birdsong. The current system assumes that the incoming acoustic signal
comes from one of the classes that are known. This implies that signals
from other unknown birds gets misclassified, and therefore contributes to a
bigger total error rate. A so-called ”out-of-class” detector is implemented
and investigated in this thesis for handling unknown birdsong. This out-of-
class detector is based on thresholds for the log likelihood scores given for
each segment that are being recognized as one of the bird classes.

1.2 Work

Both training of bird class models and decoding/recognition of the birdsong
of interest is done with The Hidden Markov Model Toolkit (HTK). HTK
is a toolkit for building hidden Markov models and was originally devel-
oped at the Machine Intelligence Laboratory of the Cambridge University
Engineering Department. It provides training tools used to estimate the pa-
rameters of a set of HMMs using example audio with corresponding labels
and recognition tools for decoding audio. HTK is free to use for a server
solution that is intended as a platform for this application. Detailed infor-
mation of HTK and its functions can be found in [11].

First thing was to get familiar with the current system, which was handed
out by my supervisor. Study the scripts for training, recognition and clas-
sification, become familiar with the catalogue structure containing bird-
song recordings (database), configuration files for the different commands
of HTK, different lists and proto files and get to know the HTK commands
used for training and recognition. In other words just get a hands-on feeling
of the whole system before doing the experiments of interest in this thesis.

The first goal of the thesis is to find a better way of modeling the bird classes
in order to achieve better overall results compared to the initial results. The
first experiment is to replace the existing GMM (one-state-HMM) structure
with a 2-state-HMM structure. HMM is dominating the speech recogni-
tion area and similar types of physical signals. HMM is a natural choice of
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model structure when the physical signals contain temporary information
[4]. It is therefore a suitable candidate for birdsong as well, at least if it
turns out that birdsong contains different frequency content at stanza level.

Then the penalty value which is a value that can be set inside the decoder
for adding a ”penalty” when jumping from one class to another in the recog-
nition is investigated, both for the GMM setting and the HMM setting. A
good choice of this penalty value will result in a reasonable amount of
detected segments (stanzas + pause), while a poor choice of this value will
cause many deletions or many insertions, i.e. too few segments or too many
segments compared to the actual number of segments [4].

After this the best setting from the above experiments (HMM vs. GMM
with their respective best penalty value) is investigated further. The num-
ber of coefficients extracted from the acoustic signals used for both training
of bird models and recognition of birdsong are investigated. The segment
lengths and corresponding window lengths used in both training and recog-
nition are also investigated in order to achieve better overall results.

In order to achieve the final results of all of these experiments above, two
different ways of making the decision are used and compared. One just
classifying a file by picking the bird class that got recognized the most of
the total duration of the respective recording and one which contains a post
processor (further explanation of this in chapter 4.2.4).

Part two of the thesis concerns unknown bird classes and confidence. The
current system assumes that the incoming acoustic signal comes from one
of the classes that the system is able to recognize, i.e. from a class that is
known. This implies that signals from other unknown classes gets classi-
fied as one of the known classes, i.e. gets misclassified. In order to deal
with this problem, an out-of-class detector is implemented. This detector
is based on thresholds for the log likelihood scores achieved from the rec-
ognizer for each segment of birdsong. If the decoder recognizes a segment
from an unknown bird class as a known bird class with a score below some
threshold for the respective bird class, it gets classified as unknown, and not
the bird that it got classified as in the first place. This leads to an enhanced
performance of the system, i.e. decreases the total error rate.
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Chapter 1. Introduction

In the absence of recordings belonging to unknown bird species in the
database, one have to improvise a bit in order to find good thresholds. The
first step in this improvised method is to exclude one and one bird class
from the recognition network and do recognition of the files correspond-
ing to the missing bird class in order to force the system to recognize the
segments of these files as a known bird class. This is done for all the 21
bird classes, and we get a bunch of wrong recognized segments. Next step
is to recognize all birdsong files from one and one class with the complete
recognition network in order to get a bunch of correct recognized segments.
Then by plotting a histogram, one for each bird class, containing wrong rec-
ognized segments and correct recognized segments with corresponding log
likelihood scores and number of frames (duration), one should hopefully
be able to set a threshold between the wrong recognized segments and the
correct recognized segments for each bird class, i.e. it is reasonable to think
that wrong recognized segments have a lower log likelihood score than cor-
rect recognized segments. Finding good thresholds is actually finding the
best compromise between the number of false rejects and the number of
false accepts in order to achieve the best results. Two different strategies
for setting these thresholds are investigated in order to get the best results.
These strategies are presented in chapter 5.5.

The above procedure is first done using only files from the training set,
and secondly done using only files from the test set and then compared to
each other. Ideally one should have had an untouched data set for finding
thresholds, but because of the lack of big enough database, this was the only
opportunity. Using the test set can be seen as cheating because the same set
is being used for both testing the performance of the out-of-class detector
and finding thresholds, but gives a good picture of whether this out-of-class
detector is a good or bad idea.

1.3 Outline of the report

The report is structured in the following way:

Chapter 2 - Theory presents the basic theory required to understand the
bird classification system. Section 2.1 presents the feature extraction by ex-
plaining what MFCC is and how the frequency analysis of short-time sta-
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tionary signals is done, section 2.2 presents the two different model struc-
tures GMM and HMM and how the parameters of these are estimated using
the EM-algorithm. It also include an explanation of the Viterbi algorithm
used for recognition.

Chapter 3 - Database contain a description of the database containing the
audio files of birdsong used in this thesis. Section 3.1 gives some general
information about the database while section 3.2 presents the structure of
the database and how it is divided into different training- and test sets.

Chapter 4 - System description and method contains a general descrip-
tion of the automatic classification system used in the application. An
overview of the whole system is given included a more detailed description
of the training part presented in section 4.1 and a more detailed descrip-
tion of the classification part presented in section 4.2. This section includes
the recognition part, the out-of-class detector, the use of multiple unknown
classes and the post processor. The different methods and algorithms used
are presented along the way together with the corresponding HTK com-
mands and the relevant scripts used.

Chapter 5 - Results and discussion contains the results of the different
experiments along with a corresponding discussion of these results. First,
the results from the initial system using GMMs as model structure together
with different penalty values are presented in section 5.1. The further re-
sults are being compared to these initial results. In section 5.2 the results
achieved by using HMMs as model structure are presented together with
different penalty values. Section 5.3 contains the results when investigating
different frame lengths and corresponding window lengths and the different
number of coefficients extracted. Section 5.4 presents the different contri-
butions on the total error rate from the different bird species while section
5.5 contains results achieved when dealing with unknown birdsong using
the out-of-class detector.

Chapter 6 - Conclusion presents the conclusion of the different results
obtained, concerning the choice of model structure, the different choices
of penalty values, number of coefficients, frame/window lengths, different
contributions from different bird species, different test sets and how to deal
with unknown birdsong. The final conclusion of the thesis is also given
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together with suggested further work.
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Chapter 2
Theory

This chapter gives the fundamental theory behind the automatic classifi-
cation system. Section 2.1 presents the feature extraction by explaining
what MFCC is and how the frequency analysis of short-time stationary sig-
nals are done, section 2.2 presents the two different model structures GMM
and HMM and how the parameters of these are estimated using the EM-
algorithm. An explanation of the Viterbi algorithm used for recognition is
also included.

2.1 Feature extraction

When modeling the different speakers in a speaker classification system,
the acoustic signal from each speaker is not used directly, but it is parame-
terized beforhand. This parameterization extract features that is similar for
speech from the same speaker but varies between the different speakers. It
is desirable that these features occur frequently, are simple to measure, does
not change over time and are not dependent on the speakers health condi-
tion. They should also be unaffected of noise and be of high order. The
same goes for modeling the different bird species in a bird classification
system.
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Chapter 2. Theory

2.1.1 Mel- Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are very often used as fea-
tures in speech and speaker recognition systems and it is reasonable to be-
lieve that this is the best type of features for birdsong as well. In speech
processing, or more generally, sound processing, it is common to represent
the short-time power spectrum with the mel-frequency cepstrum (MFC),
and the MFCCs are coefficients that collectively make up an MFC. In or-
der to approximate the human auditory system response, the MFC is used
instead of the normal cepstrum. This is because the MFC have frequency
bands equally spaced on the mel scale. This gives a better approximation
compared to the normal cepstrum where the frequency bands are linearly
spaced.

The MFCCs are commonly derived as follows:

1. Take the fast Fourier transform (FFT) of (a windowed excerpt of) the
acoustic signal of interest.

2. Map the powers of the spectrum obtained above onto the mel scale,
using triangular overlapping windows. These triangular filters are
uniformly spaced at the mel scale, which is defined as

Mel(f) = 2595 log10(1 +
f

700
) (2.1)

where f is the frequency in Hz. Figure 2.1 is taken from [11] and
shows the filter bank. From this figure we see that the total response
of the filter bank equals 1 in all bands except the first and last band.

Figure 2.1: Mel-scale filter [11].
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3. Take the logs of the powers at each of the mel frequencies.

4. Take the discrete cosine transform (DCT) of the list of mel log pow-
ers, as if it were a signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

This subsection is motivated by [1] and [8].

2.1.2 Frequency analysis of short-time stationary signals
If one assume that a physical signal (birdsong) can be seen as short-time
stationary over K ms it is common to use a window of same length in
order to extract a slice of the signal. The window for this usually have
a rounded shape (Hamming window) that together with the choice of K
gives a specific frequency resolution. After the frequency analysis is done
for the first frame, the window is shifted L ms and the same window based
frequency analysis is done for this slice of the signal. It is common to
choose L < M ms in order to achieve an overlap between consecutive
windows which is desirable. Figure 2.2 is taken from [4] and shows the
whole process for the calculation of MFCCs.

Figure 2.2: Frequency analysis [4].

This subsection is motivated by [4].

2.2 Models
The features extracted from the acoustic signals are being used to create
different models for different bird classes + pause. It is especially two types
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Chapter 2. Theory

of such models that are of interest in this thesis, namely Gaussian mixture
models (GMMs) and hidden Markov models (HMMs).

2.2.1 Gaussian Mixture Models
This subsection is taken from [7]: ”Gaussian mixture models are often used
in biometric systems, most notably in speaker recognition systems, due to
their capability of representing a large class of sample distributions. One of
the powerful attributes of the GMM is its ability to form smooth approxi-
mations to arbitrarily shaped densities.

A GMM is a parametric probability density function represented as a weighted
sum of Gaussian component densities. GMM parameters are estimated
from training data using the iterative Expectation-Maximization (EM) al-
gorithm or Maximum A Posteriori (MAP) estimation from a well-trained
prior model.

A Gaussian mixture model is a weighted sum of M component Gaussian
densities as given by the equation,

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.2)

where x is a D-dimensional continous-valued data vector (MFCCs from
the feature extraction in our case), wi, i = 1, ...,M are the mixture weights,
g(x|µi,Σi), i = 1, ...,M are the component Gaussian densities. Each com-
ponent density is a D-variate Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp{−1

2
(x− µi)′Σ−1i (x− µi)} (2.3)

with mean vector µi and covariance matrix Σi. The mixture weights sat-
isfies the constraint

∑M
i wi = 1. The complete Gaussian mixture model

is parameterized by the mean vectors, covariance matrices and mixture
weights from all component densities. These parameters are collectively
represented by the notation,

λ = {wi, µi,Σi}, i = 1, ...,M (2.4)

”
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2.2 Models

2.2.2 Maximum Likelihood
The following is taken from [7]: ”Given training vectors and a GMM con-
figuration, we wish to estimate the parameters of the GMM, λ, which in
some sense best matches the distribution of the training feature vectors.
There are several techniques available for estimating the parameters of a
GMM. By far the most popular and well-established method is maximum
likelihood (ML) estimation.

The aim of ML estimation is to find the model parameters which maxi-
mize the likelihood of the GMM given the training data. For a sequence
of T training vectors X = {x1, ..., xT}, the GMM likelihood, assuming
independence between the vectors, can be written as,

p(X|λ) =
T∏
t=1

p(xT |λ) = L(λ|X) (2.5)

.” This function is called the likelihood function. The likelihood is thought
of as a function of the parameters λ where the data X is fixed. The maxi-
mum likelihood problem is about finding the parameters λ that maximizes
the likelihood function L described in equation 2.5. We want to find λ∗

where
λ∗ = argmax

λ
L(λ|X) (2.6)

Unfortunately, it is not possible to solve this maximization problem di-
rectly. Hence we need to use an iteratively algorithm to solve the problem,
namely the Expectation-Maximization algorithm. This section is motivated
by [7] and [2].

2.2.3 The Expectation-Maximization algorithm
The Expectation-Maximization (EM) algorithm is an iterative method for
finding maximum likelihood or maximum a posteriori (MAP) estimates of
parameters in statistical models, where the model depends on unobserved
latent variables. The basic idea of the EM algorithm is, beginning with an
initial model λ, to estimate a new model λ′ , such that p(X|λ′

) ≥ p(X|λ).
This new model λ′ then becomes the initial model for the next iteration and
this process is repeated until some convergence threshold is reached.
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From [3]: ”Given a statistical model consisting of a set of observed data X ,
a set of unobserved latent data or missing values Z and a vector of unknown
parameters λ, along with a likelihood function L(λ|X,Z) = p(X,Z|λ), the
maximum likelihood estimate (MLE) of the unknown parameters is deter-
mined by the marginal likelihood of the observed data

L(λ;X) = p(X|λ) =
∑
Z

p(X,Z|λ) (2.7)

Here the variable Z denote missing or unobserved data, containing the in-
formation about which distribution each observed data point belongs to.
The EM-algorithm seeks to find the MLE of the marginal likelihood by it-
eratively applying the following two steps:

Expectation (E) step: Calculate the expected value of the log likelihood
function, with respect to the conditional distribution of Z given X under
the initial/current estimate of the parameters λ(t):

Q(λ|λ(t)) = EZ|X,λ(t){logL(λ;X,Z)} (2.8)

Maximization (M) step: Find the parameter that maximizes this quantity:

λ(t+1) = argmax
λ

Q(λ|λ(t)) (2.9)

Then these two steps are iterated until a convergence threshold is reached”.
This subsection is also motivated by [7] and [2].

2.2.4 Hidden Markov Models
From [4]: ”Hidden Markov models (HMMs) is a natural choice of model-
ing the different bird classes if it turns out that birdsong is a time varying
process, i.e. it got temporary information”. HMM is dominating the area
of speech recognition/classification and recognition/classification of simi-
lar physical signals. The general reason for using HMM as a model is to
utilize the fact that a HMM contains several states with different distribu-
tions and associated transition probabilities such that we can better fit the
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temporary information in a stanza of birdsong [4]. In this thesis, each state
of the HMM contain a GMM-based state distribution. In other words, a
one-state HMM is just simply a GMM.

The following description is inspired by [5] and [11], where a more detailed
description of hidden Markov models can be found. A hidden Markov
model is a stochastic process model in which a discrete time signal is gen-
erated from a series of connected states. Figure 2.3 shows a HMM with
(N − 2) states. It has to special states, one entry state and one exit state.
The entry state is the state of the model before the generative process be-
gins while the exit state is the final model state reached once the generative
process terminates. N = 3 gives just one state and becomes a GMM, i .e.
GMM is just a degenerated HMM without temporary analysis.

Figure 2.3: Illustration of a hidden Markov model [5].

For each time or frame step, the model changes state according to a set of
transition probabilities {aij}. These probabilities denotes the probability
for going from state i to state j.

The resultant state generates an observation in accordance with the out-
put probability distribution of that state. The output probability distribution
function bj(ot) describes the distribution of observations produced by state
j. It gives the probability or likelihood of state j generating the observation
ot. The output distribution may e.g. be a Gaussian distribution which is
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used in this thesis.

The model parameters of a HMM is estimated by using example obser-
vations (training data) of a known class. This is what is called training. The
training is done similar to the estimating of GMM parameters, i.e. with a
case of the EM-algorithm called Baum-Welch algorithm. For a more de-
tailed explanation of this algorithm than what is given in chapter 2.2.3, see
[11].

2.2.5 Recognition - Viterbi decoding
The recognition of the input applied the application is done by an algorithm
called Viterbi. For a detailed mathematical description of this algorithm,
see [11]. Given a sequence of observations, the goal of the Viterbi algorithm
is to find the sequence of states that generated it. The Viterbi algorithm finds
the most likely path of states through the recognition network. In other
words, it finds the sequence of states belonging to the legal bird classes or
pause that are most likely to have produced the input.

Figure 2.4: Illustration of possible paths

Figure 2.4 illustrates this. The green dashed lines shows possible paths be-
tween states. The Viterbi algorithm seeks to find the path that maximizes
the probability, i.e. the connection between states that is most probable that
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generated the observation sequence. This most probable sequence is illus-
trated by the blue path.

Most likely means the bird class or pause that gives the highest log like-
lihood score for each frame of birdsong. Consider the following: Xs =
{x1, ..., xR} denotes a segment of birdsong containing R frames of a fixed
length. The likelihood of this segment can be written

Likelihood(Xs) = p(Xs|wi) =
R∏
k=1

p(xk|wi) (2.10)

where wi denotes all the legal bird classes + pause that the segment can
be recognized as. The segment Xs gets recognized as the class wi which
maximizes the log likelihood

LogLikelihood(Xs) = log(Likelihood(Xs)) =
R∑
k=1

log(p(xk|wi))

(2.11)
”The Likelihoods in the Viterbi algorithm will in the end decrease to a
very small number because of the product. To avoid underflow when using
computers for calculation, the Viterbi algorithm is implemented in the log-
arithmic domain. A recording of birdsong is acoustically closer to a HMM,
the higher log likelihood it has” [6].
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Chapter 3
Database

This chapter contains a description of the database containing the audiofiles
of birdsong used in this thesis. Section 3.1 gives some general information
about the database while section 3.2 presents the structure of the database
and how it is divided into different training- and test sets. This will give a
good overview and understanding of how the database is built up.

3.1 General information

The database is handed out by my supervisor while the actual recording
of the birdsong is done by various sources of the company AbleMagic.
The following information is given by [4]. The sampling frequency of the
recordings is 16 kHz and they are saved in wav-format. The database is
labeled using the program Praat, see [10] for more information of the pro-
gram Praat. The labeling is done using a script that automated parts of the
process. The labeling is done such that segments corresponding to song
from the bird species of interest is labeled as ”song”, while the remaining
segments is labeled ”pause”. This implies that the ”pause” segments is a
collection of ”real” pauses, background noise, song from other bird species,
chorus of birdsong etc. The label files where saved in a TextGrid-format
which is a xml-format defined of Praat. Then a perl-script was used to con-
vert the label files from the TextGrid-format to a so called Master Label
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File (MLF), which HTK can use for training of models and for evaluating
the results of the recognition.

3.2 Structure

The duration of the reorded audio files varied greatly. The shortest files was
2-3 seconds while the longest was over 25 minutes. The recordings which
is intended to be applied to the application is about 30 seconds. The audio
files with a duration greater than 60 seconds is therefore split into shorter
audio files, where the split files have a duration up to 85 seconds. After this
split, the final database used in this thesis ended up consisting of 629 files
containing birdsong from 21 different bird species. The typical length of a
file is 30 seconds, but some of the files deviate greatly from this. Table 3.1
shows the distribution of these 629 files over the 21 different bird species
that the system are able to recognize. It also shows how many files out of
the total amount that are used for training and testing in the third and fourth
column respectively.

Notice from table 3.1 that the amount of recordings of the different bird
species vary a lot. It exist only 14 files for Dompap, while SvartHvitFlues-
napper have 76 files of birdsong. One can also note that only 126 of the
totat 629 birdsong files are used for testing the system performance.

As barely mentioned earlier, the database is divided into a training set and
a testing set. The training set contains the files being used as example data
in order to train the models for each bird class + pause while the test set
contains the files being used in order to test the system and achieve results
which can give us a picture of whether such a classification system for bird-
song works satisfying or not.

Because of a critical small database, one had to choose a 4:1 ratio when
dividing the database into sets for training and testing respectively. This
distribution is shown in table 3.1. In order to increase the confidence of the
results it is made five different training- and test set which together forms a
data set, i.e. five different ways of splitting the files for the bird species into
a training set and a test set. Data set 1 contains different files for testing and
training compared to data set 2, 3, 4 and 5. This leads to five completely
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Class Total Train Test
Bjorkefink 19 15 4
Blaameis 30 24 6
Bokfink 18 14 4
Dompap 14 11 3
Granmeis 21 17 4

Gransanger 30 24 6
Grønnfink 27 22 5
Gulspurv 23 18 5

Hagesanger 24 19 5
Jernspurv 28 22 6
Lovsanger 33 26 7
Maltrost 34 27 7
Munk 41 33 8

Rodstjert 21 17 4
Rodstrupe 32 26 6
Sivspurv 25 20 5

SvartHvitFluesnapper 76 61 15
Svartmeis 31 25 6
Svarttrost 50 40 10
Toppmeis 21 17 4
Trekryper 31 25 6

Total 629 503 126

Table 3.1: Database overview

different data sets used for testing while some of the files used for training
in the different sets are similar. This let us achieve more confident results
by averaging over them. Obviously, any files that are used for training are
not being used for testing and vice versa. This applies to all the five data
sets.
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Chapter 4
System description and method

Figure 4.1: System

This chapter contains a general description of the automatic classification
system used in the application. An overview of the whole system is given
including a more detailed description of the training part presented in sec-
tion 4.1 and a more detailed description of the classification part presented
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in section 4.2 which includes the recognition part, the out-of-class detector,
the use of multiple unknown classes and the post processing. The different
methods and algorithms are presented along the way together with the cor-
responding HTK commands and relevant scripts used.

Figure 4.1 shows the overall system which forms the basic of the appli-
cation for automatic classification of birdsong. The input is typically a
10-30 seconds acoustic signal recorded by the user and the output is just an
answer to the question ”What type of bird is singing?”

The process of answering this question involves several steps: training of
unique models corresponding to each bird class plus pause, recognition by
investigating which model the input recording matches best, i.e. choos-
ing the bird class or pause that gives the highest log likelihood score. The
following explains the whole trip from input to output.

4.1 Training
To be able to recognize the input data applied the application as a bird, good
prior trained models for each bird class plus pause are necessary. The pause
class includes all other sounds than birdsong and silence.

Figure 4.2: Training

Figure 4.2 illustrates the training process. The input is pre-labeled audio
files containing birdsong from the training set for a specific bird class.
A feature extraction is applied to the audio file resulting in a parameter-
ized signal described by vectors of MFCCs. One vector contains a chosen
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number of MFCCs for a chosen frame length. These MFCC vectors are
forming an even bigger vector which holds all the frequency information
corresponding to a single class. This big MFCC vector is illustrated as
”features” in figure 4.2. The features together with corresponding labels
and a model structure (GMM or HMM) is applied to the EM-algorithm,
which iteratively trains the model until some convergence is reached. Given
M distributions (mixtures) that together forms a model (GMM/HMM), the
EM-algorithm finds which MFCC vector in the big vector that belongs to
which distribution/mixture of the model. The final result of the training is a
model for a bird class or pause, ready to be used as a model for the upcom-
ing recognition. This procedure is done for all the bird classes plus pause,
forming a model set consisting of 22 models (21 bird species plus pause).
Window based processing is utilized, meaning that the acoustic signals are
split up in pieces which can be seen as stationary, and the feature extraction
is done for each of these pieces.

The perl script used for training is called ”TrainModels BootManual.pl”
and can be found in Appendix A. This script uses the HTK commands:

• HCopy: Used for feature extraction. Converts automatically the input
(training set) into MFCC vectors. To do this, a configuration file is
needed which specifies all of the conversion parameters. An example
of such a config file can be found in Appendix B.

Figure 4.3: HCopy [11]

Figure 4.3 illustrates the flow of the command and is taken from [11].

• HCompV: Sets the mean and variance of every Gaussian component
in a GMM/HMM definition to be equal to the global mean and vari-
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ance of the training data, i.e. creates an initial model ready for further
re-estimation.

Figure 4.4: HCompV [11]

As seen from figure 4.4 which is taken from [11], the HCompV com-
mand needs a proto GMM/HMM Definition which holds the struc-
ture of the model (number of states, transition probabilities etc.) and
sample data. The output is models for each bird plus pause with mean
and variance equal to the global mean and variance.

• HRest: Performs the EM-algorithm (Baum-Welch re-estimation), which
iteratively re-estimates the parameter values of the models. Expects
an initialised GMM/HMM definition (by HCompV).

• HHEd: Used for cloning models in order to design models containing
more mixtures.

4.2 Classification
The classification consists of the recognition, an out-of-class detector, a
decision and a post processor. Figure 4.5 presents a block scheme of the
classification process.

Figure 4.5: Classification
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4.2.1 Recognition

Input to the recognition block is features (MFCC) of a recording of the bird-
song of interest. The recognition is done by the Viterbi-algorithm, which
finds the most likely path in a recognition network consisting of all pos-
sible bird classes plus pause. The Viterbi algorithm finds the most likely
sequence of birds (ideally just one bird) and pauses that produced the input
audio, and produces a resulting list of segments with corresponding dura-
tion, recognition label and the log likelihood score per frame. Figure 4.6
shows an example of such a list produced by the recognizer by applying
birdsong from ”Gulspurv”.

Figure 4.6: Example output produced by the recognizer

From figure 4.6 we see that the audio file containing birdsong from Gul-
spurv have segments that have been recognized as both Gulspurv, Jernspurv
and pause.

The recognition is done using the perl script ”Decode test5 HMM.pl” which
could be found in Appendix C. The HTK commands used for recognition:
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• HParse: Builds the recognition network consisting of all legal classes
plus pause using a grammar.

• HVite: Performs the Viterbi-based recognition. Takes the recognition
network and the pre trained model set as input and output a result file
similar to the one shown in figure 4.6.

• HResults: Evaluates the recognition results. Takes the original Mas-
ter Label File (MLF) which contains the correct labels of the test set
and the MLF file generated by HVite as input and compare these two.
This is a way of investigating the final results of recognition process.

4.2.2 Out-of-class detector

The second part of the thesis is about dealing with unknown bird classes.
If birdsong from a bird class that is unknown to the system is applied, an
out-of-class detector is intended to help the classifier classify this birdsong
as unknown, and not as birdsong from one of the known classes. The out-
of-class detector investigate the log likelihood score per frame for every
recognized segment. If this score is below a fixed threshold for the ac-
tual bird class, it changes the corresponding label to ”UNK”, which is an
abbreviation for ”unknown”. Figure 4.7 illustrates an example of optimal
performance of the out-of-class detector.

Figure 4.7: Out-of-class detector
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In this example, Gulspurv has been deleted from the recognition network
meaning that birdsong from Gulspurv is unknown to the system in this case.
The segments of this recording of Gulspurv gets recognized as Jernspurv,
but because of log likelihood scores below the fixed threshold for Jernspurv,
the segments gets labeled as ”UNK”, and later on classified as unknown in-
stead of Jernspurv.

These fixed thresholds mentioned above are found by investigating the log
likelihood scores for wrong recognized segments and correct recognized
segments of birdsong from each bird class. In this thesis these thresholds
are found from both the training set and the test set. Neither of them are
optimal. An untouched data set for finding these thresholds should have
been used, together with recordings from bird classes that are unknown to
the system. In the absence of both an untouched data set (a data set not
used for training or testing) and birdsong from unknown bird classes, an
improvised method for finding thresholds and testing the performance of
the out-of-class detector is used. The following describes the method for
finding thresholds from the training set (only files from one of the five train-
ing sets are used):

1. For class i = 1 : 21:

(a) Remove the model belonging to class i from the recognition net-
work and generate the recognition network ”anti i” consisting
of 20 classes.

(b) Recognize all birdsong files from class i with the recognition
network ”anti i” and generate the result file ”anti i.rec”, con-
sisting of only wrong recognized segments.

2. For class j = 1 : 21:

(a) Find all segments from the 21 ”anti i” rec-files which has been
recognized as class j and place in a file called ”wrongclass j”.
One line is the segment information: ”correct class”, #frames,
log likelihood/frame

(b) Find min j and max j of the log likelihood score per frame.

3. For class j = 1 : 21:

(a) Recognize all birdsong files from class j with the full recog-
nition network (21 classes) and generate the result file ”cor-
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rect j.rec”, consisting of hopefully a lot of correct recognized
segments.

4. For class j = 1 : 21:

(a) Find all segments in ”correct j.rec” which is recognized as class
j and place in a file called ”correctclass j”. One line is the seg-
ment information: ”correct class”, #frames, log likelihood/frame

(b) Find min j and max j of the log likelihood score per frame.

5. For class j = 1 : 21:

(a) Find the smallest min j of step 2b and 4b and find the biggest
max j of step 2b and 4b.

(b) Define the bin sizes bin j = (max j−min j)/30 by using the
values found in 5a.

(c) Define the bin boundaries bing j[k] = min j + bin j ∗ (k− 1)
for k = 1 : 31

(d) Make histograms, i.e.
i. Find the total number of frames in the file ”wrongclass j”

that satisfies:
bing j[k] < loglikelihood/frame < bing j[k + 1] for
k = 1 : 30

ii. Find the total number of frames in the file ”correctclass j”
that satisfies:
bing j[k] < loglikelihood/frame < bing j[k + 1] for
k = 1 : 30

6. For class j = 1 : 21:

(a) Plot the two histograms created above in the same figure. One
shows wrong recognized segments with the related log likeli-
hood scores and one shows correct recognized segments with
the related log likelihood scores.

(b) Investigate how much the histograms overlap. Set threshold for
the log likelihood between them. Ideally should all the wrong
recognized segments have a lower log likelihood score com-
pared to the correct recognized segments.

In the absence of unknown birdsong in the database, one of the five test
sets are used in order to test the out-of-class detector. This is done by
doing classification of the test set 21 times, and letting one by one bird class
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being unknown to the system at each time. The final results are achieved
by averaging over all the 21 different cases.
Setting thresholds from the test, i.e. from the same data that are being used
for investigating the performance of the out-of-class detector afterwards,
gives a good picture of whether such an out-of-class detector is a good idea
or not. The resulting performance using the same data for both finding
thresholds and testing gives an upper limit of how good the out-of-class
detector could ideally work with the data set of interest. The method of
finding thresholds from the test set is done quite similar as the way they
where found from the training set. The following describes this method:

1. Repeat the steps 1ab, 2a, 3a, 4a from the method described above
related to thresholds found from training set, but now using only the
birdsong files from one of the five test sets.

2. For class j = 1 : 21:

(a) Define an area around the threshold found from the training set
and portion this area such that you get 50 values/thresholds uni-
formly spread in this area.

(b) For each threshold value T jk, k = 1 : 50, do the following:
i. Check the log likelihood score for each segment in ”wrong-

class j”.
If loglikelihood/frame < T jk you have a correct reject.
If loglikelihood/frame > T jk you have a false accept.

ii. Check the log likelihood score for each segment in ”cor-
rectclass j”.
If loglikelihood/frame < T jk you have a false reject.
If loglikelihood/frame > T jk you have a correct ac-
cept.

(c) Plot the number of false accepts vs. the number of false rejects
as function of the various T jk.

(d) Select the threshold which gives the lowest amount of false ac-
cepts and false rejects.

Testing the performance of the out-of-class detector with thresholds found
from the test set are done similar as it was done with thresholds found from
the training set.

The matlab scripts designed for finding the thresholds and for replacing
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the recognition labels for the segments to ”UNK” when the log likelihood
score per frame is below the found thresholds for each bird class are found
in Appendix D.

4.2.3 Multiple unknown classes
One problem arises in the out-of-class detector when labeling the segments
”UNK” when the log likelihood score per frame for a segment is below the
respective threshold. Consider the following example illustrated by figure
4.8.

Figure 4.8: Illustration of multiple unknown classes
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The recognition file on top in figure 4.8 shows that a birdsong file from
Svartmeis gets recognized with segments corresponding to both Svartmeis,
Jernspurv and Granmeis. However, the resulting classification without the
out-of-class detector of the file is correct, i.e. it gets classified as Svartmeis.
In the middle example, the same recognition file is applied to the out-of-
class detector which leads to segments getting labeled as ”UNK” when the
log likelihood score per frame is lower than the threshold for the actual bird
class. Then a decision on which class that occur most frequently (longest
duration compared to the total length of the birdsong file) is made. It turns
out that the birdsong file that belongs to Svartmeis now gets classified as
”Unknown”, which is wrong. This is because the segments labeled UNK
have a together longer duration than the segments labeled Svartmeis. The
bottom example shows a solution for this, which is to create 21 different
unknown classes, one for each bird, such that segments initially recognized
as different bird species and later labeled as ”UNK” do not melt together
and beat the true bird class in the decision.

The matlab script designed for replacing the recognition labels to ”UN-
Kbirdclass” when the log likelihood score per frame is below the found
thresholds for each bird class are found in Appendix D.

4.2.4 Post processing and decision
The Viterbi-based decoder discussed in subsection 4.2.1 provides a se-
quence of segments of varying lengths, each one with a corresponding log
likelihood score. This gives a noisy picture of the reality, i.e. a file gets
recognized with segments labeled as different bird species. Figure 4.6 il-
lustrates the problem of deciding which bird the system should classify the
recording as. Both Gulspurv and Jernspurv have been recognized as six
segments. This implies that the decision is impossible to do if one should
count the frequency of a bird class on segment level. This implies that long
and short segments are both weighted equally. A method that counts the
number of occurrences of the different bird species on frame level takes
the lengths of the segments into account, and a decision of which bird the
birdsong comes from can be made.

The matlab script designed for making the decision on a frame level is
found in Appendix E.
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However, the method mentioned above uses only the frequency of the N
best classes. Most of the classes (all other classes than Gulspurv and Jern-
spurv in the example illustrated in figure 4.6) does not appear in the result-
ing result file after the recognition of one single file, and have therefore a
frequency equal zero. One have chosen to investigate whether the distribu-
tion of the durations for every single file contains discriminating informa-
tion. When recognizing all the files corresponding to the 21 bird species
(the whole test set) it results in one histogram for each single file contain-
ing information about the occurrences of the different bird species and their
total number of frames (duration). Now we do some post processing in or-
der to make the decision. Each of the obtained histograms gets normalized
in order to compensate for the various amount of frames, i.e. various file
lengths. The normalized histogram acts as a vector-estimate of the posteri-
ori probabilities PA = {P1(w1|X), ..., PC(wC |X)} where C is the number
of classes and X is the sequence of MFCC-vectors of the recording. The
probability vector PA is then used as input to a linear classifier with so-
called softmax based output nodes. The output values will then, hopefully,
represent a better estimate of the posteriori probabilities PB(wi|X) for each
class. This is what it is done in the post processing block in figure 4.5. Then
a decision is made by investigating these PB probabilities by picking the
class with the highest probability. For a more detailed description of such a
post processor, see chapter 3 in [9].

The script for using the post processor for making the decision is found
in Appendix E. Note that one has to run the script for making the decisions
on frame level before running the script using the post processor for mak-
ing the decision. This is because the histograms generated by the script for
making decision on frame level acts as input to the post processor.
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Chapter 5
Results and discussion

This chapter presents the results of the different experiments along with a
corresponding discussion. First the results from the initial system are pre-
sented. The choice of the initial GMM structure, penalty values, number
of coefficients, frame and window length etc. is proposed by [4]. Sec-
ondly the different ways of modeling the bird species are presented with
the corresponding results. All these results corresponds to a system where
all the recordings comes from a known bird. After this the system perfor-
mance when dealing with unknown bird classes are presented together with
the strategies of finding good and ”optimal” thresholds for the out-of-class
detector.

5.1 GMM

The initial case, from [4], is when the bird classes are modeled with GMMs
of 32 mixtures. The feature extraction is done on frames of 20 ms with
corresponding window lengths of 30 ms. The number of MFCCs extracted
from one frame is 15 + one extra coefficient appended as the energy co-
effficient. It is also included coefficients for the derivative (delta) and the
double derivative (acceleration) of the features that together forms a vector
of (15 + 1)× 3 = 48 coefficients. The penalty value is set to P = −40.
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Data set Best 2-best 3-best
Training 9.42 4.29 3.54

Test 24.17 13.56 10.05

Table 5.1: GMM - Initial average error percentage without post processor

Table 5.1 shows the resulting error percentage when the decision is done
on frame level, i.e. without the post processor. These results are an average
of the five different training/test sets. It also includes the 2-best and 3-best
results, meaning that if the correct bird class is one of the two (2-best) or
three (3-best) best suggestions from the histograms it does not increase the
error percentage.

Table 5.2 shows the results of the same setting, but now with the post pro-
cessor.

Data set Best 2-best 3-best
Training 3.93 0.87 0.40

Test 19.91 10.84 7.50

Table 5.2: GMM - Initial average error percentage with post processor

As can be seen out of table 5.1 and 5.2 the system performance gets im-
proved with the use of the post processor. The average error of the test sets
decreases from 24.17% to 19.91% when looking at only the best candidate
from the histograms. This is an improvement of 4.26% which makes the
system able to recognize about 80% of the birdsong correct instead of 75%.

P = −40 P = −60 P = −80 P = −100
19.91 19.90 20.56 20.87

Table 5.3: GMM - Average error percentage with different penalty values

Table 5.3 shows the average results for the test sets when calculating the
error percentage for the 1-best case and adjusting the penalty value. It can
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be seen from this table that the different penalty values does not affect the
system performance much.

It can also be seen from table 5.1 and 5.2 that the difference between the re-
sults achieved using the test sets versus the training sets are big. Because of
this one can say that the system ”recognizes” the training set, meaning that
if one uses the same data set for training and testing one achieves results
that are way better than what is realistic. The performance achieved by ap-
plying the training set gives an upper limit of how good the classification
system could work. The difference in performance achieved between the
test set and the training set implies that the system do not generalize well.
This leads to poorer performance of the test set.

5.2 HMM

Now the bird classes are modeled with a 2-state-HMM where each state
contains a GMM of 32 mixtures. The feature extraction is done similar to
the one for the GMM case, i.e. frames of 20 ms with corresponding window
lengths of 30 ms and (15 + 1) × 3 = 48 coefficients. The penalty value is
set to P = −40.

Data set Best 2-best 3-best
Training 2.46 1.03 0.39

Test 19.74 11.64 7.82

Table 5.4: 2-state-HMM - Average error percentage without post processor

Table 5.4 shows the resulting error percentage without the use of the post
processor. From this we can see that we achieve an average error percentage
of the test sets of 19.74% for the 1-best case, which is an improvement of
4.43% compared to the similar GMM setting.
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Data set Best 2-best 3-best
Training 1.67 0.24 0.08

Test 18.32 10.84 8.12

Table 5.5: 2-state-HMM - Average error percentage with post processor

Table 5.5 shows the system performance when the post processor is in-
cluded when using HMM. Including the post processor leads to an im-
provement of the 1-best case by 1.42% compared to the case without a post
processor, for the test sets. In comparison, the post processor improved the
1-best case by 4.26% using GMM. It looks like the post processor make a
bigger difference when GMMs are used as model structure.

P = −40 P = −60 P = −80 P = −100
18.32 18.33 18.96 17.69

Table 5.6: HMM - Average error percentage with different penalty values

Table 5.6 shows the average results for the test sets when calculating the
error percentage for the 1-best case and adjusting the penalty value. It can
be seen from this that the different penalty values does not affect the system
performance much (less than 1% improvement). However, the best result
is achieved with a penalty value of -100. With this we get an average error
percentage of 17.69%. Comparing the test set result of the best setting us-
ing GMM with the best setting using 2-state-HMM, shows that the system
performance improves from an average error percentage of 19.90% to an
average error percentage of 17.69%.

A 3-state-HMM where also investigated, but the training program termi-
nated due to a big mismatch between the models and the incoming training
data.
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5.3 Number of coefficients, frame and window
lengths

From the above experiments, the best best results are achieved by using
a 2-state HMM with a GMM of 32 mixtures corresponding to each state,
(15 + 1) × 3 = 48 coefficients, frame length of 20 ms, window length of
30 ms, penalty value of -100 and using the post processor. This setting will
further be referred to as ”best setting”. This best setting is now investigated
by looking at various lengths of frames and corresponding window lengths
and the number of coefficients used in the feature extraction.

Data set Best 2-best 3-best
Training 2.43 0.48 0.12

Test 21.17 15.30 10.98

Table 5.7: Average error percentage with frame length of 15 ms and window
length of 25 ms

Data set Best 2-best 3-best
Training 1.03 0.24 0

Test 17.68 11.64 9.24

Table 5.8: Average error percentage with frame length of 25 ms and window
length of 40 ms

Table 5.7 and 5.8 shows the results for the best setting from the previous
experiments, but now using a shorter and longer frame length and corre-
sponding window length, respectively. The use of 25/40 ms is better than
the use of 15/25 ms. However, none of them achieves noticeable improve-
ments compared to the previous 20/30 ms case.
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Data set Best 2-best 3-best
Training 1.71 0.28 0.08

Test 18.63 11.32 8.61

Table 5.9: Average error percentage with (12 + 1)× 3 = 39 coefficients

Data set Best 2-best 3-best
Training 1.11 0.20 0.12

Test 18.62 9.39 7.32

Table 5.10: Average error percentage with (19 + 1)× 3 = 60 coefficients

Table 5.9 and 5.10 shows the results for the best setting from the previous
experiments, but now using less and more coefficients in the feature ex-
traction, respectively. The use of 39 coefficients and 60 coefficients gives
pretty much the same system performance, and does not vary a lot from the
previous best setting.
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5.4 Different bird species and different test sets
The different bird species tends to give different contributions to the overall
result of the system.

Figure 5.1: Recognition matrix

Figure 5.1 shows the results of the recognition for one of the five test sets
where ”the best setting” where used in order to train the models. It shows a
matrix consisting of all the bird species that are included in the test files and
known to the system. The red diagonal corresponds to all the segments that
are correct recognized while the other numbers in the matrix corresponds
to segments that are recognized wrong. One can see from the blue column
on the right that 9 out of 21 bird species gets recognized 100% correct,
6 birds species gets recognised between 88%-98% correct while Dompap
(60%), Granmeis (69.2%), Sivspurv (54.2%) and Svarthvit Fluesnapper
(32%) contributes to lower the overall recognition results to 80.1% cor-
rect recognitions (926 out of 1156 segments correct). The amount of inser-
tions (275) and deletions (100) indicates that the penalty value (p = −100)
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maybe is too low. However, this penalty value turned out to give the best
classification performance and most of the insertions and deletions corre-
sponds to ”pause” and does not affect the results anyway.

The trend according to which bird species that the system easily recognizes
correct or not seems to yield all the different test sets and all the different
ways of modeling the bird species.

Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Average
23.81 18.55 12.40 19.35 23.02 19.43

Table 5.11: Error percentage for the five different test sets for the ”best setting”
without post processor

From table 5.11 it can be seen that the classification results varies a lot
between the five different test sets. This implies that one should be careful
making conclusions of the system performance based on results achieved
from our test sets.

5.5 Out-of-class detector

Finding the thresholds that are being used in the out-of-class detector is
done by investigating the log likelihood scores from the training set and the
test set. These methods are described in detail in section 4.2.2.

5.5.1 Thresholds from training set

In the absence of an untouched data set for finding thresholds for the log
likelihood scores for each bird used in the out-of-class detector, one of the
five training sets are used as input for the recognition in order to set the
thresholds.
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Figure 5.2: Trivial case of setting threshold

Figure 5.3: Difficult case of setting threshold
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Figure 5.2 and 5.3 illustrates a trivial case and a difficult case of setting
thresholds, respectively. The red curve corresponds to segments which is
recognized wrong, i.e. recognized as a bird when the birdsong belongs to
another bird. The green curve corresponds to segments which is recognized
correct. By choosing a threshold for the log likelihood score per frame of
-105 for the bird class ”Rodstjert” in figure 5.2, we get rid of a lot false
acceptance (red curve) without eliminating any correct acceptance (green
curve). On the other hand, figure 5.3 illustrates that setting any threshold
higher than -100 for the bird class ”Bokfink” would affect the correct ac-
ceptance which is undesirable. All the plots similar to the ones presented
above in figure 5.2 and 5.3 for the other bird classes can be found in Ap-
pendix F.

Two different strategies of setting thresholds are investigated. With strategy
1 the thresholds are chosen in a way such that no false rejects are allowed,
i.e. the thresholds is set such that the whole green curve lies to the right of
the threshold. With strategy 2 the thresholds are chosen in a way such that
some few false rejects are allowed if one can get rid of a lot of false accepts,
i.e. the thresholds is set such that as much of the red curve as possible lies
to the left of the threshold while accepting a bit of the green curve to do the
same. The chosen thresholds is presented in table 5.12.
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Bird class Strategy 1 Strategy 2
Bjorkefink -82.0 -82.0
Blaameis -101.5 -97
Bokfink -99.2 -99.2
Dompap -92.8 -80.0
Granmeis -94.2 -94.2

Gransanger -99.9 -99.9
Grønnfink -102.0 -102.0
Gulspurv -99.3 -99.3

Hagesanger -105.8 -103.5
Jernspurv -114.0 -104.5
Lovsanger -109.0 -102.0
Maltrost -109.0 -99.6
Munk -106.0 -99.4

Rodstjert -120.0 -104.0
Rodstrupe -109.0 -101.5
Sivspurv -112.0 -92.0

SvartHvitFluesnapper -114.0 -106.0
Svartmeis -116.1 -96.0
Svarttrost -105.0 -110.2
Toppmeis -98.5 -95.0
Trekryper -109.5 -96.5

Table 5.12: Thresholds for the log likelihood score per frame chosen using one of
the training sets

In the absence of a data set containing birdsong from unknown bird classes,
the testing of the out-of-class detector and the corresponding system perfor-
mance is done by running classification of one of the five test sets 21 times.
Each time a new bird is taken out of the recognition network such that the
birdsong files that belongs to this bird is unknown for the system. After this
an average of all these 21 different classification results are taken. In order
to say something about whether the out-of-class detector works good the
result is compared with the average result for classification of the same test
set 21 times (one and one bird unknown) but now without the out-of-class
detector. This implies that all the files that belongs to the unknown bird
gets classified wrong. The results are shown in table 5.13 below.
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Data set Without Strategy 1 Strategy 2
Test set 1 26.9085 27.3998 35.2608

Table 5.13: Average error percentage without/with out-of-class detector with
thresholds from training set

From table 5.13 above it can be seen that the results achieved with the
out-of-class detector are worse than the results achieved without the out-
of-class detector. This yields both with thresholds set by strategy 1 and
strategy 2. This implies that the thresholds found from the training set does
not work properly. Hence, one can say that setting thresholds from the same
set that are being used for training the models is a bad idea. It can also be
seen from table 5.13 that strategy 1 gives much better results than strategy
2, hence the system is very vulnerable with respect to false rejects.

5.5.2 Thresholds from test set

The same procedure for finding threshold is done, but now using the test set
that are also being used in order to test the system performance afterwards.
This could be seen as a way of ”cheating” because we set the thresholds
from the same set that we use for testing. However, it could help us to find
out whether such an out-of-class detector could improve the system perfor-
mance or not when dealing with unknown birdsong.

Figure 5.4 and 5.5 illustrates a trivial case and a difficult case of setting
thresholds, respectively. The blue curve corresponds to false accepts while
the pink curve corresponds to false rejects. By choosing a threshold for the
log likelihood score per frame of -107 for the bird class ”Rodstjert” in figure
5.4, we get rid of a lot of false accepts (from 38 to 18) without introducing
any false rejects. On the other hand, figure 5.5 illustrates that setting any
threshold higher than -100 for the bird class ”Sivspurv” would introduce
false rejects while the win by decreasing the amount of false accepts is not
very big. All the plots similar to the ones presented above in figure 5.4 and
5.5 for the other bird classes can be found in appendix F.
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Figure 5.4: Trivial case of setting threshold

Figure 5.5: Difficult case of setting threshold
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Similar as for the training set, two different strategies of setting thresholds
are investigated. Strategy 1 does not allow any false rejects. This implies
that the result from these thresholds must be at least as good as the result
achieved without the out-of-class detector. Strategy 2 allow some few false
rejects if the threshold decreases the amount of false accepts a lot. The
chosen thresholds is presented in table 5.14.

Bird class Strategy 1 Strategy 2
Bjorkefink -70.0 -70.0
Blaameis -96.5 -96.5
Bokfink -94.1 -94.1
Dompap -77.4 -75.5
Granmeis -95.0 -95.0

Gransanger -94.1 -94.1
Grønnfink -85.1 -75.1
Gulspurv -115.0 -105.0

Hagesanger -105.3 -103.1
Jernspurv -107.1 -105.2
Lovsanger -106.1 -104.1
Maltrost -110.5 -94.6
Munk -107.3 -104.2

Rodstjert -106.4 -104.3
Rodstrupe -101.4 -97.2
Sivspurv -100.1 -100.1

SvartHvitFluesnapper -109.2 -109.2
Svartmeis -108.6 -108.6
Svarttrost -102.4 -100.1
Toppmeis -96.4 -94.5
Trekryper -101.2 -95.1

Table 5.14: Thresholds for the log likelihood score per frame chosen using one of
the test sets

The testing of the out-of-class detector with threshold found from the test
set and the corresponding system performance is done similar as it was
done for the thresholds found from the training set. The results are shown
in table 5.15 below.
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Data set Without Strategy 1 Strategy 2
Test set 1 26.9085 25.3212 30.3477

Table 5.15: Average error percentage without/with out-of-class detector with
thresholds from test set

From table 5.15 it can be seen that with the thresholds set by strategy 1, the
system improves from an average error percentage of 26.91% to an average
percentage of 25.32%. This is an improvement of 1.59%. This number can
be misleading. Remember that for each of the 21 tests that are run, only one
bird class provides birdsong that is unknown to the system. Each bird class
have an average of (Total files in test set 1/Number of bird classes = 126/21
= 6) six birdsong files in the test set. Hence only 6 of the total 126 files
forming the test set are unknown. Ideally, the out-of-class detector classi-
fies all six files that belongs to the unknown bird class as unknown. Without
the out-of-class detector, 6 out of 126 (4.76%) gets classified wrong (in av-
erage). So with an ideal out-of-class detector, the average error percentage
can only be improved by 4.76%, meaning that all the unknown birdsong
gets classified as unknown. With strategy 1, 1.59%/4.76% = 33.4%, of the
unknown birdsong gets classified as unknown in average, and not as one of
the known bird species in the system.

5.5.3 Multiple unknown classes
Implementing multiple unknown classes avoids segments classified as ”UNK”
to melt together and beat the true bird class in the decision.

Thresholds from Strategy Joint unknown class Multiple unknown classes
Training set 1 27.40 27.04
Training set 2 35.26 34.39

Test set 1 25.32 25.28
Test set 2 30.35 29.70

Table 5.16: Average error percentage with joint unknown class and multiple un-
known classes used in the out-of-class detector

From table 5.16 it can be seen that introducing multiple unknown classes
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for the case using strategy 1 to find thresholds from the test set decreases
the average error percentage from 25.32% to 25.28%. Hence, 35 out of 100
unknown birdsong recordings gets classified as unknown instead of 34 out
of 100 as for using one unknown class.
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Chapter 6
Conclusion

This chapter presents the conclusion of the different results obtained, con-
cerning the choice of model structure, the different choices of penalty val-
ues, number of coefficients, frame/window lengths, different contributions
from different bird species, different test sets and how to deal with un-
known birdsong. The final conclusion of the thesis is also given together
with suggested further work.

6.1 GMM vs. HMM

The best result using GMMs as models for the bird classes where achieved
using 32 mixtures, frames of 20 ms with corresponding window lengths of
30 ms, 15 MFCCs, a penalty value in the decoder of p = −60 and using the
post processor for making the decision. This setup led to an average error
of 19.90% for the 1-best case for the test sets.

Replacing GMMs with 2-state-HMMs where each state contains a GMM
of 32 mixtures, using frames of 25 ms with corresponding window lengths
of 40 ms and 15 MFCCs in the feature extraction, a penalty value in the
decoder of p = −100 and using a post processor for making the decision,
led to an average error of 17.68% for the 1-best case for the test sets which
was the best result using HMMs as models for the bird classes.

From this it can be said that using HMMs instead of GMMs for model-
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ing the different bird classes, the resulting system performance improves
by 2.22%. This is clearly a noticeable improvement. Because HMM works
better than GMM, it is reasonable to say that birdsong does contain some
temporary information which HMMs are able to deal with in a better way
than GMMs. On the other hand, using a 2-state-HMM doubles the amount
of distributions that needs to be trained for each bird class. This leads to
less training data (less frames of birdsong) per distribution. In other words,
a 2-state-HMM requires a bigger training set than just a GMM.

6.2 Penalty value, number of coefficients and
frame length

The different penalty values set in the decoder for adding penalties for
jumping from one bird class to another in the recognition of a file does not
affect the resulting system performance much. The different penalty val-
ues investigated with the GMM setup gives resulting error percentages that
vary less than 1%. The same goes for the HMM setup. A reason for this is
because the deletions and insertions caused by the different penalty values
mainly concerns pause segments (silence and other sounds), and therefore
does not affect the resulting system performance noteworthy. The purpose
of this penalty value is to make the amount of insertions (more segments)
and deletions (fewer segments) pretty equal, but it turned out that the best
penalty value was the one who gave more insertions than deletions. This
implies that it is more important to avoid losing information by deleted seg-
ments than it is to avoid added segments by insertions.

The number of coefficients extracted from each frame used for modeling
the different bird species does not affect the resulting performance much.
Using 12, 15 and 19 MFCCs achieves an average error of 18.63%, 17.69%
and 18.62% respectively, using the same setup. However, the less MFCCs
that are being extracted, the system gets faster and requires less memory. If
the resulting system performance does not improve at all with more coeffi-
cients extracted, the best choice is the lowest amount of coefficients.

The different lengths of the frames with corresponding window lengths
used in the short-time stationary frequency analysis gave some difference of
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6.3 Different contributions and different test sets

the system performance. When using frames of 15 ms and windows of 25
ms the average error became 21.17%. Using frames of 20 ms and windows
of 30 ms improved the system performance to an average error of 17.69%,
while frames of 25 ms and windows of 40 ms achieved an average error of
17.68% for the same setup. By this it can be said that the frames should be
at least 20 ms with a corresponding window of 30 ms. However, when the
supply of training data is limited, bigger frame lengths and window lengths
leads to fewer frames (less training data) per distribution. This could affect
the quality of the models, but the database used in this thesis seems to be
big enough to handle frames of 20-30 ms.

6.3 Different contributions and different test sets

Birdsong from some of the bird classes gets recognized wrong more fre-
quently than birdsong from other bird classes, and contributes to an in-
crease of the overall error rate to a greater extent than others. There are
several reasons for this. One reason is that these bird classes produces bird-
song that are difficult to distinguish from other birdsong, i.e. the frequency
content are similar such that the models gets similar to one or several mod-
els that belongs to other birds. Another reason could be that the database
used in this thesis provides recordings of these birds containing birdsong
of poor quality. Big deviations in frequency content between the different
recordings that belongs to one bird specie leads to poorer models and also
a bigger mismatch between the files used for testing and training.

It turns out that the average error percentage varies a lot when investigat-
ing the system performance using five different test sets (from 23.81% to
12.40%). This gap between the achieved results from the different test sets
could imply that the models are trained with an inadequate amount of ex-
ample data, i.e. the database used in this thesis is too small. Because of this
variation in the achieved results from the different test sets, one can say that
the test data used in this thesis are not very representative of the later input
data. Another thing that is worth mentioned, is that the difference between
the system performance when the training sets are used for classification
and the test sets are used for classification is big. The performance of the
system using the training set as test set gives an upper limit/indication of
which results that are possible to obtain. Because of big difference of the
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system performance between testing with the training set and the test set,
one can say that the system do not generalize well and it substantiates the
above argument of a too small test database.

It is reasonable to believe that a bigger test database would lead to bet-
ter overall results because big deviations from the normal birdsong within a
specie does not affect the total achieved result of the test set greatly. A big-
ger database would also help us create better models for each bird specie
such that as much as possible of the variances of birdsong within a bird
specie gets covered.

6.4 Unknown birdsong

Ideally, the out-of-class detector should get rid of all the false acceptance
while not increasing the number of false rejects. It turns out that setting
thresholds for the log likelihood score per frame for each bird class is not
straight forward. The log likelihood scores for segments that are recog-
nized correct and the log likelihood scores for segments that are recognized
wrong tends to melt in to each other, making the job of setting an optimal
threshold difficult.

When finding thresholds from the training set it is reasonable to believe
that these thresholds gets set to high. This is because the system ”remem-
bers” this data from the training process. When recognizing the same files
that are used for training the log likelihood scores for the correct recognized
segments is more likely to get high. When using the test set for investigat-
ing the out-of-class detector it is reasonable to believe that recognitions of
these files achieves lower log likelihood scores, and therefore it arises many
false rejects when the thresholds are set too high. However, it turned out
that the thresholds found from the training set tended to be lower than the
thresholds found from the test set, using the same strategy. This is some-
how strange, and hard to explain.

The resulting system performance when dealing with unknown birdsong
with thresholds in the out-of-class detector found from the training set gets
poorer than without the use of the out-of-class detector. The best strategy
for finding thresholds gives an average error percentage of 27.4, while the
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6.4 Unknown birdsong

average error percentage achieved without the out-of-class detector is 26.9.
This is mainly because of a too big gap/mismatch between the birdsong
in the training set used for finding thresholds and the test set used for in-
vestigating the system performance afterwards. It can be said that setting
thresholds from the training set is a bad idea, both because the models are
trained with the same data set and because the birdsong in test set does not
resemble the birdsong in the training set.

Setting thresholds from the test set, i.e. the same data set that are used
later for investigating the resulting system performance could be seen as
a way of ”cheating”, but gives a good picture of whether such an out-of-
class detector is a good or bad idea in order to deal with unknown birdsong.
Using strategy 1 (don’t allow any false rejects) improves the average error
from 26.91% to 25.32%. Hence, 33.4% of the average six unknown bird-
song files out of the total 126 birdsong files in the test set gets classified as
unknown. This is clearly an improvement, and it shows that the out-of-class
detector could be a good idea as long as the thresholds are set correctly.

Using the training set or the test set for finding good thresholds is not ideal.
One should have had a third untouched data set for this. Hence, a bigger
total database is needed. In order for the out-of-class detector to work sat-
isfying, the data set used for finding thresholds must be similar to the input
data that is likely to show up as recordings applied to the application in the
future.

Setting thresholds with strategy 1 gives a much better performance than
setting thresholds with strategy 2, both for thresholds found from the test
set and the training set. Our system, database and way of investigating the
out-of-class detector are very sensitive when it comes to false rejects. It is
of much greater interest to avoid false rejects than getting rid of false ac-
cepts. The best way of setting thresholds is therefore by getting rid of as
many false accepts as possible without introducing any false rejects. The
reason for this is because when the out-of-class detector gets tested, only an
average of 6 out of the total 126 files in the test set contains birdsong from
unknown bird species at a time. It is therefore of greater importance that
the 120 files corresponding to known bird species don’t get classified wrong
because of arising false rejects than that all of the 6 files corresponding to
unknown bird species gets classified as unknown. Without the out-of-class

55



Chapter 6. Conclusion

detector we achieve an error of 26.9%, and we know that in average 6 out
of 126 files corresponding to the unknown birdsong gets classified wrong.
Its only when the thresholds are set in a way that no false rejects arises that
the out-of-class detector improves this result. When the thresholds are set
in a way that we get rid of a lot of false accepts, but simultaneously accepts
some false rejects, the resulting performance of the out-of-class detector
gets poorer than without using it at all. Hence, when setting thresholds for
the out-of-class detector one has to take into account whether it is most
likely that the input data comes from a known bird specie or from an un-
known bird specie. If the system ”knows” most of the bird species that
exists in the nature, thresholds should be set in a way such that as few as
possible false rejects arises, i.e. low. On the other hand, if the system only
”knows” a small part of the existing bird species, i.e. it is likely that the
input recording belongs to an unknown bird, the thresholds should be set
high in order to avoid false accepts.

Out of this thesis, it is shown that the use of an out-of-class detector is
a good idea for dealing with unknown birdsong. Creating a common model
for all unknown bird classes are difficult and the model itself gets very
complex. However, the use of an out-of-class detector, and to achieve sat-
isfying performance, requires a much bigger database such that one can set
thresholds from an untouched data set which is likely to be representative
to later input data. Bigger database also provides better thresholds because
any great deviations from the normal does not affect the resulting threshold
to a large extent.

Introducing multiple unknown classes could be a well functioning solu-
tion if the recognized segments labeled as unknown tends to melt together
at beat the real bird class in the decision when known birdsong is applied
the system.
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6.5 Bottom line
HMM is better than GMM and an out-of-class detector have a good po-
tential of dealing with unknown birdsong. A bigger database is strongly
needed. Both for creating better models for each bird specie and for setting
thresholds in the out-of-class detector. Bigger database = better perfor-
mance of the automatic classification system for birdsong.

6.6 Further work
Suggested further work in order to improve the system:

• Collect much more data from all the bird species and with different
recording situations. Hopefully this leads to better models and let
us create a data set only for setting thresholds for the out-of-class
detector.

• Label the new data.

• Expand the amount of bird classes in order to avoid that birdsong
comes from unknown bird species.

• Adaptation: Utilize the recordings submitted by the users. Use these
recordings as new training data or for data set used for finding thresh-
olds for the out-of-class detector.

• Re-label the database. Current database are labeled with just bird-
song or ”pause”. Split up the class ”pause” into different classes.
One class for background noise, one for noise from cars, one for
noise from waterfalls etc, and train these as separate models.
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Appendix

A: Perl script for training: TrainModels BootManual.pl

#!/usr/bin/perl
#
# TrainModels_BootManual
#
use Getopt::Std;

# Directory structure for training
$d="./config"; # input data files, part of installation
$w="./work"; # directory for generated index files,

# edit scripts, etc.
$t="./tools"; # sub-scripts, part of installation
$m="./models"; # output HMM root directory
$f="features"; # feature file root directory

# Various files needed
$PhoneMlf="lists/Kvirrevitt.mlf"; # Phone level MLF from

initial segm.
$list="lists/train1.scp"; # database information file
$Proto="lists/proto.pcf"; # Specifications for the HMM

prototype
$Hcomp_conf="$d/hcompv_mfc.cfg";
$Hrest_conf="$d/herest_mfc.cfg";

# Parameters for training
$nmix=1; # Number of mix components for

initialization
$maxmix=32; # Max number of mixture components
$moniter1=20; # Iterations of HInit and HRest (1 mix)
$moniter2=40; # Iterations of HRest (> 1 Gaussian mix)
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# Read initial MLF and directory to put models (optional)

getopts('p:');
$partition=2;
if ($opt_p){$partition=$opt_p;}

# Check/create subdirectories...

foreach $tmp ($t,$d) {die "Directory $tmp not found\n"
unless (-d $tmp);}

$ENV{'PATH'} = "./$t".":".$ENV{'PATH'}; # put tools
directory first in path

require("$t/MMF_subs.pl"); # load common
subroutine libraries

require("$t/common.pl");

$list="lists/train"."$partition".".scp";
$m="$m"."$partition";
$w="$w"."$partition";
$Dict="$w/Kvirrevitt.dict"; # Dictionary
$Phones="$w/Kvirrevitt.lis"; # Class inventory
$Trainset="$w/trainset.scp"; # List of training files

# Then we are ready to start processing...

print "Trainmodels_Bootstrap started ",`date`,"\n";
goto skip; # restart the script by moving the skip label

to the
# point where it stopped

skip: # start processing again here
foreach $tmp ($m,$w){&makedir($tmp)};

$cmd="cp $list $Trainset";
&run("$cmd");

open(PHL,"$PhoneMlf") || die "Could not open $PhoneMlf\n";
%phlist=();
while(<PHL>){
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chomp;
if ($_ =~ /ˆ[\"\.\#]/) {next;}
($start,$end,$phone)=split(' ');
$phone=~ s/ˆ\s+//;
$phone=~ s/\s+$//;
$phlist{$phone}=$phlist{$phone}+1;

}
close(PHL);

open(PHN,">$Phones") || die "Could not open $Phones\n";
open(DIC,">$Dict") || die "Could not open $Dict\n";
foreach $phone (sort keys %phlist) {

if ($phone eq "sil"){next;}
print PHN "$phone\n";
print DIC "$phone $phone\n";

}
close(PHN);
close(DIC);

$startDir=0;

print "HInit/HCompV based on initial segmentation\n";
#----------------------------------------------------------

$srcdir="$m/state2_$startDir";
$tgtdir="$m/state2_$nmix";
&makedir($srcdir);
&makedir($tgtdir);
open(PRTIN,"$Proto") || die "Could not open HMM prototype

spec file, $Proto for reading\n";
open(PRTOUT,">$w/proto.pcf") || die "Could not open HMM

prototype spec file, $Proto for writing\n";
while(<PRTIN>){

chomp;
if ($_ =~ /ˆoutDir/){

print PRTOUT "outDir: $srcdir\n";
} else {

print PRTOUT "$_\n";
}

}
close(PRTIN);
close(PRTOUT);
$cmd="$t/MakeProtoHMMSet $w/proto.pcf";
&run("$cmd");
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# Initialize with a) global variance, b) <20 iterations of
HInit

# For all phones in $Phones:
open(PHONES,"$Phones") || die "Could not open $Phones\n";
while(<PHONES>){

chomp;
$Ph=$_;
$cmd="HCompV -A -C $Hcomp_conf -M $srcdir -S $Trainset

$srcdir/$Ph >> dump";
&run("$cmd");

}
close(PHONES);

print "Baum-Welch reestimation using HRest\n";
#-----------------------------------------------------------

$tgtdir="$m/state2_$nmix";
&makedir($tgtdir);

# For all phones in $Phones:

open(PHONES,"$Phones") || die "Could not open $Phones\n";
while(<PHONES>){

chomp;

&run("HRest -A -T 1 -w 2.0 -i $moniter1 -I $PhoneMlf -l
$_ -t " .

"-C $Hrest_conf -H $srcdir/$_ -M $tgtdir -S
$Trainset " .

"$tgtdir/$_ >> dump");
}
close(PHONES);
$tgthmm="$tgtdir.mmf";
&MkMMF2($tgthmm,$Phones,$tgtdir,A);

print "Training mixture monophones ".`date`;
#-------------------------------------------

sub monomixup {
local($nmix,$sourcehmm,$targethmm,$phone) = @_;
&printfile("$w/mix${nmix}.hed", "MU $nmix {*.state[2-4]

.mix}");
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# print " ...updating to $nmix mixtures in $targethmm\n
";

&run("HHEd -A -H $sourcehmm -w $targethmm $w/mix${nmix}
.hed ".

"Modelnames/$phone");
# print " ...finished ".`date`;

}

$mmix=$nmix;
$sourcedir="$m/state2_${nmix}";

while ($mmix < $maxmix) {

$newmix=2*$mmix;
$targetdir="$m/state2_${newmix}";
&makedir($targetdir);
$mmix=$newmix;
print "training $targethmm for $newmix mixtures\n";
open(PHONES,"$Phones") || die "Could not open $Phones\n

";
while(<PHONES>){

chomp;
$targethmm="$targetdir/$_";
$sourcehmm="$sourcedir/$_";

# &run("echo $_ > $w/temp");
&monomixup($newmix,$sourcehmm,$targethmm,$_);

# &run("rm -f $w/temp");
&run("HRest -A -T 1 -i $moniter2 -I $PhoneMlf -l $_

-t " .
"-C $Hrest_conf -H $targethmm -S $Trainset

" .
"-M $targetdir $targethmm >> dump");

}
close(PHONES);
$tgthmm="$targetdir.mmf";
&MkMMF2($tgthmm,$Phones,$targetdir,"A");
$sourcedir=$targetdir;

}

print "TrainModels finished ",`date`;
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B: HCopy config file: hcopy.cfg

# Input file format (16 kHz WAV format)
SOURCEKIND = WAVEFORM
SOURCERATE = 625
SOURCEFORMAT = WAV

# Output file format
TARGETKIND = MFCC_E_D_A_Z
TARGETFORMAT = HTK
TARGETRATE = 200000
WINDOWSIZE = 300000.0
USEHAMMING = TRUE
PREEMCOEF = 0.97

#USEPOWER = TRUE
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 15

# SILFLOOR = 50

SAVECOMPRESSED = FALSE
SAVEWITHCRC = FALSE

C: Perl script for recognition: Decode test5 HMM.pl

#!/usr/bin/perl

# Script for classifying the test sets using the
corresponding gmm models with $mix mixtures.

# The resulting *.rec file is used for normalized histogram
generation which therafter is classified using the

corresponding postprocessor.

# Choose number of mixtures and penalty for jumping between
class models

$mix = 32; $wmix = "32";
$wordpen = -100; $wp = "pm_100";

# Assuming gmm models are trained and placed in ... :
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my @modeldirs = ("models1", "models2", "models3", "models4
", "models5");

# Using the following configure file
$cnfg = "mhj_20_mfc.cfg";

# and the following test sets :
my @datasets= ("lists/test1.scp", "lists/test2.scp", "

lists/test3.scp", "lists/test4.scp", "lists/test5.scp" )
;

# Class_list, dictionary and network must exist
$cl_list = "class_pause_ny.list";
$dict = "birds_ny.dict";
$network = "birds_ny.net";

$labmlf = "Kvirrevitt_ny.mlf";

# Establish folder to put rec-files
$resultDir = "Results_hmm";
unless(-d "$resultDir") {system("mkdir $resultDir");}
$resultfile = $resultDir."/dummy.res";
system "rm $resultfile ";
system "touch $resultfile";

# Loop over the five training/test-set partitions of the
data.

my $set = -1;
foreach $modeldir (@modeldirs){

$set = $set +1;
$setind = $set +1;
$testset = $datasets[$set];
$modeldir = $modeldirs[$set];
$mmf = "$modeldir/state2_$mix/state2_$mix.mmf";
print "speakerlist : $testset\n";
# printf "Results are placed in $recmlf and $resultfile

\n";
$recmlf = $resultDir."/test".$setind."_".$wmix."_".$wp.

".rec";

system "HVite -C $cnfg -A -t 0.0 -s 0 -p $wordpen -H
$mmf -y rec -S $testset -i $recmlf -w $network $dict
$cl_list >> $resultfile";
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system "HResults -p -A -I $labmlf $cl_list $recmlf >>
$resultfile";

}

# In the following should the normalized histograms be
generated (now in the Matlab m-file called
Frame_hist_all.m).

# Also histogram based classification (1,2,3 best) of the
test set is presently done in the same m-file.

# Her should the testing using the postprocessor be done (
now in Matlab m-file called Tren_test_post.m)

D: Matlab scripts for finding thresholds from train-
ing set

1: Generate wrongclass j files

%Script generating the 21 wrongclass_j files

classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

Nclass_birds = Nclass - 1;
load('setsizes.txt','-ascii');

for i = 1:21
fasitklasse = class.memb{i};
recnr = num2str(i);
recfilename = strcat('Results_hmm/test_anti_',recnr,'

.rec');
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frec = fopen(recfilename,'r');
mlfline = fgetl(frec);
Nfiles = setsizes(i);
for j=1:Nfiles

fileline = fgetl(frec);
fileline = fgetl(frec);
while(~(strcmp(fileline,'.')))

scanfile = sscanf(fileline, '%d %d %s %d');
recog_bird = char(scanfile(3:length(scanfile)

-1))';
printfilename = strcat('Results_hmm/

test_misklass_',...
recog_bird,'.rec');

ffile = fopen(printfilename,'a');
antallrammer = num2str((scanfile(2)-scanfile(1)

)/200000);
logscore = num2str(scanfile(length(scanfile)));
%string = strcat(fasitklasse,antallrammer,

logscore);
%fwrite(ffile,string);
fwrite(ffile,fasitklasse);
fwrite(ffile,' ');
fwrite(ffile,antallrammer);
fwrite(ffile,' ');
fwrite(ffile,logscore);
fprintf(ffile,'\r\n');
fclose(ffile);
fileline = fgetl(frec);

end
end
fclose(frec);

end

2: Generate correctclass j files

%Script generating the 21 correctclass_j files

classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;
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while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

Nclass_birds = Nclass - 1;
load('setsizes.txt','-ascii');

for i = 1:21
fasitklasse = class.memb{i};
recnr = num2str(i);
recfilename = strcat('Results_hmm/test_korrekt_',recnr,

'.rec');
frec = fopen(recfilename,'r');
mlfline = fgetl(frec);
Nfiles = setsizes(i);
for j=1:Nfiles

fileline = fgetl(frec);
fileline = fgetl(frec);
while(~(strcmp(fileline,'.')))

scanfile = sscanf(fileline, '%d %d %s %d');
recog_bird = char(scanfile(3:length(scanfile)

-1))';
if (strcmp(recog_bird,fasitklasse)==1)
printfilename = strcat('Results_hmm/

test_korrklass_',...
fasitklasse,'.rec');

ffile = fopen(printfilename,'a');
antallrammer = num2str((scanfile(2)-scanfile(1)

)/200000);
logscore = num2str(scanfile(length(scanfile)));
fwrite(ffile,fasitklasse);
fwrite(ffile,' ');
fwrite(ffile,antallrammer);
fwrite(ffile,' ');
fwrite(ffile,logscore);
fprintf(ffile,'\r\n');
fclose(ffile);
end
fileline = fgetl(frec);

end
end
fclose(frec);
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end

3: Find min j and max j for the files wrongclass j

%Script finding min and max log likelihood per frame in the
wrongclass_j files

minmax_misklass = zeros(21,2);
classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

for i = 1:21
classname = class.memb{i};
recfilename = strcat('Results_hmm/misklass_',classname,

'.rec');
frec = fopen(recfilename,'r');
fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
minmax_misklass(i,1) = scanfile(length(scanfile));
minmax_misklass(i,2) = scanfile(length(scanfile));
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
minormax = scanfile(length(scanfile));
if (minormax < minmax_misklass(i,1))

minmax_misklass(i,1) = minormax;
end
if (minormax > minmax_misklass(i,2))

minmax_misklass(i,2) = minormax;
end

end
fclose(frec);

end
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4: Find min j and max j for the files correctclass j

%Script finding min and max log likelihood per frame in the
correctclass_j files

minmax_korrklass = zeros(21,2);
classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

for i = 1:21
classname = class.memb{i};
recfilename = strcat('Results_hmm/korrklass_',classname

,'.rec');
frec = fopen(recfilename,'r');
fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
minmax_korrklass(i,1) = scanfile(length(scanfile));
minmax_korrklass(i,2) = scanfile(length(scanfile));
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
minormax = scanfile(length(scanfile));
if (minormax < minmax_korrklass(i,1))

minmax_korrklass(i,1) = minormax;
end
if (minormax > minmax_korrklass(i,2))

minmax_korrklass(i,2) = minormax;
end

end
fclose(frec);

end
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5: Generate histograms for wrongclass j and correctclas j
for finding thresholds from training set

%Script generating histograms

min_max=zeros(21,2);
%Verdier settes manuelt
min_max(1,1) = -82; min_max(1,2) = -48;
min_max(2,1) = -101; min_max(2,2) = -55;
min_max(3,1) = -100; min_max(3,2) = -73;
min_max(4,1) = -94; min_max(4,2) = -57;
min_max(5,1) = -97; min_max(5,2) = -54;
min_max(6,1) = -113; min_max(6,2) = -77;
min_max(7,1) = -102; min_max(7,2) = -68;
min_max(8,1) = -109; min_max(8,2) = -67;
min_max(9,1) = -118; min_max(9,2) = -77;
min_max(10,1) = -120; min_max(10,2) = -77;
min_max(11,1) = -124; min_max(11,2) = -86;
min_max(12,1) = -120; min_max(12,2) = -65;
min_max(13,1) = -121; min_max(13,2) = -71;
min_max(14,1) = -130; min_max(14,2) = -70;
min_max(15,1) = -114; min_max(15,2) = -67;
min_max(16,1) = -130; min_max(16,2) = -68;
min_max(17,1) = -119; min_max(17,2) = -72;
min_max(18,1) = -118; min_max(18,2) = -60;
min_max(19,1) = -119; min_max(19,2) = -75;
min_max(20,1) = -115; min_max(20,2) = -53;
min_max(21,1) = -115; min_max(21,2) = -59;

%Definerer bin storrelser
bin=zeros(21,1);
for j = 1:21

bin(j) = (min_max(j,2) - min_max(j,1))/30;
end

%Definerer bin-grenser
bing=zeros(21,31);
for j = 1:21

for k = 1:31
bing(j,k) = min_max(j,1) + bin(j)*(k-1);
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end
end

%Histogram for misklass_j
%Finner totalt antall rammer i filen misklass_j og

korrklas_j som har
%likelihood/ramme score som ligger mellom de forskjellige

bin-grensene
classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

result_misklass = zeros(21,30);
for i = 1:21

classname = class.memb{i};
recfilename = strcat('Results_hmm/misklass_',classname,

'.rec');
frec = fopen(recfilename,'r');
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
llr = scanfile(length(scanfile));
r = scanfile(length(scanfile)-1);
for k = 1:30

if llr > bing(i,k) && llr < bing(i,k+1)
result_misklass(i,k) = result_misklass(i,k)

+ r;
end

end
end
fclose(frec);

end

result_korrklass = zeros(21,30);
for i = 1:21

classname = class.memb{i};
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recfilename = strcat('Results_hmm/korrklass_',classname
,'.rec');

frec = fopen(recfilename,'r');
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
llr = scanfile(length(scanfile));
r = scanfile(length(scanfile)-1);
for k = 1:30

if llr > bing(i,k) && llr < bing(i,k+1)
result_korrklass(i,k) = result_korrklass(i,

k) + r;
end

end
end
fclose(frec);

end

for k = 1:21
bird = class.memb{k};
figure;
plot(bing(k,1:30),result_misklass(k,:),'Color','Red');
xlabel('Loglikelihood/ramme (20 ms)','fontsize',18);
ylabel('Antall rammer (20 ms)','fontsize',18);
title(bird,'fontsize',18);
hold on;
plot(bing(k,1:30),result_korrklass(k,:),'Color','Green'

);
legend('Wrong recognized segments','Correct recognized

segments');
end

6: Plot false reject vs. false accept for finding thresholds
from test set

%Script for checking log likelihood per frame for each line
in "test_wrongclass_j.rec"

%and log likelihood per frame for each line in "
test_correctclass_j.rec" against 50

%uniformly spread thresholds in an area of interest. Plots
false accept against

%false reject in order to find optimal thresholds.
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t_1 = linspace(-83,-48,100);
t_2 = linspace(-102,-55,100);
t_3 = linspace(-100,-73,100);
t_4 = linspace(-95,-60,100);
t_5 = linspace(-98,-56,100);
t_6 = linspace(-103,-77,100);
t_7 = linspace(-103,-70,100);
t_8 = linspace(-110,-67,100);
t_9 = linspace(-120,-77,100);
t_10 = linspace(-120,-80,100);
t_11 = linspace(-120,-87,100);
t_12 = linspace(-115,-65,100);
t_13 = linspace(-120,-75,100);
t_14 = linspace(-125,-75,100);
t_15 = linspace(-115,-70,100);
t_16 = linspace(-115,-70,100);
t_17 = linspace(-120,-75,100);
t_18 = linspace(-120,-60,100);
t_19 = linspace(-120,-75,100);
t_20 = linspace(-115,-55,100);
t_21 = linspace(-115,-60,100);

treshold_matrix = zeros(21,100);

treshold_matrix(1,:) = t_1;
treshold_matrix(2,:) = t_2;
treshold_matrix(3,:) = t_3;
treshold_matrix(4,:) = t_4;
treshold_matrix(5,:) = t_5;
treshold_matrix(6,:) = t_6;
treshold_matrix(7,:) = t_7;
treshold_matrix(8,:) = t_8;
treshold_matrix(9,:) = t_9;
treshold_matrix(10,:) = t_10;
treshold_matrix(11,:) = t_11;
treshold_matrix(12,:) = t_12;
treshold_matrix(13,:) = t_13;
treshold_matrix(14,:) = t_14;
treshold_matrix(15,:) = t_15;
treshold_matrix(16,:) = t_16;
treshold_matrix(17,:) = t_17;
treshold_matrix(18,:) = t_18;
treshold_matrix(19,:) = t_19;
treshold_matrix(20,:) = t_20;
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treshold_matrix(21,:) = t_21;

correct_reject=zeros(21,100);
false_accept=zeros(21,100);
false_reject=zeros(21,100);
correct_accept=zeros(21,100);

classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

for i = 2:21 %fra 2 fordi test_misklass_bjorkefink.rec ikke
eksisterer.
classname = class.memb{i};
recfilename = strcat('Results_hmm/test_misklass_',

classname,'.rec');
frec = fopen(recfilename,'r');
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
llr = scanfile(length(scanfile));
for k = 1:100

if llr < treshold_matrix(i,k)
correct_reject(i,k) = correct_reject(i,k) +

1;
else

false_accept(i,k) = false_accept(i,k) + 1;
end

end
end
fclose(frec);

end

for i = 1:21
classname = class.memb{i};
recfilename = strcat('Results_hmm/test_korrklass_',

classname,'.rec');

77



frec = fopen(recfilename,'r');
while(~feof(frec))

fileline = fgetl(frec);
scanfile = sscanf(fileline, '%s %d %d');
llr = scanfile(length(scanfile));
for k = 1:100

if llr < treshold_matrix(i,k)
false_reject(i,k) = false_reject(i,k) + 1;

else
correct_accept(i,k) = correct_accept(i,k) +

1;
end

end
end
fclose(frec);

end

for k = 1:21
bird = class.memb{k};
figure;
plot(treshold_matrix(k,:),false_accept(k,:),'color','

blue');
xlabel('Loglikelihood/20 ms segment treshold','fontsize

',18);
ylabel('Number of false accept/reject','fontsize',18);
title(bird,'fontsize',18);
hold on;
plot(treshold_matrix(k,:),false_reject(k,:),'color','

magenta');
legend('False accept','False reject');

end

7: Replace recognition label with ”UNK”

%Script generating "tot_unk_anti_i.rec". Read the files "
tot_anti_i.rec"

%and replaces the recognition labels with UNK if the log
likelihood score

%per frame is below the fixed threshold for the actual bird
class.
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%22x1 Matrise med terskler (inkl. terskel for pause som er
satt til -1000)

terskel=zeros(22,1);
terskel(1,1)=-82.0; terskel(1,2)=-97.0;
terskel(1,3)=-99.5; terskel(1,4)=-80.0;
terskel(1,5)=-95.0; terskel(1,6)=-102.0;
terskel(1,7)=-102.0; terskel(1,8)=-100.0;
terskel(1,9)=-103.5; terskel(1,10)=-104.5;
terskel(1,11)=-102.0; terskel(1,12)=-96.6;
terskel(1,13)=-99.4; terskel(1,14)=-104.0;
terskel(1,15)=-101.5; terskel(1,16)=-92.0;
terskel(1,17)=-106.0; terskel(1,18)=-96.0;
terskel(1,19)=-105.0; terskel(1,20)=-95.0;
terskel(1,21)=-96.5; terskel(1,22)=-1000;

classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

for i = 1:21

recnr = num2str(i);
sourcefilename = strcat('Results_hmm/tot_anti_',recnr,'

.rec');
destinationfilename = strcat('Results_hmm/tot_unk_anti_

',recnr,'.rec');
fsource = fopen(sourcefilename,'r');
mlfline = fgetl(fsource);
fdestination = fopen(destinationfilename,'w');
fwrite(fdestination,mlfline); %write top line (#!MLF!#)
fprintf(fdestination,'\r\n');
Nfiles = 126;

for j=1:Nfiles

fileline = fgetl(fsource);
fwrite(fdestination,fileline);
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fprintf(fdestination,'\r\n');

fileline = fgetl(fsource);

while(~(strcmp(fileline,'.')))

scanfile = sscanf(fileline,'%d %d %s %d');
start = num2str(scanfile(1));
stop = num2str(scanfile(2));
recog_bird = char(scanfile(3:length(scanfile)-1))';
logscore = num2str(scanfile(length(scanfile)));
antallrammer = num2str((scanfile(2)-scanfile(1))

/200000);
for u = 1:22

if strcmp(recog_bird,class.memb{u})
terskel_index = u;

end
end

if str2num(logscore) < terskel(1,terskel_index)
;

fwrite(fdestination,start);
fwrite(fdestination,' ');
fwrite(fdestination,stop);
fwrite(fdestination,' ');
fwrite(fdestination,'UNK');
fwrite(fdestination,' ');
fwrite(fdestination,logscore);
fprintf(fdestination,'\r\n');

else
fwrite(fdestination,start);
fwrite(fdestination,' ');
fwrite(fdestination,stop);
fwrite(fdestination,' ');
fwrite(fdestination,recog_bird);
fwrite(fdestination,' ');
fwrite(fdestination,logscore);
fprintf(fdestination,'\r\n');

end
fileline = fgetl(fsource);

end
fprintf(fdestination,'.');
fprintf(fdestination,'\r\n');

end
fclose(fsource);

80



fclose(fdestination);
end

8: Replace recognition label with ”UNKbirdclass”

%Script generating "tot_mult_unk_anti_i.rec". Read the
files "tot_anti_i.rec"

%and replaces the recognition labels with UNKbirdclass (21
different UNK classes

%if the log likelihood score per frame is below the fixed
%threshold for the actual bird class.

%22x1 Matrise med terskler (inkl. terskel for pause som er
satt til -1000)

terskel=zeros(22,1);
terskel(1,1)=-82.0; terskel(1,2)=-97.0;
terskel(1,3)=-99.5; terskel(1,4)=-80.0;
terskel(1,5)=-95.0; terskel(1,6)=-102.0;
terskel(1,7)=-102.0; terskel(1,8)=-100.0;
terskel(1,9)=-103.5; terskel(1,10)=-104.5;
terskel(1,11)=-102.0; terskel(1,12)=-96.6;
terskel(1,13)=-99.4; terskel(1,14)=-104.0;
terskel(1,15)=-101.5; terskel(1,16)=-92.0;
terskel(1,17)=-106.0; terskel(1,18)=-96.0;
terskel(1,19)=-105.0; terskel(1,20)=-95.0;
terskel(1,21)=-96.5; terskel(1,22)=-1000;

classfile = 'class_pause_ny.list';
class = struct('memb',{{}});
fclass = fopen(classfile, 'r');
Nclass = 0;

while 1
line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass + 1;
class.memb(Nclass) = {line};

end

for i = 1:21

recnr = num2str(i);
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sourcefilename = strcat('Results_hmm/tot_anti_',recnr,'
.rec');

destinationfilename = strcat('Results_hmm/
tot_mult_unk_anti_',...
recnr,'.rec');

fsource = fopen(sourcefilename,'r');
mlfline = fgetl(fsource);
fdestination = fopen(destinationfilename,'w');
fwrite(fdestination,mlfline); %write top line (#!MLF!#)
fprintf(fdestination,'\r\n');
Nfiles = 126;

for j=1:Nfiles

fileline = fgetl(fsource);
fwrite(fdestination,fileline);
fprintf(fdestination,'\r\n');

fileline = fgetl(fsource);

while(~(strcmp(fileline,'.')))

scanfile = sscanf(fileline,'%d %d %s %d');
start = num2str(scanfile(1));
stop = num2str(scanfile(2));
recog_bird = char(scanfile(3:length(scanfile)-1))';
logscore = num2str(scanfile(length(scanfile)));
antallrammer = num2str((scanfile(2)-scanfile(1))

/200000);
for u = 1:22

if strcmp(recog_bird,class.memb{u})
terskel_index = u;

end
end

if str2num(logscore) < terskel(1,terskel_index)
;

fwrite(fdestination,start);
fwrite(fdestination,' ');
fwrite(fdestination,stop);
fwrite(fdestination,' ');
%unknr = num2str(terskel_index);
unkname = lower(class.memb{terskel_index});
unkstring = strcat('UNK',unkname);
fwrite(fdestination,unkstring);
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fwrite(fdestination,' ');
fwrite(fdestination,logscore);
fprintf(fdestination,'\r\n');

else
fwrite(fdestination,start);
fwrite(fdestination,' ');
fwrite(fdestination,stop);
fwrite(fdestination,' ');
fwrite(fdestination,recog_bird);
fwrite(fdestination,' ');
fwrite(fdestination,logscore);
fprintf(fdestination,'\r\n');

end
fileline = fgetl(fsource);

end
fprintf(fdestination,'.');
fprintf(fdestination,'\r\n');

end
fclose(fsource);
fclose(fdestination);

end

E: Matlab scripts for decision

1: Decision made on frame level (without post processor)

%Script for making decision on the most (3most) frequently
occuring bird class.

%Generates histograms for input to post processor
%Expects file called setsizes.txt to exist. Ascii file with

matrix 5x2
%giving sizes for train/test for the five datasets

% set ={1,2,3,4,5} dataset choice while type ={1,2} (choose
train or respectively test set)

typestruct = struct('typer',{{}});
typestruct.typer(1) = {'train'};
typestruct.typer(2) = {'test'};
mix = 32; pm = 100;

% mix = number of mixtures
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% pm is used penalty value in HVite
pm = abs(pm);
% mix and pm is only used for naming the rec-file of

interest

% number of 100 nsec elements in a frame of 20 msec
scale = 20*10ˆ4;

classfile = 'class_pause_ny.list'; % the handy file with
legal classes ...

fclass = fopen(classfile,'r');
class = struct('memb',{{}});
fclass = fopen(classfile,'r');
Nclass = 0;
while 1

line = fgetl(fclass);
if ~ischar(line), break, end
Nclass = Nclass +1;
class.memb(Nclass) = {line};

end

Nclass_birds = Nclass -1; % last modell named pause is not
a class ...

load('setsizes.txt','-ascii');

% set ={1,2,3,4,5} dataset choice while type ={1,2} (
respectively train and test set)

Perr_avg = zeros(2,3);

for type = 1:2
for set = 1:5

Nfiles = setsizes(set,type);
Perr =zeros(1,3);

% designing rec-file name
mixnum = num2str(mix);
pmnum =num2str(pm);
setchar=num2str(set);
typechar = char(typestruct.typer(type));
recfile = strcat('Results_hmm/',typechar,setchar,'_

',mixnum,'_pm_',pmnum,'.rec');
filename = strcat('Results_hmm/',typechar,setchar);
disp([recfile ' ' filename])
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frame_distr = zeros(Nfiles,Nclass);
file_class = zeros(Nfiles,1);
file_rec = zeros(Nfiles,3);
num_hit = file_class;
conf = zeros(Nclass, Nclass);

frec = fopen(recfile,'r');
line2 = fgetl(frec); % MLF-line

for kfile = 1: Nfiles

% Read rec-file
trec =[];
sind_old2 = 1;
linex =fgetl(frec); % filename
for i = 1: Nclass_birds

filefind = strfind(linex,char(class.memb(i)
));

if(length(filefind) > 0)
file_class(kfile) = i; % correct class
num_hit(kfile) = num_hit(kfile) +1; %

all elements should be 1 at the end
...

end
end

line2 = fgetl(frec);
while(length(line2) > 4) % until dot - i.e.

file end
ss2 = sscanf(line2,'%d %d %s');
cl2 = char(ss2(3:length(ss2)-1))';
for i = 1: Nclass

if (strcmp(char(class.memb(i)),cl2) ==
1)
tars2 = i;

end
end
sind2 = floor(ss2(2)/scale); % last frame
seglen2 = length(sind_old2+1:sind2);
sind_old2 = sind2;
trec = [trec; tars2*ones(seglen2,1)];
line2 = fgetl(frec);

end % end acoustic file
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%if(rem(kfile-1,25) == 0)
% disp([kfile length(trec) length(tlab)])

%end

for i =1:Nclass
jnum = find(trec == i);
frame_distr(kfile,i) = length(jnum);

end
[y,ind] = sort(frame_distr(kfile,1:Nclass_birds

),'descend');
file_rec(kfile,:) = ind(1:3);

end % end rec-file

fclose(frec);

conf2 = conf;
conf3 = conf;
for i = 1:Nclass

for j = 1:Nclass
conf(i,j) = length(find((file_class==i)&(

file_rec(:,1)==j)));
end

end

numcorr2 = 0; numcorr3 = 0;
for k = 1: Nfiles

j = file_class(k);
i2 = find(file_rec(k, 1:2)==j); numcorr2 =

numcorr2 + length(i2);
i3 = find(file_rec(k, 1:3)==j); numcorr3 =

numcorr3 + length(i3);
end

disp('Percentage error')
numcorr = sum(diag(conf));
totnum = sum(sum(conf));
Perr(1) = 100*(1 -numcorr/totnum);
Perr(2) = 100*(1-numcorr2/totnum);
Perr(3) = 100*(1-numcorr3/totnum);
disp(Perr)
Perr_avg(type,:) = Perr_avg(type,:) + Perr/5;
classhist= frame_distr(:,1:Nclass_birds);
target = file_class;
classhistn = classhist;
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for i =1:Nfiles
classhistn(i,:) =classhist(i,:)/sum(classhist(i

,:));
end

% filename = strcat('Results_hmm/',typechar,setchar
);

save(filename,'classhistn','target','Perr','
Nclass_birds')

end
end

disp(Perr_avg)

2: Post processing. Decision made on output of this post
processor

%Script taking histograms from "frame_hist_all.m" as input
and do a post processing

%before making the decision

clear
typestruct = struct('typer',{{}});
typestruct.typer(1) = {'train'};
typestruct.typer(2) = {'test'};
Perr_avg = zeros(2,3);

for set = 1:5

setchar=num2str(set);
disp(['set nr ' setchar])
typechar = char(typestruct.typer(1)); % trainset
filename1 = strcat('Results_hmm/',typechar,setchar);
load(filename1)
trainhist = classhistn';
[Nclass,Ntrain] = size(trainhist);
traintar = target';
trainhist = [trainhist; (0*trainhist(1,:)+1)];
Ttrain = zeros(Nclass,Ntrain);

typechar = char(typestruct.typer(2)); % testset
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filename2 = strcat('Results_hmm/',typechar,setchar);
load(filename2)
testhist = classhistn';
[Nclass,Ntest] = size(testhist);
testhist = [testhist; (0*testhist(1,:)+1)];
testtar = target';
Ttest = zeros(Nclass,Ntest);

filename_ut = strcat('Results_hmm/post_set',setchar);
for cl = 1:Nclass

i=[]; j =[];
i = find(traintar == cl);
Ttrain(cl,i) = Ttrain(cl,i) + 1;
j = find(testtar == cl);
Ttest(cl,j) = Ttest(cl,j) + 1;

end

% Training and testing start ...
Itershow = 100;
Totiter = 400;
Edpl = []; Etpl = []; rdpl = []; rtpl = [];

% Initialiserer nettverksparametre

w=.01*(rand(Nclass ,Nclass +1 )-.5) ;

% Definerer parameter-gradienter (lik 0)

dw=0*w; dwo=0*w; wo =w;

% Definerer individuelle steg-faktorer for hver parameter

sinit=1;
sw=dw+10*sinit;

% Definerer diverse (ikke alt er i bruk). Studer program !

ud=.15;
alphax=.5/Ntrain;
mink=.5;

Edvec=[];
Etvec=[];
nbvec=[];
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Ed_old=-1000;
Et_old=-1000;
rt_old=0;

% velg ulinearitet paa utgang
% nonlin_ut=0 -> logsig; nonlin_ut=1 -> softmax (kontakt

meg)

% Gjoer Totiter iterasjoner (kan muligens reduseres noe ..)

iter=0;
while(iter <= Totiter)

% Definerer forvekslingsmatriser for hhv 1best,
2best og 3best

cdev1=zeros(Nclass,Nclass); cdev2=cdev1; cdev3=
cdev1;

ctest1=cdev1; ctest2=cdev1; ctest3=cdev1;

% Nullstiller deriverte

dw=0*w; dwo=0*w;
iter=iter+1;

% Forover beregninger

zd = w*trainhist;
zt = w*testhist;
bd=exp(zd);
bd=bd./(ones(Nclass,1)*sum(bd));
bt=exp(zt);
bt=bt./(ones(Nclass,1)*sum(bt));

% Beregner trenings og test kriterier
Ed=sum(sum(Ttrain.*log(bd)));
Et=sum(sum(Ttest.*log(bt)));

Ed=100*Ed/Ntrain;
Et=100*Et/Ntest;
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% Beregner forvekslingsmatriser
classdev = zeros(Ntrain,3); classtest = zeros(Ntest

,3);
[y,ind] = sort(bd,'descend');
classdev = ind(1:3,:);
[y,ind] = sort(bt,'descend');
classtest = ind(1:3,:);

for i=1:Nclass
for j=1:Nclass

cdev1(i,j) = length(find((traintar==i)&(
classdev(1,:)==j)));

ctest1(i,j) = length(find((testtar==i)&(
classtest(1,:)==j)));

end
end

numcorr1d = sum(diag(cdev1)); numcorr1t = sum(diag(
ctest1));

totnumd = sum(sum(cdev1)); totnumt = sum(sum(ctest1
));

numcorr2d = 0; numcorr3d = 0; numcorr2t = 0;
numcorr3t = 0;

for k = 1: Ntrain
j = traintar(k);
i2 = find(classdev(1:2,k)==j); numcorr2d =

numcorr2d + length(i2);
i3 = find(classdev(1:3,k)==j); numcorr3d =

numcorr3d + length(i3);
end

for k = 1: Ntest
j = testtar(k);
i2 = find(classtest(1:2,k)==j); numcorr2t =

numcorr2t + length(i2);
i3 = find(classtest(1:3,k)==j); numcorr3t =

numcorr3t + length(i3);
end

Perrd = zeros(1,3); Perrt = Perrd;
Perrd(1) = 100-100*numcorr1d/totnumd;
Perrd(2) = 100-100*numcorr2d/totnumd;
Perrd(3) = 100-100*numcorr3d/totnumd;
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Perrt(1) = 100-100*numcorr1t/totnumt;
Perrt(2) = 100-100*numcorr2t/totnumt;
Perrt(3)= 100-100*numcorr3t/totnumt;

% disp([Perrd Perrt])

% Kun hvis kontinuerlig plot er oenskelig

Edvec=[Edvec Ed];
Etvec=[Etvec Et];
nbvec=[nbvec iter];

% Beregner antall riktige (1best) i prosent

rd=100*sum(diag(cdev1))/sum(sum(cdev1));
rt=100*sum(diag(ctest1))/sum(sum(ctest1));

% Skriv til skjerm hver Itershow iterasjon (valgbar)

Edpl = [Edpl Ed]; Etpl = [Etpl Et]; rdpl =[rdpl rd
]; rtpl = [rtpl rt];

if(rem(iter-1,Itershow)==0)
iterm=rem(iter,100);
iter100=(iter-iterm)/100;

format bank
disp([Perrd Perrt])
subplot(211), plot(1:iter,Edpl,'r',1:iter,Etpl,

'b')
subplot(212), plot(1:iter,rdpl,'r',1:iter,rtpl,

'b')
pause(3)

end

% Gjem system og resultat for beste testresultat

if(rt>rt_old)
save(filename_ut,'w' ,'cdev1','ctest1','rt','rd

');
rt_old=rt;

end
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% Oppdatering kun hvis kryssentropi ikke har minket
med mer enn 10% (skal normalt oke)

% if(Ed -Ed_old > 0)
if(Ed_old == Ed_old)

% Bakoverforplantning av feil og beregning av
delta-parametre

dbd = -(bd - Ttrain);
dw = alphax*dbd*trainhist';

% Multiplikasjon med steg-faktorene

dw=sw.*dw;

% Oppdatering av stegfaktorene

sw=sw+ud*(sw.*sign(dwo.*dw));

% Gjem systemparametre fra forrige gang (trengs
hvis feil neste gang

% oeker med mer enn 10%)

wo=w;

% Oppdater parametre

% w=w+dw;
w = 0.999*w +dw;

% Lagring av delta-parametre (trengs til aa
beregne nye

% stegfaktorer i neste iterasjon)

dwo=dw;

% Lagring av feilmaal (trengs for feilmaalsjekk
i neste iterasjon)

Ed_old=Ed;
Et_old=Et;
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% Hvis feilmaal har oeket med mer enn 10% :

else

%disp('readjust')

% Hent tilbake parametre fra forrige iterasjon

w=wo;

% Nullstill gamle deriverte

dwo=0*w;

% Reduser stegfaktorer

sw=mink*sw;

end

end

Perr_avg(1,:) = Perr_avg(1,:) + Perrd/5;
Perr_avg(2,:) = Perr_avg(2,:) + Perrt/5;

end

disp(Perr_avg)
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F: Plots for finding thresholds

1: From training set
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2: From test set
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