
Implementation of Biomedical Algorithm 
on the SHMAC Platform

Ilias Lousis

Embedded Computing Systems

Supervisor: Per Gunnar Kjeldsberg, IET
Co-supervisor: Donn Morrison, IET

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology



 



 

 

 

 

 

 

 

 

 

 

 

 

Implementation of Biomedical Algorithm on the SHMAC 

Platform 
 

 

 

Ilias Lousis 

 

 

 

 

 

 

 

 

 

Embedded Computing Systems 

Submission Date: June 2015 

Supervisor: Per Gunnar Kjeldsberg, IET 

Co-supervisor: Donn Morrison, IDI 

 

 

 

Norwegian University of Science and Technology 

Department of Electronics and Telecommunications 



 

 

 



 

i 

 

Problem Description 
 

Candidate name: Ilias Lousis 

 

Thesis title: Implementation of Biomedical Algorithm on the SHMAC Platform 

 

Problem description: 

 

  Single-ISA Heterogeneous MAny-core Computer (SHMAC) is an ongoing research 

project within the Energy Efficient Computing Systems (EECS) strategic research area. EECS is 

a cooperation between researchers from the CARD-group at IDI and CAS-group at IET. 

SHMAC is running on an FPGA and is an evaluation platform for research on heterogeneous 

tile-based network-on-chip multi-core systems. Due to battery limitations and the so called Dark 

silicon effect, future computing systems in all performance ranges are expected to be power 

limited. The goal of the SHMAC project is to propose software and hardware solutions for future 

power-limited heterogeneous systems. See: http://www.ntnu.edu/ime/eecs/shmac  

 

In the spring and autumn of 2014 work has been performed by students to implement a 

biomedical algorithm on the SHMAC platform. In the spring a floating point software version (C 

language) was ported to run on an ARM processor with floating point emulation. At the same 

time, parts of the code were moved into a fixed point hardware accelerator. In the autumn the 

code was converted to a complete fixed point version and a hybrid fixed point/floating point 

version to be run on an ARM instruction set simulator. In parallel, two different hardware 

floating point units have been developed for the SHMAC platform. An interface has also been 

defined for integration of accelerators on the SHMAC platform.  

Choice of floating point or fixed point implementation, including choice of accuracy is 

important for the performance, energy consumption and design complexity. Selection of general 

floating point accelerators and/or more application specific accelerators also strongly influences 

the same parameters.  

 

The assignment builds on the work performed during the autumn of 2014. The main task 

will be to investigate performance, energy and area usage on the SHMAC platform for different 

implementation alternatives related to complete floating point, complete fixed point, and hybrid 

solutions. This should include use of general floating point units as well as application specific 

accelerators. Accelerators for efficient fixed point variable scaling can also be considered. 

 

Supervisor: Per Gunnar Kjeldsberg 

Co-supervisor: Donn Morrison 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Abstract 

 
 Biomedical applications are becoming more and more important as they can improve the 

life conditions of millions of people around the world. Implementing them on low power 

embedded systems is a very challenging task as many among them demand numerous signal 

intense calculations. A major part of the epilepsy prediction algorithm proposed by Iasemidis et 

al. [2] called Short Term Maximum Lyapunov Exponent belongs to this category and comprises 

the study subject of this thesis. 

 The algorithm is ported to be executed on the single-ISA Many-core Computer 

(SHMAC) developed at NTNU, which is an evaluation platform for studying heterogeneous, 

power constrained systems. Different software versions of the algorithm (floating-point, fixed-

point and hybrid), written in C language, are compared to each other and the most suitable ones 

are profiled and considered for further investigations. Corresponding hardware modules that 

implement the main bottleneck in each version are designed in VHDL hardware description 

language, and compared against each other. The most efficient module turns out to be an 

accelerator for the hybrid software version. This is selected to be further integrated within the 

SHMAC infrastructure, in order to evaluate its impact on the overall behavior of the algorithm 

and the target platform.     

 The performance, area usage, power and energy consumption as well as the energy 

efficiency are evaluated with or without the use of the hardware accelerator. Although that at the 

end of the thesis the application‟s real-time requirements were not met, the mixed 

(hardware/software) implementation that makes use of the accelerator, turns out to be 66% faster 

and 88% more energy efficient compared to the corresponding pure software implementation. 

Considerations about further modifications that can allow real-time performance are also 

discussed. 

 

 

 

 

 

 



 

 

 

 



 

v 

 

Preface 
 

This thesis is submitted to the Norwegian University of Science and Technology in partial 

fulfillments of the requirements for the European Master in Embedded Computing Systems 

(EMECS). 

Due to the fact that the algorithm is subjected to a non-disclosure agreement (NDA), extensive 

use of code snippets or other information that can be considered as confidential has been 

intentionally omitted. 

 

 

Acknowledgements 

At this point, I would like to thank my supervisors Per Gunnar Kjeldsberg and Donn Morrison 

for their guidance, remarks as well as for the proofreading of the current thesis. Furthermore I 

would like to thank the EMECS consortium for accepting me to the programme, and giving me 

the opportunity to gain valuable skills, competencies and a lot of memories over the past two 

years. Last but not least, I would like to thank “the usual suspects”; if they ever bother with 

reading this thesis they should know who they really are!   

 



 

 

 

 

 



 

vii 

 

Contents 
 

Problem Description ...................................................................................................................... i 

Abstract ......................................................................................................................................... iii 

Preface ............................................................................................................................................ v 

Contents ....................................................................................................................................... vii 

List of Abbreviations ................................................................................................................... ix 

 

1. Introduction ............................................................................................................................... 1 

1.1 Heterogeneous Systems ........................................................................................................ 2 

1.2 Thesis Outline ....................................................................................................................... 6 

1.3 Main Contributions ............................................................................................................... 7 

 

2. Background and Previous Work ............................................................................................. 9 

2.1 The Epilepsy Prediction Algorithm ...................................................................................... 9 

2.1.1 The Maximum Lyapunov Exponent ............................................................................. 13 

2.2 Computer Arithmetic........................................................................................................... 16 

2.2.1 Fixed Point Representation ........................................................................................... 16 

2.2.2 Floating Point Representation ...................................................................................... 18 

2.3 The SHMAC Platform ........................................................................................................ 20 

2.3.1 SHMAC Parent System ................................................................................................ 21 

2.3.2 SHMAC Processor Tile ................................................................................................ 23 

2.3.3 SHMAC Floating-Point Support .................................................................................. 26 

2.4 Hardware Accelerators ........................................................................................................ 28 

2.5 The „two-process‟ Design Method ...................................................................................... 30 

2.6 Previous Work ..................................................................................................................... 31 

 

3. Application Mapping .............................................................................................................. 37 

3.1 Methodology ....................................................................................................................... 37 

3.2 Porting the Algorithm on SHMAC ..................................................................................... 40 

3.3 Algorithm Profiling ............................................................................................................. 43 

3.4 Hardware/Software Partitioning .......................................................................................... 45 

 

4. Accelerator Design and System Integration ......................................................................... 51 

4.1 Accelerator for the Hybrid Version ..................................................................................... 51 

4.2 Accelerator for the Fixed-Point Version ............................................................................. 57 

4.3 Verification.......................................................................................................................... 64 

4.4 Comparison of the Designed Modules ................................................................................ 66 

4.5 System Integration............................................................................................................... 67 

 



 

viii 

 

5. Results ...................................................................................................................................... 71 

5.1 Performance ........................................................................................................................ 71 

5.2 Area Usage .......................................................................................................................... 72 

5.3 Power Consumption ............................................................................................................ 72 

5.4 Energy Consumption ........................................................................................................... 74 

5.5 Energy Efficiency ................................................................................................................ 75 

 

6. Conclusions and Suggestions for Future Work.................................................................... 77 

6.1 Conclusions ......................................................................................................................... 77 

6.2 Suggestions for Future Work .............................................................................................. 78 

 

Appendix A .................................................................................................................................. 81 

Fixed-Point Mathematical Operations ...................................................................................... 81 

Appendix B .................................................................................................................................. 85 

VHDL Code .............................................................................................................................. 85 

B.1 Hybrid Accelerator ............................................................................................................. 85 

B.2 Fixed-Point Accelerator ...................................................................................................... 93 

B.3 Zeros Detection VHDL Package ........................................................................................ 99 

Appendix C ................................................................................................................................ 109 

Accelerator Interface ............................................................................................................... 109 

Appendix D ................................................................................................................................ 113 

Synthesis Reports .................................................................................................................... 113 

D.1 Design 1 Map Report File ................................................................................................ 113 

D.2 Design 2 Map Report File ................................................................................................ 115 

 

Bibliography .............................................................................................................................. 119 

 



 

ix 

 

List of Abbreviations  
 

A/D Analog to Digital 

APB Advanced Peripheral Bus 

ALU Arithmetic Logic Unit  

ASIC Application Specific Integrated Circuit 

ASU Arizona State University 

CARD Computer Architecture and Design  

CAS Circuits and Systems 

CPU Central Processing Unit 

DMA Direct Memory Access 

DSP Digital Signal Processing 

EDP Energy-Delay Product 

EECS Energy Efficient Computing Systems 

EEG Electroencephalograph 

FPGA Field Programmable Gate Array 

FPU Floating Point Unit 

FSM Finite State Machine 

GPU Graphics Processing Unit 

HW Hardware 

I/O Input/Output 

IDI Department of Computer and Information Science 

IET Department of Electronics and Telecommunications 



 

x 

 

ISA Instruction Set Architecture 

LSB Least Significant Bit 

LUT Look-Up Table 

MPSoC Multi-Processor System on Chip 

MSB Most Significant Bit 

NDA Non-Disclosure Agreement 

NoC Network on Chip 

NTNU Norges Teknisk-Naturvitenskapelige Universitet 

RAM Random Access Memory 

RISC Reduced Instruction Set Computer 

SHMAC Single-ISA Heterogeneous Many-core Computer 

SIMD Single Input Multiple Data 

SoC System on Chip 

STLmax Short-Term  Maximum Lyapunov Exponent 

SW Software 

XOR Exclusive or 

XPE Xilinx Power Estimator 

 



 

1 

 

Chapter 1 
 

Introduction 

 

 

Epilepsy is one of the most common neurological brain disorders that affects 

approximately 1% of the global population [1]. It is characterized by sudden seizures that can 

last from seconds to minutes and which cause temporary disturbance of the brain functions. Such 

disturbances make the patient technically incapable of functioning normally and that has a severe 

impact on the patient‟s quality of life. One way to deal with this problem is by predicting the 

time points that an epileptic seizure is going to happen and warn the patient about the oncoming 

seizure, so that he/she will take measures to avoid the seizure (eg. take medication, change 

environment, stop doing the current activity etc.). Therefore it would be beneficial for the 

patients to have a seizure prediction system available anywhere and anytime. Such a system 

could drastically improve their quality of life, and thus the capabilities of portable (ideally 

implantable) systems with battery life as long as possible should be explored.  

The implementation of such an application on an embedded system is a really 

challenging task since many system oriented requirements such as cost, performance, power 

consumption and size have to be met at the same time. The epilepsy prediction algorithm 

proposed by Iasemidis et al. [2], which is the object of this thesis, is an algorithm that requires 

complex calculations of EEG signals that capture the brain activity. Such calculations can be 

performed without difficulties on conventional computers such as desktop computers because 

this category of computing systems can easily bear the corresponding computational cost. 

However, when they have to be performed on low power embedded systems, the performance 

requirements are very often violated due to the insufficient computational power and therefore 

the overall system has to be modified. 

The SHMAC platform [3] developed at NTNU is a very promising platform for studying 

and developing methodologies related to the mapping of various applications on embedded 

systems. This is because of the versatile nature of this platform; it can be configured with 

different components that affect the processing power, the memory availability, the 

interconnection infrastructure, the consumed power and many other system parameters that 

affect the behavior of the platform. Furthermore, the SHMAC platform belongs to the class of 

the so called heterogeneous computer architectures.  

This class of computing systems tries to combine a variety of computing elements with 

different performance and power characteristics into a single architecture. The reason behind this 

is that some applications can benefit from some specific processing elements, while other 

applications can benefit from other processing elements. The gain in each case can be high 



 

2 

 

performance; in terms that the application can be executed faster on a certain processing element 

rather than on another one, high energy efficiency; in terms that the energy consumed during the 

execution of an application on a processing element is lower than if the application would be 

executed on a different processing element, and many other metrics. Performance and energy 

efficiency are however of vital importance since they affect directly the system requirements. 

This thesis describes the implementations of a major part of the epilepsy prediction 

algorithm proposed by Iasemidis et al. [2], called Short Term Maximum Lyapunov Exponent 

(STLmax) on the SHMAC platform. This is done by evaluating different software 

implementations of this algorithm on the target platform, designing and integrating within the 

SHMAC platform application specific hardware modules as well as evaluating the performance, 

power consumption and energy efficiency of the overall system after the inclusion of the 

additional hardware modules. 

 

 

1.1 Heterogeneous Systems  
  

Central Processing Units (CPUs) have been the cornerstones of modern computing 

systems. The purpose of their existence is to provide an effective and efficient way for software 

implementations, and therefore the flexibility and ease of use that they offer can hardly be 

compared to other electronic components. The evolution in this field is highly driven by the so 

called “Moore‟s Law” [4] which mentions the fact that the number of transistors of an integrated 

circuit doubles approximately every eighteen months. On the one hand, the continuously 

increasing number of transistors has offered massive increase in the performance of modern 

CPUs, but on the other hand this performance increase comes with the cost of continuously 

higher power consumption. Figure 1.1 [5], summarizes the evolution of performance, power 

consumption as well as the main factor that has been widely used over the past decades in order 

to keep the ascending trend of performance; the clock rate.  

In Figure 1.1 (a), one can observe that over the past decades, processor performance has 

increased exponentially. The main source of this exponential increase has been the clock rate 

increase (also known as frequency scaling), as it can be seen in Figure 1.1 (b). The continuously 

increasing frequency, in combination with the continuously increasing number of transistors 

dictated by Moore‟s Law has dramatically affected the power consumption which has also 

increased exponentially. The more transistors exist in an integrated circuit, the more power they 

consume when they all have to operate at the same time, and if they have to operate at a higher 

frequency than before, the power consumption will be even higher. 

 



 

3 

 

    
(a) 

 
(b) 

 

Figure 1.1: (a) Growth in processor performance (reproduced from data in [5]), (b) Clock rate 

and power variation for several Intel processors [5]. 

  

This comes as an effect of the breakdown of Dennardian scaling [35]. In Dennardian 

scaling, both the dimensions of the transistors and the supply voltage are scaled so that the 

consumed power will be the same as initially. Although this had been feasible in the past, in 

modern technologies (ones developed after 2005 [6]) it appears that this cannot continue 

anymore. Table 1.1 [35] summarizes the main differences between the Dennardian (that applies 

to older technologies) and the post-Dennardian (that applies to modern technologies) scaling.  

 

1 
1,6 

18 

117 

649 

2548 

5346 6505 

1

10

100

1000

10000

1982 1985 1989 1993 1997 2001 2004 2007

P
er

fo
rm

an
ce

 (
v
s.

V
A

X
-1

1
/7

8
0
) 

12,5 16 
25 

66 

200 

2000 
3600 

2667 

3,3 4,1 4,9 
10,1 

29,1 

75,3 

103 
95 

0

20

40

60

80

100

120

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010

P
o
w

er
 (

W
at

ts
) 

C
lo

ck
 R

at
e 

(M
H

z)
 

Clock Rate Power



 

4 

 

Transistor Property Dennardian Scaling Post-Dennardian Scaling 

ΔQuantity S
2
 S

2
 

ΔFrequency S S 

ΔCapacitance 1/S 1/S 

Δ 2

ddV  1/S
2
 1 

ΔPower=
2QFCV  1 S

2
 

ΔUtilization=1/Power 1 1/S
2
 

Table 1.1: Dennardian vs post-Dennardian scaling [35]. 

 

 

In technologies characterized by Dennardian scaling, given a scaling factor S between 

two successive technologies (i.e. S=1.4), the number of transistor increases by S
2
 while the 

supply voltage can be reduced by the same factor. This maintains stable the power consumption. 

In technologies characterized by post-Dennardian scaling, the number of transistors increases by 

a factor of S
2
, however the supply voltage cannot be scaled by the same factor and this results in 

more power-hungry integrated circuits.  

 This is the cause of the Dark Silicon Effect [6], which gets more and more pronounced as 

technology scaling progresses. The Dark Silicon Effect means that given a fixed power budget, 

not all of the transistors in an integrated circuit can be powered at the same time. Most of the 

modern electronic devices are power limited; desktop and server computers are limited by the 

power their power supply can provide them, while this phenomenon is more intense in embedded 

applications that have to be powered by batteries, energy harvesting or other limited sources. 

 To keep up the performance increase and overcome the obstacles caused by Dark Silicon 

Effect, symmetric multicore processors [7] appeared in commercial applications during the mid-

2000s. Symmetric multicore processors are processors that consist of two or more identical 

processing cores that exploit the spatial parallelization. The main advantage of this architecture 

compared to earlier single core architectures is that instead of having a single core with very high 

clock rate and power consumption, symmetric multicore processors can distribute the 

computational load to several processing cores that are able to operate at lower frequencies and 

therefore they consume less power. This can result into significant performance and energy 

gains. 

 Another way to optimize a processing unit with respect to performance and energy 

efficiency is the utilization of heterogeneous architectures [7]. This class of computing systems 

extends the idea of spatial parallelization introduced by symmetric multicore processors. Instead 

of using multiple identical processing cores, heterogeneous systems make use of a variety of 

different processing cores, with different performance and power characteristics. Figure 1.2 

illustrates the concept of heterogeneous architecture [34]. 

 



 

5 

 

 
Figure 1.2: Heterogeneous architecture example [34]. 

 

 

The system illustrated in Figure 1.2 consists of m CPUs that include the main processing 

unit (PU), local memory (LM) and a data transfer unit (DTU) that handles the data transfers 

between each CPU and the main memory. In the same system there exist n+k special purpose 

processors (SPP) that they are configured according to the needs of each system (i.e. 

telecommunication system, media streaming, graphics processing etc.) as well as on-chip and 

off-chip memory units. Furthermore, each CPU and SPP has a dedicated frequency and voltage 

controller (FVC). This component can manipulate the frequency and the voltage and 

consequently the power of each corresponding core, allowing the system to achieve low on-chip 

power consumption. If for instance at a certain time point CPU#0 is idle and  SPPa #0 has to 

perform a demanding task, the first FVC can completely deactivate CPU#0 while the latter FVC 

can increase the frequency of  SPPa #0, allowing it to execute its demanding task faster. 

The adoption of such architectures results however into more complex systems than 

before, and this increased complexity has raised two main questions that have to be answered. 

What kind of hardware should be designed to realize heterogeneous systems and then, given a 

heterogeneous system, how should software applications be developed in order to take advantage 

of its heterogeneous architecture? 

 The SHMAC platform [3] is a heterogeneous platform developed within the Energy 

Efficient Computing Systems (EECS) initiative [8] at NTNU. Its main goal is to investigate 

issues and propose solutions related to both hardware and software perspective of heterogeneous 

systems. A very important part within its scope is the mapping of certain applications on this 

platform. Besides trying to answer the previous posed questions about how hardware and how 

software should be developed for heterogeneous platforms, application mapping on platforms 



 

6 

 

like SHMAC could also provide many insights about the advantages of heterogeneous 

architectures over conventional ones.     

 The algorithm mapped in this thesis is a major part of the epilepsy prediction algorithm 

proposed by Iasemides et al. [2]. The results of this algorithm are very promising for the 

treatment of epilepsy and the nature of this problem demands that the algorithm should be able to 

run on low power embedded systems. This could actually improve the quality of life of people 

who suffer from epilepsy, since epilepsy can take place anywhere and anytime. Low power 

embedded systems is a class of electronic systems made to function anywhere and anytime, and 

their behavior on this application can be modeled on the SHMAC platform. The proper 

combination of hardware and software that meets the applications requirements needs to be 

investigated and verified with respect to power consumption, and this is the main goal of this 

thesis. 

 

1.2 Thesis Outline 
 

 Chapter 2 contains the necessary background along with the previous work that has been 

performed. The background consists of the biomedical algorithm, computer arithmetic, the 

SHMAC platform and how computer arithmetic is supported on it, as well as theory related to 

hardware accelerators and the „two-process‟ design method that was adopted during the 

accelerator design. 

 Chapter 3 contains the high level mapping of the biomedical algorithm on the SHMAC 

platform. This includes the porting of the different software versions on the target platform, the 

profiling procedure in order to identify the main bottlenecks and finally the hardware/software 

partitioning, during which, the basic blocks that should be moved into hardware accelerators are 

determined. 

 In Chapter 4, the design of the hardware accelerators is discribed, their verification 

process, the comparison between them in order to determine which one is worth further 

considerations and the procedure of integrating the most suitable accelerator on the SHMAC 

platform. 

 Chapter 5 discusses the results obtained after the algorithm was executed along with the 

accelerator and compares them to the corresponding results of the pure software execution of the 

algorithm. The results include the metrics of performance, area usage on the FPGA, power 

consumption, energy consumption as well as energy efficiency. 

 Finally, Chapter 6 presents all the conclusions drawn throughout the duration of this 

thesis and moreover it discusses some further aspects that could be considered for future work. 

 

 

 



 

7 

 

1.3 Main Contributions 
 

 Evaluation of different software versions (floating-point, fixed-point and hybrid) of the 

STLmax calculation algorithm on the SHMAC platform. 

 

 Design of two different hardware accelerators in order to evaluate the suitability of fixed or 

floating-point arithmetic in the current application. 

 

 Design of a VHDL package for performing operand scaling in 32 and 64-bit fixed-point 

applications. 

 

 Integration of the most suitable hardware accelerator within the SHMAC platform. 

 

 Reduction of the total execution time by 66% compared to the corresponding pure software 

implementation. 

 

 Energy-efficiency improvement by 88% due to the addition of the accelerator. 

 

 Suggestions of further considerations about meeting the application‟s real-time requirements 

and improving various accelerator oriented applications on SHMAC. 

 



8 

 

 

  



 

9 

 

Chapter 2 
 

Background and Previous Work 
 

 

This chapter contains the necessary background related to the work that follows in the 

next chapters. More specifically, the epilepsy prediction algorithm and its particular subpart that 

is studied in this thesis are described first, and then its implementation related issues are 

discussed later. This includes the necessary theory about computer arithmetic, the SHMAC 

platform, as well as some theoretical aspects regarding hardware accelerators and a specific 

hardware design approach (two-process method) which form the basis of the current 

implementation. Last but not least, the previous work that has been performed is discussed in the 

last section of this chapter.  

 

2.1 The Epilepsy Prediction Algorithm 
 

 There are numerous research programs worldwide that aim to the prediction of epileptic 

seizures. One approach is by monitoring the brain activity of a patient though EEG 

(Electroencephalograph) recordings, and then performing further processing on the EEG in order 

to get an indication about a possible seizure that will take place in the future. The algorithm 

proposed by Iasemidis et al. [2] makes use of this hypothesis, and its results are promising for the 

treatment of epilepsy. As many of the algorithms in this field, it utilizes the EEG recordings for 

the prediction of an epileptic seizure. However, the processing of the EEG in order to extract 

features relative to seizures is not a trivial task. Classic metrics that are widely used in signal 

processing, such as the mean value or the standard deviation of a signal, tend to be insufficient 

for this application. As one can observe in Figure 2.1, utilizing the mean value over time 

(instantaneous mean value) or the standard deviation over time (instantaneous standard 

deviation) results into something with inconsistent structure [2]. This means that is very difficult 

to detect similarities between all different patients by utilizing these metrics. It would seem 

reasonable for someone to assume that the structure of these signals would have many similar 

features; however reality turns out to be completely different. For this reason, it is necessary to 

look for other metrics that show a consistent structure. 

 



 

10 

 

 

 
 

Figure 2.1: (a) The mean value over time of an EEG signal for five different patients, (b) the 

standard deviation over time, of the same EEG and the same patients. The vertical dashed lines 

denote the seizure onset (ictal period) [2] . 

 

 

 Due to the inconsistency of the EEG signals Iasemidis et. al. [2] introduced the utilization 

of the Short Term Maximum Lyapunov Exponents (STLmax).The STLmax is a special case of 

the Lyapunov Eponent. The Lyapunov exponent is a metric that measures the creation or 

destruction of information in chaotic systems or signals (in bits per seconds) [9]. In the case of 

STLmax, the Lyapunov exponents are calculated within short time frames (thus short term). 

Taking into account that the EEGs are obtained from the human brain, which can be considered 

as a highly chaotic system [10], the STLmax metric seems to perform very well for this kind of 

applications. As it can be seen in Figure 2.2, the STLmax exponents change consistently across 



 

11 

 

five different patients. For all the patients, it can be observed that during the time interval before 

the seizure (preictal period) the STLmax has always smaller value than right after the seizure 

(postictal period), and it gets its minimum value during the seizure onset (ictal period) [2]. 

 

 

 

Figure 2.2: STLmax values over time, for the same EEGs and patients as in Figure 2.1 [2]. 

 

  

The epilepsy prediction algorithm by Iasemidis et al. [2] begins with converting the 

multichannel EEG recordings into a corresponding multichannel STLmax time series. The next 

step is the so called dynamical entrainment. During dynamical entrainment, the stability of each 

cortical site is quantified [2] according to the temporal and spatial dynamics of the brain. The 

temporal dynamics are already captured in the STLmax time series, since each STLmax value has 

been calculated within a relatively small time window (10.24 seconds in this case). The spatial 

dynamics are defined by the STLmax values on the different electrode sites (32 different 

electrodes in this case) and they illustrate the assumption that when a similar transition is 

observed within the STLmax time series of different electrodes, then the STLmax values right 

before the transition are expected to be the same for the different electrodes. This assumption is 

partly correct since it holds for a subset of different sites (electrodes) and not for all of them. The 

sites for which the assumption holds are called critical sites [2], and thus they need to be 

determined. In order to determine the critical sites, Iasemidis et al. [2] adopted the pair-T 

statistics metric [9] which determines if the dynamic entrainment has statistical content. The 

quantity that gets evaluated according to the T-index is the difference between the means of the 

STLmax values at two different sites. The set up for this application includes 60 STLmax values 



 

12 

 

(the STLmax values within a 10min time frame) from each site and the statistical test of them at a 

0.01 statistical significance level. Given the STLmax values 
iL  and 

jL  of two different sites 

respectively, the T-index is calculated according to the following equations: 

 

 

 

1 59

1 59

max , max ,..., max

max , max ,..., max

t t t t

i i i i

t t t t

j j j j

L STL STL STL

L STL STL STL

 

 




 

(1) 

 

(2)
 

 

 1 59, ,...,t t t t t t

ij i j ij ij ijD L L d d d    , where 
t

ijd  is the difference: max maxt t

i jSTL STL     

 

(3) 

60

t

ijt

ij

d

D
T


  

 

(4) 

 

where 
t

ijD and d  are the mean value and the standard deviation of 
t

ijD  respectively. 

 

Statistical significance level equal to a = 0.01 means that the electrode sites are disentrained 

if 
,59

2

2.662t

ij aT T  . Another threshold value at a 0.00001 statistical significance level (
,59

2

5aT 

) is also utilized. The way in which the thresholds are determined, is explained in details in [1] 

and [2]. These two threshold values are used to detect a dynamic transition which is used as an 

indication for a possible future seizure.  Figure 2.3 illustrates this concept. 

 
 

Figure 2.3: T-index values with 1T  and 2T values. The vertical dashed lines denote the 

seizures onsets [1]. 

 

While the T-index crosses the 2T  value and is lower than 1T , the electrode sites are 

disentrained. Once it crosses 1T  it indicates that after this point we should start checking for a 



 

13 

 

dynamic transition in a future time point. If now the T-index crosses 2T , this means a dynamic 

transition and a warning of an oncoming seizure in issued.   

One problem that arises in the previous analysis of the algorithm is the selection of the 

critical sites that will take part in the calculation of T-index. This procedure is performed after 

the occurrence of each seizure, by selecting k critical sites. Since there are n electrode sites (32 in 

this case) there are 
n

k

 
 
 

 different combinations of k sites. For a value of k relatively small           

( 6k  ), it turns out that an exhaustive search can be performed in order to identify the critical 

sites [1]. The k sites selection turns out to be the k sites that were most entrained 10 minutes 

before the seizure and disentrained after the seizure [1]. This procedure is repeated after the 

occurrence of each seizure. 

A simplified overview of the way according to which the epilepsy prediction algorithm 

functions is demonstrated in Figure 2.4. In this figure, one can consider that the EEG signals are 

recorded via some kind of sensors (i.e. EEG electrodes attached to an A/D converter), they are 

converted into corresponding STLmax time-series, and then the resulted STLmax time-series are 

forwarded to the “Seizure Prediction” stage, which extracts the T-index values and performs the 

comparisons to 1T and 2T values in order to generate an alarm. 

 

EEG Acquisition STLmax 
Calculation

Seizure 
Prediction

Alarm generation

 
 

Figure 2.4: Simplified overview of the epilepsy prediction algorithm (the 

block of STLmax   calculation stage that is studied in this thesis is 

highlighted with continuous line). 

 

 

 2.1.1 The Maximum Lyapunov Exponent 

 
From the analysis of the epilepsy prediction algorithm so far, it should be clear that an 

essential part of it is the calculation of the STLmax time-series. For the STLmax calculation, the 

algorithm proposed by Wolf et al. [9] is adopted. This requires the expansion of the initial signal 

into an m-dimensional phase space with delay coordinates [9]. For this application the m 



 

14 

 

parameter is selected to be equal to 7 [1]. An expanded signal in a 7-dimensional space can be 

considered as a set of points with 7 variables. This can be clear by generalizing the illustration of 

Figure 2.5 into 7 dimensions. Figure 2.5 (a) shows a point on the two dimensional Cartesian 

plane, which is defined by the x and y coordinates. In Figure 2.5 (b), it can be observed a point in 

the three-dimensional space. In this case the point is defined by the x,y and z coordinates. This 

observation (of defining a point according to some coordinates) can be generalized for more than 

three dimensions. Unfortunately it is impossible to demonstrate it on a piece of paper, and so 

only the cases of 2d and 3d spaces are illustrated here.  

 

 

 
Figure 2.5. (a) A point defined in the two-dimensional space, (b) a point defined in the three-

dimensional space. 

 

The seven variables in the case of the Lyapunov exponent are the values of the original 

signal. If the original signal is ( )x t  (function of one variable), then a point in the m-dimensional 

space (in this case, m is equal to 7) can be defined as:   

 

0 1 2 3 4 5 6( , , , , , , )P x x x x x x x  

 

where the coordinates  0x , 1x ,…, 6x  are equal to ( )x t , ( )x t T ,…, ( ( 1) )x t m T   respectively. T 

quantity is the delay time which depends on each application; for this application the T variable 

is selected to be equal to 4 seconds [1]. All these coordinates are values of the original signal 

( )x t . Therefore, the expanded signal can be considered as a set of points: 

 

 

 

( ( ), ( ),..., ( ( 1) ))P x t x t T x t m T  



 

15 

 

An initial point 0 0 0 0( ( ), ( ),..., ( ( 1) ))P x t x t T x t m T   is selected at 0t  and its nearest 

neighbor (neighbor with the smallest Euclidean distance) is detected. The distance between these 

points is denoted as 0( )L t .  At a later time point 1t , this distance will have evolved to a new 

value denoted as '

1( )L t . The propagation time 1 0t t  must be small enough so that the time 

difference between the examined points is sufficiently small [3]; this is also illustrated in Figure 

2.6. At this time point, a new point that satisfies the two following criteria is searched: 

 

a) Its distance 1( )L t  from the initial point is small 

b) The angle θ between the evolved and the replacement point is small  

 

If there is no such point, the initially selected point is retained. This procedure is 

performed for the whole signal (EEG time series in our case), and after this, the Maximum 

Lyapunov Exponent value is calculated by the following equation: 

 
'

1 2

10 1

( )1
log

( )

M
k

kM k

L t

t t L t


 



 , where M is the number of replacement steps. 

 

(5) 

 

 

  

The calculation of the Maximum Lyapunov Exponent is illustrated in Figure 2.6. Starting 

from an initial point 0( )x t  at time 0t , the nearest point 1( )x t  at time 1t  is identified. If there exist 

another point at time 1t  that satisfies the previously mentioned criteria (a) and (b) better than 

1( )x t , then this point replaces 1( )x t . 

 
 

Figure 2.6 Illustration of the “evolve and replace” technique for the calculation of the 

largest Lyapunov exponent [3]. 

 

 



 

16 

 

2.2 Computer Arithmetic 
 

In computers and digital systems, numbers have to be represented by a sequence of 

binary digits (bits). Computers offer a finite number of bits and the user has to find a way to 

represent physical quantities in these bits. For this reason two major representations have been 

proposed and evolved through the past years. These are the fixed point and the floating point 

representations, the characteristics of which are discussed in the following section.  

 

2.2.1 Fixed Point Representation 

  

In fixed point representation, the quantities that define a number are the sign, the integer 

part of the number and the fractional part of it. The concept of fixed point representation can be 

illustrated in Figure 2.7 [15]. In this figure, it can be observed that given a finite number of bits 

(32-bits in this case) one bit can be allocated (the most significant bit) for the sign of the number, 

m-bits (8-bits in this case) for the integer part of the number and n-bits (23-bits in this case) for 

the fractional part of this number. Therefore the number is represented in Qm.n format [15]. In 

case where the numbers are not signed, the sign be can be omitted and that bit can be used as an 

additional bit for the integer or the fractional part of the number. For simplification reasons, the 

numbers here are represented in sign and magnitude representation, in which one bit is used to 

represent the sign of the number and the rest of bits are used to represent the magnitude of the 

number. Nevertheless, corresponding conclusions can also be drawn for other fixed-point 

representations (such as two‟s complements which dominates in modern digital systems).    

 

 
Figure 2.7: 32-bit fixed-point representation [15]. 

 

When a number is represented in fixed-point, it is necessary that the decimal point (the 

point which separates the integer part from the fractional part) is known either at compile time 

[16], or otherwise it has to be determined during runtime. Under no circumstances should it be 

determined by the compiler. 

 Determining the corresponding decimal value from the integer part of a binary number is 

straightforward since it can be found by summing all the necessary powers of 2 according to the 

following equation:  

 

0

2
m

i

i

i

I a


 
 

(6) 

 



 

17 

 

In this equation, ia are coefficients that determine whether a specific power of 2 is taken into 

account for the calculation of the integer part. For the number of the Figure 2.7 it turns out that 

the integer part is:  

2 4 5 62 2 2 2 116     
 

 For the fractional part, reality turns out to be different. This has to be approximated by 

the sum of the negative powers of 2 as in the following equation: 

 

1

2
n

i

i

i

F a 



   (7) 

 

Thus the fractional part of the number in Figure 2.7 is: 

 

4 9 10 11 13 142 2 2 2 2 2 0.6610107422            
 

and the final number is 116.6610107422. 

 

From the above analysis, it is clear that there are certain limitations when a number is 

represented in fixed point format. First of all, the integer part is represented by m bits. This 

means that the maximum value (in decimal system) that can be represented with these bits is 

2 1m   and the minimum value is equal to 2m , provided that the numbers are encoded in two‟s 

complement format (numbers in two‟s complement form are very convenient for performing 

mathematical operations between signed numbers in hardware). Any attempt to represent a value 

out of this range will consequently lead to overflow. The fractional part of the number consists of 

n-bits, therefore the smallest fractional quantity that can be represented is equal to 2 n
. This 

offers a resolution of 2 n
 which means that any fractional quantity will be an integer multiple of 

it. For example, the range and resolution of Q8.23 format (Figure 2.7) are [127,-128] and 

71.192092896 10  respectively. Besides the limitation in range and resolution, one can observe 

that there are visible tradeoffs between them. The range can be increased by using extra bits for 

the integer part but this will lead to a reduction in resolution and vice versa (taking into account 

that we have a constant number of bits). It is therefore necessary for someone who has to develop 

an algorithm in fixed-point arithmetic to evaluate the range of the variables in the algorithm and 

the required precision, before starting the implementation.  

When fixed-point arithmetic has to be used for high level programming (eg. C/C++), then 

it can be considered that each number is represented in 2 qk   format, where  k  and q  are 

integers variables. Variable k  determines an integer quantity, while variable q  determines the 

position of the binary point. This can become clear by considering for instance the representation 

of the decimal value 12 within 5 bits. Since 12 is an integer quantity, it is not necessary to use 



 

18 

 

any decimal bits and therefore the use of 5.0Q  format is straightforward. In this case the decimal 

value 12 is represented as 01100, k  is equal to the corresponding integer value of 01100, which 

is 12 and e is equal to 0 since there are not any decimal bits. If however the decimal value 12 

would have to be represented in 4.1Q  format, then this would lead to the value 11000. This is 

because the first four bits on the left represent the integer part of the number (

3 2 1 01 2 1 2 0 2 0 2 12        ) and the last bit represents the decimal bit (which in this case is 0). 

k  now, is the integer value of  11000 which is 24 and q is equal to one. In the previous example, 

the values that the computer has in its memory are 01100 and 11000 respectively. The user on 

the other hand can manipulate these values to represent decimal numbers. The integer part can be 

selected by shifting the binary value e-positions to the right. The decimal part can be selected by 

shifting the binary value (5- q )-positions to the left. The same also holds for any available total 

number of bits. Shifting operations can be performed very fast in hardware, and for the Amber 

processor this can be performed in one clock cycle provided the barrel shifter that it has. This 

allows the programmer to use integer oriented variables (short, long, signed, unsigned etc.) for 

representing decimal values.  

The same principle applies to the binary number of Figure 2.7. This can be considered as 

the integer number: 

  

9 10 12 13 14 19 25 27 28 291 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 973.633.024                      

 

Thus k=973.633.024 and q is equal to 23 (the number of fractional bits in Figure 2.13). Shifting 

k, 23 positions to the right (arithmetic shift), results in the decimal value 116 (the MSB is 

reserved for the sign and therefore it is ignored during these calculations). Shifting k, 31-23=8 

positions to the left and summing the negative powers of two (the MSB after the sign bit now 

corresponds to 12  and the LSB to 312 ) results in the value 0.6610107422 as calculated earlier. 

When performing shifting operations it is important not to lose the sign bit, otherwise the 

calculated results will be wrong. 

 Performing mathematical operations in fixed-point format has been discussed in details in 

[26], and for this reason it is omitted here. Nevertheless, Appendix A contains all the necessary 

material that explains how such operations are performed. 

 

 

2.2.2 Floating Point Representation  

  

In fixed-point representation, the sign, the integer part and the fractional part of a number 

are utilized to represent the number. Another approach is to represent other features of this 

number. The most popular approach is the one presented in Figure 2.8 [15]. 



 

19 

 

 
Figure 2.8: 32bit floating-point representation [15]. 

 

In the previous figure, it can be observed that instead of representing the integer and the 

fractional parts of a number, two other quantities can be used: the exponent and the mantissa 

[19]. By utilizing these quantities, a number is represented in the format: 

 
exp( 1) 2sign onentmantissa     , where the exponent can have both positive and negative values 

 

The position of the binary point depends on the mantissa and the exponent and that‟s the 

reason why this representation is called floating. Different mantissas and exponents give 

different binary point position. For instance, if the mantissa is equal to 2 and the exponent is 

equal to 0, the decimal result is 2 (no binary point), while a mantissa equal to 2 and an exponent 

equal to -2 give the decimal value 0.5. The floating-point format which is the de facto format 

used nowadays, is defined by IEEE Standard 754 [20]. According to this standard, floating-point 

variables can also have 64 or 128 bits, which allows higher dynamic range and precision.  In the 

IEEE 754 standard, the exponent (supposing that the exponent consists of n-bits) is represented 

as a biased fixed-point number. The exponent is given by the equation: 
  

0

2
n

i

i

i

E e Bias


   , where 
12 1nBias    (8) 

 

 

 For a single precision floating point variable defined according to IEEE 754, there is one 

sign bit, 8 exponent bits and 23 mantissa bits (32 bits in total). The Bias is equal to 127 and the 

exponent range is [-126 , 127]. It is therefore straightforward that the dynamic range in this case 

is much higher that the fixed point representation and the precision is also orders of magnitude 

higher. One extra advantage of the floating point format is that it allows special representations 

such as   and NaN (not-a-number). 

 Viewing it from a more abstract level, a programmer who develops an algorithm in a high 

level programming language, can define the variable as floating-point, and let the compiler do 

the rest (select the mantissa and exponent for each variable). An extensive description about how 

mathematical operations are performed in floating-point has been performed by Indergaard [32].  

  

 

 



 

20 

 

2.3 The SHMAC Platform 
 

SHMAC is an ongoing research project at NTNU, and its main goal is to explore the 

capabilities of heterogeneous architectures with respect to performance and energy efficiency. 

This makes it a suitable evaluation platform, when the performance and energy efficiency of an 

application need to be evaluated. SHMAC adopts a tile-based architecture, which means that the 

system consists of several tiles, connected as a two-dimensional grid. The architecture of this 

platform is illustrated in Figure 2.9 [3]. 

 

...

...

...
...

...

...

......

n
 ro

w
s

m columns

CPU

Tile 
peripherals

Router

Processor Tile

SHMAC Tile-based Architecture

(0,0) (0,1) (0,1) (0,m-1)

(1,0) (1,1) (1,2) (1,m-1)

(n-1,0) (n-1,1) (n-1,2) (n-1,m-1)

I-cache

D-cache

Accelerator

Router

Scratchpad Tile

Memory array

Router

Main Memory Tile

Memory Controller

APB Tile

APB Controller

System 
registers

Router

 
Figure 2.9 The SHMAC platform architecture [3]. 

 

 

In Figure 2.9, one can observe that the SHMAC platform consists of m×n tiles, where each 

tile can be configured as a system specific component. The setup of the platform is done on an 

FPGA device, which simplifies hardware development. The tiles communicate with their 

neighbors by using a network-on-chip (NoC) architecture, and the available tile configurations 

include currently the following options [3]: 

 

 Processor Tile: it contains a processor unit, caches, peripherals and a router for 

communicating with other tiles. It also offers the option to be extended with additional 

accelerators. 

 Scratchpad Tile: it includes on-chip memory and a router. 

 Main Memory Tile: it contains a memory controller that gives SHMAC access to off-chip 

memory resources and a router. 



 

21 

 

 APB Interface Tile: this tile implements the Advanced Peripherals Bus (APB) slave 

interface which is necessary for the communication of the FPGA with the host system. 

 Dummy Tile: this tile contains only a router and is used to fill remaining tiles when there 

are not enough resources available in the target FPGA. 

 

The memory space of the SHMAC platform is depicted in Table 2.1 [33]. It consists of 

the Exception Table, the Main Memory that is located outside of the FPGA, the Scratchpad 

Memory that includes memory positions located inside the FPGA (provided that corresponding 

Scratchpad tiles exist in the FPGA), the Tile Registers that are memory positions addressed 

within a processor tile (i.e. addresses of the tile peripherals) and the System Registers. 

 

 

Description Start Address End Address 

Exception Table 0000 0000 0000 001F 

Main Memory 0000 0020 F7FF FFFF 

Scratchpad Memory F800 0000 FFFD FFFF 

Tile Registers FFFE 0000 FFFE FFFF 

System Registers FFFF 0000 FFFF FFFF 

Table 2.1: SHMAC memory space. 

 

 

2.3.1 SHMAC Parent System 

 

 The SHMAC platform can currently be instantiated on two different system-on-chip 

(SoC) prototyping platforms. The first one is the ARM RealView Versatile platform, which 

includes the host system, a Xilinx Virtex-5 FPGA and 32MB off-chip RAM, while the second 

one is the ARM Versatile Express, which also includes the host system (a different one), and 

provides a Xilinx Virtex-7 FPGA and 4GB off-chip RAM. For the needs of this thesis, the ARM 

RealView Versatile platform was used. Figure 2.10 depicts the setup of the SHMAC platform, as 

used during this thesis along with the main parts of the development platform. 

 The Virtex-5 FPGA used in the the RealView Versatile platform (Virtex-5 XC5LVX330) 

[36] is an FPGA device fabricated at 65nm technology that aims for high performance 

applications. It contains 51.840 logic slices, 10.368 KB of on-chip RAM memory distributed as 

blocks at different points within the chip in several sizes, as well as 192 DSP48E slices. All these 

resources provide the developer a valuable asset for the implementation of complex digital 

systems such as multiprocessor systems on chip (MPSoC).  



 

22 

 

 
(a) 

Virtex-5 FPGA

ARM Host System  
(b) 

 

Figure 2.10: (a) The SHMAC set-up in the current thesis, (b) snapshot of the interior part of the 

RealView Versatile platform  

 

 The host system consists of a quad-core ARM11 processor running Linux OS. In the 

studied case it is only used to handle the required communication between the FPGA and 

external systems that are necessary for the function of the platform (i.e. the developer‟s 

computer), however in more advanced architectures it can be used along with the FPGA as one 

single multiprocessor system.  

Communication between the host system and the FPGA is performed through an APB 

slave interface; this simply means that the host system acts as a bus master, while the FPGA as a 

bus slave. The communication between the host‟s computer and the RealView platform is 

realized via a USB to RS232 adapter. The RealView platform needs also to be connected to a 

local server located at NTNU in order to perform control operations on the host system; this is 

performed via an Ethernet connection. Communication between the FPGA and the off-chip 

RAM is realized via a RAM bus. Figure 2.11 illustrates the interconnection of the parent system 

with respect to the rest of the functional components. In reality, the RealView platform includes 

many other components, however for simplification reasons they are omitted.  

 

Host 
System

32MB 
SRAM

Virtex 5 
FPGA 

(SHMAC)

RS232USB

Developer

ARM RealView Versatile Board

APB

RAM Bus

NTNU Server

Ethernet

 

Figure 2.11: SHMAC interconnection. 



 

23 

 

2.3.2 SHMAC Processor Tile 

 

When an application has to be executed on the SHMAC platform, this will take place on 

one or more processor tiles. The currently available processors are the Amber 25 processor [11] 

and Turbo-Amber [14]. Both of them are 32-bit RISC processors with five pipeline stages that 

support the ARMv2a ISA and run at 60 MHz (clock frequency when implemented on the 

RealView board). Figure 2.12 depicts a high level architecture of a SHMAC processor tile. The 

main part of this tile is the Processor System which includes the CPU, the main bus (Wishbone) 

as well as its peripherals (timer modules, the interrupt controller and the tile registers). Another 

important part is the router, which handles the communication between the tile and its 

neighboring tiles. There also exists a bridge that connects Processor System with the router. 

 

Processor Tile

RouterBridge

Processor Wrapper

Processor System

CPU
(Amber/Turbo 

Amber)

Timers
Interrupt
Controller

Tile
Registers

Wishbone Bus
North
East
South
West

 

Figure 2.12: SHMAC processor tile. 

 

 Amber 25 

 Figure 2.13 illustrates Amber 25‟s pipeline architecture. Register based instructions 

(except instructions involving multiplication and division) need one clock cycle to be executed. 

The same applies for load and store instructions. It is however necessary that there are no register 

conflicts and no cache miss occurrences, otherwise the processor has to be stalled until the 

proper data are fetched from the main memory and this will result to extra clock cycles per 

instruction.  

The cache memory consists of two separate Level-1 caches; instruction and data cache 

[11]. Both caches are n-way associative (where n can be 2,3,4 or 8) with each way offering 4KB 



 

24 

 

of memory. Consequently, the cache size can vary from 16KB (2×2×4KB) to 64KB (2×8×4KB). 

On the SHMAC platform, the user can select whether to have the cache activated or deactivated.  

 

Fetch Decode Execute Memory 

Access

Write 

Back

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
 

 

Figure 2.13: Amber‟s 25 pipeline architecture. 

 

 

Multiplication is performed using the Booth‟s algorithm [12] which is a small but slow 

multiplier that takes 34 clock cycles for a multiplication of two 32-bits numbers [11]. At this 

point, it needs to be noted that a slightly modified version of Amber with a fast single cycle 

multiplier was available throughout the duration of this thesis as well. Division is not supported 

by the current instruction set and thus it has to be emulated by software [13], resulting in high 

latency. Another feature of the Amber processor is that it does not explicitly support floating 

point operations. This means that all operations that involve floating-point variables have to be 

emulated by software and as in the case of division the latency will be very high. 

 

 

 Turbo-Amber 

Turbo-Amber [14], is a high performance processor based on Amber 25. The only 

differences between them lie inside the Fetch and Execute stages of the pipeline.  More 

specifically, Turbo-Amber‟s Fetch stage is designed in a superscalar way in order to support 

branch prediction and the Execute stage includes a different multiplier. 

Branch prediction is a method used in microprocessor architecture that aims to 

performance increase by the proper handling of branch instructions (i.e. if-then-else statements). 

All the instructions that need to be processed by a microprocessor are usually fetched 

sequentially by the fetch unit illustrated in Figure 2.13. A problem that is caused by this 

sequential instruction fetching is that the next instruction is not known until the current 

instruction has computed it [14]. In architectures that include branch prediction, the fetch unit is 

designed so that it can predict the next instruction or if its prediction is wrong it can recover by 

fetching the proper instruction. 



 

25 

 

 The Booth or the single-cycle multiplier of Amber 25 processor is in this case replaced by 

a 2-cycle multiplier inside the Execute stage. According to the designers, a single-cycle 

multiplier is not able to be integrated within the current processor because it violates the time 

constraints of the system [14] and therefore the 2-cycle one was adopted. Division and floating-

point hardware support are also absent and thus they are also emulated by software; however 

Turbo-Amber has performance increase by 49% and area increase by 70%, compared to Amber 

25 [14]. At the time of the current thesis, Turbo-Amber is available only on ARM RealView 

Versatile platform.    

 

 The Wishbone Bus 

 The Wishbone bus [38] is an open source bus standard, used for the interconnection 

between components within the Processor System. The current bus uses 32-bits for the address, 

128-bits for the data as well as some additional control signals and implements both a Master and 

a Slave interface. The master interface is used by the processor core, so that it can occupy the bus 

and start performing data transfers to/from the tile peripherals, other tiles or the main memory. 

All the peripheral components within the Processor System (timers, interrupt controller and tile 

registers) are connected via the slave interface. This implies that whenever the processor core 

needs to access them, it can select them and start performing read or write operations on them. 

Figure 2.14 [38] illustrates the Master/Slave interconnection interface on Wishbone. 

 

Figure 2.14: Wishbone‟s Master/Slave interconnection [38]. 

 

 



 

26 

 

 Several processor tiles can be placed within the FPGA device. This allows the concurrent 

execution of several applications as well as the multithreading implementation of a single 

application (on condition that the application can be parallelized). In the latter case, the 

application is broken down into several sub-processes (threads), that each of which can be 

executed on a different processor tile. 

 

2.3.3 SHMAC Floating-Point Support 

 

As discussed earlier, both Amber and Turbo-Amber do not support by default floating-

point operations in hardware. Nevertheless, they implement the ARM ISA. All processors of the 

ARM architecture can support floating point operations with the following ways [28]: 

 

1. Hardware coprocessor that executes floating-point instructions 

2. Software floating-point emulation 

 

The hardware floating-point coprocessor (or FPU) is a unit to which all the floating-point 

instructions are forwarded. An FPU for the Amber processor and the SHMAC platform has been 

integrated by Knutsen [29]. The main advantage of an FPU is its high performance compared to 

software solutions. An FPU takes usually 2 to 10 clock cycles for the execution of a floating 

point operation, while an equivalent software solution would take 50 to 100 clock cycles [30]. 

However, equipping Amber with an FPU comes with the cost of the extra silicon area that is 

needed for the FPU and thus higher dynamic power consumption. The static power in this case 

remains the same, provided that the system is synthesized in an FPGA. In an ASIC 

implementation, the static power would also increase with the addition of the FPU coprocessor. 

Emulating floating-point operations in software can be performed by software routines 

that break down the floating-point operators into segments, and they manipulate each segment by 

using integer operation [30]. These software routines can be simple routines that simulate the 

behavior of an FPU or more complex library routines generated by the compiler [30]. The 

SHMAC platform currently utilizes the SoftFloat library [31]. A floating-point number according 

to the IEEE 754 standard consists of three segments: sign, exponent and mantissa. For instance, a 

simplified version of the multiplication of two numbers would be to break down the numbers 

into these three segments, and then multiply the two signs (integer multiplication), multiply the 

mantissas (integer multiplication), add the exponents (integer addition) and finally reconstruct 

the result according to the produced segments. From the previous example it is clear that the 

overhead in this case (which was a very simplified version of a real situation) is significantly 

high. Table 2.2 summarizes the latency times of fixed and floating-point operations (of 32-bit 

variables) on the Amber processor when they are emulated by software as well as when they are 

executed on the FPU integrated on SHMAC by Knutsen[29].  

Corresponding data for the Turbo-Amber or the Amber with the single-cycle multiplier 

were not available in the literature. Nevertheless for the latter two cases it can be estimated that 



 

27 

 

addition and subtraction have the same performance in all cases (fixed-point, software floating-

point and hardware floating-point) as in Table 2.2 because of the identical ALU that executes 

these instruction. Multiplication in fixed-point and software emulated floating-point will be 

different (and definitely faster than Amber with the Booth multiplier) in each case according to 

the multiplier (single-cycle or two-cycle). Estimations about the division can hardly be made 

because it is unclear whether the multiplier is involved in the corresponding emulated operations. 

The floating-point performance in hardware is in any case the same as in Table 2.2, since the 

FPU coprocessor does not change. 

 

 

Instruction Fixed-point Floating-point (SW) Floating-point (HW) 

Addition  1 59 52 

Subtraction 1 59 52 

Multiplication 34 193 52 

Division 14 - 200 145 105 

Table 2.2: Latency values in clock cycle of floating-point addition, subtraction, multiplication 

and   division instructions on the Amber processor (enabled caches). 

 

 

 As one can observe in the above table, the FPU is in every case faster than emulating the 

corresponding operations in software, with the multiplication being benefited more than the 

others. However, the latency of this specific FPU is much higher than the fixed-point operations. 

The current FPU [29] is a 64-bit FPU. This requires that the overhead for loading and storing 

data in the FPU will be twice as in the case of using a 32-bit FPU. Furthermore the latency of the 

FPU (when executing the operations, without the load and store overhead); 20 clock cycles for 

addition, 21 for subtraction, 24 for multiplication and 71 for division [29], is also significantly 

high compared to fixed-point operations (except in the multiplication).  

Integration of one of the FPUs designed by Indergaard [32] could potentially produce 

better performance results. Indergaard [32] investigated several FPU implementations for the 

SHMAC platform and it was found that all floating-point operations could be performed in a 

single cycle. This could result in better performance than the default fixed-point operations 

(considering that in fixed-point operations, multiplication takes 34 clock cycles and division 

takes 14-200 clock cycles), however at the current point of the SHMAC project, the compiler is 

not able to automatically produce co-processor instructions that are necessary for the FPU 

function and therefore the only option for someone to make use of the FPU is to write assembly 

code. Walstad [38], has included all the relevant assembly instructions inlined within C-functions 

that comprise a floating-point library for the SHMAC project. By making use of these functions, 

one can use the FPU, without having to manually code all the assembly instructions. 

 

 

 



 

28 

 

2.4 Hardware Accelerators 
  

Hardware accelerated systems, is a typical paradigm of HW/SW co-design [24]. Adding 

hardware accelerators is an approach of customizing the target platform to the needs of the 

application. According to Wolf [24], using high end processors can be a very expensive option 

(both in monetary cost as well as power consumption) compared to breaking down the 

application into smaller parts and implement some of these parts in hardware accelerators. 

Breaking down an application into smaller tasks requires additional effort, however if these tasks 

can be scheduled in an optimal way, then meeting deadlines and real-time requirements becomes 

more and more feasible. The distinction between accelerators and co-processors must be denoted 

at this point. A coprocessor is an internal part within a CPU that executes instructions. The 

accelerator on the other hand, is a component that communicates with the CPU but is placed 

outside of it and its purpose is to execute a single task (not instructions). A typical hardware 

accelerator example is for instance the GPU within a desktop computer. Figure 2.15 depicts a 

computing system that uses both a coprocessor and an accelerator, as well as a memory unit and 

the necessary interconnection. 

 

CPU

Bus

FPU
coprocessor

Accelerator

Main
Memory

 

Figure 2.15: Hardware accelerated system. The dashed lines illustrate possible paths between 

the main memory and the accelerator. 

 

 In any case, the CPU has to signal the accelerator that it should start performing its task. 

Communication between the CPU can be achieved via registers (control, status, data registers 

etc.) in the accelerator and the interface between them usually resembles the interface of I/O 

devices [24]. The CPU can either pass the input data to the accelerator or if the data demands are 

really high, the accelerator should be able of fetching the data from the memory by itself (DMA). 



 

29 

 

In the latter case, the designer has to be very careful because the bus is a shared resource 

between the CPU and the accelerator. If the CPU needs to access the main memory while the 

accelerator is fetching data, then the CPU will have to wait or interrupt the accelerator and this 

comes with the cost of extra delay that has to be accounted during the design phase. This brings 

up the concept of single-threaded and multi-threaded systems. Figure 2.16 [24] illustrates this 

concept. 

 

(a)                                                          (b) 

Figure 2.16: (a) Single-threaded execution, (b) multi-threaded execution [24]. 

 

 

In Figure 2.16 (a), the CPU executes process P1 and then it has to wait until the 

accelerator has finished A1 in order to continue with the execution of P2, P3 and P4. In this case, 

only one process can be executed at a time. In Figure 2.16 (b), one can observe that while the 

accelerator is executing A1, the CPU can execute P3, which means that two processes can be 

executed at the same time. At this point, it has to be noted that whether a system can be single-

threaded or multi-threaded depends on the data dependencies among the processes. If for 

instance P3 would require as input the output of A1, then it would be impossible to execute them 

at the same time. Consequently, special attention during the partitioning of the application must 

be given. 

An important parameter that determines whether an accelerator should be used or not, is 

the speed-up factor that it can offer. Assuming that executing a process on the accelerator 

requires [24]: 

accel in x outt t t t     (9) 

 

where int  is the time needed to read the input data, xt the time needed to perform the calculations 

and outt  the time needed to write the output data, then according to Wolf [24], the speed-up 

factor (of a single-threaded system) can be defined as: 

 

( )CPU accelS n t t   (10) 

 



 

30 

 

whereas, n is total number of  times that the accelerated process is executed. From the previous 

equation, it is clear that the more times a process has to be executed as well as the smaller the 

time that the accelerator needs and the bigger the time that the CPU needs, the bigger the speed-

up will be. Therefore, processes that have to be executed many times and/or are very slow when 

executed on the CPU, are usually good candidates for acceleration [24].  

 The utilization of hardware accelerators along with general purpose CPUs can be 

considered as a very efficient way to realize electronic systems [23]. On the one hand, the easiest 

way for someone to implement an application is to implement it in software since software 

development is a relatively easy task (compared to hardware development), the availability of 

development systems (desktop computers or laptops) is very high, many off-the-shelf CPUs that 

can execute software exist, so it would be reasonable for one to argue whether new hardware 

should be developed. On the other hand, besides the performance of a system, another major 

parameter that dominates the design of electronic systems nowadays is the energy efficiency that 

they can offer. In [22], it is reported that the energy efficiency for different implementation 

alternatives (from pure software to pure hardware implementations) can differ by orders of 

magnitude (favoring the pure hardware implementations).  

Consequently, accelerators allow the realization of mixed (HW/SW) implementations, 

whereas some parts of a certain application are implemented in software and some others in 

hardware. This is very important as they can trade-off the ease of implementation versus 

performance and energy efficiency.     

 

2.5 The ‘two-process’ Design Method 
  

 As the complexity in the design of modern electronic systems is constantly increasing, 

methods that simplify the design process, offer fast simulation times and guarantee that the 

design is synthesizable are getting more and more interesting. Traditional VHDL design flow 

usually includes the description of the desired system by several concurrent processes. For 

complex systems there can be hundreds of such processes that each of which is sensitive to 

several signals. This makes the description of such systems difficult for someone to understand, 

the large number of signals leads to slow execution times and additionally there is always the 

chance that the designed system is not synthesizable. The two-process method developed by 

Gaisler [39], attempts to solve these problems by proposing the use of one sequential and one 

combinatorial process in each VHDL entity. Figure 2.17 [39] depicts the idea behind the two-

process method. 



 

31 

 

( , )

( , )

q

in r

Q f D r

r f D r





inr r

Combinatorial

Sequential

D Q

rin

r

Clk

 
Figure 2.17: A generic system described by two processes (reproduced from [39]). 

 

 

 The system illustrated in Figure 2.17 is described by one combinatorial and one 

sequential process. Its inputs D are directly connected to its combinatorial part and moreover the 

combinatorial part drives the signal rin which is the input of the sequential part as well as the 

output Q. The sequential part latches this signal and on the next clock edge, it forwards it to the 

signal r, which is used as an input by the combinatorial part. This allows the designer to define 

directly which signals should be registered or not. While in Verilog, the designer can directly 

define what should be implemented in registers or simple wires, in VHDL this is often 

ambiguous and therefore this is a very important property of the two-process method. 

Furthermore, the registered signals can be grouped in record types so that the sensitivity 

list of the combinatorial part can contain only these records [39]. This guarantees that these 

signals are synthesizable and moreover the addition or removal of extra signals can be done 

within the declaration of the corresponding record type, without any need to modify the 

sensitivity list of the combinatorial process. This keeps the sensitivity list both short and readable 

[39]. This feature, along with the fact that the system is described by only two processes, 

simplifies the maintenance and reusability of the designed entities allows the fast simulation in 

order to verify its functionality and provides a guide for the efficient design of modern digital 

systems. 

 

 

2.6 Previous Work 
  

This section describes the previous work that has been performed, with respect to the 

biomedical algorithm and the current thesis. Figure 2.18 illustrates all the intermediate steps that 

have been performed so far. The initial version (I) of the STLmax calculation algorithm was 

initialy implemented in Matlab by researchers at Arizona State University (ASU). Since the 

algorithm was supposed to be implemented in actual software it was necessary to be 



 

32 

 

implemented in a high level programming language. Matlab offers the highest level of 

abstraction in programming, however the advantage of this abstracted way of programming 

comes with the cost of low performance; Matlab implementations are usually slower than 

implementations in other high level programming languages. The language that was selected to 

move forward with this application is C due its wide acceptance in the field of embedded 

systems.   

The original version was modified by researchers at NTNU (as well as the rest of the 

discussed versions) in version (II) so that the transition in C could be performed easier, and then 

the first C translation (III) was done. Version (III) was afterwards revised in an optimized 

version (IV) by applying high level optimization techniques such as loop unrolling and 

minimizing the usage of computationally expensive functions such as the logarithmic function 

(from equation (5) in Section 2.1.1, the STLmax is calculated as a sum of logarithms). Finally, 

another version (V) was created from (IV), for the mapping of the algorithm on the STM32F 

microcontroller [25], which has an ARM processor with hardware floating-point support and 

single-cycle DSP oriented instructions [15]. 

 

Past Work
(performed by others)

Autumn Work

I. Matlab version

II. Matlab version (revised) 

III. C version

IV. C version (optimized)

V. C version (STM32F)

Mapping on SHMAC

SHMAC Accelerator 
Interface

VI. C fixed-point version

VII. C hybrid version

 

Figure 2.18: Previous work related to the current thesis. 

 

Version (IV) was mapped by Berg [27] on the SHMAC platform. The algorithm was 

profiled on SHMAC and its execution time was found to be 52.46s.  Some parts of its code were 



 

33 

 

at that time moved into a hardware accelerator. Different accelerators were studied, and it was 

found that the most efficient one is a fixed-point accelerator. Version (IV) as well as all the 

software versions discussed so far, involves floating-point operations. Therefore, the proposed 

accelerator had to perform conversion from floating-point into fixed-point, process the fixed-

point variables and finally convert the calculated result back into floating-point representation.  

As long as hardware accelerator support on the SHMAC platform is concerned, this 

problem has been tackled by Teilgård [33]. In that project, different interfaces for the integration 

of accelerators within a SHMAC processor tile were designed. The accelerator in this case 

occupies some of the tile registers (as discussed in Section 2.3) so that the communication 

between it and the CPU can be performed by memory-mapped instructions; to the CPU, the 

accelerator is nothing else than memory positions.  

Versions (VI) and (VII) of the STLmax calculation algorithm were developed during the 

project work [26] in the autumn of 2014. Both of them are based on version (IV) which at that 

moment was the most optimized platform-independent version. The main idea behind them is the 

translation of version (IV) (an optimized floating-point implementation) into a fixed-point 

version. In this way, the processor‟s hardware can be utilized in a more efficient way since in 

both Amber and Turbo-Amber, floating-point operations have to be emulated by software 

routines, and this results in high execution time (as also reported by Berg [27]). 

Version (VI) was developed first. However, at that time it was not feasible to execute it 

on the SHMAC platform and consequently an ARM simulator was used to evaluate its 

performance. After the execution of the algorithm on the simulator, it was found that Version 

(VI) was slower than the initial floating-point version. This was caused due to the increased 

accuracy demands in one specific point of the algorithm. At this specific point, the required 

operations are two multiplications and one division and their operands need to be scaled 

(discussed in [26] and also in Appendix A). Snippet 2.1 illustrates the way that the operand 

scaling in a multiplication is performed in the C-code. 

Since the variables are encoded in two‟s complement representation it is important to 

know when they are positive or negative in order to handle them properly. If they are positive the 

identification of the leading and trailing zeros can be performed relatively easy, however if they 

are negative then they will have several MSBs equal to „1‟ and therefore it is beneficial to invert 

their sign, perform the operand scaling and then invert them back. This is done by marking the 

flags flagNegativeA and flagNegativeB. After that, the trailing zeros of the first operand 

(operandA) are identified in the first while loop. Variable s1 is initialized to zero, and during the 

while loop it counts the trailing zeros of operandA. The condition inside the while loop: 

!((operand>>s1)&1) holds as long as the s1-bit of  operandA is equal to zero and the loop keeps 

iterating. Otherwise it means that all the trailing zeros have been found and it stops iterating. 

Exactly the same procedure is performed to the second operand (operandB) in the second while 

loop. After the identification of the trailing zeros, both operands are shifted to the right. 

After the identification of the trailing zeros and the shifting of the operands, the sum of 

their leading zeros needs to be found. This is performed in the last two while-loops. If the sum of 

the leading zeros is at least equal to 32, then the operands can be multiplied and their product 



 

34 

 

will occupy 32-bits, otherwise their product will require more than 32-bits and therefore it cannot 

be represented by a 32-bit variable. In the latter case the algorithm ignores the current operation 

and moves on with the rest (final if-statement).  
 

//  Mark negative numbers (two's complement) 

    flagNegativeA=0; 

    flagNegativeB=0; 

    if(operandA<0){ 

        operandA=-operandA; 

        flagNegativeA=1; 

    } 

    if(operandB<0){ 

        operandB=-operandB; 

        flagNegativeB=1; 

    } 

 

//  Count the trailing zeros in both operands    

    s1=0; 

    while(!((operandA>>s1)&1)){ 

        s1++; 

    } 

    operandA=operandA>>s1; 

     

    s2=0; 

    while(!((operandB>>s2)&1)){ 

        s2++; 

    } 

    operandB=operandB>>s2; 

//  Count the sum of the leading zeros   

    s3=31; 

    s4=0; 

    while(!((operandA)&(1<<s3))){ 

        s3--; 

        s4++; 

    } 

    s3=31; 

    while((!((operandA)&(1<<s3)))&&(s2<32)){ 

        s3--; 

        s4++; 

    } 

    if(s4==32){ 

        result=operandA*operandB; //Keep in mind the new Q-notation 

        if(flagNegativeA^flagNegativeB){ 

            result=-result; 

        } 

    } 

    else{ 

//      ignore current operation 

    } 

 

Snippet 2.1: Operand scaling in version (VI). 

 

 



 

35 

 

The multiplication is performed in the final if-statement and the sign is defined by 

performing the XOR operation between flagNegativeA and flagNegativeA. The XOR operation 

(operand ^ in C) is used because the sign of the result needs to be inverted only when one of the 

two operands is negative. If both of them are positive or negative, then the result will be positive. 

The developer must be very careful when performing such tricks because the Q-notation of the 

result depends on the shifting operations of the operands.  

According to the above analysis, it is evident that such operations have a corresponding 

computational cost. Keep iterating within the while loops (the iterations may vary from 0 to 32 in 

each loop, depending on the operands) results in high execution time for this code segment, and 

considering the fact that the part of code that uses this technique needs to be executed many 

times (140 390 times in total, involving 280 780 multiplications and 140 297 divisions [26]), it 

turns out that the operand scaling is not an efficient solution for this application and 

consequently the code was revised into version (VII).   

Version (VII) is a hybrid (fixed-point/floating-point) version (VII) also developed during 

the autumn project [26]. In Table 2.2, one can observe that the latency of the emulated floating-

point multiplication (193 clock cycles) can be potentially less than performing massive operand 

scaling operations. After this observation, the operations that involve operand scaling in version 

(VI) (two multiplications and one division) were converted into floating-point operations. The 

revised algorithm was executing again on the ARM simulator, and it was found that it is faster by 

48% than the initial floating-point version (IV).  

The conversion form fixed into floating-point was done using the following macro from 

ARM [16]: 
#define tofloat(a, q) ( (float)(a) / (float)(1<<(q)) ) 

 

This macro, simply converts a fixed-point number „a‟ with q-bits in its fractional part into a 

floating-point number in IEEE-754 format. Despite the fact that the conversion requires an 

expensive (in terms of latency) floating-point division, it is still more efficient than performing 

the earlier described operand scaling in this specific application.  

 

 

 

 

 

 

 

 

 

 

 

 



 

36 

 

 

  



 

37 

 

Chapter 3 
 

Application Mapping 

 

 

In this chapter the mapping of the algorithm on the SHMAC platform is discussed. The 

methodology followed during the implementation is described first. The porting of the algorithm 

on SHMAC along with some system parameters that affect the performance of the algorithm as 

well as candidate implementation alternatives are discussed secondly, followed by the algorithm 

profiling and the hardware/software partitioning  considerations of the application. 

 

 

3.1 Methodology 
  

Figure 3.1 illustrates the methodology adopted in the current thesis. As discussed in 

Section 2.6, the fixed-point version and the hybrid version of the STLmax calculation algorithm 

have not been executed on the SHMAC platform so far. Consequently, the first step is the 

porting of the algorithm on SHMAC and the evaluation of its performance on a processor tile, 

with respect to the application requirements. If they are met, then one can say that the software 

implementation of the algorithm is sufficient and no extra modifications should be performed. In 

this case, the energy efficiency will have to be verified as a function of the measured execution 

time and the power consumed by the SHMAC platform.  

If, on the other hand, the applications requirements are violated, then the addition of extra 

hardware that speeds up the application can be considered inevitable (provided that the software 

cannot be optimized any further). In the current thesis, this additional hardware is considered to 

be hardware accelerator(s) (as discussed in Section 2.4). Consequently, the algorithm will have 

to be profiled in order to identify its bottlenecks and then one or more of the identified 

bottlenecks should be moved into the accelerator(s), and therefore the design of the accelerator(s) 

should follow next. After the design phase is complete, the accelerators(s) should be integrated in 

the SHMAC platform, and later the algorithm should be executed again in order to evaluate its 

performance when the accelerator(s) are utilized. The energy efficiency should be evaluated as 

well, as a function of the final execution time (which will be decreased due to the addition of the 

accelerator) and the consumed power (which will be increased due to the accelerator(s)). 



 

38 

 

Profiling/
Bottleneck Identification

Accelerator Design

System Integration

Performance Evaluation

Energy-Efficiency 
Evaluation 

Algorithm Porting on 
SHMAC

Are the 
requirements 

met?

Yes

No

 
 

Figure 3.1: Methodology adopted in the current thesis. 

 

 

As analyzed in Section 2.1 the STLmax calculation algorithm is not a straightforward 

procedure. The algorithm has to search within an EEG signal and check whether there exist 

certain points with certain properties (Section 2.1.1) and then act accordingly. This results into 

different runtimes for different input EEG signals, and therefore it is beneficial to select a 

suitable EEG sample for further experiments on SHMAC instead of executing the full dataset. 

The full dataset of EEG recordings, consists of 112 512 different signals; this is a full set of EEG 

recordings from 32 different channels with duration of 10 hours each.  

For this purpose, the optimized floating-point version (IV) was selected for the execution 

of the whole dataset on an Intel I5 processor at 2.6GHz and 4GB of RAM. Executing versions 

(VI) and (VII) would make no difference in this case, because the target processor adopts a 

superscalar architecture with several optimized FPUs. Moreover, using one of the rest of the 

existing software versions would also make no difference for the current purpose, which is the 

algorithm‟s performance estimation. After the execution of the algorithm with all the available 

EEG signals as input, the following histogram (Figure 3.2) with the runtimes in seconds was 

obtained.  

 



 

39 

 

 

Figure 3.2: Histogram of runtimes of all STLmax values. 

 

 In the above histogram, one can observe that there is a big deviation over the different 

runtimes. The mean value of them is 0.013961s while the minimum and the maximum values are 

0.009042s and 0.042992s respectively. According to the application‟s requirements, the 

execution of the algorithm on the SHMAC platform should result in a mean execution time of 

0.32s and so porting an EEG signal that results in the worst case or in the best case execution 

time must be avoided. An EEG signal that requires a runtime slightly over (by a factor of 10%) 

the mean value (0.01542s) was extracted for this purpose. It would be reasonable for someone to 

assume that an EEG signal that requires exactly the average runtime should be extracted, 

however due to the fact that from an architecture point of view, the target processor (ARM) is 

completely different than the processor used here (Intel), a safety factor of 10% was empirically 

considered.    

 

 

 

 



 

40 

 

3.2 Porting the Algorithm on SHMAC 
 

 In order to execute the algorithm on the SHMAC platform, a SHMAC instance must be 

synthesized for this purpose. This was selected to be the layout presented in Figure 3.3, which 

includes the minimum but necessary hardware tiles. 

APB

RAM Bus

I/O Tile
(APB Slave)

External 
Memory Tile
(ZBT RAM)

Processor Tile

Virtex 5 FPGA

 

Figure 3.3: SHMAC layout used for the execution of the algorithm. 

 

The layout presented in Figure 3.3 does not necessarily correspond to the actual placed 

and routed circuit inside the FPGA device, since this is determined by the synthesis tool (in this 

case was Xilinx XST). Nevertheless, it illustrates that these are the minimum necessary resources 

that have to be used. According to the analysis of the platform in Section 2.3, one I/O tile has to 

be used for the communication with the host system, one tile for the communication of the 

FPGA with the external off-chip memory and one processor tile that will be used for the 

execution of the algorithm.  

The starting point for the processor tile was the modified version of Amber 25, with the 

single cycle multiplier, as discussed in Section 2.3. Attempting to use Amber with the Booth 

multiplier would result in an execution time far from meeting the requirements (according to the 

execution time reported by Berg [27]) and thus it was initially rejected as an option. It could only 

be considered as a design option only if the fast multiplier can speed up the application beyond 

the requirements. The floating-point version (IV), fixed-point version (VI) and hybrid version 

(IV) of the algorithm were executed on SHMAC. These are the most optimized versions 

compared to the rest and thus they were considered for further platform-dependent analysis. The 

execution times for the three different software implementations are presented in Table 3.1.  

 

 



 

41 

 

 Floating-Point Fixed-Point Hybrid 

Cache disabled 215.73 146.23 76.65 

Cache enabled 13.33 7.81 4.50 

Table 3.1: Runtimes in seconds, of the three different software implementations (compiler 

optimization –O0). 

  

From the runtimes in Table 3.1, it appears that the fixed-point version performs better 

than the original floating-point version, in contrary to the results reported in [26]. However the 

hybrid version is still the fastest one. This proves the assumption that emulating a small subset of 

all the involved operations is for this application more efficient than performing massive operand 

scaling operations. More specifically, the fixed-point version is faster by 41% compared to the 

floating-point and the hybrid implementation is faster by 66% compared to the initial floating-

point. Furthermore, it is also clear that enabling the processor‟s cache affects massively the 

performance of the application (approximately 17 times faster when cache is enabled). 

Nevertheless, even the hybrid version cannot meet the application‟s requirements (a runtime of 

0.32s). The software was compiled without any compiler optimization options enabled 

(optimization flag –O0), so the next step was to activate them. The code was recompiled with the 

compiler set to optimize it with respect to speed (optimization flag –O3). The results in this case 

are presented in Table 3.2.  

 

 Floating-Point Fixed-Point Hybrid 

Cache disabled 134.24 44.92 33.19 

Cache enabled 8.79 4.36 2.12 

Table 3.2: Runtimes in seconds, of the three different software implementations (compiler 

optimization –O3). 

 

Comparing the values of Table 3.1 and Table 3.2, indicates that the compiler optimization 

can be a very important asset, since it can improve the performance of the algorithm by a high 

degree (over 50% improvement for the hybrid version). The execution time is still violating the 

performance requirements, and therefore additional hardware has to be utilized. At this point, the 

FPU coprocessor was added to the processor tile. Due to the compiler problems mentioned in 

Section 2.3.3, only the hybrid version was possible to make use of the FPU. The fixed-point 

version can in no case benefit from the FPU, while the floating-point version would have to be 

rewritten so that it utilizes the floating-point library developed by Walstad [38]. Considering the 

latency values of the FPU, this option was disregarded because even by using the FPU, the 

floating-point version cannot compete the hybrid, in which most of the mathematical operations 

are performed by fixed-point operations that are executed in one clock cycle. The execution time 

of the hybrid version with the FPU, was found to be equal to 2.09s (with the cache enabled and 

compiler optimization –O3). The performance gain in this case is just 30ms (with respect to the 



 

42 

 

initial runtime of 2.12s) and is again not sufficient in order to meet the requirements. The next 

step is to try out a faster processor (since that‟s the limit for Amber). A SHMAC layout with 

Turbo-Amber in the processor tile was synthesized and the algorithm was ported again on the 

platform. The runtimes in this case are presented in Table 3.3. 

 

Compiler Optimization Floating-Point Fixed-Point Hybrid 

Flag  -O0 11.73 7.18 4.06 

Flag  -O3 7.32 2.24 1.79 

Table 3.3: Runtimes in seconds, of the three different software implementations on Turbo-

Amber. 

 

 Having the cache disabled would be senseless in this case, so the results in Table 3.3 are 

with the cache enabled. Turbo-Amber has increased performance in all cases, with the fixed-

point version being most benefitted (approximately 50% performance improvement in this case). 

This is because of the branch prediction that Turbo-Amber has. The operand scaling operations 

involved in the fixed-point version, are performed in the while loops presented in Snippet 2.1. 

When these while loops are translated from C into assembly and machine language (during the 

compiling and linking phases) result into branch instructions that the processor has to execute. 

This can become clear by considering the fact that a while loop keeps iterating if a specific 

condition holds. If the condition holds, then the program jumps to a corresponding memory 

address (the one that contains the next instruction). If not, it stops iterating and jumps to the next 

instruction, consequently such condition checks correspond to branch instructions. The floating-

point version as well as the hybrid version get also benefited from Turbo-Amber, however since 

both of them involve floating-point operations that have to be emulated by software, the 

performance gain is relatively low compared to the fixed-point version. The utilization of the 

FPU was intentionally disregarded in the case of Turbo-Amber, since according to the runtime 

measured on Amber, it is certain that the FPU cannot accelerate the application by a sufficient 

degree. 

 With an execution time equal to 1.79s and a given time frame of 10.24s, Turbo-Amber is 

able to calculate the STLmax values of five different channels within the given time frame. In 

order to meet the requirements of 32 STLmax values per 10.24s (or 0.32s per value), extra 

hardware has to be utilized. This can be done in three different ways. The first one is to use extra 

processor tiles and calculate five STLmax per tile. In this case, seven processor tiles would be 

necessary (each one calculating the values of five channels). The second one would be again the 

usage of extra processor tiles and implement a multithreading version of the algorithm. The 

internal loops of the algorithm could be executed in parallel on the different processor tiles and 

this could result into a lower execution time that could potentially meet the performance 

requirements. Last but not least, is the utilization of hardware accelerators. Hardware 

accelerators are usually components less complicated than conventional processors, since, as 

mentioned in Chapter 2, they are designed in order to be capable of executing efficiently a single 



 

43 

 

task and not all types of tasks as it happens to the processors. This can potentially result into 

simple hardware that requires less silicon and offers better energy efficiency compared to using 

multiple processor tiles and therefore this option is investigated in the following sections.  

   

3.3 Algorithm Profiling 
 

 Before attempting to design one or more accelerators for the STLmax calculation 

algorithm, it is essential to identify the bottlenecks of the code and analyze whether they should 

be implemented in the accelerator or not. The identification of these bottlenecks can be 

performed simply by profiling the code on the SHMAC platform. The floating-point version can 

be easily rejected for this task, since in all cases it is by far the slowest one compared to the 

fixed-point and the hybrid version and it is very hard to accelerate in such degree that it can meet 

the requirements. The profiling was performed for the two latter software implementations on 

Turbo-Amber, because of their similarities and differences; they are identical except in one 

specific part whereas the fixed-point version performs operand scaling operations while the 

hybrid version replaces these operations with floating-point ones (as discussed in Section 2.6). 

Therefore if this part is considered to be moved into the accelerator, the structure of the 

accelerator will be different for these two implementations, resulting into simple or complex 

hardware.  Figures 3.4 and 3.5 summarize the profiling results for the fixed-point and the hybrid 

versions respectively. The compiler optimization options were in all cases activated (compiler 

flag –O3) and the cache enabled.  

 

 

(a)                                                                    (b) 

Figure 3.4: Profiling results of the fixed-point version on Turbo-Amber; (a) time in seconds (b) 

time as percentage of the total execution time. The total execution time is 2.24s.  

0,27 

1,68 

0,22 

0,07 

delta1

epsilon2

currentV

rest

12% 

75% 

10% 

3% 

delta1

epsilon2

currentV

rest



 

44 

 

  

(a)                                                                    (b) 

Figure 3.5: Profiling results of the hybrid version on Turbo-Amber; (a) time in seconds (b) time 

as percentage of the total execution time. The total execution time is 1.79s.   

 

 In Figures 3.4 and 3.5, it can be observed that the most intensive part of the algorithm is 

the calculation of the epsilon2 quantity. This is the part of the code that the precision 

requirements are very high and the fixed-point code has to perform a lot of operand scaling 

operations (as discussed in Section 2.6) while the hybrid performs those using floating-point 

operations. Both versions spend the same amount of time on calculating delta1 and currentV 

quantities, something that it is expected since the operations involved in these computations are 

identical for both of them; they involve simple fixed-point operations.  After analyzing the 

computations of epsilon2 even further, the graphs illustrated in Figure 3.6 are obtained.  

 

 

(a)                                                                    (b) 

Figure 3.6: Further analysis of the computations involved (a) in the fixed-point version and (b) 

in the hybrid version. The numbers represent time in seconds.  

 

 In Figure 3.6, the calculation of epsilon2 is decomposed into its partial calculations. 

These include the calculation of the temp quantity, nominator, denominator, fraction and a 

0,27 

1,27 

0,22 

0,03 

delta1

epsilon2

currentV

rest

15% 

71% 

12% 

2% 

delta1

epsilon2

currentV

rest

0,27 

0,22 

0,07 

0,20 

0,56 

0,56 

0,34 

0,01 delta1

currentV

rest

temp

nominator

denominator

fraction

rest2

0,27 

0,22 

0,03 
0,19 

0,35 

0,35 

0,35 

0,04 delta1

currentV

rest

temp

nominator

denominator

fraction

rest2



 

45 

 

negligible part denoted as rest2. The temp calculation is identical for both versions. The 

calculations of nominator, denominator and fraction are the only different calculations between 

them. These are the results of two multiplications and one division respectively. In the fixed-

point version, they are performed by applying operand scaling operations; keeping however all 

the operations in fixed-point, while the hybrid version converts these quantities from fixed-point 

into floating-point and then it performs the necessary operations (emulated by software). It is 

however evident that the target processor can emulate floating-point operations more efficiently 

than the operand scaling (approximately 38% performance difference for these particular 

calculations). 

 

3.4 Hardware/Software Partitioning 
 

 Hardware/Software partitioning is a very important task in electronic system design. 

During this task, it is determined whether an application should be implemented in software, 

hardware or a combination of them. In the case of the STLmax calculation algorithm, the starting 

point can be considered that the whole algorithm is implemented in software and is executed on 

the target processor (Turbo-Amber). This however results into a system that violates the 

performance requirements, as mentioned in Section 3.2, and consequently it is necessary to 

implement some parts of the algorithm in hardware. 

     According to the profiling results discussed in Section 3.3 it is necessary to move the 

calculations of epsilon2 and at least one between delta1 and currentV into hardware, otherwise it 

is impossible to have a system (combination of hardware and software) that performs the 

demanded calculation in maximum 0.32s. Snippet 3.1 illustrates the structure of these blocks 

within the algorithm. 

for (k=1; k < kMax; k++)

    {

        delta1[]

        while (condition=TRUE)

        {

            currentV[]

            if (currentV.size != 0){

                for (i=0; i < currentV.size; i++){

                    epsilon2

                }

            }

        }

    }

 
Snippet 3.1: Structure of the most demanding blocks within the algorithm. 



 

46 

 

 Snippet 3.1 illustrates the fact that the computationally most intensive blocks of the 

algorithm are nested within loops. Consequently, the total number of executions of these blocks 

has to be determined. During the execution of the algorithm, it was found that block delta1 was 

executed 168 times, currentV 685 times and epsilon2 140 390 times. According to these numbers 

and the runtimes presented in Section 3.3, the runtimes as well as the clock cycles spent on one 

execution of each block can be determined. For delta1 and by taking into account the processors 

frequency (60MHz) and period (0.016667μs), this is: 

1

0.27
1607

168

s
t s , or 96 424 clock cycles 

The same applies to currentV and epsilon2. In this case one execution of currentV takes: 

2

0.22
321

685

s
t s , or 19 261 clock cycles 

And finally one execution of epsilon2 takes:  

3

1.26
9

140390

s
t s , or 540 clock cycles 

 Snippets 3.2, 3.3 and 3.4 depict how delta1, currentV and epsilon2 are implemented in 

the C-code respectively. Blocks delta1 and currentV are exactly the same for both the software 

versions, however for demonstration reasons, only the epsilon2 implementation in the hybrid 

version is included here. 

 

     for (i = 0; i < 2008; i++ ){ 
        long d2temp=0; 

        curr_d2partial=curr_VectorB[0]- VectorB[i]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[1]- VectorB[i+4]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[2]- VectorB[i+8]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[3]- VectorB[i+12]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[4]- VectorB[i+16]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[5]- VectorB[i+20]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        curr_d2partial=curr_VectorB[6]- VectorB[i+24]; 

        d2temp +=curr_d2partial*curr_d2partial; 

        delta1[i] = d2temp; 

    } 

 

Snippet 3.2: C snippet of delta1. 



 

47 

 

        scalmxfixed=(xMaxfixed>>5)*LUT_1[z]; 

        scalmxfixed=convertq(scalmxfixed,26,18);  

        cvCount = 0; 

        for (i = 0; i < 2008; i++ ) 

        { 

            if (d1fixed[i]<= scalmxfixed){ 

                    currentV [cvCount] = i; 

                    cvCount ++; 

            } 

        } 

 

Snippet 3.3: C snippet of currentV. 

 

temp=0; 

select=alfa[i];  

temp=temp+VectorA[0]*VectorB[select]; 

select=alfa[i]+tau; 

temp=temp+VectorA[1]*VectorB[select]; 

select=alfa[i]+2*tau; 

temp=temp+VectorA[2]*VectorB[select]; 

select=alfa[i]+3*tau; 

temp=temp+VectorA[3]*VectorB[select]; 

select=alfa[i]+4*tau; 

temp=temp+VectorA[4]*VectorB[select]; 

select=alfa[i]+5*tau; 

temp=temp+VectorA[5]*VectorB[select]; 

select=alfa[i]+6*tau; 

temp=temp+VectorA[6]*VectorB[select]; 

temp=temp>>2; 

 

nom= mpoint - temp; 

float nomFloat=tofloat(nom,20); 

nomFloat=nomFloat*nomFloat; 

float denomFloat = tofloat(delta1[alfa[i]],18); 

denomFloat=denomFloat*tofloat(deltaf,20); 

 

if (denomFloat > nomFloat){ 

fraction = nomFloat / denomFloat; 

} 

else{ 

fraction = 1; 

} 

if (fraction > epsilon2max){ 

epsilon2max = fraction; 

epsilon2 = i; 

} 

 

Snippet 3.4: C snippet of epsilon2 in the hybrid version. 

 

An overview of the above snippets can draw useful conclusions about which of these 

should be moved into an accelerator. The delta1 block needs to calculate 2008 different values 



 

48 

 

every time it is executed; it has to perform seven multiplications, additions and subtractions 

respectively. Such an amount of operations justifies the fact that it is the computationally most 

intensive block (for one execution). An accelerator that implements these calculations should be 

able to fetch the data by itself (it should have DMA capabilities). Otherwise the amount of time 

that should be spent by the processor to pass such volume of data to the accelerator, wait for the 

accelerator to calculate the results and then read back the calculated results will not be sufficient 

to speed up the application by a desired factor. 

 The currentV on the other hand has to perform relatively simple operations (mostly 

comparisons). It iterates for 2008 iterations and after each iteration, it adds or not one extra 

element the currentV matrix, while its data requirements for one iteration are not excessive. In 

addition, it is nested inside a while loop. The implementation of such block in hardware would be 

meaningful if the while loop could be unrolled in order to exploit the data parallelism and the 

accelerator could calculate the corresponding matrix within one of a few executions. The given 

loop is however difficult to be unrolled due to its condition, and consequently the 

implementation of this block in hardware can be disregarded. 

 Finally, epsilon2 is the block that needs to be executed many more times than the 

previously mentioned blocks. It is nested within a loop with variable number of iterations (its 

size depends on the number of elements contained in the currentV matrix). However it can be 

observed that its input-output requirements are relatively low as well as in each iteration not all 

of the input values need to be updated (i.e. VectorA[] is the same for most of its iterations). 

Consequently, implementing this block in hardware could potentially speed up the application by 

a high factor. If for instance its execution time can be reduced from 540 to 50 clock cycles 

(hypothetical value) then 490 clock cycles are saved in each iteration, resulting in 490×140390 

less clock cycles consumed in total.   Up to this point, the following equation holds: 

 

1 2 1.79delta currentV epsilon restt t t t s     (11) 

 

By replacing the actual runtimes it becomes: 

0.27 0.22 1.26 0.04 1.79s     (12) 

 

The above relation should however be: 

1 2 0.32delta currentV epsilon restt t t t s     (13) 

 

otherwise the performance requirements are violated. 

 

 It would be ideal at this point to have some estimation metrics about the performance of 

these blocks in hardware. In this way, one could have an idea whether implementing them in 

hardware would result into a system that meets the performance requirements or if it impossible 

to meet them, and the hardware-software partitioning of the application could be performed in a 

formal way. However, absence of such metrics, the next step is the direct design of an 



 

49 

 

accelerator module that implements epsilon2. As discussed in Section 2.5, software blocks that 

need to be executed many times should be preferred to be moved to an accelerator and in 

addition the communication cost between the processor and the accelerator in this case can be 

kept low. The performance of this module will also indicate whether it makes sense to utilize 

hardware accelerators in this application or whether the utilization of additional processor tiles is 

necessary. After evaluating this option, then additional considerations about moving delta1 to 

another accelerator will have to be made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

50 

 

 

  



 

51 

 

Chapter 4 
 

Accelerator Design and System Integration 

 

 

As discussed in the previous chapter, the epsilon2 block (the most time consuming one) 

of the algorithm is implemented in the hybrid and the fixed-point version using mixed (fixed-

point and floating-point) operations and only fixed-point operations respectively. Consequently, 

since the epsilon2 block is going to be moved into a hardware accelerator, it is necessary to 

evaluate these options in hardware, compare them to each other and finally integrate the most 

suitable one within the SHMAC processor tile in order to evaluate the benefits of this approach.  

 

 

4.1 Accelerator for the Hybrid Version 
 

 Designing an accelerator that implements a corresponding software block, first of all 

requires the structure of the block that will be moved into the accelerator (epsilon2 in this case). 

This is illustrated in Snippet 3.4 (in Section 3.4). One execution of this code segment, takes 540 

clock cycles, consequently the accelerator that will be designed has to perform these 

computations in as less as possible time, while at the same time it should fit inside the FPGA by 

occupying as few resources as possible. These two desired characteristics (fast and small) are 

hard to be achieved at the same time, therefore specific design decisions that trade-off the one 

against the other have to be made. These decisions are explained in the following paragraphs.  

The starting point for designing the accelerator is its input and output requirements. An 

overview of Snippet 3.4 can reveal both of them. At first sight, the output would seem 

straightforward; this is the epsilon2 value. This is partially correct because the value epsilon2max 

needs also to be passed back to the processor, so that it can be used in some other parts of the 

algorithm. If however one observes both the Snippet 3.4 along with the profiling results in Figure 

3.6 (b) it is evident that almost all the computational cost of this block is used for the calculation 

of the variable fraction (along with the prerequisite values nominator and denominator). The last 

part of this block (the last four lines with the if-statement) have almost zero overhead when 

executed on the processor. Therefore the accelerator that is going to be designed may calculate 

this variable instead of epsilon2 and epsilon2max. By applying this, the outputs are reduced by 

one and the corresponding hardware becomes less complicated since it has to perform fewer 

calculations. 



 

52 

 

The input requirements can be revealed by the calculations that have to be performed. 

The first value that has to be calculated in this block is the temp variable. Given the values of 

VectorA and VectorB (fourteen values in total), temp can be calculated as the sum of products 

among them. Variable nom (which is prerequisite for the calculation of nomFloat) can be 

calculated after temp has been calculated and it also requires variable mpoint which can be 

provided as input to the accelerator without any problem. Variables delta1[alfa[i]] and deltaf are 

required for the calculation of denomFloat value. This in total results in seventeen input values 

and one output.  

Data dependencies are also very important for the implementation of this block. The first 

variable that needs to be calculated is temp along with denomFloat since these are the only 

variables that depend directly on the inputs and do not on any intermediate results. Function 

tofloat(var , #bits) performs the conversion from fixed-point into floating-point of variable var 

that uses #bits for representing the fractional part. As can be seen in Snippet 3.4, there are two of 

such conversions; one that converts fixed-point numbers with eighteen bits and second one with 

twenty bits in the fractional part, into the IEEE754 floating-point representation. Implementing 

this in hardware would require two fixed to floating-point converters. Changing the fractional 

part of deltaf so that it is represented by eighteen bits could possibly make the use of the second 

converter unnecessary. Therefore, this option was investigated by executing the algorithm and 

observing whether this change would have any impact on the final STLmax value. The algorithm 

was executed for 100 different EEG input signals and it was found that the calculated values 

were the same as without it, so it was adopted. This indicates that either the two LSBs of deltaf 

are always zero or that such accuracy loss for this variable is compensated by the rest of the 

calculations. A fixed to floating-point converter was generated using Xilinx Core Generator for 

this purpose. 

Variables temp and nom of Snippet 3.4, are fixed-point variables and they can be directly 

calculated by using the standard numerical operands of VHDL (+,-,*). On the other hand, 

floating-point operations are not directly supported in VHDL. Floating-point multiplications (for 

the calculations of nomFloat and denomFloat) are performed by a floating-point multiplier 

generated by Xilinx Core Generator as well. The same also applies to the case of the division (for 

the calculation of fraction) and the comparison (within the if-statement); all the floating-point 

components (a converter, a multiplier, a comparator and a divider) were generated in Core 

Generator. Other options would be their manual design, a complicated task within the given time 

frame and the use of VHDL packages, such packages however may have several 

incompatibilities with the target FPGA, as reported by Berg [27]. All the floating-point 

components were selected to be synchronous in order to keep the design complexity low. 

Core Generator allows the designer to choose between different configurations, such as 

latency, handshake signals and mapping resources (DSP or LUT slices for the multiplier) for the 

floating-point components. According to Xilinx [37], the size of the floating-point components is 

proportional to their latency. This means that components that require more clock cycles to 

perform their task, they also require more resources. Although this sounds paradox, it should be 

noted that components with higher latency values, are usually pipelined and can operate in 



 

53 

 

higher frequencies than low-latency components. Table 4.1 summarizes the resource utilization 

and maximum operating frequencies for different floating-point multipliers available by Xilinx. 

Similar results also hold for the rest of the floating-point components and therefore there are no 

data included here.   

 

Multiplier Type Latency LUTs FFs DSPs Max. Freq. (MHZ) 

Logic Only 

2 663 145 - 137 

3 701 244 - 184 

4 593 433 - 246 

5 625 524 - 250 

6 634 593 - 316 

DSP 

Medium-Usage 

2 122 53 1 122 

3 190 92 1 190 

4 188 133 1 188 

5 282 237 1 282 

6 279 240 1 279 

DSP 

Full-Usage 

2 80 53 2 154 

3 97 88 2 218 

4 100 101 2 236 

5 101 77 2 295 

6 102 120 2 395 

DSP 

Max-Usage 

2 79 52 3 183 

3 85 59 3 236 

4 96 75 3 280 

5 96 111 3 350 

6 99 114 3 410 

Table 4.1: Performance and resource utilization for Xilinx floating-point multipliers. 

 

 

By keeping in mind that the final module should be able to operate at 60MHz in order to 

meet the time constraints of the SHMAC platform, the usage of components with minimum 

latency was considered as an initial design option. Although this is not absolutely necessary 

since by using for instance a clock divider the accelerator can be able to operate at lower 

frequency than the rest of the system, it is better to avoid such options at this phase of the design 

[40]. Such options can however be considered in case whereas the accelerator fails to meet the 

time requirements at all. After trying out different latency configurations for these components, it 

was found that the converter and the comparator can have one clock cycle latency, the multiplier 

two clock cycles and the divider fourteen clock cycles latency in order not to violate the time 

constraints. These latency values were obtained during the integration of the accelerator within 

the SHMAC platform (described later in Section 4.5). Attempting to obtain these numbers by 

studying only the accelerator and not the whole system was unsuccessful since the synthesis tool 

could estimate that the accelerator can meet the time constraints (for instance when the divider 

was selected to have four clock cycles latency), however after its integration and the synthesis of 



 

54 

 

the whole system there were many timing errors. This made the selection of the floating-point 

components a very time consuming task, since the SHMAC platform had to be synthesized 

several times.   

The multiplier was selected to be designed with maximum usage of DSP slices while the 

rest of the components were designed with no DSP slices at all (such option was not available by 

Xilinx). This can result in a balanced design that utilizes both DSP and logic slices. For 

scheduling the partial computations according to the data dependencies (i.e. nomFloat and 

denomFloat must be calculated before fraction) a finite state machine (FSM) approach was 

adopted. The two process method (described in Section 2.6) was applied during the design of this 

module as well, so that it can be clear which signals will be synthesized as registers or simple 

wires. The inputs to the floating-point components along with all the intermediate results were 

synthesized as registers so that they can maintain their values while something that can affect 

them on the next clock cycle can happen (i.e. a floating-point component signals that it has 

finished its operation, so the calculated result is latched and forwarded to the combinatorial 

process on the next clock cycle).     

The FSM updates its current state on every clock cycle (in the sequential process) and the 

conditions that trigger the state transition are calculated in the combinatorial process. A high 

level architecture of the accelerator is illustrated in Figure 4.1. 

 

 

Accelerator

FSM

Accelerator
Datapath

Control
Signals

Start

Rst

Inputs
Output

out_rdy

Next
State

State
Registers Output

 

Figure 4.1: Accelerator‟s high level architecture (clock is omitted). 

 



 

55 

 

  Once the start signal gets high (for one clock cycle), the FSM performs transitions to 

each state and when the calculations are completed, the out_rdy signal gets high for one clock 

cycle. Figure 4.2 illustrates the possible transitions between the states. During the design of the 

current accelerator, it was found that the FSM should consist of eight states. More specifically 

these states are: 

 

a) Idle state 

During this state the accelerator remains idle and no activity takes place within it. 

If the start signal gets high, State-1 is triggered, otherwise the idle state is 

maintained. 

 

b) State-1 

If the converter is ready to accept new data, the variable delta1 is applied to its 

input, the variable temp is calculated (as the sum of seven products calculated by 

seven fixed-point multipliers), variable deltaf is shifted by two positions to the 

right and State-2 is triggered. Otherwise the FSM remains in State-1 until the 

converter is ready to accept new data. 

 

c) State-2 

Variable temp is shifted by two positions to the right, variable delta1float is 

calculated at the output of the converter (if the converter has finished its 

calculations), and variable deltaf is set at the input of the converter (if the 

converter is ready to receive new data). State-3 is triggered as next state. If the 

converter is not ready, it remains in this state until it is. 

 

d) State-3 

Variable deltaffloat is ready at the output of the converter and is forwarded to the 

input of the multiplier along with the already calculated delta1float. The 

converter‟s input gets now the value mulpoint-temp. State-4 is triggered, except 

when the converter hasn‟t finished the conversion or is not ready to accept new 

data (either the converter or the multiplier). In the latter case, the FSM remains in 

State-3. 

 

e) State-4 

Variable denomfloat is calculated by the multiplier, while the multiplier‟s inputs 

are set equal to the output of the converter (floating-point value of mulpoint-

temp). 

 

 

 

 



 

56 

 

f) State-5 

Variable nomfloat is calculated by the multiplier and forwarded to the comparator 

along with denomfloat (provided that the comparator is ready to receive new 

data). State-6 is triggered if so, otherwise it waits in State-5. 

 

g) State-6 

If the comparator‟s output is high and the divider is ready to receive new data, 

then nomfloat and denomfloat are set to the inputs of the divider and State-7 is 

triggered. If the comparator‟s output is low, fraction is set equal to „1‟ and the 

out_ready signal is set high. Idle state is triggered next. 

 

h) State-7 

This state is triggered if the fraction has to be calculated by the divider. If so, this 

state is maintained until the divider finishes its computation. The fraction gets 

equal to the output of the divider and out_ready signal is set high. Idle state is 

triggered next. 

 

idleS S1 S2 S3 S4 S5 S7S6
start

fraction
out_rdy

fraction
out_rdy  

Figure 4.2: State transition diagram of the hybrid accelerator. 

 

 

 The discussed accelerator was synthesized by Xilinx XST and Table 4.2 summarizes its 

main features with respect to the occupied area, performance and power consumption. The full 

VHDL code can be found in Appendix B. The dynamic power was estimated by Xilinx Power 

Estimator (XPE), considering that the operating frequency is 60MHz and default (according to 

XPE) signal toggle rate settings.  

 

Slice LUTs DSP slices Maximum Frequency (MHz) Dynamic Power (mW) 

1508 24 86.347 24 

Table 4.2: Area, performance and power consumption of the hybrid accelerator. 



 

57 

 

4.2 Accelerator for the Fixed-Point Version 
 

 The epsilon2 block as implemented in the fixed-point version in software, involves the 

operand scaling instead of floating-point operations.  In the C-code, this block is similar to 

Snippet 3.4, however instead of having the nomfloat, denomfloat and fraction variables in 

floating-point, corresponding fixed-point values are computed by applying the operand scaling as 

discussed in Section 2.6. Due to its extensive length, a full snippet of the current block is not 

included here; nevertheless, Snippet 4.1 describes its function in pseudo-C code.  

 
temp=… //As in Snippet 3.4 

nom= mpoint - temp; 

//perform operand scaling 

scale(nom); 

if(leading_bits_nom == 16){ 

    nom2 = nom*nom; //Q20*Q20 => Q40 

    scale(delta1[alfa[i]]); 

    scale(deltaf); 

    if(leading_bits_denom == 32){ 

        denom = delta1[alfa[i]]*deltaf; //Q18*Q20 => Q38 

        //Align the operands so that they can be compared 

        align(nom,denom); 

        if(align == 1){ 

            if(denom>nom2){ 

                s1 = leading(nom2); 

                s2 = trailing(denom); 

                if(s1+s2 == 14 ){ 

                    fraction = (nom2<<s1)/(denom>>s2); //Q14 

                    if(fraction > epsilon2max){ 

                        epsilon2max = fraction; 

                        epsilon2 = i; 

                    } 

                } 

            } 

            else{ 

                fraction = 1; 

                if(fraction > epsilon2max){ 

                    epsilon2max = fraction; 

                    epsilon2 = i; 

                } 

            } 

        } 

    } 

} 

 

Snippet 4.1: Pseudo-C code of the epsilon2 block as implemented in the fixed-point version (red 

rows indicate whether the algorithm is allowed to continue to perform the calculations, while 

green rows show when the required value is calculated).  

   

 Variable temp is calculated as in Snippet 3.4. Variable nom is calculated next and scaled 

as discussed in Section 2.6. If it has at least 16 leading bits, then nom2 can be calculated as the 



 

58 

 

nom square. If so, the algorithm proceeds to the calculation of denom. This variable depends on 

delta1[alfa[i]] and deltaf, consequently, these operands are scaled in order to determine whether 

their multiplication is feasible or not. If the sum of their leading zeros is at least 32 (the counting 

stops after the first 32 zeros are detected as discussed in Section 2.6) then the multiplication can 

be performed and denom is calculated. The next step, is the comparison between nom2 and 

denom. These variables have different exponents (Q-notation) and therefore they need to get 

aligned (have the same exponents) so that the comparison can be performed. If they can be 

aligned (the actual process that performs this is discussed later in this Section), then the 

comparison between them is performed, and according to the comparison‟s result, variable 

fraction needs to be calculated.  

If denom is smaller than nom2 then fraction gets equal to „1‟. If on the other hand denom 

is bigger than nom2, then fraction gets equal to the quotient of their division. It must be noted 

that this is a fixed-point division and therefore it must be taken care that the precision loss is 

acceptable. This is performed by considering the leading zeros of nom2 and the trailing zeros of 

denom; if their sum is at least 14, then the division can be performed with the required accuracy 

[26], by shifting nom2 to the left and denom to the right. In this case fraction will have an 

exponent equal to 14. If the conditions within the red-marked rows in Snippet 4.1 do not hold, 

then the current calculation is ignored, in terms that fraction and consequently epsilon2max and 

epsilon2 do not get updated and they keep their initial values. 

 The approach about implementing this block in hardware is similar to the one used for 

the hybrid accelerator. At this point it must be noted that the fixed-point accelerator needs to 

have one extra input; the previous value of fraction, so that in case where it has to ignore the 

current calculation, it can present this value as output result. Its high level architecture is the 

same with the hybrid‟s, depicted in Figure 4.1. More specifically an FSM is used for the 

scheduling of the partial calculations that involve data dependencies, however the two-process 

method was not adopted here, because it was found beneficial for performance reasons to include 

some additional processes for the operand scaling. 

As described earlier, the operand scaling requires the identification of the leading and 

trailing zeros of the corresponding operand. In the software implementation this is performed by 

counting them within some while-loops. Counting them synchronously (i.e. identify one 

leading/trailing zero in each clock cycle) would result in a simple hardware module (since 

counters are among the least complicated components in digital design) but with high latency 

and thus this option was quickly discarded. This task was decided to be performed by VHDL 

functions embedded inside a VHDL package (the VHDL code is available in Appendix B). This 

ensures the reusability of the designed functions in future projects and moreover they allow the 

asynchronous identification of leading and trailing zeros every time that a new operand is 

presented.  

During the design of the accelerator, it was found that when a multiplication of two n-bit 

variables has to be performed, the synthesis tool defines (when using the „*‟ operator, or by 

using a fixed-point multiplier from Core Generator) that the result occupies twice the number of 

bits. Consequently the utilization of some 64-bit values for the intermediate results was 



 

59 

 

considered in this case. At this point, it needs to be noted that in a different case (i.e. an ASIC 

implementation) this should have been avoided since the size of the components (multipliers) 

would be a lot different for 32 and 64-bits. 

According to Snippet 4.1, variable temp is calculated first, as the sum of products of some 

of the inputs. This value is saved in a 64-bit register. Furthermore instead of applying the 

operand scaling before the calculations of nom2 and denom, corresponding 64-bit registers were 

considered for these values (nom64 and denom64). Utilizing these 64-bit values would be ideal, 

since it could potentially eliminate the necessity of operand scaling. However, a problem about 

utilizing this technique appeared when the divider (for the calculation of fraction) had to be 

added in the design. While most of the fixed-point operators (addition, subtraction, 

multiplication, comparison, shift etc.) are directly supported by the corresponding operators in 

VHDL. The division on the other hand is not supported and therefore a divider was generated in 

Core Generator.  

According to Xilinx [41], the maximum width of the divider inputs is 54-bits, and 

therefore at least 10 bits have to be truncated in each operand. Such a large divider is usually 

extremely big (in terms of area) and slow (in terms of latency). Table 4.3 summarizes the 

resource utilization and performance of several fixed-point dividers (the target device is Xilinx 

Virtex 5) as obtained by [41]. 

 

Dividend Width Divisor Width Latency LUTs FFs DSPs Max.Freq. (MHz) 

10 14 17 355 412 7 450 

10 14 2 267 70 7 75 

36 36 28 972 1104 13 374 

36 36 4 693 187 13 62 

54 50 43 1398 1649 17 337 

54 50 8 1009 266 17 47 

Table 4.3: Performance and resource utilization for Xilinx fixed-point dividers. 

 

As one can observe in Table 4.3, the selected operand width, along with the latency affect 

heavily the occupied resources as well as the maximum operating frequency. In order to meet the 

time constraints on the SHMAC platform and minimize the cases that the current calculation 

should be ignored, one could move on by selecting a 54-bit divider with maximum latency (43). 

This however is not efficient at all, provided that the whole hybrid accelerator (discussed in the 

previous section) occupies less LUTs than this specific divider. Consequently the divider 

selection is not a straightforward task and therefore the following assumptions were taken into 

consideration: (i) the operands of the divider must have minimum width and (ii) the latency must 

be as low as possible while not violating the time constraints (operating frequency at 60MHz). 

By following these assumptions, one can potentially find the smaller acceptable divider than fits 

to each application. 

Following the first assumption, the operands were selected to be 32-bits wide, because in 

the pure software implementation such kind of operands were able to produce acceptable results 



 

60 

 

(results according to which the final seizure predictions are correct [26]). Attempting to use 

smaller width would require the full evaluation of the epilepsy prediction algorithm and the code 

that performs the epilepsy prediction stage was not accessible due to the NDA. The latency was 

selected to be equal to 19 clock cycles so that the divider can meet the time constraints on the 

SHMAC platform. After the divider selection, it is evident that the operand scaling will have to 

be again present. Furthermore, it needs to be noted that the 32-bit fixed-point divider is bigger 

and slower than the 32-bit floating-point divider. One would expect that floating-point 

components are always more complicated than corresponding fixed-point components. In case of 

the fixed-point division, the division has to be performed on all 32-bits, while in floating-point 

the division is performed only on the operands‟ mantissas (the exponents are simply subtracted). 

Figure 4.3 illustrates the way that the operand scaling is performed. This example uses 

16-bit values that have to be scaled (truncated) in 8-bit values, nevertheless the same reasoning 

was used in order to obtain the 32-bit values (inputs of the divider) from the initial 64-bit values 

(results of multiplications). As discussed earlier, the leading and the trailing zeros of the 

operands are detected asynchronously every time that a new operand is calculated. 

   

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0(a)

Bit Number

Fractional bits: number of fractional bits by starting 
from the initial MSB (3) plus the number of leading 
zeros (2), thus Q3.5

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0(b)

Fractional bits: 8 (all the bits are used to represent 
the fractional part), thus Q0.8

0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0(c)

Bit #2 is equal to ‘1’ and thus no 8-bit result can be 
formed without accuracy loss or loosing the Q-notation. 
This calculation should be ignored.

0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0(d)

The number of leading and trailing zeros is less than 8, 
thus the truncation from 16 to 8 bits cannot be done 
without accuracy loss. This calculation is ignored.

 
Figure 4.3: Truncation of a 16-bit value in Q16.11 format in 8 bits, (a) , (b) the 

truncation can be performed without any problem, (c) , (d) truncation results in loss 

of accuracy. 

 

 In this example, the 8-bit variables can be obtained without losing precision only if the 

sum of leading and trailing zeros is at least 8 (the bits that will be “kicked out” of the number). If 



 

61 

 

the truncation can be performed, then additional operations that determine the Q-notation of the 

final value have to be performed, otherwise the current calculation has to be ignored (Figure 4.3 

(d)). The final Q-notation is obtained according to the binary point and the MSB position of the 

truncated number. If the MSB is on the left hand side of the binary point, then the first 8-bits 

starting from it, will form the final 8-bit value (Figure 4.3 (a)). If it is on the right hand side of 

the binary point, then it must be ensured that all the 8-bits will represent a pure fraction and thus 

the next 8-bits after the binary point are kept (Figure 4.3 (b)). If the Q-notation is lost (Figure 4.3 

(c)), then the current calculation should be ignored.  

 The truncated operands (32-bits) need afterwards to get aligned, so that the comparison 

between them can be performed. Figure 4.4 illustrates how the alignment is performed. In this 

example the variables are 16-bit wide, but exactly the same principle applies  also in the case of 

the 32-bit values involved in the actual calculations. The idea behind it is to manipulate again the 

leading and trailing zeros of the operands and perform corresponding shift operations in order to 

force them have the same Q-notation. If these shift instructions cannot be performed, then the 

current calculation is ignored. Figure 4.4 illustrates all the possible cases ((a) to (d)) that shifting 

without precision loss is feasible. The initial operands are presented in the upper part of each 

sub-figure, and the final aligned operands in the lower part. 

 

 
0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

nom16

denom16

0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

nom16

denom16

Qnom16>Qdenom16 and 
nom16Trail>Qnom16-Qdenom16

0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

(c)

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

nom16

denom16

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

nom16

denom16

Qnom16>Qdenom16 and 
denom16Lead>Qnom16-Qdenom16

0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

(a)

nom16

denom16

nom16

denom16

Qdenom16>Qdenom16 and 
denom16Trail>Qdenom16-Qnom16

(d)

nom16

denom16

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0nom16

denom16

Qdenom16>Qnom16 and 
nom16Lead>Qdenom16-Qnom16

0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

 

Figure 4.4: Operand alignment (Q here denotes only the number of fractional bits). 

 

 

 Taking all the above analysis into consideration about the fixed-point operations, one can 

now start with their time scheduling and the actual design of the accelerator. For this purpose the 

states of the FSM need to be defined. Their functionality is the following: 

 

 



 

62 

 

a) Idle State 

The accelerator remains idle and no activity takes place in its internal parts. If the 

start signal gets high, State-1 is triggered, otherwise the accelerator remains in 

Idle State. 

 

b) State-1 

Variable temp is calculated as stored in a 64-bit register. denom64 is also 

calculated by multiplying inputs delta1 and deltaf. At the same time, the sign of 

denom is detected and if it is a negative number it is inverted to a positive one, so 

that its leading and trailing zeros can be detected. State-2 is triggered.  

 

c) State-2 

Variable temp is shifted by two positions to the right, so that it can be used in the 

calculation of nom. If denom64 can be truncated into a 32-bit number (according 

to the conditions presented in Figure 4.3), then it gets truncated and State-3 is 

triggered next. If not, then an ignore flag is generated and the FSM transits to 

State-7 (terminal state).  

 

d) State-3 

Variable nom64 is calculated as the product (mpoint-temp)×( mpoint-temp) and is 

stored in a 64-bit register. State-4 is triggered. 

 

e) State-4 

The previously calculated denom64, is checked whether it can get truncated into 

denom32 (32-bits wide) and if so, State-5 is triggered. Otherwise State-7 is 

triggered and an ignore flag is generated. 

 

f) State-5 

The numbers nom32 and denom32 are checked whether they can be aligned or not 

as illustrated in Figure 4.4. If this is possible, State-6 is triggered next, otherwise 

an ignore flag is generated and the next state is State-7.  

 

g) State-6 

During State-6, the aligned operands nom32 and denom32 are compared to each 

other. If denom32 is bigger than nom32 then their division has to be performed. 

nom32 and denom32 are shifted to the left and right respectively so that fraction 

will have 14-bits in its fractional part and if the divider is ready to receive new 

data, then the shifted operands are set to its inputs and State-7 is triggered. If the 

operands cannot be shifted by 14-bits in total then State-7 is triggered again, along 

with an ignore flag. If however the divider is not ready to receive new data, then 

the FSM remains in this state. If on the other hand, denom32 is smaller than 



 

63 

 

nom32, then fraction gets equal to „1‟ out_rdy signal is set high and the next state 

is Idle (since the desired value has been calculated). 

 

h) State 7 

State S7 is the last state of the FMS. If during the previous states there was no 

ignore flag set, then the final value of fraction is the output of the divisor. 

Therefore, the FSM remains in this state until the divisor has the result ready.  

Once this happens, the out_ready signal is set high and the Idle State is triggered 

next. In addition, it is checked whether its sign needs to be reversed, according to 

whether the sign of one of the previous operands was reversed. If on the other 

hand an ignore flag was generated during the previously described states, then  

fraction retains its previous value (the input is forwarded to the output) the 

out_ready signal is set high to signal the rest of the system that the calculation is 

complete and the Idle State is triggered. 

 

 

 According to the description of the fixed-point accelerator, it is evident that its design 

was far more challenging than the hybrid because in the latter case the floating-point components 

were already predefined by Xilinx. Figure 4.5 summarizes its state transition diagram, while 

Table 4.3 its main characteristics. 

 

idleS S1 S2 S3 S4 S5 S7S6
start

fraction
out_rdy

fraction
out_rdy

ignore_flag

ignore_flag

ignore_flag

 
 

Figure 4.5: State transition diagram of the fixed-point accelerator. 

 

Slice LUTs DSP slices Maximum Frequency (MHz) Dynamic Power (mW) 

3877 43 78.382 36 

Table 4.4: Area, performance and power consumption of the fixed-point accelerator. 



 

64 

 

4.3 Verification 
 

 The functionality of the designed accelerators was verified by VHDL test-benches 

executed in a simulator environment. The simulator was Xilinx ISim; despite the fact that this is 

one of the simplest simulators available, it is embedded in the Xilinx ISE environment that was 

used for the design of the modules and since the designed accelerators are not complex 

components that require more advanced options during the simulation, ISim was preferred. The 

hybrid accelerator was verified first.  

The input values that it requires and the output that it calculates were extracted during the 

execution of the pure software version and recorded in a text file (hexadecimal values). This file 

was later used as input to the test-bench, in which the hybrid accelerator was simulated with the 

recorded values as inputs and its calculated result (fraction) compared to the recorded value by 

the software. With this way, the proper functionality can be verified if the results calculated by 

the accelerator during the simulation are the same with the results produced by the software. Out 

of the total 140.297 (as discussed in Section 2.6) results that need to be calculated a subset of 

10.000 was used to perform the verification. Although that this does not guarantee that the 

module has no bugs at all, it strongly indicates that it can be synthesized, integrated in the 

system, and then it can be afterwards re-verified by executing the STLmax calculation algorithm 

and by comparing the final calculated value to the corresponding value calculated by the 

software. Figure 4.6 illustrates a snapshot during the simulation of the accelerator. In this figure 

it is worth observing that the result (fraction) is calculated 26 clock cycles after the i_start signal 

gets high. At this time, signal  o_rdy gets high and the fraction maintains its value until it gets 

updated after the next execution.        

   

 

Figure 4.6: Waveform from the simulation of the hybrid accelerator. 



 

65 

 

 For the verification of the fixed-point accelerator, a different technique was followed. 

During the execution of the fixed-point software version, there exist values that result in ignoring 

the current calculation, values that make variable fraction get equal to „1‟ and values that result 

in using the division operation. When the corresponding operations are executed in the 

accelerator, they can result in different behavior (i.e. a value that results in ignoring the current 

calculation in software, can result in performing division in the accelerator) due to the fact that 

the accelerator uses 64-bit values to represent the intermediate results and then truncates them in 

32-bit values in order to perform the division. In the software implementation, there exist only 

32-bit values because the target is a 32-bit processor, and furthermore during the project [26], the 

option to manipulate 64-bit signed integers was not available (there were incompatibilities with 

the signed values, only 64-bit unsigned values could be handled by the compiler). 

 Taking into account also the results presented in Tables 4.2 and 4.4, the motivation to 

move on with the fixed-point accelerator is not as high as with the hybrid. Therefore, the fixed-

point accelerator was not thoroughly verified, since this would require time from the next step of 

the implementation (system integration). A coarse verification was performed in parallel with the 

design; the accelerator was simulated in ISim for several different input sets, and the output was 

manually observed, in order to verify if the FSM states change as they should. Although that this 

does not guarantee the proper function of the accelerator, it is almost certain that no interventions 

can make it outperform the hybrid accelerator. Figure 4.6 contains a snapshot during the 

simulation. This illustrates two executions of the accelerator. In the first one, the signal i_start 

gets high and the output fraction is ready 26 clock cycles later (this is a case whereas the division 

has to be performed). In the second execution, the output gets valid 4 clock cycles after the 

signals i_start gets high; this is a result of ignoring the current calculation.  

 

      Figure 4.6: Waveform from the simulation of the fixed-point accelerator. 

 



 

66 

 

4.4 Comparison of the Designed Modules 
 

 Tables 4.2 and 4.3 summarize the main characteristics of the designed modules. In 

addition to these results, one should also take into account the total latency of each accelerator in 

order to make an objective comparison between them. This can be directly obtained from the 

simulation of the modules presented in Figures 4.5 and 4.6. For the hybrid accelerator the latency 

has the fixed value of 26 clock cycles. For the fixed-point accelerator, the latency varies between 

3 and 26 clock cycles, depending on whether the current calculation has to be ignored or whether 

it requires performing the division. Nevertheless the hybrid accelerator is smaller in terms of 

LUTs and DSP slices, can operate at a higher frequency and consumes less power than the fixed-

point accelerator. Table 4.5 summarizes the main differences between them. 

 

Feature Hybrid Accelerator Fixed-Point Accelerator Difference (%) 

Slice LUTs 1508 3877 +157% 

DSP slices 24 43 +79% 

Max. Frequency (MHz) 86.347 78.382 -9% 

Dynamic Power (mW) 24 36 +50% 

Latency 26 3-26 -89% - 0% 

Table 4.5: Comparison of the designed modules. 

 

 One can draw several useful conclusions from the comparison of the modules. First of all 

it would appear reasonable for someone to assume that the fixed-point accelerator would at least 

occupy less area and consume less power since it doesn‟t incorporate any floating-point 

components. The particular way that the operand scaling is performed in this case must be taken 

into account; the leading and the trailing zeros of 64-bit and 32-bit operands are detected 

asynchronously. This means that every time that an operand is detected, multiplexer circuitries 

need to detect the desired values. This involves 64 cases for the leading zeros of a 64-bit operand 

and another 64 cases for its trailing zeros than are detected simultaneously. The same principle 

applies also to the 32-bit variables. It is therefore expected that all these multiplexing operations 

will require a significant amount of LUTs. It is also very possible that such large combinatorial 

circuitries create a long critical path and therefore the maximum operating frequency is lower 

than the hybrid‟s. 

 In addition, the fixed-point divider is a lot bigger than the floating-point divider. This 

comes as a consequence of the fact that in floating-point representation (IEEE 754 standard) a 

32-bit number can be decomposed in three different parts: sign (1-bit), exponent (8-bits) and the 

mantissa (23-bits). When a division has to be performed, the actual division takes place only on 

the mantissas; the sign bits and the exponents can be handled otherwise (i.e. XOR operation to 

obtain the sign and subtraction to obtain the exponent of the quotient). In a corresponding fixed-

point division, the division takes place on all the 32-bits and this justifies the necessity for more 

complicated hardware. Table 4.6 contains the results obtained after the synthesis of two 32-bit 



 

67 

 

dividers in Xilinx ISE. For comparison reasons, the latency was selected to be the same for both 

of them (19 clock cycles). 

 

Feature Floating-Point Fixed-Point Difference (%) 

Slice LUTs 784 1022 +30% 

DSP slices 0 14 NA 

FFs 731 1165 +59% 

Max. Frequency (MHz) 217.232 360.750 +66% 

Latency 19 19 - 

Table 4.6: Resource usage and performance of Xilinx 32-bit dividers. 

 

 In the previous table it is evident that the fixed-point divider requires many more 

resources compared to a corresponding floating-point (especially when the DSP slices are 

concerned). Taking into account the above conclusions, along with the accuracy results that were 

reported in [26] (the STLmax values calculated by the hybrid software version are almost 

identical to the ground-truth floating-point version, while the calculated values by the fixed-point 

software have a big variance) it is evident that all the arguments favor the hybrid accelerator for 

further considerations. 

 

 

4.5 System Integration 
 

 According to the results so far, the hybrid accelerator is the most suitable to be 

considered for integration within the SHMAC platform. Its input-output requirements consist of 

17 input values and 1 output. Such amount of data [33] can be handled by a simple slave 

interface attached on the Wishbone bus of the SHMAC processor tile (Figure 2.12) that uses 

memory mapping in order to communicate with the CPU core. This means that the accelerator 

module should contain some registers, in which the CPU is allowed to have read/write access; 

write in order to pass the required values to the accelerator and read so that it can read the 

calculated result. Figure 4.7 illustrates the architecture of a processor tile after the addition of the 

accelerator, as well as the internal architecture of the accelerator. 

 By adopting this architecture, the communication can be performed by using pointers in 

the C code, which refer to the registers of the accelerator. The available memory address space 

that can be used in this case, consists of the unused tile registers. As discussed in Section 2.3, the 

tile registers are the addresses FFFE 0000 up to FFFE FFFF (hexadecimal values). Addresses 

FFFE 0000 up to FFFE 2FFF are occupied by the timers and the interrupt controller, therefore 

the available address range is from FFFE 3000 up to FFFE FFFF.  Furthermore, there should be 

some registers that perform the synchronization between the CPU and the accelerator. For this 

purpose, there exist one options and one status register. Whenever the processor writes on the 

options register, the start input signal of the accelerator (Figure 4.1) gets high for one clock cycle 



 

68 

 

in order to signal the accelerator core that it has to start performing its calculations. The status 

register is used as a polling register that the CPU reads in order to verify that the accelerator has 

finished its calculations. More specifically, this register can be updated under two conditions. 

The first one is when the CPU writes the options register; in this case the status register gets the 

value „0‟. At this time, the CPU can start polling this register so that when it gets a specific 

value, the CPU can read the calculated result by the accelerator and continue its operation. 

Consequently, the second case whereas the status register is updated, is when the accelerator 

finishes its calculations and raises the out_rdy signal for one clock cycle. In this case, it gets the 

value „1‟ and maintains it until the CPU writes the options register again. The Verilog code that 

implements the discussed system can be found in Appendix C. Despite that the accelerator core 

was designed in VHDL, the slave interface along with the required registers were designed in 

Verilog due to the fact that there is plenty of documentation and examples about the Wishbone 

bus in Verilog. Furthermore, the synthesis tool (Xilinx XST) is able to handle mixed language 

designs without any problem. 

 

  

Processor Tile

RouterBridge

Processor Wrapper

Processor System

CPU
(Turbo Amber)

Timers
Interrupt
Controller

Tile
Registers

Wishbone Bus
North
East
South
West

Accelerator

(a) 
Wishbone Bus

WB Slave
Interface

Accelerator
Core

.

.

.

R
e
g
i
s
t
e
r
s

Input_0
Input_1
Input_2

Output_0

Options
Status Reg.

 
(b) 

 

Figure 4.7: (a) Processor tile after the addition of an accelerator, (b) accelerator‟s internal 

architecture. 

 

 

 It must be noted that synchronization via polling is not an optimal way to perform this 

task, since the CPU is kept busy without doing anything (it just polls the status register) and 

moreover the performance depends on the polling period as defined in the C-code (Snippet 4.2). 

A more efficient way would be to use interrupts, this however would require a slightly more 

complicated system (communication between the CPU, accelerator and interrupt controller). 

Nevertheless, the interrupts can be adopted in a more refined version of the current system. 

 

 



 

69 

 

                    *OPTIONS=1; //STATUS gets 0 

                    while(*STATUS==0){ 

                        //Wait until the accelerator updates STATUS 

                    } 
         //Continue 

Snippet 4.2: Polling as used in the C-code. 

 

 Another important feature is that out of the 17 inputs, 9 of them (VectorB[select] values 

along with deltaf and delta1[alfa[i]]) need to be updated in every iteration (Snippet 3.1). The 

rest of them (VectorA[i] and mpoint) are updated in the outer loop (along with the calculation of 

the delta1[] block in Snippet 3.1). This keeps the communication cost between the CPU and the 

accelerator as low as possible and increases the performance compared to updating all the inputs 

in every iteration (140.390 iterations in total).  

 After the addition of the accelerator within the processor tile, the software of the 

algorithm was adapted accordingly. All the calculations of the epslion2 block were replaced by 

simple read and write instructions to the accelerators registers and the algorithm was executed 

again in order to verify the correct function of the system. The final STLmax value was found to 

be exactly the same as the value calculated by the pure software execution without the 

accelerator (STLmax equal to 3.5064). This strongly indicates that the accelerator performs the 

required calculations without any problems and verifies its proper function.  

 

  



 

70 

 

 

  



 

71 

 

Chapter 5 
 

Results 

 

  

This Chapter presents the results after executing the STLmax calculation algorithm on a 

SHMAC processor tile that includes the earlier discussed accelerator, compared to corresponding 

results when the algorithm is executed on a generic processor tile. More specifically, these 

results include the metrics of performance, area usage, power and energy consumption as well as 

the energy efficiency. 

 

5.1 Performance 
 

 Figure 5.1 illustrates the runtimes, when the hybrid version of the STLmax calculation 

algorithm is executed on a processor tile with Turbo-Amber as CPU (pure software 

implementation), and when it is executed on a modified tile that includes Turbo-Amber and an 

additional accelerator (mixed hardware-software implementation). 

1,79

0,6

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Turbo-Amber Turbo-Amber and
Accelerator

R
u

n
ti

m
e

(s
)

Turbo-Amber

Turbo-Amber and
Accelerator

2.98x

 
Figure 5.1: Performance results of SW and mixed HW/SW implementations. 

 

 In this figure, it is evident that the addition of the accelerator speeds the application up 

significantly (almost three times faster after the addition of the accelerator). The total execution 

time is reduced by 1.19 s or by 66%. Considering the fact that in software, the block epsilon2 



 

72 

 

takes 1.27 s and that the runtime reduction is a result of moving it into the accelerator, its total 

runtime in hardware is the difference 1.27 – 1.19 = 0.08 s. Despite the fact that the applications 

real-time requirements are still violated (the target runtime is 0.32s), a major step towards to 

meeting them has been performed. 

 

5.2 Area Usage 
 

 After the addition of the accelerator it is reasonable that the overall system occupies more 

resources on the FPGA than without it. Table 5.1 contains the total number of occupied 

resources, while Table 5.2 the relative resource utilization on the Virtex-5 FPGA. Design 1 is the 

synthesis result of a SHMAC layout that includes an APB, a processor (Turbo-Amber) and a 

main memory tile, as illustrated in Figure 3.3. Design 2 is the synthesis result of the same layout, 

with the difference that the processor tile contains additionally the accelerator. The resources that 

were selected to be presented here are the logic slices (which contain the LUTs and the flip-flops 

of the FPGA [36]) and the DSP slices. The rest of the resources are the same for these two 

designs and thus they are omitted. Nevertheless the synthesis reports of both of them can be 

found in Appendix D. 

 

Resource Virtex-5 Design 1 Design 2 

Logic Slices 51 850 9 720 10 796 

DSP Slices 192 0 24 

Table 5.1: Total number of occupied resources for the two designs. 

 

Resource Virtex-5 Design 1 Design 2 

Logic Slices 51 850 19% 21% 

DSP Slices 192 0% 13% 

Table 5.2: Relative resource utilization with respect to the total available resources. 

 

 Design 2 contains 1076 extra logic slices and 24 DSP slices than Design 1. According to 

the numbers presented in Table 5.2, the resource utilization can be considered balanced; the 

FPGA resources are not drained for neither of the designs. This makes the synthesis of several 

tiles that include the accelerator feasible. Assuming that the real-time requirements could be met 

by using two tiles, each of which calculating the STLmax values of 16 EEG channels, the FPGA 

resources are still more than sufficient.  

 

5.3 Power Consumption 
 

 Making accurate power measurements on SHMAC is a challenging task with the current 

infrastructure. As discussed in Section 2.3, SHMAC was instantiated on the ARM RealView 



 

73 

 

Versatile platform. This does not allow direct measurements of the power consumed by the 

FPGA (i.e. by measuring the current of a shunt resistor between the supply voltage and the 

FPGA). Two approaches were considered for the purpose of this task. The first one is to obtain 

power estimates according to Xilinx Power Estimator (XPE) [42]. XPE uses the map-report 

(.mrp file) that is created and updated throughout all the synthesis steps (synthesis, mapping, 

place and route etc.) of SHMAC, and according to its data, it estimates the power demands of the 

system. The user needs however to provide the tool the operating frequency (60 MHz for 

SHMAC) and the signal toggle rates. The latter parameter is difficult to be estimated, and 

therefore the default toggle rates (as defined by XPE) were used. Table 5.3 summarizes the 

results obtained by XPE. 

 

 Design 1 Design 2 Difference (%) 

Static Power (W) 3.081 3.081 0% 

Dynamic Power (W) 0.323 0.360 +11% 

Total Power (W) 3.404 3.441 +1% 

Table 5.3: Power estimates obtained by XPE. 

 

 

 The static power of both the designs is the same, since they are implemented on the same 

FPGA. Design 2 requires 37mW or 11% more dynamic power than Design 1, for the needs of 

the accelerator (logic slices, DSP slices and signal/clock routing). The total power is however 

increased by only 1% because it is compensated by the contribution of the static power which is 

approximately nine times larger than the dynamic power in both designs. This is expected as the 

target Virtex-5 FPGA (XC5VLX330-ff1760-1) is one of the largest among the Virtex-5 family 

[36], so that it can support the design of MPSoC such as SHMAC. 

The second approach is to measure the total power consumed by the ARM RealView 

Versatile platform. The available equipment at the Department of Computer and Information 

Science (IDI) was used for this purpose. This is a simple Watt-meter interposed between the 

power plug and the ARM RealView Versatile platform. The algorithm was executed 

continuously for several times (1000) so that it can create an as constant as possible power 

stream in the FPGA which stabilizes the power consumption of the whole system, so that it can 

be measured by the Watt-meter. It must be noted that the Watt-meter measures only the active 

power. This task was performed for the pure software and the mixed hardware-software 

implementations. Table 5.4 contains the results obtained from this procedure.  

 

Platform State Measured Power (W) 

Idle 52.50 

Algorithm executed in SW (Design 1) 51.10 

Algorithm executed in HW-SW (Design 2) 51.60 

Table 5.4: Power measurements on ARM RealView Versatile platform. 

 



 

74 

 

According to the numbers presented in Table 5.4, the ARM RealView Versatile platform 

seems to consume more power when SHMAC remains idle (no activity takes place within the 

FPGA). One would assume that at this state, the whole system should consume the minimum 

possible power, however the activity that takes place in the host system and the rest of the 

peripheral components during this state is something that needs further investigations. The 

execution of the pure software version of the algorithm makes the (overall) system consume 

51.10W active power on average, while the mixed implementation (hardware-software) 

consumes 500mW (or 1%) more due to the accelerator. This is significantly different to the 

corresponding difference obtained by XPE (37mW), but it can be partially justified due to the 

signal toggle rates that were used in XPE. Nevertheless the accuracy of the actual power 

measurement (possible contributions of additional capacitances and inductions to reactive power) 

is something that should be considered for future work. 

 

5.4 Energy Consumption 
  

 Measuring the energy consumption is as challenging as measuring the power 

consumption, since the energy consumed by an electronic system can be defined by the 

following equation: 

0

( )
T

E P t dt   (14) 

 

This means that the energy that needs to be consumed by the system (i.e. CPU) that 

executes an application, depends on the instantaneous power of the system P(t) and the total 

execution time of the application T. If the power P(t) is a constant function in time, then 

Equation (14) can be rewritten as: 

E P T   (15) 

 

 As discussed in the previous section, the power P that was measured during the power 

measurements of the ARM RealView Versatile platform was the average power (constant), 

therefore Equation (15) can be used for the calculation of the consumed energy. The numbers 

presented here correspond to the overall system and not only to the FPGA, nevertheless they can 

be used to evaluate the difference in energy consumption of the system with and without the 

accelerator (Design 2 and Design 1 respectively). For the Design 1, Equation (15) results in: 

 

1 1 1 51.1 1.79 91.47E P T W s J      

While the corresponding result for the Design 2 is: 

2 2 2 51.6 0.6 30.96E P T W s J      



 

75 

 

It is evident that due to the fact that the addition of the accelerator decreases drastically 

the total execution time of the algorithm (by a factor of 66%) and increases slightly the power 

consumption (by a factor of 1%), the consumed energy will be less for the Design 2 (with the 

accelerator). More specifically, Design 2 consumes 60.51J or 66% less energy than Design 1 for 

the calculation of the same STLmax value.  

 

5.5 Energy Efficiency 
 

 Evaluating the energy efficiency depends directly on the corresponding metric. 

Measuring energy efficiency can be achieved by defining a metric that balances power 

consumption and performance in an appropriate way [43]. Defining however the notation of 

„appropriate way‟ is not straightforward and therefore there exist several metrics. Among them, 

the energy-delay product (EDP) is a widely used metric for comparing two designs at the 

processor level [43] and therefore it is adopted in this thesis for the energy efficiency evaluation 

of the STLmax calculation algorithm. More specifically, the EDPs of Designs 1 and 2 are: 

   

1 1 1

2 2 2

91.47 1.79 163.73

30.96 0.60 18.58

EDP E T J s Js

EDP E T J s Js

    

    
 

 According to the results presented in the above equations, Design 2 is 8.8 times (or 88%) 

more energy efficient than Design 1, as also illustrated in Figure 5.2. The advantage of utilizing 

the additional accelerator is clear in this case. 

 

163,73

18,58
0

20

40

60

80

100

120

140

160

180

Turbo-Amber Turbo-Amber and
Accelerator

ED
P

(J
s) Turbo-Amber

Turbo-Amber and
Accelerator

8.8x

 
Figure 5.2: Energy efficiency results (in EDP terms) of SW and mixed HW/SW implementations. 

 

 



 

76 

 

  



 

77 

 

Chapter 6 
 

Conclusions and Suggestions for Future Work 

  

  

This is the final chapter of the current thesis. It discusses the conclusions drawn after the 

software implementation of the algorithm in [26], along with conclusions regarding the selection 

of fixed/floating-point format for the current application, the accelerator design and the behavior 

of the system after the addition of the accelerator. Last but not least, some ideas about potential 

future work are discussed.   

 

6.1 Conclusions 
  

 This thesis describes the implementation of the STLmax calculation algorithm on the 

SHMAC platform. Although that at its end, the application real-time requirements were not met, 

several useful insights can be concluded from the intermediate steps that have been performed. 

First of all, in any application mapping on a certain platform, the developer needs to take into 

account the nature of the platform and adapt the application accordingly. Table 3.3 highlights 

that the transition from a pure floating-point implementation of the current application into the 

hybrid (fixed-point/floating-point) version resulted in performance gain by 76% (just by adapting 

the software that performs the same task).  

 The methodology that was followed includes the profiling of the application during 

which the main bottlenecks were identified, and the implementation of the most important one in 

a hardware accelerator. This resulted in a final hardware-software solution. The addition of the 

accelerator turns out to have significant impact in many aspects (performance, area usage, 

power/energy consumption, energy efficiency). For the discussed application, the performance 

was improved by 66% compared to the already optimized software implementation, the energy 

efficiency was improved by 88% as well the FPGA resource utilization was kept at an as low as 

possible level. As long as the design of the accelerator is concerned, that depends on the software 

block that needs to be moved into the accelerator. 

 The hybrid approach was found to be very beneficial for this specific application, this 

however is due to the fact that the floating-point hardware components were taken as granted. If 

their manual design had been required, then this would have been an extremely time consuming 

task by itself (especially considering the manual design of a multiplier and a divider). The 



 

78 

 

accuracy demands in the block that was moved into the accelerator (epsilon2) justifies why the 

floating-point format in some operations was adopted.  

 Attempting to implement the same block only by using fixed-point arithmetic resulted in 

inefficient software (slower than the hybrid) as well as hardware (the fixed-point accelerator is a 

lot bigger than the hybrid). If the operand scaling could have been performed otherwise (i.e. by 

shifting out n-LSBs, regardless whether they are „0‟ or „1‟ and sacrificing the accuracy), then the 

fixed-point implementation would have probably been the most suitable one. Nevertheless the 

accuracy demands didn‟t allow such alternatives. Detecting the leading and trailing zeros of the 

fixed-point operands (64 and 32-bit) resulted in large combinatorial circuitries. In case were the 

operands would not have been that wide (i.e. 16-bit), then the utilization of the operand scaling 

might have been more efficient (this however needs to be investigated). In addition, the fixed-

point 32-bit division was found to be more complicated than a corresponding floating-point, as a 

result of the fact than in floating-point format the sign and exponents segments of the number 

can be excluded from the actual division.  

 

6.2 Suggestions for Future Work 
 

Based on the conclusions drawn so far and looking forward, one can say that there are 

still many things that should be considered for future work. First of all, as the real-time 

requirements are not met, it would be interesting to utilize two processor tiles with accelerator in 

order to meet them. This would require some minimum synchronization mechanism between the 

two tiles so that each of which can process specific EEG channels (16 channels each). 

Implementing some other parts of the algorithm in hardware could also provide useful insights 

about the metrics discussed in Chapter 5 and about whether a single core hardware/software 

solution is more efficient than a multicore implementation. 

Furthermore, the designed accelerator uses polling in order to communicate with the 

processor core. Replacing polling with interrupts could potentially increase the processor 

utilization (the processor is prohibited from doing nothing) along with the performance (since 

polling is dominated by the polling period) therefore this is something that needs to be 

investigated. 

In addition, the Wishbone bus utilized on SHMAC is 128-bits wide, while the CPU is 32-

bit. When the CPU needs to write data to some peripheral device (i.e. accelerator connected via a 

slave interface) it has to write 32-bits on each operation (the rest 86-bits of the bus cannot be 

used). Including CPU cores with SIMD features would allow the full utilization of the Wishbone 

bus and this could reduce the communication overhead between the CPU and the 

peripherals/accelerators. This would also increase the heterogeneity degree of SHMAC. 

Regarding the heterogeneity, it would worth considering different clock domains on 

future accelerators. The current CPU frequency is 60MHz, and therefore clocking the 

accelerators at submultiples of this frequency (i.e. 30MHz, 15MHz etc.) can be performed 



 

79 

 

relatively easy. The impact of creating different clock domains on the overall SHMAC platform 

should be investigated. Can the power consumption be reduced by adopting this technique or the 

overhead for routing the extra clock eliminates this potential? If yes, then this could possibly 

allow the adoption of dynamic frequency scaling in certain applications. Dynamic voltage 

scaling can not be considered at the time being, as SHMAC is realized on an FPGA. Creating a 

reliable power measurement infrastructure is also something that is worth considering further 

investigations.  At the time being, there is no way to measure accurately the power consumed by 

the FPGA; the only way is to perform measurements on the whole developing platform which 

includes several other components besides the FPGA that contains SHMAC.   

Last but not least, further investigations about the operand scaling in fixed-point 

arithmetic could also be considered for future work. The available literature is very limited, and 

this makes the selection of an optimal technique that performs this task technically impossible. 

Considerations for instance regarding how the leading and trailing zeros can be detected as well 

as a completely new technique if it is feasible could result in less complicated fixed-point 

circuits. 

       

 

 

  



 

80 

 

 

  



 

81 

 

Appendix A 
 

Fixed-Point Mathematical Operations 

 

 

 Change of exponent 

 

Given that a number   is represented in 12 qk   format, it is possible to change the exponent 

1q to another exponent 2q  by a proper shifting operation as follows: 

 

2 1

2 1

( )

( )

q q

q q






 
 

 
    

if

if
 

2 1

2 1

q q

q q




 

 

The change of exponent must be handled very carefully because each shifting can lead to a 

possible overflow [16]. For example if there are 16bits available and the number 512 is 

represented in 10.5Q  format (exponent is equal to 5), it cannot be changed to the exponent 7, 

because the two additional bits that will be used for the fractional part will be taken from the 

integer part which in this case will end up having 8-bits, and with 8-bits the value 512 can‟t 

be represented.   

 

 Addition/Subtraction 

 

As it is discussed in [17] adding two numbers represented in 1.7Q and 2.6Q  format 

respectively, will result in a number in 2.6Q  format (provided that there are 8 bits available). 

It is thus recommended to transform the numbers in the same format (by changing the 

exponent of one of them) [16] so that the result will also be in the same format. The addition 

is then done as in the following formula:  

 

2.6 2.6 2.6Q Q Q   

 

Or equivalently (for the 2 qk   representation [10]): 

 

1 2 1 22 2 ( ) 2q q qk k k k         

 



 

82 

 

Special attention is also needed here for possible overflows. An overflow can easily be 

detected by checking if the carry-in bit into the addition of the MSBs is different than the 

carry-out bit of it after the addition, by saving the result of the addition of two n-bit binary 

variables in a 2n-bits variable, and checking if it exceeds the available n-bits [17] (simply by 

checking if there are any “1”s after the n-th bit), or by checking the sing bit before and after 

the operation. If for instance we try to add two positive numbers (both of them have sign bit 

equal to zero) and the result is a negative number (sign bit equal to one), then we have 

overflow. Subtraction is performed in a similar manner. 

 

 Multiplication 

 

Multiplication can be performed as in the following equation: 

 

1. 1 2. 2 1 2. 1 2n m n m n n m mQ Q Q     

Or equivalently: 
1 2 ( 1 2)

1 2 1 2( 2 ) ( 2 ) ( ) 2q q q qk k k k          

 

The product of two n-bit variables requires 2n-bits to be represented so that there is no 

precision loss. Such operations are very challenging because, in order to perform successfully 

the multiplication, a 2n-bits variable is required or in another case the exponent of the 

multiplier and the multiplicand will have to be changed to 
2

n
 (or some other equivalent 

values), so that their product will occupy n-bits. If for instance, someone tries to multiply the 

decimal numbers 3.25 and 2.75, and assume that both of them are represented in 4.4Q  format. 

The multiplication between them can be seen in Figure A.1. 

 

3.25

2.75

8.9375


       

0011.0100

0010.1100

00001000.11110000



4.4

4.4

8.8

Q

Q

Q


 

(a)                                 (b) 

 

Figure A.1: (a) Multiplication in decimal system, (b) Multiplication in binary system. 

 

As it can be seen in Figure A.1 (b), the product occupies twice the number of bits than the 

multiplier and the multiplicand. In order to avoid the necessity of a 16-bits variable, the 

multiplier and the multiplicand can be scaled (change the number of bits that represent the 

integer and the decimal part) before performing the multiplication (Figure A.2). 

 



 

83 

 

4.4 2.2

4.4 2.2

8.8 4.4

0011.0100 11.01

0010.1100 10.11

00001000.11110000 1000.1111

Q Q

Q Q

Q Q

  


 
 

Figure A.2: Operand scaling before the multiplication. 

 

 

The scaling of the operands requires special care when used. Shifting out zeros from the 

beginning or the end of the initial operands (as in Figure A.2) is safe for the accuracy of the 

result. Otherwise (if it is necessary to shift out ones) there will be an accuracy penalty and 

thus the user must be very careful when using such techniques. Another hardware solution 

that is used by some processors, offers the utilization of 2n-bits registers for the intermediate 

results [18]. When a multiplication has to be performed the processor can save temporally the 

2n-bits result, and then remove the n least significant bits, so that the final result will occupy 

n-bits. This of course leads to accuracy degradation, but for some specific applications it can 

be acceptable. Overflows are also very dangerous in this case since the format of the product 

must support values up to 1 2k k  (in absolute values).  

 

 Division 

 

Given two numbers with exponents 1q  and 2q  respectively, their division can be performed 

by applying the following equation [16]: 

 

1
1 21 1

2

2 2

2
2

2

q
q q

q

k k

k k


 




 


 , where 1k  and 2k  are integer variables 

 

From the above equation, it is obvious that the result depends on the integer division of 1k  

and 2k , and as a consequence there will be some loss of precision. Therefore it needs special 

attention that this operation will be done by such a manner that the loss of precision will be 

minimal [16][18]. This minimization of accuracy loss can be performed by proper shifting of 

the nominator and denominator. This will have an impact on the exponent of the quotient, 

especially in the case where 1 2q q and the exponent of the quotient is zero (the quotient has 

only integer part and no fractional). Considering for instance the division between the decimal 

numbers 3.5 and 2.0, whereas both of them are in 4.4Q  format, 3.5 is represented as 

0011.1000 and 2.0 as 0010.0000 . The corresponding values of 1k  and 2k  (integer values by 

omitting the binary point) are 56 and 32 respectively. The integer division between these 

values will have only the integer part of the quotient as illustrated in Figure A.3.  



 

84 

 

 

3.5

2.0

1.75


   

56

32

1


 

(a) (b) 

 

Figure A.3: (a) Division in decimal system, (b) Integer division of 1k  and 2k  values. 

 

From the previous example, it is evident that the accuracy penalty is significant. One way to 

improve the accuracy is by increasing the exponent of the dividend (simply by shifting the 

dividend by 8-bits to the left) but this means that the updated value of the dividend will now 

occupy 16-bits. The division in this case is: 

 
856 2

32

448




 

   

The quotient now has 8-bits in the decimal part because of the 8-positions left shifting of the 

dividend. The decimal value that number 448 represents can be found by shifting 448 8-

positions to the right. This gives the value 1.75 which is the exact value. It is important to 

keep in mind that the computer keeps only the value 448 which is an integer value. It is the 

user who has to select the shifting amount of the dividend and remember it so that he/she 

knows the corresponding decimal values. If both the dividend and the divisor are represented 

by n-bits, it turns out that full precision can be achieved by shifting the dividend by n-bits on 

the left, and then perform the division. If the dividend can‟t be shifted by n-bits but by a 

smaller number there will be some accuracy loss. Another technique to keep accuracy as high 

as possible is similar to what was described in the multiplication operation. Zeros can be 

shifted out from the beginning of the dividend (which will increase its exponent 1q )  and from 

the end of the divisor (which will decrease its exponent 2q ) . The goal in this case is to keep 

the quantity 1 2q q  as high as possible (in absolute value), because it determines the number 

of fractional bits of the quotient and thus its accuracy. If this quantity is equal to n then the 

division can be performed with no loss of accuracy. 

 

 

 

 

 

 



 

85 

 

Appendix B 
 

VHDL Code 

 

B.1 Hybrid Accelerator 
 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

-------------------------------------------------------- 

 

entity epsilon2 is 

port(   clk         :  in  std_logic; 

        rst         :  in  std_logic; 

        i_start     :  in  std_logic; 

        diffpoint0  :  in  signed(31 downto 0); 

        diffpoint1  :  in  signed(31 downto 0); 

        diffpoint2  :  in  signed(31 downto 0); 

        diffpoint3  :  in  signed(31 downto 0); 

        diffpoint4  :  in  signed(31 downto 0); 

        diffpoint5  :  in  signed(31 downto 0); 

        diffpoint6  :  in  signed(31 downto 0); 

        xV20        :  in  signed(31 downto 0); 

        xV21        :  in  signed(31 downto 0); 

        xV22        :  in  signed(31 downto 0); 

        xV23        :  in  signed(31 downto 0); 

        xV24        :  in  signed(31 downto 0); 

        xV25        :  in  signed(31 downto 0); 

        xV26        :  in  signed(31 downto 0); 

        mulpoint    :  in  signed(31 downto 0); 

        d1          :  in  std_logic_vector(31 downto 0); 

        df          :  in  std_logic_vector(31 downto 0); 

        o_rdy       :  out std_logic; 

        fraction    :  out std_logic_vector(31 downto 0) 

); 

end epsilon2; 

 

-------------------------------------------------------- 

 

architecture behavior of epsilon2 is 

 

signal result1   : signed(31 downto 0) := (others => '0');  

signal resultTemp: signed(63 downto 0) := (others => '0'); --intermediate 

multiplication result 32x32=>64 bits 

type state is (idleS, S1, S2, S3, S4, S5, S6, S7);  

signal presentState : state; 

 

 

------------Components generated with CoreGenerator---------------------- 



 

86 

 

    COMPONENT fixedTofloat  

    PORT ( 

         clk            : IN STD_LOGIC; 

         a              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         operation_nd   : IN STD_LOGIC; 

         operation_rfd  : OUT STD_LOGIC; 

         result         : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); 

         rdy            : OUT STD_LOGIC 

    ); 

    END COMPONENT; 

     

     

    COMPONENT floatMultiplier 

    PORT ( 

         a              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         b              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         operation_nd   : IN STD_LOGIC; 

         operation_rfd  : OUT STD_LOGIC; 

         clk            : IN STD_LOGIC; 

         result         : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); 

         rdy            : OUT STD_LOGIC 

    ); 

    END COMPONENT; 

     

    COMPONENT floatComparator 

     PORT ( 

         a              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         b              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         operation_nd   : IN STD_LOGIC; 

         operation_rfd  : OUT STD_LOGIC; 

         clk            : IN STD_LOGIC; 

         result         : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 

         rdy            : OUT STD_LOGIC 

      ); 

    END COMPONENT; 

 

    COMPONENT floatDivider 

      PORT ( 

         a              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         b              : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         operation_nd   : IN STD_LOGIC; 

         operation_rfd  : OUT STD_LOGIC; 

         clk            : IN STD_LOGIC; 

         result         : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); 

         rdy            : OUT STD_LOGIC 

      ); 

    END COMPONENT; 

 

    signal nomtemp      : std_logic_vector(31 downto 0) := (others => '0'); 

    signal d1float      : std_logic_vector(31 downto 0) := (others => '0'); 

    signal dffloat      : std_logic_vector(31 downto 0) := (others => '0'); 

    signal dftemp       : std_logic_vector(31 downto 0) := (others => '0');  

    signal nomfloat     : std_logic_vector(31 downto 0);  

    signal denomfloat   : std_logic_vector(31 downto 0);  

    signal nomfloat2    : std_logic_vector(31 downto 0); 

     

    --Inputs - Outputs   fixed2floatConverter 



 

87 

 

    signal converterIN  : std_logic_vector(31 downto 0); 

    signal converterOUT : std_logic_vector(31 downto 0); 

    signal rdy1         : std_logic; 

    signal nd1          : std_logic; 

    signal rfd1         : std_logic := '0'; 

     

    --Inputs - Outputs   floatMultiplier     

    signal multiplierA  : std_logic_vector(31 downto 0); 

    signal multiplierB  : std_logic_vector(31 downto 0); 

    signal multiplierRes: std_logic_vector(31 downto 0); 

    signal rdy2         : std_logic; 

    signal rfd2         : std_logic; 

    signal nd2          : std_logic := '0'; 

     

    --Inputs - Outputs   floatComparator 

    signal comparatorA  : std_logic_vector(31 downto 0):= (others => '0'); 

    signal comparatorB  : std_logic_vector(31 downto 0):= (others => '0'); 

    signal comparatorRes: std_logic_vector(0 DOWNTO 0):= (others => '0'); 

    signal rdy3         : std_logic; 

    signal rfd3         : std_logic; 

    signal nd3          : std_logic := '0'; 

     

    --Inputs - Outputs   floatDivider 

    signal dividerA     : std_logic_vector(31 downto 0):= (others => '0'); 

    signal dividerB     : std_logic_vector(31 downto 0):= (others => '0'); 

    signal dividerRes   : std_logic_vector(31 downto 0):= (others => '0'); 

    signal rdy4         : std_logic; 

    signal rfd4         : std_logic; 

    signal nd4          : std_logic := '0'; 

 

    signal temp         : std_logic_vector(3 downto 0)  := (others => '0');  

    signal temp1        : std_logic_vector(31 downto 0) := (others => '0'); 

    signal temp2        : std_logic_vector(31 downto 0) := (others => '1'); 

     

    --Signals used in the FSM to define the state transitions  

    signal holdS1       : std_logic_vector(1 downto 0):= (others => '0'); 

    signal holdS2       : std_logic_vector(1 downto 0):= (others => '0'); 

    signal holdS3       : std_logic_vector(2 downto 0):= (others => '0'); 

    signal holdS4       : std_logic_vector(1 downto 0):= (others => '0'); 

    signal holdS5       : std_logic_vector(1 downto 0):= (others => '0'); 

    signal holdS6       : std_logic_vector(1 downto 0):= (others => '0'); 

    signal holdS7       : std_logic; 

---------------------------------------------------------------------------- 

----------Registered signals according to the 'two-process' method---------- 

 

     type registers is record 

        converterIN    :  std_logic_vector(31 downto 0); 

        converterOUT   :  std_logic_vector(31 downto 0); 

        rfd1           :  std_logic; 

        nd1            :  std_logic; 

        multiplierA    :  std_logic_vector(31 downto 0); 

        multiplierB    :  std_logic_vector(31 downto 0); 

        multiplierRes  :  std_logic_vector(31 downto 0); 

        rfd2           :  std_logic; 

        nd2            :  std_logic; 

        comparatorA    :  std_logic_vector(31 downto 0); 

        comparatorB    :  std_logic_vector(31 downto 0); 



 

88 

 

        comparatorRes  :  std_logic_vector(31 downto 0); 

        rfd3           :  std_logic; 

        nd3            :  std_logic;              

        dividerA       :  std_logic_vector(31 downto 0); 

        dividerB       :  std_logic_vector(31 downto 0); 

        dividerRes     :  std_logic_vector(31 downto 0); 

        rfd4           :  std_logic; 

        nd4            :  std_logic;              

        o_rdy          :  std_logic; 

        temp           :  std_logic_vector(3 downto 0); 

        resultTemp     :  signed(63 downto 0); 

        dftemp         :  std_logic_vector(31 downto 0); 

        holdS2         :  std_logic_vector(1 downto 0); 

        result1        :  signed(31 downto 0); 

        d1float        :  std_logic_vector(31 downto 0); 

        holdS3         :  std_logic_vector(2 downto 0); 

        dffloat        :  std_logic_vector(31 downto 0); 

        holdS4         :  std_logic_vector(2 downto 0); 

        holdS5         :  std_logic_vector(1 downto 0); 

        holdS6         :  std_logic_vector(1 downto 0); 

        holdS7         :  std_logic; 

        nomfloat       :  std_logic_vector(31 downto 0); 

        denomfloat     :  std_logic_vector(31 downto 0); 

        nomfloat2      :  std_logic_vector(31 downto 0); 

        fraction       :  std_logic_vector(31 downto 0); 

        e2             :  std_logic_vector(31 downto 0); 

        presentState   :  state; 

    end record; 

    signal r, rin : registers; 

----------------------------------------------------------------------------- 

-----------------------------------------------------------------------------     

 

begin                      

  

    Converter: fixedTofloat  

    PORT MAP ( 

     a              => converterIN, 

     operation_nd   => nd1, 

     operation_rfd  => rfd1, 

     clk            => clk, 

     result         => converterOUT, 

     rdy            => rdy1 

    );    

     

    floatMul : floatMultiplier 

    PORT MAP ( 

     a              => multiplierA, 

     b              => multiplierB, 

     operation_nd   => nd2, 

     operation_rfd  => rfd2, 

     clk            => clk, 

     result         => multiplierRes, 

     rdy            => rdy2 

    );   

      

  floatDiv : floatDivider 

  PORT MAP ( 



 

89 

 

     a              => dividerA, 

     b              => dividerB, 

     operation_nd   => nd4, 

     operation_rfd  => rfd4, 

     clk            => clk, 

     result         => dividerRes, 

     rdy            => rdy4 

    ); 

   

  floatComp : floatComparator 

  PORT MAP ( 

     a              => comparatorA, 

     b              => comparatorB, 

     operation_nd   => nd3, 

     operation_rfd  => rfd3, 

     clk            => clk, 

     result         => comparatorRes, 

     rdy            => rdy3 

    ); 

   

     

    -- Calculate the values (outputs, internal signals)  

    -- in two processes: sequential + combinatorial 

     

    sequential : process(clk) 

    begin 

        if rising_edge(clk) then r <= rin; end if; 

    end process; 

      

      

    combinatorial : process(rst, i_start, rfd1, rdy1, rfd2, rdy2, rfd3, rdy3, 

rfd4, rdy4, r) 

        variable v  : registers; 

    begin 

          v := r; 

            if(rst='1') then 

                v.presentState := idleS; 

            end if; 

            if(i_start='1') then 

                v.presentState := S1; 

            end if;  

             

            case r.presentState is 

            when idleS =>      

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                v.o_rdy     := '0'; 

                if(i_start = '1') then  

                    v.presentState := S1; 

                else 

                    v.presentState := idleS; 

                end if; 

 

 

            when S1 =>               



 

90 

 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                if(rfd1='1') then 

                    v.resultTemp 

:=diffpoint0*xV20+diffpoint1*xV21+diffpoint2*xV22+diffpoint3*xV23+diffpoint4*

xV24+diffpoint5*xV25+diffpoint6*xV26; 

                    v.dftemp        := "00" & df(31 downto 2); 

                    v.converterIN   := d1; 

                    v.nd1           := '1'; 

                    v.presentState  := S2; 

                else 

                    v.nd1           := '0'; 

                    v.presentState  := S1; 

                end if; 

                v.o_rdy     := '0'; 

                v.holdS2    := "00"; 

 

 

            when S2 =>   

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                v.result1   := 

r.resultTemp(31)&r.resultTemp(31)&r.resultTemp(31 downto 2); 

                if(rdy1='1') then 

                    v.d1float   := converterOUT; 

                    v.holdS2(0) :='1'; 

                end if; 

                if(rfd1='1') then 

                    v.converterIN := r.dftemp; 

                    v.nd1         := '1'; 

                    v.holdS2(1)   := '1';                                        

                end if;                  

                 

                if(r.holdS2="11") then 

                    v.presentState  := S3; 

                else 

                    v.presentState  := S2; 

                end if; 

                v.holdS3    :="000"; 

 

                 

            when S3 => 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                if(rdy1='1') then 

                    v.dffloat   := r.converterOUT; 

                    v.holdS3(0) :='1'; 

                end if; 



 

91 

 

                 

                if(rfd2='1') then 

                    v.multiplierA := r.d1float; 

                    v.multiplierB := converterOUT; 

                    v.nd2         := '1'; 

                    v.holdS3(1)   := '1'; 

                end if; 

                if(rfd1='1') then 

                    v.converterIN := mulpoint-v.result1; 

                    v.nd1         := '1'; 

                    v.holdS3(2)   := '1'; 

                end if; 

                if(r.holdS3="111") then 

                    v.presentState  := S4; 

                else 

                    v.presentState  := S3; 

                end if; 

                v.holdS4    :="000"; 

                     

                     

            when S4 => 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                if(rdy2='1') then 

                    v.denomfloat    := multiplierRes; 

                    v.holdS4(0)     := '1'; 

                end if; 

                 

                if(rdy1='1') then 

                    v.nomfloat2     := converterOUT; 

                    v.holdS4(1)     := '1'; 

                end if; 

                 

                if(rfd2='1') then 

                    v.multiplierA   := converterOUT; 

                    v.multiplierB   := converterOUT; 

                    v.nd2           := '1'; 

                    v.holdS4(2)     := '1'; 

                end if; 

                 

                if(r.holdS4="111") then 

                    v.presentState  := S5; 

                else 

                    v.presentState  := S4; 

                end if; 

                v.holdS5    :="00"; 

                     

                     

            when S5 => 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 



 

92 

 

                if(rdy2='1') then 

                    v.nomfloat  := multiplierRes; 

                    v.holdS5(0) := '1'; 

                end if; 

                 

                if(rfd3='1')and(v.holdS5(0) = '1') then 

                    v.comparatorA := r.denomfloat; 

                    v.comparatorB := v.nomfloat; 

                    v.nd3         := '1'; 

                    v.holdS5(1)   := '1'; 

                end if; 

                     

                if(r.holdS5="11") then 

                    v.presentState  := S6; 

                    v.o_rdy         := '0'; 

                else 

                    v.presentState  := S5; 

                end if; 

                v.holdS6    :="00"; 

                     

            when S6 => 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 

                v.nd4       := '0'; 

                if(rdy3='1') then 

                    if(comparatorRes="0") then 

                        if(rfd4='1') then 

                            v.dividerA := r.nomfloat; 

                            v.dividerB := r.denomfloat; 

                            v.nd4      := '1'; 

                            v.holdS6   := "01"; 

                        else 

                            v.holdS6   := "00"; 

                        end if; 

                    else 

                        v.holdS6       := "11"; 

                    end if; 

                end if; 

                if(r.holdS6="01") then 

                    v.presentState  := S7; 

                elsif(r.holdS6="11") then 

                    v.fraction      := x"3f800000"; 

                    v.o_rdy         := '1'; 

                    v.presentState  := idleS; 

                else 

                    v.presentState  := S6; 

                end if; 

                v.holdS7    :='0'; 

 

 

            when S7 => 

                v.o_rdy     := '0'; 

                v.nd1       := '0'; 

                v.nd2       := '0'; 

                v.nd3       := '0'; 



 

93 

 

                v.nd4       := '0'; 

                if(rdy4='1') then 

                    v.fraction      := r.dividerRes; 

                    v.o_rdy         := '1'; 

                    v.presentState  := idleS; 

                    v.holdS7        :='1'; 

                else 

                    v.presentState  := S7; 

                end if;          

            end case; 

             

 

            v.multiplierRes := multiplierRes; 

            v.converterOUT  := converterOUT; 

            v.dividerRes    := dividerRes; 

            nd1             <= v.nd1; 

            nd2             <= v.nd2; 

            nd3             <= v.nd3; 

            nd4             <= v.nd4; 

            converterIN     <= r.converterIN; 

            multiplierA     <= r.multiplierA; 

            multiplierB     <= r.multiplierB; 

            comparatorA     <= r.comparatorA; 

            comparatorB     <= r.comparatorB; 

            dividerA        <= r.dividerA; 

            dividerB        <= r.dividerB; 

            rin             <= v; 

            fraction        <= r.fraction; 

            o_rdy           <= r.o_rdy;  

     end process; 

end behavior; 

 

 

B.2 Fixed-Point Accelerator 
 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use ieee.std_logic_unsigned.all; 

library work; 

use work.fixed_point_pkg.all; 

 

entity epsilon2FixedPoint is 

port (clk           : in std_logic; 

        i_start     :  in std_logic; 

        rst         :  in std_logic; 

        diffpoint0  :  in signed(31 downto 0); 

        diffpoint1  :  in signed(31 downto 0); 

        diffpoint2  :  in signed(31 downto 0); 

        diffpoint3  :  in signed(31 downto 0); 

        diffpoint4  :  in signed(31 downto 0); 

        diffpoint5  :  in signed(31 downto 0); 



 

94 

 

        diffpoint6  :  in signed(31 downto 0); 

        xV20        :  in signed(31 downto 0); 

        xV21        :  in signed(31 downto 0); 

        xV22        :  in signed(31 downto 0); 

        xV23        :  in signed(31 downto 0); 

        xV24        :  in signed(31 downto 0); 

        xV25        :  in signed(31 downto 0); 

        xV26        :  in signed(31 downto 0); 

        mulpoint    :  in signed(31 downto 0); 

        d1          :  in signed(31 downto 0); 

        df          :  in signed(31 downto 0); 

        fractionIN  :  in std_logic_vector(31 downto 0); 

        fractionOUT :  out std_logic_vector(31 downto 0); 

        o_rdy       :  out std_logic := '0' 

    ); 

end epsilon2FixedPoint; 

 

architecture Behavioral of epsilon2FixedPoint is 

signal nom64            : signed(63 downto 0) := (others => '0');  

signal nom32            : std_logic_vector(31 downto 0); 

signal denom64          : signed(63 downto 0) := (others => '0'); 

signal denom32          : std_logic_vector(31 downto 0); 

signal fraction         : std_logic_vector(31 downto 0); 

signal fractionTemp     : signed(31 downto 0); 

signal nd               : std_logic:= '0'; 

signal rdy              : std_logic; 

signal rfd              : std_logic;  

 

 

shared variable denomTrail64    : integer range 0 to 64 :=0; 

shared variable denomLead64     : integer range 0 to 64 :=0; 

shared variable nomTrail64      : integer range 0 to 64 :=0; 

shared variable nomLead64       : integer range 0 to 64 :=0; 

shared variable nomTrail32      : integer range 0 to 32 :=0; 

shared variable nomLead32       : integer range 0 to 32 :=0; 

shared variable denomTrail32    : integer range 0 to 32 :=0; 

shared variable denomLead32     : integer range 0 to 32 :=0; 

signal ignoreFlag               : std_logic:= '0'; 

signal signDenom                : std_logic:= '0'; 

     

signal temp64   : signed(63 downto 0) := (others => '0'); --intermediate 

multiplication result 32x32=>64 bits 

signal temp32   : signed(31 downto 0) := (others => '0'); --final result  

signal temp1    : std_logic_vector(31 downto 0) := (others => '0'); 

type state is (idleS, S1, S2, S3, S4, S5, S6, S7);  

signal presentState, nextState : state; 

 

component fixedPointDivider 

    port ( 

    clk     : in std_logic; 

    nd      : in std_logic; 

    rdy     : out std_logic; 

    rfd     : out std_logic; 

    dividend: in std_logic_vector(31 downto 0); 

    divisor : in std_logic_vector(31 downto 0); 

    quotient: out std_logic_vector(31 downto 0)); 

end component; 



 

95 

 

begin 

 

    fractionOUT <= temp1; 

 

    divider : fixedPointDivider 

        port map ( 

            clk      => clk, 

            nd       => nd, 

            rdy      => rdy, 

            rfd      => rfd, 

            dividend => nom32, 

            divisor  => denom32, 

            quotient => fraction 

        ); 

 

     

--  Processes for zeros detection 

    denom64Zeros: process(denom64) is 

    begin 

        denomLead64 :=leading64(std_logic_vector(denom64)); 

        denomTrail64:=trailing64(std_logic_vector(denom64)); 

    end process denom64Zeros; 

     

    nom64Zeros: process(nom64) is 

    begin 

        nomLead64   :=leading64(std_logic_vector(nom64)); 

        nomTrail64  :=trailing64(std_logic_vector(nom64)); 

    end process nom64Zeros; 

 

    denom32Zeros: process(denom32) is 

    begin 

        denomLead32 :=leading32(denom32); 

        denomTrail32:=trailing32(denom32); 

    end process denom32Zeros; 

     

    nom32Zeros: process(nom32) is 

    begin 

        nomLead32   :=leading32(nom32); 

        nomTrail32  :=trailing32(nom32); 

    end process nom32Zeros; 

     

--  Rest of the code (sequential+combinatorial) 

    seq: process (rst, clk) is 

    begin 

        if(rst='1') then 

            presentState <= idleS; 

        elsif (rising_edge(clk)) then 

            presentState <=nextState; 

        end if; 

    end process seq; 

     

    comb: process(i_start, presentState, rdy, nd, rfd) is 

    variable Qdenom      : integer := 0; 

    variable Qnom        : integer := 0; 

    variable Qfraction : integer := 0; 

    begin 

        case presentState is 



 

96 

 

            when idleS =>    

                nd          <= '0'; 

                o_rdy       <= '0'; 

                signDenom   <= '0'; 

                ignoreFlag  <= '0'; 

                if(i_start = '1') then  

                    nextState <= S1; 

                else 

                    nextState <= idleS; 

                end if; 

 

                 

            when S1 => 

                nd          <= '0'; 

                o_rdy       <= '0'; 

                temp1       <= fractionIN;                   

                temp64      

<=diffpoint0*xV20+diffpoint1*xV21+diffpoint2*xV22+diffpoint3*xV23+diffpoint4*

xV24+diffpoint5*xV25+diffpoint6*xV26; 

                if((d1*df)<x"0000000000000000") then 

                    denom64     <= -d1*df; 

                    signDenom   <= '1'; 

                else 

                    denom64     <= d1*df; 

                    signDenom   <= '0';                  

                end if; 

                Qdenom      := 38; 

                ignoreFlag  <= '0'; 

                nextState   <= S2; 

                 

                 

            when S2 => 

                nd          <= '0'; 

                o_rdy       <= '0'; 

                temp32      <= temp64(31)&temp64(31)&temp64(31 downto 2); 

                if(denomLead64+denomTrail64>=32) then 

                    if(denomLead64<26) then 

                        denom32     <= std_logic_vector(denom64(63-

denomLead64 downto 32-denomLead64)); 

                        Qdenom      := 6+denomLead64; 

                        ignoreFlag  <= '0'; 

                        nextState   <= S3; 

                    elsif(denomLead64>=26)and(denomTrail64>=6) then 

                        denom32     <=std_logic_vector(denom64(37 downto 6)); 

                        Qdenom      := 32; 

                        ignoreFlag  <= '0'; 

                        nextState   <= S3; 

                    else 

                        ignoreFlag  <= '1'; 

                        nextState   <= S7; 

                    end if; 

                else 

                    ignoreFlag  <= '1'; 

                    nextState   <= S7; 

                end if; 

                 

                 



 

97 

 

            when S3 => 

                nd          <= '0'; 

                o_rdy       <= '0'; 

                nom64       <=(mulpoint-temp32)*(mulpoint-temp32); 

                Qnom        := 40; 

                ignoreFlag  <= '0'; 

                nextState   <= S4; 

                 

                 

            when S4 => 

                nd      <= '0'; 

                o_rdy   <= '0'; 

                if(nomLead64+nomTrail64>=32) then 

                    if(nomLead64<24) then 

                        nom32       <=std_logic_vector(nom64(63-nomLead64 

downto 32-nomLead64)); 

                        Qnom        := 8+nomLead64; 

                        ignoreFlag  <= '0'; 

                        nextState   <= S5; 

                    elsif(nomLead64>=24)and(nomTrail64>=8) then 

                        nom32       <=std_logic_vector(nom64(39 downto 8)); 

                        Qnom        := 32; 

                        ignoreFlag  <= '0'; 

                        nextState   <= S5; 

                    else 

                        ignoreFlag  <= '1'; 

                        nextState   <= S7; 

                    end if; 

                else 

                    ignoreFlag  <= '1'; 

                    nextState   <= S7;                   

                end if; 

                 

                 

            when S5 => 

                nd      <= '0'; 

                o_rdy   <= '0';  

                if(Qnom>Qdenom)and(nomTrail32>=Qnom-Qdenom) then 

                    nom32       <= 

std_logic_vector(shift_right(unsigned(nom32),Qnom-Qdenom)); 

                    Qnom        := Qdenom; 

                    ignoreFlag  <= '0'; 

                    nextState   <= S6; 

                elsif(Qnom>Qdenom)and(denomLead32>=Qnom-Qdenom) then 

                    denom32     <= 

std_logic_vector(shift_left(unsigned(denom32),Qnom-Qdenom)); 

                    Qdenom      := Qnom; 

                    ignoreFlag  <= '0'; 

                    nextState   <= S6; 

                     

                elsif(Qdenom>Qnom)and(denomTrail32>=Qdenom-Qnom) then 

                    denom32     <= 

std_logic_vector(shift_right(unsigned(denom32),Qdenom-Qnom)); 

                    Qdenom      := Qnom; 

                    ignoreFlag  <= '0'; 

                    nextState   <= S6; 

                     



 

98 

 

                elsif(Qdenom>Qnom)and(nomLead32>=Qdenom-Qnom) then 

                    nom32       <= 

std_logic_vector(shift_left(unsigned(nom32),Qdenom-Qnom)); 

                    Qnom        := Qdenom; 

                    ignoreFlag  <= '0'; 

                    nextState   <= S6; 

                else 

                    ignoreFlag  <= '1'; 

                    nextState   <= S7;                   

                end if; 

     

                 

            when S6 => 

                nd      <= '0'; 

                o_rdy   <= '0'; 

                if(denom32>nom32) then -- no need to invert denom32, cause 

nom32 is always positive 

                    --division, keep this state until the divider is ready to 

receive data 

                    if(rfd='1') then 

                        if((nomLead32>0)and(denomTrail32>0)) then 

                            nom32       

<=std_logic_vector(shift_left(unsigned(nom32),7)); 

                            denom32     

<=std_logic_vector(shift_right(unsigned(denom32),7)); 

                            Qfraction   := 14; 

                            nd          <= '1'; 

                            ignoreFlag  <= '0'; 

                            nextState   <= S7; 

                        else 

                            ignoreFlag  <='1'; 

                            nextState   <= S7; 

                        end if; 

                    else 

                        nd              <= '0'; 

                        ignoreFlag      <= '0'; 

                        nextState       <= S6; 

                    end if; 

                else 

                    ignoreFlag      <= '0'; 

                    o_rdy           <= '1'; 

                    temp1           <= "00000000000000000100000000000000"; --

"1" in Q14 format 

                    nextState       <= idleS;    

                end if; 

                 

                 

            when S7 => 

                nd      <= '0'; 

                o_rdy   <= '0'; 

                temp1   <= fractionIN; 

                --wait until the divider has finished 

                if(rdy='0') then 

                    if(ignoreFlag='0') then 

                        nd          <= '0'; 

                        nextState   <= S7; 

                    else 



 

99 

 

                        o_rdy       <= '1'; 

                        temp1       <= fractionIN; 

                        nextState   <= idleS; 

                    end if; 

                else 

                    o_rdy <= '1'; 

                    if(ignoreFlag='0') then 

                        if(signDenom='0') then 

                            temp1   <=  fraction; 

                        else 

                            temp1   <=  std_logic_vector(unsigned (not 

fraction) + 1); 

                        end if; 

                    else 

                        temp1   <= fractionIN; 

                    end if; 

                    nextState   <= idleS; 

                end if; 

        end case; 

    end process comb;    

                     

end Behavioral; 

 

 

B.3 Zeros Detection VHDL Package 
 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

 

package fixed_point_pkg is 

     type inputVector is array(0 to 6) of signed (31 downto 0); 

     subtype zeros32  is integer range 0 to 32; 

     subtype zeros64  is integer range 0 to 64; 

     --function declaration. 

     function trailing32(x  : std_logic_vector(31 downto 0)) return zeros32; 

     function leading32(x   : std_logic_vector(31 downto 0)) return zeros32; 

     function trailing64(x  : std_logic_vector(63 downto 0)) return zeros64; 

     function leading64(x   : std_logic_vector(63 downto 0)) return zeros64; 

end fixed_point_pkg; 

 

 

 

package body fixed_point_pkg is   

 

    function trailing32(x : std_logic_vector(31 downto 0)) return zeros32 is 

    variable trailingZeros : zeros32;  

    begin 

        if(x(31 downto 0)=x"00000000") then 

            trailingZeros :=32; 

        elsif (x(30 downto 0)="0000000000000000000000000000000") then 

            trailingZeros :=31; 



 

100 

 

        elsif (x(29 downto 0)="000000000000000000000000000000") then 

            trailingZeros :=30; 

        elsif (x(28 downto 0)="00000000000000000000000000000") then 

            trailingZeros :=29; 

        elsif (x(27 downto 0)="0000000000000000000000000000") then 

            trailingZeros :=28; 

        elsif (x(26 downto 0)="000000000000000000000000000") then 

            trailingZeros :=27; 

        elsif (x(25 downto 0)="00000000000000000000000000") then 

            trailingZeros :=26; 

        elsif (x(24 downto 0)="0000000000000000000000000") then 

            trailingZeros :=25; 

        elsif (x(23 downto 0)="000000000000000000000000") then 

            trailingZeros :=24; 

        elsif (x(22 downto 0)="00000000000000000000000") then 

            trailingZeros :=23; 

        elsif (x(21 downto 0)="0000000000000000000000") then 

            trailingZeros :=22; 

        elsif (x(20 downto 0)="000000000000000000000") then 

            trailingZeros :=21; 

        elsif (x(19 downto 0)="00000000000000000000") then 

            trailingZeros :=20; 

        elsif (x(18 downto 0)="0000000000000000000") then 

            trailingZeros :=19; 

        elsif (x(17 downto 0)="000000000000000000") then 

            trailingZeros :=18; 

        elsif (x(16 downto 0)="00000000000000000") then 

            trailingZeros :=17; 

        elsif (x(15 downto 0)="0000000000000000") then 

            trailingZeros :=16; 

        elsif (x(14 downto 0)="000000000000000") then 

            trailingZeros :=15; 

        elsif (x(13 downto 0)="00000000000000") then 

            trailingZeros :=14; 

        elsif (x(12 downto 0)="0000000000000") then 

            trailingZeros :=13; 

        elsif (x(11 downto 0)="000000000000") then 

            trailingZeros :=12; 

        elsif (x(10 downto 0)="00000000000") then 

            trailingZeros :=11; 

        elsif (x(9 downto 0)="0000000000") then 

            trailingZeros :=10; 

        elsif (x(8 downto 0)="000000000") then 

            trailingZeros :=9; 

        elsif (x(7 downto 0)="00000000") then 

            trailingZeros :=8; 

        elsif (x(6 downto 0)="0000000") then 

            trailingZeros :=7; 

        elsif (x(5 downto 0)="000000") then 

            trailingZeros :=6; 

        elsif (x(4 downto 0)="00000") then 

            trailingZeros :=5; 

        elsif (x(3 downto 0)="0000") then 

            trailingZeros :=4; 

        elsif (x(2 downto 0)="000") then 

            trailingZeros :=3; 

        elsif (x(1 downto 0)="00") then 



 

101 

 

            trailingZeros :=2; 

        elsif (x(0)='0') then 

            trailingZeros :=1; 

        else 

            trailingZeros :=0; 

        end if; 

      return trailingZeros; 

    end trailing32; 

 

 

    function leading32 (x : std_logic_vector(31 downto 0)) return zeros32 is 

    variable leadingZeros : zeros32;  

    begin 

        if(x(31 downto 0)=x"00000000") then 

            leadingZeros := 32; 

        elsif (x(31 downto 1)="0000000000000000000000000000000") then 

            leadingZeros := 31; 

        elsif (x(31 downto 2)="000000000000000000000000000000") then 

            leadingZeros := 30; 

        elsif (x(31 downto 3)="00000000000000000000000000000") then 

            leadingZeros := 29; 

        elsif (x(31 downto 4)="0000000000000000000000000000") then 

            leadingZeros := 28; 

        elsif (x(31 downto 5)="000000000000000000000000000") then 

            leadingZeros := 27; 

        elsif (x(31 downto 6)="00000000000000000000000000") then 

            leadingZeros := 26; 

        elsif (x(31 downto 7)="0000000000000000000000000") then 

            leadingZeros := 25; 

        elsif (x(31 downto 8)="000000000000000000000000") then 

            leadingZeros := 24; 

        elsif (x(31 downto 9)="00000000000000000000000") then 

            leadingZeros := 23; 

        elsif (x(31 downto 10)="0000000000000000000000") then 

            leadingZeros := 22; 

        elsif (x(31 downto 11)="000000000000000000000") then 

            leadingZeros := 21; 

        elsif (x(31 downto 12)="00000000000000000000") then 

            leadingZeros := 20; 

        elsif (x(31 downto 13)="0000000000000000000") then 

            leadingZeros := 19; 

        elsif (x(31 downto 14)="000000000000000000") then 

            leadingZeros := 18; 

        elsif (x(31 downto 15)="00000000000000000") then 

            leadingZeros := 17; 

        elsif (x(31 downto 16)="0000000000000000") then 

            leadingZeros := 16; 

        elsif (x(31 downto 17)="000000000000000") then 

            leadingZeros := 15; 

        elsif (x(31 downto 18)="00000000000000") then 

            leadingZeros := 14; 

        elsif (x(31 downto 19)="0000000000000") then 

            leadingZeros := 13; 

        elsif (x(31 downto 20)="000000000000") then 

            leadingZeros := 12; 

        elsif (x(31 downto 21)="00000000000") then 

            leadingZeros := 11; 



 

102 

 

        elsif (x(31 downto 22)="0000000000") then 

            leadingZeros := 10; 

        elsif (x(31 downto 23)="000000000") then 

            leadingZeros := 9; 

        elsif (x(31 downto 24)="00000000") then 

            leadingZeros := 8; 

        elsif (x(31 downto 25)="0000000") then 

            leadingZeros := 7; 

        elsif (x(31 downto 26)="000000") then 

            leadingZeros := 6; 

        elsif (x(31 downto 27)="00000") then 

            leadingZeros := 5; 

        elsif (x(31 downto 28)="0000") then 

            leadingZeros := 4; 

        elsif (x(31 downto 29)="000") then 

            leadingZeros := 3; 

        elsif (x(31 downto 30)="00") then 

            leadingZeros := 2; 

        elsif (x(31)='0') then 

            leadingZeros := 1; 

        else 

            leadingZeros := 0; 

        end if; 

      return leadingZeros; 

    end leading32; 

 

 

    --trailing64 

    function trailing64 (x : std_logic_vector(63 downto 0)) return zeros64 is 

    variable trailingZeros : zeros64;  

    begin 

        if    (x(63 downto 0)=x"0000000000000000") then 

            trailingZeros:=64; 

        elsif (x(62 downto 

0)="000000000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=63; 

        elsif (x(61 downto 

0)="00000000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=62; 

        elsif (x(60 downto 

0)="0000000000000000000000000000000000000000000000000000000000000") then  

            trailingZeros:=61; 

        elsif (x(59 downto 

0)="000000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=60; 

        elsif (x(58 downto 

0)="00000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=59; 

        elsif (x(57 downto 

0)="0000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=58; 

        elsif (x(56 downto 

0)="000000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=57; 

        elsif (x(55 downto 

0)="00000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=56; 



 

103 

 

        elsif (x(54 downto 

0)="0000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=55; 

        elsif (x(53 downto 

0)="000000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=54; 

        elsif (x(52 downto 

0)="00000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=53; 

        elsif (x(51 downto 

0)="0000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=52; 

        elsif (x(50 downto 

0)="000000000000000000000000000000000000000000000000000") then 

            trailingZeros:=51; 

        elsif (x(49 downto 

0)="00000000000000000000000000000000000000000000000000") then 

            trailingZeros:=50; 

        elsif (x(48 downto 

0)="0000000000000000000000000000000000000000000000000") then 

            trailingZeros:=49; 

        elsif (x(47 downto 

0)="000000000000000000000000000000000000000000000000") then 

            trailingZeros:=48; 

        elsif (x(46 downto 

0)="00000000000000000000000000000000000000000000000") then 

            trailingZeros:=47; 

        elsif (x(45 downto 

0)="0000000000000000000000000000000000000000000000") then 

            trailingZeros:=46; 

        elsif (x(44 downto 

0)="000000000000000000000000000000000000000000000") then 

            trailingZeros:=45; 

        elsif (x(43 downto 0)="00000000000000000000000000000000000000000000") 

then 

            trailingZeros:=44; 

        elsif (x(42 downto 0)="0000000000000000000000000000000000000000000") 

then 

            trailingZeros:=43; 

        elsif (x(41 downto 0)="000000000000000000000000000000000000000000") 

then 

            trailingZeros:=42; 

        elsif (x(40 downto 0)="00000000000000000000000000000000000000000") 

then 

            trailingZeros:=41; 

        elsif (x(39 downto 0)="0000000000000000000000000000000000000000") 

then 

            trailingZeros:=40; 

        elsif (x(38 downto 0)="000000000000000000000000000000000000000") then 

            trailingZeros:=39; 

        elsif (x(37 downto 0)="00000000000000000000000000000000000000") then 

            trailingZeros:=38; 

        elsif (x(36 downto 0)="0000000000000000000000000000000000000") then 

            trailingZeros:=37; 

        elsif (x(35 downto 0)="000000000000000000000000000000000000") then 

            trailingZeros:=36; 

        elsif (x(34 downto 0)="00000000000000000000000000000000000") then 



 

104 

 

            trailingZeros:=35; 

        elsif (x(33 downto 0)="0000000000000000000000000000000000") then 

            trailingZeros:=34; 

        elsif (x(32 downto 0)="000000000000000000000000000000000") then 

            trailingZeros:=33; 

        elsif(x(31 downto 0)=x"00000000") then 

            trailingZeros:=32; 

        elsif (x(30 downto 0)="0000000000000000000000000000000") then 

            trailingZeros:=31; 

        elsif (x(29 downto 0)="000000000000000000000000000000") then 

            trailingZeros:=30; 

        elsif (x(28 downto 0)="00000000000000000000000000000") then 

            trailingZeros:=29; 

        elsif (x(27 downto 0)="0000000000000000000000000000") then 

            trailingZeros:=28; 

        elsif (x(26 downto 0)="000000000000000000000000000") then 

            trailingZeros:=27; 

        elsif (x(25 downto 0)="00000000000000000000000000") then 

            trailingZeros:=26; 

        elsif (x(24 downto 0)="0000000000000000000000000") then 

            trailingZeros:=25; 

        elsif (x(23 downto 0)="000000000000000000000000") then 

            trailingZeros:=24; 

        elsif (x(22 downto 0)="00000000000000000000000") then 

            trailingZeros:=23; 

        elsif (x(21 downto 0)="0000000000000000000000") then 

            trailingZeros:=22; 

        elsif (x(20 downto 0)="000000000000000000000") then 

            trailingZeros:=21; 

        elsif (x(19 downto 0)="00000000000000000000") then 

            trailingZeros:=20; 

        elsif (x(18 downto 0)="0000000000000000000") then 

            trailingZeros:=19; 

        elsif (x(17 downto 0)="000000000000000000") then 

            trailingZeros:=18; 

        elsif (x(16 downto 0)="00000000000000000") then 

            trailingZeros:=17; 

        elsif (x(15 downto 0)="0000000000000000") then 

            trailingZeros:=16; 

        elsif (x(14 downto 0)="000000000000000") then 

            trailingZeros:=15; 

        elsif (x(13 downto 0)="00000000000000") then 

            trailingZeros:=14; 

        elsif (x(12 downto 0)="0000000000000") then 

            trailingZeros:=13; 

        elsif (x(11 downto 0)="000000000000") then 

            trailingZeros:=12; 

        elsif (x(10 downto 0)="00000000000") then 

            trailingZeros:=11; 

        elsif (x(9 downto 0)="0000000000") then 

            trailingZeros:=10; 

        elsif (x(8 downto 0)="000000000") then 

            trailingZeros:=9; 

        elsif (x(7 downto 0)="00000000") then 

            trailingZeros:=8; 

        elsif (x(6 downto 0)="0000000") then 

            trailingZeros:=7; 



 

105 

 

        elsif (x(5 downto 0)="000000") then 

            trailingZeros:=6; 

        elsif (x(4 downto 0)="00000") then 

            trailingZeros:=5; 

        elsif (x(3 downto 0)="0000") then 

            trailingZeros:=4; 

        elsif (x(2 downto 0)="000") then 

            trailingZeros:=3; 

        elsif (x(1 downto 0)="00") then 

            trailingZeros:=2; 

        elsif (x(0)='0') then 

            trailingZeros:=1; 

        else 

            trailingZeros:=0; 

        end if; 

        return trailingZeros; 

    end trailing64; 

 

    --trailing64 

    function leading64 (x : std_logic_vector(63 downto 0)) return zeros64 is 

    variable leadingZeros : zeros64;  

    begin 

        if    (x(63 downto 0)=x"0000000000000000") then 

            leadingZeros := 64; 

        elsif (x(63 downto 

1)="000000000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 63; 

        elsif (x(63 downto 

2)="00000000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 62; 

        elsif (x(63 downto 

3)="0000000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 61; 

        elsif (x(63 downto 

4)="000000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 60; 

        elsif (x(63 downto 

5)="00000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 59; 

        elsif (x(63 downto 

6)="0000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 58; 

        elsif (x(63 downto 

7)="000000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 57; 

        elsif (x(63 downto 

8)="00000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 56; 

        elsif (x(63 downto 

9)="0000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 55; 

        elsif (x(63 downto 

10)="000000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 54; 

        elsif (x(63 downto 

11)="00000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 53; 



 

106 

 

        elsif (x(63 downto 

12)="0000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 52; 

        elsif (x(63 downto 

13)="000000000000000000000000000000000000000000000000000") then 

            leadingZeros := 51; 

        elsif (x(63 downto 

14)="00000000000000000000000000000000000000000000000000") then 

            leadingZeros := 50; 

        elsif (x(63 downto 

15)="0000000000000000000000000000000000000000000000000") then 

            leadingZeros := 49; 

        elsif (x(63 downto 

16)="000000000000000000000000000000000000000000000000") then 

            leadingZeros := 48; 

        elsif (x(63 downto 

17)="00000000000000000000000000000000000000000000000") then 

            leadingZeros := 47; 

        elsif (x(63 downto 

18)="0000000000000000000000000000000000000000000000") then 

            leadingZeros := 46; 

        elsif (x(63 downto 

19)="000000000000000000000000000000000000000000000") then 

            leadingZeros := 45; 

        elsif (x(63 downto 

20)="00000000000000000000000000000000000000000000") then 

            leadingZeros := 44; 

        elsif (x(63 downto 21)="0000000000000000000000000000000000000000000") 

then 

            leadingZeros := 43; 

        elsif (x(63 downto 22)="000000000000000000000000000000000000000000") 

then 

            leadingZeros := 42; 

        elsif (x(63 downto 23)="00000000000000000000000000000000000000000") 

then 

            leadingZeros := 41; 

        elsif (x(63 downto 24)="0000000000000000000000000000000000000000") 

then 

            leadingZeros := 40; 

        elsif (x(63 downto 25)="000000000000000000000000000000000000000") 

then 

            leadingZeros := 39; 

        elsif (x(63 downto 26)="00000000000000000000000000000000000000") then 

            leadingZeros := 38; 

        elsif (x(63 downto 27)="0000000000000000000000000000000000000") then 

            leadingZeros := 37; 

        elsif (x(63 downto 28)="000000000000000000000000000000000000") then 

            leadingZeros := 36; 

        elsif (x(63 downto 29)="00000000000000000000000000000000000") then 

            leadingZeros := 35; 

        elsif (x(63 downto 30)="0000000000000000000000000000000000") then        

            leadingZeros := 34; 

        elsif (x(63 downto 31)="000000000000000000000000000000000") then     

            leadingZeros := 33; 

        elsif (x(63 downto 32)=x"00000000") then 

            leadingZeros := 32; 

        elsif (x(63 downto 33)="0000000000000000000000000000000") then 



 

107 

 

            leadingZeros := 31; 

        elsif (x(63 downto 34)="000000000000000000000000000000") then 

            leadingZeros := 30; 

        elsif (x(63 downto 35)="00000000000000000000000000000") then 

            leadingZeros := 29; 

        elsif (x(63 downto 36)="0000000000000000000000000000") then 

            leadingZeros := 28; 

        elsif (x(63 downto 37)="000000000000000000000000000") then 

            leadingZeros := 27; 

        elsif (x(63 downto 38)="00000000000000000000000000") then 

            leadingZeros := 26; 

        elsif (x(63 downto 39)="0000000000000000000000000") then 

            leadingZeros := 25; 

        elsif (x(63 downto 40)="000000000000000000000000") then 

            leadingZeros := 24; 

        elsif (x(63 downto 41)="00000000000000000000000") then 

            leadingZeros := 23; 

        elsif (x(63 downto 42)="0000000000000000000000") then 

            leadingZeros := 22; 

        elsif (x(63 downto 43)="000000000000000000000") then 

            leadingZeros := 21; 

        elsif (x(63 downto 44)="00000000000000000000") then 

            leadingZeros := 20; 

        elsif (x(63 downto 45)="0000000000000000000") then 

            leadingZeros := 19; 

        elsif (x(63 downto 46)="000000000000000000") then 

            leadingZeros := 18; 

        elsif (x(63 downto 47)="00000000000000000") then 

            leadingZeros := 17; 

        elsif (x(63 downto 48)="0000000000000000") then 

            leadingZeros := 16; 

        elsif (x(63 downto 49)="000000000000000") then 

            leadingZeros := 15; 

        elsif (x(63 downto 50)="00000000000000") then 

            leadingZeros := 14; 

        elsif (x(63 downto 51)="0000000000000") then 

            leadingZeros := 13; 

        elsif (x(63 downto 52)="000000000000") then 

            leadingZeros := 12; 

        elsif (x(63 downto 53)="00000000000") then 

            leadingZeros := 11; 

        elsif (x(63 downto 54)="0000000000") then 

            leadingZeros := 10; 

        elsif (x(63 downto 55)="000000000") then 

            leadingZeros := 9; 

        elsif (x(63 downto 56)="00000000") then 

            leadingZeros := 8; 

        elsif (x(63 downto 57)="0000000") then 

            leadingZeros := 7; 

        elsif (x(63 downto 58)="000000") then 

            leadingZeros := 6; 

        elsif (x(63 downto 59)="00000") then 

            leadingZeros := 5; 

        elsif (x(63 downto 60)="0000") then 

            leadingZeros := 4; 

        elsif (x(63 downto 61)="000") then 

            leadingZeros := 3; 



 

108 

 

        elsif (x(63 downto 62)="00") then 

            leadingZeros := 2; 

        elsif (x(63)='0') then 

            leadingZeros := 1; 

        else 

            leadingZeros := 0; 

        end if; 

        return leadingZeros; 

    end leading64; 

     

end fixed_point_pkg; 

 

  



 

109 

 

Appendix C 
 

Accelerator Interface  
 

`include "common_defs.v" 

 

module accelerator1 

  #( 

    parameter WB_DWIDTH  = 32, 

    parameter WB_SWIDTH  = 4 

    ) 

   ( 

    input                  i_clk, 

    input                  i_rst, 

     

    input [31:0]           i_wb_adr, 

    input [WB_SWIDTH-1:0]  i_wb_sel, 

    input                  i_wb_we, 

    output [WB_DWIDTH-1:0] o_wb_dat, 

    input [WB_DWIDTH-1:0]  i_wb_dat, 

    input                  i_wb_cyc, 

    input                  i_wb_stb, 

    output                 o_wb_ack, 

    output                 o_wb_err 

    ); 

     

    //Registers  

    reg [31:0] i_opt_reg = 'd0;  

    reg [31:0] acc_in_0_reg = 'd0;  

    reg [31:0] acc_in_1_reg = 'd0;  

    reg [31:0] acc_in_2_reg = 'd0;  

    reg [31:0] acc_in_3_reg = 'd0; 

    reg [31:0] acc_in_4_reg = 'd0; 

    reg [31:0] acc_in_5_reg = 'd0; 

    reg [31:0] acc_in_6_reg = 'd0; 

    reg [31:0] acc_in_7_reg = 'd0; 

    reg [31:0] acc_in_8_reg = 'd0; 

    reg [31:0] acc_in_9_reg = 'd0; 

    reg [31:0] acc_in_10_reg = 'd0; 

    reg [31:0] acc_in_11_reg = 'd0; 

    reg [31:0] acc_in_12_reg = 'd0; 

    reg [31:0] acc_in_13_reg = 'd0; 

    reg [31:0] acc_in_14_reg = 'd0; 

    reg [31:0] acc_in_15_reg = 'd0; 

    reg [31:0] acc_in_16_reg = 'd0; 

    reg [31:0] acc_out_0_reg = 'd0;  

    reg [31:0] status_reg    = 32'h00000000; 

   // Wishbone interface 

   reg [31:0]                                   wb_rdata32 = 'd0; 

   wire                                         wb_start_write; 

   wire                                         wb_start_read; 

   reg                                          wb_start_read_d1 = 'd0; 



 

110 

 

   wire [31:0]                                  wb_wdata32; 

    

   reg acc_start = 'd0; 

   wire out_rdy; 

   wire [31:0]                                  acc1_out_0; 

   wire [31:0]                                  acc1_out_1; 

    

    

   // ====================================== 

   // Instantiate accelerator core 

   // ====================================== 

    epsilon2Hybrid u_epsilon2 ( 

        .clk                 ( i_clk             ), 

        .rst                 ( i_rst             ), 

        .i_start               ( acc_start         ), 

        .o_rdy                 ( out_rdy           ), 

         

        .diffpoint0             ( acc_in_0_reg      ), 

        .diffpoint1             ( acc_in_1_reg      ), 

        .diffpoint2             ( acc_in_2_reg      ), 

        .diffpoint3             ( acc_in_3_reg      ), 

        .diffpoint4             ( acc_in_4_reg      ), 

        .diffpoint5             ( acc_in_5_reg      ), 

        .diffpoint6             ( acc_in_6_reg      ), 

        .xV20                   ( acc_in_7_reg      ), 

        .xV21                   ( acc_in_8_reg      ), 

        .xV22                   ( acc_in_9_reg      ), 

        .xV23                   ( acc_in_10_reg     ), 

        .xV24                   ( acc_in_11_reg     ), 

        .xV25                   ( acc_in_12_reg     ), 

        .xV26                   ( acc_in_13_reg     ), 

        .mulpoint               ( acc_in_14_reg     ), 

        .d1                     ( acc_in_15_reg     ), 

        .df                     ( acc_in_16_reg     ), 
         

        .fraction               ( acc1_out_0        ) 

    );  

     

     

   //===================================================================== 

   //Assignments    

   // Can't start a write while a read is completing. The ack for the read 

cycle 

   // needs to be sent first 

   assign wb_start_write = i_wb_stb && i_wb_we && !wb_start_read_d1; 

   assign wb_start_read  = i_wb_stb && !i_wb_we && !o_wb_ack; 

 

   always @( posedge i_clk or posedge i_rst) begin 

      if(i_rst) 

        wb_start_read_d1 <= 1'b0; 

      else 

        wb_start_read_d1 <= wb_start_read; 

   end 

 

   assign o_wb_err = 1'd0; 

   assign o_wb_ack = i_wb_stb && ( wb_start_write || wb_start_read_d1 ); 

 



 

111 

 

   generate 

      if (WB_DWIDTH == 128)  

        begin : wb128 

           assign wb_wdata32   = i_wb_adr[3:2] == 2'd3 ? i_wb_dat[127:96] : 

                                 i_wb_adr[3:2] == 2'd2 ? i_wb_dat[ 95:64] : 

                                 i_wb_adr[3:2] == 2'd1 ? i_wb_dat[ 63:32] : 

                                 i_wb_dat[ 31: 0] ; 

            

           assign o_wb_dat    = {4{wb_rdata32}}; 

        end 

      else 

        begin : wb32 

           assign wb_wdata32  = i_wb_dat; 

           assign o_wb_dat    = wb_rdata32; 

        end 

   endgenerate 

   // ======================================================== 

   // Register Writes 

   // ======================================================== 

    always @(posedge acc_start or posedge out_rdy) 

    begin 

        if(out_rdy) 

        begin 

            acc_out_0_reg <= acc1_out_0; 

            status_reg    <= 32'h11111111; 

        end 

         

        if(acc_start) 

            status_reg    <= 32'h00000000; 

    end 

      

   always @( posedge i_clk or posedge i_rst)  

   begin 

        if(i_rst) 

            begin  

            i_opt_reg       <= 32'h00000000; 

            acc_in_0_reg    <= 32'h00000000; 

            acc_in_1_reg    <= 32'h00000000; 

            acc_in_2_reg    <= 32'h00000000; 

            acc_in_3_reg    <= 32'h00000000; 

            acc_in_4_reg    <= 32'h00000000; 

            acc_in_5_reg    <= 32'h00000000; 

            acc_in_6_reg    <= 32'h00000000; 

            acc_in_7_reg    <= 32'h00000000; 

            acc_in_8_reg    <= 32'h00000000; 

            acc_in_9_reg    <= 32'h00000000; 

            acc_in_10_reg   <= 32'h00000000; 

            acc_in_11_reg   <= 32'h00000000; 

            acc_in_12_reg   <= 32'h00000000; 

            acc_in_13_reg   <= 32'h00000000; 

            acc_in_14_reg   <= 32'h00000000; 

            acc_in_15_reg   <= 32'h00000000; 

            acc_in_16_reg   <= 32'h00000000; 

            acc_start       <= 1'b0; 

            end 

        else  

        begin                 



 

112 

 

            if(acc_start) 

                begin 

                acc_start       <= 1'b0; 

                i_opt_reg       <= 32'h00000000; 

                end 

            if ( wb_start_write ) 

            begin 

                case (i_wb_adr[11:0]) 

                    `ACC1_OPTIONS: begin         

                                        i_opt_reg        <= i_wb_dat[ 31: 0]; 

                                        acc_start        <= 1'b1; 

                     end 

                    `ACC1_INPUT0:       acc_in_0_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT1:       acc_in_1_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT2:       acc_in_2_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT3:       acc_in_3_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT4:       acc_in_4_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT5:       acc_in_5_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT6:       acc_in_6_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT7:       acc_in_7_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT8:       acc_in_8_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT9:       acc_in_9_reg     <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT10:      acc_in_10_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT11:      acc_in_11_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT12:      acc_in_12_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT13:      acc_in_13_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT14:      acc_in_14_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT15:      acc_in_15_reg    <= i_wb_dat[ 31: 0]; 

                    `ACC1_INPUT16:      acc_in_16_reg    <= i_wb_dat[ 31: 0]; 

                endcase 

            end 

        end 

    end 

   // ======================================================== 

   // Register Reads 

   // ========================================================     

   always @( posedge i_clk or posedge i_rst )  

   begin 

      if(i_rst)  

        begin 

        wb_rdata32 <= 32'h10101010; 

        end 

      else  

        begin 

        if ( wb_start_read ) 

            case ( i_wb_adr[11:0] ) 

                `ACC1_OPTIONS: wb_rdata32 <= i_opt_reg[ 31: 0]; 

                `ACC1_OUTPUT0: wb_rdata32 <= acc_out_0_reg[ 31: 0]; 

                `ACC1_STATUS:  wb_rdata32 <= status_reg[ 31: 0]; 

                 

                default: wb_rdata32 <= 32'h33333333; 

            endcase 

        end 

   end 

   endmodule 

 



 

113 

 

Appendix D 
 

Synthesis Reports 

 

D.1 Design 1 Map Report File 
Tiles: APB, Turbo-Amber and Main Memory (SHMAC “VTZ” layout). 

 

Release 14.5 Map P.58f (lin64) 

Xilinx Mapping Report File for Design 'AXILTEx' 

 

Design Information 

------------------ 

Command Line   : map -mt 4 -p XC5VLX330-ff1760-1 -timing -ol high 

-register_duplication -t 1 -cm speed -pr b -c 100 -tx on -o shmac_map.ncd 

-intstyle xflow -w -detail shmac.ngd shmac.pcf  

Target Device  : xc5vlx330 

Target Package : ff1760 

Target Speed   : -1 

Mapper Version : virtex5 -- $Revision: 1.55 $ 

Mapped Date    : Tue Jan 27 19:35:41 2015 

 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   21 

Slice Logic Utilization: 

  Number of Slice Registers:                17,933 out of 207,360    8% 

    Number used as Flip Flops:              17,932 

    Number used as Latch-thrus:                  1 

  Number of Slice LUTs:                     28,806 out of 207,360   13% 

    Number used as logic:                   28,774 out of 207,360   13% 

      Number using O6 output only:          27,741 

      Number using O5 output only:             251 

      Number using O5 and O6:                  782 

    Number used as Memory:                      20 out of  54,720    1% 

      Number used as Dual Port RAM:             20 

        Number using O5 and O6:                 20 

    Number used as exclusive route-thru:        12 

  Number of route-thrus:                       257 

    Number using O6 output only:               256 

    Number using O5 and O6:                      1 

 

Slice Logic Distribution: 

  Number of occupied Slices:                 9,720 out of  51,840   18% 

  Number of LUT Flip Flop pairs used:       30,774 

    Number with an unused Flip Flop:        12,841 out of  30,774   41% 

    Number with an unused LUT:               1,968 out of  30,774    6% 

    Number of fully used LUT-FF pairs:      15,965 out of  30,774   51% 

    Number of unique control sets:             389 



 

114 

 

    Number of slice register sites lost 

      to control set restrictions:             508 out of 207,360    1% 

 

  A LUT Flip Flop pair for this architecture represents one LUT paired with 

  one Flip Flop within a slice.  A control set is a unique combination of 

  clock, reset, set, and enable signals for a registered element. 

  The Slice Logic Distribution report is not meaningful if the design is 

  over-mapped for a non-slice resource or if Placement fails. 

  OVERMAPPING of BRAM resources should be ignored if the design is 

  over-mapped for a non-BRAM resource or if placement fails. 

 

IO Utilization: 

  Number of bonded IOBs:                     1,110 out of   1,200   92% 

    Number of LOCed IOBs:                    1,110 out of   1,110  100% 

    IOB Flip Flops:                            401 

 

Specific Feature Utilization: 

  Number of BlockRAM/FIFO:                      26 out of     288    9% 

    Number using BlockRAM only:                 26 

    Total primitives used: 

      Number of 36k BlockRAM used:              22 

      Number of 18k BlockRAM used:               5 

    Total Memory used (KB):                    882 out of  10,368    8% 

  Number of BUFG/BUFGCTRLs:                      3 out of      32    9% 

    Number used as BUFGs:                        3 

  Number of DCM_ADVs:                            1 out of      12    8% 

 

Average Fanout of Non-Clock Nets:                4.94 
Release 14.5 Map P.58f (lin64) 

Xilinx Mapping Report File for Design 'AXILTEx' 

 

Design Information 

------------------ 

Command Line   : map -mt 4 -p XC5VLX330-ff1760-1 -timing -ol high 

-register_duplication -t 1 -cm speed -pr b -c 100 -tx on -o shmac_map.ncd 

-intstyle xflow -w -detail shmac.ngd shmac.pcf  

Target Device  : xc5vlx330 

Target Package : ff1760 

Target Speed   : -1 

Mapper Version : virtex5 -- $Revision: 1.55 $ 

Mapped Date    : Tue Jan 27 19:35:41 2015 

 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   21 

Slice Logic Utilization: 

  Number of Slice Registers:                17,933 out of 207,360    8% 

    Number used as Flip Flops:              17,932 

    Number used as Latch-thrus:                  1 

  Number of Slice LUTs:                     28,806 out of 207,360   13% 

    Number used as logic:                   28,774 out of 207,360   13% 

      Number using O6 output only:          27,741 

      Number using O5 output only:             251 

      Number using O5 and O6:                  782 

    Number used as Memory:                      20 out of  54,720    1% 

      Number used as Dual Port RAM:             20 



 

115 

 

        Number using O5 and O6:                 20 

    Number used as exclusive route-thru:        12 

  Number of route-thrus:                       257 

    Number using O6 output only:               256 

    Number using O5 and O6:                      1 

 

Slice Logic Distribution: 

  Number of occupied Slices:                 9,720 out of  51,840   18% 

  Number of LUT Flip Flop pairs used:       30,774 

    Number with an unused Flip Flop:        12,841 out of  30,774   41% 

    Number with an unused LUT:               1,968 out of  30,774    6% 

    Number of fully used LUT-FF pairs:      15,965 out of  30,774   51% 

    Number of unique control sets:             389 

    Number of slice register sites lost 

      to control set restrictions:             508 out of 207,360    1% 

 

  A LUT Flip Flop pair for this architecture represents one LUT paired with 

  one Flip Flop within a slice.  A control set is a unique combination of 

  clock, reset, set, and enable signals for a registered element. 

  The Slice Logic Distribution report is not meaningful if the design is 

  over-mapped for a non-slice resource or if Placement fails. 

  OVERMAPPING of BRAM resources should be ignored if the design is 

  over-mapped for a non-BRAM resource or if placement fails. 

 

IO Utilization: 

  Number of bonded IOBs:                     1,110 out of   1,200   92% 

    Number of LOCed IOBs:                    1,110 out of   1,110  100% 

    IOB Flip Flops:                            401 

 

Specific Feature Utilization: 

  Number of BlockRAM/FIFO:                      26 out of     288    9% 

    Number using BlockRAM only:                 26 

    Total primitives used: 

      Number of 36k BlockRAM used:              22 

      Number of 18k BlockRAM used:               5 

    Total Memory used (KB):                    882 out of  10,368    8% 

  Number of BUFG/BUFGCTRLs:                      3 out of      32    9% 

    Number used as BUFGs:                        3 

  Number of DCM_ADVs:                            1 out of      12    8% 

 

Average Fanout of Non-Clock Nets:                4.94 

 

 

 

D.2 Design 2 Map Report File 
Tiles: APB, Turbo-Amber with additional accelerator and Main Memory. 

 

Release 14.5 Map P.58f (lin64) 

Xilinx Mapping Report File for Design 'AXILTEx' 

 



 

116 

 

Design Information 

------------------ 

Command Line   : map -mt 4 -p XC5VLX330-ff1760-1 -timing -ol high 

-register_duplication -t 1 -cm speed -pr b -c 100 -tx on -o shmac_map.ncd 

-intstyle xflow -w -detail shmac.ngd shmac.pcf  

Target Device  : xc5vlx330 

Target Package : ff1760 

Target Speed   : -1 

Mapper Version : virtex5 -- $Revision: 1.55 $ 

Mapped Date    : Tue May 19 09:58:21 2015 

 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   21 

Slice Logic Utilization: 

  Number of Slice Registers:                21,025 out of 207,360   10% 

    Number used as Flip Flops:              20,989 

    Number used as Latches:                     34 

    Number used as Latch-thrus:                  2 

  Number of Slice LUTs:                     30,790 out of 207,360   14% 

    Number used as logic:                   30,717 out of 207,360   14% 

      Number using O6 output only:          29,535 

      Number using O5 output only:             254 

      Number using O5 and O6:                  928 

    Number used as Memory:                      59 out of  54,720    1% 

      Number used as Dual Port RAM:             20 

        Number using O5 and O6:                 20 

      Number used as Shift Register:            39 

        Number using O6 output only:            39 

    Number used as exclusive route-thru:        14 

  Number of route-thrus:                       309 

    Number using O6 output only:               259 

    Number using O5 output only:                49 

    Number using O5 and O6:                      1 

 

Slice Logic Distribution: 

  Number of occupied Slices:                10,796 out of  51,840   20% 

  Number of LUT Flip Flop pairs used:       34,205 

    Number with an unused Flip Flop:        13,180 out of  34,205   38% 

    Number with an unused LUT:               3,415 out of  34,205    9% 

    Number of fully used LUT-FF pairs:      17,610 out of  34,205   51% 

    Number of unique control sets:             427 

    Number of slice register sites lost 

      to control set restrictions:             586 out of 207,360    1% 

 

  A LUT Flip Flop pair for this architecture represents one LUT paired with 

  one Flip Flop within a slice.  A control set is a unique combination of 

  clock, reset, set, and enable signals for a registered element. 

  The Slice Logic Distribution report is not meaningful if the design is 

  over-mapped for a non-slice resource or if Placement fails. 

  OVERMAPPING of BRAM resources should be ignored if the design is 

  over-mapped for a non-BRAM resource or if placement fails. 

 

IO Utilization: 

  Number of bonded IOBs:                     1,110 out of   1,200   92% 

    Number of LOCed IOBs:                    1,110 out of   1,110  100% 



 

117 

 

    IOB Flip Flops:                            401 

 

Specific Feature Utilization: 

  Number of BlockRAM/FIFO:                      25 out of     288    8% 

    Number using BlockRAM only:                 25 

    Total primitives used: 

      Number of 36k BlockRAM used:              22 

      Number of 18k BlockRAM used:               5 

    Total Memory used (KB):                    882 out of  10,368    8% 

  Number of BUFG/BUFGCTRLs:                      4 out of      32   12% 

    Number used as BUFGs:                        4 

  Number of DCM_ADVs:                            1 out of      12    8% 

  Number of DSP48Es:                            24 out of     192   12% 

 

Average Fanout of Non-Clock Nets:                4.65 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

118 

 

  



 

119 

 

Bibliography 
 

[1] L. D. Iasemidis, D. S. Shiau, P. M. Pardalos, W. A. Chaovalitwongse, K. Narayanan, A. 

Prasad, K. Tsakalis, P. R. Carney, and J. C. Sackellares. Long-Term Prospective On-Line 

Real-Time Seizure Prediction. Clinical Neurophysiology, 116(3), 532-544, 2005. 

[2] L. D. Iasemidis, D.S. Shiau, W. A. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. 

C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive Epileptic 

Seizure Prediction System. IEEE Transactions on Biomedical Engineering, 50(5), 616-

627, 2003. 

[3] EECS. Single-ISA Heterogeneous MAny-core Computer project plan, NTNU, September 

2014. 

[4] J.G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of historical trends in 

the electrical efficiency of computing, Annals of the History of Computing, IEEE, 33(3), 

46–54, 2011. 

[5] D.A. Patterson, and J.L. Hennessy. Computer organization and design: the 

hardware/software interface, 4
th

 Edition, Morgan Kaufmann, 2011. 

[6] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam,and D. Burger. Dark Silicon 

and the End of Multicore Scaling, Proc. ISCA 38
th

 Annual International Symposium on 

Computer Architecture, San Jose, USA, pp. 365-376, 2011. 

[7] E.S. Chung, P.A. Milder, J.C. Hoe, and K. Mai. Single-chip heterogeneous computing: 

Does the future include custom logic, FPGAs, and GPGPUs?, Proc. MICRO 43
rd

 Annual 

IEEE/ACM International Symposium on Microarchitecture, Atlanta, USA, pp. 225–236, 

2010. 

[8] Energy Efficient Computing Systems Initiative, http://www.ntnu.edu/ime/eecs  

[9] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov Exponents 

From a Time Series. Physica D: Nonlinear Phenomena, 16(3), 285-317, 1985. 

[10] L. D. Iasemidis. Seizure Prediction and its Applications. Neurosurgery Clinics of 

North America, pp. 489-506, October 2011. 

[11] Open cores. Amber 2 Core Specification. April 2013. 

[12] A. D. Booth. A signed binary multiplication technique. The Quarterly Journal of 

Mechanics and Applied Mathematics, 4(2), 236-240, 1951. 

[13] A. N. Sloss, D. Symes and C. Wright. ARM Systems Developers’s Guide. Morgan 

Kaufmann, 2004. 

[14] A. T. Akre and S. Bøe. Turbo Amber: A high-performance processor core for SHMAC, 

June 2014. 

[15] Silicon Labs. Digital Signal Processing with the EFM32AN0051 - Application Note, 

September 2013. 

[16] ARM Holdings. Fixed Point Arithmetic on the ARM. Application Note 33, September 

1996.   

[17] E. L. Oberstar. Fixed-point representation & fractional math. (White paper), August 2007. 

[18] A.G.M. Cilio and H. Corporaal. Floating point to fixed point conversion of ccode, 1999. 

[19] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 4th 

Edition, Morgan Kaufmann, 2006. 

[20] IEEE. IEEE standard for floating-point arithmetic. IEEE std 754-2008, August 2008. 

[21] G. De Michelli and R.K. Gupta. Hardware/software co-design. Proceedings of the IEEE, 

85(3), 349-365, 1997. 



 

120 

 

[22] P. Schaumont. A practical introduction to hardware/software codesign. Springer Science 

& Business Media, 2012. 

[23] J. Teich. Hardware/software codesign: The past, the present, and predicting the future. 

Proceedings of the IEEE, 100(Special Centennial Issue), 1411-1430, 2012 

[24] M. Wolf. Computers as components: principles of embedded computing system design. 

Elsevier, 2012. 

[25] ST Microelectronics. RM0090 Reference manual, October 2014. 

[26] I. Lousis. Implementation of Biomedical Algorithm on the SHMAC platform, December 

2015. 

[27] S.N. Berg. Implementation of the Epileptic Seizure Prediction Algorithm on the 

SHMAC Platform, June 2014. 

[28] ARM Holdings. ARM Software Development Toolkit Version 2.50 Reference Guide, 

October 2009.   

[29] J. D. Knutsen. Extending Amber with a Hardware FPU, June 2014. 

[30] ARM Holdings. Floating-Point Performance. Application Note 55, January 1998.   

[31] H. O. Wikene. Benchmarking SHMAC, October 2014. 

[32] A. L. Indegaard. Configurable Floating-Point Unit for the SHMAC Platform, June 2014. 

[33] M.L. Teilgård. Integration of hardware accelerators on the SHMAC platform. June 2014. 

[34] Arakawa, Fumio, Hironori Kasahara, Tohru Nojiri, Hideyuki Noda, Yasuhiro Tawara, 

Akio Idehara, Kenichi Iwata, and Hiroaki Shikano. Heterogeneous Multicore Processor 

Technologies for Embedded Systems. Springer, 2012. 

[35] Taylor, Michael B. Is dark silicon useful? Harnessing the four horsemen of the coming 

dark silicon apocalypse. In Proceedings of the 49th Annual Design Automation 

Conference, ACM, pp. 1131-1136, 2012. 

[36] Xilinx, Virtex-5 Family Overview, 5
th

  edition, February 2009. 

[37] Xilinx, LogiCORE IP Floating-Point Operator v.5.0, March 2011  

[38] OpenCores. Wishbone B4 - Wishbone System-on-chip (SoC) Interconnection Architecture 

for Portable IP Cores, 2011. 

[39] J. Gaisler. A structured VHDL design method, Fault-tolerant microprocessors for space 

applications, 41-50, 2011. 

[40] M. Arora, Mohit. The art of hardware architecture: Design methods and techniques for 

digital circuits, Springer Science & Business Media, 2011. 

[41] Xilinx. LogiCORE IP Divider Generator v.3.0, March 2011  

[42] Xilinx. Xilinx Power Estimator, User Guide. April 2014. 

[43] S. Rivoire, A.S. Mehul, R. Ranganathan, C. Kozyrakis, and J. Meza. Models and metrics 

to enable energy-efficiency optimizations. IEEE Computer, 40(12), 39-48, 2007. 

 

 


	Problem Description
	Abstract
	Preface
	Contents
	List of Abbreviations
	Introduction
	1.1 Heterogeneous Systems
	1.2 Thesis Outline
	1.3 Main Contributions

	Background and Previous Work
	2.1 The Epilepsy Prediction Algorithm
	2.1.1 The Maximum Lyapunov Exponent

	2.2 Computer Arithmetic
	2.2.1 Fixed Point Representation
	2.2.2 Floating Point Representation

	2.3 The SHMAC Platform
	2.3.1 SHMAC Parent System
	2.3.2 SHMAC Processor Tile
	2.3.3 SHMAC Floating-Point Support

	2.4 Hardware Accelerators
	2.5 The ‘two-process’ Design Method
	2.6 Previous Work

	Application Mapping
	3.1 Methodology
	3.2 Porting the Algorithm on SHMAC
	3.3 Algorithm Profiling
	3.4 Hardware/Software Partitioning

	Accelerator Design and System Integration
	4.1 Accelerator for the Hybrid Version
	4.2 Accelerator for the Fixed-Point Version
	4.3 Verification
	4.4 Comparison of the Designed Modules
	4.5 System Integration

	Results
	5.1 Performance
	5.2 Area Usage
	5.3 Power Consumption
	5.4 Energy Consumption
	5.5 Energy Efficiency

	Conclusions and Suggestions for Future Work
	6.1 Conclusions
	6.2 Suggestions for Future Work

	Appendix A
	Fixed-Point Mathematical Operations

	Appendix B
	VHDL Code
	B.1 Hybrid Accelerator
	B.2 Fixed-Point Accelerator
	B.3 Zeros Detection VHDL Package

	Appendix C
	Accelerator Interface

	Appendix D
	Synthesis Reports
	D.1 Design 1 Map Report File
	D.2 Design 2 Map Report File

	Bibliography

