
Machine Learning of Sub-Phonemic Units
for Speech Recognition

Negar Olfati

Master of Science in Electronics

Supervisor: Torbjørn Svendsen, IET

Department of Electronics and Telecommunications

Submission date: February 2015

Norwegian University of Science and Technology

Machine Learning of Sub-Phonemic Units
for Speech Recognition

Negar Olfati

Master of Science in Electronics

Submission date: February 2015

Supervisor: Torbjørn Svendsen

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem description

The current speech recognizers make use of phonemes or phones as the basic recognition unit,

and have statistical description of phonemes modelled by acoustic models. For example, we

have different models of /t/ when the sound is pronounced as in the word "star" compared to

the word "butter". Phoneticians empirically employ the phoneme set of a language as a tool to

provide an auditive description of that language. This means that phonemes are not

necessarily the best units for automatic speech recognition.

This thesis aims to study methods to define an alternative set of units in speech, i.e. detecting

the repetitive patterns and study the properties of the new units.

Assignment given: 15. September 2015

Supervisor: Professor Torbjørn Svendsen

 To my dearest, Majid

To my lovely son, Kian

 i

Abstract

This work is intended to explore the performance of a new set of acoustic model units in

speech recognition. The acoustic models were built and evaluated from scratch in several

steps: Feature extraction, acoustic detection and merging, acoustic segmentation of TIMIT

corpus, clustering the segment representatives, assigning labels to each cluster and labelling

the segments by cluster labels, and finally acoustic modeling. At the acoustic modeling phase,

two experiments were investigated, using standard HMM structures and HTK toolkit; In the

first experiment, the models were trained and evaluated by the annotated version of training

data from TIMIT database in terms of cluster labels. In the second experiment, the time-

aligned version of transcriptions was utilized to train acoustic models. Both experiments were

carried out on four systems with 128, 256, 512 and 1024 units. Both single and mixture

probability estimators were testified. In both experiments, the best results were achieved

using GMMs with three-components for the 128 units system.

 ii

 iii

Acknowledgements

First of all, I would like to gratefully acknowledge Professor Torbjørn Svendsen for being

supportive, patient and helpful at every phase during the work. Without his support, I couldn’t

have kept this work on the right track.
I also wish to express my sincere love to my family for encouraging me during the study,

especially my husband Majid for being always next to me with his unconditional support.

Without him, I could never have come this far. I wish I could thank him enough.

I am also thankful for the people behind the camera, those with the intellectual ownership of

certain key ideas. They are all mentioned at the end of the report as reference.

 iv

Table of Contents
1	
 Introduction and Problem Setting ... 1	

1.1	
 What is machine learning? ... 1	

1.2	
 Motivation of Research .. 2	

1.3	
 The Framework of This Project ... 2	

1.4	
 Preceding work .. 4	

1.5	
 How This Document is Organized ... 4	

2	
 Speech Signal: Theory and Background ... 6	

2.1	
 Speech Production ... 6	

2.1.1	
 Articulators and Articulatory Features ... 7	

2.2	
 Speech Representation ... 10	

2.3	
 Front-End Analysis .. 13	

2.3.1	
 MBE Feature Extraction ... 13	

2.3.2	
 STC Feature Generation ... 15	

2.4	
 Summary .. 16	

3	
 Artificial Neural Network Theory ... 17	

3.1	
 Basics of neural networks .. 17	

3.2	
 Network Training ... 18	

3.3	
 Acoustic Detection ... 19	

3.4	
 Acoustic Merging ... 20	

3.5	
 Summary .. 21	

4	
 Acoustic Segmentation .. 22	

4.1	
 Why Segmentation? ... 22	

4.2	
 Acoustic Segmentation Principle ... 23	

4.2.1	
 The Representatives .. 23	

4.2.2	
 The Distortion Measure .. 23	

4.3	
 The Acoustic Segmentation Algorithm ... 24	

4.4	
 Distortion Matrix ... 26	

4.5	
 Summary .. 26	

5	
 Data Clustering .. 27	

5.1	
 K-means Algorithm ... 27	

5.1.1	
 How The Algorithm Works .. 28	

5.2	
 Labelling Assignment Strategy .. 31	

5.3	
 Summary .. 32	

6	
 Acoustic Modeling ... 33	

6.1	
 Markov Model ... 34	

 v

6.2	
 Hidden Markov Models ... 35	

6.3	
 HMM Structure .. 35	

6.4	
 Classic HMM Problems ... 38	

6.4.1	
 Probability Evaluation .. 38	

6.4.2	
 Optimal State Sequence .. 39	

6.4.3	
 Parameter Estimation .. 41	

6.5	
 Summary .. 44	

7	
 The Hidden Markov Model Toolkit .. 45	

7.1	
 Creating a Prototype HMM Definition .. 45	

7.2	
 Initialisation ... 46	

7.2.1	
 Flat Start Initialisation using HCompV .. 46	

7.2.2	
 Isolated Model Initialisation Using HInit ... 47	

7.3	
 Re-estimation ... 48	

7.3.1	
 Embedded Training Using HERest .. 48	

7.3.2	
 Isolated Training Using HRest ... 49	

7.4	
 Decoding .. 50	

7.4.1	
 The Token Passing Algorithm .. 51	

7.4.2	
 Forced Alignment ... 51	

7.5	
 Evaluation .. 52	

7.6	
 Other HTK tools .. 53	

7.6.1	
 HLEd .. 53	

7.6.2	
 HHEd .. 53	

7.7	
 Summary .. 53	

8	
 Experiments, Results and Discussions ... 54	

8.1	
 The TIMIT Database .. 54	

8.2	
 Front-End Analysis and Detection ... 54	

8.3	
 Acoustic Merging ... 55	

8.4	
 Acoustic Segmentation .. 57	

8.5	
 Data Clustering .. 64	

8.5.1	
 Labeling Assignment .. 65	

8.6	
 Acoustic modeling and HMM-level recognition ... 65	

8.6.1	
 The first experiment: Recognition .. 66	

8.6.2	
 The second experiment: Forced Alignment .. 76	

8.7	
 Summary .. 83	

9	
 Summary, Conclusions and Future work ... 84	

9.1	
 Summary and Conclusions .. 84	

9.2	
 Future Work ... 85	

 vi

APPENDIX ... 87	

 vii

List of Abbreviations

AF : Articulatory Feature

ANN : Artificial Neural Network

ASR : Automatic Speech Recognition

DCT : Discrete Cosine Transform

FT : (Smola & S.V.N, 2008)Fourier Transform

HMM : Hidden Markov Model

HTK : The Hidden Markov Model Toolkit

MBE : Mel-bank Energy Coefficients

MMF : Master Macro File

MLF : Master Label File

MLP : Multi Layer Perceptron

MOA Manner of Articulation

POA Place of Articulation

SLP : Single Layer Perceptron

TIMIT : Texas Instrumental Massachusetts Institute of Technology

 viii

List of Figures

Figure 1: A Standard Speech Recognizer system .. 3	

Figure 2: The overall framework of the system introduced in this work .. 4	

Figure 3: Schematic representation of the human speech production mechanism 7	

Figure 4: (a) Narrowband and (b) Wideband Spectrograms for ”Spring Street is straight ahead.” 12	

Figure 5: The front-end analysis step ... 13	

Figure 6: MBE Extraction Diagram .. 13	

Figure 7: schematic diagram of STC structure .. 15	

Figure 8: A basic view of a neuron unit .. 17	

Figure 9: Modeling a perceptron ... 18	

Figure 10: Schematic diagram of the detection module .. 19	

Figure 11: The Structure of One Detector in Acoustic Detection Module ... 20	

Figure 12 a-d) Anterior, Labial, Velar and Mid posterior probability outputs. e) The posterior vector 21	

Figure 13: The acoustic segmentation algorithm ... 25	

Figure 14: Two- and three- segmentation solutions for a signal with 5 frames 25	

Figure 15: Illustratin of the k-means algorithm in a two-dimensional Euclidean space 31	

Figure 16: Labelling principle. Database architecture (left) and centroid space (right) 31	

Figure 17: Database after label assignment ... 32	

Figure 18: The scheme of a Markov model ... 35	

Figure 19: Typical HMM structures: (a) Ergodic (b) Left-to-right ... 36	

Figure 20: one-state left to right structure for basic units in this work .. 37	

Figure 21: Invoking a HTK tool .. 45	

Figure 22: Flat start initialisation of HMMs using HCompV .. 47	

Figure 23: Isolated initialisaiton using HInit ... 47	

Figure 24: Schematic diagram of HInit algorithm ... 48	

Figure 25: Training process using HERest .. 49	

Figure 26: Training by HRest .. 50	

Figure 27: Schematic diagram of HRest algorithm ... 50	

Figure 28: Decoding procedure using HVite ... 51	

Figure 29: Forced alignment procedure ... 52	

Figure 30: Evaluation using HResults ... 53	

Figure 31: Posteriorgram representation for utterance, ”It suffers from a lack of unity of purpose and

respect for heroic leadership.” with TIMIT code fadg0_si649. .. 56	

Figure 32: Speech waveform, spectrogram representation, phonemic and acoustic segmentations of the

utterance “Keep the thermometer under your tongue!” with TIMIT code mjrp0_sx225 60	

 ix

Figure 33: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of the

utterance “He took a big swig of his drink.” With TIMIT code mrtj0_si2032 60	

Figure 34: Speech waveform, spectrogram representation, phonemic and acoustic semgnetaions for the

utterance “Bagpipes and bongos are musical instruments.” With TIMIT code frjb0_sx77 61	

Figure 35: Speech waveform, spectrogram representaiton, phonemic and acoustic segmentation of the

utterance “Gently place Jim's foam sculpture in the box.” With TIMIT code mwgr0_sx76 61	

Figure 36: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of

utterance “Look, sweetheart, some fool was.” with TIMIT code mmjr0_si2166 62	

Figure 37: Speech waveform, spectrogram representation, phonemic and acoustic segmnetaiton of an

excerpt of the utterance “We produce peanut oil,..” with TIMITcode mesd0_si1002 62	

Figure 38: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the

utteracne “The morning dew on the spider...” with TIMIT code mjes0_sx214 63	

Figure 39: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the

utteracne “There, forces are more latent than in electricity, and less than in magnetism.” with

TIMIT code mjrn0_si819 .. 63	

Figure 40: Schematic diagram of the recognition algorithm ... 66	

Figure 41: Three prototype models (a) single Gaussian, (b) two-component GMM (c) Three-

component GMM .. 67	

Figure 42: the initial model topology .. 68	

Figure 43: The variance floor macro file ... 69	

Figure 44: The dictionary content for 128 segmental units ... 70	

Figure 45: (a)The grammar file and (b) The HMM-level network structure .. 71	

Figure 46: The lattice file corresponding to the 128 units system. ... 71	

Figure 47: The recognition results corresponding to the utterance mmjr0_si2166 73	

Figure 48: Comparison diagram for first experiment using single Gaussian models 75	

Figure 49: Comparison diagram for first experiment using two-component GMMs 75	

Figure 50: Comparison diagram for first experiment using three-component GMMs 75	

Figure 51: The processing steps regarding the second experiment ... 76	

Figure 52: The transcription corresponding to the utterance mjrp0_sx225 before and after performing

forced alignment ... 78	

Figure 53: Comparison diagram for second experiment using single Gaussian models 82	

Figure 54: Comparison diagram for second experiment using two-component GMMs 82	

Figure 55: Comparison diagram for second experiment using three-component GMMs 82	

 x

List of Tables

Table 1: Articulatory feature set and relevant phonemes .. 9	

Table 2: The front-end configurations .. 55	

Table 3: The acoustic segmentation results for 10 utterances ... 59	

Table 4: Recognition and accuracy results in first experiment using single Gaussian models 74	

Table 5: Recognition and accuracy results in first experiment using two-component mixture models 74	

Table 6: Recognition and accuracy results in first experiment using three-component mixture models

 ... 74	

Table 7: Recognition and accuracy results in second experiment using single Gaussian models 81	

Table 8: Recognition and accuracy results in second experiment using two-component GMMs 81	

Table 9: Recognition and accuracy results in second experiment using three-component GMMs 81	

Machine Learning of Sub-Phonemic Units for Speech Recognition

1. Introduction and Problem Setting 1

1 Introduction and Problem Setting

Speech is considered as the most natural way to communicate in everyday life. It has been

made a lot of research to accomplish the process of mapping from speech signal to text by

computers. This research field is called speech recognition. However, the task of recognizing

any speech signal uttered by any person under any environmental condition is still a research

challenge, and it is so far an easier task for human beings than for machines. Nevertheless,

machines have been capable of working successfully in particular application areas, like

dictation, augmentative communication, or call-routing.

1.1 What is machine learning?
Machine learning is the study of algorithms that learn the machine how to generalize the

observed properties of an object to unobserved properties of that object [17]. The range of

applications employing machine-learning techniques is large; some application areas are web

page ranking, automatic translation of documents, face recognition, and last but not the least,

speech recognition. In general, any area in which you need to make sense of data is a potential

consumer of machine learning.

There are several different models available for learning a machine how to predict the

unknown data by making use of the known data, such as classification by perceptrons, data

clustering etc. In case of speech recognition, the known data is called the training set and the

unknown data is called the testing set of a speech data set. In this work we will apply some of

these methods.

There are two types of machine learning, depending on the availability/unavailability of the

outputs. These are known as supervised and unsupervised approaches. In this project, a

combination of these approaches is applied. For example, the technique used in training the

neural networks can be categorized as supervised learning, while the designed k-means

clustering algorithm is unsupervised [3].

Machine Learning of Sub-Phonemic Units for Speech Recognition

1. Introduction and Problem Setting 2

1.2 Motivation of Research
One of the most essential factors in building automatic speech recognition systems (ASR) is

to select the basic recognition unit. There are several criteria to be considered when selecting

the recognition unit [7]:

• The unit should be accurate i.e. capable of modeling the acoustic realizations in different

contexts.

• The unit should be trainable. For this purpose, enough training data should be available to

estimate the unit parameters.

• The unit should be generalizable i.e. capable of creating higher level recognition units.

In small vocabulary tasks with specific set of words, the whole words are regarded as

reasonable units. They are both accurate and trainable and there is no need for them to be

generalized. However, in the case of large vocabulary ASRs, the use of whole words as basic

units is a poor choice. In this case, accuracy and trainability would be a challenge since for

“learning” each word to the system, several acoustic realizations would be required and hence

the size of the required training data would be extremely large. In such systems, the phones

may be a good alternative to construct the basic units for recognition. The problem with

phones, however, is their accuracy, as they are not able to model the trajectories found in

speech. In order to account for the acoustic variability, context-dependant sub-word models

such as biphones and triphones are employed. A biphones model considers the adjacent

phone on the left side of the phone being modelled, and a triphones model involves

considering both its left and right phones.

In this project, in order to capture the coarticulatory effects of the speech signal, an alternative

method is investigated. In the current approach, the units are built based on the articulatory

features inherent in the signal. The advantage of these units over phones is that as they are

built considering the articulatory features in the signal, they make the design of a universal

language speech recognizer practical.

This thesis is conducted to investigate the behaviour and performance of these units through

several experiments.

1.3 The Framework of This Project
A standard ASR system is constructed by five basic modules: speech parameterization,

acoustic modeling, language modeling, decoding and the evaluation. Schematic diagram of a

Machine Learning of Sub-Phonemic Units for Speech Recognition

1. Introduction and Problem Setting 3

typical ASR system is shown in Figure 1 [18]. The blue boxes represent the modules and the

orange boxes represent the files associated with them.

Figure 1: A Standard Speech Recognizer system

The system in this project is designed based on a segmental framework. In this manner, three

extra steps compared to Figure 1 are involved in the work. These steps are depicted in Figure

2. They are shown in yellow and the files associated with them are in green. In this work,

after the speech signals are parameterized, the inherent articulatory features existing in each

frame are first detected and then merged in order to generate posterior supervectors. These

vectors are then divided into segments each of which carrying a low degree of internal

acoustic variation. For each segment, a representative vector found by averaging the posterior

supervectors in that segment is identified. These segment representatives are then classified

through a clustering algorithm (k-means). Then, the label corresponding to each cluster marks

all segments of which their representatives belong to that cluster. These segmental units also

referred to as sub-phonemic units, construct the basic units in our speech recognizer.

The articulatory detection phase of the system is performed by Artificial Neural Networks

(ANNs), and the statistical modeling of the speech signals is done by Hidden Markov Models

(HMMs). Such system is known as ANN/HMM hybrid speech recognition system.

Furthermore, the current system is a continuous-speech speaker-independent ASR system.

The term speaker-independent means that the system is designed to recognize anyone’s

speech, and the term continuous means that the words are pronounced without requiring any

pause in between.

Language
Modeling

Training
Data

Feature
Vectors

Language
Models

Acoustic
Modeling

Testing
Data

Trained
Models

Training
Transcriptions

Pronunciation
Lexicon

Decoding Feature
Extraction

Feature
Vectors

Recognized
Speech Evaluation Error

 Rate

Testing
Transcriptions

Speech
Parameterization

Machine Learning of Sub-Phonemic Units for Speech Recognition

1. Introduction and Problem Setting 4

Figure 2: The overall framework of the system introduced in this work

It should be mentioned that due to time constraints, the designed system is just able to

recognize in unit level. Therefore, the language modeling in Figure 1 is changed to lattice in

Figure 2, which is a simple form of a language model. More complex language models are

employed in higher levels of process, namely concatenating the models and building higher

levels of speech units such as phones, syllables, and words, in order to decode what is said.

All modules in Figure 2 are described thoroughly during the next chapters.

1.4 Preceding work
This project is connected to the specialization project performed during the spring semester

2014, in which by employing artificial neural networks, detection of AF features was

investigated. In the current work, the obtained set of articulatory feature vectors from that

project will be utilized.

1.5 How This Document is Organized
This document is partitioned into 9 chapters. The first chapter is the current chapter and

provides an introduction to the work. Chapters 2 to 7 are structured in chronological order and

cover all theoretical concepts required to understand the document. Chapter 8 is intended to

report the experiments performed during the work, and discuss the obtained results. The last

chapter includes a summary of the document and provides directions for future work. All the

programming scripts are enclosed as Appendix. The scripts are commented carefully in order

to enlighten the reader and they should be fairly easy to understand.

Speech
Parameterization

Training
Data

Feature
Vectors

Acoustic
Modeling

Testing
Data

Trained
Models

Pronunciation
 Lexicon

Decoding Feature
Extraction

Feature
Vectors

Recognized
Speech Evaluation Error

 Rate

Label Files
 for Test Data

Acoustic
Detection

And Merging
Posterior

Supervectors
Acoustic

Segmentation
 Segment

Representatives
Data

Clustering

Label Files
 for Train Data

Lattice
Model

Machine Learning of Sub-Phonemic Units for Speech Recognition

1. Introduction and Problem Setting 5

At the end of each chapter a brief summary is provided. Last but not the least, In order to

understand this document it is assumed that the reader is familiar with the basic concepts

regarding the probability theory and the Byes’ rule, but not much else.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

6

2 Speech Signal: Theory and Background

In this chapter an overview of the theoretical background regarding the production,

representation and parameterization of speech signal is provided. The first section (2.1)

represents the basic idea of how the speech is produced. At (2.2) the representation of speech

in both time and frequency domain is described. The front-end analysis of the recognizer

system employed in this work is introduced in (2.3). The chapter ends with a brief summary

provided at (2.4).

2.1 Speech Production
Understanding the performance of the human speech production apparatus is essential in

every speech recognition system, as all parts of the ASR system – from feature extraction to

decoding – are inspired from the speech module in human beings. Therefore, in this section,

we will provide a brief overview of the physiological structure of the speech production

system. We will then describe how the speech sounds are produced through activating

different organs in this system.

The speech production is started by firing control signals from the human brain to the speech

apparatus system and thereby activating a special area in the system, while at the same time

another control signal is sent towards the lungs in order to make them generate an air flow.

The air stream is then passed through the larynx and the vocal folds, and thereby either voiced

or voiceless sounds are produced. Next, the air stream enters the vocal tract. Here, due to the

constriction of vocal tract in several places between vocal folds and mouth, the spectral

characteristics of the speech signal are changed, and either vowels or consonants are created

[10].

 Figure 3 shows a simplified representation of physiological mechanism for speech

production. Here the lungs are modelled by a source for producing the airflow. The position

of the vocal cords will generate either quasi-periodic pulses or noise signal. A sequence of

these speech sounds is then fed into a linear time-varying filter modeling the vocal tract, and

hence a sequence of different speech sounds is produced.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

7

Figure 3: Schematic representation of the human speech production mechanism

2.1.1 Articulators and Articulatory Features

Articulators are the set of muscles with the ability to change the shape of the vocal tract and

hence producing different sounds. Some of the main articulators are [10]:

• Pharynx: A tubular structure located between the larynx and the oral cavity.

• Velum: A soft structural tissue at the back of the mouth for controlling the airway.

• Hard palate: A smooth curved surface located between the oral and nasal cavities.

• Alveolar ridge: A rough surface with little ridges located between the upper teeth and the

hard palate.

• Tongue: The most important articulator with greatest degree of interaction.

• Teeth: Located behind the lips

• Lips: The most visible articulators.

Both constriction of some of the articulators and interaction between them results in

producing different speech sounds. These sounds are known as articulatory features (AFs),

speech attributes, phonological features, articulatory cues, acoustic-phonetic features or

articulatory-acoustic features in literature. AFs are regarded as the minimal units with the

ability to be distinguished in a language. With such features, one is able to represent the

overlapping nature of speech and model the contextual variation of signal [1,4].

The set of articulatory features used in this work are those represented in [16] by considering

the following criteria:

Source

= Lungs

Impulse
Generator

Noise
Generator

= Open Vocal Cords

= Vibrating Vocal Cords

Σ
Linear

Transfer
System

=Vocal Tract

Speech

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

8

• Manner of articulation (MOA): The degree of opening in the vocal tract when producing

speech sounds.

• Place of articulation (POA): The relative interaction between articulators.

• Voicing: The vibrating degree of vocal folds.

These features together with their corresponding phoneme sets are provided in 22 groups in

Table 1. According to this table, phones are built upward from a foundation of AFs [9]: each

phone could be uniquely described as a supervector of 22 dimensions. Each component in the

supervector signifies the presence or absence of a particular AF in that specific phone, and

contributes to distinct that phone from the others. For instance, the existence of voiced feature

accompanied with the absence of tense in /b/ will distinguish it from /p/, for which the

reverse is true. One of the most important properties that these features own is being similar

across languages. This makes the idea of designing a universal recognition system

conceivable. Anther noticeable property of these features is their robustness against noise and

cross-speaker variations [11]. These salient properties have motivated speech researchers to

design recognition systems based on articulatory feature detection, known as detection-based

ASRs.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

9

Table 1: Articulatory feature set and relevant phonemes

Feature Phoneme set Feature Phoneme set

Vowel
aa, ae, ah, aw, ay, eh, er, ey, ih,

iy, ow, oy, uh, uw
Labial b, f, m, p, v, w

Fricative ch, dh, f, hh, jh, s, sh, th, v, z Low aa, ae, aw, ay, oy

Nasal m, n, ng Mid ah, eh, ey, ow

Stop b, d, dx, g, k, p, t Retroflex er, r

Approximant l, r, w, y. Velar k, g, ng

Vocalic
aa, ae, ah, aw, ay, eh, er, ey, ih,

iy, l, ow, oy, r, uh, uw, w, y.
Voiced

aa, ae, ah, aw, ay, b, d, dh, dx, eh,er, ey, g, ih,

iy, jh, l, m, n, ng, ow, oy, r, uh, uw, v, w, y, z

High ch, ih, iy, jh, sh, uh, uw, y Round aw, ow, oy, r, uh, uw, v, w, y

Coronal d, dx, l, n, s, t, z Tense
aa, ae, aw, ay, ch, ey, f, hh, iy, k, ow, oy, p, s,

sh, t, th, uw

Dental dh, th Anterior b, d, dx, dh, f, l, m, n, p, s, t, th, v, w, z.

Back
aa, ah, aw, ay, g, k, ow, oy, uh,

uw
Glottal hh

Continuant

aa, ae, ah, aw, ay, dh, eh, er, ey,

f, ih, iy, l,ow, oy, r, s, sh, th

,uh, uw, v, w, y, z.

Silence pau

A brief description for each feature is provided as follows [2,10].

• Anterior: Produced by an obstruction in front of the alveolar ridge.

• Continuant: Created when the oral tract is not entirely blocked.

• Coronal: Produced when the tongue blade is raised from its natural position, toward the

teeth or the hard palate.

• Dental: Produced by inserting the tip of the tongue between the teeth.

• Fricative: Created by narrowing the vocal tract, causing turbulence as the air passes

through it.

• Nasal: Produced by lowering the velum and allowing the air to pass through the nose.

• Stop: Generated when the air is not allowed to escape from the mouth.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

10

• Approximant: Created by constricting the vocal tract slightly, but not so much as in

fricatives

• Tense: Produced with a relatively longer duration and more articulatory interaction

compared to other sounds.

• Glottal: Produced by passing the airflow through the open glottis and then out from the

open mouth. The mouth is open because it is going to produce the next sound, which is

always a vowel.

• Labial: Produced depend on the shape of the lips.

• Velar: Produced by raising the back part of the tongue to the soft palate.

• Retroflex: Produced with the tip of the tongue curled back toward the back of the alveolar

ridge.

• Back: Produced when the tongue is retracted from its neutral position.

• High: Produced by raising the tongue above its neutral position.

• Low: Produced by positioning the tongue below its neutral position and far from the palate.

• Mid: Produced by locating the front of the tongue just above mid-height in the mouth.

• Round: Produced by making the lips rounded.

• Vocalic: Produced when the oral cavity is constricted by the same degree as when the

vowels are produced.

• Vowel: Produced when the vocal cords are vibrating, but articulators not coming very

close together.

• Voiced: Produced when the vocal folds are vibrating fully.

• Silence: presence of no sound is classified as silence.

2.2 Speech Representation
The raw speech signal can be represented in variant domains, such as time and frequency.

Through these representations, one can extract valuable information from the signal and

interpret its characteristics in a proper way.

In time domain, the waveform is displayed in two dimensions: intensity and time, and can be

labelled via a three-state representation:

• Silence (S), in which the signal has low amplitude due to absence of sound;

• Unvoiced (U), in which the vocal cords are relaxed, generating the aperiodic signal with

noise-like nature;

• Voiced (V), in which the vocal cords are vibrating periodically by passing the airflow

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

11

through them, producing quasi-periodic sound.

 For time periods up to about 100 msec, the waveform clearly shows the slowly time varying

nature of the speech. However, for longer time periods, the signal is non-stationary and the

characteristics of speech signal will change resulting in different speech sounds being spoken.

The time domain representation for “Spring Street is straight ahead.” spoken by a male

speaker is given in the upper row of Figure 4(a) and Figure 4(b).1

In frequency domain, the sound characteristics are interpreted via a spectral representation.

The most popular form is the visual representation of the acoustic signal, known as the sound

spectrogram. A spectrogram is a time-frequency-intensity representation of the speech signal,

and can be seen as a tool to study the frequency change of the signal during the time.

In this type of representation, short time spectral analysis of all frames of the signal are

represented as vertical lines, and the level of the grey scale represents the intensity (energy)

content of the signal in different frequencies at different times. Depending on the size of the

analysis window and the window shift, different levels of frequency/time resolution are

obtained. A large window length (about 50 ms) along with a large window shift will result in

high frequency and low time resolution. This type is known as narrowband spectrogram.

Figure 4(a) shows a narrowband representation of the utterance “Spring Street is straight

ahead”.

1 The diagrams in this section are plotted by the Praat speech toolkit. The speech file is adopted from TIMIT

database.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

12

(a)

(b)

Figure 4: (a) Narrowband and (b) Wideband Spectrograms for ”Spring Street is straight ahead.”

In the other hand, a short window (about 15 ms) length together with a short window shift

will result in broad-band spectrogram with high temporal and low frequency resolution. In

both cases, dark horizontal bands in the diagram are corresponding to the vocal tract

resonance. Each component in the dark horizontal lines is called a formant, and is equivalent

to a peak in the spectrum. Formants are the frequencies in which the signal carries the most

acoustical energy.

Looking at these two diagrams, we see a smooth transition of formants over time. This

gradually movement of formant frequencies, called co-articulation, is due to the influence of

one speech sound on its neighbouring sounds.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

13

2.3 Front-End Analysis
The front-end analysis in a speech recognizer plays a crucial role in the overall recognition

performance of the system. This process deals with deriving the most meaningful information

and discarding the irrelevant data from the speech signal.

As a preview of the section, Figure 5 shows an outline of the underlying sub-modules

involved in the front-end analysis step in this work, namely mel-bank energy (MBE) feature

extraction and split temporal context (STC) generation. The input to the front-end analysis

module is the raw speech signal and the outputs are the STC vectors.

Figure 5: The front-end analysis step

2.3.1 MBE Feature Extraction

There are several methods available for parametrically representing a speech signal. Using

these methods, the speech waveform will be transformed into a sequence of uncorrelated

parameter vectors carrying the most essential information relevant to recognition process. The

feature vectors employed in this work are the mel-bank energies (MBE). The steps regarding

to the extraction of these features are shown in Figure 6 and described in brief in the

following subsections.

Figure 6: MBE Extraction Diagram

Acoustic
Detection

Speech Speech
Parameterization

Speech
Signal

Acoustic
Merging

Posterior
Supervectors

Posterior
 Probabilities

STC
 Features

STC
 Features

1. Nasal
Detector

2. Fricative
Detector

22. Anterior
Detector

Posterior Probability Scores

STC
Generation

MBE Feature
 Extraction

Speech
Signal

STC
 Vectors

MBE
 Features

Sampling
and

Quantization
Preemphasis

Short Time!
Fourier!

Transform

Mel-scaled
Filterbanks

MBE
Feature
Vectors

Speech
Signal s(t)!!

W

Block
Processing

and
Windowing

M L
a

s(n) Sm (n)

!Sm (n)

!Sm (n)

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

14

• Sampling and Quantization

The raw speech signal generated at the output of a microphone is first converted to a discrete-

time sequence. This process is called sampling. The real-value number corresponding to

amplitude of each sample is further converted to integer values, represented by a finite set of

levels (bits). This is called quantization. Now, we have a digitized waveform with discrete-

time, discrete-amplitude sequence of samples.2

• Block Processing and Windowing

In order to reduce the variability nature of the speech signal, it is divided into fixed-length

overlapping segments. This is performed by multiplication of the speech signal by a proper

window in time domain. A commonly used window (W) is Hamming window. This is a

weighting window with the property to avoid discontinuity at the frame boundaries in time

domain and correspondingly, reducing high frequency components in frequency domain. The

window length (L) is typically set to 20-30 ms to ensure the speech stationarity inside the

frames. The window shift (M) is typically set to 10 ms to cause overlap and ensure

stationarity between frames.

• Pre-emphasis Filtering

Here, the speech frames are convolved with a first order FIR filter, known as pre-emphasis

filter. This will increase the magnitude of higher frequencies with respect to lower frequencies

in the speech signal, and results in a flattened spectrum.

The basic idea behind pre-emphasis filtering is to provide the best immunity to noise and

measurement imperfections in next steps, compared to the non-emphasized signal [14, p.112].

• Short Time Fourier Transform

In this step, first a Fourier Transform (FT), and then the power spectrum for each frame is

calculated. This process determines which frequencies are present in the speech sound.

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

15

• Mel-Scaled Filterbanks

In this step, the signal is passed through a bank of triangular bandpass filters inspired from the

human auditory filtering and motivated by the fact that the hearing apparatus cannot resolve

two closely located frequencies. The first filter is very narrow and indicates how much energy

exists in low frequencies. The filters gradually get wider to model the less concerning nature

of the hearing system about frequency variations. Then the energy that exists in various

frequency ranges corresponding to each filter is computed.

The spectral-based feature vectors obtained after this final step are known as mel-bank energy

(MBE) coefficients.

2.3.2 STC Feature Generation

In this step, for each frame to be processed, a group of MBE vectors corresponding to several

frames at each side of that frame are passed through two modules: first half of a Hamming

window and then temporal DCT. This is done in order to reduce the dimensionality and

correlation among the coefficients. The procedure is shown in Figure 7. The special feature

vector structure employed in this step is called the Split Temporal Context (STC) and results

in vectors that model long temporal context of speech.

Figure 7: schematic diagram of STC structure

Recalling Figure 2, the first module is now completely described. In order to proceed to next

module, namely acoustic detection and merging, it is necessary to introduce the theory of

artificial neural networks and the basic idea of employing detectors. These are described in

next chapter.

Half%
Windowing- DCT-

DCT-

The-frame-to-
be-labeled--

Half%-
Windowing-

Right-
MBE-
Block-

-MBE-----Block-

t-

f-

Le>-
MBE-
Block-

Le>-
Context-
STC-

Right-
Context-
STC-

Machine Learning of Sub-Phonemic Units for Speech Recognition

2. Speech Signal: Theory and Background

16

2.4 Summary

The chapter started by introducing the concept of creating sounds by human speech system,

known as speech production. Then, several domains in which a speech signal can be

represented were discussed. After that, all steps regarding the parameterization of raw speech

in form of MBE features was described. The final section was about structuring the MBE

features by using the STC generator, resulting in several times longer feature vectors with the

ability to model long temporal context of the speech variations. These vectors construct the

input data to the detection module, as to be described in the next chapter.

Machine Learning of Sub-Phonemic Units for Speech Recognition

3. Artificial Neural Network Theory

17

3 Artificial Neural Network Theory

This chapter deals with all necessary information in order to understand the second module in

the speech recognition system depicted in Figure 2. First, a brief introduction regarding the

artificial network theory is given in (3.1). Then the process of training neural networks is

described in (3.2). After that, the acoustic detection procedure is treated in (3.3). This is

followed by the acoustic merging technique described in (3.4). The chapter ends with a brief

summary provided in (3.5).

3.1 Basics of neural networks

The human brains are made up of a combination of basic units called neurons sending

electrical signals to each other. Natural neurons receive signals through synapses located on

the dendrites or membrane of the neuron. Figure 8 shows a simplified view of a neuron. If the

received signals are greater than a certain threshold, the neuron is activated and emits a signal

through the axon. This signal might be sent to another synapse, and might activate other

neurons [6].

Figure 8: A basic view of a neuron unit

Inspired by how these neurons act in human brain, artificial neural networks (ANNs) have

been designed. The schematic diagram of an artificial neural unit also known as perceptron

Machine Learning of Sub-Phonemic Units for Speech Recognition

3. Artificial Neural Network Theory

18

is shown in Figure 9. The model consists of input and output nodes, a summing junction and

an activation function. In this model, 4 inputs receive the information from either the

environment or other neurons. The inputs are then weighted by synaptic weight factors and

summed up at the adder unit. Finally based on the activation function employed, the output is

interpreted as either activated or deactivated. The activation function can be regarded as a

model for how the human brain stores and processes information [8]. Typical activation

functions are threshold function, piecewise linear function, sigmoid function and softmax

function.

Figure 9: Modeling a perceptron

ANNs can be regarded as a valuable tool in artificial intelligence and also in data

classification problems. Based on the number of hidden layers in their architecture, neural

networks can be used in either linear or nonlinear classification problems: If there is no

hidden layer, the network is called single layer perceptron (SLP) with linear classification

property. This means that it can be employed in linearly separable classification problems. If

the network consists of one or more hidden layers, it is called the multi layer perceptron

(MLP) and is applicable in nonlinear classification problems. In this case, the distribution of

data points in space is such that there is no linear solution to classify them.

3.2 Network Training
In order to train the networks, i.e. to determine the appropriate values for weight and bias

variables, the back propagation algorithm is employed. This is a supervised learning

technique in which both the input and the outputs are known to the algorithm. The process

starts by feeding the input vectors to the network, and assigning random values to weights. At

this time the output vector is computed. Then, the error defined by the difference between

estimated and the original output values is calculated. The goal of the algorithm is to achieve

Machine Learning of Sub-Phonemic Units for Speech Recognition

3. Artificial Neural Network Theory

19

as minimum error as possible. In this regard, for each input vector, an iterative algorithm,

starting at the output and going backward to the input is implemented to adapt the weights

and the bias. The entire work is repeated until the weights converge to a final value [6].

At this point, we have all the materials to describe the second module of Figure 2, namely the

acoustic detection and the merging process. These are described in the subsequent sections as

follows.

3.3 Acoustic Detection
The resulted STC feature vectors, corresponding to left and right sides of the center frame

obtained in section (2.3.2) will now be normalized to have zero mean and unit variance. These

will then feed the input layer of detection module. This module consists of a detector bank

with one detector for each AF. These detectors operate in parallel: for the available dataset,

each detector is going to analyse the whole dataset independent of the other detectors. Figure

10 shows the detector bank architecture.

Figure 10: Schematic diagram of the detection module

Each detector in detection module has a hierarchical structure. That is, it consists of two

context networks and one merger network, as shown in Figure 11. This is motivated by the

fact that two parts of a phoneme may be detected independently – one considering the left,

and the other considering the right context [13,15].

The context networks are MLPs consisting of one hidden layer of 500 nodes and output layer

of 2 nodes. These two networks are trained to generate left and right context phonetic feature

posteriors. Finally, the outputs of these context networks feed the merger network, with 4

nodes at the input layer, 500 nodes at the hidden layer and 2 nodes at the output. Outputs from

this network generate a temporal sequence of posterior probabilities, each corresponding to

Acoustic
Detection

Speech Speech
Parameterization

Speech
Signal

Acoustic
Merging

AFs Posterior
 Probabilities

STC
 Features

STC
 Features

1. Nasal
Detector

2. Fricative
Detector

22. Anterior
Detector

Posterior Probability Scores

Machine Learning of Sub-Phonemic Units for Speech Recognition

3. Artificial Neural Network Theory

20

presence/absence of the attribute being studied in the speech frame.

Figure 11: The Structure of One Detector in Acoustic Detection Module

As an illustration example, the posterior probabilities corresponding to the first 5 frames of

the utterance “He took a big swig of his drink.” With the TIMIT code mrtj0_si2032 generated

at the output of four detectors – (a) Anterior, (b) Labial, (c) Velar and (d) Vid – are shown in

Figure 12(a-d). Each row consists of four components: the two first components are the

utterance number and the frame number, respectively. The last two components describe the

occurrence/non-occurrence of that specific articulatory feature in the corresponding frame.

3.4 Acoustic Merging

After that all frames are classified by efficient parallel binary classifiers, output of these

detectors are stacked in the form of a long vector of attribute posteriors.

Figure 12 (lower row) shows the posterior supervector corresponding to the first frame of the

utterance mrtj0_si2032. This vector is of dimension 44. The first and second components in

this representation are again related to the utterance and the frame number, respectively, and

the last component indicates the manual phonemic label associated with that frame.

 It is worth to mention that each two adjacent components in Figure 12(e) have

complementary values. Therefore, just every other component in this vector suffices for

existence/absence identification, and the other can be discarded without losing any essential

information. Consequently, the dimension of posterior vectors generated after this step will be

reduced to 22 during the experiments.

Leh$Context$Network$

Right$Context$Network$

Normaliza9on$

Normaliza9on$

15#frames#

Temp.#
DCT# Normaliza4on#

11#Cepstral#
Coefficients##

23#MBE#
coefficients#

15#frames#

Half?
Hamming#

Temp.##
DCT#

11#Cepstral#
Coefficients##

The#frame#to#
be#labeled##

The#frame#to#
be#labeled##

LeE#Context#Network#

Right#Context#Network#

Merger#Network#

P#(AMribute)#

Half?
Hamming#

23#MBE#
coefficients#

Normaliza4on#

Merger$Network$

15#frames#

Temp.#
DCT# Normaliza4on#

11#Cepstral#
Coefficients##

23#MBE#
coefficients#

15#frames#

Half?
Hamming#

Temp.##
DCT#

11#Cepstral#
Coefficients##

The#frame#to#
be#labeled##

The#frame#to#
be#labeled##

LeE#Context#Network#

Right#Context#Network#

Merger#Network#

P#(AMribute)#

Half?
Hamming#

23#MBE#
coefficients#

Normaliza4on#

15#frames#

Temp.#
DCT# Normaliza4on#

11#Cepstral#
Coefficients##

23#MBE#
coefficients#

15#frames#

Half?
Hamming#

Temp.##
DCT#

11#Cepstral#
Coefficients##

The#frame#to#
be#labeled##

The#frame#to#
be#labeled##

LeE#Context#Network#

Right#Context#Network#

Merger#Network#

P#(AMribute)#

Half?
Hamming#

23#MBE#
coefficients#

Normaliza4on#

Posterior$Probabili9es$

LehSTCVector$

RightSTCVector$

Machine Learning of Sub-Phonemic Units for Speech Recognition

3. Artificial Neural Network Theory

21

0 0 0.00316296 0.996837
0 1 0.00326864 0.996731
0 2 0.00413082 0.995869
0 3 0.00362767 0.996372
0 4 0.00304715 0.996953

0 0 0.00122059 0.998779
0 1 0.00173027 0.99827
0 2 0.00327691 0.996723
0 3 0.00294067 0.997059
0 4 0.00161837 0.998382

0 0 0.000202816 0.999797
0 1 0.000201446 0.999799
0 2 0.0002134 0.999787

0 3 0.000233411 0.999767
0 4 0.000258545 0.999741

0 0 0.000492393 0.999508
0 1 0.000473658 0.999526
0 2 0.000477677 0.999522
0 3 0.000647143 0.999353
0 4 0.000480904 0.999519

(a) (b) (c) (d)

0 0 0.00316296 0.996837 0.000125077 0.999875 0.000202816 0.999797 0.000492393 0.999508 0.000291713 0.999708
0.000534549 0.999465 0.000233255 0.999767 0.000947127 0.999053 0.000207564 0.999792 0.000342387 0.999658
0.00344511 0.996555 0.000243154 0.999757 0.000121452 0.999879 0.00122059 0.998779 0.000268704 0.999731 0.000537615
0.999462 0.000420721 0.999579 0.000714712 0.999285 8.58588e-05 0.999914 9.87989e-06 0.99999 0.000157283 0.999843
0.999075 0.00092468 27

(e)
Figure 12 a-d) Anterior, Labial, Velar and Mid posterior probability outputs. e) The posterior vector

3.5 Summary
In this chapter, the theory of implementing neural networks in classification problems was

described. Then, the idea behind AF detection by applying ANNs was explained. The

detected features were then merged via a merging network, in order to generate posterior

supervectors of dimension 44, which was reduced to 22 in a later process, to reduce the

redundancy. With these posterior vectors at disposal, we will start describing the next module

in Figure 2.

Machine Learning of Sub-Phonemic Units for Speech Recognition

4. Acoustic Segmentation

22

4 Acoustic Segmentation

This chapter deals with the theory regarding the third module in Figure 2, namely the acoustic

segmentation. In this chapter, the idea behind segmentation is explained in (4.1). Then, the

acoustic segmentation principle is described in (4.2). After that, the algorithm conducted to

automatically segment speech into acoustical stationary segments is provided in (4.3). Then,

the idea behind dynamic programming is described in (4.4). The chapter ends with a brief

summary at (4.5).

4.1 Why Segmentation?

As described in section (1.2), the main motivation of this project is to create sub-phonemic

recognition units. In this manner, we need to annotate the dataset in form of segmental units.

For a relatively large vocabulary, the manual segmentation is impractical, because of the

following:

• Manual segmentation implies interpreting spectrograms and aligning them with the

continuous audio. This is quite time-consuming and tedious.

• The result is subjected to human errors and even two segmentation results of the same

utterance may be inconsistent. [19]

For these reasons, automatic segmentation is regarded as a superior alternative to manual

segmentation. The segmentation process is about to place boundaries along the speech signal,

and thereby dividing the signal into variable length chunks. Two types of segmentation exist:

phonemic and acoustic. Phonemic segmentation of the utterances is already available in this

work. This is about placing the boundaries along the signal and specifying the phoneme

boundaries in the signal. Acoustic segmentation is about placing the boundaries along the

signal such that the resulted segments are acoustically homogeneous.

There are many algorithms proposed in the field of acoustic segmentation. In this work, the

employed algorithm is similar to the one suggested in [19]. In the following, the principle of

acoustic segmentation is described.

Machine Learning of Sub-Phonemic Units for Speech Recognition

4. Acoustic Segmentation

23

4.2 Acoustic Segmentation Principle
The 22-dimensional posterior vectors generated via acoustic merging module are now fed into

the segmentation algorithm as input. 	

As mentioned above, in acoustic segmentation it is aimed to – as far as possible – divide the

signal into acoustically homogeneous regions and end up with segments each of which

corresponding to a phonetic event. In order to perform this, first of all some objective function

is defined. Then the goal would be to optimize the fulfilment of that objective. The function

in this work is selected to be the distortion error and the objective is to minimize this error. By

that, each region of the signal in which the distortion error is less than a threshold is

constructing a segment. The acoustic segmentation consists of two main components. They

are described below.

4.2.1 The Representatives

As just mentioned, the main idea in segmentation is that each signal is segmented into

stationary segments. This is achieved by representing all vectors in each individual segment

by a fixed-dimensional vector called representative or candidate. The representative vector in

this work, 𝑐!, is selected to be the segmental centroid vector, that is

c! =
1
N!

x!

!!

!!!

[n] (1)

Where 𝑥! 𝑛 and 𝑐! are the posterior supervectors and the centroid vector in segment 𝑖 ,

respectively, and 𝑁! is the total number of frames in segment 𝑖.

4.2.2 The Distortion Measure

The distortion measure is generally defined as the difference between the original value and

an estimation of the original value. In this work, the distortion measure is considered to be the

sum of squared Euclidean distances between posteriori vectors belonging to a segment and

the centroid vector of that segment.

For each segment 𝑖, the local distortion error 𝑑! is found by:

d! = x! n − c! !
!!

!!!

 (2)

Finally, the total distortion error 𝐷 is found by:

Machine Learning of Sub-Phonemic Units for Speech Recognition

4. Acoustic Segmentation

24

D = d!
!!

!!!

 (3)

where 𝑁! is the total number of segments in the utterance. The average distortion error would

then be:

d =
1
N!
 D (4)

where 𝑁! is the total number of frames in the spoken utterance.

4.3 The Acoustic Segmentation Algorithm
The algorithm is shown in Figure 13. It starts by dividing the signal in the “best” way into 2

segments; that is, to move the only required delimiter frame by frame and set it in all possible

places, each of which giving a potential solution. For each potential solution, the local mean

(𝑐!), the local distortion (𝑑!), and also the total distortion (𝐷) are calculated. Then, the

algorithm picks out the solution with the minimum total distortion as the best choice so far.

For this solution, the average distortion (𝑑) is found and compared to a pre-defined threshold

(ε). If its value is less than the threshold, the algorithm stops, meaning that we have reached

the optimum result. Otherwise, the number of obtained segments in the utterance is compared

to a pre-defined value, found by multiplication of over-segmentation factor (A) – a pre-

defined constant corresponding to the maximum number of allowed segments – and the

number of phonemes that exist in the utterance (#phn). If the number of segments is reached

to that value, the algorithm stops. Otherwise, the number of segments is incremented by one

and the same procedure applies. The algorithm is built upward until either it comes to a

solution in which the average distortion is less than a pre-defined threshold, or a pre-defined

number of segments is obtained.

Machine Learning of Sub-Phonemic Units for Speech Recognition

4. Acoustic Segmentation

25

Figure 13: The acoustic segmentation algorithm

(a) (b)

Figure 14: Two- and three- segmentation solutions for a signal with 5 frames

N=2

Compute ci, di and D for
each potential solution

Choose the solution with
minimum D

Compute for this
solution

Increment N

yes

no

End

Start%

yes

This is the best
solution

no

d

d < ε N < A ⋅ # phn

Machine Learning of Sub-Phonemic Units for Speech Recognition

4. Acoustic Segmentation

26

Figure 14 shows the segmentation problem for two- and three-segment solutions. In this

figure, the signal consists of 5 frames. So there are 4 potential solutions for two-segment

problem and 6 for three-segment problem.

The algorithm is applied to the whole database. So, after segmentation, what we gain is a

bundle of segments with various statistical properties.

4.4 Distortion Matrix
As described in the previous section, the algorithm works based on level building from two

segments and upward. Since there are a great amount of possible solutions in each level,

computing the distortion for all segments in all levels would make the process quite slow and

redundant. Hence, the algorithm is implemented such that in order to compute the best

segmentation for upper levels, it exploits what it has already calculated in the solution for

lower levels. For each utterance, the algorithm sets up a squared distortion matrix of

dimension 𝑁!×𝑁! (𝑁! is the number of frames in that utterance) used to record all possible

solutions (segment combinations) in order to prevent re-calculation in next levels. This

efficient technique is called dynamic programming.

4.5 Summary
In this chapter, the posterior vectors generated from the acoustic merging module were used

as input to a segmentation engine. First the idea behind the segmentation was described. Then

the acoustic segmentation algorithm of speech utterances was included. The result is segments

with minimum acoustic internal variations and variable lengths, expanding the whole speech

space and represented by their centroid vectors.

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

27

5 Data Clustering

In this chapter with the segment representatives (centroids) at hand, the data clustering

procedure will be explained.

Data clustering is one of the most popular techniques in pattern recognition problems. The

clustering can generally be achieved via two major approaches known as supervised and

unsupervised learning techniques. In supervised learning, the annotated version of training

data is available. However, in real applications, such as in conversational speech recognition,

it is both expensive and impossible to provide labels such as transcription of the data set in

phoneme level. Such problems are regarded as unsupervised learning. In unsupervised

learning technique, the only available data is the unlabelled input vectors to be clustered, and

the labels will be assigned after the clustering is performed. There is a wide range of

techniques employed in unsupervised problems. One of the most common approaches is k-

means. This is a clustering algorithm, aiming to partition the data set into k clusters in such a

way that the segments possessing similar characteristics are clustered together. One of the

major applications of this approach is in data classification tasks. It is also valuable in data

compression applications, as the number of candidates (k) is much less than the size of dataset

[3].

In this chapter, all principles regarding the k-means algorithm are provided in (5.1) and the re-

labeling strategy of the database is described in (5.2). In (5.3), a brief summary of the chapter

is presented.

5.1 K-means Algorithm

As mentioned above, the goal is to cluster the data points into k clusters, define k candidates

and finally assign the cluster label to each data point. This should be performed such that the

distortion measure is minimized. However, it is not an easy task to jointly minimize the

distortion with respect to both cluster candidates and cluster labels. So, we need to adapt a

two-stage iterative strategy:

• Keep the candidates fixed and assign cluster labels to data points, with respect to the

distortion measure minimization.

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

28

• Keep the membership assignment fixed and update the candidates.

By this strategy, the distortion minimization is guaranteed [20].

There are several variants of k-means algorithm based on how the candidate assignment and

the distortion measure are defined. In case of candidate initialisation, one could randomly

assign k data points from the data set as initial candidates. Another alternative is to set the k

farthest points as the initial candidates. However, in the current work, since the k is

undefined, none of the above mentioned can be applied. Here we have adopted another

strategy, described in the following subsection. In case of distortion measure, one could

choose the absolute differences between the data points and the candidates (L1 distance).

Another alternative, which is employed in this work, is the squared Euclidean distance.

In the following sub-section, the k-means clustering for two-dimensional data set is described.

This will provide visual insight into the project work. The corresponding MATLAB script is

enclosed in Appendix C.

5.1.1 How The Algorithm Works

Figure 15 demonstrates the scatterplot of a two-dimensional data set while applying k-means.

In this figure, the existence of 4 clusters is clear from the way the data points are distributed

in space. Now let’s see how the algorithm finds the clusters. The process is made up of the

following steps:

Initialisation: The algorithm starts by computing the centroid vector corresponding to the

whole data set (Figure 15a). This centroid vector is slightly biased (by a random vector) to

give another candidate vector. Now we have two candidates; one is the original centroid, and

the other is the biased version of the original centroid (Figure 15b).

Recursion: Now, each data point is assigned to its closest centroid and then, for each cluster

𝑖, the local distortion error defined as sum of squared Euclidean distances between data point

members and candidate vectors is computed:

L! = x! − c! !
!

!!!

 (5)

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

29

where x! are the data points belonging to cluster 𝑖, 𝑐! is the candidate vectors and n is the total

number of data points in that cluster. For each cluster, the candidates are then updated to be

the centroid vector of data points belonging to that cluster (Figure 15c).

After that, it is the time to compute the global distortion, defined as

G!! = L!

!

!!!

 (6)

Where m is the current number of clusters. At next step, the membership assignments are re-

updated until either no data point changes its cluster membership, or the global distortion

improvement defined as

G!!!
! − G!

!

G!!!
! < θ! (7)

falls below a certain threshold. In Eq. (6) and (7), 𝑘 is the stabilization iteration index and 𝑖 is

the splitting iteration index. In case of two-dimensional data provided in this example, this

step is iterated two times to converge. At this point, we have two clusters and two stabilized

centroid vectors (Figure 15d).

Termination: The question here is when should the algorithm stop generating new clusters?

Here again the global distortion error is employed as the stop criterion. The algorithm would

stop when the global distortion does not improve much compared to the minimum global

distortion of the previous iteration.

G!! −min! G!!!!

min
!
G!
!!! < θ! (8)

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

30

(a) (b)

(c) (d)

(e) (f)

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

31

(g)

Figure 15: Illustratin of the k-means algorithm in a two-dimensional Euclidean space

5.2 Labelling Assignment Strategy
The outputs from the clustering algorithm, i.e. the cluster labels, are used to annotate the

segments of the database in terms of the cluster labels. In this section we will describe the re-

labeling principle of the utterance segments by an example.

Figure 16(left) shows the three utterances after being segmented via the acoustic segmentation

algorithm. In this figure 𝑐!, 𝑐′! and 𝑐′′! are representing the representative vectors of utterance

segments and 𝑆!, 𝑆′! and 𝑆′′! are corresponding to the primary segment labels.

Figure 16: Labelling principle. Database architecture (left) and centroid space (right)

s1 s2 s3 s4 s5 s6

s '1 s '2 s '3 s '4 s '5

s ''1 s ''2 s ''3 s ''4 s ''5 s ''6 s ''7

x% x% x% x% x% x%

x% x% x% x%x%

x%x% x% x% x% x%x%

c1

c2

c3

c5

c6

c '1

c '3

c ''3x%
x%

x%
x%
x% c ''7x%

x%x%

x%x%

x%

c '4

c '5
c ''1
x%

c ''4x%

c ''2x%c4c '2

x%x%

c ''5x%

c ''6x%
L1 L2

L3

c1 c2 c3 c4 c5 c6

c '1 c '2 c '3 c '4 c '5

c ''1 c ''2 c ''3 c ''4 c ''5 c ''6 c ''7

Machine Learning of Sub-Phonemic Units for Speech Recognition

5. Data Clustering

32

Figure 16(right) shows how the location of these representative vectors in space has made the

existence of 3 clusters evident. After clustering, the clusters are tagged by L1, L2 and L3.

These tags are then used to label the members belonging to each cluster. These cluster

members are representatives of segments in database. Hence, each segment is now re-labeled

by cluster labels, as shown in Figure 17. In a similar fashion, the whole database is

transcribed by a new set of labels, each of which a cluster label.

Figure 17: Database after label assignment

5.3 Summary
In this chapter, the principle of clustering the segmental centroids by applying k-means

algorithm was described. The objective function was to minimize the distortion error, which

was selected to be sum of the squared Euclidean distances between all data points and their

nearest centroid vectors. The output from the clustering algorithm constructed a re-labeled

version of the segments in terms of the cluster labels.

c1 c2 c3 c4 c5 c6

c '1 c '2 c '3 c '4 c '5

c ''1 c ''2 c ''3 c ''4 c ''5 c ''6 c ''7

x% x% x% x% x% x%

x% x% x% x%x%

x%x% x% x% x% x%x%

L1 L3 L2 L2 L3

L1 L1L2 L2 L3

L3 L3 L3 L1L1L2 L2

L1

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

33

6 Acoustic Modeling

In speech recognition, if we assume that the recognizer is designed to recognize basic

recognition units, and if the acoustic observation sequence corresponding to the whole speech

signal is coded as O = o!, o!, o!, . . , o! , then the primary task of recognizer is to find the most

probable sequence of linguistic units U for observation sequence O. In other words, the goal

is to find recognition unit U such that the following conditional probability is maximized:

U = argmax
!

P U O (9)

The probability on the right hand side of Eq. (9) is not directly computable. However, it can

be converted to a more feasible form according to the Byes’ rule:

P U O =
P O U . P(U)

P(O)
 (10)

The observation probability 𝑃(𝑂) in the denominator is not depending on the speech unit U,

and hene can be skipped. So, the recognition task is simplified as:

U = argmax
!

P O U P(U) (11)

According to Eq. (11), the most probable recognition unit is found by computing the product

of two probabilities on the right hand side of equation – known as the likelihood and the prior

probability, respectively – and picking up the recognition unit that maximizes this product.

Computing the likelihood and prior probabilities directly from training data is infeasible.

However, they can be estimated from parametric statistical models known as acoustic and

language models, respectively.

In this chapter we will present the idea behind acoustic modeling. A common technique in

computing the likelihood probabilities and modeling acoustics of speech is Hidden Markov

Model (HMM). In this case, each basic unit is represented by a single HMM model. The

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

34

parameters of this HMM are estimated from the speech data, and the likelihoods are

computed [7].

 The chapter is structured as follows: First, the concept of Markov model, considered as the

fundamental tool to understand HMMs is introduced. (6.1) Then the chapter presents the

theory regarding HMMs (6.2), and their structure is described in (6.3). In (6.4), three well-

known HMM problems are described and for each one, the common solution algorithm is

introduced. The chapter ends with giving a summary at (6.5).

6.1 Markov Model

A Markov model is essentially a model consisting of a set of states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! each

generating an observation vector. In this model it is known which state generates which

observation vector. Each state in such model depends only on the 𝑛 previous states in the

model. In its simplest form:

𝑃 𝑠!|𝑠!!!! = 𝑃 𝑠!|𝑠!!! (12)

 In this case, the model called the first order Markov assumption, and can be interpreted as

follows: The probability of being in state 𝑖 in a particular time depends only on the state of the

model at the previous time.

A Markov model is defined by the following parameters:

𝛑𝐢 - The probability to start from state 𝑖, where π!!
!!! = 1

𝐚𝐢𝐣 – The set of transiting probabilities, i.e. the probability of moving from state 𝑖 to state 𝑗,

which satisfies a!"!
!!! = 1. These are stored in the form of a transition matrix A.

𝐛𝐣 𝐨𝐭 - The probability of generating a particular observation vector o! from state j. This

probability is limited to the values 1 and 0; if the state has generated the observation it is 1,

otherwise it is 0 [21].

A first order Markov model with three states is shown in Figure 18. In this example, 𝑎!" is

equal to one, while 𝑎′!" and 𝑎′′!" have other values summing up to one. The observation

probabilities 𝑏! 𝑜! , 𝑏! 𝑜! and 𝑏! 𝑜! are equal to one.

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

35

The Markov model is a powerful tool in probabilistic problems. However, this model is not

used in speech recognition, as it is not able to model the variable nature of the speech signal.

As a solution to this problem, the hidden Markov Model (HMM) is introduced in next section.

Figure 18: The scheme of a Markov model

6.2 Hidden Markov Models
A Hidden Markov models is a powerful statistical model for modeling a data sequence that is

not predictable based on a set of observations. It is largely applied in many tasks such as

speech recognition systems, protein/DNA sequence analysis, robot control, and information

extraction form text data [23]. This model can be described as a generalization of the markov

model with some major differences. Firstly, in case of HMM, its not known which state has

emitted which observation. The reason is simply because the states are not observable and not

known to the system anymore. Secondly, in HMM, each state has the ability to not only

follow the other states, but also loop back to itself. This confirms the fact that HMMs are

capable of modeling the various time durations of the speech recognition units. [21] Thirdly,

the observation probabilities in HMM are not limited to just 0 and 1, but can take on any

value form 0 to 1, as to be described in the following section.

6.3 HMM Structure
Two typical structures of HMM are depicted in Figure 19. In this figure, the emitting states

are shown by circles, the non-emitting states by nodes, the transition probabilities by arcs

(edges) between states and loops to the states, and the emission probabilities by arcs drawn

out of states.

O1%

1% %2% %3%

O2% O3%

12a 23!a

23!!a

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

36

(a) (b)

Figure 19: Typical HMM structures: (a) Ergodic (b) Left-to-right

 Figure 19(a) shows a 3-state ergodic HMM, in which each state has the potential to start the

process, and change to other states at subsequent time steps. In Figure 19(b), an example of a

three state left-to-right HMM model is shown. In this model, state 1 is the starting node. At

each time point, the state index is either increased by one unit or remained unchanged, and

then observation vectors according to the output probability distribution of the current state

are generated. This model is commonly used in speech recognition tasks, firstly because the

random selection of the initial state is not the case in speech recognition, secondly because it

satisfies the natural progression of speech signal in time domain, and thirdly because it can

successfully model the time variation nature of the speech signal by staying at the same state

for a period of time.

A single HMM model is defined by the following parameters:

𝛑𝐢 - The probability to start from state 𝑖, where π!!
!!! = 1

𝐚𝐢𝐣 - The probability of transiting from state 𝑖 to state 𝑗, which satisfies a!"!
!!! = 1.

These are represented as components of transition matrix A.

𝐛𝐣 𝐨𝐭 - The probability of generating observation vector o! from state j, where

b! o!!
!!! = 1 for i = (1,2, . . . ,N). The set of these observation likelihoods is the

emission matrix B.

The parameters that completely define the model are M = {π, A, B}.

The number of states is also considered as a user-defined parameter and is selected according

to the task. The HMM models used in this work are one-state models with one emitting state

at middle, as shown in Figure 20.

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

37

Figure 20: one-state left to right structure for basic units in this work

The choice of output distribution function in order to estimate emission probabilities b! o! is

crucial in recognition performance. In case of continuous speech, a common choice is single

component, multivariate Gaussian distribution, that is:

𝑏! 𝑜! = 𝑃 𝑜!|𝑠! = 𝑗 = 𝒩 𝑜!; 𝜇! , Σ! =
1

2𝜋 ! Σ!
𝑒!

!
! !!!!!

!!!!! !!!!!
(13)

where µμ! is mean and Σ! is the covariance matrix defined as:

𝜇! =
1
𝑇

𝑜!

!

!!!

 (14)

Σ! =
1
𝑇
 𝑜! − 𝜇!

!

!!!

𝑜! − 𝜇!
!

 (15)

A more flexible alternative for density estimation of observation probabilities is the mixture

Gaussian distribution. A Gaussian mixture model (GMM) is a weighted sum of M single

Gaussians,

𝑏! 𝑜! = P 𝑜!|𝑠! = 𝑗 = 𝑐!"𝒩 𝑜!; 𝜇!" , Σ!"

!

!!!

 (16)

where 𝑀 is the number of mixture components and 𝑐!" is the mixture weight parameter

which satisfies:

Number%of%clusters%

2%

2b ()

1.0% 0.5%

0.5%

2%

2b ()

S2%S1% S3%

2b ()

1π 12a

11a

23a

22a

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

38

𝑐!" = 1
!

!!!

 (17)

6.4 Classic HMM Problems
In each speech recognition task there are three problems that need to be solved. In the

following subsections, the problems and their corresponding efficient solutions are described

[18].

6.4.1 Probability Evaluation

In this problem, the HMM model M and also the observation sequence 𝑂 = (𝑜!, 𝑜!,… , 𝑜!) are

known, and the goal is to find the probability of the observation sequence being generated.

This could be found by summing up all the probabilities of all the state sequences that

generate the observation sequence:

𝑃 𝑂 𝑀 = 𝑃(𝑆|𝑀)𝑃(𝑂|𝑆,𝑀)
!!

!!!!

 (18)

The probability in Eq. (18) consists of two parts, the first component is the state-sequence

probability and for a specific state sequence 𝑆 = (𝑠1, 𝑠2,… , 𝑠𝑇) could be rewritten as:

𝑃 𝑆 𝑀 = 𝑃 𝑠! 𝑀 𝑃 𝑠! 𝑠!!!,𝑀
!

!!!

= 𝜋!!𝑎!!!! … 𝑎!!!!!! (19)

The second component in Eq. (18) could be rewritten as:

𝑃 𝑂 𝑆,𝑀 = 𝑃 𝑂!! 𝑆!! ,𝑀 = 𝑃 𝑜! 𝑠! ,𝑀
!

!!!

 = 𝑏!! 𝑜! 𝑏!! 𝑜! … 𝑏!!(𝑜!) (20)

Substituting Eq. (19) and (20) into (18) yields:

 𝑃 𝑂 𝑀 = 𝑃 𝑆 𝑀 𝑃 𝑂 𝑆,𝑀!!
!!!!

 = 𝜋!!𝑏!! 𝑜! 𝑎!!!!𝑏!! 𝑜! … 𝑎!!!!!!
!!
!!!! 𝑏!!(𝑜!) (21)

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

39

Direct evaluation of Eq. (21) is not feasible, as it involves high computational complexity.

Instead, an efficient algorithm called the Forward algorithm is employed. This is an iterative

algorithm and operates based on dynamic programming technique described in (4.4).

 In this algorithm, the joint probability of being in state 𝑗 at time 𝑡 is denoted as the Forward

parameter 𝛼! 𝑗 and formulated as:

α! i = P O!! , s! = i|M (22)

The Forward algorithm includes the following steps:

1. Initialisation: A forward parameter is computed at time 1 for all states by:

α! i = π!b! o! (23)

where 𝜋! is the initialisation probability at state 𝑖.

2. Induction: For all states j = 1, 2, . . . ,N at all other time points t = 2,3, . . . ,T , this

probability is found by:

α! j = a!"α!!! i
!

!!!

 b! o! (24)

3. Termination: The algorithm ends by summing up all the forward probabilities at final time

T:

𝑃 O|𝑀 = 𝛼! 𝑖
!

!!!

 (25)

This probability evaluation is mostly useful to analyse the performance of the system after

training (the term ‘training’ to be explained later).

6.4.2 Optimal State Sequence

The second interesting problem is about to find out which sequence of states has most

probably generated the observation sequence. This problem is known as decoding, and

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

40

involves finding a solution for Eq. (11). Here, again, the HMM model parameters and the

observation sequence are known to the system. The most common algorithm for performing

decoding is the Viterbi algorithm. This algorithm exploits first-order Markov property by

which at each state only the most probable path is kept. Here, the maximum probability of

being in state j at time t is denoted as the Viterbi parameter 𝑉! 𝑗 and formulated as:

V! j = max
!!!!!

P O!! , S!!!!, s! = j |M (26)

 This implies keeping the most probable path and discarding the rest until the final time. The

algorithm also records the indexes of the most probable state at each step in matrix B. This is

again a recursive algorithm with the following steps:

1. Initialisation: The Viterbi parameter and the index recorder for all states 𝑖 = (1,2,… ,𝑁) at

time 1 are initialised as:

V! i = π!b! o! (27)

B! 𝑖 = 0 (28)

2. Induction: For all states j = 1, 2, . . . ,N at all other time points t = 2,3, . . . ,T , the Viterbi

value and the index recorder are:

V! j = max
!

V!!! i a!" b!(o!) (29)

𝐵! 𝑗 = 𝑎𝑟𝑔max
!

𝑉!!! 𝑖 𝑎!" (30)

3. Termination: The most probable final path is found by computing the Viterbi

approximation for all states at final time T, and selecting the highest probability value:

The best score = max
!
 𝑉! 𝑖 (31)

𝑆!∗ = argmax
!

 𝐵! 𝑖 (32)

4. Backtracking: In this final step, a backtracking is performed to find the most probable

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

41

path:

s!∗ = B!!! s!!!∗ t = T − 1,T − 2, . . ,1 (33)

The best sequence will then be:

S∗ = (s!∗, s!∗ , s!∗ , . . , s!∗) (34)

In order to prevent underflow in decoding operation, the calculations are typically performed

in log domain. Eq. (29) in log domain would be:

V! j = max
!

V!!! i + log a!" + log b!(o!) (35)

 As mentioned above, the Viterbi algorithm described here provides a solution to Eq. (11),

and hence performs an exact search among all possible state sequences in the model.

However, an exact search is not efficient in large vocabulary tasks and leads to extremely

high computational time – and memory – requirement. So the main problem in recognition

would be to reduce the search space. As a solution to this problem, one can apply beam search

strategy by which paths with low chance to succeed – these are the paths with probability less

than the best path within a defined factor ∝ – are cut away and only the most promising paths

are considered to be active. This is regarded as a sub-optimal solution since the optimal

hypothesis may be incorrectly pruned. However, by choosing an appropriate value for

pruning beam-width, it is high probable to find the best path.

6.4.3 Parameter Estimation

In this task the goal is to estimate the HMM model parameters, such that the probability of

generating a sequence of observation vectors 𝑂 = 𝑜!, 𝑜!, . . , 𝑜! is maximized:

𝑀 = 𝑎𝑟𝑔max
!

𝑃(𝑂|𝑀) (36)

The model parameters are those introduced in section (6.3). In order to estimate these

parameters, an iterative algorithm referred to as Baum-Welch (forward-backward) algorithm

is used. The forward probability was described in (6.4.1). Before describing the Baum-Welch

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

42

algorithm, it is necessary to introduce several variables. The first variable is the backward

parameter β! j defined as

β! j = P O!!!! |s! = j ,M

(37)

This is the probability of partial observation sequence 𝑂!!!! , given that the system is in state 𝑗

in time 𝑡. This is again a recursive algorithm, comprising the following steps:

1. Initialisation: The initial condition is given by:

𝛽! 𝑖 =
1
𝑁

 (38)

2. Induction: for all other time points t = (T − 1, . . . ,1) , and all states i = (1, . . . ,N) the

Backward probability is found by

β! i = a!"β!!! j b!(o!!!)
!

!!!

 (39)

The second useful variable is 𝛾! 𝑖, 𝑗 ,

𝛾! 𝑖, 𝑗 = 𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗|𝑂!! ,𝑀

=
𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗,𝑂!!|𝑀

𝑃 𝑂!!|𝑀

 = !!!! ! !!"!! !! !! !
!!!

!!! !
 (40)

This is the transition probability form state 𝑖 to state 𝑗 at time 𝑡, given the observation

sequence and the model parameters.

The algorithm aims to maximize the following auxiliary function:

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

43

 𝜑 𝑀,𝑀 = ! !,!|!
! !|!!"" ! log𝑃 𝑂, 𝑆|𝑀∗ (41)

Eq. (41) is a separable equation, and can be rewritten as

 𝜑 𝑀,𝑀 = 𝜑! 𝑀, 𝑎 + 𝜑! 𝑀, 𝑏 (42)

with,

 𝜑! 𝑀, 𝑎 = 𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗| 𝑂,𝑀! log 𝑎!"!! (43)

 𝜑! 𝑀, 𝑏 = 𝑃 𝑠! = 𝑗| 𝑂,𝑀! log 𝑏! 𝑂!! (44)

Eq. (43) and (44) are both of the form,

𝐹 𝑥 = 𝑦! log 𝑥!
!

 (45)

which is maximised when,

𝑥! =
𝑦!
𝑦!!

 (46)

Thus,

𝑎!" =
!

! !|! ! !,!!!!!!,!!!!|!!
!!!

!
! !|! ! !,!!!!!!|!!

!!!
 = !! !,!!

!!!
!! !,!!

!!!
!
!!!

(47)

𝑏! 𝑘 =
!

! !|! ! !,!!!!|! ! !!,!!!
!!!

!
! !|! ! !,!!!!|!!

!!!
 =

!! !,!!!"!!!!!
!! !,!!

!
!!!

(48)

Now with forward and backward probabilities, the auxiliary function

𝜑 𝑀,𝑀 and the parameter re-estimators 𝑎!" and 𝑏! 𝑘 in place, it is possible to describe the

Machine Learning of Sub-Phonemic Units for Speech Recognition

6. Acoustic Modeling

44

Baum-Welch algorithm. This is again a recursive algorithm involving the following steps:

• Step 1: Choose an initial estimate of the model parameters.

• Step 2: Compute the auxiliary function φ M,M based on M.

• Step 3: Calculate M according to the probability re-estimators in Eq. (47) and (48).

• Step 4: Iterate from step 2 until convergence.

6.5 Summary
In this chapter, the theory of acoustic modeling – the module representing the relationship

between the speech signal and the basic linguistic units constructing the speech – was

described. Then the theory regarding HMM as one of the most frequently used acoustic

models was described. Three well-known problems in HMM and the corresponding solution

algorithm for each problem were also provided.

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

45

7 The Hidden Markov Model Toolkit

In the previous chapter, the basic idea of HMMs and their use in speech recognition tasks was

outlined. The current chapter deals with the theory regarding the Hidden Markov Model

toolkit (HTK). This is a toolkit consisting of a set of library modules and programming tools

for building and manipulation of HMMs. The HTK is primary intended to be used in speech

recognition tasks, however it could be used as a general-purpose toolkit to build HMMs that

model any time series [22].

HTK consists of a set of library modules and tools available in C source form. HTK tools can

be run from a command line. However, in large applications with many files, its more

common to provide all tools in a script and so execute them by running the script. Figure 21

shows an example of running a HTK tool. The options prefixed by a minus sign, such as -f

and -m in this example are optional arguments, and the options consisting of a capital letter,

such as -A, -D, -C, -M in this example are common across all HTK tools.

The procedure of building a speech recognizer can be divided into five main phases; creating

a prototype HMM model (7.1), initialisation (7.2), re-estimation (7.3), recognition (7.4) and

analysis (7.5). In (7.6) two other HTK tools employed during the work are described. Finally

the chapter is summarized in (7.7). All the information presented in this chapter are adopted

from [22].

HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto

Figure 21: Invoking a HTK tool

7.1 Creating a Prototype HMM Definition

The first step in designing acoustic models is to write a prototype HMM model – using a text

editor – and storing it as a text file. The prototype HMM definition file includes the

following:

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

46

• The model name

• Type of observation vector

• Number of internal states

• For each emitting state

 – mean and variance components

 – mixture component weights (in case of Gaussian mixture models)

• Transition matrix

The prototype definition is just a primary representation of the HMM model with arbitrary

parameter values. These parameters are to be estimated later during both initialisation and

training processes. The means and the variance parameters are usually set to zero and one,

respectively. The transition matrix is typically constructed such that transitions out of the

emitting states (here from state 2 to itself and to state 3) are equally probable. This is a square

matrix, with number of rows and columns equal to number of internal states, with each row

summing up to 1 except for the final row which sums to 0 since no transitions are allowed to

exit from the final state.

The model name should consist of alphabetic/alphanumeric characters and must not be only

numbers. In this document, HMM models are named by 𝐿𝑖, where 𝑖 is an integer.

7.2 Initialisation

The second step of building a speech recogniser deals with initialising the HMM models. This

can be done using either of the two available programming tools, HCompV and HInit. They

are described in the following subsections. An invocation example of each tool together with

a description of the required command line options is provided in next chapter.

7.2.1 Flat Start Initialisation using HCompV

In this approach, all the model parameters corresponding to all emitting states are initialized

by the global mean and variances of all training data. Applying HCompV, all HMM models

are initialised identically. The procedure is depicted in Figure 22.

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

47

Figure 22: Flat start initialisation of HMMs using HCompV

7.2.2 Isolated Model Initialisation Using HInit

HInit can be used when the transcription is provided such that the time-boundary information

for each unit is available. In this case the HMM models are trained individually, as shown in

Figure 23. HInit is an iterative procedure with steps shown in Figure 24. At first iteration for

each HMM to be initialised, all occurrences of the model units corresponding to that HMM

are cut out from the transcription data, and the corresponding feature vectors are distributed

equally among the model states, through the uniform segmentation approach.

On the next cycles, the data vectors are assigned to the most probable state found by Viterbi

algorithm. This process is called Viterbi segmentation. The mean and variance parameters are

again estimated by averaging all data vectors associated with each state. The transition

probabilities are also estimated by counting the number of times each state was occupied.

This process is performed iteratively until either a defined number of iterations is achieved, or

the parameter values do not change anymore.

Figure 23: Isolated initialisaiton using HInit

Prototype
HMM

Definition

HCompV%
Sample of
Training
Speech

Initialised
HMM 1 ...% Identical

Prototype
HMM

Definition

Uniform%
SegmentaDon%

IniDalise%
parameters%

Viterbi%
SegmentaDon%

Update%
parameters%

Converged?
No

Yes

Initialised
HMMs

HInit%Time aligned
transcription

Prototype
HMM

Definition

HMM 1 HMM 2 HMM 3

Initialised
HMM 2

Initialised
HMM 3

Prototype
HMM

Definition

HCompV%
Sample of
Training
Speech

Initialised
HMM 1 ...% Identical

Prototype
HMM

Definition

Uniform%
SegmentaDon%

IniDalise%
parameters%

Viterbi%
SegmentaDon%

Update%
parameters%

Converged?
No

Yes

Initialised
HMMs

HInit%Time aligned
transcription

Prototype
HMM

Definition

Initialised
HMM 2

Initialised
HMM 3

Initialised
HMM 1

Initialised
HMM 2

Initialised
HMM 3 ...%

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

48

Figure 24: Schematic diagram of HInit algorithm

7.3 Re-estimation
After that the HMM models are initialised, they are trained by either of the tools HERest or

HRest, in order to get the model parameters retrained.

7.3.1 Embedded Training Using HERest

This tool is applied in conjunction with the initialisation tool HCompV described above. In

this approach, all initialised HMM models are updated at the same time, using all training

data. The whole process is performed in one iteration employing the embedded version of

Baum Welch re-estimation approach.

In order to get accurate acoustic models, a large amount of training data is needed. However,

processing a large amount of training data in a single iteration would be quite time-

consuming. In order to improve the computational speed, HERest reduces the size of search

speech by restricting the computation of the forward probabilities to those for which

Prototype
HMM

Definition

HCompV
Sample of
Training
Speech

Initialised
HMM 1 ... Identical

Prototype
HMM

Definition

Uniform
Segmentation

Initialise
parameters

Viterbi
Segmentation

Update
parameters

Converged?
No

Yes

Initialised
HMM

HInit Time aligned
transcription

Prototype
HMM

Definition

Initialised
HMM 2

Initialised
HMM 3

Initialised
HMM 1

Initialised
HMM 2

Initialised
HMM 3 ...

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

49

𝛼! 𝑡 𝛽! 𝑡 is within a fixed distance from the total likelihood 𝑃(𝑂|𝑀). This process is called

pruning. Pruning can be further controlled by the user by activating the command line option

-t to the backward probabilities. For example:

HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H

hmm0/macros -H hmm0/hmmdefs -M hmm1 labellist

In this example, the training starts by a beam width equal to 150. If a pruning error occurs for

an utterance, the beam is changed to 100 and that utterance is reprocessed. This would

continue until no error is observed, or the maximum beam limit 500 is reached.

Figure 25: Training process using HERest

7.3.2 Isolated Training Using HRest

This tool is employed in conjunction with the isolated model initialisation tool HInit. As

shown in Figure 26, It takes the same data as HInit, but instead of applying first uniform

segmentation and then iteratively Viterbi alignment, it iteratively employs the Baum-welch

approach. The procedure is illustrated in Figure 27.

It is important to note that although both HRest and HERest employ Baum Welch algorithm,

the embedded training program HERest does not consider the label boundary information, as

for each training data, the whole file is processed at once. This is not the case for HRest, in

which as described earlier, the training data is cut out into boundaries corresponding to

transcriptions.

HERest
Training

files

Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

Transcription
files

Initialised
HMM 1 ... Identical

Initialised
HMM 2

Initialised
HMM 3

...

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

50

Figure 26: Training by HRest

Figure 27: Schematic diagram of HRest algorithm

7.4 Decoding
After that the models are trained, they are ready to perform decoding. As mentioned in

introduction chapter, because of time constraints, in this work the decoding is just

investigated in basic unit level. Therefore, the higher-level recognition is not described.

Decoding involves employing the trained HMMs to transcribe a collection of unknown

utterances. In order to perform HMM-level recognition, the following data are required:

• HMM-level network

• Dictionary

• The HMM models

HERest
Training

files

Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

Transcription
files

Initialised
HMM 1 ... Identical

Initialised
HMM 2

Initialised
HMM 3

...

HRest Time aligned
transcription

Initialised
HMM 1

Initialised
HMM 2

Initialised
HMM 3

... Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

 Initialised
HMM

Baum-Welch
Algorithm

Update HMM
parameters

Converged?

 Trained
HMM

No

Yes

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

51

Decoding is performed by the HTK library module HRec adopting token passing paradigm to

find the best path. To drive HRec from command-line, the tool HVite can be employed.

Figure 28: Decoding procedure using HVite

7.4.1 The Token Passing Algorithm

A token represents a partial path through the network extending from the time point 0 to time

point 𝑡. In this algorithm, the model is initialised by placing a token at all states in time 0.

Each token then passes around the transition network, and at each emitting state its value is

incremented by the emission and transition probabilities. Each network node is allowed to

keep at most N tokens. Therefore, at the end of each time step, only the N best tokens in any

node are kept.

HVite has many parameters with direct impact to the recognition performance. For instance,

in order to reduce computational time, a pruning beam-width is considered to be controlled by

the user. This value shouldn’t be set too small as this would result in pruning the most

probable path, and so leading to recognition error.

7.4.2 Forced Alignment

Forced alignment can be seen as a pre-step to the isolated training process. In this approach,

the boundary locations of the segments in transcription files are aligned with the speech data,

and hence a new set of time boundaries for the segments are specified. This is again provided

by the recognition tool HVite by activating the option -a. The procedure is shown in Figure

29.

In forced alignment, by employing the dictionary and the transcriptions a new network for

each utterance is constructed. This network includes all possible pronunciations of each

recognition unit in parallel. Then, employing the Viterbi algorithm, the best matching path

HERest
Training

files

Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

Transcription
files

Initialised
HMM 1 ... Identical

Initialised
HMM 2

Initialised
HMM 3

...

HRest Time aligned
transcription

Initialised
HMM 1

Initialised
HMM 2

Initialised
HMM 3

... Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

HVite
Dictionary

Trained
HMMs

HMM list

HParse
Grammar

rules Lattice

Testing
files

Decoded
transcriptions

HResults Original
transcriptions

Decoded
transcriptions

Recognition
and accuracy

results

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

52

through the network is found and a lattice is generated. This will be converted to a

transcription file containing the boundary information of recognition units. After forced

alignment, the results are stored in a text file with an aligned version of time indices for each

segment.

Figure 29: Forced alignment procedure

7.5 Evaluation
In order to analyse the performance of the decoding module, HTK employs an evaluation tool

called HResults, which performs a comparison between the reference transcriptions and the

recognition results, and counts all occurrences of deletion errors (D), substitutions errors (S),

Insertions (I), and computes the following:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑁 − 𝐷 − 𝑆

𝑁
×100% (49)

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁 − 𝐷 − 𝑆 − 𝐼

𝑁
 ×100% (50)

The result will be reported in a text file. The procedure is schematized in Figure 30

Hvite (-a)

Transcription
of speech

Feature
vectors

Speech signal

Front End

L1 L2 L3

Aligned signal

Machine Learning of Sub-Phonemic Units for Speech Recognition

7. The Hidden Markov Model Toolkit

53

Figure 30: Evaluation using HResults

7.6 Other HTK tools
In this work, two other HTK tools were also used. In the following they are described to the

extent they were employed during the experiments.

7.6.1 HLEd

In order to collect all label files into one single file, one can use the label editor tool HLEd.

The resulting file is known as master label file (MLF). This file starts by a line containing the

string #!MLF!# which identifies the file as an MLF file. Each label file corresponding to the

transcriptions of a speech file appears as a string (of the form “*/filename.lab”) followed by

labels in individual lines, and terminated by a period on a line of its own.

7.6.2 HHEd

This tool works in a similar way to HLEd. It can be used to collect all HMM definition files

into one single file. The resulting file is called master macro file (MMF).

7.7 Summary
In this chapter, the HTK toolkit, known as a powerful tool in building and training HMMs

was introduced. Then the operation of initializing, training, testing and analysis of models in

both isolated and embedded form was described.

HERest
Training

files

Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

Transcription
files

Initialised
HMM 1 ... Identical

Initialised
HMM 2

Initialised
HMM 3

...

HRest Time aligned
transcription

Initialised
HMM 1

Initialised
HMM 2

Initialised
HMM 3

... Trained
HMM 1

Trained
HMM 2

Trained
HMM 3

HVite
Dictionary

Trained
HMMs

HMM list

HParse
Grammar

rules Lattice

Testing
files

Decoded
transcriptions

HResults Original
transcriptions

Decoded
transcriptions

Recognition
and accuracy

results

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

54

8 Experiments, Results and Discussions

Up to this point, the previous chapters involved all necessary theoretical background in order

to perform the experiments. In this chapter the experiments associated with this project are

reported and discussed. The chapter starts by a brief introduction of the TIMIT database

employed during the experiments (8.1). Then the front-end analysis and detection parameters

adopted in this work are represented (8.2). In (8.3), the experiment regarding the acoustic

merging is discussed. Section (8.4) deals with the acoustic segmentation implemented in this

project and (8.5) discusses the k-means algorithm in more detail. In (8.6) two experiments

regarding recognition and forced alignment are described. Finally, (8.7) includes the summary

of the chapter.

8.1 The TIMIT Database
The database employed in this work is the Texas Instrumental Massachusetts Institute of

Technology (TIMIT) corpus of read speech. It is a high-quality, multi-speaker and multi-

accent corpus, including phonemic transcription. In this project, these transcriptions were

used for evaluating the results obtained after acoustic segmentation process.

The data is telephone-quality speech, recorded by a Sennheiser HMD 414 headset-mounted

microphone, sampled at 16kHz and digitized with 16-bit sample resolution. It consists of

totally 6300 sentences. In total there are 630 speakers, each reading 10 sentences, from 8

major dialect regions of the United States.

The signals have been partitioned into training and testing databases (3696 signals for training

and 1344 signals for testing) existing in train and test subdirectories respectively. Each

utterance is specified by a code, called TIMIT code, representing the speaker sex, the speaker

ID and the sentence ID. For instance, fcjf0_sa1 means that the speaker is a female, with ID

number cjf0, and the sentence to be uttered is sa1. [5]

8.2 Front-End Analysis and Detection
The principle of front-end analysis and the acoustic detection were described thoroughly in

sections (2.3) and (3.3). Recalling Figure 5, both steps of front-end analysis, namely feature

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

55

extraction and STC generation and also acoustic detection were performed in the previous

work in specialization project. Table 2 shows the basic required settings employed in this

work. Table shows that the primary feature vectors are selected to be mel-bank energy (MBE)

extracted from the raw speech signals, using 25 ms Hamming window and 10 ms window

shift. There is no pre-emphasis filtering used in the system. The generated MBE feature

vectors are then used as input to STC engine to generate STC feature vectors. These are then

applied as input to left and right context neural networks with two nodes at the output layer

and one hidden layer of 500 nodes. The last two rows in table specify the input feature for

networks and the temporal DCT order used in acoustic detection module.

Table 2: The front-end configurations

Parameter Value

SOURCEKIND WAVEFORM

SOURCEFORMAT WAV

TARGETFORMAT HTK

TARGETKIND FBANK

NUMCHANS 23

USEPOWER T

USEHAMMING T

PREEMCOEF 0

TARGETRATE 100000

WINDOWSIZE 250000

NETWORK INPUT STC

TEMPORAL DCT 10

8.3 Acoustic Merging
We started the experiments by acoustic merging. As described in section (3.4), this step was

about taking all posterior probabilities corresponding to each frame, generated at the output of

the bank of detectors, and stacking them in a supervector of dimension 44. The dimension of

the supervectors was reduced to 22, in order to reduce the redundant information.

These supervectors construct the basic elements in recognition process. Therefore, their

characteristics should be studied to see whether they are qualified to be used as such. In this

section we will visually inspect the posterior probabilities and discuss their characteristics.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

56

In order to study the characteristics of posterior vectors we make use of a representation

technique, referred to as posteriorgram. This is a time- vs.- posterior probability

representation by which one can infer how the temporal content of the posterior probabilities

is changed over time and also across the detectors.

Figure 31 shows the posteriorgram representation of the utterance “It suffers from a lack of

unity of purpose and respect for heroic leadership.” with TIMIT code fadg0_si649.

Here, we have also plotted the binary phonemic labels in red, in which 0 and 1 identify the

existence and absence of AF features in speech frames, respectively.

By comparing the results with the manual labelling shown in red, one can conclude that the

overall result is promising: There is a relatively high correspondence between the acoustic-

phonetic events (posterior probabilities) and the binary labelling. This is specially the case for

Silence, Vocalic, Retroflex, Labial, Nasal, Anterior, Vowel and Fricative detectors.

Figure 31: Posteriorgram representation for utterance, ”It suffers from a lack of unity of purpose and respect for

heroic leadership.” with TIMIT code fadg0_si649.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

57

There is another interesting observation to mention; traversing across the whole posteriorgram

temporally, a relatively high level of correlation and redundancy – in regions where there is

not abrupt change in detector outputs – is observed. This implies the stationary behaviour of

the 22 dimensional posterior vectors, and verifies the fact that these vectors are qualified to be

segmented via segmentation algorithm, and divided into stationary segments. Two relatively

stationary regions between two green lines and two orange lines are shown in Figure 31. The

MATLAB script to plot this posteriorgram is enclosed in Appendix A.

8.4 Acoustic Segmentation
As described in chapter 4, the segmentation process corresponds with placing boundaries in

certain locations along the speech signal, and hence divide the signal into several parts. In this

section we will first describe how the termination parameters were selected. We will then

answer the following questions:

• Is there observed any consistency in segmentation results?

• Is there any connection between the phonemic segmentation and the acoustic

segmentation?

• Is there any connection between the acoustic events observed from the spectrogram

representations and the acoustic segmentation results?

Recall from chapter 4, the number of segments is controlled by either over-segmentation

factor or average distortion threshold value. However, the phonemic labelling is not available

in real applications, and hence employing the over-segmentation factor as a termination

criterion is not practical. On the other hand, by defining the threshold to be the stop criterion,

the statistical properties inside the segments would roughly be constant and the stationary

behaviour of the resulted segments is guaranteed. So the main goal is to find on a “reliable”

threshold factor.

The segmentation algorithm is a script written in C, and coupled with visualization and

analysis software Praat. So it is possible to visually inspect the segmentation results by

comparing them to both manual phonemic segmentations and spectral transitions of the

speech signal represented in the form of spectrogram. The more the correspondence between

the acoustic results and both of the manual segmentation results and spectrogram

representations, the better the algorithm performs its job. However, it is not straightforward to

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

58

select the threshold value by performing visual inspection of segmentation results, as there is

no high level of consistency in acoustic segmentations. In some cases, it was observed that a

lower value for threshold was a better choice and for instance resulted in a better match to the

spectral change observed in spectrogram, while in some other cases the opposite seemed to be

true. For this reason, we adopt an average strategy, in which the segmentation algorithm is

applied to 10 utterances, as shown in Table 3. The first row in this table represents the number

of phonemic segments for each utterance. Other rows show the number of acoustic segments

corresponding to threshold values from 0.002 to 0.006. In all cases, the over segmentation

factor was set equal to 3, which is a relatively high value and makes the over-segmentation

factor ineffective. 3 Values in parentheses correspond to the ratio between number of

phonemic and acoustic segments for each utterance. An average ratio around 1,5 would be a

reliable choice, as theoretically some articulatory features such as stops (found in /p/, /t/, /k/,

/b/, /d/ and /g/) or fricatives (found in /ch/, /dh/, /f/, /hh/, /jh/, /s/, /sh/, /th/, /v/, /z/) are

characterized by two distinctive events – release and closure – and should accordingly be

segmented in two segments.

According to Table 3, the threshold value equal to 0.004 yields an average ratio of 1,59 and

can be regarded as a reliable choice. This was the threshold value employed to segment the

whole database (both training set and testing set)

3 Note that there is an upper limit for over segmentation factor, as a large over-segmentation factor (larger than

5) would result in segments smaller than a frame (i.e. smaller than 10 msec). So the number of possible solutions

will exceed the size of the distortion matrix and this, in turn, would give unreliable segmentation results.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

59

Table 3: The acoustic segmentation results for 10 utterances

In order to answer to the questions presented at the beginning of the section, we will visually

inspect the segmentation results corresponding to an excerpt of several utterances. These are

provided in Figure 32 to Figure 39. In each figure, the first part represents the speech

waveform of the signal in time domain, the second part is the spectrogram representation, the

third part is the phonemic segmentation of the signal and the fourth part corresponds to the

acoustic segmentation resulted from the acoustic segmentation algorithm.

Comparing Figure 32 and Figure 33, in both figures the phone /k/ is segmented into two

acoustic segments. This is as desired: these segments correspond to occlusion and release

phases of the stop (plosive) feature existing in phoneme /k/.

Comparing the vowel /iy/ in these figures, we see that acoustical segmentation is handled

differently. Although the spectral evolution in both /iy/ phones is almost the same, the faster

speech and shorter temporal duration of /iy/ in Figure 32 has resulted in just one acoustic

segment, while relatively slower speech and longer duration of /iy/ in Figure 33 has led to two

segments.

Ov
er-
seg
me
ntat
ion %

Thres
hold %

mrtj0_si
2032%

mjrp0
_sx225%

frjb0_s
x77%

makb0
_sx296%

mwgr0
_sx76%

Uen0_s
x327%

mgrl0_
si867%

mjW0_
si1107%

fdX0_s
i1318%

mbma0
_sx412%

Averag
e%Ra9o%

25% 23% 38% 30% 34% 62% 54% 31% 51% 36%

3% 0.00
2%

75%
(3)%

56%
(2,43)%

114%
(3)%

90%
(3)%

102%
(3)%

186%
(3)%

162%
(3)%

93%
(3)%

153%
(3)%

108%
(3)% 2,94%

3% 0.00
3%

74%
(2,96)%

43%
(1,86)%

78%
(2,05)%

70%
(2,33)%

76%
(2,23)%

143%
(2,3)%

101%
(1,87)%

80%
(2,58)%

96%
(1,88)%

70%
(1,94)% 2,18%

3% 0.00
4%

54%
(2,16)%

38%
(1,65)%

54%
(1,42)%

50%
(1,66)%

53%
(1,55)%

102%
(1,64)%

72%
(1,33)%

60%
(1,93)%

74%
(1,45)%

53%
(1,47)% 1,59%

3% 0.00
5%

44%
(1,76)%

27%
(1,17)%

44%
(1,15)%

41%
(1,36)%

44%
(1,29)%

81%
(1,30)%

60%
(1,11)%

49%
(1,58)%

61%
(1,19)%

45%
(1,25)% 1,31%

3% 0.00
6%

38%
(1,52)%

24%
(1,04)%

39%
(1,02)%

35%
(1,16)%

38%
(1,11)%

68%
(1,09)%

52%
(0.96)%

42%
(1,35)%

52%
(1.01)%

40%
(1,11)% 1,13%

A
coustic Segm

ents
Phones

Prom
pt

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

60

Figure 32: Speech waveform, spectrogram representation, phonemic and acoustic segmentations of the utterance

“Keep the thermometer under your tongue!” with TIMIT code mjrp0_sx225

Figure 33: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of the utterance “He

took a big swig of his drink.” With TIMIT code mrtj0_si2032

In Figure 34, the spectral change in /ay/ (specially in second formant) is resulted in two acoustic

segments. For this utterance, the segmentation algorithm does not seem to do its job reasonably.

For instance, despite the gradual spectral change of the phone /ae/, it is divided into three

segments. Nevertheless, it is important to remember that the threshold parameter is selected from

an average strategy among 10 speech utterances. So some degree of inconsistency is expected.

 In Figure 35, comparing the spectrogram and the acoustic segmentation results for /k/, we can

relate the segmentation behaviour to the high degree of spectral change corresponding to that

interval in the spectrogram.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

61

Figure 34: Speech waveform, spectrogram representation, phonemic and acoustic semgnetaions for the

utterance “Bagpipes and bongos are musical instruments.” With TIMIT code frjb0_sx77

Figure 35: Speech waveform, spectrogram representaiton, phonemic and acoustic segmentation of the

utterance “Gently place Jim's foam sculpture in the box.” With TIMIT code mwgr0_sx76

Comparing Figure 36 and Figure 37, we see a similar acoustical segmentation pattern for /w/

followed by /iy/ in both utterances. Here, /w/ in both is divided into two acoustic segments

with outer boundaries exceeding the phonemic boundaries, and /iy/ in both contains one

acoustic segment with boundaries positioned inside the phonemic boundary. Comparing the

acoustic segmentation and the spectrogram representation of the interval /w//iy/, one can say

that the acoustic boundaries and the temporal spectral change roughly confirm each other.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

62

Figure 36: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of utterance

“Look, sweetheart, some fool was.” with TIMIT code mmjr0_si2166

Figure 37: Speech waveform, spectrogram representation, phonemic and acoustic segmnetaiton of an

excerpt of the utterance “We produce peanut oil,..” with TIMITcode mesd0_si1002

The two /p/ phones in Figure 37 also show identical behaviour; both are divided into two

segments corresponding to the closure and release phases of the plosive feature, respectively.

However, for the first /p/, the segmentation settings has led to misplacement of the closure

segment (segment no. 8). The boundary misplacement could also be justified due to the

coarticulatory effects caused by the surrounding phones.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

63

Figure 38: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the

utteracne “The morning dew on the spider...” with TIMIT code mjes0_sx214

Figure 39: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the

utteracne “There, forces are more latent than in electricity, and less than in magnetism.” with TIMIT code

mjrn0_si819

Comparing the first /aa/ in Figure 38 and /aa/ in Figure 39, we can see consistency in

acoustic segmentation behavior: in both /aa/ is divided into a small segment followed by a

large one. This is confirmed by looking at the spectrogram representations corresponding to

/aa/: there is a fairly stable formant pattern in initial part of /aa/, while the second segment

has formant transitions.

Looking at second /aa/ in Figure 38, we see that this is treated differently. However, in this

case we have another triphone combination aa(uw,oh) (the phone /aa/ proceeded by /uw/ and

followed by /oh/) and hence a different type of context dependency exist. Thus, showing

another segmentation behaviour is not far from our expectations.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

64

As conclusion, we can say that comparing the acoustic segmentation results and the acoustic

events observed from the spectrogram representation, nearly all acoustic segments have one

property in common: The acoustic boundaries are more or less positioned in places where

there exists spectral change in the spectrogram. This confirms the stationary spectral content

inside each segment. Comparing the phonemic and the acoustic segmentation results, we can

say that for those phonemes containing stop and fricative feature, there exist more or less two

acoustic segments.

Finally, we should note that customizing the segmentation parameters for each individual

utterance would obviously result in segments with more reasonable characteristics. However,

in this work, it was desired to apply one threshold value to all the utterance samples, at the

expense of reduced acoustic consistency.

The segmental centroids were computed through the acoustic segmentation script. However,

it was not straightforward to access them directly. Therefore, the MATLAB script

Centroidfinding.m was created. This is enclosed in Appendix B.

8.5 Data Clustering
After segmentation, the obtained segments are fed into the k-means algorithm in order to be

clustered into k clusters. The optimal number of clusters is a question to be answered in

higher recognition levels, after concatenating models and generalizing them to generate

higher-level linguistic models such as phonemes, and evaluating their performance. In this

work, 128, 256, 512 and 1024 clusters are experimented.

It is worth noting that the number of clusters is first and foremost associated with the

parameters defined in segmentation algorithm, namely threshold and over segmentation

factors, described in section 4. Changing these factors will lead to different subdivision of

database, and subsequently different number of segments. For instance, a low threshold would

result in generating more segments, with relatively more stationary characteristics.

The MATLAB script created for k-means clustering is enclosed in Appendix B. The

clustering procedure was explained in section (5.1). However, in later step of training HMM

models, it turned out that the created k-means script was not able to perform its job properly.

For instance, no threshold value could be find to result in 128 clusters. So the built-in

MATLAB function k-means was used instead.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

65

8.5.1 Labeling Assignment

After clustering, all segments belonging to the same cluster are labeled by the same cluster

label. The procedure was described in section (5.2). In this step, it is attempted to inspect the

obtained results to answer the following questions:

• Is there observed any consistency in labeling?

• Is there any relationship between the labels and the phonemic transcriptions?

 In this manner, the relabeled files for several utterances together with the corresponding

phonemic segmentation – in case of 512 cluster system – were studied. It was observed that

almost all acoustic segments corresponding to phonemic segment /sil/ at the start and end of

the utterances are tagged by the same label (L316). This is as expected, as these segments

have the same characteristic and hence should be labeled identically. So, the answer to the

first question presented above is positive.

 Another observation was that a relatively high number of acoustic segments corresponding to

the phonemic segment /iy/ were labeled by L72. It was also observed that several of the

acoustic segments corresponding to phonemic segment /p/ were labeled by L499. This was

the case for many of acoustic segments corresponding to /m/, which were labeled by L164.

So, the answer to the second question presented above is also positive.

8.6 Acoustic modeling and HMM-level recognition

Up to this point, we have been able to annotate the database by a new set of labels. Now all

the pieces are in place to start training the HMM models and perform decoding over the test

database.
Two experiments are carried out in which various number of HMM models (128, 256, 512,

1024) using single, two and three component Gaussian mixture distributions are investigated.

The first experiment involves initialising and training HMM models, decoding the test dataset

and analysing the recognition results compared to the original transcriptions. The second

experiment deals with initialising HMM models, automatic time alignment of training

transcriptions, training HMMs with the obtained transcriptions from the forced alignment

step, decoding the test dataset and evaluating the results. For each, we need to define a unique

initialisation and training strategy.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

66

In these experiments, the data file is referred to files containing feature vectors for each

individual utterance, and the label files refer to files containing transcriptions.

The experiments are best described by going through the involved processing steps.

8.6.1 The first experiment: Recognition

The first task is about decoding the unseen data by HMM models trained by re-labeled

training data. The schematic diagram of the steps involved in this task are provided in Figure

40. The modules are shown in blue and the required files are represented in orange. The shell

script firstApproach.sh to perform the experiment is enclosed as Appendix D. The steps are

described individually in three subsections, as described below.

Figure 40: Schematic diagram of the recognition algorithm

1. Initialisation

In order to initialise HMMs, the first step is to create a HMM prototype model, as described

in (7.1). This is a single file created according to HMM definition language standards. The

prototype models employed in this work are provided in Figure 41. These correspond to (a)

single, (b) two-component (with 0.3 and 0.7 Gaussian mixture weights) and (c) three-

component (with 0.3, 0.5 and 0.2 Gaussian mixture weights).

hmmdefs

Copied once
 for each model

HERest

labels_train.mlf

train.scp

Re-estimated
hmmdefs HVite

test.scp

decoded_test.mlf

Grammar.lat HParse Grammar.net

HResult

labels_test.mlf

Recognition
and

 accuracy
 rate

HCompV

train.scp

proto

Initialized
 proto

Iterate 5 times

HInit

Timedlabels_train.mlf

proto

One Initialized
Proto for each

 model

train.scp

N.mmf HRest

Timedlabels_train.mlf

One re-estimated
Proto for each

 model
HHed

dummy.led

labellist

Hvite(-a)

Hvite

train.scp

aligned.mlf

Timedlabels_test.mlf

test.scp

dict

labellist

macros

dict

N.mmf

test.scp

dict

results.mlf

HResult
Recognition

and
 accuracy

 rate

labellist

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

67

~o <VecSize> 23 <FBANK>

~h "proto"

<BeginHMM>

<NumStates> 3

<State> 2

<Mean> 23

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 23

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

<TransP> 3

0.0 1.0 0.0

0.0 0.5 0.5

0.0 0.0 0.0

<EndHMM>

~o <VecSize> 23 <FBANK>

~h "proto"

<BeginHMM>

<NumStates> 3

<State> 2 <NumMixes> 2

<Mixture> 1 0.3

<Mean> 23

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0

0.0 0.0

<Variance> 23

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0

<Mixture> 2 0.7

<Mean> 23

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0

<Variance> 23

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0

<TransP> 3

0.0 1.0 0.0

0.0 0.5 0.5

0.0 0.0 0.0

<EndHMM>

~o <VecSize> 23 <FBANK>

~h "proto"

<BeginHMM>

 <NumStates> 3

 <State> 2 <NumMixes> 3

 <Mixture> 1 0.3

 <Mean> 23

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 23

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

 <Mixture> 2 0.5

 <Mean> 23

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 23

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

<Mixture> 3 0.2

 <Mean> 23

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

 <Variance> 23

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

 <TransP> 3

 0.0 1.0 0.0

 0.0 0.5 0.5

 0.0 0.0 0.0

<EndHMM>

(a) (b) (c)

Figure 41: Three prototype models (a) single Gaussian, (b) two-component GMM (c) Three-component GMM

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

68

Figure 42 shows the corresponding model topology for HMM prototypes represented in

Figure 41.

Figure 42: the initial model topology

Now the created HMM prototype model is initialized by all available training data, using

HCompV:

$ HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto

where proto is the HMM prototype file. The options employed are as follows.

-A: Causes the current command line arguments to be printed.

-D: Used to display configuration settings.

-T: Enables progress-reporting option.

-C: Used to specify the configuration file name.

-S: Used to specify a script file containing all training data filenames (train.scp).

-M: Specifies the output directory (hmm0)

 -f: Specifies variance floor macro (0.01)

-m: Used to make the means updated. (The default is to only update the variances)

The initialized proto file is now stored in folder hmm0. There is also created another file

called vFloors in the same folder, containing a vector with components equal to 0.01 times the

global variance. This vector sets a lower limit for the estimated variances in subsequent steps,

and prevents variances to become too small.

Now for each required HMM model, the initialized prototype model is copied once into a file

known as HMM definition file. For instance, in case of 128 cluster labels, the HMM

definition file would contain 128 repetitions of the initial estimate model. After creating the

HMM definition file, some undesired lines should be removed and also the HMM names

should be edited such that they correspond to the segment labels.

Number%of%clusters%

2%

2b ()

1.0% 0.5%

0.5%

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

69

At next step, the variance floor macro file called macros is created (manually), consisting of

the first three lines of the HMM definition file followed by the vector found in the file vFloor,

as shown in Figure 43.

~o

<STREAMINFO> 1 23

<VECSIZE> 23<NULLD><FBANK><DIAGC>

~v varFloor1

<Variance> 23

 9.390770e-02 1.539757e-01 1.732059e-01 2.056837e-01 2.210912e-01

 2.131917e-01 1.903656e-01 1.674087e-01 1.577063e-01 1.505229e-01

 1.469737e-01 1.400415e-01 1.284006e-01 1.264015e-01 1.244968e-01

 1.205322e-01 1.235889e-01 1.172380e-01 1.084581e-01 1.026291e-01

9.580246e-02 8.806549e-02 8.376861e-02

Figure 43: The variance floor macro file

Before start training HMM models, the last file we need to create is the master label file

labels_train.mlf, containing the transcriptions of all training files. It is created by invoking

HLEd as

HLEd -l '*' -i labels_train.mlf dummy.led LABELSTRAIN/*

Where dummy.led is an empty script, meaning that no edit is subjected to label files.

LABELSTRAIN is the directory containing the label files. The following options are used in

this invocation.

-l: Causes a label file named xxx to be prefixed by the pattern "*/xxx" in the output MLF

file.

-i: Used to specify the resulted MLF (labels_train.mlf).

2. Training

Now we have all tools available to start training the HMM models. The tool used for training

is HERest. In the first iteration, it is run as follows

HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H

hmm0/macros -H hmm0/hmmdefs -M hmm1 labellist

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

70

Where ‘labellist’ is the file containing HMM model names. The applied options are:

-A: Causes the current command line arguments to be printed.

-D: Used to display the configuration settings.

-T: Enables the progress-reporting option.

-C: Addresses the configuration file.

-I: Addresses MLF file containing the training transcription files.

-t: Sets the pruning thresholds. (150 100 500)

-H: Loads the HMM definition files. (hmmdefs)

-M: Specifies the directory to store the trained models (hmm1)

3. Decoding

After that the models are trained, decoding can be performed. This is done by invoking the

programming tool HVite from the library module HRec. Decoding is performed by a set of

trained HMM models, a pronunciation dictionary and a lattice file, as described as below.

• The pronunciation dictionary: In HMM-level recognition, the dictionary contains an entry

for all segment labels, such that the segment label and its pronunciation are equivalent. The

dictionary file corresponding to 128 segmental units is shown in Figure 44

L1 L1
L2 L2
L3 L3
.
.
.
L127 L127
L128 L128

Figure 44: The dictionary content for 128 segmental units

• The lattice file: Another file that we need to perform decoding is a lattice file. This is a text

file of format HTK Standard Lattice (SLF) created by invoking the tool Hparse, as

 Hparse Grammar.net Grammar.lat

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

71

where Grammar.net is a text file containing the grammar rules to specify what kind of inputs

are accepted by the system. The suitable grammar corresponding to 128 segmental units is

provided in Figure 45(a). It consists of a variable followed by a regular expression. The

vertical lines in the right hand side of the variable denote alternatives and the angle braces in

the expression denote repetitions. The corresponding HMM-level network is illustrated in

Figure 45(b). The network is structured by a simple loop, meaning that each segmental unit

may equiprobably follow all other units. The lattice file corresponding to the provided

network is shown in Figure 46.

$label = L1 | L2 | | L126 |

L127 | L128;

(<$label>)

(a) (b)

Figure 45: (a)The grammar file and (b) The HMM-level network structure

 corresponding to the 128 units system.

Figure 46: The lattice file corresponding to the 128 units system.

L1%

L2%

L128%

S2%

S2%

S2%S1% S3%

2b ()

1π

11a

23a

S2%

N=131 L=385
I=0 W=L128
I=1 W=!NULL
I=2 W=L127
I=3 W=L126
I=4 W=L125 .
.
.
.
I=129 W=!NULL
I=130 W=!NULL
J=0 S=1 E=0
J=1 S=130 E=0

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

72

Now, all the required information to perform decoding are available. At the first iteration,

HVite is invoked as

HVite -A -D -C config -w Grammar.lat -H hmm1/hmmdefs -H hmm1/macros -S test.scp -i

decodedresult1.mlf -p -30.0 dict labellist

Where ‘dict’ is the HMM-level dictionary and ‘labellist’ contains all HMM model names. In

this invocation the following options are employed:

-A: Causes the current command line arguments to be printed.

-D: Is used to display configuration settings.

-T: Enables progress-reporting option.

-w: Specifies that the recognition is performed from a network.

-H: Loads the HMM model. It should be re-used to load macros. (hmmdefs and macros)

-C: Used to specify the configuration file. (config)

-S: Used to specify the script file containing all the testing data filenames. (test.scp)

-i: Specifies the MLF filename to record the resulting transcriptions. (decodedresult1.mlf)

-p: Specifies the word insertion probability (-30.0)

Observing the obtained MLF after decoding, we see that the boundary locations are not

changed. However, after each iteration some of the labels are changed.

Figure 47 shows the recognition results after first and second iteration for 128 segmental units

with two component mixture distributions. Those segments where the labels are changed are

highlighted.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

73

0 1800000 L104
1800000 2600000 L25
2600000 3600000 L6
3600000 3800000 L98
3800000 4500000 L104
4500000 5500000 L93
5500000 6300000 L12
6300000 7600000 L45
7600000 7900000 L8
7900000 9200000 L88
9200000 9600000 L117
9600000 11500000 L112
11500000 12200000 L104
12200000 12500000 L12
12500000 15300000 L104
15300000 17000000 L28
17000000 17900000 L6
17900000 18500000 L116
18500000 19900000 L85
19900000 22700000 L81
22700000 24600000 L6
24600000 26600000 L85
26600000 27100000 L12
27100000 28000000 L104

0 1800000 L104
1800000 2600000 L25
2600000 3600000 L6
3600000 3800000 L98
3800000 4500000 L104
4500000 5500000 L93
5500000 6300000 L12
6300000 7600000 L45
7600000 7900000 L8
7900000 9200000 L88
9200000 9600000 L117
9600000 11500000 L112
11500000 12200000 L104
12200000 12500000 L5
12500000 15300000 L104
15300000 17000000 L28
17000000 17900000 L6
17900000 18500000 L116
18500000 19900000 L85
19900000 22700000 L81
22700000 24600000 L35
24600000 26700000 L85
26700000 27100000 L12
27100000 28000000 L104

Figure 47: The recognition results corresponding to the utterance mmjr0_si2166

4. Evaluation

In this step the performance of the recognizer is evaluated. This is done by the tool HResults.

For the first iteration it is invoked as follows:

HResults -A -D -I labels_test.mlf labellist decodedresult1.mlf

This tool compares the obtained results after decoding (stored in decoded_test.mlf) with the

reference label files (stored in labels_test.mlf) and reports the differences in a text file.

5. Iteration

Now we iterate steps 2, 3 and 4 four more times. The recognition and accuracy results are

provided in Table 4, Table 5 and Table 6 for single, two and three-component Gaussian

mixtures.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

74

Table 4: Recognition and accuracy results in first experiment using single Gaussian models

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 7.98 7.53 11.62 10.70 16.96 15.27 15.12 13.25 15.59 13.33
256 6.44 6.15 8.42 7.74 10.68 9.44 11.13 9.47 11.43 9.45
512 4.19 4.02 5.54 5.09 7.11 6.18 7.60 6.26 7.45 6.20
1024 2.60 2.48 3.58 3.26 5.15 4.41 5.18 3.99 5.29 3.86

Table 5: Recognition and accuracy results in first experiment using two-component mixture models

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 7.98 7.53 11.62 10.70 17.03 15.35 17.40 15.73 17.40 15.69
256 6.44 6.15 8.42 7.74 10.76 9.49 13.38 11.96 12.16 10.67
512 4.19 4.02 5.54 5.09 7.11 6.18 8.16 7.04 8.13 7.04
1024 2.60 2.48 3.58 3.26 5.15 4.41 5.64 4.13 5.53 4.07

Table 6: Recognition and accuracy results in first experiment using three-component mixture models

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 7.98 7.53 11.62 10.70 17.05 15.37 17.46 15.94 17.93 16.42
256 6.44 6.15 8.42 7.74 11.69 10.40 13.73 12.54 12.80 11.53
512 4.19 4.02 5.54 5.09 7.17 6.23 8.25 7.23 8.02 7.09
1024 2.60 2.48 3.58 3.26 5.58 5.02 5.71 4.26 5.49 4.13

In order to facilitate the comparison, the comparison diagrams corresponding to each table are

provided in Figure 48, Figure 49 and Figure 50. As can be observed from the figures,

reducing the number of models results in higher recognition and accuracy rates. This is

expected, because a smaller number of models correspond to smaller number of clusters,

which means that there are a higher number of members belonging to each cluster. This, in

turn is equivalent to a higher number of training data for training each model. Another

observation is that for all configurations, after a specific number of iterations, the recognition

result is either reduced or remained stable. This means that increasing the number of training

iterations does not necessarily correspond to a better result. After a number of iterations, the

models could even become over-trained and hence fail to recognize the unseen data.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

75

Figure 48: Comparison diagram for first experiment using single Gaussian models

Figure 49: Comparison diagram for first experiment using two-component GMMs

Figure 50: Comparison diagram for first experiment using three-component GMMs

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

76

Inspecting the results, another conclusion is that for all systems, up to the third iteration, the

recognition and accuracy results are not dependent on the number of mixture components.

8.6.2 The second experiment: Forced Alignment

This experiment deals with employing automatic alignment of segment boundaries

corresponding to training data with the speech data, and then using the obtained transcription

in training HMMs. The schematic diagram of the experiment is provided in Figure 51. The

corresponding script secondApproach.sh is enclosed in Appendix E. This experiment is again

divided into three steps, as described below.

Figure 51: The processing steps regarding the second experiment

1. Initialisation

As described in the section (7.2.2), HInit initializes each model separately. For instance, in

order to initialize model L1, HInit is invoked as

HInit -I timedlabels_train.mlf -i 2 -l L1 -o L1 -S train.scp -M dir1 proto

Where proto is the same prototype HMM model used in the first experiment. Here the

following options are employed:

-I: Specifies the MLF file containing the timed aligned segment-level transcription of

training set (timedlabels_train.mlf)

-i: Specifies maximum number of Viterbi iterations. (3)

-l: Addresses the label to look for and cut out in the script file. (L1)

Hvite

Timedlabels_test.mlf

test.scp

dict

results.mlf

HResult
Recognition

and
 accuracy

 rate

HInit

Timedlabels_train.mlf

proto

One
 Initialized

Proto
 for each
 model

train.scp

Hvite(-a) aligned_
train.mlf

train.scp

labellist

Timedlabels_train.mlf

dict

HRest

train.scp

One
 estimated

Proto
 for

 each
 model

HHed N.mmf

dummy.led

labellist

Iterate 5 times

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

77

-o: Specifies the initialized model name.(L1)

-M: Specifies the directory to store the initialized models. (dir1)

-S: Specifies the script file containing the list of training data filenames. (train.scp)

 A typical way to invoke this tool for each model is via a script. The Perl subscript

initprotos.pl enclosed in Appendix E does the job for us. After running this script, for each

segmental unit a separate file containing the initialised HMM definition is created.

2. Forced Alignment

Now we perform Forced Alignment on training data. For this purpose, HVite is invoked as

follows:

$ HVite -A -D -T 1 -l '*' -o M -C config -H N2.mmf -i aligned1.mlf -y lab -a -I

timedlabels_train.mlf -S train.scp -p -30.0 dict labellist

where ‘dict’ is the dictionary specified in the first experiment, and ‘labellist’ is the file

containing the list of model names. The employed options are as follows:

-A: Causes the current command line arguments to be printed.

-D: Used to display configuration settings.

-T: Enables progress-reporting option.

-l: Addresses the directory to store output files. Using ‘*’ causes a label file named xxx to

be prefixed by the pattern "*/xxx" in the output MLF file.

-o: Specifies output level formatting.

-C: Used to specify the configuration file name. (config)

-H: Loads HMM macro model file (MMF). It may be repeated to load several

macros.(N2.mmf)

-a: Activated to make HVite Perform forced alignment (instead of –w which was used in

decoding)

-S: Used to specify the script file corresponding to the training data. (train.scp)

-i: Addresses the MLF file to store the aligned training transcriptions. (aligned1.mlf)

-p: Sets the word insertion log probability (-30)

-y: Specifies the output file extension (lab)

-I: Specifies the MLF file to be loaded. (timedlabels_train.mlf)

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

78

Figure 52 shows the transcriptions corresponding to the utterance mjrp0_sx225 in case of

128 segmental units system before and after first iteration of forced alignment. As we see,

in both cases the sequences of the labels are the same, while the segmental time boundaries

have changed.

0 1400000 L104
1400000 2000000 L29
2000000 2700000 L84
2700000 3500000 L24
3500000 3700000 L85
3700000 4100000 L99
4100000 4700000 L76
4700000 5400000 L93
5400000 5700000 L74
5700000 6100000 L59
6100000 6700000 L124
6700000 8200000 L86
8200000 8700000 L124
8700000 9000000 L59
9000000 9200000 L10
9200000 10000000 L44
10000000 10200000 L32
10200000 10500000 L43
10500000 10800000 L32
10800000 11300000 L113
11300000 12000000 L25
12000000 12800000 L46
12800000 13700000 L97
13700000 14000000 L105
14000000 14600000 L46
14600000 16000000 L121
16000000 17500000 L19
17500000 17700000 L36
17700000 18100000 L82
18100000 18400000 L126
18400000 20500000 L104

0 1300000 L104
1300000 1800000 L29
1800000 2500000 L84
2500000 3600000 L24
3600000 3900000 L85
3900000 4000000 L99
4000000 4600000 L76
4600000 5500000 L93
5500000 5600000 L74
5600000 5900000 L59
5900000 6500000 L124
6500000 8900000 L86
8900000 9000000 L124
9000000 9100000 L59
9100000 9200000 L10
9200000 10000000 L44
10000000 10100000 L32
10100000 10300000 L43
10300000 10600000 L32
10600000 11300000 L113
11300000 11800000 L25
11800000 12900000 L46
12900000 13800000 L97
13800000 13900000 L105
13900000 14500000 L46
14500000 15700000 L121
15700000 17100000 L19
17100000 17600000 L36
17600000 17700000 L82
17700000 18600000 L126
18600000 20500000 L104

Figure 52: The transcription corresponding to the utterance mjrp0_sx225 before and after performing forced

alignment

3. Training

At this step, the training phase starts. Training in this experiment is performed by the

programming tool HRest. It is again more efficient to call this tool via a script, as this tool is

applied individually to each initialised model. The Perl subscript trainafteralignment.pl

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

79

provided in Appendix E is intended to make this done. As said before, the main goal of this

experiment is to evaluate the performance of forced alignment. Therefore, here the time-

aligned transcriptions obtained from the forced alignment step are used to train the models.

As an example, in order to train model L1 it is run as:

HRest -T 1 -I aligned1.mlf -i 20 -l L1 -M dir2 -S train.scp dir1/L1

Where dir1/L1 indicates that the model to be trained is located in directory dir1. Here the

following options are invoked:

-T: Enables progress-reporting option.

-I: Specifies the MLF file containing the label-level transcription of training set

accompanied with the segment boundaries. (aligned1.mlf)

-i: Specifies maximum number of iterations. (20)

-l: Addresses the label to look for (and cut out) in the transcription file. (L1)

-M: Addresses the directory to store the initialized model. (dir2)

-S: Specifies a script file containing the list of training data filenames. (train.scp)

At this time, we collect all HMM definition files into one MMF file. This is performed using

HHEd:

$ HHEd -w dir2/N2.mmf -d dir2 dummy.led labellist

where ‘dummy.led’ is an empty file, and does simply nothing. It means that no edit is

subjected to HMM definitions. The file ‘labellist’ is containing all the HMM model names,

one per line. The following options are used in this invocation:

-w: Addresses the MMF file which all HMM definitions are to be stored in. (N2.mmf)

-d: Specifies where to look for each HMM definition file. (dir2)

4. Decoding

Now we perform decoding. In the first iteration, it is invoked as follows:

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

80

HVite -A -D -T 1 -C config -w Grammar.lat -H N2.mmf -S test.scp -i results1.mlf -p -30.0

dict labellist

The recognized MLF is stored in the file results1.mlf. The options are the same as those used

at decoding step in the first experiment.

 5. Evaluation

The recognition performance is computed via HResults. For the first iteration, it is run as

follows

HResults -A -D -I timedlabels_test.mlf labellist results1.mlf

6. Iteration

Now we iterate steps 2, 3 and 4 and 5 iteratively four more times. The recognition and

accuracy results are provided in Table 7, Table 8 and Table 9 for single, two and three-

component Gaussian mixtures. 	

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

81

Table 7: Recognition and accuracy results in second experiment using single Gaussian models

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 16.17 14.75 16.47 14.99 16.48 15.00 16.50 14.96 16.48 14.96
256 12.03 10.94 12.19 11.01 12.29 11.10 12.36 11.12 12.39 11.13
512 7.83 7.05 7.45 6.56 7.43 6.54 7.43 6.53 7.44 6.54
1024 4.84 4.11 4.83 4.03 4.87 4.05 4.83 3.98 4.83 3.99

Table 8: Recognition and accuracy results in second experiment using two-component GMMs

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 16.12 14.80 16.00 14.59 15.85 14.44 15.74 14.36 15.66 14.29
256 11.56 10.45 11.42 10.25 11.38 10.13 11.36 10.08 11.32 10.04
512 7.89 7.07 7.90 7.08 7.83 7.06 7.83 6.99 7.86 6.97
1024 4.72 4.13 4.75 4.09 4.53 4.11 4.69 3.99 4.71 4.06

Table 9: Recognition and accuracy results in second experiment using three-component GMMs

Number
of units

1st iteration(%)
Rec Acc

2nd iteration(%)
Rec Acc

3rd iteration(%)
Rec Acc

4th iteration(%)
Rec Acc

5th iteration(%)
Rec Acc

128 17.23 16.22 17.26 16.25 17.19 16.19 17.18 16.17 17.17 16.13
256 13.11 12.22 13.14 12.22 13.08 12.18 13.01 12.10 12.92 12.03
512 9.07 8.40 9.09 8.39 9.11 8.36 9.07 8.36 9.09 8.37
1024 6.13 5.81 6.12 5.64 6.18 5.42 6.11 5.54 6.14 5.56

In this experiment, we again observe that by reducing the number of segmental units, the

recognition and accuracy results are improved. Another observation is that already form the

first iteration, the recognition and accuracy results are relatively high (compared to first

experiment). However in this experiment iterating does not contribute to better performance:

Looking at the results of each system, all results corresponding to all iterations are roughly

the same. This is also found from Figure 53, Figure 54 and Figure 55.

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

82

Figure 53: Comparison diagram for second experiment using single Gaussian models

Figure 54: Comparison diagram for second experiment using two-component GMMs

Figure 55: Comparison diagram for second experiment using three-component GMMs

Machine Learning of Sub-Phonemic Units for Speech Recognition

8. Experiments, Results and Discussions

83

Comparing the results obtained in this experiment with those from the first experiment, one

could say that in all cases, employing the forced alignment has improved the performance of

the systems. The other observation is that here again, the system with 128 segmental models

outperforms other systems. It is also observed that using three-components, compared to

single and two-component Gaussian models, has resulted in better performance.

8.7 Summary
In this chapter the experimental setup, the implementations, the results and discussions

corresponding to the experiments performed in the project were covered. Several questions

were answered and the results were discussed.

Machine Learning of Sub-Phonemic Units for Speech Recognition

9. Summary, Conclusions and Future work

84

9 Summary, Conclusions and Future work

In this final chapter, a brief summary of the work is presented, and the most important

conclusions are outlined. Some suggestions for future work will also be given.

9.1 Summary and Conclusions
In this project we were aimed to design a speech recognizer based on a new collection of sub-

phonemic units. These units were found during several steps by employing several machine

learning algorithms: After the extraction of MBE feature vectors followed by STC generation

and acoustic-phonetic detection of all STC vectors, the posterior probabilities corresponding

to existence/absence of a set of 22 articulatory features such as nasality, fricativity,

vocalisation, glottalisation etc. were stacked in form of long vectors called posteriori

supervectors. These vectors constructed the input data to acoustic segmentation module. At

segmentation step, the signals were segmented in such a way to result in minimum segmental

distortion. The segments were represented by their centroids, known as representative vectors.

These representatives were input to a clustering algorithm by which the vectors with the most

similar acoustic-phonetic characteristic were stamped by the same label, corresponding to the

cluster label they were belonging to. Hereby, the whole database was re-labeled by the labels

corresponding to the cluster labels. The final step, which was the main focus of this study,

was to build a set of acoustic models – one model for each label – explore their properties and

investigate their performance on a unit-level speech recognizer.

In order to evaluate the performance of the models, two different approaches were

experimented, namely forced alignment and decoding. Both experiments were performed on

128, 256, 512, and 1024 acoustical units systems. Results show that applying forced

alignment on training transcriptions improves the performance of all systems. The best results

were achieved for the 128 units system. The recognition system designed in this work

operates with error rates that are relatively high to be used in practice. The poor recognition

results are however to some degree expected, this because we have employed a high number

of acoustic models with relatively low amount of training data.

Machine Learning of Sub-Phonemic Units for Speech Recognition

9. Summary, Conclusions and Future work

85

In next section some ideas to be investigated in future work are suggested.

9.2 Future Work
The experiments introduced in this work correspond to building a unit-level recognition

system. After HMMs each corresponding to a speech unit are trained and tested, the next step

is to generalize these HMMs by connecting them together in sequence, to construct

vocabulary. Due to time constraints, it was not possible to design a higher-level recognition

system and the question of generalizability of the models remained unanswered. Therefore,

first of all, it is necessary to perform further experiments and create the final recogniser

machine, before making a conclusion and argue about the acceptance or rejection of the

studied approach.

From the articulatory point of view, both the window shift and the window length should be

adapted to the variation of the articulators and the change in the vocal tract shape [12, p.164].

In this work, these were assumed to be identical for all articulators. Costumizing them could

be subject for further exploraiton.

Regarding the segmentation algorithm, choosing a threshold for the whole data set as a stop

criterion is a challenging task, since characteristics of each signal is different from the others.

The other termination alternative was to set the stop condition relative to the manual

phonemic labels for each utterance. The downside with this approach however, is that the

manual labelling is not available in real applications. For these reasons, it would be

interesting to define the stop criterion with regard to some other cues in future work.

In case of K-means algorithm, experimenting other initialisation settings for cluster centroids

would be of interest.

In case of acoustic modeling, other probability estimators such as tied mixtures were not

examined in this work. This could be investigated in future. It would also be interesting to

consider higher number of internal states in defining HMM models.

In case of HMM prototype, just three configurations (single, two and three component

mixtures) were experimented in this work. This could be optimized in a future work.

Machine Learning of Sub-Phonemic Units for Speech Recognition

Bibliography

Bibliography

[1] Aggarval, K., & Dave, M. (2011). Acoustic modeling problem for automatic speech recognition
system: conventional methods (Part I).

[2] Chomsy, N., & Halle, M. (1968). The Sound Pattern of English. New York: Harper & Row.

[3] Daumé, H. A course in machine learning.

[4] Frankel, J., Wester, M., & King, S. (2007). Articulatory feature recognition using dynamic
Bayesian networks.

[5] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., & Pallett, D. S. (1993). DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus. Gaithersburg, USA: U.S. Dept. of Commerce.

[6] Gershenson, C. (2001, Autumn). Artificial Neural Networks for Beginners. From
http://arxiv.org/abs/cs/0308031

[7] Huang, X., Acero, A., & Hon, H. (2001). Spoken Language Processing: A Guide to Theory,
Algorithm and System Development. Prentice Hall.

[8] Jones, E. R. (2004, December). An Introduction to neural networks, A white paper. From Visual
Numerics, Inc.:
http://www.roguewave.com/DesktopModules/Bring2mind/DMX/Download.aspx?entryid=756&comm
and=core_download&PortalId=0&TabId=607

[9] King, S., & Taylor, P. (2009). Detection of phonological features in continuous speech using
neural networks. Comput. Speech Lang. , 14, 333-345.

[10] Ladefoged, P. & Johnson, K. (2010). A course in phonetics. Boston: Michael Rosenberg.

[11] Ostendorf, M. (1999). Moving beyond the ‘beads-on-a-string’ model of speech. In: IEEE ASRU
Workshop , 230-245.

[12] Raj, B., Virtanen, T., & Singh, R. (2012). Techniques for Noise Robustness in Automatic Speech
Recognition. John Wiley & Sons.

[13] Schwarz, P. (2008). Phoneme recognition based on long temporal context . Doctoral thesis, Brno
University of Technology, Faculty of Information Technology, Brno.

[14] Rabiner, L. & Juang, B. (1993). Fundamentals of Speech Recognition. New Jersey: Prentice Hall.

Machine Learning of Sub-Phonemic Units for Speech Recognition

Bibliography

[15] Schwarz, P., Matejka, P., & Cernocky, J. (2006). Hierarchical structures of neural networks for
phoneme recognition. Proc. ICASSP , 325 -328.

[16] Siniscalchi, S. M. (2012). Combining speech attribute detection and penalized logistic regression
for phoneme recognition. Neurocomputing, vol. 93, pp. 10–18.

[17] Smola, A., & S.V.N, V. (2008). Introduction to machine learning.
Svendsen, T., & Soong, F. (1987). On the automatic segmentation of speech signals. IEEE
International Conference on ICASSP ’87 .

[18] Svendsen T. (2013) Lecture notes in TTT4185 (Speech recognition)

[19] Svendsen, T.; Soong, F. K. (1987) On the automatic segmentation of speech signals, IEEE
International Conference on ICASSP ’87

[20] Jang R, Data clustering and pattern recognition, chapter 3,
http://mirlab.org/jang/books/dcpr/dcKMeans.asp?title=3-3%20K-means%20Clustering

[21] Jurafski D.; Martin J. H. (1999) Speech and Language Processing, An Introduction to Natural
Language Processing, Computational Linguistics and Speech Recognition

[22] Young etal, (2001) The HTK Book, Cambridge University Engineering Department

[23] Zhai, C. (2003). A Brief Note on the Hidden Markov Models (HMMs).

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix A

APPENDIX

APPENDIX A: POSTERIORGRAM REPRESENTATION

%
%Posteriorgram of posterior vectors corresponding to 566th sentence of TIMIT
%test (fadg0_si649)in htk format.
%
close all
clear all
clc

[AF,fp,dt,tc,t]=readhtk('/Users/negarolfati/Desktop/Detection/AF_TIMIT/1_state/train_phone_recognizer/pfiles/
test_566.htk');

nFeatures=22;

% the manual labels are extracted from the last column of the files with the
% following format: [referencePrefix, label{i}, referenceExtension]; For
% generating these files, we made use of the labelextraction.sh script
% enclosed after this script.

referencePrefix='/Users/negarolfati/Desktop/Detection/AF_TIMIT/1_state/train_detectors/binlabels/labels_';

label = {'Vowel','Fricative','Nasal','Stop','Approx','High','Coronal','Dental',...
 'Glottal','Labial','Low','Mid','Retroflex','Velar','Voiced','Round',...
'Tense', 'Anterior','Back','Continuant','Vocalic','Silence'};

referenceExtension='.txt';
%%
%plot each detector output saparately
for i = 1:22
 figure(i)
 plot(AF(:,2*i));
 ylabel(label{i});
 xlabel('frame number');
 title('htk_gram, fadg0_si649');
 hold on
 filename = [referencePrefix, label{i}, referenceExtension];
 reference=load(filename);
 plot(reference(:,26), 'r');

end

%% Create the posteriorgram

figure
for i=1:22
 h=subplot('Position',[0.08 (i-1)*0.96/22+0.02 0.90 0.96/22]);
 axis([1 459 -10 0.5]);
 plot(AF(:,2*i));
 if (i > 1)

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix A

 set(h,'XTick',[],'YTick',[]);
 end
 ylabel(label{i},'rot',30);
 hold on
 filename = [referencePrefix, label{i}, referenceExtension];
 reference=load(filename);
 plot(reference(:,26), 'r');
end

Script: ~/Detection/AF_TIMIT/1_state/LabelExtraction.sh

#!/bin/bash

TOP=`pwd`
export BINDIR=/usr/local/bin
featuremap=extract_melbankenergies/data/Marco_AF.map
AFlist=extract_melbankenergies/data/AFlist
GetAFset.pl $featuremap $AFlist

for AF in `cat $AFlist`
do

for i in 566
do

Convert to htk format
$BINDIR/feacat -i $TOP/train_detectors/trained/$AF/labeledpfiles/test.pfile -ip pfile -o
$TOP/train_detectors/htks/htk_$AF.htk -op htk -sr $i:$i

save the files containing the binary labels for each detector
$BINDIR/pfile_print -i $TOP/train_detectors/trained/$AF/labeledpfiles/test.pfile -sr $i:$i >&
$TOP/train_detectors/binlabels/labels_$AF.txt

done
done

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

APPENDIX B: ACOUSTIC SEGMENTAL CENTROID COMPUTATION,

CENTROID CLUSTERING AND LABEL ASSIGNMENT

%%
% In this script, the following are performed:
%1. The posterior supervectors resulted from acoustic merging and the segment boundaries resulted from the
%acoustic segmentation are imported.
%2. The dimension of posterior supervectors is reduced to 22.
%3. The segmental centroids are computed and clustered via the k-means algorithm.
%4. The labels corresponding to clusters are assigned to relative segments.
%5. The label files are exported both with and without boundary information.
%%
clear all
clc
close all

% Load data

htkfiles_train = dir('/Users/negarolfati/Desktop/Acsegment/mfcdir/train/*.htk');
htkfiles_test = dir('/Users/negarolfati/Desktop/Acsegment/mfcdir/test/*.htk');

htkpaths_train = (strcat({'/Users/negarolfati/Desktop/Acsegment/mfcdir/train/'},{htkfiles_train.name}))';
htkpaths_test = (strcat({'/Users/negarolfati/Desktop/Acsegment/mfcdir/test/'},{htkfiles_test.name}))';

nTrain = length(htkpaths_train);
files_train = cell(nTrain,1);

for k = 1:nTrain
 files_train {k,1} = htkfiles_train(k,1).name; % store the train list in 'files_train'.
end

nTest = length(htkpaths_test);

nTest = length(htkpaths_test);
files_test = cell(nTest,1);
for k = 1:nTest
 files_test {k,1} = htkfiles_test(k,1).name; % store the test list in 'files_test'.
end

% remove the extension '.htk' from filenames
for k = 1: nTrain
 files_train{k,:} = strrep(files_train{k,1},'.htk','');

end

for k = 1: nTest
 files_test{k,:} = strrep(files_test{k,1},'.htk','');

end

% Now, generate the '.acs' paths. These are the files containing
% time-boundaries of the segments.
for k = 1:nTrain
 acspaths_train{k,1} =
(strcat(('/Users/negarolfati/Desktop/Acsegment/espslabs/train/'),(files_train{k,1}),'.acs'))';

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

end

for k = 1:nTest
 acspaths_test{k,1} = (strcat(('/Users/negarolfati/Desktop/Acsegment/espslabs/test/'),(files_test{k,1}),'.acs'))';

end

% Remove the special char # from .acs files, in order to make them loadable via 'load' function

command = 'perl -pi -e "BEGIN{ @ARGV = glob(pop) } s/#//g"
"/Users/negarolfati/Desktop/Acsegment/espslabs/train/*"';
status = system(command);
command = 'perl -pi -e "BEGIN{ @ARGV = glob(pop) } s/#//g"
"/Users/negarolfati/Desktop/Acsegment/espslabs/test/*"'; % Remove the special char #
status = system(command);

% load *.htk files. Store them in first column of data_train and data_test

nAF = 22; % Number of Articulatory Features, in other words the dimension of data points.
data_train = cell(nTrain,6);
for k = 1:nTrain
 data_train{k,1} = readhtk(htkpaths_train{k,1});
 m = data_train{k,1};
 c = zeros(length(m),nAF);
 for t = 1:nAF % activation = 1-deactivation, so keep one component from each two.
 c(:,t) = m(:, 2*t-1);
 data_train{k,1} = c;
 end

end
%
data_test = cell(nTest,6);
for k = 1:nTest
 data_test{k,1} = readhtk(htkpaths_test{k,1});
 m = data_test{k,1};
 c = zeros(length(m),nAF);
 for t = 1:nAF
 c(:,t) = m(:, 2*t-1);
 data_test{k,1} = c;
 end

end

% Load *.acs files, store them in second column in cell data_train and data_test
for k = 1:nTrain
 a = load(acspaths_train{k,1});
 data_train{k,2} = a(:,1);
end
%
for k = 1:nTest

 a = load(acspaths_test{k,1});
 data_test{k,2} = (a(:,1));
end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

%% Compute segmental mean for train data and test data

for k = 1:nTrain
 BoundPos = data_train{k,2}*1e3/10; % framerate = 10 msec

 % Store time-boundarieds for all segments corresponding to training
 % data in 5th and 6th column of data_train.
 BoundPos(:) = round(BoundPos(:));
 data_train{k,5}=[0;BoundPos(1:end-1,1)];
 data_train{k,6}=BoundPos;
 nsegMembers= zeros(1,length(BoundPos));

 % How many members are present in each segment?
 nsegMembers(1) = round(BoundPos(1));
 for t = 2: length(BoundPos)
 nsegMembers(t) = BoundPos(t) - BoundPos(t-1);
 end

 nsegMembers(:) = round(nsegMembers(:));

 % Store number of segments for all training data in 4th column of
 % data_train
 data_train{k,4} = nsegMembers;

 % Compute segmental means and store them in 3rd column.
 mean = zeros(nAF, length(BoundPos));
 FrameIdx = 1;
 d = (data_train{k,1})';

 for s = 1 : length(BoundPos)
 mean(:,s) = sum(d(:,(FrameIdx:(BoundPos(s)))),2)/nsegMembers(s);
 FrameIdx = FrameIdx + nsegMembers(s);
 end
 data_train{k,3} = mean;
end

%

for k = 1:nTest
 BoundPos = data_test{k,2}*1e3/10; % framerate = 10 msec
 BoundPos(:) = round(BoundPos(:));
 data_test{k,5}=[0;BoundPos(1:end-1,1)];
 data_test{k,6}=BoundPos;
 nsegMembers= zeros(1,length(BoundPos));

 % How many members are present in each segment?
 nsegMembers(1) = round(BoundPos(1));
 for t = 2: length(BoundPos)
 nsegMembers(t) = BoundPos(t) - BoundPos(t-1);
 end

 nsegMembers(:) = round(nsegMembers(:));
 data_test{k,4} = nsegMembers;
 % Compute segmental means
 mean = zeros(nAF, length(BoundPos));
 FrameIdx = 1;
 d = (data_test{k,1})';

 for s = 1 : length(BoundPos)

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

 mean(:,s) = sum(d(:,(FrameIdx:(BoundPos(s)))),2)/nsegMembers(s);
 FrameIdx = FrameIdx + nsegMembers(s);
 end
 data_test{k,3} = mean;
end

%% How many mean vectors are generated?
meansize_train = 0;
for k = 1:nTrain
 sentmeansize = (size(data_train{k,3},2));
 meansize_train = sentmeansize + meansize_train;
end

meansize_test = 0;
for k = 1:nTest
 sentmeansize = (size(data_test{k,3},2));
 meansize_test = sentmeansize + meansize_test;
end

%% Now prepare data to be input to cluster algorithm
data= [data_train ; data_test];
files= [files_train; files_test];
meanstore_tot = cell2mat(data(:,3)');
%pause
save('meanstore_tot.mat', 'meanstore_tot');

%[IDX_data] = myKmeans(meanstore_tot,thr_data);

[IDX_data] = kmeans(meanstore_tot',128);
IDX_data = IDX_data';
%% perform label assignment, and export labels files Without
%time boundaries. These to be used in first experiment.
nData = nTrain+nTest;
a = cell(1,nData);

for k = 1:nData
 a{k} = data{k,4};
end

vectorSizes_data=cellfun(@(x) numel(x),a);
idx_data = mat2cell(IDX_data', vectorSizes_data);
%
for k = 1:nTrain
 f = idx_data{k};
 fid =
fopen(strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/mergedlabels_train/'),(files{k})
,'.lab'),'wt');
 fprintf(fid, [repmat('%g\n', 1, size(f,2)-1) '%g\n'], f.');
 fclose(fid);
end
%

for k = nTrain+1 : nData

 f = idx_data{k};
 fid =
fopen(strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/mergedlabels_test/'),(files{k}),'
.lab'),'wt');

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

 fprintf(fid, [repmat('%g\n', 1, size(f,2)-1) '%g\n'], f.');
 fclose(fid);

end

%% Export label files with time boundaries. These to be used in second experiment.

for k = 1:nTrain
 idx_train{k}=idx_data{k};
 f = [data{k,5}*10^5 data{k,6}*10^5 idx_data{k}];
 filename =
strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/timedlabels_train/'),(files{k,1}),'.lab');
 fileID = fopen(filename,'w');
 fprintf(fileID,'%d %d %d\n',f');
 fclose(fileID);
end

for k = nTrain+1 : nData
 idx_test{k}=idx_data{k};
 f = [data{k,5}*10^5 data{k,6}*10^5 idx_data{k}];
 filename =
strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/timedlabels_test/'),(files{k,1}),'.lab');
 fileID = fopen(filename,'w');
 fprintf(fileID,'%d %d %d\n',f');
 fclose(fileID);
end

function[membership_idx] = myKmeans(meanstore_tot,thr)

clear all
close all
clc

% load data
m = load ('/Users/negarolfati/Downloads/voicebox/meanstore_tot.mat');
m = m.meanstore_tot ;

N = size(m,2); % number of data points
numclust =2;

% Find the main centroid

main_centr = mean(m,2);

initGlobalDist = 100e100;

%% Initialise centroids

centers_init = cell(1,numclust);

for k =1 : numclust/2
 centers_init{1,2*k-1} = main_centr;
 centers_init{1,2*k} = main_centr + 0.1*randn(22,1); % datadim = 2
end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

all_global_dist = [initGlobalDist];
% Create an outer loop to split the clusters

l = 1; % outer loop counter

while 1
%for l = 1:max_iter
 'new cluster set'

 if(numclust > N)
 % if (2^max_iter > N)
 error('Error! Number of clausters more than number of datapoints');
 end

 membership_idx = zeros(N,1);
 dist = zeros(numclust, N);
 centers = centers_init;
 temp_idx = zeros (1,N);

 %figure
 flag = 1;
 % Create an innerloop to stabilize the centroids.
 while flag

 %**** 1.partition
 for k = 1:numclust
 c = centers{1,k};
 dist(k,:) = sqrt(sum((m-repmat(c,1,N)).^2));

 end

 [sorted, ind] = sort(dist);
 membership_idx = ind(1,:);

 % compute the global distortion
 localDist = zeros(1,numclust);

 for k = 1:numclust
 a = m(:,(membership_idx==k));
 M = size(a,2);
 c = centers{1,k};
 localDist(1,k) = sum(sqrt(sum((a-repmat(c,1,M)).^2))); %Distortion inside each cluster
 end

 % Compute the distortion reduction compared to previous step
 globalDist = sum(localDist(:));
 G = (initGlobalDist-globalDist)/initGlobalDist;

 if (all(membership_idx == temp_idx) | (G < 1e-3))
 flag = 0;
 'breaking'
 all_global_dist = [all_global_dist globalDist];
 break
 else
 temp_idx = membership_idx;
 initGlobalDist = globalDist;
 end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix B

 %**** 2. Centroid update

 for k = 1:numclust
 a = m(:,(membership_idx==k));
 if size(a,1)==1
 centers{1,k} = a;
 else
 centers{1,k} = mean(a,2);
 end
 end

 end

 %%
 % ****** How far split the clusters? We need a stop criterion!

 iter_cond = abs(all_global_dist(l) - all_global_dist(l+1)) / all_global_dist(l)

 if (iter_cond < 0.104)
 break;
 end

 %**** 3.split the clusters into two, and prepare data for next iteration

 centers_old = centers;
 numclustnew = 2*numclust;
 numclust = numclustnew;

 centers_init = cell(1 ,numclustnew);

 for k = 1:numclust/2

 centers_init{1,2*k-1} = centers{1,k};
 centers_init{1,2*k} = centers{1,k} + 0.1*randn(22,1); % 22 = datadim

 end
 l = l+1;

end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix C

APPENDIX C: K-MEANS ALGORITHM FOR CLUSTERING TWO-DIMENSIONAL

DATA INTO UN-PREDEFINED NUMBER OF CLUSTERS.

clear all
close all
clc

m = [-0.06 0.9;0.3 -0.5;-0.4 -0.1;-0.1 -0.8;0.01 0.4;2.9 2.0;2.2 1.8;1.8 1.1;
 1.8 2.1;1.8 1.8;-1.3 -2.6;-2.1 -2.5;-2.4 -2.4;-1.8 -2.1;-2.0 -2.8;
 3.4 4.9;3.4 5.3;3.5 4.8;3.3 4.6;3.3 5.1];
m = m';

N = size(m,2); % number of data points
numclust =2; % the whole data space to be splitted into 2 clusters.

% Find the main centroid
figure;
main_centr = mean(m,2);
scatter(m(1,:),m(2,:),'b','filled');
hold on

scatter(main_centr(1,:),main_centr(2,:),'r','*','SizeData' ,100);
pause
% Define initial distortion
initGlobalDist = 10e10;
hold off

%% Initialise centroids

centers_init = cell(1,numclust);

for k =1 : numclust/2
 centers_init{1,2*k-1} = main_centr;
 centers_init{1,2*k} = main_centr + 0.1*randn(2,1); % datadim = 2
end

all_global_dist = [initGlobalDist];
% Create an outeter loop to control splitting the clusters
l = 1; % outer loop counter
while 1
 'new cluster set'
 if(numclust > N)
 %if (2^max_iter > N)
 error('Error! Number of clausters more than number of datapoints');
 end

 membership_idx = zeros(N,1);
 dist = zeros(numclust, N);
 centers = centers_init;
 temp_idx = zeros (1,N);

 figure

 scatter(m(1,:),m(2,:),'b','filled');
 hold on
 for k = 1:numclust
 c = centers{1,k};

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix C

 scatter(c(1,:),c(2,:),'r','*','SizeData' ,100)
 end
 title('The splitted centroids')
 pause
 hold off

 flag = 1;
 % Create an inner loop to stabilize the centroids.
 while flag
 figure
 %**** 1. Partition the data points by assigning them to their nearest centroid.
 for k = 1:numclust
 c = centers{1,k};
 dist(k,:) = sqrt(sum((m-repmat(c,1,N)).^2));

 end

 [sorted, ind] = sort(dist);
 membership_idx = ind(1,:);

 % compute the global distortion
 localDist = zeros(1,numclust);

 for k = 1:numclust
 a = m(:,(membership_idx==k));
 M = size(a,2);
 c = centers{1,k};
 localDist(1,k) = sum(sqrt(sum((a-repmat(c,1,M)).^2))); %Distortion inside each cluster
 end

 % Compute the global distortion reduction compared to previous step
 globalDist = sum(localDist(:));
 G = (initGlobalDist-globalDist)/initGlobalDist

 if (all(membership_idx == temp_idx) | (G < 1e-5))
 flag = 0;
 'breaking'
 all_global_dist = [all_global_dist globalDist];
 break
 else
 temp_idx = membership_idx; % copy the membership index and the local distortion into temporary
variables
 initGlobalDist = globalDist;
 end

 %**** 2. Centroid Update

 scatter(m(1,:),m(2,:),'b','filled');

 hold on
 for k = 1:numclust
 a = m(:,(membership_idx==k));
 if size(a,1)==1
 centers{1,k} = a;
 else
 centers{1,k} = mean(a,2);
 end
 end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix C

 for k = 1:numclust
 c = centers{1,k};
 scatter(c(1,:),c(2,:),'r','*','SizeData' ,100)
 end

 title('The updated centroids')
 pause

 hold off
 end

 %% How far split the clusters? We need to define a stop criterion.

 iter_cond = abs(all_global_dist(l) - all_global_dist(l+1)) / all_global_dist(l);

 if (iter_cond < 0.8)
 break;
 end

 %**** 3.split the centroid into two and prepare data for next iteration

 centers_old = centers;
 numclustnew = 2*numclust;
 numclust = numclustnew;

 centers_init = cell(1 ,numclustnew);

 for k = 1:numclust/2

 centers_init{1,2*k-1} = centers{1,k};
 centers_init{1,2*k} = centers{1,k} + 0.1*randn(2,1); % 22 = datadim

 end
 l = l+1;

end

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix D

APPENDIX D: THE FIRST EXPERIMENT: RECOGNITION

Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/firstApproach.sh

#!/bin/bash

TOP=`pwd`

Create 6 folders in your main directory.

for i in 0 1 2 3 4 5
do
mkdir -p hmm$i
done

Create the folder LOG to store all logs.

mkdir -p LOG
Delete labellist if it exists (Is there a better way to prevent multiple-writing on it?)

rm -f labellist
Make a list of symbols in the file labellist

for i in {1..128}
do
echo "L$i" >> labellist
done

#Create dictionary
rm -f dict
for i in {1..128}
do
echo "L$i L$i" >> dict
done

Create train.scp : a script file containing a list of all feature filenames (*.fea). Copy the existing list, and edit
paths and extensions.

cp ../extract_melbankenergies/data/train.scp train.scp
sed -i -e 's;^; features/;' train.scp
sed -i '.wav' 's/\.wav/\.fea/' train.scp

Repeat the same to create test.scp

cp ../extract_melbankenergies/data/test.scp test.scp
sed -i -e 's;^; features/;' test.scp
sed -i '.wav' 's/\.wav/\.fea/' test.scp

Initialise proto

HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto> LOG/HCompV.log

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix D

Make a copy of proto content 512 times into hmm0/hmmdefs

(perl -0777pe '$_=$_ x 128' hmm0/proto)> hmm0/hmmdefs

Remove the undesired lines from hmmdefs

sed -i '' "/<STREAMINFO> 1 23/d" hmm0/hmmdefs
sed -i '' "/<VECSIZE> 23<NULLD><FBANK><DIAGC>/d" hmm0/hmmdefs
sed -i '' "/~o/d" hmm0/hmmdefs

edit the strings "proto" in hmmdefs according to the labels exisiting in labellist. (Without copying labellist into
hmm0, hmmdefs becomes empty after running awk.(why?))
cp labellist hmm0/labellist
cd hmm0
awk 'FNR==NR{a[++i]=$0; next} /proto/{sub(/proto/, a[++j])} 1' labellist hmmdefs >> tmp && mv tmp
hmmdefs

Remember to create macros MANUALLY in hmm0

Add L to all label files corresponding to training and testing data, and store the files into LABELSTRAIN and
LABELSTEST
#(output from script Centroidfinding.m are in form of string of numbers. add L before them)

cd $TOP
mkdir -p LABELSTRAIN
mkdir -p LABELSTEST
mkdir -p Results
cd ../mergedlabels_train
for i in *;
do
sed 's/^/L/' "$i" > ../trainHMMs/LABELSTRAIN/$i
done

cd ../mergedlabels_test
for i in *;
do
sed 's/^/L/' "$i" > ../trainHMMs/LABELSTEST/$i
done

Go back to main directory

cd $TOP

Create MLFs from training and testing label files

HLEd -l '*' -i labels_train.mlf dummy.led LABELSTRAIN/*
HLEd -l '*' -i labels_test.mlf dummy.led LABELSTEST/*

#Create Grammar.net from the command-line

Create lattice. This to be used in decoding
Hparse Grammar.net Grammar.lat

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix D

Now train, decode and evaluate iteratively

for((i=0;$i<5;i++));
do

echo Iteration number $((i+1))

HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H hmm$i/macros -H
hmm$i/hmmdefs -M hmm$((i+1)) labellist> LOG/Rec./HERest30$((i+1)).log
echo Training finished!

HVite -A -D -C config -w Grammar.lat -H hmm$((i+1))/hmmdefs -H hmm$((i+1))/macros -S test.scp -i
results$((i+1)).mlf -p -30.0 dict labellist > LOG/Rec./HVite30$((i+1)).log
echo Decoding finished!

HResults -A -D -I labels_test.mlf labellist results$((i+1)).mlf >& Results/Rec./HResults30$((i+1)).txt

echo Results stored in Results/Rec./HResults30$((i+1)).txt
done

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix E

APPENDIX E: THE SECOND EXPERIMENT: FORCED ALIGNMENT

Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/secondApproach.sh

#!/bin/bash

TOP=`pwd`

rm -f labellist
Make a list of symbols in the file labellist

for i in {1..128}
do
echo "L$i" >> labellist
done

mkdir -p TimedLABELSTRAIN
mkdir -p TimedLABELSTEST

cd ../timedlabels_train
for i in *;
do
sed -E 's/(.* .*) /\1 L/' "$i" > ../trainHMMs/TimedLABELSTRAIN/$i
done

cd ../timedlabels_test
for i in *;
do
sed -E 's/(.* .*) /\1 L/' "$i" > ../trainHMMs/TimedLABELSTEST/$i
done

cd $TOP

for i in {1..6}
do
mkdir -p dir$i
done
mkdir -p Results

for i in {1..6}
do
rm -rf dir$i/*
done

HLEd -l '*' -i timedlabels_train.mlf dummy.led TimedLABELSTRAIN/*
HLEd -l '*' -i timedlabels_test.mlf dummy.led TimedLABELSTEST/*

Initialise HMM models individually
initprotos.pl labellist

HHEd -w N1.mmf -d dir1 dummy.led labellist

for i in {1..5}

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix E

do

Perform forced alignment
HVite -A -D -T 1 -l '*' -o M -C config -H N$i.mmf -i aligned$i.mlf -m -y lab -a -I timedlabels_train.mlf -S
train.scp -p -30.0 dict labellist> LOG/F.A./HVite_aligned_train$i
echo the aligned mlfs stored in Aligned$i.mlf
#Train using HRest
trainafteralignment.pl $i

HHEd -w N$((i+1)).mmf -d dir$((i+1)) dummy.led labellist
Decode
HVite -A -D -C config -w Grammar.lat -H N$((i+1)).mmf -S test.scp -i results$i.mlf -p -30.0 dict labellist >
LOG/F.A./HVite_Decode_30$i.log
Evaluate
HResults -A -D -I timedlabels_test.mlf labellist results$i.mlf >& Results/F.A./HResults$i.txt
echo Results stored in Results/F.A./HResults$i.txt
done

Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/initprotos.pl

#!/usr/bin/perl

usage: initprotos.pl labellist
labellist: text file containing model names (L1,L2,..,L512)

$model = $ARGV[0];

open(CF, "< $model") || die "can't open $model: $!";
my @segmentmodels=();
while(<CF>){
 chomp;
 push(@segmentmodels,$_);
}
close(CF);

foreach $model (@segmentmodels)
{
$cmd = "HInit -I timedlabels_train.mlf -i 3 -l $model -o $model -S train.scp -M dir1 proto";
 print $cmd, "\n";
 #next;
system("$cmd");
}

Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/trainafteralignment.pl

#!/usr/bin/perl
usage: trainafteralignment.pl i

use strict;
use warnings;

Machine Learning of Sub-Phonemic Units for Speech Recognition

Appendix E

use File::Spec::Functions qw/ catdir catfile /;

my $iter = $ARGV[0];
my $dir = 'dir'.$iter;
my $dir2 = 'dir'.($iter+1);
my $alignedMLF = 'aligned'.$iter.'.mlf';
opendir my ($dh), $dir;
while (my $node = readdir $dh) {
 my $file = catfile($dir, $node);
 next unless -f $file;
 my $cmd = "HRest -T 1 -I $alignedMLF -i 20 -l '$node' -M '$dir2' -S train.scp '$file'";
 #print $cmd, "\n";
 #next;
 system($cmd);
}
closedir $dh;

