
A Hyperspectral Imaging System using an
Acousto-Optic Tunable Filter
Constructing and evaluating the

hyperspectral imaging system

Alejandro Baranda Castrillo

Master of Science in Electronics

Supervisor: Lise Lyngsnes Randeberg, IET

Department of Electronics and Telecommunications

Submission date: July 2015

Norwegian University of Science and Technology

A Hyperspectral Imaging System using an

Acousto-Optic Tunable Filter

Alejandro Baranda Castrillo

June 2015

MASTER THESIS

Department of Electronics and Telecommunications

Norwegian University of Science and Technology

Supervisor 1: Professor Lise Lyngsnes Randeberg

Supervisor 2: Ph. D. Matija Milanic

i

Preface

This document is the result of my Master Thesis work, carried out at the Norwegian University

of Science and Technology (NTNU) during both the fall and spring semesters of the academic

year 2014/2015. It is done according to the Learning Agreement signed between NTNU and the

University of Valladolid (Spain) regarding my Erasmus+ exchange program.

The project was proposed by Lisa L. Randeberg, who is the Supervisor, as part of the work

corresponding to the Department of Electronics and Telecommunications.

I wish to express my sincere thanks and gratitud to Matija Milanic, Ph. D., for providing ex-

celent guidance, help and encouragement on every stage of this work. Also, I would like to thank

Lise L. Randeberg for her leading work as Supervisor. Thanks to Professor Amund Skavhaug and

Senior Engineer Terje Mathiesen for their advice, and to Professor Lars Lundheim for his tuition

to choose one among the many projects available.

Trondheim, 2015-06-18

Alejandro Baranda

Summary

The aim of this work was to built a high performance hyperspectral imaging system, a state-of-

the-art technology with applications among many fields, like medicine. Chapter 1 introduces

this technology and its benefits. In Chapter 2, we have a look at the physical theory behind

the technology, the elements needed to build such a system and the problematic introduced by

them. Chapter 3 deals with the actual design of the system. Reasons supporting the election of

one model of camera available in the market over another are presented (3.1). Also, the main

features for all the final elements of the system are commented. A closer look to the system from

an optical point of view is also included (3.3). Description of the software part of the system is

the main topic in Chapter 4. First, a user interface developed within this work is presented (4.1).

Then, the synchronization issue is treated (4.2). Two solutions are described, although none

of them could be fully implemented, due to problems with the RF driver. Chapter 5 presents

three tests that should be carried out with the final system, to have a better knowledge of its

performance (5.1 and 5.3), and to improve it (5.2). Results of two additional tests performed

with a borrowed hyperspectral imaging system are shown in Chapter 5 (5.4 and 5.5). Finally,

Chapter 6 provides some pointers regarding future work and improvements of the system.

ii

Contents

Preface . i

Summary . ii

1 Introduction 2

2 Background Theory 4

2.1 Hyperspectral imaging . 4

2.1.1 Spectral reflectance . 6

2.1.2 Image cube . 7

2.2 Camera . 8

2.2.1 sCMOS sensor . 8

2.2.2 Global shuttering mode . 9

2.3 Acousto-optical tunable filter (AOTF) . 10

2.3.1 Polarization . 13

2.3.2 Chromatic aberrations . 14

2.4 Optical fundamentals of the system . 15

2.4.1 Radial distortion . 20

2.5 Matlab User Interface . 21

2.5.1 Interfacing with other languages . 21

2.5.2 Portability . 22

3 Building AOTF system 23

3.1 Andor Zyla sCMOS camera . 23

3.1.1 Camera selection . 23

iii

CONTENTS iv

3.1.2 sCMOS sensor . 27

3.2 Acousto optic tunable filter (AOTF) . 30

3.2.1 RF driver . 31

3.3 Optical design of the system . 33

3.3.1 Lenses . 35

3.3.2 Polarizers . 36

4 Software 38

4.1 Graphical User Interface . 39

4.2 Synchronization . 50

4.2.1 Software triggering . 50

4.2.2 Hardware triggering . 52

5 System characterization and experiments 56

5.1 Spectral analysis . 56

5.2 Power optimization . 57

5.3 Wavelength dependent resolution . 59

5.4 Grid aberrations . 59

5.5 Color chart spectra . 62

6 Discussion 68

7 Conclusion 71

A Graphic User Interface: code 72

A.1 Matlab code . 72

A.1.1 userInterface . 73

A.1.2 cooling . 96

A.1.3 finDisplay . 97

A.1.4 showImages . 98

A.1.5 timeString . 98

A.2 Mex files . 100

A.2.1 mOpenCamera . 100

CONTENTS 1

A.2.2 mCloseCamera . 103

A.2.3 mGetHSISoftware . 104

A.2.4 mSetLiveView . 113

A.2.5 mGetFrameLiveView . 116

A.2.6 mStopLiveView . 118

A.2.7 mModifiedCloseCamera . 120

A.2.8 mCooling . 121

A.2.9 mExposureTime . 124

B MEX files and Andor SDK 126

B.1 MEX-Files . 126

B.2 Andor SDK . 130

C Starting point: RF driver communication 134

C.1 Matlab AOTF . 134

C.2 C source files . 141

D Matlab code for testing 146

D.1 Grid . 146

D.2 Color chart . 151

Bibliography 155

Curriculum Vitae 158

Chapter 1

Introduction

Hyperspectral imaging has become a powerfull tool for scientific and industrial analysis in many

different fields, its applications go all from agriculture or air surveillance to medical diagnosis. A

hyperspectral image contains information about how light interacts with matter. Allowing that

some properties of the target object, such as texture or composition, can be infered. Potential

applications are classification, detection or analysis of objects.

Spectroscopy is the study of light that is emitted by or reflected from materials and its varia-

tion in energy with wavelength. A lot of types of radiated energy can be used for spectroscopic

measurements, but electromagnetic spectrum is the most widely used among them. Imaging

spectroscopy combines the spectral information with spatial information. The resulted data

forms a stack of monochrome images taken at different wavelengths which is sometimes known

as an ’image cube’. The number of image planes building the image cube varies and it is an im-

portant parameter. If many narrow contiguous spectral bands are captured, it can be assumed

that fully spectrum information is had for every image point. Ideally, spectrum information is

accurately sampled and it can be seen as a continuous signal. In such a case, the technique is

called hyperspectral imaging, instead of multispectral imaging.

Several spectral imaging technologies have been developed for acquiring the three dimen-

sional (x, y,λ) matrix of a hyperspectral cube. Spatial scanning systems use a filter or a monochro-

mator and a so-called push broom system, where only one line of the image is scanned at a time.

The spatial dimension is collected through platform movement or scanning, this requires accu-

rate pointing information to build the image. Spectral scanning systems, however, acquire a full

2

CHAPTER 1. INTRODUCTION 3

spatial image at each spectral band. To achieve this, a band-pass optical filter is placed before

the sensor, selecting a narrow spectral band at a time. Spectral smearing can occur if there is

movement within the scene, invalidating spectral detection. In such wavelength scanning sys-

tems, the optical filter must be tunable. This can be achieved in several ways: mechanically,

by using filter wheels, or with electronically tunable filters. For stationary applications, spectral

scanning imagers are a natural choice, while for systems moving in one direction relative to the

target scene, like airborne surveillance, push broom imagers seem to be a better option.

The purpose of this study is to design a hyperspectral imaging system that implements spa-

tial scanning by using an acousto-optic tunable filter (AOTF) to select the spectral narrow bands.

A state-of-the-art sCMOS scientific digital camera is used to acquire the images. System param-

eters such like spatial and spectral resolution, framerate, optical characteristics will be evalu-

ated. Synchronization between camera and AOTF and timing issues should be addressed in a

way that optimizes the mentioned parameters. A fully working MATLAB® user interface will

be provided.

Chapter 2

Background Theory

In this chapter, the theory behind hyperspectral imaging systems is presented and the functions

that each component in the system must accomplish are described. First, some concepts about

hyperspectral imaging and its use will be introduced, then we have a look to the camera prop-

erties and explain the fundaments behind the filter technology. Finally, the optical foundations

of the system are described.

2.1 Hyperspectral imaging

Contrary to color photography, in which each pixel contains spectral information from three

bands: red, green and blue, each pixel in a hyperspectral image is made up of light intensity

data from many different narrow bands. Depending on the number and width of the spectral

bands the spectrum is divided into, it may be refered to as multispectral or hyperspectral imag-

ing. The latter requires at least around one hundred images, if full spectum data are taken; or

a dense concentration of bands, for example, twenty 10 nm wide bands from 500 to 700 nm.

A comparison between hyperspectral and multispectral imaging is shown in Figure 2.1. It can

be seen that multispectral imaging does not provide continuous spectral information, since it

uses fewer and wider spectral bands. The spectral data provides information about the material

that has been imaged. This is possible because of the signature that matter prints on the light

spectrum when light and matter interact.

Spectral signature is the specific combination of emitted, reflected and absorbed electro-

4

CHAPTER 2. BACKGROUND THEORY 5

Figure 2.1: Image cube and spectrum for hyperspectral and multispectral images, respectively.

magnetic radiation at varying wavelengths which can uniquely identify an object. Every ma-

terial can potentially be detected by spectroscopy. Actual detection depends on the spectral

resolution, signal-to-noise ratio of the system, spectral coverage as well as other factors like the

amount of the material present in the scene and the strength of the absorption/reflectance fea-

tures for the material in the spectrum region analysed.

The HSI technology was initially developed for remote sensing and military applications.

However, it also finds use within, e. g., geology (M. Govender and Bulcock, 2007), food quality

measurements (Gowen, 2007) and medicine. Different medical applications have emerged dur-

ing the last years as the technology has become more available, e.g. monitoring tumor hypoxia

(B. S. Sorg and Cao, 2005), and cancer detection using fluorescent techniques (M. E. Martin and

T. Vo-Dinh, 2006). Advanced hyperspectral microscopic techniques have also been developed

(P. De Beule and French, 2007) (W. F. J. Vermaas and D. M. Haaland, 2008) (M. B. Sinclair and

Jones, 2006).

An HSI is mainly composed of the light source, wavelength dispersion devices and area de-

tectors. HSI systems fundamental classification is based on the acquisition mode, i.e., how spec-

tral and spatial information is acquired (Sellar and Boreman, 2005). There are two main scan-

ning methods: spatial scanning and spectral scanning. Spatial scanning methods genereate hy-

perspectral images by acquiring a complete spectrum for each pixel in the case of a whiskbroom

(point-scanning) instruments, or line of pixels in pushbroom (line-scanning) instruments, and

then spatially scanning throughout the scene. On the other hand, spectral scanning methods,

also called staring or area-scanning imaging, are based on capturing the whole scene with 2-

CHAPTER 2. BACKGROUND THEORY 6

D detector arrays in a single exposure and then stepping through wavelengths to complete the

data cube.

The wavelength dispersion devices are the core element of a HSI system. There are many

types of optical and electro-optical dispersive devices which can perform spectral selection or

dispersion in HSI systems. The mainly dispersive devices used in the literature are: monochro-

mators, which are the key component of pushbroom HSI systems, they may be prisms or diffrac-

tion gratings; optical bandpass filters, either tunable, like liquid crystal tunable filters or acousto-

optic tunable filters, or fixed, such as filter wheels; and single-shot imagers, such as computer-

generated holograms that enables to capture both spatial and spectral information in a single

frame.

The environment the scene is placed in influences the spectral information. A good char-

acterization of the light source emission spectrum is important. This allows its effect to be re-

moved computationally, which increases the quality of the data. Otherwise, the information is

corrupted. The solar emission spectrum is well known, however it includes some random effects

mainly due to atmospheric variations, such as atmospheric scattering or absorption. These ran-

dom effects are difficult to be characterized, making the sun a difficult light source to deal with.

Its use is inevitable for outdoor applications, but more suitable light sources may be chosen for

indoor applications. Even using light sources with a quite flat, steady and well known spectrum

properties there are still local effects, for example those due to shadowing, corrupting the spec-

tra in a way that can not be completely removed with image processing. Characterization of

illumination systems is treated in Jaka Katrasnik and Likar (2013).

Halogen lights are one of the few available light sources to be used for near-infrared hyper-

spectral imaging as they emit light in the visible and in the shortwave infrared range and do not

have any sharp spectral peaks. Mercury lamps show a less flat spectrum compared to that of

LEDs, which are by far the most widely used light source in HSI systems.

2.1.1 Spectral reflectance

It has already been mentioned how materials print a spectral signature on the light they reflect.

In order to get this signature, a parameter called spectral reflectance is of interest. It represents

the ratio between reflected and incident light, as a function of wavelength. This dependence is

CHAPTER 2. BACKGROUND THEORY 7

due to the fact that light is scattered or absorbed to different degrees at certain wavelengths, and

it exists for almost every material.

There are several physical processes involved that determine the nature of the reflected light,

and thus, the spectral signature of the material. In the first place, almost every object shows

some degree of specular reflection, which means that some of the light rebounds directly on the

surface of the material, as on a mirror. In this case, the spectrum of the reflected light remains

the same as that of the incident light. There is no signature printed. In the second place, part

of the light diffuses into the material where some is absorbed and some is randomly scattered,

which is known as diffuse reflection. Finally, fluorescence, which is the emission of light by

a substance that has absorbed light or other electromagnetic radiation, may also take place.

In this case, a photon at shorter wavelength is absorbed and a photon at longer wavelength is

emitted consequentially.

A white material, for example, does not absorb any wavelength while a colored material will

absorb some wavelengths and diffusely reflect others. These reflected wavelengths are respon-

sible for the color of the material. In a way, they shape the nature of the incident light to create

what we perceive as color.This effect can be thought from the continuous spectrum point of

view: it explains why matter prints a signature on the incident light depending on how different

spectral components of light are absorbed or reflected.

2.1.2 Image cube

A hyperspectral image is a three-dimensional matrix made up of many two-dimensional images

taken at different wavelengths. Frequency or wavelength (they are related through the phase ve-

locity: λ= v/ f) distance between two adjacent frames should be small enough so that, globally,

they provide virtually continuous information of the spectrum. Naturally, this implies that a lot

of frames are needed to cover the spectrum, what leads to a large amount of data to be stored

and processed. With abundant spatial and spectral information available, advanced image clas-

sification methods for hyperspectral datasets are required to extract, unmix and classify relevant

spectral information.

Analysis of hyperspectral data is complex in many ways. In particular, it presents a high

data redundancy due to high correlation in the adjacent bands. Dimensionality becomes an

CHAPTER 2. BACKGROUND THEORY 8

issue and power processors may be required to perform the required processing in time. Image

preprocessing usually involves data normalization, from the camera observation to reflectance

or transmittance and filters to smooth the spectral signatures and reduce the noise effect. But

the actual processing is much more resources consuming. On a first stage, the most relevant

information from the original data must be obtained and represented in a lower-dimensionality

space. Then, resources greedy hyperspectral image classification methods are applied.

2.2 Camera

As we are dealing with an imaging system, naturally, the camera is a key element of the system,

and its overall performance is tightly related with the camera features. The scientific camera

used in this project is based on sCMOS technology. The reasons why this camera was selected

and its specifications will be treated in the Section 3.1, while here the main mechanisims making

the camera works are explained. Further information about how the camera works can be found

at the hardware guide Andor® (2014a).

2.2.1 sCMOS sensor

The Zyla sCMOS camera, used in this project, is a high performance camera which uses sC-

MOS technology instead of the more established Electron Multiplying CCD (EMCCD). EMCCD

is based on a charge-coupled device, widely used for digital imaging, with the addition of a solid

state Electron Multiplying register which allows weak signals to be multiplied before any read-

out noise is added by the output amplifier, hence rendering the read noise negligible. Deeper

information about EMCCD technology can be found on the web of the EMCCD forum (web site

EMCCD). On the other hand, the sCMOS sensor is based on the CMOS technology, and it is an

active pixel sensor (APS), whereby each pixel has its own integral amplifier, as it is shown on

Figure 2.2. The sequence of operation is as follows (each number points to an element on the

Figure 2.2):

1. Light photons hit the sensor and generate charge.

2. The photo-generated charge is converted to an analog voltage inside each pixel amplifier.

CHAPTER 2. BACKGROUND THEORY 9

Figure 2.2: sCMOS Sensor Architecture

3. A row-select signal is used to transfer the pixel voltage to the column bus.

4. A set of analog to digital converters (A/D) sample the analog voltage signal for each col-

umn.

5. The final digitized signals are then read out sequentially at a pixel readout speed of up to

280 MHz.

2.2.2 Global shuttering mode

Zyla sCMOS camera offers two shuttering modes, Global and Rolling shutter, that can be se-

lected. These modes are different in the way that the image is read off the sCMOS sensor. For

rolling shutter mode, charge is transferred from each row sequentially during readout, while in

global shutter mode every pixel in the sensor efectively ends the exposure simultaneously.

Lowest noise and fastest frame rates are achieved from rolling shutter mode. Unfortunately,

spatial distortion may appear as each row will start and end its exposure slightly offset in time

from its neighbour (around 10 µs). From the point of view of readout, the sensor is split in half

horizontally and rows are read out from the centre outwards. This implies that rows at the top

CHAPTER 2. BACKGROUND THEORY 10

edge of the sensor start and end their exposure around 10 ms after rows at the centre of the

sensor. This time difference makes the rolling shutter mode non-suitable for our application.

When imaging human skin, although it seems to be a static target, blood pumped into the veins

may introduce movement during the acquisition. This would affect the image if rolling shutter

mode is on, in a way that can not be tolerated.

For that reason, Global shutter mode is our choice. It can be thought of as a ’snapshot’ ex-

posure mode: all pixels of the array are exposed simultaneously. Before starting the exposure,

charge is drained from all pixels in the array during what is called a keep clean state. When the

exposure starts, every pixel simultaneously begins to collect charge and keeps doing it until the

exposure time is over. Then each pixel transfers charge to its readout node. It must be remarked

that the global shutter mode allows to be operated in a continuous overlap mode, whereby an

exposure can proceed while the previous one is being read out from the readout nodes of each

pixel, provinding a 100% sensor duty cycle. It requires higher complexity, but it results in op-

timal time resolution and photon collection efficiency. Further information is provided on the

synchronization section (4.2), as this is the desirable mode to have the system working on.

Global shutter mode main drawback is that it requires that a reference readout is performed

behind the scenes, in addition to the actual readout of charge from each pixel. Therefore, it

halves the maximum frame rate that would be achieved in rolling shutter mode. RMS (root

mean square) noise is also increased by a factor of 1.41.

2.3 Acousto-optical tunable filter (AOTF)

An optical filter is a device that only allows light of a certain band of the electromagnetic spec-

trum to pass through it. Its behaviour can be thought as that of a window which remains open

for the wavelengths of interest and close for any other. Therefore, light outside the band of in-

terest is strongly attenuated. Such a behaviour receives the name of band-pass filter. To be

useful for hyperspectral imaging, the filter must have the ability to quickly change the spectral

band for which light passes without being attenuated. For that purpose, a signal of some form,

that allows to electronically control the spectral transmission characteristics of the device, is of

interest.

CHAPTER 2. BACKGROUND THEORY 11

Figure 2.3: Variation of the refractive index accompanying a harmonic sound wave. The pattern
has a periodΛ, the wavelength of sound, and travels with the velocity of sound.

Different filter technologies could be used to satisfy these requirements, i.e. liquid crystal

tunable filters (LCTFs) (Gat, 2000) or rotating wheels (Afromowitz, 1988). However, attention

will be focused on acousto-optical tunable filters, since they offer the highest speed (although

LCTFs provide better transmitivity). These devices are based on the acousto-optic effect, deeply

explained in Bahaa E. A. Saleh (1991), chapter 20; the illustrative figures shown in this section

were taken from the mentioned reference. Basically, the acousto-optic effect states that, for

being sound a pressure wave, it affects the structure of a material it is travelling through. Specif-

ically, some regions will be compressed inside the material while others remain relaxed. As

density varies along the material, so does the optical reffractive index. Thus, the sound wave

modifies the effect of the medium on light.

As shown in the Figure 2.3, the frequency variations of the sound wave result in different

periodic distributions of relaxed and compressed regions within the crystal. This causes a phe-

nomenon to happen called Bragg difraction, which is the partial reflection of an optical plane

wave, due to the periodical parallel variations of the refractive index in a material created by a

sound wave. An acoustic plane wave acts as a partial reflector of light (a beamsplitter) when the

angle of incidence θ satisfies the Bragg condition,

sinθ = λ

2Λ
(2.1)

where λ is the wavelength of light, Λ is the wavelength of the sound wave and θ is the angle of

CHAPTER 2. BACKGROUND THEORY 12

Figure 2.4: Bragg diffraction: an acoustic plane wave acts as a partial reflector of light (a beam-
splitter) when the angle of incidence θ satisfies the Bragg condition.

incidence. The Bragg effect is graphically explained in Figure 2.4.

Soundwave creation is a well known process that can be seen in daily life, i.e. how speakers

produce sound. A radio frequency (RF) signal is sent through a wire to a piezo-electric trans-

ducer which vibrates following the electrical wave and producing sound. This transducer is

then attached to a suitable crystal medium in which the sound wave is excited. The presence

of the sound wave in the crystal produces that light at certain wavelengths is diffracted when

passing through the crystal. The range of wavelengths that are diffracted can be controlled by

changing the frequency of the sound wave, which is achieved varying the frequency of the RF

signal.

With all these elements in mind, an acousto-optic tunable filter may be built, as described in

the scheme shown in Figure 2.5. The acoustic transducer produces a sound wave that interacts

with the incoming light producing its diffraction. Incident light beams are diffracted into two

orthogonally polarized first order beams, labeled as (+) and (-) beams. The undiffracted beam,

labeled as zero order beam, must be blocked so that only the first order diffracted light reaches

the camera sensor. Higher order diffracted beams may exist, but they are not of interest as their

intensity is lower and their direction differ from that of the camera. The diffracted beams and

the undiffracted beam are physically separated, therefore the latter can be blocked by a physical

element. Thus, only the diffracted beam, i. e. the filtered light, reaches the camera sensor. For

the diffraction process to happen in an optimal way, the angle of incidence of the incoming light

beam should be as close to 90º as possible.

CHAPTER 2. BACKGROUND THEORY 13

Figure 2.5: AOTF structure

2.3.1 Polarization

In the former explanation, polarization has been mentioned as it is a consequence of the Bragg

diffraction. Now, its role in actual HSI systems is considered. A light wave that is vibrating in

more than one plane is referred to as unpolarized light. Light emitted by common sources, like

the sun or a lamp, is unpolarized light. Such light waves are created by electric charges that

vibrate in a variety of directions, thus creating an electromagnetic wave that vibrates in a variety

of directions. The concept of unpolarized light can be thought as a wave that has an average of

half its vibrations in a horizontal plane and half of its vibrations in a vertical plane. On the ohter

hand, in polarized light waves the vibrations occur in a single plane. Polarization is the process

of transforming unpolarized light into polarized light. It can be achieved in several ways like by

transmission, reflection, refraction or scattering of light.

A polarizer is an optical filter that passes light of a specific polarization and blocks waves

of other polarizations, as it is shown in Figure 2.6. Such an element can be incorporated to

the HSI system, in what is known as cross-polarized configuration, in order to take advantage

of the polarizing effect of the AOTF. In such a configuration, a polarizer is placed in the input

of the AOTF that only allows vertical polarization of light to pass through. At the output, the

beam of interest (it has been refered to as first order (+), as shown in Figure 2.5), is horizontally

polarized, while the other beams of light remain vertically polarized. A polarizer can be placed

CHAPTER 2. BACKGROUND THEORY 14

Figure 2.6: Scheme showing the effect a polarizer has in light: 1, unpolarized light is emited, the
electromagnetic wave vibrates in many directions; 2, a polarizer removes all the components
except for the vertical; 3, only vertically polarized light is observed by the camera sensor.

at the output that only allows horizontal polarization to pass through it, therefore eliminating

all the beams except for the beam of interest. See that the polarizer at the input is vertical, while

the one at the output is horizontal. For this reason, it is called cross-polarized configuration.

2.3.2 Chromatic aberrations

The use of an AOTF to filter light coming from an object before being imaged produces chro-

matic aberrations to appear in the processed image. Chromatic aberrations may be divided into

longitudinal and transverse aberrations, according to V. B. Voloshinov and Yukhnevich (2012),

in which novel optical schemes characterized by a low level of transverse and longitudinal aber-

rations are proposed. Figure 2.7 is an ilustrative scheme showing the effect of the inherent chro-

matic aberrations. Transverse aberrations are caused by the dependence of the diffraction angle

on the light wavelength. They produce the image to suffer a lateral shift in the plane of diffrac-

tion at an angle of γ’, as shown in Figure 2.7. On the other hand, longitudinal aberrations are

caused by a change of the optical path length in the system due to refractive index dispersion

of the AO crystal. As a result, the plane of the best image sharpness shifts along the optical axis

of the system which causes defocusing of the image. It is represented in Figure 2.7 as a shift in

the best image sharpness plane position of δb. Filters with ultrabroad operating range or those

which work in a spectral range close to the transmission cutoff of the crystal are more affected

by chromatic aberrations. Compensation of the aberrations is critical for those devices.

A frequently used method, for the reduction of transverse aberration, consists of tilting the

exit face of the optical filter relative to its entrance face by a certain angle. Of course, as it requires

CHAPTER 2. BACKGROUND THEORY 15

Figure 2.7: The principal optical scheme of an image-processing system with an AO filter: 1,
an object with a broadband emission spectrum; 2, objective; 3, polarizer; 4, tunable AO filter; 5
crossed polarizer; 6, the image in the first diffraction order at the wavelength of λ1; 7, the image
in the first diffraction order at the wavelength of λ2 (λ1 < λ2). The inset shows the ray paths in
the acousto-optic filter

changes in the shape of the crystal, this method can only be applied by the manufacturer. The

interested reader may find a deeper explanation and mathematical details in V. B. Voloshinov

and Yukhnevich (2012). On the other hand, longitudinal optical aberration is caused by the

dispersion of the crystal, and it strongly depends on the the optical scheme that is used for the

formation of an image. For that reason, its correction must be studied in parallel to the optical

scheme design. Both topics will be treated together in the next section.

2.4 Optical fundamentals of the system

Getting sharp macroscopic images is not straightforward when working with an AO filter. Not

only the system has to deal with the intrinsic chromatic aberrations, commented in the former

section (2.3.2), but it must also take into account other effects.

Firstly, the AOTF does not diffract every beam of light coming through the crystal. Instead,

only light beams coming inside the cone centered on the optical axis, and defined by the accep-

tance angle will be diffracted. Secondly, light rays must be as parallel as possible to the optical

axis before entering the AOTF. It is important for the Bragg diffraction to happen in an optimal

CHAPTER 2. BACKGROUND THEORY 16

Figure 2.8: Improved optical schemes of the spectral image analysis systems with reduced longi-
tudinal chromatic aberration: (a), with an additional negative lens, and (b), a two-lens confocal
system. 1, Object; 2, negative lens; 3, objective; 4, polarizer; 5, tunable AO filter; 6, crossed
polarizer; 7, additional lens; 8, image in the first diffraction order.

way.

Longitudinal aberration is caused by the difference in propagation time of light through the

crystal for different wavelengths. The longitudinal shift or longitudinal aberration, for a given

lambda, is defined by:

δbc (λ) ≈ ∂no

∂λ

1

n2
o

Lc (λ−λo) (2.2)

according to V. B. Voloshinov and Yukhnevich (2012), where Lc is the crystal length, and no

is the refractive index of the crystal.

The very article also proposes two different systems to correct longitudinal aberrations, both

shown in Figure 2.8. The first one, represented in Figure 2.8(a), is the principal optical scheme of

an image-processing system with an AO filter considered to study the chromatic aberrations in

the former section (Figure 2.3.2). See that the system contains now an additional negative lens.

It introduces a negative longitudinal chromatic aberration whose exact mathematical expres-

sion can be found in the literature. It is a function of two parameters (of course, it also depends

CHAPTER 2. BACKGROUND THEORY 17

on the wavelength) δb1(λ; a1, l1), where a1 is the distance between the object and the negative

lens (a1 > 0), and l1 is the distance between the negative lens and the objective (l1 > 0). Its neg-

ative sign allow us to compensate for the positive shift defined by Equation 2.2. Therefore, the

total longitudinal chromatic aberration in the system is defined by:

δbc = δbc +δb1 (2.3)

It should be noted, however, that the parameters a1 and l1 that may be varied to correct the

chromatic aberrations are furtherly constrained by a condition that requires that the objective

should form a real image at a finite distance:

l1 − a1F1

a1 −F1
> F0 (2.4)

where F0 is the focal length of the objective, and F1 is the focal length of the additional neg-

ative lens.

As shown in the mentioned article, and also in Dennis R. Suhre and Gupta (2004), a confo-

cal configuration based on two objectives offers certain features that are important for imaging

systems. Remarkable characteristics are their versatility, which is the ability to change maginifi-

cation factor of an image keeping focal lengths of lenses constant, and the abilityy to compen-

sate longitudinal chromatic aberrations of AO filter to nearly any degree. The optical layout of

such a system is represented in Figure 2.3.2(b). The difference comparing to the system shown

in Figure 2.3.2(a) is that the negative lens (2) has been replaced by a collecting lens. Therefore,

the object to be imaged is placed in the front focal plane of the first objective, while the image

is formed in the back focal plane of the exit objective. Such a system is free from longitudinal

chromatic aberration. While the afocal system provides fixed image magnification factor, the

confocal system allows to vary it, what is important to match the field of view of the device with

the size of the photomatrix.

The longitudinal aberration in the confocal system is studied now. The system is formed by

two identical objectives with a focal length F0 and the distance between their principal planes is

L0. The object is placed at a distance a0 from the front principal plane of the first objective and

the image is formed at a distance of b0 from the back principal plane of the second objective,

CHAPTER 2. BACKGROUND THEORY 18

provided that the central wavelenght is λ0. Figure 2.3.2(b) illustrates the system described here.

The variation of the optical length between both lenses produced by dispersion of the refractive

indices of the crystal, leads to the shift of the principal planes of the entire system and also to

the change of the effective focal length. The displacement of the image plane can be calculated

as:

δb0 =
aF 2

0 d∆l [3a(l −2F0)+4F 2
0 +ad∆l]

[a(l −2F0)−F 2
0]2(l −2F +d∆l)

(2.5)

where l = l0 +∆l , a = a0 − l F0/(l −2F0) and the relative dispersion d is:

d(λ) = no(λ)−no(λ0)

no(λ0)−1
(2.6)

The parameters ∆l and F0 are defined by the choice of the lenses and the sizes of the acousto-

optic cell during the design process. On the other hand, a0, l0, and b0 can vary during the system

tuning. According to V. B. Voloshinov and Yukhnevich (2012), the best compensation of the

aberration is achieved under the condition b0(λmi n) = b0(λmax). A zero image shift δb0 = 0 then

corresponds to the relative dispersion upon wavelength tuning from λmi n to λmax . Equation 2.7

is obtained from this condition. It links the parameters of the optical scheme (a and l) to the

relative dispersion d :

a =− 4F 2
0

3(l −2F0)+d∆l
(2.7)

The choice of a and l according to Equation 2.7 retains the possibility of changing the magnifi-

cation coefficient of the system freely, which is one of the advantages of confocal systems, as it

has been mentioned before.

According to Dennis R. Suhre and Gupta (2004), a telecentric confocal configuration can

perform even better. Such a system should compensate for the chromatic aberrations, as the

confocal design does. Besides, it should provide the same resolution and diffraction efficiency

throughout the scene, leading to a uniform image field.

Telecentric optics are built by adding apertures (they may be sometimes referred to as pin-

holes here) located at the object and image focal planes. Such a system is telecentric for both the

object and the image space. A scheme of the telecentric optics is shown in Figure 2.9 in which

polarizers are not represented for simplicity. Telecentric optics suppose an improvement in the

CHAPTER 2. BACKGROUND THEORY 19

Figure 2.9: Schematic diagram of the telecentric confocal optics for the AOTF system.

way that they tend to reduce errors caused by defocusing. This is due to the fact that the princi-

pal ray of a pencil of rays passing through a telecentric aperture is parallel to the optical axis of

the system after focusing and does not produce a lateral displacement of the image. Then the

aim of having parallel beams in the AOTF can be achieved. This provides a constant input angu-

lar spread for the AOTF so that the resolution and efficiency of the AOTF, which are functions of

the input angle, will be constant over the field of view of the input scene. The second aperture

blocks the zero order beam, therefore, only the filtered beam of light reaches the camera sensor.

The size of the apertures is selected such that the acceptance angle of the AOTF matches

the input f -number (the ratio of the lens’s focal length to the diameter of the entrance pupil).

The output aperture is also adjusted such that f2/d2 = f1/d1, where f1 and f2 are the input and

output lens focal lengths and d1 and d2 are the input and output aperture diameters. This allows

the entire input beam to be transmitted through the output aperture while the zero-order beam

is blocked, provided that the diffraction angle is larger than the angular spread defined by the

input aperture.

A system summarizing all what has been discussed in this and former sections is shown in

Figure 2.9. It is telecentric, as the apertures are located at the focal planes; and it is confocal,

as there is a common focal point between the input and the output lenses, at the middle of the

crystal. From the optical point of view, the system consists of the front-end optics (FEO) and

the back-end optics (BEO). A large f -number of the optics is desired to provide a large depth of

focus at the detector focal plane position. The polarizers in the FEO and BEO are cross-oriented

to achieve highest extinction ratios of the rejected light, as it was described in section 2.3.1. Their

CHAPTER 2. BACKGROUND THEORY 20

Figure 2.10: Optical scheme of the telecentric confocal configuration for the AOTF system. The
system is composed of a frond-end optics (FEO), AOTF, a back-end optics (BEO) and a camera
(Det.). G-T pol. stands for a polarizer.

use in combination with the BEO pupil ensures efficient stray light reduction.

2.4.1 Radial distortion

We have already mentioned the chromatic aberrations that the system may suffer, specially be-

cause of the use of the AOTF. But there are other optical distortions that the system may present.

The most commonly encountered distortions within an optical system are radially symmetric

due to the symmetry of the system around its optical axis. Usually, the radial distortions are

classified as either barrel distortions or pincushion distortions. Barrel distortion is produced

if the image magnification decreases with distance from the optical axis, its apparent effect is

that of an image that has been mapped around a sphere. Pincushion distortion is the opposite

effect, it appears if the image magnification increases with the distance from the optical axis.

Its visible effect is that lines that do not go through the centre of the image are bowed inwards,

towards the centre of the image. Examples of both types of radial distortions are shown in Fig-

ure 2.11. Their effect is quadratic with the distance from the center of the image. A mixture of

both types might appear and its called mustache distortion. Radial distortion can be corrected

using Brown-Conrady’s distortion model (Conrady, 1919) and applying software processing, as

long as low order radial components dominate.

CHAPTER 2. BACKGROUND THEORY 21

Figure 2.11: Result of imaging a grid when (1) barrel distortion is present (2) pincushion distor-
tion appears.

2.5 Matlab User Interface

MATLAB®(Matrix Laboratory) is a high-level technical computing language and interactive en-

vironment for algorithm development, data visualization, data analysis and numerical compu-

tation. It was developed by MathWorks. Among its many features, some specially relevant for

this work might be found. It allows the creation of user interfaces in a user-friendly environ-

ment. It supports interfacing with programs written in other languages including C++, neces-

sary to communicate with the camera selected. It provides huge capabilities regarding image

processing and data analysis that should be exploded in further steps of the system develop-

ment. Complex algorithms and new functionalities can be easily implemented as there is a vast

library available, most of it supported with official documentation. Besides, a lot of online com-

munities can be found that provide a really useful, non-official support.

2.5.1 Interfacing with other languages

Matlab can call functions and subroutines written in the C programming language. These pro-

grams, called binary MEX-files, are dynamically linked subroutines that the Matlab interpreter

loads and executes. The MEX-file contains only one function or subroutine, and its name is the

MEX-file name. This function can then be called from Matlab, as if it was a MATLAB function,

using the name of the file.

The term mex stands for "Matlab executable" and has different meanings, source MEX-file

refers to the C source code file while binary MEX-file is referring to the dynamically linked sub-

routine executed in the Matlab environment. The MEX function library, on the other hand, is

CHAPTER 2. BACKGROUND THEORY 22

the Matlab C API Reference library to perform operations in the Matlab environment.

MEX-files are often used to speed up code of complex algorithms. Although the develop-

ment time of the algorithm is longer, it runs faster if it is written in C than if it is written in Matlab.

However, optimizing processing times is not a priority yet. In fact, if optimizing the execution

speed had been the goal, the user interface should have been migrated to C at the very first step.

Instead, having access to Matlab’s potential is thought to be more beneficial, in order to reduce

development time and increase functionality. It is left as an idea for future optimization of the

system: migrating resources greedy algorithms to C by using MEX-files.

MEX-files will still be used though. As the Application Programming Interface to control the

camera is available in C, they are needed to interface with the camera from MATLAB.

2.5.2 Portability

Portability of the software is not among the goals to be achieved by this work. However, a brief

comment is done here which is thought to be a starting point if it is required for future develop-

ment of the system.

Once an application is built in Matlab, it can be distributed to other Matlab users, packaged

as a Matlab app, which provides a single file for distribution. It may also be shared with oth-

ers who do not have Matlab by using application deployment products. These add-on products

automatically generate standalone applications, shared libraries, and software components for

integration in C, C++ orJava environments. The executables and components can be distributed

royalty-free. Anoher option to achieve portability is to use the Matlab Coder to generate stan-

dalone C code from Matlab code. It has the inconvenience that it only supports a subset ot the

Matlab language.

Chapter 3

Building AOTF system

Once the processes involved in a hyperspectral imaging system have been presented, the ac-

tual construction of the system follows. For that purpose, in this chapter, we come back to the

different elements of the system that have been treated in the Chapter 2 to present their spec-

ifications. When it is considered relevant, information will be provided about how or why a

particular device was chosen to be part of the system, as for a given element of the system there

are many options available in the market. By the end of this chapter, the reader should be able

to picture an idea about what performance can be expected from the system.

3.1 Andor Zyla sCMOS camera

The scientific camera used in this project is manufactured by Andor® and it corresponds to the

model Zyla sCMOS 5.5, which offers high speed, sensitivity and resolution. The thermoelectrically-

cooled design ensures a low readout noise by lowering the dark current, and thus, reducing the

effect of blemishes in the sensor.

3.1.1 Camera selection

The camera selection was a key aspect for the performance of the system. Two technologies able

to provide the performance requiered were available. Scientific complementary metal-oxide-

semiconductor (sCMOS) is a revolutionary technology based on CMOS image sensor design

and fabrication techniques (Dr. Colin Coates, 2009). Conventional CMOS cameras offer very

23

CHAPTER 3. BUILDING AOTF SYSTEM 24

EMCCD iXion Ultra sCMOS Zyla

Dark noise ≈ 200 ± 20 Dark noise ≈ 100 ± 10
Dynamic range ≈ 12 – 18% Dynamic range ≈ 93 – 97%

SN Rr eal low LS ≈ 26 - 368, with average 170 SN Rr eal low LS ≈ 20 - 600, with average 120
SN Rr eal high LS ≈ 35 - 801, with average 234 SN Rr eal high LS ≈ 2 - 6545, with average 370: saturated

Contrast ≈ 0.10 Contrast ≈ 0.04
Frame rate ∝ integration time (up to 50 fps) Frame rate depends on other factors (max 14 fps)

512 x 512 pixels (0.25 Mega) 2560 x 2160 pixels (5.5 Mega)

Table 3.1: First test results summary: RTP on a white paper

fast frame rates but compromise dynamic range. sCMOS image sensors, on the other hand, of-

fer extremely low noise, rapid frame rates, wide dynamic range, high quantum efficiency, high

resolution, and a large field of view simultaneously in one image. This makes them particularly

suitable for high fidelity and quantitative scientific measurement. However, Electron Multiply-

ing CCD (EMCCD) is a more widely used technology for high performance applications (web site

EMCCD). Although sCMOS readout noise is very low compared to CCDs, it does not hold the

distinct advantage of being able to practically eliminate read noise, as EMCCD does.

To have a better knowledge about what performance could be achieved by using each sen-

sor technology, two cameras were compared under experimental conditions: the sCMOS based

Zyla 5.5 camera and the emCCD based iXion Ultra 897 camera. Both cameras were provided by

Andor®. Three different tests were performed, whose results summary is presented below.

1. WHITE LIGHT REFLECTANCE TEST: The first test performed was regular imaging of a

resolution test pattern (RTP) printed on a white paper. It was performed using a circular

white light source at different levels (Illumination Associates, IT 2900) and a 25 mm lens

was fixed to the camera. The Table 3.1 contains the results of this test. The advantages

of one camera over the other are marked with red text color. It must be mentioned that

the low contrast level achieved by the Zyla camera is due to the optics used for the test.

The lenses used were not optimized for high resolution cameras. It affects more the Zyla

camera because of its higher resolution: 5.5 Megapixels, 22 times more than the iXion.

2. FLUORESCENCE TEST: The second test was imaging the fluorescence of fluorescein irra-

diated by a 280 nm light source at different powers (SETi deep UV LED). The same 25 mm

lens was fixed to the camera. The Table 3.2 contains the results of this test. Again, the ad-

CHAPTER 3. BUILDING AOTF SYSTEM 25

EMCCD iXion Ultra sCMOS Zyla

Dark noise ≈ 200 ± 20 Dark noise ≈ 100 ± 10
Dynamic range ≈ 35 – 73% Dynamic range ≈ 4 – 21%

Mean SN Rr eal ≈ 3.4 - 8.5 at currents 0.5 - 2.0 mA Mean SN Rr eal ≈ 5.9 - 13 at currents 0.5 - 2.0 mA
Frame rate ∝ integration time (up to 55 fps) Frame rate depends on other factors (max 4.4 fps)

Table 3.2: Second test results summary: fluorescein irradiated by a 280 nm light source

vantages of one camera over the other are marked with red text color. It is interesting that

the dynamic range depends on the integration time used. The same integration time of

0.2 s was used for both cameras to provide similar testing conditions. However, this inte-

gration time for the Zyla camera was lower than the optimal one, therefore the maximum

dynamic range was not reached.

Figure 3.1 is a good summary for this test. Using the same camera settings as in the former

test, Zyla camera performed better, i.e. resulting in higher mean SNR values, as it is shown

in 3.1(a). On the other hand, it can be seen on 3.1(b) that the SNR drops significantly by

increasing frame rate. It was also noticed that in images obtained by Zyla camera, multi-

ple hot-spots were present, i.e. pixels with different sensitivity. There were no hot-spots

in the images taken by iXion Ultra. However, these aberrations can be corrected by the

Spourious Noise Filter feature provided by the Zyla camera, which replaces them with the

mean value of their neighbouring pixels.

3. AOTF TEST: The third test consisted of imaging the resolution test pattern irradiated by

white light and filtering the light using the AOTF. It is the most relevant experiment, since

it evaluates the performance of the camera placed in an environment which recreates the

final system. A very basic setup was used since proper optics were not available at the time

of the test. A confocal, but not telecentric, setup was used. Front optics and back optics

consisted of 2x 25 mm lenses (25mm FL Compact Fixed Focal Lenght Lens, Edmund Op-

tics) and the camera lens was 75mm. The broadband 1” wire-grid polarizers (EdmundOp-

tics) were inserted in the cross-polarized configuration before and after the AOTF device.

Imaging distance was approximately 20 cm. The manufacturer software was used to con-

trol the camera and the AOTF device, since this was a preliminary test done before the

system software was available.

CHAPTER 3. BUILDING AOTF SYSTEM 26

(a) SNR at ti nt = 0.2s (b) Zyla: SNR at diode current = 0.5 mA

Figure 3.1: (a) Mean SNR values for both cameras (see legend), at integration time 0.2 s, for dif-
ferent diode currents. (b) SNR dependency on the frame rate (integration time) for Zyla camera,
diode current fixed.

Figure 3.2(a) presents SNR of whole image obtained at 12 wavelengths in the spectral re-

gion from 450 nm to 1000 nm. Using the same integration time 0.2 s and good illumination

at LS = 10, iXion Ultra results in images with on average 3-times larger SNR value as com-

pared to the Zyla. When low illumination power is used, LS = 0, as shown in Figure 3.2(b)

only iXion Ultra yields results in acceptable time. SNR levels were however on average

4-times lower than for the good illumination scenario. Zyla camera provided images with

the similar SNR, but using 20-times higher integration time, resulting in extremely slow

acquisition speed, 0.25 fps with Zyla in comparison to 55 fps with iXion Ultra.

Figure 3.3 shows a spectra comparison among: iXiom Ultra (black), Zyla (blue) and spec-

trometer (S2000, Ocean Optics) (red). (a) Presents the regions where spectra were col-

lected. They are marked by the white and the black rectangles. They correspond to a black

and a white region in the image respectively. For pictures (e) and (f) Zyla requires a really

long integration time: 4s. A significant difference between the obtained spectra can be

observed. The difference is most likely due to different detector size and consequently the

field of view. Using iXion Ultra whole camera’s field of view was filled with an image, while

Zyla had larger field of view.

Based on the test results, it can be concluded that Zyla is the optimal choice if the system is

used under normal-light conditions, as it will be, resulting in acceptable SNR levels, high res-

CHAPTER 3. BUILDING AOTF SYSTEM 27

(a) SNR at ti nt = 0.2s and LS = 10 (b) SNR at ti nt = 0.2s and LS = 0

Figure 3.2: (a)Mean SNR values for both cameras (see legend) at integration time 0.2 s, LS = 10.
(b) Mean SNR values for both cameras (see legend) at integration time 0.2 s, LS = 0.

olution and good acquisition speed. For low-light conditions iXion Ultra performs better, but

offers significantly lower resolution for high speeds. These conclusions are consistent with the

information provided by the manufacturer in Andor® (2014b) and shown in Figure 3.4: the per-

formance advantage of EMCCD is important when working with low light intensities, but it is

negligible for well illuminated environments.

Price difference must also be taken into account, and it turns out that the iXion Ultra is 2

times more expensive than the Zyla. Thus, sCMOS offers an affordable alternative to EMCCD

sensors and, for the purposes of this work, sCMOS technology widely fits the quality constraints.

Therefore the Zyla sCMOS will be integrated in the system.

3.1.2 sCMOS sensor

A parameter of interest for the sensor is its quantum efficiency which is represented in Figure 3.5

as supplied by the manufacturer in Andor® (2014b) and is a function of wavelength. Such a

curve represents the percentage of photons hitting the sensor suface that will actually produce

a charge. As it can be seen, quantum efficiency barely reaches 60% on its maximum, and it

decreases below 30% for wavelenghts upon 800 nm.

CHAPTER 3. BUILDING AOTF SYSTEM 28

(a) Regions where spectra were collected (b) Spectra measured by Ocean Optics spec-
trometer.

(c) Black field at LS = 10. (d) White field at LS = 10.

(e) Black field at LS = 0. (f) White field at LS = 0.

Figure 3.3: (a) shows the regions selected to obtain the spectral information – a black area and a
white area. Figure (b) presents the corresponding spectra mesaured by Ocean Optics spectrom-
eter. The corresponding DRS spectra are presented in (c),(d),(e) and (f)

CHAPTER 3. BUILDING AOTF SYSTEM 29

Figure 3.4: Images at a range of incident light intensities, acquired using back-illuminated EM-
CCD iXon 888 and Zyla 5.5 sCMOS cameras

Figure 3.5: Quantum efficiency of the sensor at 20°C

CHAPTER 3. BUILDING AOTF SYSTEM 30

3.2 Acousto optic tunable filter (AOTF)

In our case, an AOTF manufactured by Gooch & Housego®is used (model number TF625-350-

2-12-BR1A), which is made of a tellerium dioxide (TeO2) crystal. This AOTF is based on a non-

collinear design operating at the parallel tangents condition, therefore, it was optimized to have

a relatively wide field of view: ±2◦ according to its specifications sheet Gooch&Housego (2014a).

The time required for the filter to provide and stable spectral output, after a frequency change

command is sent, is called the tunning time and it is an important parameter. There are two

terms contributing to the tunning time:

Ttunni ng = TRF +Tacousti c . (3.1)

Where TRF is the time required by the driver to switch the RF signal, it is around 2 µs, as

specified by the manufacturer, small compared to Tacousti c . Up to 64 profiles defining the filter

shape can be stored in the RF driver, then switching only requires to process a new instruction

(no a command to be read), and update the RF output. Tacousti c is the time the acoustic wave

needs to propagate through the crystal, (at a speed of 620 m
s), also called access time. C Stedham

(2008) claims that the access time for our crystal is less than 25 µs. Thus, the tunning time for

our crystal should be around Ttunni ng = 2 µs + 25 µs = 27 µs. A more realistic assumption could

be made about having a tunning time of around 50 µs (Ttunni ng ≈ 50µs).

The spectral range of the device specified by the manufacturer is between 450 nm and 800

nm with FWHM 0.65 nm at 457.9 nm increasing to 3.5 nm at 800 nm. Laboratory measure-

ments were carried out to assess the performance of the device. A circular white light source

at the maximum power (Illumination Associates, IT 2900) was used as a light source in front

of AOTF. One polarizer in front of the AOTF and another behind AOTF were used in the cross-

polarized configuration to reduce the unwanted spectrum of the light source. The light trans-

mitted through AOTF was collected onto an optical fiber (50 µm VIS-NIR, Ocean Optics) and a

spectrometer (S2000, Ocean Optics) was used for detection. The results, shown in Figure 3.6,

are consistent with those provided by the manufacturer in Gooch&Housego (2014a). Therefore,

the AOTF is characterized. For a given RF frequency input, it is known where the optical filter

is placed, i.e.the peak wavelength of the filter, and its spectral width, i.e. the full width at half

CHAPTER 3. BUILDING AOTF SYSTEM 31

(a) Peak wavelength vs. RF frequency (b) FWHM vs. Wavelength

Figure 3.6: Measured (a) peak wavelength vs. frequency and (b) FWHM vs. peak wavelength for
AOTF and white light source.

maximum (FWHM).

3.2.1 RF driver

The spectral response of the AOTF is controlled, as it has already been mentioned, by changing

the frequency of the applied RF signal. The RF driver MSD0XX-YYY-10UC-16x1 manufactured

by Gooch&Hosego® also allows to vary the power of the RF signal, by doing this the amplitude

of the diffracted light can be controlled. This may be useful, for example, to compensate the

differences in quantum efficiency of the camera sensor for different wavelengths. With this de-

vice is also possible to apply several RF signals at the same time, up to 16, adding them. A more

complex filter shape could be obtained, however for this application an ideal band-pass shape

is of interest, so no attention will be paid to such feature.

A USB interface communicates with the host computer for control and setup. Four four-

channel Direct Digital Synthesizer (DDS) chips controlled by a master processor are responsible

for the signal synthesis. Up to 64 complete sets of channel data, called profiles can be stored in

the RF driver’s memory. This allows to predefine a behaviour, and then, the AOTF will switch

from one instruction to the next when receiving an incoming TTL pulse. This procedure will be

further developed in the synchronization section (4.2).

Cooling requirements were surprisingly high for this device, and unfortunately, they were

CHAPTER 3. BUILDING AOTF SYSTEM 32

Figure 3.7: Three cooling fans installed on the RF driver to prevent overheating

not fully satisfied at the earliest steps of the system construction due to insufficient instructions

in the manual (Gooch&Housego, 2014b). This led the driver to become unresponsive and/or

unstable. In particular, channels from one to four and nine to sixteen did not function, while

channels from five to eight required occasional restarting of the device to work, making the

system unstable.

Feedback from the manufacturer revealed that the USB chip was partialy burnt, which was

causing the device to fail. Then, the options that could have led this to happen were explored.

The possibility of having supplied a voltage higher than the allowed by the device was consid-

ered unlikely: a standard power supply was used, giving 24 V to the RF port and 3.3 V to the USB

port. Insufficient cooling seemed to be the most probable cause. The manufacturer was con-

tacted again for further information about cooling requirements. The device was supposed to

work properly cooled if an air flow higher than 17 litres per second was passed through it. Three

cooling fans were installed on the device, as shown in Figure A.1.2. The fan on top of the cool-

ing fins, the orange one, provides more than 33 l
s , while each of the two smaller fans at the side

provides more than 9.4 l
s . So, a total of around 33+2∗9.4 ≈ 51.8 l

s was provided. Approximately,

three times the stated requirement. However, the device became unresponsive again, and it had

to be sent back to the manufacturer, where it is still being repaired.

CHAPTER 3. BUILDING AOTF SYSTEM 33

Figure 3.8: Detailed scheme showing the final optical configuration of the system.

3.3 Optical design of the system

As it was theoretically justified in the Section 2.4, a telecentric confocal configuration is our

choice, besides, to help to get rid of the stray light (all beams except first order transmitted

beam), polarizers in a cross-polarized configuration are also included in the system. The fi-

nal detailed scheme is shown in Figure 3.8. Now, it will be explained how such a scheme was

conceived.

The main restriction of the system is imposed by the AOTF. As it was mentioned in the former

section (3.2), it has a field of view given by its acceptance angle of θ =±2◦. This condition must

be satisfied to have parallel beams in the crystal and therefore, achieve optimal Bragg diffrac-

tion. Hence, satisfying this condition determines the size of the circular aperture, in particular,

its radius which will be referred to as rD . Figure 3.9 presents an scheme used for the calculation

of rD . The green rays (dashed lines) are refracted by the lens and, therefore, will be parallel when

entering the crystal. On the other hand, the red rays (dotted lines) are not affected by the lens,

their angle θ respect to the parallel rays should be less than 2 degrees (the acceptance angle).

tanθ = rD

f
=⇒ rD = f tanθ (3.2)

Using the specifications of our lenses f = 35mm (provided in the next Section 3.3.1), the optimal

size of the pinhole is: rD = 35∗ tan(2) = 1.22mm.

From Section 2.4 we had: "the system is telecentric, as the apertures are located at the focal

planes; and it is confocal, as there is a common focal point between the input and the output

CHAPTER 3. BUILDING AOTF SYSTEM 34

Figure 3.9: Scheme for the calculation of the aperture radius.

Figure 3.10: Scheme for the calculation of the length of the optical path inside the crystal.

lenses, at the middle of the crystal". Therefore, the focal length of the lenses will determine their

position relative to the AOTF, as well as the position of the apertures relative to the lenses.

Length of the optical path inside the crystal is way shorter than its physical length due to

its refraction index. In particular, the crystal has a length l = 41.5mm, as shown in Figure 3.10

which serves as a scheme to calculate the position of the lenses. Then its central point, that

should agree with the back frontal plane of the lenses, is placed at l/2 = 20.75mm from the

entrance. But the distance viewed by the light is OP (Optical Path):

OP = l /2

nc
= 20.75

2.2565
= 9.20mm (3.3)

where nc is the refraction index of the crystal (2.2565 for the wavelength λ= 644). Therefore, the

CHAPTER 3. BUILDING AOTF SYSTEM 35

Figure 3.11: Main dimensions and important distances.

lens must be placed in a position satisfying:

S′F ′ =∆+OP =⇒∆= S′F ′−OP. (3.4)

where S’F’ is the distance between the back surface of the lens and its back focal plane.

A further physical restriction comes from the cross-polarized configuration. A polarizer

must be situated between the lens and its front focal point. In many commercial lenses such

a position is not accesible, and thus, they can not be used in our system.

3.3.1 Lenses

MeVis-35 mm lenses are specifically developed to be used with high resolution sensors (up to

12 Mpixel, while the camera Zyla has a 5.5 Mpixel sensor), according to the brochure QIOPTIQ

(2010). Their transmission range is 450-950 nm. From Equation 3.5, and using the distances

specified by the manufacturer shown in Figure 3.11, the distance from the crystal surface to the

back surface of the lens ∆must be:

∆= S′F ′−OP = 14.7−9.2 = 5.50mm. (3.5)

Also, from Figure 3.11 follows that the aperture should be placed at a distance SF = 11.9mm

from the frontal surface of the lense. It can be seen in Figure 3.12, that the space situated be-

tween the lens and the optimal position of the aperture can be accessed. Therefore, polarizers

can be included there.

CHAPTER 3. BUILDING AOTF SYSTEM 36

(a) Lenses outline (b) Picture.

Figure 3.12: Lenses MeVis-35 mm. (a) Outline. (b) Picture of lens including pinhole. Detail
showing lens and pinhole separetely.

3.3.2 Polarizers

Polarizers in the cross-polarized configuration are used in the AOTF system to eliminate the

unwanted spectra. To achieve the best possible elimination, polarizers with very high extinc-

tion ratio must be used. A broadband wire grid polarizers (WP25M-UB, Thorlabs, shown in

Figure 3.13) were tested, with specified extinction ratio 1.000:1 and AR coating in 250 nm to 4

µm. The advantage of these polarizers are that they are made into a circular shape, they are

thin (approx. 2 mm) and they are resistant to scratching. The first test of the AOTF imaging per-

formed showed that using the wire grid polarizers the unwanted spectrum was not completely

eliminated.

In a first approach, polarizers were placed between lenses and crystal, however the perfor-

mance achieved using such a configuration was lower than expected, while placing them in their

final position (between pinholes and lenses) led to significantly higher performance.

Finally, images of the system are shown in Figure 3.14.

CHAPTER 3. BUILDING AOTF SYSTEM 37

(a) Scheme. (b) Picture.

Figure 3.13: Polarizer WP25M-UB Thorlabs: (a) scheme and (b) picture. Provided in Thorlabs
(2014).

(a) Aerial lateral picture of the system.

(b) Vertical picture of the system.

Figure 3.14: (a) (b) View of the hyperspectral imaging system including: (from left to right) front
lens, AOTF, back lens, camera lens and camera. Pinholes are missing, they should be attached
to the front and back lenses as in Figure 3.12(b).

Chapter 4

Software

As an important element in the construction of the whole hyperspectral imaging system, an in-

tegrated software able to control the system was developed. Its creation and features are treated

within this Chapter, while its code is shown in Appendix A.

Both the camera and the AOTF driver have their own software provided by their respective

manufacturers. However, although they may be useful for testing operations on a first stage, they

can only provide a low performance working together, due to the fact that it takes a long time

for a human user to change parameters comparing to how fast a computer can do it. Therefore,

an integrated software that controls both the camera and AOTF, and provides processing tools

is desirable.

To control the camera, a Software Development Kit provided by Andor is available. It is a

simplified Aplication Programming Interface (API) that helps to reduce software development

time, and it is documented in detail. It allows to access the current state and limits of camera

features and it provides enough functionality to fully control the behaviour of the camera. Its

potential can be exploded by simple C programs that can make use of the library atcorem.lib,

thus having access to several sets of functions, each controlling a particular aspect of camera

control. There are sections in the API for opening a handle to a camera, for buffer management

and for accessing the features that every camera exposes.

On the other hand, as it was commented in Section 2.5, Matlab was the platform of our

choice to build the Graphic User Interface (GUI) due to the processing algorithms and resources

it provides. MEX-files provide the required interface between the Matlab user interface and the

38

CHAPTER 4. SOFTWARE 39

camera control routines written in C. An interested reader may find further information about

MEX-files and the API provided to control the camera in AppendixMEX files and Andor SDK,

which is also useful to fully understand the code.

4.1 Graphical User Interface

A Graphical User Interface (GUI) provides point-and-click control of software applications, elim-

inating the need to learn a language or type commands in order to run the application. The GUI

described here was created using GUIDE, the design environment for user interfaces provided

by Matlab.

On the top left corner of the user interface five recognizable icons are placed, as it can be

seen in Figures 4.1 to 4.6(b), which allow the user to open or save a hyperspectral image, zoom

in, zoom out and navigate through an image displayed in the axes. The last three allow the user

to interact with the image in a basic way. It is important to point out that the User Interface

should be a useful tool to acquire hyperspectral images, but the further processing of the data

is not thought to be done within the GUI. Hence, it is important that it allows to store an image

cube to be later processed in Matlab. Using the icon save, an image can be stored at any location

of the hard drive as a *.mat file, that could be accessed it in a future moment and easily load into

Matlab by using the function load() (see Matlab help for further information). It can also be

load to the application by using the icon ’Open’.

The reader may consider the difference between the process of saving an image cube and

each time the GUI stores a HSI (or any other variable) to be shared within the application as

application-data. A mistake made during the earliest stages of developing the GUI was to store

variables and data necessary to run the application in the hard drive as a *.mat file, even if that

very data was supposed to be load soon by another function. It was not hard to realize that this

process of saving-loading variables repeteadly was enormously slowing down the execution of

the GUI. Instead, Matlab provides four ways to share data within the application: in an object

property called UserData, using the guidata() function, as application data, and nesting the

callback functions. The last option could not be used as it requires a complete change in the way

the GUI is programmed, and it is not recommended. Like the main concern back then was about

CHAPTER 4. SOFTWARE 40

speeding up the GUI, the other three options were tested to save and load a big matrix while us-

ing Matlab tic, toc functions to set a timer. It turned out that all them required similar times,

but at least 10 times faster than before. Therefore, after carefully reading the documentation,

the most convenient one was used: store data as application data, which uses functions such

as setappdata(), getappdata() or isappdata(). It is more convenient because it allows

to save several variables at a time (the other two do not support this), and it is not necessary to

keep record of in which object a variable is stored (as it is with guidata).

On the top right corner, beside the axes that occupy most of the GUI, there is a box named

Image Acquisition. Inside, there is a listbox that allows to select some wavelengths of those

shown there. A button called ’List’ allows to switch the wavelengths selecting mode to one in

which the user should specify the starting and ending wavelengths and step between wave-

lengths. After switching, the previously named ’List’ button is called ’Range’ and, by clicking

on it, the listbox of wavelengths is again available. In a similar way, the Triggering mode can be

switched by clicking on the button Software, which changes its name to Hardware. See that the

string defining each of these buttons describes the current state, not the result of clicking the

button. It only works in that way for these two buttons that have a description string on top of

them, i. e. Triggering mode, Wavelength selection. In a glance, the user can see, for example

on Figure 4.1, that software triggering mode is activated, and that the wavelengths should be

selected from the listbox. But, to switch to hardware triggering, the user should click the button

’Software’.

The buttons ’Live View’ and ’Acquire’ are also inside the Image Acquisition box. The first one

provides on live video from the camera, at a low frame rate, around 4 frames per second. Figure

4.2 is a screenshot of the GUI working in Live View mode, see that the button name has changed

to ’Stop Preview’. It is useful to do adjustments such like focusing or pointing to the target, that

the user needs to do before getting an image cube. For doing this there were several difficulties.

A loop in Matlab is used that gets a frame from the camera and displays it in the axes, however

the execution of the loop was really slow and the frames were not refreshed in the display. To

solve this, the function drawnow() is included at the end of the loop, that forces Matlab to re-

fresh the image displayed; and the function to get the frame was simplified to a minimum: it just

sends a Software trigger to the camera and gets the memory address of a new frame (see A.2.5).

CHAPTER 4. SOFTWARE 41

To make this possible, however, the camera must be properly set before the loop: prepare the

buffers where the frames will be stored, establish a maximum number of frames to be acquired,

get the camera into Acquisition mode, which is a highly reactive state in which the camera re-

sponses very fast; and after the loop: basically, releasing the buffers and Stop Acquisition. This

function could be improved by using circular buffers and setting the camera into CycleMode,

however, it is not straightforward how to update the frames in the GUI.

On the other hand, ’Acquire’ gets a HSI, using the selected wavelengths as a parameter to

properly set the AOTF response before starting the exposure of each frame. An important goal

was to exploit the high frame rates that the camera provides. Approaches in which a Matlab

loop gets one frame at a time were early discarded as they introduce huge delays between one

acquisition an the next one. A much better approach is to rely on the MEX-file to fully get the

image cube which will be then send back to Matlab. Hence, the first step is to allocate memory

for the image cube, in a single huge buffer, because the MEX interfacing requires it; this big

buffer is divided into as many as the number of images to be acquired. Then, the starting address

of each buffer is sent to the camera. Then, an acquisition starts, which sets the camera in a

highly reactive mode. Triggers are sent to the camera, either software or hardware triggers as

described in the next section (4.2), that keeps the frame in its own memory. Once the acquisition

is finished, the camera writes into the buffers provided before and frees its memory. Then these

buffers are processed to stract metadata information and send the HSI to Matlab. Therefore,

three stages can be distinguished: setting camera, taking images, and releasing data. ’Setting

the camera’ takes virtually no time comparing to the other two. The ’taking images’ stage is

optimized, it gets frames as fast as Software or Hardware triggering allow to do it, which is a

great thing. While the last stage delays the output of the function considerably. After the user

presses ’Acquire’ the images are quickly taken, although the further operations delay the visible

ouput, i. e.frames shown in the GUI. As an example, 50 full frames, with exposur eti me = 0.01s

were acquired using Software triggering: it took 1 second to take the images, 0.66 seconds to

write them in the buffers, and 0.26 to show them in the GUI.

It has been mentioned that metadata information is extracted from each frame. In fact, it

is timing information that provides a time reference to know when each frame was acquired

relative to the first one. The timestamp associated with a frame contains the clock cycle at which

CHAPTER 4. SOFTWARE 42

the exposure for the frame started. As the frequency of the clock is available via the integer

feature TimestampClockFrequency, the clock cycle information can be translated to actual time

using:

F r ameT i me[s] = C ycleNumber

C l ockF r equenc y

[c ycle]

[c ycle
s]

(4.1)

This transformation may not be totally accurate due to differences between C l ockF r equenc y

as it is stated by the camera, and the real frequency of the clock. Anyway, timestamp information

might be useful for several things, for example: to see if all the frames within an image cube are

taken uniformly in time or not (the operative system may be interfering in the process); time

dependant processes might be studied, such as trying to infer the heart pulse of a person.

Outcome of the Acquire function is shown at Figure 4.3(a). In the example, although four

frames are taken, only two are shown by default to optimize the axes area working. However,

the user can select which frames to show on the listbox Select Pictures, inside the box Image

processing. It is important that the user has full control to display any frame within the image

cube to, for example, visually check if there is barrel distortion at any given wavelength. The

result of selecting the four frames is shown in Figure 4.3(b). Similarly, it has been seen that the

user sometimes needs to have detailed information of a region in an image. For that purpose,

besides the zoom in and zoom out option, the Matlab tool impixelregion() is integrated.

Clicking on Pixels opens a figurel to navigate through the pixels of an image (Figure 4.4(a)).

When only one frame is selected to be displayed there are some features available. Firstly, a

histogram can be shown by clicking on a pixel (Figure 4.4(b)). Values of the corresponding row

and column are shown in inferior and lateral axes, respectively. It provides a visual indicator of

the sharpness of an image, therefore, the user can study, for example, if a region is more blurred

than others within an image, or if some of the frames of the image cube present a higher reso-

lution. Secondly, a ROI can be defined (Figure 4.5(a)) to work with just a small area of the HSI

(Figure 4.5(b)), which is thought to reduce processing times. Also, using the sub-box Spectrum,

pixels from the HSI can be selected (Figure 4.6(a)) and its spectrum be shown pressing ’Spec-

trum’ (Figure 4.6(b)). This is done plotting the value of that pixel for each different wavelength.

A variation may be included which allows the user to select an area instead of single pixels, then,

the value assigned for each wavelength would be the average of the pixels in the area.

CHAPTER 4. SOFTWARE 43

F
ig

u
re

4.
1:

V
ie

w
o

ft
h

e
A

p
p

ri
gh

ta
ft

er
o

p
en

n
in

g.

CHAPTER 4. SOFTWARE 44

F
ig

u
re

4.
2:

D
is

p
la

yi
n

g
vi

d
eo

:L
iv

eV
ie

w
m

o
d

e.

CHAPTER 4. SOFTWARE 45

(a)

(b)

Figure 4.3: (a) Result of selecting three wavelenghts and pressing Acquire. The two frames se-
lected in ’Select pictures’ are shown. (b) Now, the four frames are selected, so they are all shown.

CHAPTER 4. SOFTWARE 46

(a)

(b)

Figure 4.4: (a) Pressing Pixels allows to take a closer look to any desired area. (b) If there is only
one frame shown, clicking on a pixel produces Histograms to appear.

CHAPTER 4. SOFTWARE 47

(a)

(b)

Figure 4.5: (a) A Region Of Interest is selected. (b) Result of applying the ROI.

CHAPTER 4. SOFTWARE 48

(a)

(b)

Figure 4.6: (a) Some pixels can be selected by clicking on "Spectrum: Select". (b) Among the
pixels selected before, a subset can be chosen and its spectrum plotted.

CHAPTER 4. SOFTWARE 49

F
ig

u
re

4.
7:

T
h

e
b

ac
kg

ro
u

n
d

fr
am

e
ca

n
b

e
su

b
st

ra
ct

ed
(a

n
d

ad
d

ed
ag

ai
n

).
(A

s
th

es
e

ar
e

n
o

t
re

al
ly

H
SI

,
b

ec
au

se
th

e
A

O
T

F
is

n
o

t
w

o
rk

in
g,

th
e

th
re

e
fr

am
es

ar
e

al
m

o
st

eq
u

al
to

th
e

b
ac

kg
ro

u
n

d
im

ag
e,

th
u

s,
th

ey
ar

e
lo

st
af

te
r

su
b

st
ra

ct
in

g.

CHAPTER 4. SOFTWARE 50

Figure 4.8: Timing parameters based on sensor clock speed for Global Shutter mode.

4.2 Synchronization

In order to get a hyperspectral image, the camera and RF driver must work synchronously. In

particular, an image should not be taken before the AOTF is selecting the correct wavelength. In

a similar way, after an image is acquired, the filter should change its frequency response to select

the following wavelength to conform the HSI. For that purpose, two alternatives are proposed

in this section. Unfortunately, none of them could be fully implemented, due to problems with

the RF driver (already described in 3.2.1), which was not operative for most of the developing

time of the system. In particular, functions in C to communicate with the RF driver must be

written. Appendix C presents a starting point to develop this software, which uses the protocol

COM RS232.

4.2.1 Software triggering

In this mode the camera and software are in a high state of readiness and can react extremely

quickly to a trigger event issued via software. Figure 4.8 presents the values of timing parameters

used in the following description (InterFrame time, Frame readout time). They depend on Sen-

sor Clock Speed and are also valid for the next section. The process involved when the systems

is in Software triggering mode is as follows:

1. Camera is prepared for acquisition: buffers are queued.

2. Inmediately-executed comand is sent to the RF to select a wavelength.

3. Loop:

(a) Software trigger is sent to the camera.

CHAPTER 4. SOFTWARE 51

(b) Exposure takes place. Software must wait while this happens: Sleep(exposure_time).

(c) Inmediateley-executed comand is sent to the RF to change wavelength. At the same

time the camera is reading the new frame from the sensor.

(d) Wait: Sleep(duration) where duration should be, at least, 1 InterFrame time

plus 1 Frame readout time.

(e) Back to step (a).

4. Acquisition is finished, buffers are read.

Figure 4.9 presents the theoretical performance achieved by the camera when working in

this mode. It can be seen there that the exposure time is constrained to be higher than 1F r ame+
4Row s = 10.017 ms. While Cycle Time, which is the time since an acquisition starts until the next

one does, is at least, Mi nC ycleT i me = E xposur e+1F r ame+1Inter f r ame+5Row s = 20.126

ms (taking the minimum exposure time possible). Hence, the maximum FrameRate that could

be achieved, for full frame size, is: M axF r ameRate = 1/Mi nC ycleT i me = 49.68. With smaller

frame sizes faster acquisition can be obtained.

In the current implementation, the communication with the RF driver is skipped. Therefore,

as shown in Appendix A.2.3, line 254, its necessary that the application waits between sending a

Software trigger and the next one: otherwise, as the camera is not ready to start a new acquisi-

tion, the trigger events sent while an acquisition is running are missed and the number of frames

acquired will be lower than expected. So far, implementing a wait time by: Sleep(CycleTime),

with Cycle Time as described in Figure 4.9, leads to ideal performance. Specifically, 50 frames are

acquired in 1.02 seconds, using the minimum exposure time possible, although it takes around

0.8 seconds more to have them available in the GUI. This delay was mentioned in the former

Section and its caused by different operations: reading frames from buffers, interface with Mat-

lab and showing them in the axis.

Once the communication with RF is included is important to consider the following. First,

the filter must not change its frequency response while the exposure is going, that is why (b)

states ’Software must wait while this happens: Sleep(exposure_time)’. Second, once the ex-

posure wait is over, the filter can update its frequency response, i. e. a comand can be sent to the

RF driver. The updating process takes around 0.2 ms as claimed by Gooch&Housego (2014b).

CHAPTER 4. SOFTWARE 52

Figure 4.9: Software triggering timing parameters.

While it happens, the camera is reading a frame from the sensor: 1F r ame = 9.98 ms. As this is

a much longer operation, by its end, the AOTF filter should be already selecting the next wave-

length. Hence, after a wait of Sleep(1 Frame + 1 Interframe + 5 Rows), which com-

pletes the Cycle Time (as it has already waited: Exposure time), another trigger could be sent.

Performance should be almost the same as the one achieved previously, as the process is ba-

sically the same. The difference is that now the waiting time is splitted in two different waits (one

as long as the exposure, and the other similar to the readout time of the sensor) and including

instructions to control the RF driver in between, which should be processed two or three order

of magnitude faster so, virtually, they have no impact. However, to make sure that the trigger

events are not missed, the waiting times could be made a little bit longer: sacrifying perfor-

mance to make sure that the HSI are correctly acquired.

4.2.2 Hardware triggering

Hardware triggering has not been implemented, but it has some features that might make it

useful for the system in the future. It allows the camera to work on Overlap mode in which

the camera can accept a trigger to begin the next exposure prior to the signal frame readout

from the sensor completing. It does not result in higher frame rates, i. e. the maximum frame

rate that can be achieved is 49 frames per second for full size images (2560 x 2160 pixels), but

exposure times can be longer for a given frame rate, for example, to get 49 frames in a second,

the exposure time can be up to 2F r ames +1Inter f r ame +4Row s = 20.08 ms. This is almost

two times the maximum exposure time that Software triggering allows to work at 49 frames per

second. Hence, an exposure can represent a higher percentage of the Cycle Time. It provides a

100% sensor duty cycle.

Figure 4.10 presents timing parameters of the camera when working in this mode. It can be

CHAPTER 4. SOFTWARE 53

Figure 4.10: Global Shutter External Triggering Timing Parameters (Overlap On) - Cycle Time
Dependent on Exposure. For exposure times longer than 2 Frames + 1 Interframe + 5 Rows, the
cycle time increases with exposure.

seen there that, for exposure times longer than 2F r ames+1Inter f r ame+5Row s = 20.089 ms,

the Cycle Time, and therefore, the frame rate, depend on the exposure. But for values between

10.07 and 20.089 of the exposure time, the same, and optimal frame rate (49 frames per second)

is achieved.

Ingvaldsen (2012) showed how Hardware triggering can be implemented for a similar system

which used the same AOTF driver, but different camera. All the instructions must be sent to

the driver prior to acquisition, which stores them. Then, for every incoming pulse, the driver

executes the next instruction stored changing the frequency response of the filter. The Multi

I/O timing cable pin outs (5V TTL) of the camera, in particular, input External Trigger (pin 7)

and outputs ARM (pin 1) and FIRE (pin 4) should be used, together with Camera in (pin 1) and

Camera Out (pin 2) of the driver. The input pulse of the camera External Trigger should be at

least of duration 2 sensor clocks: Pul seDur ati on = 2∗ 1
C l ockF r equenc y = 2∗1/(560M H z) = 3.57

ns, if working at 560 MHz. Output ARM from the camera indicates when the camera is ready to

accept an incoming trigger pulse. No information about the duration of the input pulse Camera

in is provided by Gooch&Hosego, it may be necessary to contact them. The process should go

as follows:

1. Camera is prepared for acquisition: buffers are queued.

2. Instructions to be stored are sent to the RF, to indicating the sequence of wavelengths.

CHAPTER 4. SOFTWARE 54

3. Loop:

(a) Pulse is sent to the RF driver: pin Camera in, an instruction is executed.

(b) After a programmed time, the RF driver sends ouput pulse: pin Camera out.

(c) When output pulse Camera out is received from the RF driver, if ARM is active (it

should be), External trigger pulse is sent to camera. Otherwise, wait until ARM is

active and then send External trigger.

(d) Exposure starts. When it ends, output FIRE presents a negative edge, this negative

edge must trigger (a).

4. Acquisition is finished, buffers are read.

See that step (d) takes way longer time than the other three. Specifically, the exposure can

last from a minimum of 10.072 ms up to 30 s, while (a), (b) and (c) should, ideally, take place

in the remaining time of the Cycle Time, this is 1Inter f r ame +2Row s = 101.68 µs. This is not

possible since the minimum programmable time between receiving a pulse in Camera in, and

sending a pulse Camera out allowed by the RF driver is 300 µs. This value should be used: it

almost ensures that the camera will be ready (ARM active) to receive a new trigger, and it gives

enough time to the filter to change before starting a new acquisition.

Figure 4.11 shows a timing diagram of the camera working in Hardware triggering mode

(a), a zoom showing the signals used to synchronize the camera with the AOTF (b), and the

timing diagram of the camera in Software triggering mode (c), useful to see the Cycle that the

camera follows on each mode, in particular, the different fraction of the Cycle Time that the

exposure time represents. The signals global clear and charge transfer are used by the camera to

drain charge from every pixel before an acquisition and to transfer charge from the pixel to the

measurement node and effectively end the exposure, respectively.

CHAPTER 4. SOFTWARE 55

(a) Timing diagram of the camera in Hardware triggering.

(b) Timing diagram of the system.

(c) Timing diagram of the camera in Software triggering.

Figure 4.11: (a) Timing diagram of the camera when working in Hardware triggering (Over-
lap mode on). (b) Zoom of the circled area in (a), showing the signals used to synchronize the
system. (c) Timing diagram of the camera working in Software triggering mode.

Chapter 5

System characterization and experiments

In this Chapter four tests are presented to analyze the performance of the system. Since the

system was never working, due to the problems with the AOTF driver that have already com-

mented, some of these tests could never be done, while others were carried out using a different

system to illustrate the procedure.

5.1 Spectral analysis

The first of tests to be performed is a spectral analysis of the system. White standard or a white

source of light can be used as a target, and be placed in front of the front lens. It is important

that the target spectrum is known, at least, around the band to be analyzed. A spectrometer

situated at the output aperture and connected to a computer collects spectral data for different

wavelengths in the range: 400-900 nm. The working range claimed by the filter manufacturer

is 450-800, but an extended range is selected to figure out which the system limits are. See that

this test is basically the same as that presented in 3.2, but now using the whole system and not

just the filter.

A data set is composed by the measurements of the spectrometer consisting of a differ-

ent output spectrum (function of λ), for every tested frequency (selected on the RF driver):

Y (f AOT F ,λ). The same spectrometer may be used to analyze the spectrum of the light emit-

ted by the target, which is the input of the system X (λ). Once the spectral data is available we

have, for any system: Y (λ) = H(λ)∗ X (λ), where H(λ) is the frequency response of the system.

56

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 57

Therefore, H(f AOT F ,λ) can be calculated, which is the frequency response of the system for a

selected frequency as:

H(f AOT F ,λ) = Y (f AOT F ,λ)

X (λ)
(5.1)

Then, for every fixed f AOT F , the λmax maximizing H(f AOT F ,λ) indicates the wavelength around

which the filter is centered for the different frequencies used. A graph can be constructed then,

plotting λ vs. f , similar to that shown in 3.6(a). Also, λa and λb can be found, for every fixed

f AOT F , satisfying:

H(f AOT F ,λa) = 1

2
max{H(f AOT F ,λ)} = 1

2
H(f AOT F ,λmax) (5.2)

H(f AOT F ,λa) = H(f AOT F ,λb) (5.3)

λa <λb (5.4)

And hence, providing the full width at half maximum (FWHM) bandwidth of the system, for

every different f AOT F , as:

FW H M(f AOT F) =λb(f AOT F)−λa(f AOT F) (5.5)

A graph can be built plotting FW H M(f AOT F) against f AOT F or λ, as that shown in 3.6(b), which

gives us information about the spectral width of the filter for every selected wavelength.

5.2 Power optimization

A further step on calibration of the system consists of optimizing the power selected at the RF

driver, and therefore, the amplitude of the acoustic wave applied to the crystal, to maximize the

diffraction efficiency. This procedure is presented in Joan Vila-Frances (2010). The diffraction

efficiency is the relation between the RF output intensity and the light source intensity for each

different wavelength. To have access to these values an spectrometer can be placed at the output

of the back lens, in a similar way as in test 5.1. But it can also carried out using the camera,

always with the same integration time, and see how image intensity varies when changing RF

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 58

Figure 5.1: Diffraction efficiency as a function of driving signal characteristics. Taken from Joan
Vila-Frances (2010).

power. Then, the filter is configured to work over all its frequency range, and for each frequency,

many different powers are used.

In fact, due to similiarities between this and the test explained in 5.1 (they even share part of

the data set if the spectrometer is used instead of the camera), it is recommendable to carry them

in parallel. By doing so, dependance of the FWHM bandwidth with power could be studied,

although RF power should not affect it very much.

As a result, the diffraction efficiency as a function of frequency (or wavelength) and power

is obtained, similar to that presented in the mentioned article and shown in Figure 5.1. It can

be seen in that particular case, that for frequencies between 50 and 95 MHz, the highest effi-

ciency corresponds to maximum power. However, for frequencies in the range 95-120 MHz this

is not true anymore, and the optimal power is lower than the maximum power. This data set

should be stored, then, before starting every exposure, the optimal signal power is selected as

that matching the maximum of the diffraction efficiency surface at the given frequency.

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 59

5.3 Wavelength dependent resolution

The second test evaluates how the resolution varies among the frames taken at different wave-

lengths. For that purpose, the camera is focused at a certain wavelength, for instance λ = 650

nm, and a HSI of the target is taken in the range 400-900 nm. Then, contrast of every frame is

calculated, obtaining: c(λ). Which can then be plot as a function of λ. Its result is a curve be-

tween 0 and 1, whose maximum is placed at the wavelength for which the camera was focused

and that decreases with distance to the focusing wavelength. Such a graph provides information

about how Chromatic aberrations described in Section 2.3.2 are affecting the system. In partic-

ular, it shows how defocused each frame is depending on the wavelength at which is taken, and

therefore, how much longitudinal aberrations are shifting the plane of best image sharpness.

Contrast of an image can be calculated in several ways. All them include getting a constrast

image an averaging over the pixels of this image. To obtain a constrast image, every pixel p0

within an image is substituted by a function of:

di = |p0 −pi |
|p0 +pi |

for, i = 1,2, ...,8. (5.6)

where [p1p2 . . . p8] are the eight neighbour pixels of p0. This function of di could be, for instance:

the maximum, p0 = max{di }; or the average, p0 = 1
8

∑8
i=1 di .

5.4 Grid aberrations

The third test consists of imaging a grid pattern to evaluate which aberrations are present in

the system. In particular, it is checked if there is a lateral shifting of the grid for different wave-

lengths, important because it destroys the spacial-spectral correlation. As well as, if any of the

radial distortions corrupt the grid pattern.

Although this test could not be performed with our hyperspectral imaging system either, we

had access to a system provided by Gooch&Hosego and we carried out the test, which will be

used to illustrate how it can be done. Matlab code used to analyze data obtained with this test

is shown in Appendix D.1. The system was made of a camera HSI-440C with 8 mm lens, a LED

lamp LR45-90, Optometron, custom made combination of white LEDs and 850 nm LEDs. A

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 60

polarizer was used to cancel out specular reflection, diffusor and 19 cm lens: where the object

was placed.

To acquire the required data, a piece of graph paper from a notebook was carefully placed

on a metal plate, as even and unwrinkled as possible. It was then illuminated and imaged using

exposure times that avoid saturation to appear in the images. Using the same exposure times,

two hyperspectral images were taken: one of a gray standard sample of a size similar to that

of the grid, and another with the camera objective completely covered to get image of the dark

current of the sensor. The dark HSI is then substracted from both the grid and gray standard

image cubes. Then, these two can be combined to create a reflectance image, which is the one

that will be studied.

To measure if there is any radial distortion present in the system, the reflectance image is

modified. First, the beginning of a line in the grid is found, and a straight line is drawn starting

there, i. e. the value 0 (black) is assigned to all the pixels in that column or row, depending if it is

a vertical or horizontal line. The process is repeated for several lines distributed all over the grid

pattern, it is desirable to draw two lines showing the center of the image which should suffer

no distortion. It is already possible to visually appreciate how some of the lines are distorted,

see Figures 5.3(a) and (b), but in order to provide a measurment, another modification of the

data set is done. Now, supposing we are working with a vertical line of the grid whose associated

straight line has been drawn, 6 pixels on each side of the straight line are considered, and for ev-

ery row, a value of 0 (completely black) is assigned to that whose value is minimum (the darkest).

Besides, the square of the distance from that pixel to the straight line is computed and stored

in the 2D array verticalDistortion whose size is Nw avel eng ths x Nver t i cal Li nes . Each el-

ement (i ,k) of verticalDistortion corresponds to Sumi ,k as shown in Figure 5.2. A similar

process is followed for horizontal lines. This is repeated for every straight line drawn in a frame,

and for all frames. As a consequence, verticalDistortion(i,k) contains the sum of the

distances of the computally colored pixels in the frame i , to their straight line k. Figure 5.2 illus-

trates the process.

As a result, two arrays verticalDistortion and horizontalDistortion are available.

The edited images are shown in Figure 5.3. See that the lines drawn with the second technique

are not really lines: they are just dots. As long as the resolution is high enough, like in the first

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 61

Figure 5.2: Scheme explaining how the lines following the grid are drawn. For each row, 6 pixels
on each side of the straigh line (as the red dots) are considered and the darkest is coloured. The
square of its distance in pixels to the straight line contributes to the sum: Sumi ,k .

two cases (a) and (b), they follow the grid pattern pretty accurately, and hence they will pro-

vide a good measurement. However, when the image is blurred, like in (c), they do not match

the grid. The measurement they provide is too noisy, with an average value way higher than

what the result should be. For this, they can not be considered as reliable data. More complex

techniques to, computationally, draw the pattern could be used obtaining better results. For

instance, morphological operations for image processing in Matlab, like skeleton or erode.

The vectorsverticalDistortion andhorizontalDistortion can then be used to anal-

ize the performance. Figure 5.4 presents three graphs obtained using them. The first two are

built in a similar way. For six different wavelengths, the value of the distortion of each horizon-

tal (or vertical) line is plotted against its position in the image. In particular, against the position

(row or column) of its straight line associated. Then they are normalized in a way that a distor-

tion of 1 means no distortion. For (a), horizontal distortion, the center of the grid is around the

row 460, therefore, minimum distortion is present there for every wavelength; while for (b), ver-

tical distortion, this happens for the column 500. It can clearly be seen that distortion increases

with distance from the center.

On the other hand, (c) presents the average distortion for every frame comparing to the

wavelength at which it was taken. The result is first smoothed by a 5-taps low pass filter, each

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 62

sample is replaced with the average of five samples around it. For this system, there is more

horizontal distortion than vertical, in the range in which our measure is reliable. Above 700 nm,

the results provided are corrupted and no conclusion can be made out of them, in part because

the lamp emited almost no light between 750 and 800 nm.

To see if there is any lateral shift, the central column is studied. It should present a constant

value of distortion along the spectra as it does not suffer barrel distortion. However, if all the

grid is shifted laterally, a higher value of distortion will be obtained: there will be a non zero

distance between the straight line drawn, and where the grid line actually is. Figure 5.5 is a plot

of the values of distortions of the central column depending on the wavelength. The result is first

smoothed by a moving average filter of span 3. Inside the range from 450 nm to 680, it seems to

vary. After carefully looking at the images, the shifting looks to be confirmed, however it is no

bigger than 1 pixel in the range 450-650 nm, and not bigger than 2 pixels between 650-680. No

conclusions can be made above 680.

5.5 Color chart spectra

A final test was performed using the hyperspectral imaging system provided by Gooch&Hosego

to evaluate how accurately spectral information can be obtained from it. An equivalent test

might be performed with the system described in this work.

The set up is the same to that used in 5.4 for the grid test. Again, the Matlab code is available

in Appendix D.2. The color chart shown in 5.6 was carefully placed on the metal plate as the

grid was for the former test. It was imaged using exposure times that avoid saturation to appear

in the images. Using the same exposure times, a hyperspectral image of a gray standard sam-

ple and another one measuring the dark current of the sensor were taken. Spectral data using

spectrometer (S2000, Ocean Optics) was also acquired for each of the colored squares. However,

the color chart surface turned out to be really shiny. Therefore, the measured spectra could be

slightly corrupted due to specular reflection, especially for long wavelengths, which are more

affected by this phenomenon.

The image cube of the color chart is converted into a reflectance image in Matlab. Then,

three regions, each one including the whole square, are defined using the tool impixelregion

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 63

(a) Frame at 450 nm.

(b) Frame at 608 nm.

(c) Frame at 768 nm.

Figure 5.3: (a) (b) (c) are three frames of the image cube corresponding to 450, 608 and 768 nm.
Straight lines and minimum dots are shown.

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 64

(a) Horizontal distortion vs. row.

(b) Vertical distortion vs. column.

(c) Average frame distortion vs wavelength.

Figure 5.4: (a) Horizontal distortion calculated for all horizontal lines drawn in a image, and
plotted depending on which position (which row) each occupies in the image. (b) Vertical dis-
tortion, same way. (c) Average distortion within in a frame depending on wavelength.

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 65

Figure 5.5: Distortion of the central column for different wavelengths.

Figure 5.6: Color chart used for the test.

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 66

for the squares: red in the second row, blue in the third row and green in the fourth row. The co-

ordinates of these regions make possible to extract them as three different hyperspectral images.

Each frame of the three image cubes are then normalized to weight equally all the pixels within

the frames. Finally, averaging over all the pixels within a frame produces a vector containing

spectral information, which is then compared with that obtained by the spectrometer.

After properly interpolating the data to have equal vector sizes, the graphs shown in Fig-

ure 5.7 are obtained. See that the matching between both lines is quite good for all them (5.7(a),

(b) and (c)). Discrepancies may be due the commented specular reflection. And the fact that

there was not much light between 700 and 800 nm due to the LED lamp spectrum, which is con-

sistent with the fact that they are more relevant above 700 nm. Frequency response of the system

H(λ) = Y (λ)./X (λ), considering the spectrometer data as input X (λ), and the HSI measurement

as output Y (λ) is also plotted. By taking the mean of H(λ), HSI spectra can adequately be scaled

multiplying Y (λ) by 1/mean(H(λ)), as it has been done before plotting them. It can be seen

that the frequency response is pretty flat for all cases which indicates a good match between the

spectral information.

CHAPTER 5. SYSTEM CHARACTERIZATION AND EXPERIMENTS 67

(a)

(b)

(c)

Figure 5.7: (a) (b) and (c) show the spectral information of the red, blue and green squares re-
spectively, as obtained by the spectrometer and the HSI, see legend. In yellow, frequency re-
sponse, H, of the system is shown for all them.

Chapter 6

Discussion

A hyperspectral imaging system has been designed and built within this work, considering both

the hardware and software parts of the system. A high perfomance design has been achieved,

although it is not yet operative. The optical design is based on V. B. Voloshinov and Yukhnevich

(2012), and it uses an AOTF with improved reduction of optical side lobes, as stated by C Sted-

ham (2008). Its main features are the high spatial resolution it offers, and, its fast speed acquir-

ing images. Comparing with the work carried out in Ingvaldsen (2012), where it was affirmed

that the system could acquire 512 x 512 pixels images at a frame rate of 17 frames per second,

this system should get 2560 x 2160 pixels images at 49 frames per second. Besides, if hardware

triggering is implemented, a 100% duty cycle of the sensor can be provided, which optimizes

collection efficiency. This is important since illumination is a sensitive issue. Such an improve-

ment in performance is due to the high capabilities offered by the sCMOS camera. It must be

mentioned, that the HSI system designed in the mentioned Master Thesis (Ingvaldsen, 2012),

made use of a similar AOTF and driver provided by Gooch&Housego, and it presented the same

troubles. The instruments became unresponsive and the system could never worked properly.

There must be something wrong with those devices.

Joan Vila-Frances (2006) and Joan Vila-Frances (2010) also deals with building a HSI using

off-the-self components. Some of the techniques presented there to optimize the system, are

included or adapted in this work. When presenting performance, those articles do not consider

speed, instead, spectral and spatial domains are studied. Tests performed with our system, point

to a good performance regarding these aspects.

68

CHAPTER 6. DISCUSSION 69

As the system is not fully working yet, the first step should be make it operative. First, im-

plementing the software triggering (4.2.1) once the RF driver is available, as specified in Sec-

tion 4.2.1. The matlab code presented in Appendix C should serve as a starting point. Once this

is done, if it is considered to be beneficial, the system might be improved using hardware trigger-

ing, as pointed in 4.2.2. Professor Amund Skavhaug offered his support to design the actual im-

plementation. With the system operative, the tests described in Section 5 should be carried out

to assess its performance. Besides, the power optimization method should be integrated. In par-

ticular, a vector containing the optimal power for every wavelength might be stored as a *.mat

file and loaded when starting the application, for instance in callback acqui_CreateFcn().

After this first stage, other features may be included. When working with the borrowed sys-

tem from Gooch&Housego a few useful functionalities were discovered. The user should be able

to specify an exposure time for every wavelength, and it is highly desirable that these times can

be saved and load from a file, for instance a plain text file (*.txt): the first line of the file could

contain just the number of wavelengths (number of lines in the file - 1), then each line speci-

fies a wavelength and the exposure time to be applied when taking that frame (separated by an

space or comma).

An algorithm could be included to estimate optimal exposure time for each wavelength, i. e.

avoiding saturation to appear in the image. Joan Vila-Frances (2010) mentions: "The exposure

time is automatically adjusted to maximize the dynamic range of the sensor. A first image with

a short exposure time is acquired so that the software can analyze the histogram of the image

and estimate the optimal exposure time". A similar procedure may be studied. Also, an iterative

decision-directed algorithm may solve the problem: an image with a testing exposure time is

taken, depending on how far it is from being saturated, a new exposure time is selected. This is

done several times until a good enough result is obtained.

For certain medical applications, an image cube is not of interest, instead, it is necessary

to look repeteadly at certain wavelengths, which is not possible now. The application should

provide more freedom to choose a spectral profile. Again, being able to save and load this in-

formation from a file (for instance a text file *.txt) may be of interest. Not being this the most

common case, the user may be forced to introduce the data manually.

When analyzing the data, reflectance image is a key element. The User Interface could pro-

CHAPTER 6. DISCUSSION 70

vide support to acquire the three image cubes (data, grey/white standard and dark current) and

process them to obtain a reflectance HSI. For this purpose, a button called Reflectance can be

included. It must be clear for the user which target should place at each moment (grey, dark

current or object), for instance by displaying it in the status console. Finally, a tool that allows

to select an area within an image should work together with the ’Spectrum’ feature, so that, the

spectrum averaged over an area can be displayed. This task is performed in Appendix D.2 which

may be taken as a model to integrate the function in the GUI.

Chapter 7

Conclusion

This work has provided me with a good insight in different real-life troubles, that must be faced,

when it comes to design a system. Besides, I have learnt about programming, which is not

my field of expertise, and hyperspectral imaging, a really interesting topic that was completely

unknown for me before starting this work.

This document contains valuable information for anybody interested in building a hyper-

spectral imaging system. Important theoretical knowledge behind such a technology is intro-

duced in Chapter 2, and its translation to a real design is presented in the following chapter.

A User Interface was designed, that may serve as a model. Several improvements are already

proposed, that may be taken into account when designing a similar software. Also, the tests

proposed here are valid to assess the performance of any HSI system.

Finally, for that one who continues with the development of this system, useful information

including code and explanations about how to use MEX files and the API, is provided in the Ap-

pendices. All this, should help Lise L. Randeberg’s group to have an operative, high performance

HSI system in a near future.

71

Appendix A

Graphic User Interface: code

In this appendix, we present the code written to create the Graphical User Interface. In a first

section the Matlab code is presented, then the mex files, written in C and basic to control the

camera, are shown in a second section. More information about how to interface MEX files and

Matlab, and about the API used to control the camera can be found in AppendixB.

A.1 Matlab code

The main code of the User Interface is shown first. Then, the Matlab functions that are called

from the User Interface appear in the same order as they do in the code, each of them in a differ-

ent subsection whose title is the name of the function (and the file *.m without the extension).

But before a few details are explained to avoid its repetition as comments along the code. Every

function called:

1 function name_CreateFcn(hObject, eventdata, handles)

2 % hObject handle to name (see GCBO)

3 % eventdata reserved − to be defined in a future version of MATLAB

4 % handles structure with handles and user data (see GUIDATA)

is executed during object creation, after setting all properties. The example also describes the

meaning of the arguments hObject, eventdata and handles which remains the same all along the

code. Callbacks functions appear many times within the code, their sintaxis is name−C all back.

72

APPENDIX A. GRAPHIC USER INTERFACE: CODE 73

They are executed on user interaction with the element of the GUI they represent, or they can

be called as normal functions. Their arguments are hObject, eventdata and handles and they

have the same meaning as in the commented example. Further information about these and

other functions such as OpeningFcn or OutputFcn can be found at the Matlab documentation

(Mathworks, 2015).

A.1.1 userInterface

1 function varargout = userInterface(varargin)

2 % USERINTERFACE MATLAB code for userInterface.fig

3 % USERINTERFACE, by itself, creates a new USERINTERFACE or raises ...

the existing

4 % singleton*.

5 %

6 % H = USERINTERFACE returns the handle to a new USERINTERFACE or ...

the handle to

7 % the existing singleton*.

8 %

9 % USERINTERFACE('CALLBACK',hObject,eventData,handles,...) calls ...

the local

10 % function named CALLBACK in USERINTERFACE.M with the given input ...

arguments.

11 %

12 % USERINTERFACE('Property','Value',...) creates a new ...

USERINTERFACE or raises the

13 % existing singleton*. Starting from the left, property value ...

pairs are

14 % applied to the GUI before userInterface_OpeningFcn gets called. An

15 % unrecognized property name or invalid value makes property ...

application

16 % stop. All inputs are passed to userInterface_OpeningFcn via ...

varargin.

17 %

18 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

APPENDIX A. GRAPHIC USER INTERFACE: CODE 74

19 % instance to run (singleton)".

20 %

21 % See also: GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the response to help userInterface

24

25 % Last Modified by GUIDE v2.5 01−Jun−2015 16:32:19

26

27 % Begin initialization code − DO NOT EDIT

28 gui_Singleton = 1;

29 gui_State = struct('gui_Name', mfilename, ...

30 'gui_Singleton', gui_Singleton, ...

31 'gui_OpeningFcn', @userInterface_OpeningFcn, ...

32 'gui_OutputFcn', @userInterface_OutputFcn, ...

33 'gui_LayoutFcn', [] , ...

34 'gui_Callback', []);

35 if nargin && ischar(varargin{1})

36 gui_State.gui_Callback = str2func(varargin{1});

37 end

38

39 if nargout

40 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

41 else

42 gui_mainfcn(gui_State, varargin{:});

43 end

44 % End initialization code − DO NOT EDIT

45

46

47 % −−− Executes just before userInterface is made visible.

48 function userInterface_OpeningFcn(hObject, eventdata, handles, varargin)

49 % This function has no output args, see OutputFcn.

50 % Choose default command line output for userInterface

51 handles.output = hObject;

52

53 % Update handles structure

54 guidata(hObject, handles);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 75

55

56

57 % −−− Outputs from this function are returned to the command line.

58 function varargout = userInterface_OutputFcn(hObject, eventdata, handles)

59 % Get default command line output from handles structure

60 varargout{1} = handles.output;

61

62

63 % −−− Executes during object creation, after setting all properties.

64 function acqui_CreateFcn(hObject, eventdata, handles)

65 exposure_time = 0.001;

66 % Open the camera. Evalc allows us to get the "mexprintf(" ");" comments

67 % inside the mex file

68 message = evalc('[Hndl, fail] = mOpenCamera(exposure_time);');

69 if fail == 0

70 action = 'on';

71 status = cooling(Hndl, action); % activate the cooling mechanism

72 setappdata(hObject,'Hndl',Hndl); % store the handle to camera as ...

application data

73 end

74 setappdata(hObject,'message',message);

75

76

77

78 % −−− Executes during object deletion, before destroying properties.

79 function acqui_DeleteFcn(hObject, eventdata, handles)

80 Hndl = getappdata(handles.acqui, 'Hndl');

81 resul = mCloseCamera(Hndl); % when the GUI is closed, the camera must ...

be closed

82

83 % −−− Executes on button press in acqui.

84 function acqui_Callback(hObject, eventdata, handles)

85 % this is an important function as it allows to acquire a hyperspectral ...

image

86 % the wavelengths are specified through the buttons list or range

87 % it must show the HSI

APPENDIX A. GRAPHIC USER INTERFACE: CODE 76

88

89 list_o_rang = get(handles.list_o_rango, 'Value');

90 % check if we are defining the wavelength range with list or range

91 if list_o_rang == 0

92 % We define the wavelength with the list

93 contents = cellstr(get(handles.list,'String'));

94 selection = get(handles.list,'Value');

95 for i = 1:length(selection)

96 wavelen_string{i} = contents{selection(i)}(1:3);

97 wavelengths(i) = str2double(wavelen_string{i});

98 end

99

100 %Now we have a vector wavelengths with the lambdas that we want ...

(double)

101 %and another with that number shown as a string

102 else

103 % We define the wavelength with the range

104 lamb_start = str2double(get(handles.lamb_start,'String'));

105 lamb_end = str2double(get(handles.lamb_end,'String'));

106 lamb_step = str2double(get(handles.lamb_step,'String'));

107 wavelengths = [lamb_start:lamb_step:lamb_end];

108 end

109

110 % the power of the sound wave can be changed as well

111 mPow = get(handles.power, 'String');

112 if mPow(length(mPow))=='%'

113 mPow = str2double(mPow(1:length(mPow)−1));
114 else

115 mPow = str2double(mPow);

116 end

117

118 % if there is ROI information is not relevant anymore

119 if isappdata(hObject, 'ROI')==1

120 rmappdata(hObject, 'ROI');

121 end

122

APPENDIX A. GRAPHIC USER INTERFACE: CODE 77

123 % get handle to camera and show cooler status

124 Hndl = getappdata(handles.acqui, 'Hndl');

125 message = getappdata(handles.acqui, 'message');

126 set(handles.Console,'String', message);

127 cooler_Callback(handles.cooler,[],handles);

128

129 %frequency in (MHz)

130 frequencies = (sqrt(sin(200./wavelengths)+1)).^(10.55)*20.91950466;

131 Nlam = length(wavelengths);

132 Nlam = Nlam+1; % Nlam +1 because of the Background image

133

134 % Allocating memory for the image cube and returned vectors. It speeds up

135 HSI = uint16(0);

136 HSI(2560,2162,Nlam)=0;

137 dimensions = uint32(0);

138 dimensions(1,7)=0;

139 timestamps = uint64(0);

140 timestamps(1,Nlam)=0;

141

142 if strcmp(get(handles.triggering_mode, 'String'), 'Software')

143 [dimensions, HSI, timestamps] = mGetHSISoftware(Hndl, wavelengths);

144 else

145 % Here the Hardware triggering procedure could be implemented

146 end

147

148 if HSI 6= 0

149 % We store the image cube and its wavelengths info

150 setappdata(hObject, 'HSI', HSI);

151 setappdata(hObject,'wavelengths',wavelengths);

152

153 % Depending on the number of pictures acquired the number of shown ...

frames

154 % will vary. It is because the displayed image looks better

155 len = length(wavelengths);

156 fin_display = finDisplay(len);

157 list_images = num2cell(wavelengths);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 78

158 list_images{1, length(wavelengths)+1} = 'Background';

159 set(handles.sel_pict, 'Value', 1); % Value must be in range

160 set(handles.sel_pict, 'String', list_images);

161 value = [1:fin_display];

162 set(handles.sel_pict, 'Value', value);

163

164 % Function to show several frames in the axis

165 show_pict_Callback(handles.show_pict, [], handles);

166 else

167 set(handles.Console,'String','HSI was not acquired!!')

168 end

169

170

171 % −−− Executes on button press in liveView.

172 function liveView_Callback(hObject, eventdata, handles)

173 % This will usually be the first button the user presses. To focus the

174 % camera and point to the target. Live video should be displayed

175

176 test = get(hObject, 'String');

177 if strcmpi(test,'Live View')==1 % check if preview is ON

178 %Activate preview

179 list_o_rang = get(handles.list_o_rango, 'Value');

180 if list_o_rang == 0

181 % We define the wavelength with the list

182 contents = cellstr(get(handles.list,'String'));

183 selection = get(handles.list,'Value');

184 wavelen_string{1} = contents{selection(1)}(1:3);

185 wavelength = str2double(wavelen_string{1});

186 else

187 % We define the wavelength with the range

188 wavelength = str2double(get(handles.lamb_start,'String'));

189 end

190 mPow_str = get(handles.power, 'String');

191 if mPow_str(length(mPow_str))=='%'

192 mPow = str2double(mPow_str(1:length(mPow_str)−1));
193 else

APPENDIX A. GRAPHIC USER INTERFACE: CODE 79

194 mPow = str2double(mPow_str);

195 end

196 % CHECK

197 % AOTF

198 % [ser]=initAOTF(mPow);

199 % set(handles.Console,'String','AOTF and CAM initialized');

200

201 %set frequency

202 % liveflag = 0; channel = 6;

203 % freq = Lam2Freq(wavelength);

204 % [chFRhex] = GetChRF(liveflag, channel, freq, mPow); %%% MPOW ...

SHOULD BE AMPLITUDE. CHECK

205 % [out] = sendHex2RF(ser,chFRhex);

206

207 if isappdata(hObject, 'ROI')==1

208 rmappdata(hObject, 'ROI'); % the data from a former ROI is not ...

relevant anymore

209 end

210 Hndl = getappdata(handles.acqui, 'Hndl'); % get the handle for camera

211 message = getappdata(handles.acqui, 'message');

212 set(handles.Console,'String', message);

213 cooler_Callback(handles.cooler,[],handles); % show cooler status

214

215 % Change the button string to Stop Preview, it will change the

216 % behaviour of the callback next time it's pressed

217 set(hObject,'FontSize',10);

218 set(hObject,'String','Stop Preview');

219

220

221 axes(handles.display);

222 set(handles.display,'Position', [66 11.385 144 65.4615]);

223 set(handles.display, 'ButtonDownFcn', {@display_ButtonDownFcn, ...

handles});

224

225 resul = mSetLiveView(Hndl); % camera settings previous to LiveView

226 if resul == 1

APPENDIX A. GRAPHIC USER INTERFACE: CODE 80

227 HSI = uint16(0);

228 HSI(2560,2160)=0; % allocating memory for the frame

229 dimensions=uint32([2160 2560 11059200]); % setting the dimensions

230 %of the frame that will be acquired

231

232 % Loop: a frame is obtained and shown until Stop Preview is pressed

233 while strcmp(get(hObject,'String'), 'Stop Preview')==1

234 tic,

235 message = evalc('HSI = mGetFrameLiveView(Hndl, dimensions);')

236 handles.display = imshow(imadjust(HSI));

237 drawnow;

238 toc

239 % tic, toc shows in console the time required to execute the

240 % sequence between tic and toc. I've used it to optimize speed

241 % many times. It is left here as a reminder: the LiveView

242 % function can probably be optimized through "Circular Buffers"

243 % as explained.

244 end

245 end

246

247 else % Stop Preview (not Live View) has been pressed

248 Hndl = getappdata(handles.acqui, 'Hndl');

249 resul = mStopLiveView(Hndl);

250 set(handles.Console,'String','Closed AOTF. Stopped preview');

251 set(hObject,'FontSize',13);

252 set(hObject,'String','Live View');

253 end

254

255

256 function lamb_start_Callback(hObject, eventdata, handles)

257 % Validate that the text in the lamb_start field converts to a real number

258 lamb_start = str2double(get(hObject,'String'));

259 if isnan(lamb_start) || ¬isreal(lamb_start) || lamb_start < 400 || ...

lamb_start > 1000

260 % isdouble returns NaN for non−numbers and lamb_start cannot be complex

261 % Disable the Acquire button and explain why in the GUI console

APPENDIX A. GRAPHIC USER INTERFACE: CODE 81

262 set(hObject,'String','Error')

263 set(handles.acqui,'Enable','off')

264 set(handles.Console,'String','Start must be a number between 400 ...

and 1000')

265 % Give the edit text box focus so user can correct the error

266 uicontrol(hObject)

267 else

268 % Enable the Acquire button with its original name

269 set(handles.acqui,'Enable','on')

270 uicontrol(handles.lamb_end)

271 end

272

273

274 function lamb_end_Callback(hObject, eventdata, handles)

275 % Validate that the text in the lamb_end field converts to a real number

276 lamb_end = str2double(get(hObject,'String'));

277 if isnan(lamb_end) || ¬isreal(lamb_end) || lamb_end < 400 || lamb_end > ...

1000

278 % isdouble returns NaN for non−numbers and lamb_start cannot be complex

279 % Disable the Acquire button and explain why in the GUI console

280 set(hObject,'String','Error')

281 set(handles.acqui,'Enable','off')

282 set(handles.Console,'String','End must be a number between 400 and ...

1000')

283 % Give the edit text box focus so user can correct the error

284 uicontrol(hObject)

285 else

286 % Enable the Acquire button with its original name

287 set(handles.acqui,'Enable','on')

288 uicontrol(handles.lamb_step)

289 end

290

291

292 function lamb_step_Callback(hObject, eventdata, handles)

293 lamb_step = str2double(get(hObject,'String'));

APPENDIX A. GRAPHIC USER INTERFACE: CODE 82

294 if isnan(lamb_step) || ¬isreal(lamb_step) || lamb_step < 0 || lamb_step ...

> 1000

295 % isdouble returns NaN for non−numbers and lamb_start cannot be complex

296 % Disable the Plot button and explain why in the GUI console

297 set(hObject,'String','Error')

298 set(handles.acqui,'Enable','off')

299 set(handles.Console,'String','Step must be a number between 400 and ...

1000')

300 % Give the edit text box focus so user can correct the error

301 uicontrol(hObject)

302 else

303 % Enable the Plot button with its original name

304 set(handles.acqui,'Enable','on')

305 uicontrol(handles.acqui);

306 end

307

308

309 % −−− Executes on button press in list_o_rango.

310 function list_o_rango_Callback(hObject, eventdata, handles)

311 % selects if the wavelenghts vector is defined as a list or a range

312 state = get(hObject, 'Value');

313 if state == 0

314 % List mode enabled

315 set(hObject,'String','List');

316 set(handles.lamb_start,'Enable','off');

317 set(handles.lamb_end,'Enable','off');

318 set(handles.lamb_step,'Enable','off');

319 set(handles.list,'Enable','on');

320 else

321 % Range input enabled

322 set(hObject,'String','Range');

323 a = double.empty(1,0);

324 set(handles.list,'Value', a); %we take out the selection

325 set(handles.list,'Enable','off');

326 set(handles.lamb_start,'Enable','on');

327 set(handles.lamb_end,'Enable','on');

APPENDIX A. GRAPHIC USER INTERFACE: CODE 83

328 set(handles.lamb_step,'Enable','on');

329 end

330

331

332 function power_Callback(hObject, eventdata, handles)

333 %This callback should allow to change the power

334 % of the signal generated by the driver (not finished)

335

336 power_str = get(hObject,'String');

337 % Value of power is get no matter if symbol % is typed or not

338 if power_str(length(power_str))=='%'

339 power = str2double(power_str(1:length(power_str)−1));
340 else

341 power = str2double(power_str);

342 end

343

344 if isnan(power) || ¬isreal(power) || power > 100

345 % isdouble returns NaN for non−numbers and lambda cannot be complex

346 % Disable the Plot button

347 set(hObject,'String','Error');

348 set(handles.liveView,'Enable','off');

349 % Give the edit text box focus so user can correct the error

350 uicontrol(hObject)

351 else

352 % Enable the Plot button with its original name

353 set(handles.liveView,'Enable','on');

354 power_str = strcat(num2str(power), '%');

355 set(hObject,'String',power_str)

356

357 wavelength = str2double(get(handles.liveV_wavelength,'String'));

358

359 path_root = get(handles.path_STARTING_POINT, 'UserData');

360 path = [path_root '\ser.mat'];

361 load(path);

362

363 % %set frequency CHECK

APPENDIX A. GRAPHIC USER INTERFACE: CODE 84

364 % liveflag = 0; channel = 6;

365 % freq = Lam2Freq(wavelength);

366 % [chFRhex] = GetChRF(liveflag, channel, freq, power); %%% MPOW ...

SHOULD BE AMPLITUDE. CHECK

367 % [out] = sendHex2RF(ser,chFRhex);

368 end

369

370

371 % −−− Executes during object creation, after setting all properties.

372 function Console_CreateFcn(hObject, eventdata, handles)

373 % This is a small console where info can be shown

374 if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

375 set(hObject,'BackgroundColor',[0.9 0.9 0.9]); %that is grey color

376 end

377 set(hObject,'String','Remember to turn on Camera and AOTF');

378

379

380 % −−− Executes on button press in restart.

381 function restart_Callback(hObject, eventdata, handles)

382 % Camera is closed and opened again, AOTF should be as well

383 mModifiedCloseCamera();

384 acqui_CreateFcn(handles.acqui, [], handles)

385 %Here AOTF

386 %

387 %

388

389

390 % −−− Executes on button press in subs.

391 function subs_Callback(hObject, eventdata, handles)

392 % The Background frame is substracted to all the others. Its behaviour

393 % changes if we press again the button: Add Bkg

394 HSI = getappdata(handles.acqui, 'HSI');

395 %HSI without substracting is kept in case operation must be undone

396 setappdata(handles.acqui, 'undo', HSI);

397

APPENDIX A. GRAPHIC USER INTERFACE: CODE 85

398 wavelengths = getappdata(handles.acqui, 'wavelengths');

399

400 if wavelengths==0 % if wavelengths is empty so is HSI

401 set(handles.Console, 'String', 'You must load an HSI first');

402 else

403 Nlam = length(HSI(1,1,:));

404

405 if strcmp(get(hObject, 'String'), 'Subs Bkg')%substraction

406 for i=1:Nlam−1
407 HSI(:,:,i) = (HSI(:,:,i)−HSI(:,:,Nlam));
408 end

409 set(hObject, 'String', 'Add Bkg'); % behaviour can be changed

410 else

411 for i=1:Nlam−1
412 HSI(:,:,i) = (HSI(:,:,i)+HSI(:,:,Nlam));%adding

413 end

414 set(hObject, 'String', 'Subs Bkg');

415 end

416

417 setappdata(handles.acqui, 'HSI', HSI);

418

419 show_pict_Callback(handles.show_pict, [], handles);% show it

420 end

421

422

423 % −−− Executes on button press in show_pict.

424 function show_pict_Callback(hObject, eventdata, handles)

425 % It shows the current HSI or the current ROI

426 axes(handles.histH); cla reset; set(handles.histH,'Visible', 'off');

427 axes(handles.histV); cla reset; set(handles.histV,'Visible', 'off');

428 axes(handles.display); cla reset; % axes must be resets

429

430 % get the current HSI or ROI(if any)

431 if isappdata(handles.acqui, 'ROI') == 0

432 HSI = getappdata(handles.acqui,'HSI');

433 wavelengths = getappdata(handles.acqui,'wavelengths');

APPENDIX A. GRAPHIC USER INTERFACE: CODE 86

434 else

435 ROI = getappdata(handles.acqui,'ROI');

436 HSI = ROI.little_img;

437 wavelengths = ROI.wavelengths;

438 end

439

440

441 if wavelengths==0 % if wavelengths is empty so is HSI now

442 set(handles.Console, 'String', 'You must load or take a HSI first');

443 else

444 % only the selected frames in the listbox are shown

445 contents = cellstr(get(handles.sel_pict,'String'));

446 selection = get(handles.sel_pict,'Value');

447 wavelengths = 0;

448 for i = 1:length(selection)

449 wavelengths(i) = str2double(contents{selection(i)});

450 selected(:,:,i) = HSI(:,:, selection(i));

451 end

452

453 if length(selection) == 1 % if there is only one frame to show

454 %we just use the matlab function imshow

455 set(handles.display,'Position', [66 11.385 144 65.4615]);

456 selected = imadjust(squeeze(selected));

457

458 axes(handles.display);

459 handles.display = imshow(selected);

460 pixelInfo = impixelinfo(handles.display);

461 set(pixelInfo,'Position', [180 100 150 23]);

462

463 % if we are showing only one frame, its stored as Selected frame

464 % to be used if pixel Histogram is required

465 set(handles.roi,'Enable', 'on');

466 setappdata(handles.acqui,'Selected_frame', selected);

467

468 set(handles.display, 'ButtonDownFcn', {@display_ButtonDownFcn, ...

handles});

APPENDIX A. GRAPHIC USER INTERFACE: CODE 87

469

470 else % if there are more than one we call our function showImages

471 set(handles.display,'Position', [−0.2 5.154 268.2 71.77]);

472

473 axes(handles.display);

474 handles.display = showImages(selected);

475

476 if isappdata(handles.acqui, 'Selected_frame')

477 rmappdata(handles.acqui, 'Selected_frame');

478 end

479 end

480

481 end

482

483

484 % −−− Executes on mouse press over axes background.

485 function display_ButtonDownFcn(hObject, eventdata, handles)

486 % Histogram of the pixel the user clicks on is shown in new axes

487 if isappdata(handles.acqui, 'Selected_frame')

488 % Get the single frame shown (not a montage of several frames)

489 frame = getappdata(handles.acqui, 'Selected_frame');

490

491 axesHandle = get(hObject,'Parent');

492 coordinates = get(axesHandle,'CurrentPoint'); % get coordinates

493 coordinates = round(coordinates(1,1:2));

494

495 set(handles.histH,'Visible', 'on'); % enable histH and histV axis

496 set(handles.histV,'Visible', 'on');

497

498 % Get the data of the full row and column the pixel belongs to

499 H_plot = [];

500 V_plot = [];

501 H_plot = double(frame(coordinates(2), :))./65535;

502 V_plot = double(frame(:, coordinates(1)))./65535;

503

504 % Plot them

APPENDIX A. GRAPHIC USER INTERFACE: CODE 88

505 H = [1:length(H_plot)];

506 axes(handles.histH);

507 plot(H, H_plot, 'LineStyle', '−', 'Color', [1 0.5 0]);

508 axis([0 2160 0 1])

509 set(handles.histH,'Color', [0.9 0.9 0.9]);

510

511 V = [1:length(V_plot)];

512 axes(handles.histV);

513 plot(V_plot, V, 'LineStyle', '−', 'Color', [1 0.5 0]);

514 axis([0 1 0 2560])

515 set(handles.histV,'Color', [0.9 0.9 0.9]);

516 end

517

518 % −−− Executes on button press in roi.

519 function roi_Callback(hObject, eventdata, handles)

520 % It allows to select a region of interest in the acquired HSI

521

522 % Get the data we are going to work with

523 HSI = getappdata(handles.acqui,'HSI');

524 wavelengths = getappdata(handles.acqui,'wavelengths');

525 if isappdata(handles.acqui,'ROI')

526 HSI = getappdata(handles.acqui,'ROI');

527 HSI = HSI.little_img;

528 end

529 if isappdata(handles.acqui,'Selected_frame')

530 img = getappdata(handles.acqui,'Selected_frame');

531 else

532 img(:,:) = imadjust(squeeze(HSI(:,:,1)));

533 set(handles.sel_pict, 'Value', 1);

534 end

535

536 if wavelengths 6= 0 % if wavelengths is not empty

537 axes(handles.display);

538 mask = roipoly(img); % draw the ROI

539 % Get coordinates of ROI and define a small rectangle including the ROI

540 [row col] = find(mask);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 89

541 xmin = col(1);

542 xmax = col(length(col));

543 ymin = min(row);

544 ymax = max(row);

545

546 umask = ¬mask;
547

548 Nlam = length(wavelengths)+1;

549 % Prepare the mask to filter and keep only the ROI

550 little_mask = mask(ymin:ymax, xmin:xmax);

551 little_umask = ¬little_mask;
552 % allocate memory for the small image that will

553 % contain the ROI of the normal image

554 little_img = zeros(ymax−ymin+1, xmax−xmin+1, Nlam, 'uint16');

555

556 % Filter

557 for i=1:Nlam

558 little_img(:,:,i) = HSI(ymin:ymax, xmin:xmax, i);

559 low(i) = min(min(little_img(:,:,i)));

560

561 h=[0]; %%%CHECK Useful code to filter ROI

562 little_img(:,:,i) = roifilt2(h, squeeze(little_img(:,:,i)), ...

little_umask);

563 % [row col] = find(little_img(:,:, 1, i));

564 % for k=1:length(col)

565 % pixels_in_ROI(k) = little_img(row(k),col(k), 1, i);

566 % end

567 high(i) = max(max(little_img(:,:,i)));

568 % h=[1]; %%% Useful code to filter ROI

569 % img(:,:,1,i) = roifilt2(h, img(:,:,1,i), mask);

570 end

571 % Store parameters associated to ROI as a struct

572 ROI = struct('HSI', HSI, 'wavelengths', wavelengths, 'mask', mask, ...

'little_img', little_img, 'little_mask', little_mask);

573 setappdata(handles.acqui,'ROI', ROI);

574

APPENDIX A. GRAPHIC USER INTERFACE: CODE 90

575 show_pict_Callback(handles.show_pict, [], handles);% show the ...

filtered images

576 else % if there are none or more than one frames selected (shown)

577 set(handles.Console, 'String', 'You must load an HSI first, and ...

select one frame!');

578 end

579

580

581 % −−− Executes on button press in full_Image.

582 function full_Image_Callback(hObject, eventdata, handles)

583 % After defining a ROI this function allows us to come back to the original

584 % full size image: by deleting the ROI information, show_pict does the rest

585 if isappdata(handles.acqui, 'ROI')

586 rmappdata(handles.acqui, 'ROI');

587 end

588 if isappdata(handles.acqui, 'Seleceted_frame')

589 rmappdata(handles.acqui, 'Seleceted_frame');

590 end

591 show_pict_Callback(handles.show_pict, [], handles);

592

593

594 % −−− Executes on button press in cooler.

595 function cooler_Callback(hObject, eventdata, handles)

596 % this function gets the status of the cooling function from the camera and

597 % display it on the cool_status

598 Hndl = getappdata(handles.acqui, 'Hndl');

599 action = 'get';

600 message = evalc('status = cooling(Hndl, action);');

601 set(handles.cool_status, 'String', '............');

602 pause(0.1);

603 set(handles.cool_status, 'String', status);

604 set(handles.Console, 'String', message);

605

606

607 % −−− Executes during object creation, after setting all properties.

608 function path_starting_point_CreateFcn(hObject, eventdata, handles)

APPENDIX A. GRAPHIC USER INTERFACE: CODE 91

609 %We need to have a .mat file with a string variable called ...

path_STARTING_POINT

610 %Then we store it as a property of path_STARTING_POINT and we can get it.

611 path = ...

'C:\Users\vnir1600\Documents\MATLAB\Variables\path.mat';%%%CRITIC ...

PATH POINT

612 load(path);

613 set(hObject,'UserData', path);

614

615 % −−− Executes on button press in path_starting_point.

616 function path_starting_point_Callback(hObject, eventdata, handles)

617 %Store the current path_STARTING_POINT in the property UserData so that ...

we can get it.

618 %If user presses this button, new path_STARTING_POINT will be selected

619 path = uigetdir();

620 if path 6= 0

621 cd(path);

622 path_variable = [path '\path.mat']

623 save(path_variable, 'path');

624 set(hObject,'UserData', path);

625 end

626

627

628 % −−− Executes on button press in pixelRegion.

629 function pixelRegion_Callback(hObject, eventdata, handles)

630 % it allows to use Matlab functionality impixelregion to have

631 % a closer look at the pixels of an image

632 pixelRegion = impixelregion(handles.display);

633 set(pixelRegion,'Position', [1280 10 600 360]);

634

635

636 % −−−−−Executed if user presses save icon (in the top left)−−−−−−−−
637 function save_icon_ClickedCallback(hObject, eventdata, handles)

638 % Saves a HSI as .mat file to harddrive it takes some time, it provides an

639 % standard name but the user can change it

640

APPENDIX A. GRAPHIC USER INTERFACE: CODE 92

641 % Get an standard name: HSimag + date

642 id_time = timeString(1);

643 path_ima = get(handles.path_starting_point, 'UserData');

644 Images_string = '\Images ';

645 path_ima(35:44)=Images_string(1:10);

646 path = strcat(path_ima, '\HSimag', id_time,'.mat');

647 if exist(path, 'file') == 2 % if we take HSI in the same minute they ...

will have the same name and

648 path = strcat(path_ima, '\HSimag', id_time,'a','.mat');

649 if exist(path, 'file') == 2 % we would overwrite the last one. With ...

this code that is avoided

650 path = strcat(path_ima, '\HSimag', id_time,'b','.mat');

651 if exist(path, 'file') == 2

652 path = strcat(path_ima, '\HSimag', id_time,'c','.mat');

653 end

654 end

655 end

656 % Let the user choose if he wants the standard or another

657 [FileName,PathName] = uiputfile(' ', 'Select a file to save HSI in: ', ...

path);

658 if ischar(FileName) && ischar(PathName)

659 HSI = getappdata(handles.acqui,'HSI');

660 wavelengths = getappdata(handles.acqui,'wavelengths');

661 path = [PathName FileName];

662 save(path, 'HSI', 'wavelengths');

663 set(handles.Console,'String', 'HSI stored');

664 else

665 set(handles.Console,'String', 'You must select a valid path');

666 save_icon_ClickedCallback(hObject, [], handles);

667 end

668

669

670 % −−−−−Executed if user presses open icon (in the top left)−−−−−−−−
671 function open_icon_ClickedCallback(hObject, eventdata, handles)

672 % it allows to open a HSI stored as .mat file, it first open the "usual"

673 % folder but the user can choose

APPENDIX A. GRAPHIC USER INTERFACE: CODE 93

674 path_root = get(handles.path_starting_point, 'UserData');

675 Images_string = '\Images ';

676 path_root(35:44) = Images_string(1:10);

677

678 [file path] = uigetfile('*.mat', 'Select HyperSpectral Image', path_root);

679 if ischar(file) && ischar(path)

680 path = strcat(path, file);

681 load(path);

682

683 if isappdata(hObject, 'ROI')==1

684 rmappdata(hObject, 'ROI');

685 end

686 setappdata(handles.acqui, 'HSI', HSI);

687 setappdata(handles.acqui,'wavelengths',wavelengths);

688

689 % We update the List Box with the images and call show_pict_Callback

690 len = length(wavelengths);

691 fin_display = finDisplay(len);

692 list_images = num2cell(wavelengths);

693 list_images{1, length(wavelengths)+1} = 'Background';

694 set(handles.sel_pict, 'Value', 1); % Value must be in range

695 set(handles.sel_pict, 'String', list_images);

696 value = [1:fin_display];

697 set(handles.sel_pict, 'Value', value);

698

699 show_pict_Callback(handles.show_pict, [], handles)

700 else

701 set(handles.Console,'String', 'You must select a valid file');

702 open_icon_ClickedCallback(hObject, [], handles);

703 end

704

705

706 % −−− Executes on button press in spectrum.

707 function spectrum_Callback(hObject, eventdata, handles)

708 % If User has selected one or several pixels, their spectrum (the value of

709 % the pixel for the different frames is plotted.

APPENDIX A. GRAPHIC USER INTERFACE: CODE 94

710 content = get(handles.list_pix,'String');

711 if ¬strcmp(content, 'Select first ^')

712 if isappdata(handles.acqui, 'Selected_frame')

713 rmappdata(handles.acqui, 'Selected_frame'); % so that it doesnt ...

fail if we click select again

714 end

715

716 selected = get(handles.list_pix,'Value');

717 row_col = get(handles.list_pix, 'UserData');

718 for i=1:length(selected)

719 row(i) = row_col.row(selected(i));

720 col(i) = row_col.col(selected(i));

721 end

722

723 if ¬isempty(row) && ¬isempty(col)
724 HSI = getappdata(handles.acqui, 'HSI');

725 wavelengths = getappdata(handles.acqui, 'wavelengths');

726

727 for i=1:length(selected) % get spectrum

728 spectrum(i,:) = HSI(row(i), col(i), :);

729 %spectrum2(i,:) = HSI(:, col(i), row(i));

730 end

731 axes(handles.display); cla reset; % axes must be reset

732

733 % Plot all the spectrums

734 axes(handles.display);

735 for i=1:length(selected)

736 plot(wavelengths, spectrum(i,1:length(wavelengths)));

737 hold on

738 end

739 axis('fill');

740 end

741 end

742

743

744 % −−− Executes on button press in select_pixels.

APPENDIX A. GRAPHIC USER INTERFACE: CODE 95

745 function select_pixels_Callback(hObject, eventdata, handles)

746 % User can select some pixel in a frame to after that plot their spectrum.

747 % Requires that there is only one frame shown

748 % (to make possible the pixel selection).

749

750 axes(handles.display);

751

752 if isappdata(handles.acqui, 'Selected_frame')

753

754 frame = getappdata(handles.acqui, 'Selected_frame');

755

756 [col row ¬] = impixel();

757

758 for i=1:length(col)

759 list {1, i} = ['(' num2str(row(i)) ', ' num2str(col(i)) ')'];

760 end

761

762 set(handles.list_pix, 'Value', 1); % Value must be in range

763 set(handles.list_pix, 'String', list);

764 row_col = struct('row', row, 'col', col);

765 set(handles.list_pix, 'UserData', row_col);

766 else

767 set(handles.Console, 'String', 'You must have a single frame first');

768 end

769

770

771 % −−− Executes on button press in triggering_mode.

772 function triggering_mode_Callback(hObject, eventdata, handles)

773 % It allows to select the triggering mode

774 string = get(hObject, 'String');

775 if strcmp(string,'Software') == 1

776 set(hObject,'String','Hardware');

777 else

778 set(hObject,'String','Software');

779 end

780

APPENDIX A. GRAPHIC USER INTERFACE: CODE 96

781 function exposureTime_Callback(hObject, eventdata, handles)

782 Hndl = getappdata(handles.acqui, 'Hndl');

783 exposure_time = get(hObject, 'String');

784 set(hObject, 'String', '.....');

785 pause(0.1);

786 exposure_time = str2double(exposure_time);

787 message = evalc('[resul, exp_applied] = mExposureTime(Hndl, ...

exposure_time);');

788 set(hObject, 'String', num2str(exp_applied));

789 set(handles.Console, 'String', message);

A.1.2 cooling

1 %% COOLING

2

3 function [status] = cooling(handle, action)

4 % Action may be:

5 % 'on' or 1: it means that we turn on the cooling

6 % 'off' or 0: it means that we turn off the cooling

7 % 'get' or 2: we get the actual status

8 % handle is the handle to the camera

9 % status is the output. A string obtained from mCooling.

10

11 if (strcmp(action, 'on'))

12 action = 1;

13 end

14 if (strcmp(action, 'off'))

15 action = 0;

16 end

17 if (strcmp(action, 'get'))

18 action = 2;

19 end

20

21 if (action 6= 1 & action 6= 0 & action 6= 2)

APPENDIX A. GRAPHIC USER INTERFACE: CODE 97

22 disp('WARNING! Wrong input "action" ');

23 else

24 status = mCooling(handle, action);

25 end

26 end

A.1.3 finDisplay

1 function [fin_display] = finDisplay(len)

2 % Returns how many images should be shown to avoid black squares

3 % on the montaged image. Its logic is based on testing how the montaged

4 % image looks like for n frames, and using instead k frames (with k as

5 % close as possible to n)

6 % len should be the number of frames in the HSI

7 fin_display = len;

8

9 if (len == 3 || len == 4)

10 fin_display = 2;

11 end

12 if (len == 5 || len == 7 || len == 11 || len == 14 || len == 19)

13 fin_display = len + 1; %we show the background too

14 end

15 if (len == 9 || len == 10)

16 fin_display = 8;

17 end

18 if (len == 13)

19 fin_display = 12;

20 end

21 if (len == 16 || len == 17 || len == 18)

22 fin_display = 15;

23 end

24 if (len>20)

25 fin_display = 20;

26 end

APPENDIX A. GRAPHIC USER INTERFACE: CODE 98

27 end

A.1.4 showImages

1 % showImages

2 function [handler] = showImages(HSI)

3

4 % INPUT:

5 % HSI − we need the Hyperspectral image

6 % OUTPUT:

7 % handler to the montaged Image

8

9 Nlam = length(HSI(1,1,:));

10 % Match our HSI with the format required by montage

11 for i=1:Nlam

12 aux(:,:,1,i) = HSI(:,:,i);

13 aux(:,:,1,i) = imadjust(aux(:,:,1,i));

14 end

15 handler = montage(aux); %call montage

16 end

A.1.5 timeString

1 % timeString(hyphen)

2 function [id_time] = timeString(hyphen)

3 % it gets the system time and converts it to a string suitable to be the

4 % name of a file or variable

5

6 % Hyphen: if we want a hyphen or we need that it only has underscores

7 % (variables can't contain hyphen in the name, but .mat files can)

8

9 clk = clock;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 99

10 id_tim = num2str([clk(2) clk(3) clk(4) clk(5)]);

11 len = length(id_tim);

12

13 k=0;

14 for h=1:3

15 for i=1:len

16 if id_tim(i)==' '

17 if id_tim(i+1)==' '

18 id_tim(i:len−1) = id_tim(i+1:len);

19 k=k+1;

20 end

21 end

22 end

23 end

24

25 j=0;

26 for i = 1:len−k+1
27 if id_tim(i)==' ' && j 6=1

28 id_tim(i)='−';
29 j=1;

30 end

31 if id_tim(i)==' ' && j==1

32 id_tim(i)='_';

33 j=2;

34 end

35 end

36 espacio = ' ';

37 id_tim(len−k+1:len) = espacio(1:k);

38 id_time(1:len−k) = id_tim(1:len−k);
39 if hyphen == 0

40 for i=1:length(id_time)

41 if id_time(i)=='−'
42 id_time(i)='_';

43 end

44 end

45 end

APPENDIX A. GRAPHIC USER INTERFACE: CODE 100

46 end

A.2 Mex files

All the mex files are shown here, in the same order as they appear in the code in the former

section. Again, for each mex file (or mex function) there is a subsection whose title is the name

of the mex file.

A.2.1 mOpenCamera

1 /***

2 * [double handle, double warning] = mOpenCamera(double *exposure_time);

3 *

4 * Output: it provides a handle to camera

5 *

6 * Open the camera, enable cooling and get the serial number.

7 **/

8 #include <matrix.h>

9 #include <mex.h>

10 #include "atcore.h"

11 #include <iostream>

12 #include "stdlib.h"

13

14 using namespace std;

15

16 double openCamera(mxArray *out_Handle, double *exposure_time);

17

18 void mexFunction(int nlhs, mxArray *plhs[],

19 int nrhs, const mxArray *prhs[])

20 {

21 double *warning;

22

23 mxArray *out_Handle, *warning_out;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 101

24 double *exposure_time;

25

26 /* Get input*/

27 exposure_time = mxGetPr(prhs[0]);

28

29 /*Allocate memory for output*/

30 warning = static_cast<double *> (mxMalloc(sizeof(double)));

31

32 /*Prepare output*/

33 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

34 out_Handle = plhs[0];

35

36 /*Call openCamera (below)*/

37 warning[0] = openCamera(out_Handle, exposure_time);

38

39 /*output*/

40 plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);

41 warning_out = plhs[1];

42 mxSetPr(warning_out, warning);

43

44 }

45

46 double openCamera(mxArray *out_Handle, double *exposure_time){

47

48 int i_retCode;

49 double *d_Hndl;

50 double warning=0;

51

52 /*Initialise Library to control camera*/

53 i_retCode = AT_InitialiseLibrary();

54 if (i_retCode != AT_SUCCESS) {

55 mexPrintf("WARNING! Error initialising library");

56 warning = 1;

57 }

58 else {

59 AT_64 iNumberDevices = 0;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 102

60 i_retCode =AT_GetInt(AT_HANDLE_SYSTEM, L"Device Count", ...

&iNumberDevices);

61 if (iNumberDevices ≤ 0) {

62 mexPrintf("WARNING! No cameras detected");

63 warning = 1;

64 }

65 else {

66 AT_H Hndl;

67 /*Open camera and get handle*/

68 i_retCode = AT_Open(0, &Hndl);

69

70 /*Allocate memory for output and assign value*/

71 d_Hndl = static_cast<double *> (mxMalloc(sizeof(double)));

72 d_Hndl[0] = static_cast<double> (Hndl);//lo paso de AT_H a ...

double

73 mxSetPr(out_Handle, d_Hndl);

74

75 if (i_retCode != AT_SUCCESS) {

76 mexPrintf("WARNING! Error getting handle");

77 warning = 1;

78 }

79 else {

80 mexPrintf("Successfully initialised camera: ");

81

82 /*Set exposure time if camerra successfully intialised*/

83 i_retCode = AT_SetFloat(Hndl, L"ExposureTime", ...

*exposure_time);

84

85 /*Check if it has been succesfully set*/

86 double exp_time_applied;

87 i_retCode = AT_GetFloat(Hndl, L"ExposureTime", ...

&exp_time_applied);

88 if (*exposure_time != exp_time_applied){

89 warning = 1;

90 mexPrintf("WARNING!! ");

91 }

APPENDIX A. GRAPHIC USER INTERFACE: CODE 103

92

93 /*Enable metadata*/

94 i_retCode = AT_SetBool(Hndl, L"MetadataEnable", 1);

95 i_retCode = AT_SetBool(Hndl, L"MetadataTimestamp", 1);

96

97 /*Serial Number*/

98 AT_WC serialnumber[64];

99 i_retCode = AT_GetString(Hndl, L"Serial Number", ...

serialnumber, 64);

100 if (i_retCode == AT_SUCCESS) {

101

102 char serial_number[64];

103 wcstombs(serial_number, serialnumber, 64); // I ...

have serial number as AT_WC and as char[64]

104 mexPrintf("%s ", serial_number);

105 }

106 else {

107 mexPrintf("NO−SERIAL−NUM ");

108 warning = 1;

109 }

110 mexPrintf("Exposure time set to: %f ", exp_time_applied);

111

112 }

113 }

114 }

115 return warning;

116 }

A.2.2 mCloseCamera

1 /***

2 * int resul = mCloseCamera(double handle);

3

4 * Close camera and finalise library.

APPENDIX A. GRAPHIC USER INTERFACE: CODE 104

5 **/

6 #include <matrix.h>

7 #include <mex.h>

8 #include "atcore.h"

9 #include <iostream>

10 #include "stdlib.h"

11

12 using namespace std;

13

14 void mexFunction(int nlhs, mxArray *plhs[],

15 int nrhs, const mxArray *prhs[])

16 {

17 double *handle, *d_retCode;

18 mxArray *resul_out;

19

20 /* Get input and allocate memory for output*/

21 handle = mxGetPr(prhs[0]);

22 d_retCode = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

23

24 AT_H Hndl;

25 Hndl = static_cast<AT_H> (*handle);

26

27 /*Close camera and write the return code to the output*/

28 d_retCode[0] = static_cast<double> (AT_Close(Hndl));

29

30 /*Finalise library*/

31 AT_FinaliseLibrary();

32

33 /*Output*/

34 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

35 resul_out = plhs[0];

36 mxSetPr(resul_out, d_retCode);

37 }

A.2.3 mGetHSISoftware

APPENDIX A. GRAPHIC USER INTERFACE: CODE 105

1 /***

2 * [dimensions, HSI, timestamp] = mGetHSISoftware(double handle, double ...

*wavelengths);

3

4 dimensions = [Nlam, pix_height, pix_width, B_ImageSize, B_stride, ...

success, transposed]

5 HSI is the pix_height*pix_width*Nlam

6 *

7 *

8 * Keep in mind:

9 * <> Use 0−based indexing as always in C or C++

10 * <> Indexing is column−based as in Matlab (not row−based as in C)

11 * <> Use linear indexing. [x*dimy+y] instead of [x][y]

12 **/

13 #include <matrix.h>

14 #include <mex.h>

15 #include "atcore.h"

16 #include <iostream>

17 #include "stdlib.h"

18 #include <windows.h>

19

20 #include <time.h>

21

22 //#include "initAOTF.cpp"

23

24 using namespace std;

25

26 typedef unsigned long long uint64;

27

28 void getImage(unsigned char *HSI, mwSize *dimensions, double handle, ...

int *wavelengths);

29 uint64 extractMetadata(unsigned char* metadata, int length_metadata);

30

31 void mexFunction(int nlhs, mxArray *plhs[],

32 int nrhs, const mxArray *prhs[])

APPENDIX A. GRAPHIC USER INTERFACE: CODE 106

33 {

34 mxArray *dimensions_out, *HSI_out, *timestamp_out;

35 double *handle;

36 unsigned char *HSI;

37 unsigned short *uint16_HSI;

38 mwSize *dimensions;

39 int *wavelengths, Nlam;

40

41 int i_retCode;

42 AT_64 height, width, stride, ImageSizeBytes;

43

44 /*Get inputs*/

45 handle = mxGetPr(prhs[0]);

46

47 AT_H Hndl;

48 Hndl = static_cast<AT_H> (*handle);

49

50 wavelengths = static_cast<int *> (mxGetData(prhs[1]));

51 Nlam = static_cast<int> (mxGetN(prhs[1]));

52 Nlam = Nlam + 1;

53

54

55 /*Allocate memory for dimensions*/

56 dimensions = static_cast<mwSize *> (mxMalloc(7 * sizeof(mwSize)));

57

58 /*Get image dimensions, it could be easily edited to set dimensions

59 instead of get them, and thus get customed sized images*/

60 i_retCode = AT_GetInt(Hndl, L"AOIHeight", &height);

61 i_retCode = AT_GetInt(Hndl, L"AOIWidth", &width);

62 i_retCode = AT_GetInt(Hndl, L"ImageSizeBytes", &ImageSizeBytes);

63 i_retCode = AT_GetInt(Hndl, L"AOIStride", &stride);

64 dimensions[0] = static_cast<mwSize> (Nlam);

65 dimensions[1] = static_cast<mwSize> (height);

66 dimensions[2] = static_cast<mwSize> (width);

67 int i_imageSize = static_cast<int>(ImageSizeBytes);

68 dimensions[3] = static_cast<mwSize> (i_imageSize);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 107

69 dimensions[4] = static_cast<mwSize> (stride);

70

71 /*Allocate memory and align the image*/

72 HSI = static_cast<unsigned char *> (mxMalloc((Nlam * i_imageSize + ...

8) * sizeof(unsigned char)));

73 //HSI = reinterpret_cast<unsigned char *>(...

(reinterpret_cast<unsigned long>(HSI) + 7) & ¬0x7);
74

75

76 /*Initialize AOTF*/

77 // i_retCode = initAOTF(50);

78

79 /*We get the image*/

80 getImage(HSI, dimensions, *handle, wavelengths);

81

82

83 if (dimensions[5] == 1){

84

85 /*Image was succesfully acquired*/

86 uint64 *timestamp;

87 timestamp = static_cast<uint64 *> (mxMalloc(Nlam * ...

sizeof(uint64)));

88

89 /*Stract the metadata string*/

90 int fin, init, len;

91 unsigned char *metadata;

92 init = 2*dimensions[1]*dimensions[2];

93 fin = dimensions[3];

94 len = fin−init;
95

96 metadata = new unsigned char[len];

97

98 int offset=0;

99 for (int k=0; k < Nlam; k++){

100 offset = k * dimensions[3];

101 for(int i=init; i<fin; i++){

APPENDIX A. GRAPHIC USER INTERFACE: CODE 108

102 metadata[i−init] = HSI[i+offset];

103 }

104 /*Get the timestamp from the Metadata string*/

105 timestamp[k] = extractMetadata(metadata, len);

106 }

107

108 /*Set the transposed flag*/

109 dimensions[6] = 1;

110

111 /*OUTPUT*/

112

113 /*Dimensions*/

114 plhs[0] = mxCreateNumericMatrix(1, 7, mxUINT32_CLASS, mxREAL);

115 dimensions_out = plhs[0];

116 mxSetData(dimensions_out, dimensions);

117

118 /*Image*/

119 uint16_HSI = reinterpret_cast<unsigned short*>(HSI);

120

121 const mwSize dims_zero[3] = {0, 0, 0};

122 plhs[1] = mxCreateNumericArray(3, dims_zero, mxUINT16_CLASS, ...

mxREAL);

123

124 HSI_out = plhs[1];

125

126 mxSetData(HSI_out, uint16_HSI);

127

128 mwSize dims[3];

129 dims[2] = Nlam;

130 dims[0] = dimensions[2];

131 dims[1] = dimensions[1]+2; //because of the metadata

132

133 i_retCode = mxSetDimensions(plhs[1], dims, 3);

134

135 /*Timestamp*/

136 plhs[2] = mxCreateNumericMatrix(1, Nlam, mxUINT64_CLASS, mxREAL);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 109

137 timestamp_out = plhs[2];

138 mxSetData(timestamp_out, timestamp);

139 mxSetM(plhs[2], 1);

140 mxSetN(plhs[2], Nlam);

141

142 /*Free allocated memory*/

143 delete metadata;

144 }

145 else{

146

147 /*OUTPUT in case image acquisition fails*/

148

149 /*Dimensions, in the flag dimensions[5] we have the ...

notification that something failed*/

150 plhs[0] = mxCreateNumericMatrix(1, 7, mxUINT32_CLASS, mxREAL);

151 dimensions_out = plhs[0];

152 mxSetData(dimensions_out, dimensions);

153

154 /*Image just a 0*/

155 plhs[1] = mxCreateNumericMatrix(1, 1, mxUINT16_CLASS, mxREAL);

156 HSI_out = plhs[1];

157 uint16_HSI = static_cast<unsigned short *> ...

(mxMalloc(1*sizeof(unsigned short)));

158 uint16_HSI[0] = 0;

159 mxSetData(HSI_out, uint16_HSI);

160 mxSetM(plhs[1], 1);

161 mxSetN(plhs[1], 1);

162

163

164 /*Timestamp just a 0*/

165 plhs[2] = mxCreateNumericMatrix(1, 1, mxUINT64_CLASS, mxREAL);

166 timestamp_out = plhs[2];

167 uint64 *timestamp;

168 timestamp = static_cast<uint64 *> (mxMalloc(1*sizeof(double)));

169 timestamp[0] = 0;

170 mxSetData(timestamp_out, timestamp);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 110

171 mxSetM(plhs[2], 1);

172 mxSetN(plhs[2], 1);

173

174 mxFree(HSI);

175 }

176

177 /*for(int i = 0; i < Nlam; i++) delete[] frames[i];*///CHECK

178 return;

179 }

180

181

182 void getImage(unsigned char *HSI, mwSize *dimensions, double handle, ...

int *wavelengths){

183

184 int i_retCode;

185 AT_H Hndl;

186 Hndl = static_cast<AT_H> (handle);

187

188 /*Frames is needed to keep the starting address of each frame*/

189 unsigned char **frames;

190 frames = new unsigned char* [dimensions[0]];

191

192 /*for(int i = 0; i < Nlam; i++) {

193 frames[i] = new unsigned char [i_imageSize];

194 }*/

195

196 frames[0] = HSI;

197 int size;

198 size = static_cast<int>(dimensions[3]);

199

200 /*Queue first buffer, then queue all the others*/

201 i_retCode = AT_QueueBuffer(Hndl, HSI, size);

202

203 int k=1;

204 while (k < dimensions[0]){

205 frames[k] = &HSI[k*dimensions[3]];

APPENDIX A. GRAPHIC USER INTERFACE: CODE 111

206 i_retCode = AT_QueueBuffer(Hndl, &HSI[k*dimensions[3]], ...

dimensions[3]);

207 k++;

208 }

209

210 /*Set proper frame count*/

211 AT_64 frameCount;

212 frameCount = static_cast<AT_64> (dimensions[0]);

213 i_retCode = AT_SetInt(Hndl, L"FrameCount", frameCount);

214 i_retCode = AT_GetInt(Hndl, L"FrameCount", &frameCount);

215

216 /*Set trigger mode*/

217 int Index;

218 AT_WC TriggerMode[256];

219 i_retCode = AT_SetEnumIndex(Hndl, L"TriggerMode", 4);

220 i_retCode = AT_GetEnumIndex(Hndl, L"TriggerMode", &Index);

221 i_retCode =AT_GetEnumStringByIndex(Hndl, L"TriggerMode", Index, ...

TriggerMode, 256);

222

223 /*Check if camera is already acquiring*/

224 AT_BOOL boole;

225 i_retCode =AT_GetBool(Hndl, L"CameraAcquiring", &boole);

226

227 /*Estimate waiting time: based on camera specifications*/

228 double exp_time;

229 AT_GetFloat(Hndl,L"ExposureTime", &exp_time);

230 int waiting;

231 waiting = static_cast<int> (1000*(exp_time+0.011));

232

233 /*Start acquisition*/

234 i_retCode = AT_Command (Hndl, L"AcquisitionStart");

235

236 /* Set a clock to check performance*/

237 clock_t trigger = clock();

238

239 /*Send the software triggers*/

APPENDIX A. GRAPHIC USER INTERFACE: CODE 112

240 for(int i = 0; i<dimensions[0]; i++){

241

242 i_retCode = AT_Command(Hndl, L"SoftwareTrigger");

243

244

245 /* *

246 * Here should be placed the code to

247 * communicate with the AOTF and select

248 * wavelength for each frame.

249 * The last one is the Background Image

250 *

251 */

252

253 /*Sleep may be required to avoid losing Software triggers*/

254 Sleep(waiting);

255 }

256

257 mexPrintf("\nTime trigger: %.9fs\n", (float)(clock() − ...

trigger)/CLOCKS_PER_SEC);

258

259 /*Set another clock to see which part is a bottle neck*/

260 clock_t getImage = clock();

261

262 unsigned char* WaitBuffer;

263 int i_waitBufferSize;

264

265 dimensions[5] = 1;

266

267 /*Check that all the buffers have been written*/

268 for (int j=0; j<dimensions[0]; j++){

269

270 i_retCode = AT_WaitBuffer(Hndl, &WaitBuffer, &i_waitBufferSize, ...

3000);

271

272 if (WaitBuffer != frames[j]) {

273 dimensions[5] = 0;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 113

274 j = dimensions[0]−1;
275 }

276 }

277

278 /*Stop acquisition free buffers*/

279 i_retCode = AT_Command (Hndl, L"AcquisitionStop");

280 i_retCode = AT_Flush(Hndl);

281

282

283 delete[] frames;

284 mexPrintf("\nTime getImage: %.9fs\n", (float)(clock() − ...

getImage)/CLOCKS_PER_SEC);

285

286 }

287

288 uint64 extractMetadata(unsigned char* metadata, int length_metadata){

289

290 /*Get the timestamps*/

291 int *i_field, info[6], index, i_ticks[2];

292 uint64 *ticks, timestamp;

293

294 i_field = reinterpret_cast<int *>(metadata);

295 index = length_metadata / 4;

296 index−−;
297 for(int i=0; i<6; i++){

298 info[i] = i_field[index−i];
299 if(i==3 || i==2) i_ticks[i−2]=i_field[index−i];
300 }

301

302 ticks = reinterpret_cast<uint64 *>(i_ticks);

303 timestamp = ticks[0];

304 return timestamp;

305 }

A.2.4 mSetLiveView

APPENDIX A. GRAPHIC USER INTERFACE: CODE 114

1 /***

2 * int resul = mSetLiveView(double handle);

3 *input: handle to camera

4 *output: resul contains if the operation has been succesfull or not

5

6 * It prepares the camera to start the Live View acquisition which

7 * means that frames will be acquired using a "light" function that does

8 * not do anything else

9 **/

10

11 #include <matrix.h>

12 #include <mex.h>

13 #include "atcore.h"

14 #include <iostream>

15 #include "stdlib.h"

16 using namespace std;

17

18

19 void mexFunction(int nlhs, mxArray *plhs[],

20 int nrhs, const mxArray *prhs[])

21 {

22 double *handle, *d_retCode;

23 mxArray *resul_out;

24 int i_retCode;

25

26 /*Get input*/

27 handle = mxGetPr(prhs[0]);

28

29 /*Allocate memory for output*/

30 d_retCode = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

31

32 /*Hndl must be AT_H when passed to camera*/

33 AT_H Hndl;

34 Hndl = static_cast<AT_H> (*handle);

35

APPENDIX A. GRAPHIC USER INTERFACE: CODE 115

36 /*Give a value to the output it may be changed later*/

37 d_retCode[0] = 0;

38

39 /*Make sure that the camera frameCount limit is high enough*/

40 AT_64 frameCount = 1000;

41 i_retCode = AT_SetInt(Hndl, L"FrameCount", frameCount);

42 i_retCode = AT_GetInt(Hndl, L"FrameCount", &frameCount);

43

44 /*Disable Metadata as it won't be used*/

45 i_retCode = AT_SetBool(Hndl, L"MetadataEnable", 0);

46 i_retCode = AT_SetBool(Hndl, L"MetadataTimestamp", 0);

47

48 /* Make sure camera is in Software trigger mode*/

49 int Index;

50 AT_WC TriggerMode[256];

51 i_retCode = AT_SetEnumIndex(Hndl, L"TriggerMode", 4);

52 i_retCode = AT_GetEnumIndex(Hndl, L"TriggerMode", &Index);

53 i_retCode = AT_GetEnumStringByIndex(Hndl, L"TriggerMode", Index, ...

TriggerMode, 256);

54

55 /* Tell camera to start an acquisition*/

56 i_retCode = AT_Command(Hndl, L"AcquisitionStart");

57

58 /*Check success change output if necessary*/

59 if (i_retCode == AT_SUCCESS){

60 d_retCode[0] = 1;

61 mexPrintf("Acquisition running");

62 }

63 else

64 {

65 mexPrintf("WARNING!! ");

66 }

67 /*Assign output*/

68 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

69 resul_out = plhs[0];

70 mxSetPr(resul_out, d_retCode);

APPENDIX A. GRAPHIC USER INTERFACE: CODE 116

71 }

A.2.5 mGetFrameLiveView

1 /***

2 * We get a frame, the AOTF should be already set up

3 *

4 * [imagen] = mGetFrameLiveView(double handle, double dimensions);

5

6 dimensions = [pix_height, pix_width, B_ImageSize, B_stride, success, ...

transposed]

7

8 * Keep in mind (for all mex files):

9 * <> Use 0−based indexing as always in C or C++

10 * <> Indexing is column−based as in Matlab (not row−based as in C)

11 * <> Use linear indexing. [x*dimy+y] instead of [x][y]

12 **/

13 #include <matrix.h>

14 #include <mex.h>

15 #include "atcore.h"

16 #include <iostream>

17 #include "stdlib.h"

18 #include <time.h>

19 #include <windows.h>

20

21 using namespace std;

22

23 /*Define uint64 for convenience*/

24 typedef unsigned long long uint64;

25

26 void mexFunction(int nlhs, mxArray *plhs[],

27 int nrhs, const mxArray *prhs[])

28 {

29 mxArray *image_out;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 117

30 double *handle;

31 unsigned char *image;

32 unsigned short *uint16_image;

33 mwSize *dimensions;

34

35 int i_retCode;

36 AT_64 height, width, stride, ImageSizeBytes;

37

38 /* Count the time it takes to execute this function, useful

39 * to improve it and analise its performance*/

40 clock_t getImage = clock();

41

42 /*Get inputs*/

43 handle = mxGetPr(prhs[0]);

44 dimensions = static_cast<mwSize *> (mxGetData(prhs[1]));

45

46 /*Hndl must be AT_H when passed to camera*/

47 AT_H Hndl;

48 Hndl = static_cast<AT_H> (*handle);

49

50 /*Allocate memory */

51 int imageSizeBytes;

52 imageSizeBytes = dimensions[2];

53 image = static_cast<unsigned char ...

*>(mxMalloc((imageSizeBytes+8)*sizeof(unsigned char)));

54

55 /*Align the image in memory, usually not necessary: compiler does it*/

56 //image = reinterpret_cast<unsigned char*>(...

(reinterpret_cast<unsigned long>(image) + 7) & ¬0x7);
57

58 /*Queue a buffer (image) and send a SoftwareTrigger to get an image*/

59 i_retCode = AT_QueueBuffer(Hndl, image, dimensions[2]);

60

61 AT_BOOL acqui;

62 i_retCode = AT_GetBool(Hndl, L"CameraAcquiring", &acqui);

63

APPENDIX A. GRAPHIC USER INTERFACE: CODE 118

64 i_retCode = AT_Command(Hndl, L"SoftwareTrigger");

65

66 /* Receive the last buffer available*/

67 unsigned char* WaitBuffer;

68 int i_waitBufferSize;

69 i_retCode = AT_WaitBuffer(Hndl, &WaitBuffer, &i_waitBufferSize, 3000);

70

71 /* Check that its address is the same as that of image*/

72 if (WaitBuffer != image) {

73 mexPrintf("WARNING!!");

74 }

75

76 /*OUTPUT*/

77

78 /*Image: first convert the buffer from char to unsigned short*/

79 uint16_image = reinterpret_cast<unsigned short*>(image);

80 plhs[0] = mxCreateNumericMatrix(0, 0, mxUINT16_CLASS, mxREAL);

81 image_out = plhs[0];

82

83 /* Assign the output*/

84 mxSetData(image_out, uint16_image);

85 mwSize row;

86 row = dimensions[0];

87 //row+=2;

88 mxSetM(plhs[0], dimensions[1]);

89 mxSetN(plhs[0], row);

90

91 /*Calculate the time that took the function execution and print it*/

92 mexPrintf("\nTime getImage: %.9fs\n", (float)(clock() − ...

getImage)/CLOCKS_PER_SEC);

93 return;

94 }

A.2.6 mStopLiveView

APPENDIX A. GRAPHIC USER INTERFACE: CODE 119

1 /***

2 * int resul = mStopLiveView(double handle);

3 *input: handle to camera

4 *output: resul contains if the operation has been succesfull or not

5

6 * It ends the acquisition that has been going on to quickly get frames

7 * to be shown in live view mode.

8 **/

9 #include <matrix.h>

10 #include <mex.h>

11 #include "atcore.h"

12 #include <iostream>

13 #include "stdlib.h"

14 using namespace std;

15

16

17 void mexFunction(int nlhs, mxArray *plhs[],

18 int nrhs, const mxArray *prhs[])

19 {

20 double *handle, *d_retCode;

21 mxArray *resul_out;

22 int i_retCode1, i_retCode2;

23

24 /*Get input*/

25 handle = mxGetPr(prhs[0]);

26

27 /*Allocate memory for output pointer*/

28 d_retCode = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

29

30 /*Hndl must be AT_H when passed to camera*/

31 AT_H Hndl;

32 Hndl = static_cast<AT_H> (*handle);

33

34 /*Give a value to the output it may be changed later*/

35 d_retCode[0] = 0;

APPENDIX A. GRAPHIC USER INTERFACE: CODE 120

36

37 /*Stop acquisition and free the Queue buffer for next acquis*/

38 i_retCode1 = AT_Command (Hndl, L"AcquisitionStop");

39 i_retCode2 = AT_Flush(Hndl);

40

41 /* Check if success */

42 if (i_retCode1 == AT_SUCCESS && i_retCode2 == AT_SUCCESS){

43 d_retCode[0] = 1;

44 mexPrintf("Acquisition stopped");

45 }

46 else

47 {

48 mexPrintf("WARNING!! ");

49 }

50 /* Enable again Metadata Timestamp information in the frames*/

51 i_retCode1 = AT_SetBool(Hndl, L"MetadataEnable", 1);

52 i_retCode1 = AT_SetBool(Hndl, L"MetadataTimestamp", 1);

53

54 /*Assign output value*/

55 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

56 resul_out = plhs[0];

57 mxSetPr(resul_out, d_retCode);

58 }

A.2.7 mModifiedCloseCamera

1 /***

2 * mModifiedCloseCamera();

3

4 * Close camera and finalise library, when we dont know the Handle.

5 * it just tries with several handles until it succees

6 **/

7

8 #include <matrix.h>

APPENDIX A. GRAPHIC USER INTERFACE: CODE 121

9 #include <mex.h>

10 #include "atcore.h"

11 #include <iostream>

12 #include "stdlib.h"

13 using namespace std;

14

15 void mexFunction(int nlhs, mxArray *plhs[],

16 int nrhs, const mxArray *prhs[])

17 {

18 double d_retCode;

19

20 AT_H Hndl=101;

21 d_retCode = 1;

22

23 /*Try different handle until it succeeds*/

24 while (d_retCode != 0 && Hndl < 200){

25 d_retCode = static_cast<double> (AT_Close(Hndl));

26 Hndl++;

27 }

28

29 AT_FinaliseLibrary();

30 }

A.2.8 mCooling

1 /***

2 * Enable cooling

3 *

4 * double status = mCooling(double handle, double action);

5

6 action:

7 1: turn on the cooling

8 0: turn off the cooling

9 2: get the cooling status

APPENDIX A. GRAPHIC USER INTERFACE: CODE 122

10

11 status:

12 0 cool off

13 1 cool on

14 2 error

15 **/

16 #include <matrix.h>

17 #include <mex.h>

18 #include "atcore.h"

19 #include <iostream>

20 #include "stdlib.h"

21 using namespace std;

22

23 void cooling(char *status_out, double handle, double action);

24

25 void mexFunction(int nlhs, mxArray *plhs[],

26 int nrhs, const mxArray *prhs[])

27 {

28 char *status_out;

29 double *handle, *action;

30

31 /*Get inputs*/

32 handle = mxGetPr(prhs[0]);

33 action = mxGetPr(prhs[1]);

34

35 /*Allocate memory for output*/

36 status_out = static_cast<char *>(mxCalloc(256, sizeof(char)));

37

38 /*Call cooling function*/

39 cooling(status_out, *handle, *action);

40

41 /*Output*/

42 plhs[0] = mxCreateString(status_out);

43

44 return;

45 }

APPENDIX A. GRAPHIC USER INTERFACE: CODE 123

46

47 void cooling(char *status_out, double handle, double action){

48

49 int i_retCode=−1, temperatureStatusIndex = 0, temperatureCount = 0;

50 double temperature = 0;

51 AT_H Hndl;

52 Hndl = static_cast<AT_H> (handle);

53

54 /*Perform action*/

55 if(action==1){

56 i_retCode = AT_SetBool(Hndl, L"SensorCooling", AT_TRUE);

57 }

58 if(action==0){

59 i_retCode = AT_SetBool(Hndl, L"SensorCooling", AT_FALSE);

60 }

61

62 /*Print result*/

63 if(i_retCode == AT_SUCCESS || i_retCode == −1){
64 mexPrintf("Cooling function status: ");

65 }

66 else{

67 mexPrintf("WARNING! Switching cooling status failed ");

68 }

69 /*Get status*/

70 AT_WC temperatureStatus[256];

71 AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

72 AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", ...

temperatureStatusIndex, temperatureStatus, 256);

73

74 char tempStatus[256];

75 wcstombs(tempStatus,temperatureStatus,512);

76 mexPrintf("%s", tempStatus);

77

78 /*Write the status in the output string*/

79 int k;

80 for (k=0; k<256; k++){

APPENDIX A. GRAPHIC USER INTERFACE: CODE 124

81 status_out[k] = tempStatus[k];

82 }

83 }

A.2.9 mExposureTime

1 /***

2 * int resul = mExposureTime(double handle, double exposure_time);

3

4 * Change exposure time

5 **/

6 #include <matrix.h>

7 #include <mex.h>

8 #include "atcore.h"

9 #include <iostream>

10 #include "stdlib.h"

11 using namespace std;

12

13

14 void mexFunction(int nlhs, mxArray *plhs[],

15 int nrhs, const mxArray *prhs[])

16 {

17 double *handle, *exposure_time_in, *d_retCode, *exp_time_applied;

18 mxArray *resul_out, *exp_out;

19 int i_retCode;

20

21 /*Get inputs*/

22 handle = mxGetPr(prhs[0]);

23 exposure_time_in = mxGetPr(prhs[1]);

24

25 /*Allocate memory*/

26 d_retCode = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

27 exp_time_applied = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

28

APPENDIX A. GRAPHIC USER INTERFACE: CODE 125

29 AT_H Hndl;

30 Hndl = static_cast<AT_H> (*handle);

31

32 /*Set exposure time*/

33 i_retCode = AT_SetFloat(Hndl, L"ExposureTime", *exposure_time_in);

34

35 d_retCode[0] = 0;

36

37 /*Check that it has been successfully set*/

38 AT_GetFloat(Hndl, L"ExposureTime", exp_time_applied);

39 if (*exposure_time_in == *exp_time_applied && i_retCode == AT_SUCCESS){

40 d_retCode[0] = 1;

41 mexPrintf("Exposure time set to: %f", *exp_time_applied);

42 }

43 else

44 {

45 mexPrintf("WARNING!! ");

46 }

47

48 /*Outputs*/

49 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

50 resul_out = plhs[0];

51 mxSetPr(resul_out, d_retCode);

52

53 plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);

54 mxSetPr(plhs[1], exp_time_applied);

55 }

Appendix B

MEX files and Andor SDK

The purpose of this appendix is to explain how MEX files and the Software Developing Kit pro-

vided by Andor work. Therefore, it can be seen as a complement to the former Appendix, as it

may help the reader to get a better understanding of the code presented there.

B.1 MEX-Files

It was mentioned in Section 2.5.1 that Matlab can call functions written in C using MEX-files

which are dynamically linked subroutines that the Matlab interpreter loads and executes. The

MEX-file contains only one function or subroutine that can be called from the Matlab program

using the name of the file. Further information might be found at the Matlab online documen-

tation (Mathworks, 2015). An example is presented to illustrate how MEX-files work. It is in fact

a part of the program and, thus, it can be found in the Appendix, Section A.2.2. The reader may

consult the source code there to get a more complete view. First of all, MEX files require the use

of the libraries Matrix and MEX, therefore the lines:

1 #include <matrix.h>

2 #include <mex.h>

are included at the beginning of the source code to include those header files. The file mex.h

contains the Matlab API function declarations. Then, in a similar way to the main() function

126

APPENDIX B. MEX FILES AND ANDOR SDK 127

that is present in every program in C, Matlab uses the gateway routine, mexfunction(), as the

entry point to the function. The name of the source file containing mexFunction is the name

of the MEX-file (where here MEX-file takes the meaning of dynamically linked subroutine, see

2.5.1 to refresh about the different meanings of MEX-file) , and, hence, the name of the function

called in Matlab. The signature for mexfunction() is:

1 void mexfunction(int nlhs, mxArray *plhs[],

2 int nrhs, const mxArray *prhs[])

3 {

The meaning of each parameter, according to the official Matlab documentation, is:

• nlhs: Number of output (left-side) arguments, or the size of the plhs array.

• plhs: Array of output arguments.

• nrhs: Number of input (right-side) arguments, or the size of the prhs array.

• prhs: Array of input arguments.

prhs and plhs are declared as type mxArray *, which means they point to Matlab arrays. They

are vectors that contain pointers to the arguments of the MEX-file. The keyword const, which

modifies prhs, means that the MEX-file does not modify the input arguments. Therefore, the

input parameters (found in the prhs array) are read-only and must not be modified. The Matlab

language works with a single object type, for all kind of variables, the Matlab array. In C, it is

declared to be of type mxArray. The mxArray structure contains several information about the

array: its type and dimensions and the data associated with it. Besides, if it is numeric, whether

the variable is real or complex; if it is sparse, its indices and nonzero maximum elements; and if

it is a structure or object, the number of fields and field names. The API functions in the Matrix

Library are needed to access the mxArray structure and they allow to create, read and query

information about the Matlab data in the MEX-files.

Like Matlab functions, a MEX-file gateway routine passes Matlab variables by reference.

However, these arguments are C pointers. A pointer to a variable is the address (location in mem-

ory) of the variable. Information about working with pointers in C can be found in Kernighan

APPENDIX B. MEX FILES AND ANDOR SDK 128

and Ritchie (1988). In order to prevent memory leaks which provoke unexpected results, mem-

ory must be managed carefully. For that purpose, some rules should be followed when treating

with an mxArray:

• If it is an input argument, it exists outside the scope of the MEX-file. Memory must not be

freed for any mxArray in the prhs parameter.

• If it is an output argument, the memory allocated and the data necessaries to create an

mxArray exist beyond the scope of the MEX-file. Memory must not be freed for any mxAr-

ray returned in the plhs (output) parameter either.

• If it is a local variable, the memory that is first allocated using functions such asmxCreate*,

mxCallocor associated functions, must be deallocated. Functions such asmxDestroyArray

or mxFree can be used.

In fact the Matlab memory manager keeps a record of all memory allocated by the function and

automatically frees it when control returns to the Marlab prompt. However, it is more efficient

and recommended to perform this task manually within the MEX-file.

Continuing with the example, this function is called from Matlab as: resul = mCloseCamera(handle)

where resul is the output parameter (its type in C is integer) and handle is the input parameter

(type double). Therefore, the parameters passed to the mexfunction are: nlhs = nrhs ...

= 1, as there is one input parameter and one output parameter. Their addresses are passed as

mxArray pointers in prhs[0] for the input parameter (handle) and plhs[0] for the output

parameter (resul). We have inside mexfunction():

1 double *handle, *d_retCode;

2 mxArray *resul_out;

3

4 /* Get input and allocate memory for output*/

5 handle = mxGetPr(prhs[0]);

6 d_retCode = static_cast<double *> (mxMalloc(sizeof(d_retCode)));

handle and d_retCode are C pointers whose declared type is double. mxGetPr(prhs[0])

allows to access the real data in the mxArray prhs[0] by providing the starting address. Now,

APPENDIX B. MEX FILES AND ANDOR SDK 129

handle is a pointer to the starting address of the data in prhs[0]. Once the starting address is

known, any other element in the array can be accessed. mxGetData(prhs[0]) can be used in

a similar way, as in Section A.2.3 line 50. See the official Matlab documentation (Mathworks,

2015) to know about the specific differences between these functions. In the line 6 of the code

showed above, mxMalloc(sizeof(d_retCode)) is used to allocate dynamic memory. It has

the same role as that of the ANSI C malloc function, but it has to be used instead of that one

when working with MEX-files. Later in the code, once d_retCode[0] has a value assigned,

the output is created and assigned data. So far, plhs[0] is a null pointer that points at nothing

because the output resul has not been created yet. This is solved here:

1 /*Output*/

2 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

3 resul_out = plhs[0];

4 mxSetPr(resul_out, d_retCode);

mxCreateDoubleMatrix(m, n, mxREAL) creates an m-by-n realmxArray and initializes each

element to 0. Therefore, after line 2, plhs[0] points to a 1-by-1 mxArray initialized to zero.

Then with line 3, themxArrayresul_out also points there. mxSetPr(resul_out, d_retCode)

sets the real data of the output array (resul_out, or what is the same plhs[0]) with the data

stored in d_retCode. d_retCode must be in dynamic memory, as we have shown that it is.

See that the third line could be skipped by using directly mxSetPr(plhs[0], d_retCode),

however it is a bit more clear using resul_out.

All the MEX-files found in the Appendix A.2 and developed within this work have a structure

similar to the one that has been commented here. In some cases the actual functions used to

treat inputs, outputs or mxArray’s may differ from those shown here, depending on the data

type or dimensions. However, they will be equal in essence and, in any case, Mathworks (2015)

explains the specific features and reasons behind using every mx-function.

Once the source code is finished, it must be compiled to create an executable program. The

Matlab command mex('−g', 'mCloseCamera.cpp') does this work producing a binary file

whose extension is platform dependent. Options available for this command can be consulted

in the Matlab documentation. Some of them will be used later to include libraries, while the

APPENDIX B. MEX FILES AND ANDOR SDK 130

'−g' option shown here adds symbolic information and is necessary for debugging.

Debugging is the process of finding and eliminating bugs, or defects, in a computer program

that make it behave unexpectedly. It is an important stage on the developing process. Both

Matlab and Microsoft Visual Studio, which is the integrating development environment used

to write the C code, offer tools to debug their code. However, as the MEX-files are called from

Matlab, they can not be debugged independently. Fortunately, Microsoft Visual Studio offers

the solution, which is attaching to a process running outside of Visual Studio, in our case the

process Matlab. Then, both tools work together and breakpoints can be set both in the Matlab

part or in the MEX-file to perform the required debugging.

B.2 Andor SDK

As introduced before, Andor provides a Software Development Kit which is a well documented

API that allows to control the camera. It has been designed under the idea that integrating the

camera is just one component of a larger system solution. Andor® and Andor® (2014a) are the

manuals of the SDK and the camera, respectively, in which the reader may find deeper informa-

tion and examples regarding this and the next section (4.2).

The API needs some dynamic-link libraries (*.dll files) given with the kit to work. These files

must be placed in the same folder which the application is running from. They are architecture

specific, in our case we had to use the 64-bits versions. Then, the next step is to include the

header file "atcore.h" in the source code and include the library atcorem.lib. Therefore, the

line #include "atcore.h" appears at the beginning of all our MEX-files. Besides, to succes-

fully compile the MEX-file the sintax of the mex command must vary. Now, it is:

1 mex('−g', ipath, library, 'atcorem.lib', 'mCloseCamera.cpp')

where ipath and library are two strings taking the following form:

1 path = 'C:\Users\vnir1600\Documents\MATLAB';

2 ipath = ['−I' path];

APPENDIX B. MEX FILES AND ANDOR SDK 131

3 library = ['−L' path];

The very first API call must be AT_InitialiseLibrary, and the very last call must be

AT_FinaliseLibrary. These functions will prepare the API for use and free resources when

no longer needed. In the User Interface they are called in[handle, warning] = mOpenCamera(exposure_time)

and in [resul] = mCloseCamera(handle), which are called in acqui_CreateFcn() and

in acqui_DeleteFcn(), what is at the moment of opening the GUI and at the moment of clos-

ing it. Exactly the same procedure follows for the API functions AT_Open and AT_Close, which

provide and release a camera handle respectively (represented by the data type AT_H). Right

after opening the camera the cooling mechanism is activated to ensure a low noise level in the

images.

Every API function returns an error code (integer) when called. Each return code that could

possibly be returned is listed in the atcore.h and documented in the mentioned reference for

the SDK. It is recommended that a user check every return code before moving on to the next

statement. Within our MEX-files, return codes have sometimes be checked, but not always. A

possible improvement of the application may include checking every return code and following

the proper procedure for each case, which could vary from aborting the current operation to

printing information related about the error in console.

The SDK3 API can be divided into several sets of functions, each controlling a particular

aspect of camera control. There are sections in the API for opening a handle to a camera, for

buffer management and for accessing the features that every camera exposes. Each feature that

a camera exposes to the user has a particular type that represents how that feature is controlled.

The feature types are: Integer, Floating Point, Boolean, Enumerated, Command and String. Each

of them having its own set of functions to manage the feature, i. e. get or set its value, check

maximum and minimum valid values, maximum length, etc. Examples of these functions are

shown here:

1 int AT_GetIntMax(AT_H Hndl, AT_WC* Feature, AT_64* MaxValue); // integer

2 int AT_SetFloat(AT_H Hndl, AT_WC* Feature, double Value); // For ...

Floating Point

3 int AT_GetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL* Value); // Boolean

APPENDIX B. MEX FILES AND ANDOR SDK 132

4 int AT_GetEnumIndex(AT_H Hndl, AT_WC* Feature, int* Value); // Enumerated

5 int AT_Command(AT_H Hndl, AT_WC* Feature); // For Command

6 int AT_GetStringMaxLength(AT_H Hndl, AT_WC* Feature, int* ...

MaxStringLength); // For String

There are some general functions that can be used to get information about any feature, they

might have been used during the development process to, for example, check if a certain feature

was or not implemented, these are:

1 int AT_IsImplemented(AT_H Hndl, AT_WC* Feature, AT_BOOL* Implemented);

2 int AT_IsReadOnly(AT_H Hndl, AT_WC* Feature, AT_BOOL* ReadOnly);

3 int AT_IsReadable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Readable);

4 int AT_IsWritable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Writable);

More relevant functions for us are those which allow to manage buffers in which the ac-

quired images are stored. SDK maintains two queues, which are used to manage the transfer

of image data to the application. Both queues operate in a First-in-First-out (FIFO) basis and

are used to store the addresses of blocks of memory allocated by the application. First, the

AT_QueueBuffer() API function call lets SDK knows what memory to use for the upcoming

acquisition. Therefore it manages the input queue. Multiple buffers can be queued to the SDK

before an acquisition starts if a sequence of frames is being acquired, doing this is as simple as

calling the function multiple times with different buffers. The second queue (output queue) is

used to store the application defined buffers after they have had images copied into them. In

this case the SDK adds buffers to this queue which can then be retrieved by the application us-

ing AT_WaitBuffer(). This function will retrieve the next buffer from the output queue and

return the address in the second parameter; the size of the buffer will also be returned in the

PtrSize parameter. Prototypes of these functions and AT_Flush() which allows to retrieve

both queues at the same time, are shown below:

1 int AT_QueueBuffer(AT_H Hndl, AT_U8 *Ptr, int PtrSize);

2 int AT_WaitBuffer(AT_H Hndl, AT_U8 **Ptr, int* PtrSize, unsigned int ...

Timeout);

APPENDIX B. MEX FILES AND ANDOR SDK 133

3 int AT_Flush(AT_H Hndl);

The MEX-file mGetHSISoftware, shown in A.2.3, is an illustrative example about how to work

with MEX-files and control the camera. It requires reading data from several input parameters.

Among the tasks performed there, allocating memory for three different multidimensional out-

put arrays, managing buffers to store images or using camera commands, are included. Also,

timestamp information attached with the frames is extracted.

Appendix C

Starting point: RF driver communication

The code presented in this Appendix is thought to be a starting point of the software to control

the RF driver which should be written in C. A version in Matlab is available and provided here,

as well as the starting point of its translation to C.

C.1 Matlab AOTF

1 %Code available to control AOTF in matlab

2

3 % Full control AOTF

4 freq = (sqrt(sin(200./wavelengths)+1)).^(10.55)*20.91950466; %frequency ...

in (MHz)

5 Nlam = length(wavelengths);

6

7 % Initialize

8 [ser]=initAOTF(mPow);

9

10 % Set frequency

11 liveflag = 0; channel = 6;

12 [chFRhex] = GetChRF(liveflag, channel, freq(1), 0); %%% Amplitude 0 so ...

f is not important

13 [out] = sendHex2RF(ser,chFRhex);

134

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 135

14

15 % Example of HSI loop

16 liveflag = 0; channel = 6;

17 for i = 1:Nlam

18 %set frequency

19 [chFRhex] = GetChRF(liveflag, channel, freq(i), mPow); %%% MPOW ...

SHOULD BE AMPLITUDE. CHECK

20 [out] = sendHex2RF(ser,chFRhex);

21 %get image

22 trigger(vid); %acqisition

23 wait(vid,pauseLen,'logging');

24 %time(i)=now;

25 end

26

27

28 %End aotf

29 [chFRhex] = GetChRF(0,6, freq(1), 0);

30 [out] = sendHex2RF(ser,chFRhex);

31 [mastRFHex] = SetMasterRF(0,0);

32 [out] = sendHex2RF(ser,mastRFHex);

33 fclose(ser)

34 delete(ser)

35 clear ser;

1 % initAOTF

2

3

4 function [aotf] = initAOTF(mPow)

5 %HSI acquisition function for AOTF G&H − modified version because of frame

6 %problems

7 % INPUT:

8 % mPow − master channel power (0−100)
9

10 % OUTPUT:

11 % ser − AOTF file controller

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 136

12 %

13

14 %init AOTF

15 [info, N] = FindDevice;

16 serNum = info(end); %obtained from FindDevice

17 serName = ['COM',num2str(serNum)];

18 aotf = ...

serial(serName,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','none','Terminator','CR');

19 fopen(aotf);

20 [mastRFHex] = SetMasterRF(0,mPow);

21 [out] = sendHex2RF(aotf,mastRFHex);

22

23 path = 'C:\Users\hyspex\Documents\MATLAB\Variables\aotf.mat';

24 save(path, 'aotf');

25

26 end

1 function [chFRhex] = GetChRF(liveflag,ch, freq, amp)

2 %Returnes G&H 16 channel hex for channel configuration

3 % INPUT:

4 % liveflag − 0=live update, 1=profiles upload

5 % ch − channel number from 0 to 15

6 % freq − frequency in MHz

7 % amp − amplitude in % max

8 % OUTPUT:

9 % chFRhex − structure with corresponding hexes

10

11 if(liveflag==0)

12 fb = '05'; %command hex byte for immediate execution

13 else

14 fb = '06'; %command hex byte for profile load

15 end

16

17 % set channel

18 chHex = getChHex(ch);

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 137

19 chFRhex(1) = {[fb,chHex,'000000']};

20

21 % set frequency

22 chFHex = getChFHex(ch);

23 f14 = dec2hex(int32(2^32*freq/500));

24 if(freq==0)

25 f14='00000000';

26 end

27 chFRhex(2) = {[fb,chFHex,f14]};

28

29 % set phase − first two bytes sets the phase, here set to 0

30 chPHex = getChPHex(ch);

31 chFRhex(3) = {[fb,chPHex,'00000000']};

32

33 % set amplitude

34 chAHex = getChAHex(ch);

35 coeff = 10.23;

36 if(ch == 1 || ch == 5 || ch == 9 || ch == 13)

37 coeff = 2.55;

38 end

39 a12 = dec2hex(int16((amp*coeff)+4096));%multiplication by coeff might ...

be wrong

40 chFRhex(4) = {[fb,chAHex,'00',a12,'00']};

41

42 %change to hexMatrix

43 s = chFRhex;

44 chFRhex = [];

45 for i=1:4

46 is = s{i};

47 a=[];

48 for j=1:6

49 a = [a;is(2*j−1:2*j)];
50 end

51 chFRhex{i}=a;

52 end

53 end

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 138

54

55 %function returns Hex for a channel

56 function chHex = getChHex(ch)

57 switch(ch)

58 case 0

59 chHex = '0016';

60 case 1

61 chHex = '0026';

62 case 2

63 chHex = '0046';

64 case 3

65 chHex = '0086';

66 case 4

67 chHex = '2016';

68 case 5

69 chHex = '2026';

70 case 6

71 chHex = '2046';

72 case 7

73 chHex = '2086';

74 case 8

75 chHex = '4016';

76 case 9

77 chHex = '4026';

78 case 10

79 chHex = '4046';

80 case 11

81 chHex = '4086';

82 case 12

83 chHex = '6016';

84 case 13

85 chHex = '6026';

86 case 14

87 chHex = '6046';

88 case 15

89 chHex = '6086';

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 139

90 end

91 end

92 % frequency Hex

93 function chFHex = getChFHex(ch)

94 if(ch<4)

95 chFHex = '04';

96 elseif(ch>3 && ch<8)

97 chFHex = '24';

98 elseif(ch>7 && ch<12)

99 chFHex = '44';

100 elseif(ch>11)

101 chFHex = '64';

102 end

103 end

104

105 % phase Hex

106 function chPHex = getChPHex(ch)

107 if(ch<4)

108 chPHex = '05';

109 elseif(ch>3 && ch<8)

110 chPHex = '25';

111 elseif(ch>7 && ch<12)

112 chPHex = '45';

113 elseif(ch>11)

114 chPHex = '65';

115 end

116 end

117

118 % amplitude Hex

119 function chAHex = getChAHex(ch)

120 if(ch<4)

121 chAHex = '06';

122 elseif(ch>3 && ch<8)

123 chAHex = '26';

124 elseif(ch>7 && ch<12)

125 chAHex = '46';

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 140

126 elseif(ch>11)

127 chAHex = '66';

128 end

129 end

1 function [out] = sendHex2RF(ser,inst)

2 %Sends Hex instruction to G&H 16channel RF

3 % INPUT:

4 % ser − serial port ID

5 % inst − a 6 bytes long Hex instruction as [hex1;...;hex6] structure

6

7 %{

8 serNum = 3; %obtained from FindDevice

9 serName = ['COM',num2str(serNum)];

10 ser = ...

serial(serName,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','none','Terminator','CR');

11 fopen(ser);

12

13 fclose(ser)

14 delete(ser)

15 clear ser;

16 %}

17

18 s.Timeout = 1;

19

20 %find inst structure length

21 N = size(inst,2);

22

23 for i = 1:N

24 initI = inst{i};

25 %sending command ended with CR = 13

26 fwrite(ser, [uint8(hex2dec(initI));uint8(13)]);

27 end

28

29 out = 0;

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 141

30 end

1 function [mastRFHex] = SetMasterRF(liveflag,PWlevel)

2 %UNTITLED5 Summary of this function goes here

3 % Detailed explanation goes here

4

5 if(liveflag==0)

6 fb = '05'; %command hex byte for immediate execution

7 else

8 fb = '06'; %command hex byte for profile load

9 end

10

11 %set master gain to desired level

12 pw = dec2hex(uint8(PWlevel/100*255));

13 if(size(pw,2)==1)

14 pw = ['0',pw];

15 end

16 s = [fb;'81';pw;'00';'00';'00'];

17 mastRFHex{1} = s;

18 end

C.2 C source files

1 /* In this file we initialize the AOTF driver*/

2

3

4 #include <iostream>

5 #include <stdlib.h>

6 #include <windows.h>

7 #include <stdio.h>

8 #include <time.h>

9 #include <string>

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 142

10

11 using namespace std;

12

13 int SetMasterRF(char *mastRFHex, int liveflag,float PWlevel);

14

15 int initAOTF(int mPow){

16

17 DCB dcb={0};

18 HANDLE hCom;

19 BOOL fSuccess;

20 char *pcCommPort = "COM1";

21

22

23 /***************************************CommTimeouts**/

24 COMMTIMEOUTS timeouts={0};

25 timeouts.ReadIntervalTimeout=50;

26 timeouts.ReadTotalTimeoutConstant=50;

27 timeouts.ReadTotalTimeoutMultiplier=10;

28 timeouts.WriteTotalTimeoutConstant=50;

29 timeouts.WriteTotalTimeoutMultiplier=10;

30

31

32 /***Handle***/

33 hCom = CreateFile(pcCommPort,

34 GENERIC_READ | GENERIC_WRITE,

35 FILE_SHARE_READ, // must be opened with exclusive−access
36 NULL, // no security attributes

37 OPEN_EXISTING, // must use OPEN_EXISTING

38 FILE_ATTRIBUTE_NORMAL, // not overlapped I/O

39 NULL // hTemplate must be NULL for comm devices

40);

41

42

43

44 /***************************************SET*UP*COM*PORT**************************************/

45 if (hCom == INVALID_HANDLE_VALUE)

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 143

46 {

47 printf ("CreateFile failed with error %d.\n", GetLastError());

48 //return (1);

49 }

50

51 if(!SetCommTimeouts(hCom, &timeouts))

52 {

53 /*Well, then an error occurred*/

54 }

55

56 fSuccess = GetCommState(hCom, &dcb);

57

58 if (!fSuccess)

59 {

60 /*More Error Handling*/

61 printf ("GetCommState failed with error %d.\n", GetLastError());

62 //return (2);

63 }

64

65

66 dcb.BaudRate = 9600; // set the baud rate

67 dcb.ByteSize = 8; // data size, xmit, and rcv

68 dcb.Parity = NOPARITY; // no parity bit

69 dcb.StopBits = ONESTOPBIT; // one stop bit

70 fSuccess = SetCommState(hCom, &dcb);

71

72 if (!fSuccess)

73 {

74 printf ("SetCommState failed. Error: %d.\n", GetLastError());

75 //return (3);

76 }

77

78 printf ("Serial port %s successfully configured.\n", pcCommPort);

79

80 /**/

81

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 144

82 int i_retCode;

83 char mastRFHex[12]="\0";

84

85 i_retCode = SetMasterRF(mastRFHex, 0, mPow);

86

87

88

89

90 /*

91 [mastRFHex] = SetMasterRF(0,mPow);

92 [out] = sendHex2RF(aotf,mastRFHex);*/

93

94

95 return 0;

96

97 }

98

99

100 int SetMasterRF(char *mastRFHex, int liveflag,float PWlevel){

101

102 int i_retCode=1;

103 char fb[3];

104

105 if(liveflag == 0)

106 strcpy(fb,"05");

107 else

108 strcpy(fb,"06");

109

110

111 char hexPower[3]="00";

112 if(PWlevel < 100){

113

114 int power;

115 float prod;

116 prod = PWlevel*255/100;

117 prod = round(prod);

APPENDIX C. STARTING POINT: RF DRIVER COMMUNICATION 145

118

119 power = static_cast<int>(prod);

120

121 int aux,i=1;

122 while(power!=0 && i>0){

123 aux = power % 16;

124

125 //To convert integer into character

126 if(aux < 10)

127 aux =aux + 48;

128 else

129 aux = aux + 55;

130

131 hexPower[i]= aux;

132 i−−;
133 power = power / 16;

134 }

135 }

136 else

137 i_retCode = 0;

138

139 strcat(mastRFHex, fb);

140 strcat(mastRFHex, "81");

141 strcat(mastRFHex, hexPower);

142 strcat(mastRFHex, "000000");

143

144 return i_retCode;

145 }

Appendix D

Matlab code for testing

The code presented in this Appendix was used to perform test of the Gooch&Housego hyper-

spectral imaging system.

D.1 Grid

1 %Load data

2 info = readHyperHeader('Grey450−808.hdr');
3 dark = multibandread('Dark450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');
4 gray = multibandread('Grey450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');
5 img = multibandread('Grid450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');
6 [imgD] = SubDark(img,dark);

7 [grayD] = SubDark(gray,dark);

8

9 %Stract wavelengths vector

10 lam = zeros(1,info.bands);

146

APPENDIX D. MATLAB CODE FOR TESTING 147

11 a=1;

12 for i=2:8:1439

13 lam(a)=str2double(info.band_names(i:i+2));

14 a = a+1;

15 end

16

17 %Reflectance image

18 imgR = img2R(imgD,grayD, lam);

19

20 %Data set that will be modified

21 ModifiedGrid = zeros(1000, 1000, 180);

22 for i=1:180;

23 ModifiedGrid(:,:,i) = imgR(i,:,:);

24 end

25

26 % Grid draw: maximum value

27 range = [−6 : 6];

28 columna = [30 91 122 248 375 502 661 789 881 974];

29 verticalDistortion = zeros(180, length(columna));

30 for l=1:length(columna)

31 for k = 1:180;

32 for i=50:870

33 ref = imgR(k, i, columna(l)+range);

34 [¬, I] = min(ref);

35 offset = range(I);

36 verticalDistortion(k, l) = verticalDistortion(k, l) + ...

abs(offset)^2;

37 ModifiedGrid(i, columna(l)+offset, k)=0;

38 end

39 end

40 end

41

42 row = [108 203 329 424 457 520 615 710 804];

43 horizontalDistortion = zeros(180, length(row));

44 for l=1:length(row)

45 for k = 1:180;

APPENDIX D. MATLAB CODE FOR TESTING 148

46 for i=1:1000

47 ref = imgR(k, row(l)+range, i);

48 [¬, I] = min(ref);

49 offset = range(I);

50 horizontalDistortion(k, l) = horizontalDistortion(k, l) + ...

abs(offset)^2;

51 ModifiedGrid(row(l)+offset, i, k)=0;

52 end

53 end

54 end

55

56 % Grid draw: straight lines

57 ModifiedGrid(:, columna, :) = 0;

58 ModifiedGrid(row, :, :) = 0;

59

60 % Normalize vertical and horizontal distortion: 1 means no distortion

61 Normalization = min([min(min(verticalDistortion)) ...

min(min(horizontalDistortion))]);

62 verticalDistortion = verticalDistortion ./ Normalization;

63 horizontalDistortion = horizontalDistortion ./ Normalization;

64

65 % Plot distortion for different wavelengths

66 color = [0 0 255; 102 178 255;...

67 0 255 0; 102 255 178;...

68 255 0 0; 255 178 102]/255;

69 t=1;

70 s=1;

71 for h = 10:30:180

72 plot(columna, verticalDistortion(h, :), 'Color', color(t,:));

73 strings{s} = [num2str(lam(h)) 'nm'];

74 hold on;

75 t = t+1; s = s+1;

76 end

77 plot(columna, ones(length(columna)), 'Color', [153 153 ...

255]/255,'LineStyle', '−−')
78 hold on;

APPENDIX D. MATLAB CODE FOR TESTING 149

79 plot([499.99:0.01:500.01],[0 20 0], 'Color', [255 153 ...

204]/255,'LineStyle', ':')

80 hold on;

81 xlabel('Pixel');

82 ylabel('Vertical distortion');

83 strings{s}='No distortion';

84 strings{s+1}='Center';

85 legend(strings)

86 axis([0 1000 0 20])

87

88 figure(2);

89 t=1;

90 s=1;

91 for h = 10:30:180

92 plot(row, horizontalDistortion(h, :), 'Color', color(t,:));

93 strings{s} = [num2str(lam(h)) 'nm'];

94 t = t+1;s = s+1;

95 hold on;

96 end

97 plot(row, ones(length(row)), 'Color', [153 153 255]/255,'LineStyle', '−−')
98 hold on;

99 plot([456.99:0.01:457.01],[0 20 0], 'Color', [255 153 ...

204]/255,'LineStyle', ':')

100 hold on;

101 xlabel('Pixel');

102 ylabel('Horizontal distortion');

103 strings{s}='No distortion';

104 strings{s+1}='Center';

105 legend(strings)

106 axis([0 1000 0 20])

107

108 % Calculate total distortion and plot it

109 averageVert = zeros(1, 180);

110 for i=1:180

111 averageVert(i) = ...

sum(verticalDistortion(i,:))/length(verticalDistortion(1,:));

APPENDIX D. MATLAB CODE FOR TESTING 150

112 end

113 averageHor = zeros(1, 180);

114 for i=1:180

115 averageHor(i) = ...

sum(horizontalDistortion(i,:))/length(horizontalDistortion(1,:));

116 end

117

118 smoothedVert = averageVert;

119 smoothedHor = averageHor;

120 for i=3:177

121 smoothedVert(i) = 1/5*(averageVert(i−2) + averageVert(i−1) + ...

averageVert(i) +...

122 averageVert(i+2) + averageVert(i+1));

123 smoothedHor(i) = 1/5*(averageHor(i−2) + averageHor(i−1) + ...

averageHor(i) +...

124 averageHor(i+2) + averageHor(i+1));

125 end

126 figure(3);

127 plot(lam, smoothedVert);

128 hold on;

129 plot(lam, smoothedHor);

130 xlabel('Wavelength');

131 ylabel('Distortion');

132 strings = {'Vertical', 'Horizontal'};

133 legend(strings);

134

135 figure(4);

136 columna6 = verticalDistortion(:, 6)

137 N = 3;

138 n = floor(N/2)

139 n_vect = [−n:n];
140 for i=1+n:180−n
141 columna6(i) = 1/3*(sum(columna6(i+n_vect)))

142 end

143 plot(lam, columna6)

144 xlabel('Wavelength');

APPENDIX D. MATLAB CODE FOR TESTING 151

145 ylabel('Distortion central column');

D.2 Color chart

1 %TestColor

2

3 %Load spectral data

4 letters = 'FGHI';

5 for j=1:length(letters)

6 for i=1:6

7 strings{(6*(j−1))+i}=[letters(j) num2str(i) '.ProcSpec'];

8 end

9 end

10

11 R_spec = zeros(length(strings), 2048);

12 slam = zeros(1, 2048);

13 for i = 1:length(strings)

14 [R_data(i,:), slam(:)] = Proc2R(['Spectrometer\' strings{i}]);

15 end

16 R = R_data;

17 R(:,1) = R(:,2);

18

19 %Load HSI data

20 info = readHyperHeader('Grey450−808.hdr');
21 dark = multibandread('Dark450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');
22 gray = multibandread('Grey450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');
23 img = multibandread('Color450−808.bip', ...

[info.lines,info.samples,info.bands], info.data_type, 0, ...

info.interleave, 'ieee−le');

APPENDIX D. MATLAB CODE FOR TESTING 152

24 [imgD] = SubDark(img,dark);

25 [grayD] = SubDark(gray,dark);

26

27 %Stract wavelengths vector

28 ilam = zeros(1,info.bands);

29 a=1;

30 for i=2:8:1439

31 ilam(a)=str2double(info.band_names(i:i+2));

32 a = a+1;

33 end

34

35 %Reflectance image

36 imgR = img2R(imgD,grayD, ilam);

37 for k=1:length(imgR(:,1,1))

38 iColor(:,:,k) = imgR(k,:,:);

39 end

40

41 % Select area of each of the squares that will be analyzed

42 squares{1}='red';

43 coordinates(1,:) = floor([500.208528892673 410.362660250495 ...

136.780142916271 131.973173037425]);

44 imgColorRed = ...

imgR(:,coordinates(1,2):coordinates(1,2)+coordinates(1,4),coordinates(1,1):coordinates(1,1)+coordinates(1,3));

45 squares{2}='blue';

46 coordinates(2,:) = floor([656.130567873183 569.072442739442 ...

132.337000249194 127.686179154175]);

47 imgColorBlue = ...

imgR(:,coordinates(2,2):coordinates(2,2)+coordinates(2,4),coordinates(2,1):coordinates(2,1)+coordinates(2,3));

48 squares{3}='yellow';

49 coordinates(3,:) = floor([45.9356653244576 570.255557252473 ...

121.787639168145 117.507562392268]);

50 imgColorYellow= ...

imgR(:,coordinates(3,2):coordinates(3,2)+coordinates(3,4),coordinates(3,1):coordinates(3,1)+coordinates(3,3));

51

52 for i=1:116 ...

53 for j=1:122 ...

APPENDIX D. MATLAB CODE FOR TESTING 153

54 imgColorRed(:,i,j) = imgColorRed(:,i,j)/norm(imgColorRed(:,i,j));

55 imgColorBlue(:,i,j) = imgColorBlue(:,i,j)/norm(imgColorBlue(:,i,j));

56 imgColorYellow(:,i,j) = imgColorYellow(:,i,j)/norm(imgColorYellow(:,i,j));

57 end;end

58

59 %Get spectrum

60 specRed = mean(mean(imgColorRed,3),2);

61 specBlue = mean(mean(imgColorBlue,3),2);

62 specYellow = mean(mean(imgColorYellow,3),2);

63

64 %plot

65 n = 25;

66 Xred = R(10, n:802);

67 Yred = 2*interp1(ilam, specRed, slam(n:802));

68 Hred = Yred./Xred;

69 plot(slam(n:802),Xred)

70 hold on

71 plot(slam(n:802),Yred')

72 hold on

73 plot(slam(n:802),Hred','−−')
74 axis([500 800 0.5 1.5])

75 xlabel('Wavelength')

76 ylabel('Reflectance')

77 title('Spectrum red square')

78 legend('H response')

79

80 figure(2);

81 n = 25;

82 Xblue = R(17, n:802);

83 Yblue = 2*interp1(ilam, specBlue, slam(n:802));

84 Hblue = Yblue./Xblue;

85 plot(slam(n:802),Xblue)

86 hold on

87 plot(slam(n:802),Yblue')

88 hold on

89 plot(slam(n:802),Hblue','−−')

APPENDIX D. MATLAB CODE FOR TESTING 154

90 axis([500 800 0.5 1.5])

91 xlabel('Wavelength')

92 ylabel('Reflectance')

93 title('Spectrum blue square')

94 legend('H response')

95 figure(3);

96 n = 25;

97 Xyellow = R(13, n:802);

98 Yyellow = 8*interp1(ilam, specYellow, slam(n:802));

99 Hyellow = Yyellow./Xyellow;

100 plot(slam(n:802),Xyellow)

101 hold on

102 plot(slam(n:802),Yyellow')

103 hold on

104 plot(slam(n:802),Hyellow','−−')
105 axis([500 800 0.5 1.5])

106 xlabel('Wavelength')

107 ylabel('Reflectance')

108 title('Spectrum yellow square')

109 legend('H response')

Bibliography

Afromowitz, M. A. (1988). Multispectral imaging of burn wounds: a new clinical instrument for

evaluating burn depth. IEEE Trans. Biomed. Eng. 35(10).

Andor®. Software Development Kit 3 v3.9. ANDOR.

Andor®(2014a). Zyla sCMOS Hardware Guide 1.5. Andor Technology.

Andor®(2014b). Zyla sCMOS Specifications. Andor Technology.

B. S. Sorg, O. D. and Cao, Y. (2005). Hyperspectral imaging of hemoglobin saturation in tumor

microvasculature and tumor hypoxia development. Biomedical Optics 10(4).

Bahaa E. A. Saleh, M. C. T. (1991). Fundamentals of Photonics. John Wiley & Sons, Inc.

C Stedham, M Draper, J. W. E. W.-C. P. (2008). A novel acousto-optic tunable filter for use in

hyperspectral imaging systems. Physics and Simulation of Optoelectronic Devices XVI.

Conrady, A. E. (1919). Decentred lens-systems. Monthly notices of the Royal Astronomical Society

79.

Dennis R. Suhre, L. J. D. and Gupta, N. (2004). Telecentric confocal optics for aberration correc-

tion of acousto-optic tunable filters. APPLIED OPTICS Vol. 43.

Dr. Colin Coates, Dr. Boyd Fowler, D. G. H. (2009). scmos white paper: Scientific cmos technol-

ogy, a high-performance imaging breakthrough. www.scmos.com.

Gat, N. (2000). Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056.

155

BIBLIOGRAPHY 156

Gooch&Housego (2014a). Acousto-Optic Tunable Filter TF625-350-2-11-BR1A. Gooch &

Housego ®.

Gooch&Housego (2014b). Driver for Acousto-Optic Tunable Filter MSD0XX-YYY-10UC-16x1.

Gooch & Housego ®.

Gowen, A. A. (2007). Hyperspectral imaging, an emerging process analytical tool for food quality

and safety control. Trends Food Sci. Technol. 18(12).

Ingvaldsen, A. T. R. (2012). An imaging spectrometer using an acousto-optic tunable filter. Mas-

ter’s thesis, Norwegian University of Science and Technology.

Jaka Katrasnik, F. P. and Likar, B. (2013). A method for characterizing ilumination systems for

hyperspectral imaging. OPTICS EXPRESS.

Joan Vila-Frances, Emilio Ribes-Gomez, C. I.-L. L. G.-C. J. M.-M. J. A.-L. J. C.-M. (2006).

Configurable-bandwidth imaging spectrometer based on an acousto optic tunable filter. Proc.

of SPIE.

Joan Vila-Frances, Javier Calpe-Maravilla, L. G.-C. J. A.-L. (2010). Improving the performance of

acousto-optic tunable filters in imaging applications. Journal of Electronic Imaging.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language.

M. B. Sinclair, D. M. Haaland, J. A. T. and Jones, H. D. T. (2006). Appl. Optics 45(24).

M. E. Martin, M. B.Wabuyele, K. C. P. K. M. P.-M. P. B. O. G. C.-D. W. R. C. D. and T. Vo-Dinh, A.

(2006). Biomedical Engineering 34(6).

M. Govender, K. C. and Bulcock, H. (2007). A review of hyperspectral remote sensing and its

application in vegetation and water resource studies. Water SA 33(2).

Mathworks (2015).

P. De Beule, D. M. Owen, H. B. M. C. B. T. J. R.-I. C. D.-J. M. R. K. P. B. D. S. E. I. M. M. J. L. P. A. M.

A. N. and French, P. M. W. (2007). Microscopic Research Techniques 70(5).

BIBLIOGRAPHY 157

QIOPTIQ (2010). LINOS Machine Vision Lenses. QIOPTIQ Photonics for Innovation,

www.qioptiq.com.

Sellar, R. G. and Boreman, G. D. (2005). Classification of imaging spectrometers for remote sens-

ing applications. Optical Engineering 44(1).

Thorlabs (2014). WP25M-UB-AutoCAD. Thorlabs, www.thorlabs.com.

V. B. Voloshinov, K. B. Y. and Yukhnevich, T. V. (2012). Compensation for chromatic aberrations in

acousto-optic systems used in spectral analysis of images. Moscow Unviersity Physics Bulletin

Vol.67.

W. F. J. Vermaas, J. A. Timlin, H. D. T. J. M. B. S.-L. T. N.-S. W. H. D. K. M. and D. M. Haaland, P. N.

(2008). Acad. Sci. 105(10).

web site EMCCD. What is emccd? http://www.emccd.com/what_is_emccd/. Andor®.

http://www.emccd.com/what_is_emccd/

Curriculum Vitae

Name: Your Name

Gender: Female

Date of birth: 1. January 1995

Address: Nordre gate 1, N–7005 Trondheim

Home address: King’s road 1, 4590 Vladivostok, Senegal

Nationality: English

Email (1): your.name@stud.ntnu.no

Email (2): yourname@gmail.com

Telephone: +47 12345678

Your picture

Language Skills

Describe which languages you speak and/or write. Specify your skills in each language.

Education

• School 1

• School 2

• School 3

Computer Skills

• Program 1

158

BIBLIOGRAPHY 159

• Program 2

• Program 3

Experience

• Job 1

• Job 2

• Job 3

Hobbies and Other Activities

	Preface
	Summary
	Introduction
	Background Theory
	Hyperspectral imaging
	Spectral reflectance
	Image cube

	Camera
	sCMOS sensor
	Global shuttering mode

	Acousto-optical tunable filter (AOTF)
	Polarization
	Chromatic aberrations

	Optical fundamentals of the system
	Radial distortion

	Matlab User Interface
	Interfacing with other languages
	Portability

	Building AOTF system
	Andor Zyla sCMOS camera
	Camera selection
	sCMOS sensor

	Acousto optic tunable filter (AOTF)
	RF driver

	Optical design of the system
	Lenses
	Polarizers

	Software
	Graphical User Interface
	Synchronization
	Software triggering
	Hardware triggering

	System characterization and experiments
	Spectral analysis
	Power optimization
	Wavelength dependent resolution
	Grid aberrations
	Color chart spectra

	Discussion
	Conclusion
	Graphic User Interface: code
	Matlab code
	userInterface
	cooling
	finDisplay
	showImages
	timeString

	Mex files
	mOpenCamera
	mCloseCamera
	mGetHSISoftware
	mSetLiveView
	mGetFrameLiveView
	mStopLiveView
	mModifiedCloseCamera
	mCooling
	mExposureTime

	MEX files and Andor SDK
	MEX-Files
	Andor SDK

	Starting point: RF driver communication
	Matlab AOTF
	C source files

	Matlab code for testing
	Grid
	Color chart

	Bibliography
	Curriculum Vitae

