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Problem description 

 

The current speech recognizers make use of phonemes or phones as the basic recognition unit, 

and have statistical description of phonemes modelled by acoustic models. For example, we 

have different models of /t/ when the sound is pronounced as in the word "star" compared to 

the word "butter". Phoneticians empirically employ the phoneme set of a language as a tool to 

provide an auditive description of that language. This means that phonemes are not 

necessarily the best units for automatic speech recognition. 

This thesis aims to study methods to define an alternative set of units in speech, i.e. detecting 

the repetitive patterns and study the properties of the new units. 
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Abstract 

 

This work is intended to explore the performance of a new set of acoustic model units in 

speech recognition. The acoustic models were built and evaluated from scratch in several 

steps: Feature extraction, acoustic detection and merging, acoustic segmentation of TIMIT 

corpus, clustering the segment representatives, assigning labels to each cluster and labelling 

the segments by cluster labels, and finally acoustic modeling. At the acoustic modeling phase, 

two experiments were investigated, using standard HMM structures and HTK toolkit; In the 

first experiment, the models were trained and evaluated by the annotated version of training 

data from TIMIT database in terms of cluster labels. In the second experiment, the time-

aligned version of transcriptions was utilized to train acoustic models. Both experiments were 

carried out on four systems with 128, 256, 512 and 1024 units. Both single and mixture 

probability estimators were testified. In both experiments, the best results were achieved 

using GMMs with three-components for the 128 units system. 
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1 Introduction and Problem Setting 

 

 

Speech is considered as the most natural way to communicate in everyday life.  It has been 

made a lot of research to accomplish the process of mapping from speech signal to text by 

computers. This research field is called speech recognition. However, the task of recognizing 

any speech signal uttered by any person under any environmental condition is still a research 

challenge, and it is so far an easier task for human beings than for machines. Nevertheless, 

machines have been capable of working successfully in particular application areas, like 

dictation, augmentative communication, or call-routing. 

 

1.1 What is machine learning? 
Machine learning is the study of algorithms that learn the machine how to generalize the 

observed properties of an object to unobserved properties of that object [17]. The range of 

applications employing machine-learning techniques is large; some application areas are web 

page ranking, automatic translation of documents, face recognition, and last but not the least, 

speech recognition. In general, any area in which you need to make sense of data is a potential 

consumer of machine learning. 

There are several different models available for learning a machine how to predict the 

unknown data by making use of the known data, such as classification by perceptrons, data 

clustering etc. In case of speech recognition, the known data is called the training set and the 

unknown data is called the testing set of a speech data set. In this work we will apply some of 

these methods. 

There are two types of machine learning, depending on the availability/unavailability of the 

outputs. These are known as supervised and unsupervised approaches. In this project, a 

combination of these approaches is applied. For example, the technique used in training the 

neural networks can be categorized as supervised learning, while the designed k-means 

clustering algorithm is unsupervised [3]. 
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1.2 Motivation of Research 
One of the most essential factors in building automatic speech recognition systems (ASR) is 

to select the basic recognition unit. There are several criteria to be considered when selecting 

the recognition unit [7]: 

• The unit should be accurate i.e. capable of modeling the acoustic realizations in different 

contexts. 

• The unit should be trainable. For this purpose, enough training data should be available to 

estimate the unit parameters. 

• The unit should be generalizable i.e. capable of creating higher level recognition units. 

 

In small vocabulary tasks with specific set of words, the whole words are regarded as 

reasonable units. They are both accurate and trainable and there is no need for them to be 

generalized. However, in the case of large vocabulary ASRs, the use of whole words as basic 

units is a poor choice. In this case, accuracy and trainability would be a challenge since for 

“learning” each word to the system, several acoustic realizations would be required and hence 

the size of the required training data would be extremely large. In such systems, the phones 

may be a good alternative to construct the basic units for recognition. The problem with 

phones, however, is their accuracy, as they are not able to model the trajectories found in 

speech. In order to account for the acoustic variability, context-dependant sub-word models 

such as biphones and triphones are employed. A biphones model considers the adjacent 

phone on the left side of the phone being modelled, and a triphones model involves 

considering both its left and right phones.  

In this project, in order to capture the coarticulatory effects of the speech signal, an alternative 

method is investigated. In the current approach, the units are built based on the articulatory 

features inherent in the signal. The advantage of these units over phones is that as they are 

built considering the articulatory features in the signal, they make the design of a universal 

language speech recognizer practical.  

This thesis is conducted to investigate the behaviour and performance of these units through 

several experiments. 

1.3 The Framework of This Project 
A standard ASR system is constructed by five basic modules: speech parameterization, 

acoustic modeling, language modeling, decoding and the evaluation. Schematic diagram of a 
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typical ASR system is shown in Figure 1 [18]. The blue boxes represent the modules and the 

orange boxes represent the files associated with them.  

 

 
Figure 1: A Standard Speech Recognizer system 

The system in this project is designed based on a segmental framework. In this manner, three 

extra steps compared to Figure 1 are involved in the work. These steps are depicted in Figure 

2. They are shown in yellow and the files associated with them are in green. In this work, 

after the speech signals are parameterized, the inherent articulatory features existing in each 

frame are first detected and then merged in order to generate posterior supervectors. These 

vectors are then divided into segments each of which carrying a low degree of internal 

acoustic variation. For each segment, a representative vector found by averaging the posterior 

supervectors in that segment is identified. These segment representatives are then classified 

through a clustering algorithm (k-means). Then, the label corresponding to each cluster marks 

all segments of which their representatives belong to that cluster. These segmental units also 

referred to as sub-phonemic units, construct the basic units in our speech recognizer. 

The articulatory detection phase of the system is performed by Artificial Neural Networks 

(ANNs), and the statistical modeling of the speech signals is done by Hidden Markov Models 

(HMMs). Such system is known as ANN/HMM hybrid speech recognition system. 

Furthermore, the current system is a continuous-speech speaker-independent ASR system. 

The term speaker-independent means that the system is designed to recognize anyone’s 

speech, and the term continuous means that the words are pronounced without requiring any 

pause in between. 
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Figure 2: The overall framework of the system introduced in this work 

It should be mentioned that due to time constraints, the designed system is just able to 

recognize in unit level. Therefore, the language modeling in Figure 1 is changed to lattice in 

Figure 2, which is a simple form of a language model. More complex language models are 

employed in higher levels of process, namely concatenating the models and building higher 

levels of speech units such as phones, syllables, and words, in order to decode what is said. 

All modules in Figure 2 are described thoroughly during the next chapters.  

1.4 Preceding work 
This project is connected to the specialization project performed during the spring semester 

2014, in which by employing artificial neural networks, detection of AF features was 

investigated. In the current work, the obtained set of articulatory feature vectors from that 

project will be utilized.  

 

1.5 How This Document is Organized 
This document is partitioned into 9 chapters. The first chapter is the current chapter and 

provides an introduction to the work. Chapters 2 to 7 are structured in chronological order and 

cover all theoretical concepts required to understand the document. Chapter 8 is intended to 

report the experiments performed during the work, and discuss the obtained results. The last 

chapter includes a summary of the document and provides directions for future work. All the 

programming scripts are enclosed as Appendix. The scripts are commented carefully in order 

to enlighten the reader and they should be fairly easy to understand. 
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At the end of each chapter a brief summary is provided. Last but not the least, In order to 

understand this document it is assumed that the reader is familiar with the basic concepts 

regarding the probability theory and the Byes’ rule, but not much else.  
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2 Speech Signal: Theory and Background 

 

In this chapter an overview of the theoretical background regarding the production, 

representation and parameterization of speech signal is provided. The first section (2.1) 

represents the basic idea of how the speech is produced. At (2.2) the representation of speech 

in both time and frequency domain is described. The front-end analysis of the recognizer 

system employed in this work is introduced in (2.3). The chapter ends with a brief summary 

provided at (2.4).  

2.1 Speech Production  
Understanding the performance of the human speech production apparatus is essential in 

every speech recognition system, as all parts of the ASR system – from feature extraction to 

decoding – are inspired from the speech module in human beings.  Therefore, in this section, 

we will provide a brief overview of the physiological structure of the speech production 

system. We will then describe how the speech sounds are produced through activating 

different organs in this system.  

The speech production is started by firing control signals from the human brain to the speech 

apparatus system and thereby activating a special area in the system, while at the same time 

another control signal is sent towards the lungs in order to make them generate an air flow. 

The air stream is then passed through the larynx and the vocal folds, and thereby either voiced 

or voiceless sounds are produced. Next, the air stream enters the vocal tract. Here, due to the 

constriction of vocal tract in several places between vocal folds and mouth, the spectral 

characteristics of the speech signal are changed, and either vowels or consonants are created 

[10]. 

 Figure 3 shows a simplified representation of physiological mechanism for speech 

production. Here the lungs are modelled by a source for producing the airflow. The position 

of the vocal cords will generate either quasi-periodic pulses or noise signal.  A sequence of 

these speech sounds is then fed into a linear time-varying filter modeling the vocal tract, and 

hence a sequence of different speech sounds is produced.  
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Figure 3: Schematic representation of the human speech production mechanism 

 

2.1.1 Articulators and Articulatory Features 

Articulators are the set of muscles with the ability to change the shape of the vocal tract and 

hence producing different sounds. Some of the main articulators are [10]: 

 

• Pharynx: A tubular structure located between the larynx and the oral cavity.  

• Velum: A soft structural tissue at the back of the mouth for controlling the airway.  

•  Hard palate: A smooth curved surface located between the oral and nasal cavities. 

• Alveolar ridge: A rough surface with little ridges located between the upper teeth and the 

hard palate.  

• Tongue: The most important articulator with greatest degree of interaction. 

• Teeth: Located behind the lips 

• Lips: The most visible articulators.  

 

Both constriction of some of the articulators and interaction between them results in 

producing different speech sounds. These sounds are known as articulatory features (AFs), 

speech attributes, phonological features, articulatory cues, acoustic-phonetic features or 

articulatory-acoustic features in literature. AFs are regarded as the minimal units with the 

ability to be distinguished in a language. With such features, one is able to represent the 

overlapping nature of speech and model the contextual variation of signal [1,4]. 

The set of articulatory features used in this work are those represented in [16] by considering 

the following criteria:  
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• Manner of articulation (MOA): The degree of opening in the vocal tract when producing 

speech sounds. 

• Place of articulation (POA): The relative interaction between articulators. 

• Voicing: The vibrating degree of vocal folds. 

 

These features together with their corresponding phoneme sets are provided in 22 groups in 

Table 1. According to this table, phones are built upward from a foundation of AFs [9]: each 

phone could be uniquely described as a supervector of 22 dimensions. Each component in the 

supervector signifies the presence or absence of a particular AF in that specific phone, and 

contributes to distinct that phone from the others. For instance, the existence of voiced feature 

accompanied with the absence of tense in  /b/ will distinguish it from /p/, for which the 

reverse is true. One of the most important properties that these features own is being similar 

across languages. This makes the idea of designing a universal recognition system 

conceivable. Anther noticeable property of these features is their robustness against noise and 

cross-speaker variations [11]. These salient properties have motivated speech researchers to 

design recognition systems based on articulatory feature detection, known as detection-based 

ASRs. 
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Table 1: Articulatory feature set and relevant phonemes 

Feature Phoneme set Feature Phoneme set 

Vowel 
aa, ae, ah, aw, ay, eh, er, ey, ih, 

iy, ow, oy, uh, uw 
Labial b, f, m, p, v, w 

Fricative ch, dh, f, hh, jh, s, sh, th, v, z Low aa, ae, aw, ay, oy 

Nasal m, n, ng Mid ah, eh, ey, ow 

Stop b, d, dx, g, k, p, t Retroflex er, r 

Approximant l, r, w, y. Velar k, g, ng 

Vocalic 
aa, ae, ah, aw, ay, eh, er, ey, ih, 

iy, l, ow, oy, r, uh, uw, w, y. 
Voiced 

aa, ae, ah, aw, ay, b, d, dh, dx, eh,er, ey, g, ih, 

iy, jh, l, m, n, ng, ow, oy, r, uh, uw, v, w, y, z 

High ch, ih, iy, jh, sh, uh, uw, y Round aw, ow, oy, r, uh, uw, v, w, y 

Coronal d, dx, l, n, s, t, z Tense 
aa, ae, aw, ay, ch, ey, f, hh, iy, k, ow, oy, p, s, 

sh, t, th, uw 

Dental dh, th Anterior b, d, dx, dh, f, l, m, n, p, s, t, th, v, w, z. 

Back 
aa, ah, aw, ay, g, k, ow, oy, uh, 

uw 
Glottal hh 

Continuant 

aa, ae, ah, aw, ay, dh, eh, er, ey, 

f, ih, iy, l,ow, oy, r, s, sh, th 

,uh, uw, v, w, y, z. 

Silence pau 

 

 

A brief description for each feature is provided as follows [2,10]. 

 

• Anterior: Produced by an obstruction in front of the alveolar ridge. 

• Continuant: Created when the oral tract is not entirely blocked.  

• Coronal: Produced when the tongue blade is raised from its natural position, toward the 

teeth or the hard palate.  

• Dental: Produced by inserting the tip of the tongue between the teeth. 

• Fricative: Created by narrowing the vocal tract, causing turbulence as the air passes 

through it.  

• Nasal: Produced by lowering the velum and allowing the air to pass through the nose. 

• Stop: Generated when the air is not allowed to escape from the mouth.  
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• Approximant: Created by constricting the vocal tract slightly, but not so much as in 

fricatives  

• Tense: Produced with a relatively longer duration and more articulatory interaction 

compared to other sounds.  

• Glottal: Produced by passing the airflow through the open glottis and then out from the 

open mouth. The mouth is open because it is going to produce the next sound, which is 

always a vowel.  

• Labial:  Produced depend on the shape of the lips.   

• Velar: Produced by raising the back part of the tongue to the soft palate. 

• Retroflex: Produced with the tip of the tongue curled back toward the back of the alveolar 

ridge. 

• Back: Produced when the tongue is retracted from its neutral position. 

• High: Produced by raising the tongue above its neutral position.  

• Low: Produced by positioning the tongue below its neutral position and far from the palate. 

• Mid: Produced by locating the front of the tongue just above mid-height in the mouth. 

• Round: Produced by making the lips rounded. 

• Vocalic: Produced when the oral cavity is constricted by the same degree as when the 

vowels are produced. 

• Vowel: Produced when the vocal cords are vibrating, but articulators not coming very 

close together.  

• Voiced: Produced when the vocal folds are vibrating fully. 

• Silence: presence of no sound is classified as silence.    

2.2 Speech Representation 
The raw speech signal can be represented in variant domains, such as time and frequency. 

Through these representations, one can extract valuable information from the signal and 

interpret its characteristics in a proper way. 

In time domain, the waveform is displayed in two dimensions: intensity and time, and can be 

labelled via a three-state representation: 

• Silence (S), in which the signal has low amplitude due to absence of sound; 

• Unvoiced (U), in which the vocal cords are relaxed, generating the aperiodic signal with 

noise-like nature; 

• Voiced (V), in which the vocal cords are vibrating periodically by passing the airflow 
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through them, producing quasi-periodic sound.  

 For time periods up to about 100 msec, the waveform clearly shows the slowly time varying 

nature of the speech. However, for longer time periods, the signal is non-stationary and the 

characteristics of speech signal will change resulting in different speech sounds being spoken.  

The time domain representation for “Spring Street is straight ahead.” spoken by a male 

speaker is given in the upper row of Figure 4(a) and Figure 4(b).1 

In frequency domain, the sound characteristics are interpreted via a spectral representation. 

The most popular form is the visual representation of the acoustic signal, known as the sound 

spectrogram. A spectrogram is a time-frequency-intensity representation of the speech signal, 

and can be seen as a tool to study the frequency change of the signal during the time.  

In this type of representation, short time spectral analysis of all frames of the signal are 

represented as vertical lines, and the level of the grey scale represents the intensity (energy) 

content of the signal in different frequencies at different times. Depending on the size of the 

analysis window and the window shift, different levels of frequency/time resolution are 

obtained. A large window length (about 50 ms) along with a large window shift will result in 

high frequency and low time resolution. This type is known as narrowband spectrogram. 

Figure 4(a) shows a narrowband representation of the utterance “Spring Street is straight 

ahead”. 

 

 

 

 

  

                                                
1 The diagrams in this section are plotted by the Praat speech toolkit. The speech file is adopted from TIMIT 

database. 
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(a) 

 
(b) 

Figure 4:  (a) Narrowband and (b) Wideband Spectrograms for ”Spring Street is straight ahead.” 

 

In the other hand, a short window (about 15 ms) length together with a short window shift 

will result in broad-band spectrogram with high temporal and low frequency resolution. In 

both cases, dark horizontal bands in the diagram are corresponding to the vocal tract 

resonance. Each component in the dark horizontal lines is called a formant, and is equivalent 

to a peak in the spectrum. Formants are the frequencies in which the signal carries the most 

acoustical energy. 

Looking at these two diagrams, we see a smooth transition of formants over time. This 

gradually movement of formant frequencies, called co-articulation, is due to the influence of 

one speech sound on its neighbouring sounds.  
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2.3 Front-End Analysis 
The front-end analysis in a speech recognizer plays a crucial role in the overall recognition 

performance of the system. This process deals with deriving the most meaningful information 

and discarding the irrelevant data from the speech signal. 

As a preview of the section, Figure 5 shows an outline of the underlying sub-modules 

involved in the front-end analysis step in this work, namely mel-bank energy (MBE) feature 

extraction and split temporal context (STC) generation. The input to the front-end analysis 

module is the raw speech signal and the outputs are the STC vectors. 

 

 
Figure 5: The front-end analysis  step 

 

2.3.1 MBE Feature Extraction 

There are several methods available for parametrically representing a speech signal. Using 

these methods, the speech waveform will be transformed into a sequence of uncorrelated 

parameter vectors carrying the most essential information relevant to recognition process. The 

feature vectors employed in this work are the mel-bank energies (MBE). The steps regarding 

to the extraction of these features are shown in Figure 6 and described in brief in the 

following subsections. 

 

 
Figure 6: MBE Extraction Diagram 
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• Sampling and Quantization 

The raw speech signal generated at the output of a microphone is first converted to a discrete-

time sequence. This process is called sampling. The real-value number corresponding to 

amplitude of each sample is further converted to integer values, represented by a finite set of 

levels (bits). This is called quantization. Now, we have a digitized waveform with discrete-

time, discrete-amplitude sequence of samples.2  

 

• Block Processing and Windowing 

In order to reduce the variability nature of the speech signal, it is divided into fixed-length 

overlapping segments. This is performed by multiplication of the speech signal by a proper 

window in time domain.  A commonly used window (W) is Hamming window. This is a 

weighting window with the property to avoid discontinuity at the frame boundaries in time 

domain and correspondingly, reducing high frequency components in frequency domain. The 

window length (L) is typically set to 20-30 ms to ensure the speech stationarity inside the 

frames. The window shift (M) is typically set to 10 ms to cause overlap and ensure 

stationarity between frames.  

• Pre-emphasis Filtering    

Here, the speech frames are convolved with a first order FIR filter, known as pre-emphasis 

filter. This will increase the magnitude of higher frequencies with respect to lower frequencies 

in the speech signal, and results in a flattened spectrum.  

The basic idea behind pre-emphasis filtering is to provide the best immunity to noise and 

measurement imperfections in next steps, compared to the non-emphasized signal [14, p.112]. 

 

• Short Time Fourier Transform 

In this step, first a Fourier Transform (FT), and then the power spectrum for each frame is 

calculated. This process determines which frequencies are present in the speech sound.  
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• Mel-Scaled Filterbanks 

In this step, the signal is passed through a bank of triangular bandpass filters inspired from the 

human auditory filtering and motivated by the fact that the hearing apparatus cannot resolve 

two closely located frequencies. The first filter is very narrow and indicates how much energy 

exists in low frequencies. The filters gradually get wider to model the less concerning nature 

of the hearing system about frequency variations. Then the energy that exists in various 

frequency ranges corresponding to each filter is computed.  

The spectral-based feature vectors obtained after this final step are known as mel-bank energy 

(MBE) coefficients.  

 

2.3.2 STC Feature Generation 

In this step, for each frame to be processed, a group of MBE vectors corresponding to several 

frames at each side of that frame are passed through two modules: first half of a Hamming 

window and then temporal DCT. This is done in order to reduce the dimensionality and 

correlation among the coefficients. The procedure is shown in Figure 7. The special feature 

vector structure employed in this step is called the Split Temporal Context (STC) and results 

in vectors that model long temporal context of speech. 

 

 
Figure 7: schematic diagram of STC structure 

Recalling Figure 2, the first module is now completely described. In order to proceed to next 

module, namely acoustic detection and merging, it is necessary to introduce the theory of 

artificial neural networks and the basic idea of employing detectors. These are described in 

next chapter. 
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2.4 Summary 

The chapter started by introducing the concept of creating sounds by human speech system, 

known as speech production. Then, several domains in which a speech signal can be 

represented were discussed. After that, all steps regarding the parameterization of raw speech 

in form of MBE features was described. The final section was about structuring the MBE 

features by using the STC generator, resulting in several times longer feature vectors with the 

ability to model long temporal context of the speech variations. These vectors construct the 

input data to the detection module, as to be described in the next chapter. 
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3 Artificial Neural Network Theory 

 

 

This chapter deals with all necessary information in order to understand the second module in 

the speech recognition system depicted in Figure 2. First, a brief introduction regarding the 

artificial network theory is given in (3.1). Then the process of training neural networks is 

described in (3.2). After that, the acoustic detection procedure is treated in (3.3). This is 

followed by the acoustic merging technique described in (3.4). The chapter ends with a brief 

summary provided in (3.5). 

 

3.1 Basics of neural networks 

The human brains are made up of a combination of basic units called neurons sending 

electrical signals to each other. Natural neurons receive signals through synapses located on 

the dendrites or membrane of the neuron. Figure 8 shows a simplified view of a neuron. If the 

received signals are greater than a certain threshold, the neuron is activated and emits a signal 

through the axon. This signal might be sent to another synapse, and might activate other 

neurons [6]. 

 

 

 
Figure 8: A basic view of a neuron unit 

 

Inspired by how these neurons act in human brain, artificial neural networks (ANNs) have 

been designed.  The schematic diagram of an artificial neural unit also known as perceptron  
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is shown in Figure 9. The model consists of input and output nodes, a summing junction and 

an activation function. In this model, 4 inputs receive the information from either the 

environment or other neurons. The inputs are then weighted by synaptic weight factors and 

summed up at the adder unit. Finally based on the activation function employed, the output is 

interpreted as either activated or deactivated. The activation function can be regarded as a 

model for how the human brain stores and processes information [8]. Typical activation 

functions are threshold function, piecewise linear function, sigmoid function and softmax 

function. 

 

 

 
Figure 9: Modeling a perceptron 

 

ANNs can be regarded as a valuable tool in artificial intelligence and also in data 

classification problems. Based on the number of hidden layers in their architecture, neural 

networks can be used in either linear or nonlinear classification problems: If there is no 

hidden layer, the network is called single layer perceptron (SLP) with linear classification 

property. This means that it can be employed in linearly separable classification problems. If 

the network consists of one or more hidden layers, it is called the multi layer perceptron 

(MLP) and is applicable in nonlinear classification problems. In this case, the distribution of 

data points in space is such that there is no linear solution to classify them. 

3.2 Network Training 
In order to train the networks, i.e. to determine the appropriate values for weight and bias 

variables, the back propagation algorithm is employed. This is a supervised learning 

technique in which both the input and the outputs are known to the algorithm. The process 

starts by feeding the input vectors to the network, and assigning random values to weights. At 

this time the output vector is computed. Then, the error defined by the difference between 

estimated and the original output values is calculated.  The goal of the algorithm is to achieve 
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as minimum error as possible. In this regard, for each input vector, an iterative algorithm, 

starting at the output and going backward to the input is implemented to adapt the weights 

and the bias. The entire work is repeated until the weights converge to a final value [6].  

At this point, we have all the materials to describe the second module of Figure 2, namely the 

acoustic detection and the merging process. These are described in the subsequent sections as 

follows. 

3.3 Acoustic Detection 
The resulted STC feature vectors, corresponding to left and right sides of the center frame 

obtained in section (2.3.2) will now be normalized to have zero mean and unit variance. These 

will then feed the input layer of detection module. This module consists of a detector bank 

with one detector for each AF. These detectors operate in parallel: for the available dataset, 

each detector is going to analyse the whole dataset independent of the other detectors. Figure 

10 shows the detector bank architecture. 

 

 
Figure 10: Schematic diagram of the detection module 

 

Each detector in detection module has a hierarchical structure. That is, it consists of two 

context networks and one merger network, as shown in Figure 11. This is motivated by the 

fact that two parts of a phoneme may be detected independently – one considering the left, 

and the other considering the right context [13,15]. 

The context networks are MLPs consisting of one hidden layer of 500 nodes and output layer 

of 2 nodes.  These two networks are trained to generate left and right context phonetic feature 

posteriors. Finally, the outputs of these context networks feed the merger network, with 4 

nodes at the input layer, 500 nodes at the hidden layer and 2 nodes at the output. Outputs from 

this network generate a temporal sequence of posterior probabilities, each corresponding to 
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presence/absence of the attribute being studied in the speech frame.   

 

 
Figure 11: The Structure of  One Detector in Acoustic Detection Module 

As an illustration example, the posterior probabilities corresponding to the first 5 frames of 

the utterance “He took a big swig of his drink.” With the TIMIT code mrtj0_si2032 generated 

at the output of four detectors – (a) Anterior, (b) Labial, (c) Velar and (d) Vid – are shown in 

Figure 12(a-d). Each row consists of four components: the two first components are the 

utterance number and the frame number, respectively. The last two components describe the 

occurrence/non-occurrence of that specific articulatory feature in the corresponding frame. 

3.4 Acoustic Merging 

After that all frames are classified by efficient parallel binary classifiers, output of these 

detectors are stacked in the form of a long vector of attribute posteriors. 

Figure 12 (lower row) shows the posterior supervector corresponding to the first frame of the 

utterance mrtj0_si2032. This vector is of dimension 44. The first and second components in 

this representation are again related to the utterance and the frame number, respectively, and 

the last component indicates the manual phonemic label associated with that frame. 

 It is worth to mention that each two adjacent components in Figure 12(e) have 

complementary values. Therefore, just every other component in this vector suffices for 

existence/absence identification, and the other can be discarded without losing any essential 

information. Consequently, the dimension of posterior vectors generated after this step will be 

reduced to 22 during the experiments. 
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0 0 0.00316296 0.996837 
0 1 0.00326864 0.996731 
0 2 0.00413082 0.995869 
0 3 0.00362767 0.996372 
0 4 0.00304715 0.996953 

 

 
0 0 0.00122059 0.998779 
0 1 0.00173027 0.99827 
0 2 0.00327691 0.996723 
0 3 0.00294067 0.997059 
0 4 0.00161837 0.998382 

 

 
0 0 0.000202816 0.999797 
0 1 0.000201446 0.999799 
0 2 0.0002134 0.999787 

0 3 0.000233411 0.999767 
0 4 0.000258545 0.999741 

 

 
0 0 0.000492393 0.999508 
0 1 0.000473658 0.999526 
0 2 0.000477677 0.999522 
0 3 0.000647143 0.999353 
0 4 0.000480904 0.999519 

 

(a) (b) (c) (d) 
 

0 0 0.00316296 0.996837 0.000125077 0.999875 0.000202816 0.999797 0.000492393 0.999508 0.000291713 0.999708 
0.000534549 0.999465 0.000233255 0.999767 0.000947127 0.999053 0.000207564 0.999792 0.000342387 0.999658 
0.00344511 0.996555 0.000243154 0.999757 0.000121452 0.999879 0.00122059 0.998779 0.000268704 0.999731 0.000537615 
0.999462 0.000420721 0.999579 0.000714712 0.999285 8.58588e-05 0.999914 9.87989e-06 0.99999 0.000157283 0.999843 
0.999075 0.00092468 27 

 

(e) 
Figure 12 a-d) Anterior, Labial, Velar and Mid posterior probability outputs. e) The posterior vector 

 

3.5 Summary 
In this chapter, the theory of implementing neural networks in classification problems was 

described. Then, the idea behind AF detection by applying ANNs was explained. The 

detected features were then merged via a merging network, in order to generate posterior 

supervectors of dimension 44, which was reduced to 22 in a later process, to reduce the 

redundancy. With these posterior vectors at disposal, we will start describing the next module 

in Figure 2. 
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4 Acoustic Segmentation  

 

 

This chapter deals with the theory regarding the third module in Figure 2, namely the acoustic 

segmentation. In this chapter, the idea behind segmentation is explained in (4.1). Then, the 

acoustic segmentation principle is described in (4.2). After that, the algorithm conducted to 

automatically segment speech into acoustical stationary segments is provided in (4.3). Then, 

the idea behind dynamic programming is described in (4.4). The chapter ends with a brief 

summary at (4.5). 

 

4.1 Why Segmentation?  

As described in section (1.2), the main motivation of this project is to create sub-phonemic 

recognition units. In this manner, we need to annotate the dataset in form of segmental units. 

For a relatively large vocabulary, the manual segmentation is impractical, because of the 

following: 

 

• Manual segmentation implies interpreting spectrograms and aligning them with the 

continuous audio. This is quite time-consuming and tedious. 

• The result is subjected to human errors and even two segmentation results of the same 

utterance may be inconsistent. [19] 

 

For these reasons, automatic segmentation is regarded as a superior alternative to manual   

segmentation. The segmentation process is about to place boundaries along the speech signal, 

and thereby dividing the signal into variable length chunks. Two types of segmentation exist: 

phonemic and acoustic. Phonemic segmentation of the utterances is already available in this 

work. This is about placing the boundaries along the signal and specifying the phoneme 

boundaries in the signal. Acoustic segmentation is about placing the boundaries along the 

signal such that the resulted segments are acoustically homogeneous.  

There are many algorithms proposed in the field of acoustic segmentation. In this work, the 

employed algorithm is similar to the one suggested in [19]. In the following, the principle of 

acoustic segmentation is described.  
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4.2 Acoustic Segmentation Principle 
The 22-dimensional posterior vectors generated via acoustic merging module are now fed into 

the segmentation algorithm as input. 	
  

As mentioned above, in acoustic segmentation it is aimed to – as far as possible – divide the 

signal into acoustically homogeneous regions and end up with segments each of which 

corresponding to a phonetic event. In order to perform this, first of all some objective function 

is defined. Then the goal would be to optimize the fulfilment of that objective. The function 

in this work is selected to be the distortion error and the objective is to minimize this error. By 

that, each region of the signal in which the distortion error is less than a threshold is 

constructing a segment. The acoustic segmentation consists of two main components. They 

are described below.  

4.2.1 The Representatives 

As just mentioned, the main idea in segmentation is that each signal is segmented into 

stationary segments. This is achieved by representing all vectors in each individual segment 

by a fixed-dimensional vector called representative or candidate. The representative vector in 

this work,  𝑐!, is selected to be the segmental centroid vector, that is   

c! =   
1
N!

x!

!!

!!!

[n]     (1)  

 

Where 𝑥! 𝑛  and 𝑐!  are the posterior supervectors and the centroid vector in segment 𝑖 , 

respectively, and  𝑁! is the total number of frames in segment 𝑖. 

4.2.2 The Distortion Measure 

The distortion measure is generally defined as the difference between the original value and 

an estimation of the original value. In this work, the distortion measure is considered to be the 

sum of squared Euclidean distances between posteriori vectors belonging to a segment and 

the centroid vector of that segment. 

For each segment  𝑖, the local distortion error 𝑑!   is found by:  

d!   =    x! n − c! !
!!

!!!

     (2)  

     

Finally, the total distortion error 𝐷  is found by:  
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D =    d!  
!!

!!!

   (3)  

 

where 𝑁! is the total number of segments in the utterance. The average distortion error would 

then be:   

d =
1
N!
  D   (4)  

where 𝑁! is the total number of frames in the spoken utterance. 

 

4.3 The Acoustic Segmentation Algorithm 
The algorithm is shown in Figure 13. It starts by dividing the signal in the “best” way into 2 

segments; that is, to move the only required delimiter frame by frame and set it in all possible 

places, each of which giving a potential solution. For each potential solution, the local mean 

(𝑐!  ), the local distortion (𝑑!  ), and also the total distortion (𝐷) are calculated. Then, the 

algorithm picks out the solution with the minimum total distortion as the best choice so far. 

For this solution, the average distortion (𝑑) is found and compared to a pre-defined threshold 

(ε). If its value is less than the threshold, the algorithm stops, meaning that we have reached 

the optimum result. Otherwise, the number of obtained segments in the utterance is compared 

to a pre-defined value, found by multiplication of over-segmentation factor (A) – a pre-

defined constant corresponding to the maximum number of allowed segments – and the 

number of phonemes that exist in the utterance (#phn). If the number of segments is reached 

to that value, the algorithm stops. Otherwise, the number of segments is incremented by one 

and the same procedure applies. The algorithm is built upward until either it comes to a 

solution in which the average distortion is less than a pre-defined threshold, or a pre-defined 

number of segments is obtained.  
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Figure 13: The acoustic segmentation algorithm 
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Figure 14: Two- and three- segmentation solutions for a signal with 5 frames 
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Figure 14 shows the segmentation problem for two- and three-segment solutions. In this 

figure, the signal consists of 5 frames. So there are 4 potential solutions for two-segment 

problem and 6 for three-segment problem.  

The algorithm is applied to the whole database. So, after segmentation, what we gain is a 

bundle of segments with various statistical properties.  

4.4 Distortion Matrix 
As described in the previous section, the algorithm works based on level building from two 

segments and upward. Since there are a great amount of possible solutions in each level, 

computing the distortion for all segments in all levels would make the process quite slow and 

redundant. Hence, the algorithm is implemented such that in order to compute the best 

segmentation for upper levels, it exploits what it has already calculated in the solution for 

lower levels. For each utterance, the algorithm sets up a squared distortion matrix of 

dimension 𝑁!×𝑁! (𝑁! is the number of frames in that utterance) used to record all possible 

solutions (segment combinations) in order to prevent re-calculation in next levels. This 

efficient technique is called dynamic programming. 

 

4.5 Summary 
In this chapter, the posterior vectors generated from the acoustic merging module were used 

as input to a segmentation engine. First the idea behind the segmentation was described. Then 

the acoustic segmentation algorithm of speech utterances was included. The result is segments 

with minimum acoustic internal variations and variable lengths, expanding the whole speech 

space and represented by their centroid vectors. 
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5 Data Clustering 

 

 

In this chapter with the segment representatives (centroids) at hand, the data clustering 

procedure will be explained. 

Data clustering is one of the most popular techniques in pattern recognition problems. The 

clustering can generally be achieved via two major approaches known as supervised and 

unsupervised learning techniques. In supervised learning, the annotated version of training 

data is available.  However, in real applications, such as in conversational speech recognition, 

it is both expensive and impossible to provide labels such as transcription of the data set in 

phoneme level.  Such problems are regarded as unsupervised learning. In unsupervised 

learning technique, the only available data is the unlabelled input vectors to be clustered, and 

the labels will be assigned after the clustering is performed. There is a wide range of 

techniques employed in unsupervised problems.  One of the most common approaches is k-

means. This is a clustering algorithm, aiming to partition the data set into k clusters in such a 

way that the segments possessing similar characteristics are clustered together. One of the 

major applications of this approach is in data classification tasks. It is also valuable in data 

compression applications, as the number of candidates (k) is much less than the size of dataset 

[3]. 

In this chapter, all principles regarding the k-means algorithm are provided in (5.1) and the re-

labeling strategy of the database is described in (5.2). In (5.3), a brief summary of the chapter 

is presented. 

5.1 K-means Algorithm 

As mentioned above, the goal is to cluster the data points into k clusters, define k candidates 

and finally assign the cluster label to each data point. This should be performed such that the 

distortion measure is minimized. However, it is not an easy task to jointly minimize the 

distortion with respect to both cluster candidates and cluster labels.  So, we need to adapt a 

two-stage iterative strategy:  

 

• Keep the candidates fixed and assign cluster labels to data points, with respect to the 

distortion measure minimization.  
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• Keep the membership assignment fixed and update the candidates.  

 

By this strategy, the distortion minimization is guaranteed [20]. 

 

There are several variants of k-means algorithm based on how the candidate assignment and 

the distortion measure are defined. In case of candidate initialisation, one could randomly 

assign k data points from the data set as initial candidates. Another alternative is to set the k 

farthest points as the initial candidates. However, in the current work, since the k is 

undefined, none of the above mentioned can be applied. Here we have adopted another 

strategy, described in the following subsection. In case of distortion measure, one could 

choose the absolute differences between the data points and the candidates (L1 distance). 

Another alternative, which is employed in this work, is the squared Euclidean distance.  

In the following sub-section, the k-means clustering for two-dimensional data set is described. 

This will provide visual insight into the project work. The corresponding MATLAB script is 

enclosed in Appendix C. 

 

5.1.1 How The Algorithm Works 

Figure 15 demonstrates the scatterplot of a two-dimensional data set while applying k-means. 

In this figure, the existence of 4 clusters is clear from the way the data points are distributed 

in space. Now let’s see how the algorithm finds the clusters. The process is made up of the 

following steps: 

 

Initialisation: The algorithm starts by computing the centroid vector corresponding to the 

whole data set (Figure 15a).  This centroid vector is slightly biased (by a random vector) to 

give another candidate vector. Now we have two candidates; one is the original centroid, and 

the other is the biased version of the original centroid (Figure 15b).  

 

Recursion: Now, each data point is assigned to its closest centroid and then, for each cluster 

𝑖, the local distortion error defined as sum of squared Euclidean distances between data point 

members and candidate vectors is computed: 

 

L! =    x! − c! !
!

!!!

   (5)  
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where x! are the data points belonging to cluster 𝑖, 𝑐! is the candidate vectors and n is the total 

number of data points in that cluster. For each cluster, the candidates are then updated to be 

the centroid vector of data points belonging to that cluster (Figure 15c). 

After that, it is the time to compute the global distortion, defined as  

G!! =    L!

!

!!!

   (6)  

 

Where m is the current number of clusters. At next step, the membership assignments are re-

updated until either no data point changes its cluster membership, or the global distortion 

improvement defined as 

 

G!!!
! −   G!

!

G!!!
!      <   θ!   (7)  

 

falls below a certain threshold. In Eq. (6) and (7), 𝑘 is the stabilization iteration index and  𝑖 is 

the splitting iteration index. In case of two-dimensional data provided in this example, this 

step is iterated two times to converge. At this point, we have two clusters and two stabilized 

centroid vectors (Figure 15d). 

 

Termination: The question here is when should the algorithm stop generating new clusters?  

Here again the global distortion error is employed as the stop criterion. The algorithm would 

stop when the global distortion does not improve much compared to the minimum global 

distortion of the previous iteration.  

 

G!! −min! G!!!!

min
!
G!
!!!   <   θ!   (8)  
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(a) (b) 

(c) (d) 

(e) (f) 



Machine Learning of Sub-Phonemic Units for Speech Recognition 

 

5. Data Clustering 
 

31 

(g) 

 

Figure 15: Illustratin of the k-means algorithm in a two-dimensional Euclidean space 

 
 

5.2 Labelling Assignment Strategy 
The outputs from the clustering algorithm, i.e. the cluster labels, are used to annotate the 

segments of the database in terms of the cluster labels. In this section we will describe the re-

labeling principle of the utterance segments by an example. 

Figure 16(left) shows the three utterances after being segmented via the acoustic segmentation 

algorithm. In this figure 𝑐!, 𝑐′! and 𝑐′′! are representing the representative vectors of utterance 

segments and 𝑆!, 𝑆′! and 𝑆′′! are corresponding to the primary segment labels. 

 

 

Figure 16: Labelling principle. Database architecture (left) and centroid space (right) 
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Figure 16(right) shows how the location of these representative vectors in space has made the 

existence of 3 clusters evident. After clustering, the clusters are tagged by L1, L2 and L3. 

These tags are then used to label the members belonging to each cluster. These cluster 

members are representatives of segments in database. Hence, each segment is now re-labeled 

by cluster labels, as shown in Figure 17. In a similar fashion, the whole database is 

transcribed by a new set of labels, each of which a cluster label. 

 
Figure 17: Database after label assignment 

5.3 Summary 
In this chapter, the principle of clustering the segmental centroids by applying k-means 

algorithm was described. The objective function was to minimize the distortion error, which 

was selected to be sum of the squared Euclidean distances between all data points and their 

nearest centroid vectors. The output from the clustering algorithm constructed a re-labeled 

version of the segments in terms of the cluster labels.  

c1 c2 c3 c4 c5 c6

c '1 c '2 c '3 c '4 c '5

c ''1 c ''2 c ''3 c ''4 c ''5 c ''6 c ''7

x% x% x% x% x% x%

x% x% x% x%x%

x%x% x% x% x% x%x%

L1 L3 L2 L2 L3

L1 L1L2 L2 L3

L3 L3 L3 L1L1L2 L2

L1



Machine Learning of Sub-Phonemic Units for Speech Recognition 

 

6. Acoustic Modeling 
 

33 

6 Acoustic Modeling 

 

 

In speech recognition, if we assume that the recognizer is designed to recognize basic 

recognition units, and if the acoustic observation sequence corresponding to the whole speech 

signal is coded as O = o!, o!, o!, . . , o! , then the primary task of recognizer is to find the most 

probable sequence of linguistic units U for observation sequence O. In other words, the goal 

is to find recognition unit U such that the following conditional probability is maximized:  

 

U =     argmax
!

P U O      (9)  

 

The probability on the right hand side of Eq. (9) is not directly computable. However, it can 

be converted to a more feasible form according to the Byes’ rule: 

 

P U O =   
P O U . P(U)

P(O)
   (10) 

 

The observation probability 𝑃(𝑂) in the denominator is not depending on the speech unit U, 

and hene can be skipped. So, the recognition task is simplified as:  

 

U =   argmax
!

P O U P(U)   (11) 

 

According to Eq. (11), the most probable recognition unit is found by computing the product 

of two probabilities on the right hand side of equation – known as the likelihood and the prior 

probability, respectively – and picking up the recognition unit that maximizes this product. 

Computing the likelihood and prior probabilities directly from training data is infeasible. 

However, they can be estimated from parametric statistical models known as acoustic and 

language models, respectively.  

In this chapter we will present the idea behind acoustic modeling. A common technique in 

computing the likelihood probabilities and modeling acoustics of speech is Hidden Markov 

Model (HMM).  In this case, each basic unit is represented by a single HMM model. The 
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parameters of this HMM are estimated from the speech data, and the likelihoods are 

computed [7].  

 The chapter is structured as follows: First, the concept of Markov model, considered as the 

fundamental tool to understand HMMs is introduced. (6.1) Then the chapter presents the 

theory regarding HMMs (6.2), and their structure is described in (6.3). In (6.4), three well-

known HMM problems are described and for each one, the common solution algorithm is 

introduced. The chapter ends with giving a summary at (6.5). 

 

 

6.1 Markov Model 

A Markov model is essentially a model consisting of a set of states 𝑆 = 𝑠!, 𝑠!,… , 𝑠!  each 

generating an observation vector. In this model it is known which state generates which 

observation vector. Each state in such model depends only on the 𝑛 previous states in the 

model. In its simplest form: 

 

𝑃 𝑠!|𝑠!!!! =   𝑃 𝑠!|𝑠!!!      (12)  

 

 In this case, the model called the first order Markov assumption, and can be interpreted as 

follows: The probability of being in state 𝑖 in a particular time depends only on the state of the 

model at the previous time.  

A Markov model is defined by the following parameters: 

 

𝛑𝐢  - The probability to start from state 𝑖, where π!!
!!! = 1  

𝐚𝐢𝐣 – The set of transiting probabilities, i.e. the probability of moving from state 𝑖 to state 𝑗, 

which satisfies  a!"!
!!! = 1. These are stored in the form of a transition matrix A. 

𝐛𝐣 𝐨𝐭  - The probability of generating a particular observation vector o!  from state j. This 

probability is limited to the values 1 and 0; if the state has generated the observation it is 1, 

otherwise it is 0 [21]. 

 

A first order Markov model with three states is shown in Figure 18. In this example, 𝑎!" is 

equal to one, while 𝑎′!" and 𝑎′′!" have other values summing up to one. The observation 

probabilities 𝑏! 𝑜! , 𝑏! 𝑜!  and 𝑏! 𝑜!  are equal to one. 
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The Markov model is a powerful tool in probabilistic problems. However, this model is not 

used in speech recognition, as it is not able to model the variable nature of the speech signal.  

As a solution to this problem, the hidden Markov Model (HMM) is introduced in next section. 

 

 
Figure 18: The scheme of a Markov model 

6.2 Hidden Markov Models  
A Hidden Markov models is a powerful statistical model for modeling a data sequence that is 

not predictable based on a set of observations. It is largely applied in many tasks such as 

speech recognition systems, protein/DNA sequence analysis, robot control, and information 

extraction form text data [23]. This model can be described as a generalization of the markov 

model with some major differences. Firstly, in case of HMM, its not known which state has 

emitted which observation. The reason is simply because the states are not observable and not 

known to the system anymore. Secondly, in HMM, each state has the ability to not only 

follow the other states, but also loop back to itself. This confirms the fact that HMMs are 

capable of modeling the various time durations of the speech recognition units. [21] Thirdly, 

the observation probabilities in HMM are not limited to just 0 and 1, but can take on any 

value form 0 to 1, as to be described in the following section. 

 

6.3 HMM Structure  
Two typical structures of HMM are depicted in Figure 19. In this figure, the emitting states 

are shown by circles, the non-emitting states by nodes, the transition probabilities by arcs 

(edges) between states and loops to the states, and the emission probabilities by arcs drawn 

out of states.  
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(a) (b) 

Figure 19: Typical HMM structures: (a) Ergodic (b) Left-to-right 

 

 Figure 19(a) shows a 3-state ergodic HMM, in which each state has the potential to start the 

process, and change to other states at subsequent time steps. In  Figure 19(b), an example of a 

three state left-to-right HMM model is shown. In this model, state 1 is the starting node. At 

each time point, the state index is either increased by one unit or remained unchanged, and 

then observation vectors according to the output probability distribution of the current state 

are generated. This model is commonly used in speech recognition tasks, firstly because the 

random selection of the initial state is not the case in speech recognition, secondly because it 

satisfies the natural progression of speech signal in time domain, and thirdly because it can 

successfully model the time variation nature of the speech signal by staying at the same state 

for a period of time.  

A single HMM model is defined by the following parameters: 

 

𝛑𝐢  - The probability to start from state 𝑖, where π!!
!!! = 1  

𝐚𝐢𝐣 - The probability of transiting from state 𝑖 to state 𝑗, which satisfies a!"!
!!! = 1. 

These are represented as components of transition matrix A. 

𝐛𝐣 𝐨𝐭  - The probability of generating observation vector o!  from state j, where 

b! o!!
!!! = 1 for i = (1,2, . . . ,N). The set of these observation likelihoods is the 

emission matrix B.  

 

The parameters that completely define the model are M = {π, A, B}. 

The number of states is also considered as a user-defined parameter and is selected according 

to the task. The HMM models used in this work are one-state models with one emitting state 

at middle, as shown in Figure 20.  
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Figure 20: one-state left to right structure for basic units in this work 

 

The choice of output distribution function in order to estimate emission probabilities b! o!  is 

crucial in recognition performance. In case of continuous speech, a common choice is single 

component, multivariate Gaussian distribution, that is:   

 

𝑏! 𝑜! = 𝑃 𝑜!|𝑠! = 𝑗 = 𝒩 𝑜!; 𝜇! , Σ! =
1

2𝜋 ! Σ!
𝑒!

!
! !!!!!

!!!!! !!!!!  
(13) 

 

where µμ! is mean and  Σ!  is the covariance matrix defined as: 

𝜇! =   
1
𝑇

𝑜!

!

!!!

 (14) 

 

Σ! =
1
𝑇
   𝑜! − 𝜇!

!

!!!

𝑜! − 𝜇!
!

 (15) 

 

A more flexible alternative for density estimation of observation probabilities is the mixture 

Gaussian distribution. A Gaussian mixture model (GMM) is a weighted sum of M single 

Gaussians,  

 

𝑏! 𝑜! = P 𝑜!|𝑠! = 𝑗 = 𝑐!"𝒩 𝑜!; 𝜇!" , Σ!"

!

!!!

 (16) 

 

where 𝑀 is the number of mixture components and  𝑐!" is the mixture weight parameter 

which satisfies: 
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𝑐!" = 1
!

!!!

 (17) 

6.4 Classic HMM Problems 
In each speech recognition task there are three problems that need to be solved. In the 

following subsections, the problems and their corresponding efficient solutions are described 

[18]. 

6.4.1 Probability Evaluation 

In this problem, the HMM model M and also the observation sequence 𝑂 = (𝑜!, 𝑜!,…    , 𝑜!) are 

known, and the goal is to find the probability of the observation sequence being generated.  

This could be found by summing up all the probabilities of all the state sequences that 

generate the observation sequence: 

 

𝑃 𝑂 𝑀 =    𝑃(𝑆|𝑀)𝑃(𝑂|𝑆,𝑀)
!!

!!!!

 (18) 

  

The probability in Eq. (18) consists of two parts, the first component is the state-sequence 

probability and for a specific state sequence 𝑆 = (𝑠1, 𝑠2,…    , 𝑠𝑇) could be rewritten as:  

 

𝑃 𝑆 𝑀 =   𝑃 𝑠! 𝑀 𝑃 𝑠! 𝑠!!!,𝑀
!

!!!

=   𝜋!!𝑎!!!! …   𝑎!!!!!!    (19) 

 

The second component in Eq. (18) could be rewritten as: 

 

𝑃 𝑂 𝑆,𝑀 =   𝑃 𝑂!! 𝑆!! ,𝑀 =    𝑃 𝑜! 𝑠! ,𝑀
!

!!!

  

                                                                                                              =   𝑏!! 𝑜! 𝑏!! 𝑜! … 𝑏!!(𝑜!) (20) 

 

Substituting Eq. (19) and (20) into (18) yields: 

 

    𝑃 𝑂 𝑀 =    𝑃 𝑆 𝑀 𝑃 𝑂 𝑆,𝑀!!
!!!!  

                                           = 𝜋!!𝑏!! 𝑜! 𝑎!!!!𝑏!! 𝑜! …   𝑎!!!!!!
!!
!!!! 𝑏!!(𝑜!)   (21) 
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Direct evaluation of Eq. (21) is not feasible, as it involves high computational complexity. 

Instead, an efficient algorithm called the Forward algorithm is employed. This is an iterative 

algorithm and operates based on dynamic programming technique described in (4.4).  

 In this algorithm, the joint probability of being in state 𝑗 at time  𝑡  is denoted as the Forward 

parameter 𝛼! 𝑗  and formulated as: 

 

α! i = P O!! , s! = i|M    (22)  

 

The Forward algorithm includes the following steps:  

 

1. Initialisation: A forward parameter is computed at time 1 for all states by:  

 

α! i = π!b! o!    (23)  

 

where 𝜋! is the initialisation probability at state 𝑖. 

 

2. Induction: For all states j =    1, 2, . . . ,N  at all other time points  t =    2,3, . . . ,T , this 

probability is found by: 

 

α! j = a!"α!!! i
!

!!!

  b! o!    (24)  

3. Termination: The algorithm ends by summing up all the forward probabilities at final time 

T: 

 

𝑃 O|𝑀 =    𝛼! 𝑖
!

!!!

   (25)  

 

This probability evaluation is mostly useful to analyse the performance of the system after 

training (the term ‘training’ to be explained later).  

 

6.4.2 Optimal State Sequence 

The second interesting problem is about to find out which sequence of states has most 

probably generated the observation sequence. This problem is known as decoding, and 
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involves finding a solution for Eq. (11).  Here, again, the HMM model parameters and the 

observation sequence are known to the system. The most common algorithm for performing 

decoding is the Viterbi algorithm. This algorithm exploits first-order Markov property by 

which at each state only the most probable path is kept. Here, the maximum probability of 

being in state j at time t is denoted as the Viterbi parameter 𝑉! 𝑗  and formulated as: 

 

V! j = max
!!!!!

P O!! , S!!!!, s! = j |M    (26)  

 This implies keeping the most probable path and discarding the rest until the final time. The 

algorithm also records the indexes of the most probable state at each step in matrix B. This is 

again a recursive algorithm with the following steps:  

 

1. Initialisation: The Viterbi parameter and the index recorder for all states 𝑖 = (1,2,… ,𝑁) at 

time 1 are initialised as: 

 

V! i = π!b! o!    (27)  

 

B! 𝑖 = 0   (28)  

                          

2. Induction:  For all states j = 1, 2, . . . ,N  at all other time points t =    2,3, . . . ,T ,  the Viterbi 

value and the index recorder are: 

 

V! j = max
!

V!!! i a!" b!(o!)   (29)  

  

𝐵! 𝑗 = 𝑎𝑟𝑔max
!

𝑉!!! 𝑖 𝑎!"    (30)  

 

3. Termination: The most probable final path is found by computing the Viterbi 

approximation for all states at final time T, and selecting the highest probability value:  

 

The  best  score =   max
!
   𝑉! 𝑖    (31)  

 

𝑆!∗ =   argmax
!

   𝐵! 𝑖    (32)  

4.  Backtracking: In this final step, a backtracking is performed to find the most probable 
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path: 

 

s!∗ = B!!! s!!!∗                                                 t   =   T − 1,T − 2, . . ,1                                         (33)  

  

The best sequence will then be:  

 

S∗ = (s!∗, s!∗ , s!∗ , . . , s!∗ )   (34)  

  

In order to prevent underflow in decoding operation, the calculations are typically performed 

in log domain. Eq. (29) in log domain would be: 

 

V! j = max
!

V!!! i + log a!" +    log b!(o!)  (35)  

 

 As mentioned above, the Viterbi algorithm described here provides a solution to Eq. (11), 

and hence performs an exact search among all possible state sequences in the model. 

However, an exact search is not efficient in large vocabulary tasks and leads to extremely 

high computational time – and memory – requirement. So the main problem in recognition 

would be to reduce the search space. As a solution to this problem, one can apply beam search 

strategy by which paths with low chance to succeed – these are the paths with probability less 

than the best path within a defined factor ∝  – are cut away and only the most promising paths 

are considered to be active. This is regarded as a sub-optimal solution since the optimal 

hypothesis may be incorrectly pruned. However, by choosing an appropriate value for 

pruning beam-width, it is high probable to find the best path.  

  

6.4.3 Parameter Estimation 

In this task the goal is to estimate the HMM model parameters, such that the probability of 

generating a sequence of observation vectors 𝑂 =    𝑜!, 𝑜!, . . , 𝑜!   is maximized: 

 

𝑀 = 𝑎𝑟𝑔max
!

𝑃(𝑂|𝑀) (36) 

 

The model parameters are those introduced in section (6.3). In order to estimate these 

parameters, an iterative algorithm referred to as Baum-Welch (forward-backward) algorithm 

is used. The forward probability was described in (6.4.1). Before describing the Baum-Welch 
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algorithm, it is necessary to introduce several variables. The first variable is the backward 

parameter β! j  defined as 

 

β! j = P O!!!! |s! = j  ,M  

 

(37) 

This is the probability of partial observation sequence 𝑂!!!! , given that the system is in state 𝑗 

in time 𝑡. This is again a recursive algorithm, comprising the following steps:  

 

1. Initialisation: The initial condition is given by:  

 

𝛽! 𝑖 =   
1
𝑁

 (38) 

 

2. Induction: for all other time points t = (  T − 1, . . . ,1) , and all states i = (1, . . . ,N)  the 

Backward probability is found by  

β! i = a!"β!!! j b!(o!!!)
!

!!!

   (39) 

 

The second useful variable is 𝛾! 𝑖, 𝑗 ,  

 

𝛾! 𝑖, 𝑗 = 𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗|𝑂!! ,𝑀  

                                                                 

=
𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗,𝑂!!|𝑀

𝑃   𝑂!!|𝑀
 

 

                                                      = !!!! ! !!"!! !! !! !
!!!

!!! !
 (40) 

 

 

This is the transition probability form state 𝑖  to state 𝑗 at time 𝑡, given the observation 

sequence and the model parameters.  

The algorithm aims to maximize the following auxiliary function: 
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                                                      𝜑 𝑀,𝑀 =    ! !,!|!
! !|!!""  !    log𝑃 𝑂, 𝑆|𝑀∗  (41) 

 

 

Eq. (41) is a separable equation, and can be rewritten as 

 

                                                      𝜑 𝑀,𝑀 =   𝜑! 𝑀, 𝑎 +      𝜑! 𝑀, 𝑏    (42) 

 

with, 

 

                                       𝜑! 𝑀, 𝑎 =    𝑃 𝑠!!! = 𝑖, 𝑠! = 𝑗|  𝑂,𝑀! log 𝑎!"!!                    (43) 

 

                                        𝜑! 𝑀, 𝑏 =    𝑃 𝑠! = 𝑗|  𝑂,𝑀! log 𝑏! 𝑂!!                                            (44) 

 

Eq. (43) and (44) are both of the form, 

 

 

𝐹 𝑥 =    𝑦! log 𝑥!
!

 (45) 

which is maximised when, 

 

𝑥! =
𝑦!
𝑦!!

 (46) 

 

Thus, 

 

𝑎!" = 
!

! !|! ! !,!!!!!!,!!!!|!!
!!!

!
! !|! ! !,!!!!!!|!!

!!!
 = !! !,!!

!!!
!! !,!!

!!!
!
!!!

                                       
(47) 

 

𝑏! 𝑘 = 
!

! !|! ! !,!!!!|! ! !!,!!!
!!!

!
! !|! ! !,!!!!|!!

!!!
 = 

!! !,!!!"!!!!!
!! !,!!

!
!!!

                         
(48) 

 

Now with forward and backward probabilities, the auxiliary function                                                      

𝜑 𝑀,𝑀  and the parameter re-estimators 𝑎!" and 𝑏! 𝑘  in place, it is possible to describe the 
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Baum-Welch algorithm. This is again a recursive algorithm involving the following steps: 

 

• Step 1: Choose an initial estimate of the model parameters. 

• Step 2: Compute the auxiliary function φ M,M  based on M. 

• Step 3: Calculate M according to the probability re-estimators in Eq. (47) and (48). 

• Step 4:  Iterate from step 2 until convergence.  

 

6.5 Summary 
In this chapter, the theory of acoustic modeling – the module representing the relationship 

between the speech signal and the basic linguistic units constructing the speech – was 

described. Then the theory regarding HMM as one of the most frequently used acoustic 

models was described. Three well-known problems in HMM and the corresponding solution 

algorithm for each problem were also provided.  
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7 The Hidden Markov Model Toolkit 

 

In the previous chapter, the basic idea of HMMs and their use in speech recognition tasks was 

outlined. The current chapter deals with the theory regarding the Hidden Markov Model 

toolkit (HTK). This is a toolkit consisting of a set of library modules and programming tools 

for building and manipulation of HMMs. The HTK is primary intended to be used in speech 

recognition tasks, however it could be used as a general-purpose toolkit to build HMMs that 

model any time series [22].  

HTK consists of a set of library modules and tools available in C source form. HTK tools can 

be run from a command line. However, in large applications with many files, its more 

common to provide all tools in a script and so execute them by running the script. Figure 21 

shows an example of running a HTK tool. The options prefixed by a minus sign, such as -f 

and -m in this example are optional arguments, and the options consisting of a capital letter, 

such as -A, -D, -C, -M in this example are common across all HTK tools. 

The procedure of building a speech recognizer can be divided into five main phases; creating 

a prototype HMM model (7.1), initialisation (7.2), re-estimation (7.3), recognition (7.4) and 

analysis (7.5). In (7.6) two other HTK tools employed during the work are described. Finally 

the chapter is summarized in (7.7). All the information presented in this chapter are adopted 

from [22]. 

 

 

HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto 
 

Figure 21: Invoking a HTK tool 

 

7.1 Creating a Prototype HMM Definition 

The first step in designing acoustic models is to write a prototype HMM model – using a text 

editor – and storing it as a text file. The prototype HMM definition file includes the 

following: 
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• The model name  

• Type of observation vector   

• Number of internal states  

• For each emitting state  

 – mean and variance components 

 – mixture component weights  (in case of Gaussian mixture models ) 

• Transition matrix  

The prototype definition is just a primary representation of the HMM model with arbitrary 

parameter values. These parameters are to be estimated later during both initialisation and 

training processes. The means and the variance parameters are usually set to zero and one, 

respectively. The transition matrix is typically constructed such that transitions out of the 

emitting states (here from state 2 to itself and to state 3) are equally probable. This is a square 

matrix, with number of rows and columns equal to number of internal states, with each row 

summing up to 1 except for the final row which sums to 0 since no transitions are allowed to 

exit from the final state. 

The model name should consist of alphabetic/alphanumeric characters and must not be only 

numbers.  In this document, HMM models are named by 𝐿𝑖, where 𝑖 is an integer.  

 

7.2 Initialisation 

The second step of building a speech recogniser deals with initialising the HMM models. This 

can be done using either of the two available programming tools, HCompV and HInit. They 

are described in the following subsections. An invocation example of each tool together with 

a description of the required command line options is provided in next chapter. 

 

7.2.1 Flat Start Initialisation using HCompV 

In this approach, all the model parameters corresponding to all emitting states are initialized 

by the global mean and variances of all training data. Applying HCompV, all HMM models 

are initialised identically. The procedure is depicted in Figure 22. 
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Figure 22: Flat start initialisation of HMMs using HCompV 

 

7.2.2 Isolated Model Initialisation Using HInit 

HInit can be used when the transcription is provided such that the time-boundary information 

for each unit is available. In this case the HMM models are trained individually, as shown in 

Figure 23. HInit is an iterative procedure with steps shown in Figure 24. At first iteration for 

each HMM to be initialised, all occurrences of the model units corresponding to that HMM 

are cut out from the transcription data, and the corresponding feature vectors are distributed 

equally among the model states, through the uniform segmentation approach.  

On the next cycles, the data vectors are assigned to the most probable state found by Viterbi 

algorithm. This process is called Viterbi segmentation. The mean and variance parameters are 

again estimated by averaging all data vectors associated with each state. The transition 

probabilities are also estimated by counting the number of times each state was occupied. 

This process is performed iteratively until either a defined number of iterations is achieved, or 

the parameter values do not change anymore.  

 
Figure 23: Isolated initialisaiton using HInit 
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Figure 24: Schematic diagram of HInit algorithm  

 

7.3 Re-estimation 
After that the HMM models are initialised, they are trained by either of the tools HERest or 

HRest, in order to get the model parameters retrained. 
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This tool is applied in conjunction with the initialisation tool HCompV described above. In 

this approach, all initialised HMM models are updated at the same time, using all training 

data. The whole process is performed in one iteration employing the embedded version of 

Baum Welch re-estimation approach.  

In order to get accurate acoustic models, a large amount of training data is needed. However, 

processing a large amount of training data in a single iteration would be quite time-

consuming. In order to improve the computational speed, HERest reduces the size of search 
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𝛼! 𝑡 𝛽! 𝑡   is within a fixed distance from the total likelihood 𝑃(𝑂|𝑀). This process is called 

pruning. Pruning can be further controlled by the user by activating the command line option 

-t to the backward probabilities. For example:   

 
HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H 

hmm0/macros -H hmm0/hmmdefs -M hmm1 labellist 

 

In this example, the training starts by a beam width equal to 150. If a pruning error occurs for 

an utterance, the beam is changed to 100 and that utterance is reprocessed. This would 

continue until no error is observed, or the maximum beam limit 500 is reached.  

 

 
Figure 25: Training process using HERest 
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approach.  The procedure is illustrated in Figure 27. 
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Figure 26: Training by HRest 

 

 
Figure 27: Schematic diagram of HRest algorithm 
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Decoding is performed by the HTK library module HRec adopting token passing paradigm to 

find the best path. To drive HRec from command-line, the tool HVite can be employed.  

 
Figure 28: Decoding procedure using HVite 
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A token represents a partial path through the network extending from the time point 0 to time 
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29. 
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through the network is found and a lattice is generated. This will be converted to a 

transcription file containing the boundary information of recognition units. After forced 

alignment, the results are stored in a text file with an aligned version of time indices for each 

segment. 

 

 
Figure 29: Forced alignment procedure 

 

7.5 Evaluation 
In order to analyse the performance of the decoding module, HTK employs an evaluation tool 

called HResults, which performs a comparison between the reference transcriptions and the 

recognition results, and counts all occurrences of deletion errors (D), substitutions errors (S), 

Insertions (I), and computes the following:  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑁 − 𝐷 − 𝑆

𝑁
×100% (49) 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑁 − 𝐷 − 𝑆 − 𝐼

𝑁
  ×100% (50) 

  

The result will be reported in a text file. The procedure is schematized in Figure 30 
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Figure 30: Evaluation using HResults 

 

7.6 Other HTK tools 
In this work, two other HTK tools were also used. In the following they are described to the 

extent they were employed during the experiments. 

7.6.1 HLEd 

In order to collect all label files into one single file, one can use the label editor tool HLEd. 

The resulting file is known as master label file (MLF). This file starts by a line containing the 

string #!MLF!# which identifies the file as an MLF file. Each label file corresponding to the 

transcriptions of a speech file appears as a string (of the form “*/filename.lab”) followed by 

labels in individual lines, and terminated by a period on a line of its own.  

 

7.6.2 HHEd 

This tool works in a similar way to HLEd. It can be used to collect all HMM definition files 

into one single file. The resulting file is called master macro file (MMF). 

 

7.7 Summary 
In this chapter, the HTK toolkit, known as a powerful tool in building and training HMMs  

was introduced. Then the operation of initializing, training, testing and analysis of models in 

both isolated and embedded form was described. 
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8 Experiments, Results and Discussions 

 

 

Up to this point, the previous chapters involved all necessary theoretical background in order 

to perform the experiments. In this chapter the experiments associated with this project are 

reported and discussed. The chapter starts by a brief introduction of the TIMIT database 

employed during the experiments (8.1). Then the front-end analysis and detection parameters 

adopted in this work are represented (8.2). In (8.3), the experiment regarding the acoustic 

merging is discussed. Section (8.4) deals with the acoustic segmentation implemented in this 

project and (8.5) discusses the k-means algorithm in more detail. In (8.6) two experiments 

regarding recognition and forced alignment are described. Finally, (8.7) includes the summary 

of the chapter. 

 

8.1 The TIMIT Database  
The database employed in this work is the Texas Instrumental Massachusetts Institute of 

Technology (TIMIT) corpus of read speech. It is a high-quality, multi-speaker and multi-

accent corpus, including phonemic transcription. In this project, these transcriptions were 

used for evaluating the results obtained after acoustic segmentation process. 

The data is telephone-quality speech, recorded by a Sennheiser HMD 414 headset-mounted 

microphone, sampled at 16kHz and digitized with 16-bit sample resolution. It consists of 

totally 6300 sentences. In total there are 630 speakers, each reading 10 sentences, from 8 

major dialect regions of the United States. 

The signals have been partitioned into training and testing databases (3696 signals for training 

and 1344 signals for testing) existing in train and test subdirectories respectively. Each 

utterance is specified by a code, called TIMIT code, representing the speaker sex, the speaker 

ID and the sentence ID. For instance, fcjf0_sa1 means that the speaker is a female, with ID 

number cjf0, and the sentence to be uttered is sa1. [5] 

 

8.2 Front-End Analysis and Detection  
The principle of front-end analysis and the acoustic detection were described thoroughly in 

sections (2.3) and (3.3). Recalling Figure 5, both steps of front-end analysis, namely feature 
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extraction and STC generation and also acoustic detection were performed in the previous 

work in specialization project. Table 2 shows the basic required settings employed in this 

work. Table shows that the primary feature vectors are selected to be mel-bank energy (MBE) 

extracted from the raw speech signals, using 25 ms Hamming window and 10 ms window 

shift. There is no pre-emphasis filtering used in the system. The generated MBE feature 

vectors are then used as input to STC engine to generate STC feature vectors.  These are then 

applied as input to left and right context neural networks with two nodes at the output layer 

and one hidden layer of 500 nodes. The last two rows in table specify the input feature for 

networks and the temporal DCT order used in acoustic detection module.  

 
 

Table 2:  The front-end configurations 

Parameter Value 

SOURCEKIND WAVEFORM 

SOURCEFORMAT WAV 

TARGETFORMAT HTK 

TARGETKIND FBANK 

NUMCHANS 23 

USEPOWER T 

USEHAMMING T 

PREEMCOEF 0 

TARGETRATE 100000 

WINDOWSIZE 250000 

NETWORK INPUT STC 

TEMPORAL DCT 10 

 

8.3 Acoustic Merging 
We started the experiments by acoustic merging. As described in section (3.4), this step was 

about taking all posterior probabilities corresponding to each frame, generated at the output of 

the bank of detectors, and stacking them in a supervector of dimension 44. The dimension of 

the supervectors was reduced to 22, in order to reduce the redundant information.  

These supervectors construct the basic elements in recognition process. Therefore, their 

characteristics should be studied to see whether they are qualified to be used as such. In this 

section we will visually inspect the posterior probabilities and discuss their characteristics. 
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In order to study the characteristics of posterior vectors we make use of a representation 

technique, referred to as posteriorgram. This is a time- vs.- posterior probability 

representation by which one can infer how the temporal content of the posterior probabilities 

is changed over time and also across the detectors. 

Figure 31 shows the posteriorgram representation of the utterance “It suffers from a lack of 

unity of purpose and respect for heroic leadership.” with TIMIT code fadg0_si649.  

Here, we have also plotted the binary phonemic labels in red, in which 0 and 1 identify the 

existence and absence of AF features in speech frames, respectively.  

By comparing the results with the manual labelling shown in red, one can conclude that the 

overall result is promising: There is a relatively high correspondence between the acoustic-

phonetic events (posterior probabilities) and the binary labelling. This is specially the case for 

Silence, Vocalic, Retroflex, Labial, Nasal, Anterior, Vowel and Fricative detectors.  

 

 

 

 
Figure 31: Posteriorgram representation for utterance, ”It suffers from a lack of unity of purpose and respect for 

heroic leadership.” with TIMIT code fadg0_si649.  
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There is another interesting observation to mention; traversing across the whole posteriorgram 

temporally, a relatively high level of correlation and redundancy – in regions where there is 

not abrupt change in detector outputs – is observed. This implies the stationary behaviour of 

the 22 dimensional posterior vectors, and verifies the fact that these vectors are qualified to be 

segmented via segmentation algorithm, and divided into stationary segments. Two relatively 

stationary regions between two green lines and two orange lines are shown in Figure 31. The 

MATLAB script to plot this posteriorgram is enclosed in Appendix A. 

 

8.4 Acoustic Segmentation 
As described in chapter 4, the segmentation process corresponds with placing boundaries in 

certain locations along the speech signal, and hence divide the signal into several parts. In this 

section we will first describe how the termination parameters were selected. We will then 

answer the following questions:  

 

• Is there observed any consistency in segmentation results? 

• Is there any connection between the phonemic segmentation and the acoustic 

segmentation? 

• Is there any connection between the acoustic events observed from the spectrogram 

representations and the acoustic segmentation results? 

 

Recall from chapter 4, the number of segments is controlled by either over-segmentation 

factor or average distortion threshold value. However, the phonemic labelling is not available 

in real applications, and hence employing the over-segmentation factor as a termination 

criterion is not practical. On the other hand, by defining the threshold to be the stop criterion, 

the statistical properties inside the segments would roughly be constant and the stationary 

behaviour of the resulted segments is guaranteed. So the main goal is to find on a “reliable” 

threshold factor.  

The segmentation algorithm is a script written in C, and coupled with visualization and 

analysis software Praat. So it is possible to visually inspect the segmentation results by 

comparing them to both manual phonemic segmentations and spectral transitions of the 

speech signal represented in the form of spectrogram. The more the correspondence between 

the acoustic results and both of the manual segmentation results and spectrogram 

representations, the better the algorithm performs its job. However, it is not straightforward to 
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select the threshold value by performing visual inspection of segmentation results, as there is 

no high level of consistency in acoustic segmentations. In some cases, it was observed that a 

lower value for threshold was a better choice and for instance resulted in a better match to the 

spectral change observed in spectrogram, while in some other cases the opposite seemed to be 

true. For this reason, we adopt an average strategy, in which the segmentation algorithm is 

applied to 10 utterances, as shown in Table 3. The first row in this table represents the number 

of phonemic segments for each utterance. Other rows show the number of acoustic segments 

corresponding to threshold values from 0.002 to 0.006. In all cases, the over segmentation 

factor was set equal to 3, which is a relatively high value and makes the over-segmentation 

factor ineffective. 3  Values in parentheses correspond to the ratio between number of 

phonemic and acoustic segments for each utterance. An average ratio around 1,5 would be a 

reliable choice, as theoretically some articulatory features such as stops (found in /p/, /t/, /k/, 

/b/, /d/ and /g/) or fricatives (found in /ch/, /dh/, /f/, /hh/, /jh/, /s/, /sh/, /th/, /v/, /z/) are 

characterized by two distinctive events – release and closure – and should accordingly be 

segmented in two segments.  

According to Table 3, the threshold value equal to 0.004 yields an average ratio of 1,59 and 

can be regarded as a reliable choice. This was the threshold value employed to segment the 

whole database (both training set and testing set)  

 

                                                
3  Note that there is an upper limit for over segmentation factor, as a large over-segmentation factor (larger than 

5) would result in segments smaller than a frame (i.e. smaller than 10 msec). So the number of possible solutions 

will exceed the size of the distortion matrix and this, in turn, would give unreliable segmentation results. 
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Table 3: The acoustic segmentation results for 10 utterances 

 
 
 

In order to answer to the questions presented at the beginning of the section, we will visually 

inspect the segmentation results corresponding to an excerpt of several utterances. These are 

provided in Figure 32 to Figure 39. In each figure, the first part represents the speech 

waveform of the signal in time domain, the second part is the spectrogram representation, the 

third part is the phonemic segmentation of the signal and the fourth part corresponds to the 

acoustic segmentation resulted from the acoustic segmentation algorithm.  

Comparing Figure 32 and Figure 33, in both figures the phone /k/ is segmented into two 

acoustic segments. This is as desired: these segments correspond to occlusion and release 

phases of the stop (plosive) feature existing in phoneme /k/.  

Comparing the vowel /iy/ in these figures, we see that acoustical segmentation is handled 

differently. Although the spectral evolution in both /iy/ phones is almost the same, the faster 

speech and shorter temporal duration of /iy/ in Figure 32 has resulted in just one acoustic 

segment, while relatively slower speech and longer duration of /iy/ in Figure 33 has led to two 

segments.
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Figure 32: Speech waveform, spectrogram representation, phonemic and acoustic segmentations of the utterance 

“Keep the thermometer under your tongue!” with TIMIT code mjrp0_sx225 

 
Figure 33: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of the utterance “He 

took a big swig of his drink.” With TIMIT code mrtj0_si2032 

 

In Figure 34, the spectral change in /ay/ (specially in second formant) is resulted in two acoustic 

segments. For this utterance, the segmentation algorithm does not seem to do its job reasonably. 

For instance, despite the gradual spectral change of the phone /ae/, it is divided into three 

segments. Nevertheless, it is important to remember that the threshold parameter is selected from 

an average strategy among 10 speech utterances. So some degree of inconsistency is expected.  

 In Figure 35, comparing the spectrogram and the acoustic segmentation results for /k/, we can 

relate the segmentation behaviour to the high degree of spectral change corresponding to that 

interval in the spectrogram. 
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Figure 34: Speech waveform, spectrogram representation, phonemic and acoustic semgnetaions for the 

utterance “Bagpipes and bongos are musical instruments.” With TIMIT code frjb0_sx77 

 
Figure 35: Speech waveform, spectrogram representaiton, phonemic and acoustic segmentation of the 

utterance “Gently place Jim's foam sculpture in the box.” With TIMIT code mwgr0_sx76 

 

Comparing Figure 36 and Figure 37, we see a similar acoustical segmentation pattern for /w/ 

followed by /iy/ in both utterances. Here, /w/ in both is divided into two acoustic segments 

with outer boundaries exceeding the phonemic boundaries, and /iy/ in both contains one 

acoustic segment with boundaries positioned inside the phonemic boundary. Comparing the 

acoustic segmentation and the spectrogram representation of the interval /w//iy/, one can say 

that the acoustic boundaries and the temporal spectral change roughly confirm each other. 
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Figure 36: Speech waveform, spectrogram representation, phonemic and acoustic segmentation of utterance 

“Look, sweetheart, some fool was.” with TIMIT code mmjr0_si2166 

 
Figure 37:  Speech waveform, spectrogram representation, phonemic and acoustic segmnetaiton of an 

excerpt of the utterance “We produce peanut oil,..” with TIMITcode mesd0_si1002 

 

The two /p/ phones in Figure 37 also show identical behaviour; both are divided into two 

segments corresponding to the closure and release phases of the plosive feature, respectively. 

However, for the first /p/, the segmentation settings has led to misplacement of the closure 

segment (segment no. 8). The boundary misplacement could also be justified due to the 

coarticulatory effects caused by the surrounding phones. 
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Figure 38: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the 

utteracne “The morning dew on the spider...” with TIMIT code mjes0_sx214 

 
Figure 39: Speech waveform, spectrogram representation, phonemic and acoustic semgentatoin of the 

utteracne “There, forces are more latent than in electricity, and less than in magnetism.” with TIMIT code 

mjrn0_si819 

 

Comparing the first /aa/ in Figure 38 and /aa/ in Figure 39, we can see consistency in  

acoustic segmentation behavior: in both /aa/ is divided into a small segment followed by a 

large one. This is confirmed by looking at the spectrogram representations corresponding to 

/aa/: there is a fairly stable formant pattern in initial part of /aa/, while the second segment 

has formant transitions.  

Looking at second /aa/ in Figure 38, we see that this is treated differently. However, in this 

case we have another triphone combination aa(uw,oh) (the phone /aa/ proceeded by /uw/ and 

followed by /oh/) and hence a different type of context dependency exist. Thus, showing 

another segmentation behaviour is not far from our expectations.  
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As conclusion, we can say that comparing the acoustic segmentation results and the acoustic 

events observed from the spectrogram representation, nearly all acoustic segments have one 

property in common: The acoustic boundaries are more or less positioned in places where 

there exists spectral change in the spectrogram. This confirms the stationary spectral content 

inside each segment. Comparing the phonemic and the acoustic segmentation results, we can 

say that for those phonemes containing stop and fricative feature, there exist more or less two 

acoustic segments.  

Finally, we should note that customizing the segmentation parameters for each individual 

utterance would obviously result in segments with more reasonable characteristics. However, 

in this work, it was desired to apply one threshold value to all the utterance samples, at the 

expense of reduced acoustic consistency. 

The segmental centroids were computed through the acoustic segmentation script. However, 

it was not straightforward to access them directly. Therefore, the MATLAB script 

Centroidfinding.m was created. This is enclosed in Appendix B.  

8.5 Data Clustering 
After segmentation, the obtained segments are fed into the k-means algorithm in order to be 

clustered into k clusters. The optimal number of clusters is a question to be answered in 

higher recognition levels, after concatenating models and generalizing them to generate 

higher-level linguistic models such as phonemes, and evaluating their performance. In this 

work, 128, 256, 512 and 1024 clusters are experimented.  

It is worth noting that the number of clusters is first and foremost associated with the 

parameters defined in segmentation algorithm, namely threshold and over segmentation 

factors, described in section 4. Changing these factors will lead to different subdivision of 

database, and subsequently different number of segments. For instance, a low threshold would 

result in generating more segments, with relatively more stationary characteristics.  

The MATLAB script created for k-means clustering is enclosed in Appendix B. The 

clustering procedure was explained in section (5.1). However, in later step of training HMM 

models, it turned out that the created k-means script was not able to perform its job properly. 

For instance, no threshold value could be find to result in 128 clusters. So the built-in 

MATLAB function k-means was used instead. 
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8.5.1 Labeling Assignment  

After clustering, all segments belonging to the same cluster are labeled by the same cluster 

label. The procedure was described in section (5.2). In this step, it is attempted to inspect the 

obtained results to answer the following questions: 

 

• Is there observed any consistency in labeling? 

• Is there any relationship between the labels and the phonemic transcriptions? 

 

 

 In this manner, the relabeled files for several utterances together with the corresponding 

phonemic segmentation – in case of 512 cluster system – were studied. It was observed that 

almost all acoustic segments corresponding to phonemic segment /sil/ at the start and end of 

the utterances are tagged by the same label (L316). This is as expected, as these segments 

have the same characteristic and hence should be labeled identically. So, the answer to the 

first question presented above is positive. 

 Another observation was that a relatively high number of acoustic segments corresponding to 

the phonemic segment /iy/ were labeled by L72. It was also observed that several of the 

acoustic segments corresponding to phonemic segment /p/ were labeled by L499. This was 

the case for many of acoustic segments corresponding to /m/, which were labeled by L164. 

So, the answer to the second question presented above is also positive. 

8.6 Acoustic modeling and HMM-level recognition 

Up to this point, we have been able to annotate the database by a new set of labels. Now all 

the pieces are in place to start training the HMM models and perform decoding over the test 

database.  
Two experiments are carried out in which various number of HMM models (128, 256, 512, 

1024) using single, two and three component Gaussian mixture distributions are investigated.  

The first experiment involves initialising and training HMM models, decoding the test dataset 

and analysing the recognition results compared to the original transcriptions. The second 

experiment deals with initialising HMM models, automatic time alignment of training 

transcriptions, training HMMs with the obtained transcriptions from the forced alignment 

step, decoding the test dataset and evaluating the results. For each, we need to define a unique 

initialisation and training strategy.  
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In these experiments, the data file is referred to files containing feature vectors for each 

individual utterance, and the label files refer to files containing transcriptions.  

The experiments are best described by going through the involved processing steps. 

8.6.1 The first experiment: Recognition 

The first task is about decoding the unseen data by HMM models trained by re-labeled 

training data. The schematic diagram of the steps involved in this task are provided in Figure 

40. The modules are shown in blue and the required files are represented in orange. The shell 

script firstApproach.sh to perform the experiment is enclosed as Appendix D. The steps are 

described individually in three subsections, as described below.  

 

 

 
Figure 40: Schematic diagram of the recognition algorithm 

 

 

1. Initialisation 

In order to initialise HMMs, the first step is to create a HMM prototype model, as described 

in (7.1). This is a single file created according to HMM definition language standards. The 

prototype models employed in this work are provided in Figure 41. These correspond to (a) 

single, (b) two-component (with 0.3 and 0.7 Gaussian mixture weights) and (c) three-

component (with 0.3, 0.5 and 0.2 Gaussian mixture weights). 
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~o <VecSize> 23 <FBANK> 

~h "proto" 

<BeginHMM> 

<NumStates> 3 

<State> 2 

<Mean> 23 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

<Variance> 23 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

<TransP> 3 

0.0 1.0 0.0 

0.0 0.5 0.5 

0.0 0.0 0.0 

<EndHMM> 

~o <VecSize> 23 <FBANK> 

~h "proto" 

<BeginHMM> 

<NumStates> 3 

<State> 2 <NumMixes> 2 

<Mixture> 1 0.3 

<Mean> 23 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 

0.0 0.0 

<Variance> 23 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 

<Mixture> 2 0.7 

<Mean> 23 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 

<Variance> 23 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0  1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 

<TransP> 3 

0.0 1.0 0.0 

0.0 0.5 0.5 

0.0 0.0 0.0 

<EndHMM> 

~o <VecSize> 23 <FBANK> 

~h "proto" 

<BeginHMM> 

 <NumStates> 3 

 <State> 2 <NumMixes> 3 

 <Mixture> 1 0.3 

    <Mean> 23 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0  

    <Variance> 23 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 

  <Mixture> 2 0.5 

    <Mean> 23 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0  

    <Variance> 23 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0  

<Mixture> 3 0.2 

    <Mean> 23 

      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0  

    <Variance> 23 

      1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0  

  <TransP> 3 

  0.0 1.0 0.0  

  0.0 0.5 0.5  

  0.0 0.0 0.0  

<EndHMM> 

(a) (b) (c) 

 
Figure 41: Three prototype models (a) single Gaussian, (b) two-component GMM (c) Three-component GMM 
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Figure 42 shows the corresponding model topology for HMM prototypes represented in 

Figure 41.  

 
Figure 42: the initial model topology 

 

Now the created HMM prototype model is initialized by all available training data, using 

HCompV: 

 
$ HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto 
 
where proto is the HMM prototype file. The options employed are as follows. 
 

-A: Causes the current command line arguments to be printed. 

-D: Used to display configuration settings. 

-T: Enables progress-reporting option. 

-C: Used to specify the configuration file name. 

-S: Used to specify a script file containing all training data filenames (train.scp). 

-M: Specifies the output directory (hmm0) 

     -f: Specifies variance floor macro (0.01) 

-m: Used to make the means updated. (The default is to only update the variances) 

 
The initialized proto file is now stored in folder hmm0. There is also created another file 

called vFloors in the same folder, containing a vector with components equal to 0.01 times the 

global variance. This vector sets a lower limit for the estimated variances in subsequent steps, 

and prevents variances to become too small. 

Now for each required HMM model, the initialized prototype model is copied once into a file 

known as HMM definition file. For instance, in case of 128 cluster labels, the HMM 

definition file would contain 128 repetitions of the initial estimate model. After creating the 

HMM definition file, some undesired lines should be removed and also the HMM names 

should be edited such that they correspond to the segment labels.  

Number%of%clusters%

2%

2b ()

1.0% 0.5%

0.5%
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At next step, the variance floor macro file called macros is created (manually), consisting of 

the first three lines of the HMM definition file followed by the vector found in the file vFloor, 

as shown in Figure 43. 

 
~o 

<STREAMINFO> 1 23 

<VECSIZE> 23<NULLD><FBANK><DIAGC> 

~v varFloor1 

<Variance> 23 

 9.390770e-02 1.539757e-01 1.732059e-01 2.056837e-01 2.210912e-01 

 2.131917e-01 1.903656e-01 1.674087e-01 1.577063e-01 1.505229e-01 

 1.469737e-01 1.400415e-01 1.284006e-01 1.264015e-01 1.244968e-01 

 1.205322e-01 1.235889e-01 1.172380e-01 1.084581e-01 1.026291e-01  

9.580246e-02 8.806549e-02 8.376861e-02 

                                                         

Figure 43: The variance floor macro file 

Before start training HMM models, the last file we need to create is the master label file 

labels_train.mlf, containing the transcriptions of all training files. It is created by invoking 

HLEd as  

 

HLEd -l '*' -i labels_train.mlf dummy.led LABELSTRAIN/* 

 

Where dummy.led is an empty script, meaning that no edit is subjected to label files.  

LABELSTRAIN is the directory containing the label files. The following options are used in 

this invocation. 

-l: Causes a label file named xxx to be prefixed by the pattern "*/xxx" in the output MLF 

file. 

-i: Used to specify the resulted MLF (labels_train.mlf). 
 

2. Training 

Now we have all tools available to start training the HMM models. The tool used for training 

is HERest. In the first iteration, it is run as follows 

 

HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H 

hmm0/macros -H hmm0/hmmdefs -M hmm1 labellist 
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Where ‘labellist’ is the file containing HMM model names. The applied options are: 

-A: Causes the current command line arguments to be printed. 

-D: Used to display the configuration settings. 

-T: Enables the progress-reporting option.  

-C: Addresses the configuration file. 

-I: Addresses MLF file containing the training transcription files.  

-t: Sets the pruning thresholds. (150 100 500) 

-H: Loads the HMM definition files. (hmmdefs) 

-M: Specifies the directory to store the trained models (hmm1) 

 
3. Decoding 

 

After that the models are trained, decoding can be performed. This is done by invoking the 

programming tool HVite from the library module HRec. Decoding is performed by a set of 

trained HMM models, a pronunciation dictionary and a lattice file, as described as below.  

 

• The pronunciation dictionary: In HMM-level recognition, the dictionary contains an entry 

for all segment labels, such that the segment label and its pronunciation are equivalent. The 

dictionary file corresponding to 128 segmental units is shown in Figure 44 

 
 
L1  L1 
L2  L2 
L3  L3 
. 
. 
. 
L127  L127 
L128  L128 
 

 

Figure 44: The dictionary content for 128 segmental units 

  
• The lattice file: Another file that we need to perform decoding is a lattice file. This is a text 

file of format HTK Standard Lattice (SLF) created by invoking the tool Hparse, as 

 

   Hparse Grammar.net Grammar.lat 
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where Grammar.net is a text file containing the grammar rules to specify what kind of inputs 

are accepted by the system. The suitable grammar corresponding to 128 segmental units is 

provided in Figure 45(a). It consists of a variable followed by a regular expression. The 

vertical lines in the right hand side of the variable denote alternatives and the angle braces in 

the expression denote repetitions. The corresponding HMM-level network is illustrated in 

Figure 45(b). The network is structured by a simple loop, meaning that each segmental unit 

may equiprobably follow all other units. The lattice file corresponding to the provided 

network is shown in Figure 46. 

 

 
$label = L1 | L2 | ...... | L126 | 

L127 | L128; 

(<$label>) 

 
(a) (b) 

 

Figure 45: (a)The grammar file and (b) The HMM-level network structure 

                                    corresponding to the 128 units system. 

 
 

 

Figure 46:  The lattice file corresponding to the 128 units system. 

L1%

L2%

L128%

S2%

S2%

S2%S1% S3%

2b ()

1π

11a

23a

S2%

 
N=131  L=385   
I=0    W=L128                 
I=1    W=!NULL  
I=2    W=L127                 
I=3    W=L126                 
I=4    W=L125 . 
. 
. 
. 
I=129  W=!NULL                
I=130  W=!NULL                
J=0     S=1    E=0     
J=1     S=130  E=0     
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Now, all the required information to perform decoding are available. At the first iteration, 

HVite is invoked as  

 
HVite -A -D -C config -w Grammar.lat -H hmm1/hmmdefs -H hmm1/macros -S test.scp -i 

decodedresult1.mlf  -p -30.0 dict labellist  

 
Where ‘dict’ is the HMM-level dictionary and ‘labellist’ contains all HMM model names. In 

this invocation the following options are employed:  

 
-A: Causes the current command line arguments to be printed.  

-D: Is used to display configuration settings. 

-T: Enables progress-reporting option. 

-w: Specifies that the recognition is performed from a network.  

-H: Loads the HMM model. It should be re-used to load macros. (hmmdefs and macros) 

-C: Used to specify the configuration file. (config) 

-S: Used to specify the script file containing all the testing data filenames. (test.scp) 

-i: Specifies the MLF filename to record the resulting transcriptions. (decodedresult1.mlf)  

-p: Specifies the word insertion probability (-30.0) 

 

Observing the obtained MLF after decoding, we see that the boundary locations are not 

changed.  However, after each iteration some of the labels are changed. 

Figure 47 shows the recognition results after first and second iteration for 128 segmental units 

with two component mixture distributions. Those segments where the labels are changed are 

highlighted.  
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Figure 47: The recognition results corresponding to the utterance mmjr0_si2166 

 
4. Evaluation 

In this step the performance of the recognizer is evaluated. This is done by the tool HResults. 

For the first iteration it is invoked as follows:  

 

HResults -A -D -I labels_test.mlf labellist decodedresult1.mlf  
 

This tool compares the obtained results after decoding (stored in decoded_test.mlf) with the 

reference label files (stored in labels_test.mlf) and reports the differences in a text file. 

 
 

5. Iteration 

Now we iterate steps 2, 3 and 4 four more times. The recognition and accuracy results are 

provided in Table 4, Table 5 and Table 6 for single, two and three-component Gaussian 

mixtures.  
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Table 4: Recognition and accuracy results in first experiment using single Gaussian models 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128  7.98          7.53 11.62        10.70 16.96        15.27 15.12      13.25 15.59     13.33 
256 6.44          6.15 8.42          7.74 10.68        9.44 11.13      9.47 11.43     9.45 
512 4.19          4.02 5.54          5.09 7.11          6.18 7.60        6.26 7.45       6.20 
1024 2.60          2.48 3.58          3.26 5.15          4.41 5.18        3.99 5.29       3.86 

 
 
 

Table 5: Recognition and accuracy results in first experiment using two-component mixture models 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128  7.98         7.53 11.62        10.70 17.03        15.35 17.40       15.73 17.40      15.69 
256 6.44         6.15 8.42          7.74 10.76        9.49 13.38       11.96 12.16      10.67 
512 4.19         4.02 5.54          5.09 7.11          6.18 8.16         7.04 8.13        7.04 
1024 2.60          2.48 3.58          3.26 5.15          4.41 5.64          4.13 5.53         4.07 

 
 

 

Table 6: Recognition and accuracy results in first experiment using three-component mixture models 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128 7.98         7.53 11.62       10.70 17.05       15.37 17.46       15.94 17.93      16.42 
256 6.44         6.15 8.42         7.74 11.69       10.40 13.73       12.54 12.80      11.53 
512 4.19         4.02 5.54         5.09 7.17         6.23 8.25         7.23 8.02        7.09 
1024 2.60          2.48 3.58          3.26 5.58          5.02 5.71          4.26 5.49         4.13 

 
 

In order to facilitate the comparison, the comparison diagrams corresponding to each table are 

provided in Figure 48, Figure 49 and Figure 50. As can be observed from the figures, 

reducing the number of models results in higher recognition and accuracy rates. This is 

expected, because a smaller number of models correspond to smaller number of clusters, 

which means that there are a higher number of members belonging to each cluster. This, in 

turn is equivalent to a higher number of training data for training each model.  Another 

observation is that for all configurations, after a specific number of iterations, the recognition 

result is either reduced or remained stable. This means that increasing the number of training 

iterations does not necessarily correspond to a better result. After a number of iterations, the 

models could even become over-trained and hence fail to recognize the unseen data. 
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Figure 48: Comparison diagram for first experiment using single Gaussian models 

 
Figure 49: Comparison diagram for first experiment using two-component GMMs 

 

 
Figure 50: Comparison diagram for first experiment using three-component GMMs 
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Inspecting the results, another conclusion is that for all systems, up to the third iteration, the 

recognition and accuracy results are not dependent on the number of mixture components. 

 

8.6.2 The second experiment: Forced Alignment 

This experiment deals with employing automatic alignment of segment boundaries 

corresponding to training data with the speech data, and then using the obtained transcription 

in training HMMs. The schematic diagram of the experiment is provided in Figure 51. The 

corresponding script secondApproach.sh is enclosed in Appendix E. This experiment is again 

divided into three steps, as described below. 

 

 
 

 
Figure 51: The processing steps regarding the second experiment 

 
1. Initialisation 

As described in the section (7.2.2), HInit initializes each model separately. For instance, in 

order to initialize model L1, HInit is invoked as  

 

HInit -I timedlabels_train.mlf -i 2 -l L1 -o L1 -S train.scp -M dir1 proto 

Where proto is the same prototype HMM model used in the first experiment. Here the 

following options are employed:  

 

-I: Specifies the MLF file containing the timed aligned segment-level transcription of        

training set (timedlabels_train.mlf) 

-i: Specifies maximum number of Viterbi iterations. (3) 

-l: Addresses the label to look for and cut out in the script file. (L1) 
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-o: Specifies the initialized model name.(L1) 

-M: Specifies the directory to store the initialized models. (dir1) 

-S: Specifies the script file containing the list of training data filenames. (train.scp) 

 

 A typical way to invoke this tool for each model is via a script. The Perl subscript 

initprotos.pl enclosed in Appendix E does the job for us. After running this script, for each 

segmental unit a separate file containing the initialised HMM definition is created. 

 

2. Forced Alignment 

Now we perform Forced Alignment on training data. For this purpose, HVite is invoked as 

follows:   

 

$ HVite -A -D -T 1 -l '*' -o M  -C config -H N2.mmf -i aligned1.mlf -y lab -a -I 

timedlabels_train.mlf -S train.scp  -p -30.0 dict labellist 

 

where ‘dict’ is the dictionary specified in the first experiment, and ‘labellist’ is the file 

containing the list of model names. The employed options are as follows: 

 

-A: Causes the current command line arguments to be printed. 

-D: Used to display configuration settings. 

-T: Enables progress-reporting option. 

-l: Addresses the directory to store output files. Using ‘*’ causes a label file named xxx to 

be prefixed by the pattern "*/xxx" in the output MLF file. 

-o: Specifies output level formatting.  

-C: Used to specify the configuration file name. (config) 

-H: Loads HMM macro model file (MMF). It may be repeated to load several 

macros.(N2.mmf) 

-a: Activated to make HVite Perform forced alignment (instead of –w which was used in 

decoding ) 

-S: Used to specify the script file corresponding to the training data. (train.scp) 

-i: Addresses the MLF file to store the aligned training transcriptions. (aligned1.mlf) 

-p: Sets the word insertion log probability (-30) 

-y: Specifies the output file extension (lab) 

-I: Specifies the MLF file to be loaded. (timedlabels_train.mlf) 
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Figure 52 shows the transcriptions corresponding to the utterance mjrp0_sx225 in case of 

128 segmental units system before and after first iteration of forced alignment. As we see, 

in both cases the sequences of the labels are the same, while the segmental time boundaries 

have changed. 
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Figure 52: The transcription corresponding to the utterance mjrp0_sx225 before and after performing forced 

alignment 

 

3. Training 

At this step, the training phase starts. Training in this experiment is performed by the 

programming tool HRest. It is again more efficient to call this tool via a script, as this tool is 

applied individually to each initialised model. The Perl subscript trainafteralignment.pl 
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provided in Appendix E is intended to make this done. As said before, the main goal of this 

experiment is to evaluate the performance of forced alignment. Therefore, here the time-

aligned transcriptions obtained from the forced alignment step are used to train the models. 

As an example, in order to train model L1 it is run as:  

 

HRest -T 1 -I aligned1.mlf -i 20 -l L1 -M dir2 -S train.scp dir1/L1 

 

Where dir1/L1 indicates that the model to be trained is located in directory dir1. Here the 

following options are invoked: 

 

-T: Enables progress-reporting option. 

-I: Specifies the MLF file containing the label-level transcription of training set 

accompanied with the segment boundaries. (aligned1.mlf) 

-i: Specifies maximum number of iterations. (20) 

-l: Addresses the label to look for (and cut out) in the transcription file. (L1) 

-M: Addresses the directory to store the initialized model. (dir2) 

-S: Specifies a script file containing the list of training data filenames. (train.scp) 

 

At this time, we collect all HMM definition files into one MMF file. This is performed using 

HHEd: 

 

$ HHEd -w dir2/N2.mmf -d dir2 dummy.led labellist 

 

where ‘dummy.led’ is an empty file, and does simply nothing. It means that no edit is 

subjected to HMM definitions.  The file ‘labellist’ is containing all the HMM model names, 

one per line. The following options are used in this invocation: 

 

-w: Addresses the MMF file which all HMM definitions are to be stored in. (N2.mmf) 

-d: Specifies where to look for each HMM definition file. (dir2) 

 

4. Decoding 

Now we perform decoding. In the first iteration, it is invoked as follows: 
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HVite -A -D -T 1 -C config -w Grammar.lat -H N2.mmf -S test.scp  -i results1.mlf -p -30.0 

dict labellist  

 

The recognized MLF is stored in the file results1.mlf. The options are the same as those used 

at decoding step in the first experiment. 

 

 5. Evaluation 

The recognition performance is computed via HResults. For the first iteration, it is run as 

follows 

HResults -A -D -I timedlabels_test.mlf labellist results1.mlf  

 

6. Iteration 

Now we iterate steps 2, 3 and 4 and 5 iteratively four more times. The recognition and 

accuracy results are provided in Table 7, Table 8 and Table 9 for single, two and three-

component Gaussian mixtures. 	
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Table 7: Recognition and accuracy results in second experiment using single Gaussian models 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128 16.17        14.75 16.47        14.99 16.48       15.00 16.50        14.96 16.48      14.96 
256 12.03        10.94 12.19        11.01 12.29       11.10 12.36        11.12 12.39      11.13 
512 7.83          7.05 7.45          6.56 7.43         6.54 7.43          6.53 7.44        6.54 
1024 4.84          4.11 4.83          4.03 4.87         4.05 4.83          3.98 4.83        3.99 

 

 

Table 8: Recognition and accuracy results in second experiment using two-component GMMs 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128 16.12        14.80 16.00       14.59 15.85        14.44 15.74        14.36 15.66      14.29 
256 11.56        10.45 11.42       10.25 11.38        10.13 11.36        10.08 11.32      10.04 
512 7.89          7.07 7.90         7.08 7.83          7.06 7.83          6.99 7.86        6.97 
1024 4.72          4.13 4.75          4.09 4.53           4.11 4.69          3.99 4.71         4.06 

 

 
Table 9: Recognition and accuracy results in second experiment using three-component GMMs 

Number 
of units 

1st iteration(%) 
Rec            Acc 

2nd iteration(%) 
Rec            Acc 

3rd  iteration(%) 
Rec            Acc 

4th iteration(%) 
Rec            Acc 

5th iteration(%) 
Rec          Acc 

128 17.23      16.22 17.26       16.25 17.19       16.19 17.18       16.17 17.17     16.13 
256 13.11      12.22 13.14       12.22 13.08       12.18 13.01       12.10 12.92     12.03 
512 9.07        8.40 9.09          8.39 9.11         8.36 9.07         8.36 9.09       8.37 
1024 6.13        5.81 6.12           5.64 6.18          5.42 6.11          5.54 6.14        5.56 

 

In this experiment, we again observe that by reducing the number of segmental units, the 

recognition and accuracy results are improved. Another observation is that already form the 

first iteration, the recognition and accuracy results are relatively high (compared to first 

experiment). However in this experiment iterating does not contribute to better performance: 

Looking at the results of each system, all results corresponding to all iterations are roughly 

the same. This is also found from Figure 53, Figure 54 and Figure 55. 
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Figure 53: Comparison diagram for second experiment using single Gaussian models 

 
Figure 54: Comparison diagram for second experiment using two-component GMMs 

 

 
Figure 55: Comparison diagram for second experiment using three-component GMMs 
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Comparing the results obtained in this experiment with those from the first experiment, one 

could say that in all cases, employing the forced alignment has improved the performance of 

the systems. The other observation is that here again, the system with 128 segmental models 

outperforms other systems. It is also observed that using three-components, compared to 

single and two-component Gaussian models, has resulted in better performance.  

 

 

8.7 Summary 
In this chapter the experimental setup, the implementations, the results and discussions 

corresponding to the experiments performed in the project were covered. Several questions 

were answered and the results were discussed. 
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9 Summary, Conclusions and Future work 

  

 

In this final chapter, a brief summary of the work is presented, and the most important 

conclusions are outlined. Some suggestions for future work will also be given. 

 

9.1 Summary and Conclusions 
In this project we were aimed to design a speech recognizer based on a new collection of sub-

phonemic units. These units were found during several steps by employing several machine 

learning algorithms: After the extraction of MBE feature vectors followed by STC generation 

and acoustic-phonetic detection of all STC vectors, the posterior probabilities corresponding 

to existence/absence of a set of 22 articulatory features such as nasality, fricativity, 

vocalisation, glottalisation etc. were stacked in form of long vectors called posteriori 

supervectors. These vectors constructed the input data to acoustic segmentation module. At 

segmentation step, the signals were segmented in such a way to result in minimum segmental 

distortion. The segments were represented by their centroids, known as representative vectors. 

These representatives were input to a clustering algorithm by which the vectors with the most 

similar acoustic-phonetic characteristic were stamped by the same label, corresponding to the 

cluster label they were belonging to. Hereby, the whole database was re-labeled by the labels 

corresponding to the cluster labels. The final step, which was the main focus of this study, 

was to build a set of acoustic models – one model for each label – explore their properties and 

investigate their performance on a unit-level speech recognizer.  

In order to evaluate the performance of the models, two different approaches were 

experimented, namely forced alignment and decoding. Both experiments were performed on 

128, 256, 512, and 1024 acoustical units systems. Results show that applying forced 

alignment on training transcriptions improves the performance of all systems. The best results 

were achieved for the 128 units system. The recognition system designed in this work 

operates with error rates that are relatively high to be used in practice. The poor recognition 

results are however to some degree expected, this because we have employed a high number 

of acoustic models with relatively low amount of training data.  
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In next section some ideas to be investigated in future work are suggested. 

 

9.2 Future Work 
The experiments introduced in this work correspond to building a unit-level recognition 

system. After HMMs each corresponding to a speech unit are trained and tested, the next step 

is to generalize these HMMs by connecting them together in sequence, to construct 

vocabulary. Due to time constraints, it was not possible to design a higher-level recognition 

system and the question of generalizability of the models remained unanswered. Therefore, 

first of all, it is necessary to perform further experiments and create the final recogniser 

machine, before making a conclusion and argue about the acceptance or rejection of the 

studied approach.  

From the articulatory point of view, both the window shift and the window length should be 

adapted to the variation of the articulators and the change in the vocal tract shape [12, p.164]. 

In this work, these were assumed to be identical for all articulators. Costumizing them could 

be subject for further exploraiton. 

Regarding the segmentation algorithm, choosing a threshold for the whole data set as a stop 

criterion is a challenging task, since characteristics of each signal is different from the others. 

The other termination alternative was to set the stop condition relative to the manual 

phonemic labels for each utterance. The downside with this approach however, is that the 

manual labelling is not available in real applications. For these reasons, it would be 

interesting to define the stop criterion with regard to some other cues in future work.  

In case of K-means algorithm, experimenting other initialisation settings for cluster centroids 

would be of interest. 

In case of acoustic modeling, other probability estimators such as tied mixtures were not 

examined in this work. This could be investigated in future. It would also be interesting to 

consider higher number of internal states in defining HMM models. 

In case of HMM prototype, just three configurations (single, two and three component 

mixtures) were experimented in this work. This could be optimized in a future work.  
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APPENDIX A: POSTERIORGRAM REPRESENTATION 

 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
%Posteriorgram of posterior vectors corresponding to 566th sentence of TIMIT  
%test (fadg0_si649)in htk format. 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
close all 
clear all 
clc 
 
[AF,fp,dt,tc,t]=readhtk('/Users/negarolfati/Desktop/Detection/AF_TIMIT/1_state/train_phone_recognizer/pfiles/
test_566.htk'); 
  
nFeatures=22; 
  
% the manual labels are extracted from the last column of the files with the 
% following format: [referencePrefix, label{i}, referenceExtension]; For 
% generating these files, we made use of the labelextraction.sh script 
% enclosed after this script.  
  
referencePrefix='/Users/negarolfati/Desktop/Detection/AF_TIMIT/1_state/train_detectors/binlabels/labels_'; 
  
  
label = {'Vowel','Fricative','Nasal','Stop','Approx','High','Coronal','Dental',... 
    'Glottal','Labial','Low','Mid','Retroflex','Velar','Voiced','Round',...  
'Tense', 'Anterior','Back','Continuant','Vocalic','Silence'}; 
  
referenceExtension='.txt'; 
%% 
%plot each detector output saparately 
for i = 1:22 
    figure(i) 
    plot(AF(:,2*i)); 
    ylabel(label{i}); 
    xlabel('frame number'); 
    title('htk\_gram, fadg0\_si649'); 
    hold on 
    filename = [referencePrefix, label{i}, referenceExtension]; 
    reference=load(filename); 
    plot(reference(:,26), 'r'); 
    
end 
  
%% Create the posteriorgram 
  
  
figure 
for i=1:22 
    h=subplot('Position',[0.08 (i-1)*0.96/22+0.02 0.90 0.96/22]); 
    axis([1 459 -10 0.5]); 
    plot(AF(:,2*i)); 
    if (i > 1) 
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        set(h,'XTick',[],'YTick',[]); 
    end 
    ylabel(label{i},'rot',30); 
    hold on  
    filename = [referencePrefix, label{i}, referenceExtension]; 
    reference=load(filename); 
    plot(reference(:,26), 'r'); 
end 
  
  
Script: ~/Detection/AF_TIMIT/1_state/LabelExtraction.sh 

 
#!/bin/bash 
 
TOP=`pwd` 
export BINDIR=/usr/local/bin 
featuremap=extract_melbankenergies/data/Marco_AF.map 
AFlist=extract_melbankenergies/data/AFlist 
GetAFset.pl $featuremap $AFlist 
 
for AF in `cat $AFlist` 
do 
 
for i in 566 
do 
 
# Convert to htk format 
$BINDIR/feacat -i $TOP/train_detectors/trained/$AF/labeledpfiles/test.pfile -ip pfile -o  
$TOP/train_detectors/htks/htk_$AF.htk -op htk -sr $i:$i 
 
# save the files containing the binary labels for each detector 
$BINDIR/pfile_print -i $TOP/train_detectors/trained/$AF/labeledpfiles/test.pfile -sr $i:$i  >& 
$TOP/train_detectors/binlabels/labels_$AF.txt 
 
done 
done 
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APPENDIX B: ACOUSTIC SEGMENTAL CENTROID COMPUTATION, 

CENTROID CLUSTERING AND LABEL ASSIGNMENT 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% In this script, the following are performed: 
%1. The posterior supervectors resulted from acoustic merging and the segment boundaries resulted from the  
%acoustic segmentation are imported. 
%2. The dimension of posterior supervectors is reduced to 22.  
%3. The segmental centroids are computed and clustered via the k-means algorithm. 
%4. The labels corresponding to clusters are assigned to relative segments. 
%5. The label files are exported both with and without boundary information. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
close all 
  
% Load data 
  
htkfiles_train = dir('/Users/negarolfati/Desktop/Acsegment/mfcdir/train/*.htk'); 
htkfiles_test = dir('/Users/negarolfati/Desktop/Acsegment/mfcdir/test/*.htk'); 
  
htkpaths_train = (strcat({'/Users/negarolfati/Desktop/Acsegment/mfcdir/train/'},{htkfiles_train.name}))'; 
htkpaths_test = (strcat({'/Users/negarolfati/Desktop/Acsegment/mfcdir/test/'},{htkfiles_test.name}))'; 
  
  
nTrain = length(htkpaths_train); 
files_train = cell(nTrain,1); 
  
for k = 1:nTrain 
    files_train {k,1} = htkfiles_train(k,1).name; % store the train list in 'files_train'. 
end 
  
nTest = length(htkpaths_test); 
  
nTest = length(htkpaths_test); 
files_test = cell(nTest,1); 
for k = 1:nTest 
    files_test {k,1} = htkfiles_test(k,1).name; % store the test list in 'files_test'. 
end 
  
% remove the extension '.htk' from filenames 
for k = 1: nTrain 
    files_train{k,:} = strrep(files_train{k,1},'.htk',''); 
     
end 
  
for k = 1: nTest 
    files_test{k,:} = strrep(files_test{k,1},'.htk',''); 
     
end 
  
  
% Now, generate the '.acs' paths. These are the files containing 
% time-boundaries of the segments. 
for k = 1:nTrain 
    acspaths_train{k,1} = 
(strcat(('/Users/negarolfati/Desktop/Acsegment/espslabs/train/'),(files_train{k,1}),'.acs'))'; 
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end 
  
for k = 1:nTest 
    acspaths_test{k,1} = (strcat(('/Users/negarolfati/Desktop/Acsegment/espslabs/test/'),(files_test{k,1}),'.acs'))'; 
     
end 
  
  
  
% Remove the special char # from .acs files, in order to make them loadable via 'load' function 
  
command =  'perl -pi -e "BEGIN{ @ARGV = glob(pop) } s/#//g" 
"/Users/negarolfati/Desktop/Acsegment/espslabs/train/*"';  
status = system(command);  
command =  'perl -pi -e "BEGIN{ @ARGV = glob(pop) } s/#//g" 
"/Users/negarolfati/Desktop/Acsegment/espslabs/test/*"'; % Remove the special char # 
status = system(command); 
  
  
% load *.htk files. Store them in first column of data_train and data_test 
  
nAF = 22; % Number of Articulatory Features, in other words the dimension of data points. 
data_train = cell(nTrain,6);  
for k = 1:nTrain 
    data_train{k,1} = readhtk(htkpaths_train{k,1}); 
    m = data_train{k,1}; 
    c = zeros(length(m),nAF); 
    for t = 1:nAF        %  activation = 1-deactivation, so keep one component from each two. 
        c(:,t) = m(:, 2*t-1); 
        data_train{k,1} = c; 
    end 
     
end 
% 
data_test = cell(nTest,6); 
for k = 1:nTest 
    data_test{k,1} = readhtk(htkpaths_test{k,1}); 
    m = data_test{k,1}; 
    c = zeros(length(m),nAF); 
    for t = 1:nAF 
        c(:,t) = m(:, 2*t-1); 
        data_test{k,1} = c; 
    end 
     
end 
  
  
% Load *.acs files, store them in second column in cell data_train and data_test 
for k = 1:nTrain 
    a = load(acspaths_train{k,1}); 
    data_train{k,2} = a(:,1); 
end 
% 
for k = 1:nTest 
     
    a = load(acspaths_test{k,1}); 
    data_test{k,2} = (a(:,1)); 
end 
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%%  Compute segmental mean for train data and test data 
  
for k = 1:nTrain 
    BoundPos = data_train{k,2}*1e3/10;  % framerate = 10 msec 
     
    % Store time-boundarieds for all segments corresponding to training 
    % data in 5th and 6th column of data_train. 
    BoundPos(:) = round(BoundPos(:)); 
    data_train{k,5}=[0;BoundPos(1:end-1,1)];  
    data_train{k,6}=BoundPos; 
    nsegMembers= zeros(1,length(BoundPos)); 
     
    % How many members are present in each segment? 
    nsegMembers(1) = round(BoundPos(1)); 
    for t = 2: length(BoundPos) 
        nsegMembers(t) =  BoundPos(t) - BoundPos(t-1); 
    end 
     
    nsegMembers(:) = round(nsegMembers(:)); 
     
    % Store number of segments for all training data in 4th column of 
    % data_train 
    data_train{k,4} = nsegMembers; 
     
    % Compute segmental means and store them in 3rd column. 
    mean = zeros(nAF, length(BoundPos)); 
    FrameIdx = 1; 
    d = (data_train{k,1})'; 
     
    for s = 1 : length(BoundPos) 
        mean(:,s) = sum(d(:,(FrameIdx:(BoundPos(s)))),2)/nsegMembers(s); 
        FrameIdx = FrameIdx + nsegMembers(s); 
    end 
    data_train{k,3} = mean; 
end 
  
%  
  
for k = 1:nTest 
    BoundPos = data_test{k,2}*1e3/10;  % framerate = 10 msec 
    BoundPos(:) = round(BoundPos(:)); 
    data_test{k,5}=[0;BoundPos(1:end-1,1)]; 
    data_test{k,6}=BoundPos; 
    nsegMembers= zeros(1,length(BoundPos)); 
     
     
    % How many members are present in each segment? 
    nsegMembers(1) = round(BoundPos(1)); 
    for t = 2: length(BoundPos) 
        nsegMembers(t) =  BoundPos(t) - BoundPos(t-1); 
    end 
     
    nsegMembers(:) = round(nsegMembers(:)); 
    data_test{k,4} = nsegMembers; 
    % Compute segmental means 
    mean = zeros(nAF, length(BoundPos)); 
    FrameIdx = 1; 
    d = (data_test{k,1})'; 
     
    for s = 1 : length(BoundPos) 
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        mean(:,s) = sum(d(:,(FrameIdx:(BoundPos(s)))),2)/nsegMembers(s); 
        FrameIdx = FrameIdx + nsegMembers(s); 
    end 
    data_test{k,3} = mean; 
end 
  
%% How many mean vectors are generated?  
meansize_train = 0; 
for k = 1:nTrain 
    sentmeansize = (size(data_train{k,3},2)); 
    meansize_train = sentmeansize + meansize_train; 
end 
  
meansize_test = 0; 
for k = 1:nTest 
    sentmeansize = (size(data_test{k,3},2)); 
    meansize_test = sentmeansize + meansize_test; 
end 
  
  
 
%% Now prepare data to be input to cluster algorithm 
data= [data_train ; data_test]; 
files= [files_train; files_test]; 
meanstore_tot = cell2mat(data(:,3)'); 
%pause 
save('meanstore_tot.mat', 'meanstore_tot'); 
  
%[IDX_data] = myKmeans(meanstore_tot,thr_data); 
  
[IDX_data] = kmeans(meanstore_tot',128); 
IDX_data = IDX_data'; 
%% perform label assignment, and export labels files Without 
%time boundaries. These to be used in first experiment. 
nData = nTrain+nTest; 
a = cell(1,nData); 
  
for k = 1:nData 
    a{k} = data{k,4}; 
end 
  
vectorSizes_data=cellfun(@(x) numel(x),a); 
idx_data = mat2cell(IDX_data', vectorSizes_data); 
% 
for k = 1:nTrain 
    f = idx_data{k}; 
    fid = 
fopen(strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/mergedlabels_train/'),(files{k})
,'.lab'),'wt'); 
    fprintf(fid, [repmat('%g\n', 1, size(f,2)-1) '%g\n'], f.'); 
    fclose(fid); 
end 
% 
  
for k = nTrain+1 : nData 
    
    f = idx_data{k}; 
    fid = 
fopen(strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/mergedlabels_test/'),(files{k}),'
.lab'),'wt'); 
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    fprintf(fid, [repmat('%g\n', 1, size(f,2)-1) '%g\n'], f.'); 
    fclose(fid); 
  
end 
  
%%  Export label files with time boundaries. These to be used in second experiment. 
  
  
for k = 1:nTrain 
    idx_train{k}=idx_data{k}; 
    f = [data{k,5}*10^5 data{k,6}*10^5 idx_data{k}]; 
    filename = 
strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/timedlabels_train/'),(files{k,1}),'.lab'); 
    fileID = fopen(filename,'w'); 
    fprintf(fileID,'%d %d %d\n',f'); 
    fclose(fileID); 
end 
  
  
for k = nTrain+1 : nData 
    idx_test{k}=idx_data{k}; 
    f = [data{k,5}*10^5 data{k,6}*10^5 idx_data{k}]; 
    filename = 
strcat(('/Users/negarolfati/Documents/Detection_rerun/AF_TIMIT/1_state/timedlabels_test/'),(files{k,1}),'.lab'); 
    fileID = fopen(filename,'w'); 
    fprintf(fileID,'%d %d %d\n',f'); 
    fclose(fileID); 
end 
  
  
 
function[membership_idx] = myKmeans(meanstore_tot,thr) 
 
clear all 
close all 
clc 
  
% load data 
m = load ('/Users/negarolfati/Downloads/voicebox/meanstore_tot.mat'); 
m = m.meanstore_tot ; 
  
  
N = size(m,2);  % number of data points 
numclust =2;   
  
% Find the main centroid 
  
main_centr = mean(m,2); 
  
initGlobalDist = 100e100; 
  
%% Initialise centroids 
  
centers_init = cell(1,numclust); 
  
for k =1 : numclust/2 
    centers_init{1,2*k-1} = main_centr; 
    centers_init{1,2*k} = main_centr + 0.1*randn(22,1); % datadim = 2 
end 
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all_global_dist = [initGlobalDist]; 
% Create an outer loop to split the clusters 
  
l = 1; % outer loop counter 
  
while 1 
%for l = 1:max_iter 
    'new cluster set' 
     
    if(numclust > N) 
       % if (2^max_iter > N) 
        error('Error! Number of clausters more than number of datapoints'); 
    end 
     
    membership_idx = zeros(N,1); 
    dist = zeros(numclust, N); 
    centers = centers_init; 
    temp_idx = zeros (1,N); 
    
    %figure 
    flag = 1; 
    % Create an innerloop to stabilize the centroids. 
    while flag 
         
        %**** 1.partition 
        for k = 1:numclust 
            c = centers{1,k}; 
            dist(k,:) = sqrt(sum((m-repmat(c,1,N)).^2)); 
             
        end 
         
        [sorted, ind] = sort(dist); 
        membership_idx = ind(1,:); 
         
         
        % compute the global distortion 
        localDist = zeros(1,numclust); 
         
        for k = 1:numclust 
            a = m(:,(membership_idx==k)); 
            M = size(a,2); 
            c = centers{1,k}; 
            localDist(1,k) = sum(sqrt(sum((a-repmat(c,1,M)).^2)));  %Distortion inside each cluster 
        end 
         
        % Compute the distortion reduction compared to previous step 
        globalDist = sum(localDist(:)); 
        G = (initGlobalDist-globalDist)/initGlobalDist; 
         
        if (all(membership_idx == temp_idx)  | (G < 1e-3)) 
            flag = 0; 
            'breaking' 
            all_global_dist = [all_global_dist globalDist]; 
            break 
        else 
            temp_idx = membership_idx;  
            initGlobalDist = globalDist; 
        end 
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        %**** 2. Centroid update 
         
        for k = 1:numclust 
            a = m(:,(membership_idx==k)); 
            if size(a,1)==1 
                centers{1,k} = a; 
            else 
                centers{1,k} = mean(a,2); 
            end 
        end 
        
    end 
     
    
    %% 
    % ****** How far split the clusters? We need a stop criterion! 
  
      
    iter_cond = abs(all_global_dist(l) - all_global_dist(l+1)) / all_global_dist(l) 
    
    if (iter_cond < 0.104) 
        break; 
    end 
     
     
    %**** 3.split the clusters into two, and prepare data for next iteration 
     
    centers_old = centers; 
    numclustnew = 2*numclust; 
    numclust = numclustnew; 
     
    centers_init = cell(1 ,numclustnew); 
     
     
    for k = 1:numclust/2 
         
        centers_init{1,2*k-1} = centers{1,k}; 
        centers_init{1,2*k} = centers{1,k} + 0.1*randn(22,1); % 22 = datadim 
         
    end 
    l = l+1; 
     
end 
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APPENDIX C: K-MEANS ALGORITHM FOR CLUSTERING TWO-DIMENSIONAL 

DATA INTO UN-PREDEFINED NUMBER OF CLUSTERS. 

 
clear all 
close all 
clc 
  
m = [-0.06 0.9;0.3 -0.5;-0.4 -0.1;-0.1 -0.8;0.01 0.4;2.9 2.0;2.2 1.8;1.8 1.1; 
    1.8 2.1;1.8 1.8;-1.3 -2.6;-2.1 -2.5;-2.4 -2.4;-1.8 -2.1;-2.0 -2.8; 
    3.4 4.9;3.4 5.3;3.5  4.8;3.3 4.6;3.3 5.1]; 
m = m'; 
  
N = size(m,2);  % number of data points 
numclust =2;  % the whole data space to be splitted into 2 clusters. 
  
% Find the main centroid 
figure; 
main_centr = mean(m,2); 
scatter(m(1,:),m(2,:),'b','filled'); 
hold on 
  
scatter(main_centr(1,:),main_centr(2,:),'r','*','SizeData' ,100); 
pause 
% Define initial distortion 
initGlobalDist = 10e10; 
hold off 
  
  
%% Initialise centroids 
  
centers_init = cell(1,numclust); 
  
for k =1 : numclust/2 
    centers_init{1,2*k-1} = main_centr; 
    centers_init{1,2*k} = main_centr + 0.1*randn(2,1); % datadim = 2 
end 
  
all_global_dist = [initGlobalDist]; 
% Create an outeter loop to control splitting the clusters 
l = 1; % outer loop counter 
while 1 
    'new cluster set' 
    if(numclust > N) 
        %if (2^max_iter > N) 
        error('Error! Number of clausters more than number of datapoints'); 
    end 
     
    membership_idx = zeros(N,1); 
    dist = zeros(numclust, N); 
    centers = centers_init; 
    temp_idx = zeros (1,N); 
     
    figure 
     
    scatter(m(1,:),m(2,:),'b','filled'); 
    hold on 
    for  k = 1:numclust 
        c = centers{1,k}; 
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        scatter(c(1,:),c(2,:),'r','*','SizeData' ,100) 
    end 
    title('The splitted centroids') 
    pause 
    hold off 
 
    flag = 1; 
    % Create an inner loop to stabilize the centroids. 
    while flag 
        figure 
        %**** 1. Partition the data points by assigning them to their nearest centroid. 
        for k = 1:numclust 
            c = centers{1,k}; 
            dist(k,:) = sqrt(sum((m-repmat(c,1,N)).^2)); 
             
        end 
         
        [sorted, ind] = sort(dist); 
        membership_idx = ind(1,:); 
         
         
        % compute the global distortion 
        localDist = zeros(1,numclust); 
         
        for k = 1:numclust 
            a = m(:,(membership_idx==k)); 
            M = size(a,2); 
            c = centers{1,k}; 
            localDist(1,k) = sum(sqrt(sum((a-repmat(c,1,M)).^2)));  %Distortion inside each cluster 
        end 
         
        % Compute the global distortion reduction compared to previous step 
        globalDist = sum(localDist(:)); 
        G = (initGlobalDist-globalDist)/initGlobalDist 
         
        if (all(membership_idx == temp_idx)  | (G < 1e-5)) 
            flag = 0; 
            'breaking' 
            all_global_dist = [all_global_dist globalDist];  
            break 
        else 
            temp_idx = membership_idx; % copy the membership index and the local distortion into temporary 
variables 
            initGlobalDist = globalDist; 
        end 
  
        %**** 2. Centroid Update 
         
        scatter(m(1,:),m(2,:),'b','filled'); 
         
        hold on 
        for k = 1:numclust 
            a = m(:,(membership_idx==k)); 
            if size(a,1)==1 
                centers{1,k} = a; 
            else 
                centers{1,k} = mean(a,2); 
            end 
        end 
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        for k = 1:numclust 
            c = centers{1,k}; 
            scatter(c(1,:),c(2,:),'r','*','SizeData' ,100) 
        end 
         
        title('The updated centroids') 
        pause 
         
        hold off 
    end 
     
    
    %% How far split the clusters? We need to define a stop criterion.  
  
      
    iter_cond = abs(all_global_dist(l) - all_global_dist(l+1)) / all_global_dist(l); 
     
    if (iter_cond < 0.8) 
        break; 
    end 
     
     
    %**** 3.split the centroid into two and prepare data for next iteration 
     
    centers_old = centers; 
    numclustnew = 2*numclust; 
    numclust = numclustnew; 
     
    centers_init = cell(1 ,numclustnew); 
     
     
    for k = 1:numclust/2 
         
        centers_init{1,2*k-1} = centers{1,k}; 
        centers_init{1,2*k} = centers{1,k} + 0.1*randn(2,1); % 22 = datadim 
         
    end 
    l = l+1; 
     
end 
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APPENDIX D: THE FIRST EXPERIMENT: RECOGNITION 

 

 
Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/firstApproach.sh 

 
 

#!/bin/bash 
 
TOP=`pwd` 
 
# Create 6 folders in your main directory. 
 
for i in 0 1 2 3 4 5 
do 
mkdir -p hmm$i 
done 
 
 
# Create the folder LOG to store all logs. 
 
mkdir -p LOG 
# Delete labellist if it exists (Is there a better way to prevent multiple-writing on it?) 
 
rm -f labellist 
# Make a list of symbols in the file labellist 
 
for i in {1..128}  
do 
echo "L$i" >> labellist 
done 
 
#Create dictionary 
rm -f dict 
for i in {1..128}   
do 
echo "L$i L$i" >> dict 
done 
 
 
# Create train.scp : a script file containing a list of all feature filenames (*.fea). Copy the existing list, and edit 
paths and extensions. 
 
cp ../extract_melbankenergies/data/train.scp train.scp 
sed -i -e 's;^; features/;' train.scp 
sed -i '.wav' 's/\.wav/\.fea/' train.scp 
 
# Repeat the same to create test.scp 
 
cp ../extract_melbankenergies/data/test.scp test.scp 
sed -i -e 's;^; features/;' test.scp 
sed -i '.wav' 's/\.wav/\.fea/' test.scp 
 
 
# Initialise proto 
 
HCompV -A -D -T 1 -C config -f 0.01 -m -S train.scp -M hmm0 proto> LOG/HCompV.log 
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# Make a copy of proto content 512 times into hmm0/hmmdefs 
 
(perl -0777pe '$_=$_ x 128' hmm0/proto )> hmm0/hmmdefs  
 
# Remove the undesired lines from hmmdefs 
 
sed -i '' "/<STREAMINFO> 1 23/d" hmm0/hmmdefs 
sed -i '' "/<VECSIZE> 23<NULLD><FBANK><DIAGC>/d" hmm0/hmmdefs 
sed -i '' "/~o/d" hmm0/hmmdefs 
 
 
# edit the strings "proto" in hmmdefs according to the labels exisiting in labellist. (Without copying labellist into 
hmm0, hmmdefs becomes empty after running awk.(why?)) 
cp labellist hmm0/labellist 
cd hmm0 
awk 'FNR==NR{a[++i]=$0; next} /proto/{sub(/proto/, a[++j])} 1' labellist hmmdefs >> tmp && mv tmp 
hmmdefs 
 
 
# Remember to create macros MANUALLY in hmm0 
 
 
# Add L to all label files corresponding to training and testing data, and store the files into LABELSTRAIN and 
LABELSTEST 
#(output from script Centroidfinding.m are in form of string of numbers. add L before them) 
 
cd $TOP 
mkdir -p LABELSTRAIN 
mkdir -p LABELSTEST 
mkdir -p Results 
cd ../mergedlabels_train 
for i in *; 
do 
sed 's/^/L/' "$i" > ../trainHMMs/LABELSTRAIN/$i 
done 
 
cd ../mergedlabels_test 
for i in *; 
do 
sed 's/^/L/' "$i" > ../trainHMMs/LABELSTEST/$i 
done 
 
 
# Go back to main directory 
 
cd $TOP 
 
# Create MLFs from training and testing label files 
 
HLEd -l '*' -i labels_train.mlf dummy.led LABELSTRAIN/* 
HLEd -l '*' -i labels_test.mlf dummy.led LABELSTEST/* 
 
 
#Create Grammar.net from the command-line 
 
# Create lattice. This to be used in decoding 
Hparse Grammar.net Grammar.lat 
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# Now train, decode and evaluate iteratively 
 
for((i=0;$i<5;i++)); 
do 
  
echo Iteration number $((i+1)) 
 
HERest -A -D -T 1 -C config -I labels_train.mlf -t 150.0 100.0 500.0 -S train.scp -H hmm$i/macros -H 
hmm$i/hmmdefs -M hmm$((i+1)) labellist> LOG/Rec./HERest30$((i+1)).log 
echo Training finished! 
 
HVite -A -D -C config -w Grammar.lat -H hmm$((i+1))/hmmdefs -H hmm$((i+1))/macros -S test.scp -i 
results$((i+1)).mlf  -p -30.0 dict labellist > LOG/Rec./HVite30$((i+1)).log 
echo Decoding finished! 
 
HResults -A -D -I labels_test.mlf labellist results$((i+1)).mlf >& Results/Rec./HResults30$((i+1)).txt 
 
echo Results stored in Results/Rec./HResults30$((i+1)).txt 
done 
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APPENDIX E: THE SECOND EXPERIMENT: FORCED ALIGNMENT 

 
 
Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/secondApproach.sh 

 
 
 
#!/bin/bash 
 
TOP=`pwd` 
 
rm -f labellist 
# Make a list of symbols in the file labellist 
 
for i in {1..128}   
do 
echo "L$i" >> labellist 
done 
 
mkdir -p TimedLABELSTRAIN 
mkdir -p TimedLABELSTEST 
 
 
cd ../timedlabels_train 
for i in *; 
do 
sed  -E 's/(.* .*) /\1 L/' "$i" > ../trainHMMs/TimedLABELSTRAIN/$i  
done 
 
cd ../timedlabels_test 
for i in *; 
do 
sed  -E 's/(.* .*) /\1 L/' "$i" > ../trainHMMs/TimedLABELSTEST/$i   
done 
 
cd $TOP 
 
for i in {1..6} 
do 
mkdir -p dir$i 
done 
mkdir -p Results 
 
for i in {1..6} 
do 
rm -rf dir$i/* 
done 
 
HLEd -l '*' -i timedlabels_train.mlf dummy.led TimedLABELSTRAIN/* 
HLEd -l '*' -i timedlabels_test.mlf dummy.led TimedLABELSTEST/* 
 
 
# Initialise HMM models individually 
initprotos.pl labellist 
 
HHEd -w N1.mmf -d dir1 dummy.led labellist 
 
for i in {1..5} 
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do 
 
 
# Perform forced alignment 
HVite -A -D -T 1 -l '*' -o M  -C config -H N$i.mmf -i aligned$i.mlf  -m  -y lab -a -I timedlabels_train.mlf -S 
train.scp  -p -30.0 dict labellist> LOG/F.A./HVite_aligned_train$i 
echo the aligned mlfs stored in Aligned$i.mlf 
#Train using HRest 
trainafteralignment.pl $i 
 
 
HHEd -w N$((i+1)).mmf -d dir$((i+1)) dummy.led labellist 
# Decode 
HVite -A -D -C config -w Grammar.lat -H N$((i+1)).mmf -S test.scp -i results$i.mlf  -p -30.0 dict labellist > 
LOG/F.A./HVite_Decode_30$i.log 
# Evaluate 
HResults -A -D -I timedlabels_test.mlf labellist results$i.mlf >& Results/F.A./HResults$i.txt 
echo Results stored in Results/F.A./HResults$i.txt 
done 
 
 
 
 
Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/initprotos.pl 

 
#!/usr/bin/perl 
 
# usage: initprotos.pl labellist 
# labellist: text file containing model names (L1,L2,..,L512) 
 
$model = $ARGV[0]; 
 
open(CF, "< $model") || die "can't open $model: $!"; 
my @segmentmodels=(); 
while(<CF>){ 
    chomp; 
    push(@segmentmodels,$_); 
} 
close(CF); 
 
foreach $model (@segmentmodels) 
{ 
$cmd = "HInit -I timedlabels_train.mlf -i 3 -l $model -o $model -S train.scp -M dir1 proto"; 
    print $cmd, "\n"; 
    #next; 
system("$cmd"); 
} 
 
 
Script: ~/Detection/AF_TIMIT/1_state/trainHMMs/trainafteralignment.pl 

 
#!/usr/bin/perl 
# usage: trainafteralignment.pl i  
 
 
use strict; 
use warnings; 
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use File::Spec::Functions qw/ catdir catfile /; 
 
my $iter = $ARGV[0]; 
my $dir =  'dir'.$iter; 
my $dir2 = 'dir'.($iter+1); 
my $alignedMLF = 'aligned'.$iter.'.mlf'; 
opendir my ($dh), $dir; 
while (my $node = readdir $dh) { 
    my $file = catfile($dir, $node); 
    next unless -f $file; 
    my $cmd = "HRest -T 1 -I $alignedMLF -i 20 -l '$node' -M '$dir2' -S train.scp '$file'"; 
     #print $cmd, "\n"; 
    #next; 
    system($cmd); 
} 
closedir $dh; 
 
 
 


