NTNU - Trondheim
Norwegian University of
Science and Technology

Ultra low voltage combinatorial logic building blocks

Hallstein Skjølsvik

Master of Science in Electronics
Submission date: February 2015
Supervisor: Snorre Aunet, IET
Co-supervisor: Ali Asghar Vatanjou, IET

Preface

This document is a report of a Master's thesis in electrical engineering performed at NTNU, as part of the study program Electronics Systems Design and Innovation. The project was performed during the autumn semester of 2014. This project was inspired by the research paper Modular Layout-friendly Cell Library Design Applied for Subthreshold CMOS [1], and the project description was specified with the aid of Prof. Snorrre Aunet, Prof. Trond Ytterdal and P.H.D-stip. Ali A. Vatanjou. This thesis was written for NTNUs Department of Electronics and Telecommunications.

It is assumed that the reader of this document has basic knowledge about electrical engineering, specifically within the fields of digital design and implementation.

Oslo, 2014-02-02

Hallstein Skjølsvik

Abstract

In this project the three logical gates inverter, 2-input NAND and 2-input NOR was created. Each gate was implemented with two different topologies. All gates created w ere able to operate with a supply voltage below the transistors threshold voltage. Due to this, the gates created in this project can be called sub-threshold logical gates. To ensure that all voltages were sub-threshold a brief investigation of the transistors were performed, to determine some of the transistor characteristics.

All gates were created at a schematic level and they were tested with both DC and transient analyses. The analyses were performed on different transistor sizes and with different supply voltages, to uncover how transistor gate sizes and supply voltage affects the logical gates. The different gate topologies were compared to each other, and a body biased gate was compared to unbiased gates.

The results from the simulations performed showed that it is possible to make logical gates operate at sub-threshold voltages. The ultra low voltage caused the gates to be prone to noise, process variations, have a large gate area and large delay. Using alternative gate topologies and different gate sizes can mitigate delay and process variations, but will also take up a larger gate area and consume more energy. By using body biasing the gate area and energy consumption could be decreased without affecting gate balance, noise margins and process variations.

The main method for testing the devices in this project has been to run large parametric analyses covering a wide variety of transistor sizes and supply voltages. This method have resulted in a thorough, but time consuming investigation. Because of this the scope of this project was limited to theoretical schematic analyses, and layout with parametric extractions were not included.

Acknowledgements

I would like to thank my professors Snorre Aunet and Trond Ytterdal, and P.H.D. Ali Asghar Vatanjou for superior guidance, theoretical and technical support during this project. The practical work in this project have been performed on NTNUs server Pandora located in Trondheim, which I have accessed remotely from Oslo. This have a been a very convenient arrangement, which would have been impossible without the practical aid from Trond Ytterdal.

I will also thank my family and my S.O. Caroline for both moral support and proof reading.
H.S.

Table of Contents

Preface ii
Abstract iv
Acknowledgements vi
List of Figures xi
List of Tables xiv
1 Introduction 1
1.1 Project description and specification 2
1.2 Purpose and scope of the project 2
1.3 Goal and expected results 3
1.4 Word list 3
1.5 Structure of this document 4
2 Theory background 5
2.1 Logic gate topologies 5
2.2 Sub-threshold current 9
2.3 Metrics 9
2.3.1 Gate balance 9
2.3.2 Power 14
2.3.3 Delay 15
2.3.4 Power delay product 16
2.3.5 Process variations 16
I Investigate the transistor characteristics 17
3 Procedure for transistor investigations 18
3.1 Areas of operation 18
3.2 Finding the threshold voltage 20
3.3 Body biasing 20
4 Results from transistor simulations 21
5 Discussion of the transistor simulation results 27
5.1 Identifying the sub-threshold area 27
II Schematic design of the logical gates 29
6 Schematic design procedure 30
6.1 2T Inverter 30
6.2 4T Inverter 31
6.3 4T NAND2 32
6.4 8T NAND2 33
6.5 4T NOR2 34
6.6 8T NOR2 35
6.7 Test benches 36
6.7.1 Gate balance 36
6.7.2 Noise margin 38
6.8 Power and delay 39
6.8.1 Power delay product 39
6.8.2 Lowest $\mathrm{V}_{D D}$ 39
6.9 Process variation 43
6.10 Deciding a final size 43
6.11 Body biasing 43
7 Results of the schematic design 45
7.1 Gate Balance 45
7.1.1 Switching point 45
7.2 Power and delay 56
7.2.1 Power delay product 56
7.2.2 Minimum supply voltage 62
7.3 Robustness 69
7.4 Deciding final sizes 74
7.4.1 Summary 74
7.4.2 Final sizes 81
7.5 Effects of body biasing 83
8 Discussion 89
8.1 Gate balance 89
8.1.1 Switching point 89
8.1.2 Noise margin 90
8.2 Power and delay 90
8.2.1 PDP 90
8.2.2 Minimum supply voltage 91
8.3 Robustness 91
8.4 Deciding final sizes 92
8.4.1 Summary 92
8.4.2 Final sizes 94
8.4.3 Comparing topologies 94
8.5 Effects of body biasing 94
8.6 Evaluation of the method 95
8.6.1 Constructing the logical gates 95
8.6.2 Testing the logical gates 95
8.6.3 Sources of errors 95
8.6.4 What could have been done differently 96
9 Conclusion 97
9.1 What were done 97
9.2 Comparing results to task specification 97
9.3 Conclusion 98
9.4 Further work 98
A Schematics 99
A. 1 Test bench nfet 99
A. 2 Testbench pfet 100
A. 32 Transistor inverter schematic 101
A. 42 Transistor inverter symbol 102
A. 52 Transistor inverter test bench 103
A. 62 Transistor inverter ring oscillator 104
A. 74 Transistor inverter schematic 105
A. 84 Transistor inverter symbol 106
A. 94 Transistor inverter test bench 107
A. 104 Transistor inverter ring oscillator 108
A. 114 Transistor NAND2 gate schematic 109
A. 124 Transistor NAND2 gate symbol 110
A. 134 Transistor NAND2 gate test bench 111
A. 144 Transistor NAND2 gate ring oscillator 112
A. 158 Transistor NAND2 gate schematic 113
A. 168 Transistor NAND2 gate symbol 114
A. 178 Transistor NAND2 gate test bench 115
A. 188 Transistor NAND2 gate ring oscillator 116
A. 194 Transistor NOR2 gate schematic 117
A. 204 Transistor NOR2 gate symbol 118
A. 214 Transistor NOR2 gate test bench 119
A. 224 Transistor NOR2 gate ring oscillator 120
A. 238 Transistor NOR2 gate schematic 121
A. 248 Transistor NOR2 gate symbol 122
A. 258 Transistor NOR2 gate test bench 123
A. 268 Transistor NOR2 gate ring oscillator 124
B Tables 125
B. 1 Gate balance 125
B. 2 Gate balance 151
Bibliography 160

List of Figures

2.12 transistor inverter. Schematic 5
2.24 transistor inverter. Schematic 6
2.34 transistor NAND2 gate. Schematic 7
2.48 transistor NAND2 gate. Schematic 7
2.54 transistor NOR2 gate. Schematic 8
2.68 transistor NOR2 gate. Schematic 8
2.7 Transfer characteristic of an inverters output, and the derivative of the output. $V_{O H}, V_{O L}, V_{I H}$ and $V_{I L}$ are marked. $V_{D D}=100 \mathrm{mV}$ 10
2.8 Illustration of noise margins 11
2.9 Transfer characteristic of an inverter with perfect balance. SP and $S P_{x}$ are marked. $V_{D D}=100 \mathrm{mV}$ 12
2.10 Transfer characteristic of an unbalanced inverter. SP and $S P_{x}$ are marked. $V_{D D}=$ 100 mV 13
2.11 Input and output of a ring oscillator. Delay is marked. $V_{D D}=108 \mathrm{mV}$ 15
2.12 Power, Delay, and Power Delay Product. The circle indicates the lowest point. Transactions on Circuits and Systems, Nov. 2007.[7] 16
3.1 Nfet testbench schematic. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 18
3.2 Pfet testbench schematic. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 19
3.3 Illustration of how to extrapolate $V_{t h}$ from a $V_{G S}$ vs I_{D} plot. 20
$4.1 V_{D S}-I_{D S}$-plot of the $n f e t_{-} b$ cell from the cmos32lp library. $V_{G S}=0 V . V_{B S}=0 \mathrm{~V}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 21
$4.2 V_{S D}-I_{D S}$-plot of the $p f e e_{-} b$ cell from the cmos32lp library. $V_{S G}=0 V . V_{S B}=0 \mathrm{~V}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 22
$4.3 V_{G S}-I_{D S}$-plot of the nfet_b cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV}$. $V_{B S}=0 V$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 22
4.4 $V_{S G}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library. $V_{S D}=50 \mathrm{mV}$. $V_{S B}=0 V$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 23
4.5 Extrapolated threshold voltage from the $V_{G S}-I_{D S}$-plot of the nfet_ b cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV} . V_{B S}=0 V$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 23
4.6 Extrapolated threshold voltage from the $V_{S G}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library. $V_{S D}=50 \mathrm{mV} . V_{S B=0 V} . W i d t h=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 24
$4.7 V_{G S}-I_{D S}$-plot of the nfet_b cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 25
$4.8 V_{S G}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library. $V_{S D}=50 \mathrm{mV}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$. 25
6.1 Schematic of the 2T Inverter 30
6.2 Schematic of the 4T Inverter 31
6.3 Schematic of the 4T NAND2 gate 32
6.4 Schematic of the 8T NAND2 gate 33
6.5 Schematic of the 4T NOR2 gate 34
6.6 Schematic of the 8T NOR2 gate 35
6.7 Schematic of the inverter test bench 36
6.8 Schematic of the test bench for the NAND2 gates 37
6.9 Schematic of the test bench for the NOR2 gates 37
6.10 Schematic of the inverter test bench 40
6.11 Schematic of the test bench for the NAND2 gates 41
6.12 Schematic of the test bench for the NOR2 gates 42
7.1 Upper and lower threshold for the transfer characteristics of the sets of transistor gate sizes presented in tables $7.2,7.3,7.4,7.5$ and 7.6 with $V_{D D}=100 \mathrm{mV}$ 45
7.2 The mean noise margin in a 2 T and a 4 T Inverter at increasing supply voltage. 50
7.3 The mean noise margin relative to $V_{D D}$. Devices are 2 T and 4 T inverters 51
7.4 The mean noise margin in a 4 T and a 8 T NAND2 gate at increasing supply voltage. 52
7.5 The mean noise margin relative to $V_{D D}$. Devices are 4 T and 8T NAND2 gates. 53
7.6 The mean noise margin in a 4 T and a 8 T NAND2 gate at increasing supply voltage. 54
7.7 The mean noise margin relative to $V_{D D}$. Devices are 4 T and 8 T inverters. 55
7.8 The power consumption in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV 56
7.9 The delay in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV 57
7.10 The power delay product in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV 57
7.11 The power consumption in the ring oscillators constructed of 4T and 8T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 58
7.12 The delay in the ring oscillators constructed of4T and 8T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 59
7.13 The power delay product in the ring oscillators constructed of 4T and 8T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 59
7.14 The power consumption in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV 60
7.15 The delay in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV 61
7.16 The power delay product in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV 61
7.17 The minimum supply voltage in the ring oscillators constructed of the logical gates 63
7.18 The relative process variation of $S P_{x}$ for the 2 T and the 4 T inverters. 70
7.19 The relative process variation of $S P_{x}$ for the 4T and the 8T NAND2 gates. 72
7.20 The relative process variation of $S P_{x}$ for the 4 T and the 8 T NOR2 gates. 73
7.21 Comparison of the relative metrics of the 2 T inverter. 76
7.22 Comparison of the relative metrics of the 4T inverter. 76
7.23 Comparison of the relative metrics of the 4T NAND2 gate. 78
7.24 Comparison of the relative metrics of the 8T NAND2 gate. 78
7.25 Comparison of the relative metrics of the 4T NOR2 gate 80
7.26 Comparison of the relative metrics of the 8T NOR2 gate 80
7.27 Comparison of the final transistor gate size sets of the different logical gates. Values are relative to the 2 T inverter. 82
7.28 Body biasing the nfet in a 8T NAND2 gate. $\mathrm{L}=30 \mathrm{~nm}$, W nfet $=200 \mathrm{~nm}$, W pfet $=2000 \mathrm{n}$ 83
7.29 Body biasing the pfet in a 8 T NAND2 gate. $\mathrm{L}=30 \mathrm{~nm}, \mathrm{~W}$ nfet $=200 \mathrm{~nm}, \mathrm{~W}$ pfet $=2000 \mathrm{n}$ 84
7.30 Body biasing both the nfet and the pfet in a 8 T NAND2 gate. $\mathrm{L}=30 \mathrm{~nm}$, W nfet $=200 \mathrm{~nm}$, W pfet $=1500 \mathrm{n}$ 84
7.31 The power consumption in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 85
7.32 The delay in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 86
7.33 The power delay product in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV 86
7.34 Comparison of the relative metrics for the different NAND2 gates 88
8.1 Comparison of the power delay product 93
A. 1 Nfet testbench schematic 99
A. 2 Pfet testbench schematic 100
A. 32 Transistor inverter schematic 101
A. 42 Transistor inverter symbol 102
A. 52 Transistor inverter test bench 103
A. 62 Transistor inverter ring oscillator 104
A. 74 Transistor inverter schematic 105
A. 84 Transistor inverter symbol 106
A. 94 Transistor inverter test bench 107
A. 104 Transistor inverter ring oscillator 108
A. 114 Transistor NAND2 gate schematic 109
A. 124 Transistor NAND2 gate symbol 110
A. 134 Transistor NAND2 gate test bench 111
A. 144 Transistor NAND2 gater ring oscillator 112
A. 158 Transistor NAND2 gate schematic 113
A. 168 Transistor NAND2 gate symbol 114
A. 178 Transistor NAND2 gate test bench 115
A. 18 8Transistor NAND2 gater ring oscillator 116
A. 194 Transistor NOR2 gate schematic 117
A. 204 Transistor NOR2 gate symbol 118
A. 214 Transistor NOR2 gate test bench 119
A. 224 Transistor NOR2 gater ring oscillator 120
A. 238 Transistor NOR2 gate schematic 121
A. 248 Transistor NOR2 gate symbol 122
A. 258 Transistor NOR2 gate test bench 123
A. 26 8TransistorNOR2 gater ring oscillator 124

List of Tables

4.1 The threshold voltages of the $n f e t_{-} b$ and the $p f e t_{-} b$ acquired from extrapolation and DC operation point 24
4.2 The threshold voltage of the $n f e t_{-} b$ and the $p f e t_{-} b$ cell from the cmos32lp library, with varying bulk-source voltage. $V_{D S}=50 \mathrm{mV}$ for the $n f e t _b . V_{S D}=50 \mathrm{mV}$ for the $p f e t_{-} b$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$ 26
5.1 Transistor large signal characteristics. 27
6.1 Transistor sizes used in parametric analysis 38
6.2 Supply voltages used for the parametric analysis, and the range of results that will be evaluated 38
6.3 Transistor sizes used to find minimum $V_{D D}$ of the NOR2 gates 39
7.1 Limits for balance quality at supply voltages from 85 mV to 105 mV 47
7.2 The sets of transistor gate sizes that give the smallest gate area. Devices are 2 T and 4T Inverter, 4T and 8T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$ 47
7.3 The sets of transistor gate sizes that give the smallest gate area and has good balance. Devices are 2 T and 4T Inverter, 4T and 8T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$ 47
7.4 The sets of transistor gate sizes that give the largest gate area and beeing balanced.Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$ 48
7.5 The sets of transistor gate sizes that give the largest gate area and having good balance. Devices are 2T and 4T Inverter, 4T and 8T NAND2, and 4T NOR2 and 8 T NOR2. $V_{D D}=100 \mathrm{mV}$ 48
7.6 Lowest ratio between the width of the pfet and the nfet at 100 mV . Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T and 8 T NOR2. $V_{D D}=100 \mathrm{mV}$ 48
7.7 The sets of transistor gate sizes that have the lowest ratio between the higher and lower noise margins at 100 mV . Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$ 49
7.8 The sets of transistor gate sizes that have the highest average noise margins at 100 mV . Devices are 2 T and 4 T Inverter, 4 T and 8T NAND2, and 4T NOR2 and 8 T NOR2. $V_{D D}=100 \mathrm{mV}$ 49
7.9 The minimum supply voltage in the ring oscillators constructed of the logical gates 62
7.10 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption. Devices are 2T and 4T Inverters 64
7.11 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay. Devices are 2T and 4T Inverters 65
7.12 The sets of transistor gate sizes that use the lowest supply voltage and have the lowest power delay product. Devices are 2 T and 4 T Inverters 65
7.13 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption. 66

7.14 The sets of transistor gate sizes that uses the lowest supply voltage and have the
lowest delay 66
7.15 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power delay product. 67
7.16 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption. 67
7.17 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay 68
7.18 The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay 68
7.19 Names of transistor gate size sets. Devices are 2T and 4T Inverters. 69
7.20 Results from the Monte Carlo simulations of the 2 T and the 4 T Inverters. 70
7.21 Names of transistor gate size sets. Devices are 4T and 8T NAND2 gates. 71
7.22 Results from the Monte Carlo simulations of the 4T and the 8T NAND2 gates. 71
7.23 Names of transistor gate size sets. Devices are 4T and 8T NOR2 gates. 72
7.24 Results from the Monte Carlo simulations of the 4 T and the 8 T NOR2 gates. 73
7.25 Summary of the DC properties of the different transistor gate size sets of the 2 T and the 4 T inverters. 75
7.26 Summary of the results of the transient analyses of the different transistor gate size sets of the 2 T and the 4 T inverters. 75
7.27 Summary of the DC properties of the different transistor gate size sets of the 4 T and the 8T NAND2 gates. 77
7.28 Summary of the results of the transient analyeses of the different transistor gate size sets of the 4 T and the 8 T NAND2 gates 77
7.29 Summary of the DC properties of the different transistor gate size sets of the 4 T and the 8 T NOR2 gates 79
7.30 Summary of the results of the transient analyses of the different transistor gate size sets of the 4 T and the 8 T NOR2 gates. 79
7.31 The final sets of transistor gate sizes. 81
7.32 The results of the DC analyses of the final sets of transistor gate sizes. 81
7.33 The results of the transient analyses of the final sets of transistor gate sizes 81
7.34 The different sets of transistor gate sizes for the 8T NAND2 gate using body biasing. 85
7.35 Transistor gate dimensions for the different NAND2 gates. 87
7.36 Results from the Monte Carlo simulations of the different NAND2 gates. 87
7.37 Summary of the DC properties of the differnet NAND2 gates. 87
7.38 Summary of the results of the transient analyses of the differnet NAND2 gates. 87
8.1 Comparison of the power delay product 93
B. 1 The $S P_{x}$ of the 2 T Inverter at 100 mV . Results from the parametric DC analysis, 125
B. 2 The $S P_{x}$ of the 4 T Inverter at 100 mV . Results from the parametric DC analysis. 130
B. 3 The $S P_{x}$ of the 4T NAND2 at 100 mV . Results from the parametric DC analysis. 135
B. 4 The $S P_{x}$ of the 8T NAND2 at 100 mV . Results from the parametric DC analysis. 140
B. 5 The $S P_{x}$ of the 4 T NOR2 at 100 mV . Results from the parametric DC analysis. 142
B. 6 The $S P_{x}$ of the 8T NOR2 at 100 mV . Results from the parametric DC analysis. 146
B. 7 The power and delay in the ring oscillator constructed of three 2 T inverters. Results of transient analyses 151
B. 8 The power and delay in the ring oscillator constructed of three 4 T inverters. Results of transient analyses 152
B. 9 The power and delay in the ring oscillator constructed of three 4T NAND2 gates. Results of transient analyses 153
B. 10 The power and delay in the ring oscillator constructed of three 8T NAND2 gates. Results of transient analyses 157
B. 11 The power and delay in the ring oscillator constructed of three 4T NOR2 gates. Results of transient analyses 158
B. 12 The power and delay in the ring oscillator constructed of three 8T NOR2 gates. Results of transient analyses 159

1. Introduction

As technology is entering the era of the Internet Of Things (IOT) the need for ultra low power hardware is increasing. Many everyday items such as power switches, light bulbs, blinds, thermometers and appliances can now be controlled over the Internet from smart phones and tablets. In order to achieve this, these items have integrated processors with TCP/IP compatibility. Some items harvest the extra energy needed to operate a processor from the power grid, others are depending on battery power. To extend the lifetime of the battery, the hardware must consume as little power as possible.

A strategy for making hardware consume less power is to enable sleep mode. In sleep mode most of the device is shut off, and will therefore consume only a small amount of power. The device is periodically woken up from sleep mode to do its tasks, before it goes back to sleeping. A thermometer for example hanging outside a building, sends the temperature to a receiver inside the house. Measurements does not need to be taken more than once every minute, or maybe even once every hour. The parts of the thermometer that measures temperature and sends it to the receiver needs to be active at very short periods. The rest of the time, the device can stay in sleep mode.

The main objective of a sleep mode circuit is to consume as little power as possible. Speed and performance are secondary compared to power consumption. An easy way to reduce the power consumption, is to reduce the circuits supply voltage. Reducing the voltage below the transistors threshold voltage (sub-threshold) will greatly reduce the power consumption, but will also reduce the performance of the circuit [2]. However, for nodes in the Internet of Things that spends most of its time in sleep mode, performance is not as important as a low power consumption.

To create sub-threshold circuits basic building blocks are needed. Sub-threshold has been around for some decades[3], but it is mostly used for analog purposes. The basic building blocks needed for digital circuits is still in an early stage. This project contributes to further investigate and develop basic logic gates that are able to operate at sub-threshold voltages.

1.1 Project description and specification

In this project logical gates were made with transistors from the cmos32lp 28nm FD-SOI library provided by Circuits Multi Projets (CMP). The gates were able to operate at sub-threshold voltages. They were built using both traditional and alternative topologies. The performance of the topologies were compared to each other. The 28 nm gates were also compared to similar gates made with NTNUs 65 nm CMOS technology. The project is titled: Ultra low voltage combinatorial logic building blocks
Here are the project specifications:

- By using cells from the cmos32lp library, the following gates were created:
- 2T Inverter
- 4T Inverter
- 4T NAND
- 8T NAND
- 4T NOR
- 8T NOR
- All gates were able to operate at sub-threshold voltages
- The performance of the different topologies were be compared to each other based on the following metrics:
- Gate balance
- Noise margins
- Power
- Delay
- Process variations
- How body/ bulk biasing affects the metrics above were investigated.

1.2 Purpose and scope of the project

The purpose of this project was to acquire a library of standard logical cells that were able to operate at sub-threshold voltages, and provide documentation on the performance of these cells. This library consists of the logical gates listed above. This project gives an indication on how different gate topologies and manufacturing processes affects the performance of the cells. The cells created and the simulation results are intended as a contribution to further development of sub-threshold logic.

In this project the characteristics of the transistors nfet_ b and $n f e t _b$ from the $c m o s 32 l p$ library were investigated. Based upon this investigation, the schematics of the logical cells were created. Test benches were created to test the metrics in the list above for different transistor gate dimensions. The results were used to decide final sizes for all the logical gates. All circuits were created using the EDA tool Cadence Virtuoso, and all simulations were done using Spectre. Graphs and tables were evaluated using Excel.

1.3 Goal and expected results

The main goal in this project was to push the voltage as low as possible. The logical gates had to be able to operate at satisfactory level, but reduction of supply voltage was prioritized before performance. It has been speculated in that the lowest practical voltage is $100 \mathrm{mV}[4]$. Of course this statement was put to the test, and most simulations in this project were performed in the 100 mV area.
"..to allow for some tolerance to process and design margins, operation at VDD 100 mV may prove a practical lower bound."

- Nowak, IBM, 02

Some research has been done on how 4T NAND2 compares to 8T NAND2. According to the paper Modular Layout-friendly Cell Library Design Applied for Subthreshold CMOS [1], an 8T topology will have reduced speed compared to a 4 T topology, but the average power consumption will stay almost the same. The 8T NAND will have a lower statistical variation, and can be a tool mitigating the effects of process variations.

1.4 Word list

σ Standard deviation
2T 2 Transistor
4T 4 Transistor
8T 8 Transistor
GB Good Balance
L Length of the transistor gate
Mean Arithmetic mean/ Average value.
NAND2 2 input NAND gate
NOR2 2 input NOR gate
PDP Power Delay Product
$\mathbf{S P}_{x}$ X-coordinate of the Switching Point
$\mathrm{V}_{D D}$ Positive supply voltage.
VNM Noise margin
$\mathbf{V N M}_{H}$ Higher Noise margin
$\mathbf{V N M}_{L}$ Lower Noise margin
$\mathbf{V}_{T H}$ Threshold voltage
W Width of the transistor gate

1.5 Structure of this document

In this report the following chapters are included:

- Chapter 1 gives an introduction and a presentation of the main topics of this report
- Chapter 2 is some theoretical background specific for this project
- Part I: Investigate the transistor characteristics, contains the investigation of the transistors
- Chapter 3 presents the method for testing the transistors
- Chapter 4 contains simulation results of the inverters
- Chapter 5 is a discussion of the results presented in chapter 4
- Part II: Schematic design of the logical gates, contains the description on creation and testing of the logical cells at schematic level
- Chapter 6 presents the creation of the schematics of the logical cells and the test benches
- Chapter 7 contains simulation results of the logical cells on schematic level
- Chapter 8 is a discussion of the results presented in chapter 7 and the method presented in chapter 6
- Chapter 9 presents a conclusion of the work done
- Appendix A contains the schematics of gates and test benches
- Appendix B contains tables of some of the simulation results

2. Theory background

2.1 Logic gate topologies

Here are the topolgies that used in this project.

- 2 transistor inverter: figure 2.1.
- 4 transistor inverter: figure 2.2 .
- 4 transistor NAND2: figure 2.3.
- 8 transistor NAND2: figure 2.4.
- 4 transistor NOR2: figure 2.5 .
- 8 transistor NOR2: figure 2.6.

Figure 2.1: 2 transistor inverter. Schematic

Figure 2.2: 4 transistor inverter. Schematic

Figure 2.3: 4 transistor NAND2 gate. Schematic

Figure 2.4: 8 transistor NAND2 gate. Schematic

Figure 2.5: 4 transistor NOR2 gate. Schematic

Figure 2.6: 8 transistor NOR2 gate. Schematic

2.2 Sub-threshold current

When a transistor have a drain source voltage lower than the transistors threshold voltage ($V_{D S}<V_{T H}$) while still beein forward biased the effects of drifts are reduced, and the equilibrium of the depletion region is mainly maintained by diffusion. In this stat a current going from the drain to the source called the sub-threshold current $\left(I_{S T}\right)$ is dominant \}. The sub-threshold current is given by the formula [2][5].

$$
\begin{equation*}
I \approx I_{S T}=I_{0} \frac{W}{L} e^{\frac{\left(V_{G S}-V_{T H}\right)}{n v_{t}}}\left(1-e^{-\frac{V_{D S}}{v_{t}}}\right) \tag{2.1}
\end{equation*}
$$

I_{0} is the sub-threshold current when $V_{G S}=V_{T H}$. The sub-threshold factor is referred to as n. Both I_{0} and n are decided by the technology used. The variable v_{t} is the thermal voltage given by $\frac{k T}{q}$ (k is Boltzmann's constant, and q is the charge of an electron). W/L is the ratio between the width and length of the transistor [2].
Due to this $I_{S T}$ it is possible for logical gates to operate with a $V_{D D}$ below $V_{T H}$.

2.3 Metrics

2.3.1 Gate balance

Noise Margin

To establish at what point a logical gate switches logical state, the transfer characteristics of the gate must be explored. When a gate switchtes from "1" to " 0 ", the gain can be found by taking the derivative of the output curve. The points $V_{O H}$ is the highest output that is recognized as a logical "1", while $V_{O L}$ is the lowest output that is recognized as a logical "0". $V_{I H}$ is the lowest input that is recognized as a logical "1", and $V_{I L}$ is the highest input that is recognized as a logical " 0 ". The area between $V_{I H}$ and $V_{I L}$ is a region where it is undefined whether the input is " 1 " or " 0 ", and is called the Undefined region. The area between $V_{O H}$ and $V_{I H}$ is a logical $" 1 "$ and the area between $V_{O L}$ and $V_{I L}$ is a logical " 0 ".

Figure 2.7: Transfer characteristic of an inverters output, and the derivative of the output. $V_{O H}$, $V_{O L}, V_{I H}$ and $V_{I L}$ are marked. $V_{D D}=100 \mathrm{mV}$

The area between $V_{O H}$ and $V_{I H}$, and the area between $V_{O L}$ and $V_{I L}$ are also a measurement of how large noise signals a logical gate can be exposed to. These areas are often refered to as noise margins. The high noise margin $\left(V N M_{H}\right)$ is the region between $V_{O H}$ and $V_{I H}$. The low noise margin $\left(V N M_{L}\right)$ is the region between $V_{O L}$ and $V_{I L}$. These relationships are described in the formulas 2.2 and 2.3, and illustrated in figure 2.8 [6].

$$
\begin{gather*}
V N M_{H}=V_{O H}-V_{I H} \tag{2.2}\\
V N M_{L}=V_{I L}-V_{O L} \tag{2.3}
\end{gather*}
$$

Undefined region

Figure 2.8: Illustration of noise margins

Switching point

The switching point of a logical gate is the point where the output value is equal to $\frac{v d d}{2}$. In figure 2.7, this point is referred to as V_{M}. Below is an image of a DC-characteristics of an inverter. The $v d d$ and $\frac{v d d}{2}$ are marked along the y -axis. The switching point is marked with $S P$, where the output is equal to $\frac{v d d}{2}$. The value of the input voltage at the switching point is marked as $S P(x)$ along the x -axis. This input voltage is the x -coordinate of the switching point and will be referred to as " $S P_{x}$ ".

Figure 2.9: Transfer characteristic of an inverter with perfect balance. SP and $S P_{x}$ are marked. $V_{D D}=100 \mathrm{mV}$

The $S P_{x}$ is a measure of how the gate is balanced. If the gate is perfectly balanced, the input voltage and output voltage are equal at the switching point, and both are equal to $\frac{v d d}{2}$. When this is true, the gate is the most robust against noise. The further away from $\frac{v d d}{2} S P_{x}$ is, the more prone to noise is the gate. In figure 2.9, noise pulses at the input needs to be at least 50 mV , in order to make the inverter change state. In the image below 2.10 a noise pulse of only 25 mV can make the inverter change state from 1 to 0 .

Figure 2.10: Transfer characteristic of an unbalanced inverter. SP and $S P_{x}$ are marked. $V_{D D}=$ 100 mV

In the ideal situation $S P_{x}=\frac{v d d}{d}$. However a logical gate might be fully functional with some deviation of $S P_{x}$. In this report different grades of balance will be used to determine the quality of the logical gate. They are given in the table below:

Grade of balance	Range of $S P_{x}$
Perfect balance	$\frac{v d d}{2}$
Good Balance	$\frac{v d d}{2} \cdot 45 \%$ to $\frac{v d d}{2} \cdot 55 \%$
Balanced	$\frac{v d d}{2} \cdot 40 \%$ to $\frac{v d d}{2} \cdot 60 \%$
Unbalanced	under $\frac{v d d}{2} \cdot 40 \%$ or over $\frac{v d d}{2} \cdot 60 \%$

Both noise margins and switching point are ways to measure the balance of a logical gate. Both methods are used in this project. In order to measure the switching point and noise margins, transfer characteristics similar to the one in figure 2.9 must be created. For an inverter, this is done by simply increasing the input voltage from $g n d$ to $V_{D D}$. For a 2 input NAND gate (NAND2) this can be done either by connecting the two inputs together (inverter coupling) and then increase the common input from $g n d$ to $V_{D D}$. Or it could be done by connecting one input to $V_{D D}$ while increasing the other input from gnd to $V_{D D}$. A similar approach can be used on the 2 input NOR gate (NOR2). It can be inverter coupled, or one input can be connected to gnd while the other input is increased from gnd to $V_{D D}$.

2.3.2 Power

In logical gates the power consumed is the sum of the static power dissipation and the dynamic or switching power dissipation. This can be estimated with the formula 2.4, where the static power consumption $\left(P_{D C}\right)$ is given in formula 2.5, and the dynamic power consumption $\left(P_{\text {dyn }}\right)$ is given in formula 2.6. In the estimations $V_{D D}$ is the supply voltage, $I_{D D Q}$ is the leakage current, $C_{\text {out }}$ is the load capacitance, and f is the switching frequency of the device [6].

$$
\begin{gather*}
P=P_{D C}+P_{d y n} \tag{2.4}\\
P_{D C}=V_{D D} \cdot I_{D D Q} \tag{2.5}\\
P_{d y n}=C_{o u t} \cdot V_{D D}^{2} \cdot f \tag{2.6}
\end{gather*}
$$

By combining formula 2.5 and 2.6 the total power dissipation can be found. This is done in formula 2.7 [6].

$$
\begin{equation*}
P=V_{D D} I_{D D Q}+C_{o u t} V_{D D}^{2} f \tag{2.7}
\end{equation*}
$$

The EDA tool Cadence Virtuoso can measure the power consumed by a circuit more accurate than the estimation above. The estimation gives an indication on how the power consumption is, however the EDA tools measurements are more correct and were therefore used in this project. In order to do this, power needs to be saved as an output. By using the Cadence calculator, the average power consumed in a simulation can be calculated. The power obtained from the calculator is the the combined static and dynamic power, so it will not give an accurate indication whether it is the switching or the leakage that produces the majority of the power consumption. The total power will help to indicate which circuits uses the most power, and can be used together with the delay to create a power delay product.

2.3.3 Delay

The delay of the circuits is a measure of the speed. Delay determine at what frequencies the logical gates are able to operate. In this project the delay was measured while the circuits were operating at maximum speed. To achieve this, 3 -staged ring oscillators were created. The generation of the ring oscillators is described further in chapter 3. The delay were measured across one gate in the ring oscillator. Below is a figure of the input signal and output signal of the device. The delay between two flanks can be measured with the EDA tool. It measures the time between a falling or rising edge at the input at $\frac{V_{D D}}{2}$, and the matching edge at the output at $\frac{V_{D D}}{2}$.

Figure 2.11: Input and output of a ring oscillator. Delay is marked. $V_{D D}=108 \mathrm{mV}$

2.3.4 Power delay product

To decide when a circuit is operating at the most energy efficient point, the power delay product (PDP) is usually calculated[3] . To do this a ring oscillator is used to find the power and delay of the circuit at varying supply voltage. The voltage and delay are multiplied together and the power delay product is found (formula 2.8 and figure 2.12).

$$
\begin{equation*}
P D P(J)=\operatorname{Power}(W) \cdot \operatorname{Delay}(s) \tag{2.8}
\end{equation*}
$$

Figure 2.12: Power, Delay, and Power Delay Product. The circle indicates the lowest point. Transactions on Circuits and Systems, Nov. 2007.[7]

2.3.5 Process variations

The manufacturing process of integrated circuits may produce some variations between each sample. Even though all circuits in a batch have the same layout, there will be some differences, which will affect the yield. These variations can be simulated using a Monte Carlo simulation. The Monte Carlo will excert random instabilities to the circuit and measure the mean and standard deviation.

The Pelgrom model shows how standard deviation of mismatch between two devices is related to the transistor gate area. The model is presented below in equation 2.9. The formula presents the standard deviation σ of a model parameter $\Delta P . A_{P}$ is a process dependent constand, in this case the area proportionality constant for a constand P. W is the transistor gate width, while L is the gate length. S_{P} is how the model parameter varies with spacing, and D_{x} is the distance between the transistors $[8]$.

$$
\begin{equation*}
\sigma^{2}(\Delta P)=\frac{A_{P}^{2}}{W L}+S_{P}^{2} D_{x}^{2} \tag{2.9}
\end{equation*}
$$

Formula 2.9 show that process specific constants $\left(A_{P}\right)$, layout specific constants (S_{P} and D_{x}), and the gate area ($W L$) affects the process variations in terms of standard deviation (σ). The constants specific for process and layout might be difficult to change, widht and length are however much more easy to manipulate. The process variations are reduced by increasing the transistor gate size. This is illustrated in a simplified version of Pelgroms mismatch model in equation 2.10.

$$
\begin{equation*}
\sigma(\Delta P) \approx A_{P} \frac{1}{\sqrt{W L}} \tag{2.10}
\end{equation*}
$$

Part I

Investigate the transistor characteristics

3. Procedure for transistor investigations

In this chapter the proces of investigating the transistors is described. The transistors used are the $n f e t _b$ and the pfet_b from the CMP provided FD-SOI library cmos32lp. These transistors were used in all the logical gates in this project. The simulations performed here provided transistor characteristics that were be used for consturction of the logical gates.

3.1 Areas of operation

To determine the different regions of operation, the drain current I_{D} was measured as the DrainSource voltage $V_{D S}$ changed [5]. The Gate-Source voltage $V_{G S}$ and the Bulk-Source $V_{G S}$ voltage were 0 V . The transistor cells used were the 4 terminal FETs nfet_ b and $p f e t _b$. The dimensions used were the minmum values Width $=200 \mathrm{~nm}$ and Length $=30 \mathrm{~nm}$. The setup of the test benches used are presented in figures 3.1 and 3.2. The results are presented in figures 4.1 and 4.2 in chapter 4.

Figure 3.1: Nfet testbench schematic. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

Figure 3.2: Pfet testbench schematic. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

3.2 Finding the threshold voltage

The threshold voltage $V_{t h}$ can be extrapolated from the $V_{G S}$ vs I_{D} plot of the transistors [5]. To do this the drain current I_{D} was measured while the gate source voltage $V_{G S}$ was increased from 0 V to 1 V . The transistor must be in the triode region during this simulation. It can be seen in table 5.1 in chapter 4 that the $V_{D S}$ must be below 80 mV for the $n f e t$ and below 100 mV for the $p f e t$. In the simulation performed here, $V_{D S}$ was 50 mV . The testbenches used for these simulations were the same as figure 3.1 and 3.2. The bulk was connected to the source, so $V_{B S}$ was 0 V . The results of the simulations can be found in figures 4.3 and 4.4 in chapter 4 .

The extrapolation were done by drawing a tangent where $I_{D S}$ curve approximates a straight line. The tangent intersects the line $I_{D S}=0 A$. At this intersection $V_{G S}=V_{t h}$. Figure 3.3 shows the I_{D} as a solid black line starting in origo, and the tangent is the dotted line. $V_{t h}$ is where the tangent intersect $I_{D}=0 V$. The approximations of $V_{t h}$ were done in figures 4.5 and 4.6, and the results are presented in table 4.1.

Figure 3.3: Illustration of how to extrapolate $V_{t h}$ from a $V_{G S}$ vs I_{D} plot.
The EDA tool Cadence virtuos can also be used to find transistor characteristics using spectre. By saving DC operating points during simulations, the transistor characteristics can be found using a result browser. This was done and, the results are compared to the extrapolated values, in table 4.1.

3.3 Body biasing

How the bulk source voltage $\left(V_{B S}\right)$ impacts the threshold voltage is also investigated. This was done by performing a parametric analysis of the $V_{G S}$ versus I_{D} plot with varying $V_{B S}$. The results can be found in figures 4.7 and 4.8 in chapter 4. The DC operating points were saved, and presented in table 4.2.

4. Results from transistor simulations

In this chapter the results of the simulations performed on the nfet_b and bfet_b from the cmos32lp library. The tests are described in chapter 3. The results are further discussed in chapter 5.

Below in figure 4.1 is the $V_{D S}-I_{D S}$ characteristic of the nfet_b. The figure shows how the DrainSource current $\left(I_{D S}\right)$ is affected by an increasing Drain-Source voltage $\left(V_{D S}\right)$. Both the gate and the bulk of the transistor are short circuited to the source, so the Gate-Source voltage ($V_{G S}$) and the Bulk-Source voltage $\left(V_{B S}\right)$ are 0 V . The transistors gate dimensions are the minimum values $($ Width $=200 \mathrm{~nm}$, Length $=30 \mathrm{~nm})$.

Tue Dec 9 20:03:36 2014

Figure 4.1: $V_{D S}-I_{D S}$-plot of the $n f e t _b$ cell from the cmos32lp library.

$$
V_{G S}=0 V . V_{B S}=0 V . \text { Width }=200 \mathrm{~nm} . \text { Length }=30 \mathrm{~nm} .
$$

Below in figure 4.2 is the $V_{S D}-I_{D S}$ characteristic of the $p f e t _b$. The figure shows how the DrainSource current $\left(I_{D S}\right)$ is affected by an increasing Source-Drain voltage ($V_{S D}$). Both the gate and the bulk of the transistor are short circuited to the source, so the Source-Gate voltage ($V_{S G}$) and the Source-Bulk voltage $\left(V_{S B}\right)$ are 0 V . The transistors gate dimensions are the minimum values $($ Width $=200 \mathrm{~nm}$, Length $=30 \mathrm{~nm})$.

Figure 4.2: $V_{S D}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library.

$$
V_{S G}=0 V . V_{S B}=0 V . \text { Width }=200 \mathrm{~nm} . \text { Length }=30 \mathrm{~nm} .
$$

Figure 4.3 shows the $V_{G S}-I_{D S}$ characteristic of the nfet_b. The graph shows the relationship between the Gate-Source voltage $\left(V_{G S}\right)$ and the Drain-Source current $\left(I_{D S}\right)$, while the DrainSource voltage ($V_{D S}$) is 50 mV . The bulk is connected to source so the Bulk-Source voltage $\left(V_{B S}\right)$ is 0 V . The transistors gate dimensions are the minimum values (Width $=200 \mathrm{~nm}$, Length $=30 \mathrm{~nm})$.

Figure 4.3: $V_{G S}-I_{D S}$-plot of the $n f e t_{-} b$ cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV} . V_{B S}=0 V$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

Figure 4.4 shows the $V_{S G}-I_{D S}$ characteristic of the $p f e t_{-} b$.

Figure 4.4: $V_{S G}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library.

$$
V_{S D}=50 \mathrm{mV} . V_{S B}=0 V . \text { Width }=200 \mathrm{~nm} . \text { Length }=30 \mathrm{~nm} .
$$

Approximate threshold voltage can be found by extrapolation. This is done and presented in figures 4.5 and 4.6.

Figure 4.5: Extrapolated threshold voltage from the $V_{G S}-I_{D S}$-plot of the $n f e t_{-} b$ cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV} . V_{B S}=0 \mathrm{~V}$.

Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

Figure 4.6: Extrapolated threshold voltage from the $V_{S G}-I_{D S}$-plot of the pfet_b cell from the cmos32lp library. $V_{S D}=50 \mathrm{mV} . V_{S B=0 \mathrm{~V}}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

The threshold voltage acquired by saving DC operation points is presented in the table below, together with the extrapolated threshold voltage:

nfet $V_{t h}(\mathrm{~V})$	nfet $V_{t h}(\mathbf{V})$	pfet $V_{t h}(\mathbf{V})$ Extrapolated	pfet $V_{t h}(\mathbf{V})$ DC operation point
Extrapolated	DC operation point		
$\sim 420 \mathrm{~m}$	402 m	$\sim 477 \mathrm{~m}$	458 m

Table 4.1: The threshold voltages of the nfet_b and the pfet_b acquired from extrapolation and DC operation point.

Here is the $V_{G S}-I_{D S}$ characteristics of the $n f e t_{-} b$, with varying bulk source voltage:

Figure 4.7: $V_{G S}-I_{D S}$-plot of the $n f e t_{-} b$ cell from the cmos32lp library. $V_{D S}=50 \mathrm{mV}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

Here is the $V_{S G}-I_{D S}$ characteristics of the $p f e t_{-} b$, with varying source-bulk voltage:

Figure 4.8: $V_{S G}-I_{D S}$-plot of the $p f e_{-} b$ cell from the cmos32lp library. $V_{S D}=50 \mathrm{mV}$. Width $=200 \mathrm{~nm}$. Length $=30 \mathrm{~nm}$.

Here is a table of the threshold voltages of the $n f e t_{-} b$ and the $p f e t_{-} b$, as the bulk voltage varies.

$V_{B S} \mathbf{(V)}$	nfet $V_{t h} \mathbf{(V)}$	pfet $V_{t h} \mathbf{(V)}$
-500 m	434 m	423 m
-400 m	428 m	430 m
-300 m	422 m	437 m
-200 m	415 m	444 m
-100 m	409 m	451 m
0	402 m	458 m
100 m	396 m	465 m
200 m	390 m	472 m
300 m	383 m	478 m
400 m	377 m	485 m
500 m	370 m	492 m

Table 4.2: The threshold voltage of the $n f e t_{-} b$ and the $p f e t_{-} b$ cell from the cmos32lp library, with varying bulk-source voltage. $V_{D S}=50 \mathrm{mV}$ for the nfet_b. $V_{S D}=50 \mathrm{mV}$ for the pfet_ b. Width $=200 \mathrm{~nm}$.

Length $=30 \mathrm{~nm}$.

5. Discussion of the transistor simulation results

5.1 Identifying the sub-threshold area

The graphs in figures 4.1 and 4.2 shows how the Drain-Source current I_{D} is related to the DrainSource voltage $V_{D S}$. From this relationship we can identefy the different regions of operations (Large signal characteristics) [5]. These characteristics are given in the table below.

Device	Triode region $\Delta V_{D S}$	Active region $\Delta V_{D S}$	Short-channel effects region $\Delta V_{D S}$
nfet_b	$0 \mathrm{~V}-80 \mathrm{mV}$	$80 \mathrm{mV}-260 \mathrm{mV}$	$260 \mathrm{mV}<$
pfet_b	$0 \mathrm{~V}-100 \mathrm{mV}$	$100 \mathrm{mV}-310 \mathrm{mV}$	$310 \mathrm{mV}<$

Table 5.1: Transistor large signal characteristics.
To find the different regions of inversion, the relationship between I_{D} and the Gate-Source voltage $\left(V_{G S}\right)$ must be ploted while the transistor is in the triode region. This is done, and the results are displayed in figures 4.3 and 4.4. In these tests $V_{D S}=50 \mathrm{mV}$. By extrapolation an approximate threshold voltage can be estimated. This is done in figures 4.5 and 4.6. The EDA tool (Cadence Virtuoso) is able to estimate the threshold voltage as well by saving DC operation points. The threshold voltages of the devices are presented in table 4.1. The estimated values are larger than the values obtained from the design tool, but they are quite close to each other. This indicates that the design tool gives reliable DC operation points, and can be used to measure the threshold voltage further in this project.

Table 4.2 shows how body biasing can influence the threshold voltage of the devices. Applying a voltage to the bulk of the nfet higher than the source, will reduce the threshold voltage and make it in CMOS terms "stronger". A lower voltage will make the threshold voltage increase, and make it "weaker". In this project, the source of nfet will usually be gnd. So a positive voltage at the bulk of the nfet will make it stronger, while a negative voltage will make it weaker. For the pfet a voltage at the bulk higher than the source will make the threshold voltage higher. While a bulk voltage lower than the source will give a lower threshold voltage. The source of $p f e t$ will usually be $v d d$. So a bulk voltage higher than $v d d$ will give a weaker $p f e t$, while a bulk voltage lower than $v d d$ will make it stronger.

In this project, the aim is to generate logical gates that are operational in the weak inversion region (sub-threshold), with as low supply voltage as possible. Supply voltages close to 400 mV will be near threshold, since it is close to the threshold voltage of the nfet_b. So in order to be sub-threshold all supply voltages needs to be deeper into the weak inversion region. As a starting point, supply voltages in the area $85 \mathrm{mV}-105 \mathrm{mV}$ were investigated. The maximum of

105 mV ensures that the gates are truly sub-threshold. When the supply voltage is below 85 mV both the nfet and pfet devices are in the triode region, and making the gates operate might prove difficult. However, the supply voltage may end up outside these boundaries at a later state if needed.

Part II

Schematic design of the logical gates

6. Schematic design procedure

6.1 2T Inverter

A 2T Inverter was created by using the two transistors nfet_b and pfet_b. The Inverter was constructe with the 3 inputs in, bulk_pfet and bulk_nfet, and one output out. The source of the $n f e t _b$ was connected to the ground net (gnd!). The source of the $p f e t_{-} b$ was connected to the supply voltage net $v d d!$. The schematic of the inverter is presented in figure 6.1.

Figure 6.1: Schematic of the 2 T Inverter

6.2 4T Inverter

The 4 T Inverter was created by using two of each of the transistors nfet_b and pfet_b. The Inverter has the 3 inputs in, bulk_pfet and bulk_nfet, and one output out. The source of the lower nfet was connected to the ground net (gnd!). The source of the top pfet was connected to the supply voltage net $v d d!$! The schematic of the inverter is presented in figure 6.2.

Figure 6.2: Schematic of the 4T Inverter

6.3 4T NAND2

The 4T NAND2 gate was created by using two of each of the transistors nfet_b and pfet_b. The gate was designed with the 4 inputs $i n_{-} A, i n_{-} B$, bulk_pfet and bulk_nfet, and one output out. The source of the lower nfet was connected to the ground net (gnd!). The source of the two pfets were connected to the supply voltage net $v d d!$. The schematic is presented in figure 6.3

Figure 6.3: Schematic of the 4T NAND2 gate

6.4 8T NAND2

The 8T NAND2 gate was created by using four of each of the transistors nfet_ b and $p f e t_{-} b$. The gate was constructed with the 4 inputs $i n_{-} A$, in_B, bulk_pfet and bulk_nfet, and one output out. The source of the two lower nfets were connected to the ground net (gnd!). The source of the two upper pfets were connected to the supply voltage net vdd!! The schematic is presented in figure 6.4

Figure 6.4: Schematic of the 8T NAND2 gate

6.5 4T NOR2

The 4T NOR2 gate was created by using two of each of the transistors nfet_b and pfet_b. The gate was designed with the 4 inputs $i n_{-} A$, in_B, bulk_pfet and bulk_nfet, and one output out. The source of the two nfets were connected to the ground net (gnd!). The source of the top pfet was connected to the supply voltage net $v d d!$. The schematic is presented in figure 6.5

Figure 6.5: Schematic of the 4T NOR2 gate

6.6 8T NOR2

The 8T NOR2 gate was created by using four of each of the transistors nfet_ b and pfet_b. The gate was constructed with the 4 inputs $i n_{-} A, i n_{-} B$, bulk_pfet and bulk_nfet, and one output out. The source of the two lower nfets were connected to the ground net (gnd!). The source of the two upper pfets were connected to the supply voltage net $v d d!$. The schematic is presented in figure 6.6

Figure 6.6: Schematic of the 8 T NOR2 gate

6.7 Test benches

6.7.1 Gate balance

Switching point

To test for gate balance, the testbench in figure $6.7,6.8$ and 6.9 were created. They were used to performe a DC analysis on the inverters, NAND2 gates and NOR2 gates respectivly. In the DC analysis the input voltage was increased from $0 V$ to $V_{D D}$. The input voltage was $V_{_}$in for the inverters, $i n_{-} A$ for the NAND2 gates and NOR2 gates. The $i n_{-} B$ voltage was set to be equal to $V_{D D}$ for the NAND2 gates, while it was set to $0 V$ for the NOR2 gates. This setup generated the transfer characteristics of the output signal of the logical gates. This output signal was measured and the value of $S P_{x}$ was calculated using the cross function in spectre.

Figure 6.7: Schematic of the inverter test bench

Figure 6.8: Schematic of the test bench for the NAND2 gates

Figure 6.9: Schematic of the test bench for the NOR2 gates

The tests were performed several times with the transistor gate sizes presented in table 6.1. This process was a parametric analysis. The tests were performed with supply voltages spanning from 85 mV to 105 mV with 5 mV intervals. All test results that had an $S P_{x}$ between 40% and 60% of $V_{D D}$ were stored for further processing.

	Minimum size (m)	Maximum size (m)	step size (m)
Nfet and Pfet length	30 n	40 n	5 n
Nfet width	200 n	800 n	50 n
Pfet width	200 n	2.5μ	50 n

Table 6.1: Transistor sizes used in parametric analysis

Table 6.2 presents the value of $S P_{x}$ at 40% and 60% of $V_{D D}$, with a $V_{D D}$ spanning from 85 mV to 105 mV with steps of 5 mV . The values in table 6.2 are the minumum and maximum values for $S P_{x}$ that will be included in the further evaluation.

$V_{D D}(\mathrm{mV})$	Ideal $S P_{X}(\mathrm{mV})$ $\left(\frac{V_{D D}}{2}\right)$	Minimum $S P_{X}(\mathrm{mV})$ $\left(V_{D D} \cdot 40 \%\right)$	Maximum $\left.S P_{X} \mathrm{mV}\right)$ $\left(V_{D D} \cdot 40 \%\right)$
105 m	52.5	42	63
100 m	50	40	60
95 m	47.5	38	57
90 m	45	36	54
85 m	42.5	34	51

Table 6.2: Supply voltages used for the parametric analysis, and the range of results that will be evaluated

Certain sets of transistor gate sizes were extracted from the results of the parametric analysis. To investigate how transistor gate size and size ratio influence other metrics such as power, delay and process variations, the sets with the lowest area, largest area, and lowest ratio between pfet and nfet were extracted and presented in chapter 7.1.1.

6.7.2 Noise margin

The noise margins were measured by using the same test benches that were used to find the switching point. DC analyses were used to find the transfer characteristics of the outputs, and the derivative of the outputs were calculated. The minimum and maximum values of the outputs were also measured. The derivative of the outputs and the minimum and maximum values of the outputs were used to find the lower and higher noise margins as described in chapter 2.3.1. These analyses were performed on all the the transistor sizes in table 6.1 , with $V_{D D}=100 \mathrm{mV}$. The results of can be found in chapter 7.1.1.

6.8 Power and delay

To test power and delay ring oscillators were created by connecting three logical gates in series. The NAND2 gates and the NOR2 gates were inverter coupled. These ring oscillators are presented in figures $6.10,6.11$ and 6.12 . The oscillation in the ring oscillators were started by using initial conditions. Transient analyses were performed to test power, delay and minimum $V_{D D}$.

6.8.1 Power delay product

To test for the power delay product (PDP) the transistor sizes that produced lowest gate area and good balance were used. Average power consumption and delay was measured. The delay was measured at $\frac{V_{D D}}{2}$ on the 55 th falling edges of the output and the input of one device. The power measurement was measuring the average power consumption of the whole circuit. The inverter and NAND2 tests ran for 3 ms and were performed with $V_{D D}$ spanning from 85 mV to 130 mV with intervals of 5 mV . The NOR2 tests ran with voltages spanning from 90 mV to 130 mV with intervals of 5 mV . The results were used to generate the power, delay and power delay product graphs in chapter 7.2.1.

6.8.2 Lowest $V_{D D}$

To find the lowest supply voltage that supported stable oscillations in the ring oscillator the delay was measured at 45% of $V_{D D}$ at the 55 th falling edge. Then simulations were performed with the the transistor gate sizes in table 6.1 with increasing $V_{D D}$ starting from 70 mV for the inverters and the NAND2 gates. The NOR2 gates used the transistor sizes in table 6.3. Simulations that returned the delay had oscillations, while simulations where the oscillations had decayed returned simulation error. The lowest supply voltage was found by looking after the simulation with the lowest $V_{D D}$ and still returned a delay.

	Minimum size (m)	Maximum size (m)	step size (m)
Nfet and Pfet length	30 n	40 n	5 n
Nfet width	200 n	800 n	50 n
Pfet width	200 n	4μ	50 n

Table 6.3: Transistor sizes used to find minimum $V_{D D}$ of the NOR2
gates

A similar approach was used to find the lowest $V_{D D}$ that supported oscillations between 25% and 75% of $V_{D D}$, and 5% and 95% of $V_{D D}$. Instead of measuring the delay at 45% of $V_{D D}$ the delay was measured at $25 \%, 75 \%, 5 \%$ and 95%. Then the lowest supply voltages was found by running simulations with the transistor gate sizes in table 6.1 for the inverters and the NAND2 gates, and the sizes in table 6.3 for the NOR2 gates. The simulations were run with increasing $V_{D D}$ until both 25% and 75%, or 5% and 95%, returned a delay instead of simulation error. The results of these simulations are presented in chapter 7.2.2.

Figure 6.10: Schematic of the inverter test bench

Figure 6.11: Schematic of the test bench for the NAND2 gates

Figure 6.12: Schematic of the test bench for the NOR2 gates

6.9 Process variation

Monte Carlo analyses were performed to investigate how the DC characteristics $S P_{x}$ and noise margins would vary in a manufacturing process. Monte Carlo was run with 200 samples and typical corners with $V_{D D}=100 \mathrm{mV}$. The test benches were the same as used previously (figures 6.7, 6.8 and 6.9). The transistor sizes used for the Monte Carlo analysis were the following:

- The sets with the lowest gate area and having good balance (Low area \& GB).
- The sets with the largest gate area and having good balance (Large area \& GB).
- The sets with the lowest ratio between the width of the pfet and the nfet (Low size ratio)
- The sets with the lowest ratio between the higher and lower noise margins (Low VNM ratio).
- The sets with the lowest supply voltage and the power delay product in the ring oscillator (Low $V_{D D} \&$ low PDP).

The results of the Monte Carlo analyses are presented in chapter 7.3

6.10 Deciding a final size

The transistor size sets that went through the Monte Carlo analyses were the sets that had best results according to the following criteria: Transistor gate size and size ratio, noise margins and low supply voltage. These sets were further compared to each other. Therefore both DC and transient analyses were performed on all the sets. The DC analysis measured $S P_{x}$, higher and lower noise margins at $V_{D D}=100 \mathrm{mV}$. The transient analyses measured power and delay in the ring oscillator at $V_{D D}=100 \mathrm{mV}$. The power was the average power in the whole circuit, while delay was measured at $\frac{V_{D D}}{2}$ on the 55 th falling edge. The minimum $V_{D D}$ for stable oscillations, oscillations between 25% and 75%, and oscillations between 5% and 95% of $V_{D D}$.

The results from these simulations were used to decide upon a final size for each device. The criteria for the final size was to have as low $V_{D D}$ as possible, while still being balanced. Results of this can be found in chapter 7.4.

6.11 Body biasing

To test the effects of body biasing the voltage source connected to the bulk of the nfet and thepfet of the NAND2 gate in testbench 6.8 were utilized. The 8T NAND2 gate was used for these tests. First the bulk of the nfet was increased from -100 mV to 100 mV with steps of 100 mV . The Output and input was measured. Afterwards the same was done with the bulk of the pfet.

Afterwards was the procedure described in 6.7.1 and 6.7.2 repeated for the 8T NAND2 gate with the bulk of the $n f e t$ at -100 mV , and the bulk of the pfet connected to gnd (bulk_nfet $=$ -100 mV , bulk_pfet $=100 \mathrm{mV}$). The supply voltag was 100 mV for this parametric analysis. The results with the lowest gate area, lowest size ratio, largest gate area and lowest VNM ratio while having an $S P_{x}$ between 40% and 60% of $V_{D D}$ were identified and presented in chapter 7.5.

The power, delay, and power delay product of the body biased 8T NAND2 gate was found by using the ring oscillator in figure 6.11. To achieve body biasing the bulk of the nfet was -100 mV , and the bulk of the pfet was connected to gnd (bulk_nfet $=-100 \mathrm{mV}$, bulk_pfet $=$ $100 \mathrm{mV})$. The procedure was similar to the one described in 6.8.1.

To find the process variations of the body biased 8T NAND2 gate, a similar approach to the one described in 6.9 was used. It was only performed on the size set Low VNM ratio. To achieve body biasing the bulk of the nfet was -100 mV , and the bulk of the pfet was connected to gnd (bulk_nfet $=-100 \mathrm{mV}$, bulk_pfet $=100 \mathrm{mV})$.

The final step of the investigation of the body biased 8T NAND2 was to summarize the DC and transient characteristics of the gate. The tests performed in 6.10 was performed on the body biased 8T NAND2 gate. The results were compared to the 4T NAND2 and the regular 8T NAND2 gate in chapter 7.5.

7. Results of the schematic design

7.1 Gate Balance

7.1.1 Switching point

This chapter presents the results obtained from the DC analysis of the inverters, NAND2 gates and NOR2 gates. Included are the sets of transistor gate sizes that gave the best results according to the following criterias; lowest gate area, largest gate area, and lowest ratio. The results are presented in tables. All the results have a transfer characteristic that is between the borders presented in figure 7.1.

Figure 7.1: Upper and lower threshold for the transfer characteristics of the sets of transistor gate sizes presented in tables $7.2,7.3,7.4,7.5$ and 7.6 with

$$
V_{D D}=100 \mathrm{mV}
$$

Tables 7.2, 7.3, 7.4, 7.5 and 7.6 are constructed in the same order. The first column presents which device is tested. The next three columns gives the length (L) and the width (W) of the transistor gates. The next column sums up the gate area of one nfet and one pfet. Note that the real gate area will be larger than the ones listed in the tables for devices containing more than two transistors. The Ratio colum gives the ratio between the width of the pfet gate and the nfet gate. The last column contains the value of the x-coordinate of the Switching Point
$\left(S P_{x}\right)$. In these simulations the supply voltage was 100 mV .

Table 7.1 presents the criterias for balanced, good balance and perfect balance at different supply voltages.

$V_{D D}(\mathrm{mV})$	Perfect balance (mV) $\left(\frac{V_{D D}}{2}\right)$	Good balance (mV) $\left(V_{D D} \cdot 45 \%\right)$ to $\left(V_{D D} \cdot 55 \%\right)$	Balanced (mV) $\left(V_{D D} \cdot 40 \%\right)$ to $\left(V_{D D} \cdot 46 \%\right)$
85	42.5	38.25 to 46.75	34 to 51
90	45	40.5 to 49.5	36 to 54
95	47.5	42.75 to 52.25	38 to 57
100	50	45 to 55	40 to 60
105	52.5	47.25 to 57.75	42 to 63

Table 7.1: Limits for balance quality at supply voltages from 85 mV to 105 mV

In table 7.2 are the sets of transistor gate sizes that gives the lowest gate area of one nfet and one pfet while beeing balanced. Table 7.3 presents the sets that have good balance and the lowest gate area.

Device	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\left.\mathbf{(f m}^{2}\right)$	Ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
2T inverter	100	30.0	200	700	27.0	3.50	42.9
4T inverter	100	30.0	200	700	27.0	3.50	42.7
4T NAND2	100	30.0	200	500	21.0	2.50	41.1
8T NAND2	100	30.0	200	1450	49.5	7.25	40.7
4T NOR2	100	30.0	200	1150	40.5	5.75	44.6
8T NOR2	100	30.0	200	450	19.5	2.25	47.6

Table 7.2: The sets of transistor gate sizes that give the smallest gate area. Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T NOR2 and 8 T NOR2. $V_{D D}=100 \mathrm{mV}$

Device	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\left.\mathbf{(f m}^{2}\right)$	Ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
2T inverter	100	30.0	200	800	30.0	4.00	46.2
4T inverter	100	30.0	200	800	30.0	4.00	46.0
4T NAND2	100	30.0	200	600	24.0	3.00	47.1
8T NAND2	100	30.0	200	1750	58.5	8.75	45.6
4T NOR2	100	30.0	200	1300	45.0	6.50	48.1
8T NOR2	100	30.0	200	450	19.5	2.25	47.6

Table 7.3: The sets of transistor gate sizes that give the smallest gate area and has good balance. Devices are 2 T and 4T Inverter, 4T and 8T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$

Table 7.4 presents the gate sizes that gives the larges gate area while still beeing balanced. Table 7.5 presents the gate sizes that gives the larges gate area while having good balance.

Device	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{W} \mathbf{n f e t}$ $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
2T inverter	100	40.0	350	2500	114	7.14	41.7
4T inverter	100	40.0	300	2500	112	8.33	44.0
4T NAND2	100	40.0	500	2500	120	5.00	40.7
8T NAND2	100	35.0	200	2500	94.5	12.5	40.4
4T NOR2	100.0	35.0	250	2500	96.3	10.0	46.5
8T NOR2	100	40.0	700	2500	128	3.57	44.8

Table 7.4: The sets of transistor gate sizes that give the largest gate area and beeing balanced.Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$

Device	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
2T inverter	100	40.0	200	2500	108	12.5	51.5
4T inverter	100	40.0	250	2500	110	10.0	47.2
4T NAND2	100	40.0	400	2500	116	6.25	45.3
8T NAND2	100	30.0	250	2500	82.5	10.0	49.5
4T NOR2	100	35.0	200	2450	92.8	12.3	51.2
8T NOR2	100	40.0	600	2500	124	4.17	48.1

Table 7.5: The sets of transistor gate sizes that give the largest gate area and having good balance. Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$

Table 7.6 contains the set of ransistor gate sizes with the lowest gate ratio between the width of the pfet and the nfet.

Device	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
2T inverter	100	30.0	800	2000	84.0	2.50	40.0
4T inverter	100	30.0	800	2050	85.5	2.56	40.3
4T NAND2	100	30.0	800	1450	67.5	1.81	40.0
8T NAND2	100	30.0	300	2050	70.5	6.83	40.0
4T NOR2	100	30.0	450	2400	85.5	5.33	44.6
8T NOR2	100	30.0	800	1200	60.0	1.50	44.8

Table 7.6: Lowest ratio between the width of the pfet and the nfet at 100 mV . Devices are 2 T and 4 T Inverter, 4 T and 8 T NAND2, and 4 T and 8 T NOR2.

$$
V_{D D}=100 \mathrm{mV}
$$

Noise margin

In table 7.7 are the sets of gate sizes with the ratio between the lower and higher noise margins closest to 1 . Table 7.8 contains the set of transistor sizes that give the largest mean noise margin. In the two tables below, the first column gives which device is tested. The next three columns contain the transistor sizes, $V N M_{H}$ is the higher noise margin while $V N M_{L}$ is the lower noise margin. The next colume contains the mean size of the noise margin. The last colum presents the size of the undefined region.

Device	L $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	Undefinded region $(\Delta \mathbf{m V})$
2T inverter	40.0	200	2150	31.9	31.8	31.9	36.3
4T inverter	35.0	200	2200	32.1	32.2	32.2	35.7
4T NAND2	30.0	600	1750	26.9	27.0	27.0	46.1
8T NAND2	30.0	200	2200	27.3	27.2	27.3	45.5
4T NOR2	30.0	250	1450	26.9	26.9	26.9	46.2
8T NOR2	40.0	400	1600	29.5	29.5	29.5	41.0

Table 7.7: The sets of transistor gate sizes that have the lowest ratio between the higher and lower noise margins at 100 mV . Devices are 2 T and 4 T Inverter, 4 T and 8T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$

Device	L $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	Undefinded region $(\Delta \mathbf{m V})$
2T inverter	40.0	200	2300	30.9	32.9	31.9	36.2
4T inverter	40.0	200	2200	32.1	32.2	32.1	35.7
4T NAND2	40.0	450	2450	36.8	23.0	29.9	40.2
8T NAND2	35.0	200	2500	37.8	20.6	29.2	41.6
4T NOR2	40.0	200	2500	32.1	26.2	29.2	41.7
8T NOR2	40.0	550	2450	27.6	31.9	29.7	40.5

Table 7.8: The sets of transistor gate sizes that have the highest average noise margins at 100 mV . Devices are 2 T and 4T Inverter, 4T and 8T NAND2, and 4T NOR2 and 8T NOR2. $V_{D D}=100 \mathrm{mV}$

The following figures illustrates how the noise margin is affected by changes in the supply voltage. The figures presents the mean noise margins and the realative mean noise margins. The mean is the average of the lower and higher noise margins. while the relative mean is the average divided by the supply voltage multiplied by 100%. The transistor gate sizes for the devices are the same as in table 7.7.

Inverter

Figure 7.2 presents the mean noise margin for the 2 T and 4 T inverters, and figure 7.3 presents the relative mean noise margin.

Figure 7.2: The mean noise margin in a 2 T and a 4 T Inverter at increasing supply voltage.

Figure 7.3: The mean noise margin relative to $V_{D D}$. Devices are 2 T and 4 T inverters

NAND2

Figure 7.4 presents the mean noise margin for the 4 T and 8 T NAND2 gates, and figure 7.5 presents the relative mean noise margin.

Figure 7.4: The mean noise margin in a 4 T and a 8T NAND2 gate at increasing supply voltage.

Figure 7.5: The mean noise margin relative to $V_{D D}$. Devices are 4 T and 8 T NAND2 gates.

NOR2

Figure 7.6 presents the mean noise margin for the 4 T and 8 T NAND2 gates, and figure 7.7 presents the relative mean noise margin.

Figure 7.6: The mean noise margin in a 4 T and a 8 T NAND2 gate at increasing supply voltage.

Figure 7.7: The mean noise margin relative to $V_{D D}$. Devices are 4 T and 8 T inverters.

7.2 Power and delay

7.2.1 Power delay product

In this chapter the power, delay and power delay product of the logical gates are presented graphically. Each graph contains two devices of the same type, but with differene topolgy. The transistor gate sizes are low area and good balance, the same as in table 7.3.
The delay graphs show how the delay relates to an increasing $V_{D D} . V_{D D}$ is increasing from 85 mV to 130 mV with a step size of 5 mV . The power graphs show how the power consumption in the device is related to $V_{D D}$. The power delay product (PDP) is power and delay multiplied together. The graphs with PDP shows how it behaves with an increasing $V_{D D}$.

Inverter

Figure 7.8 shows the power in the 2 T and 4 T inverters. Figure 7.9 shows the delay in the inverters, while figure 7.10 presents the power delay product.

Figure 7.8: The power consumption in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.9: The delay in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.10: The power delay product in the ring oscillators constructed of 2 T and 4 T inverters. $V_{D D}$ was increased from 85 mV to 130 mV .

NAND2

Figure 7.11 shows the power in the 4 T and 8T NAND2 gates. Figure 7.12 shows the delay in the NAND2 gates, while figure 7.13 presents the power delay product.

Figure 7.11: The power consumption in the ring oscillators constructed of 4 T and 8 T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.12: The delay in the ring oscillators constructed of4T and 8T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.13: The power delay product in the ring oscillators constructed of 4 T and 8 T NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

NOR2

Figure 7.14 shows the power in the 4 T and 8 T NOR2 gates. Figure 7.15 shows the delay in the NAND2 gates, while figure 7.16 presents the power delay product.

Figure 7.14: The power consumption in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV .

Figure 7.15: The delay in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV .

Figure 7.16: The power delay product in the ring oscillators constructed of 4 T and 8 T NOR2 gates. $V_{D D}$ was increased from 90 mV to 130 mV

7.2.2 Minimum supply voltage

Below in table 7.9 are the lowest supply voltages that supports stable oscillations, oscillations between 25% and 75% of $V_{D D}$, and 5% and 95% of $V_{D D}$ in the ring oscillator. Figure 7.17 illustrates this.

Device	VDD (mV) stable	VDD (mV) $\mathbf{2 5 \%} \mathbf{- 7 5 \%}$	VDD (mV) $\mathbf{5 \%} \mathbf{9 5 \%}$
2T Inverter	73	79	108
4T Inverter	71	78	104
4T NAND2	73	78	105
8T NAND2	73	78	104
4T NOR2	75	86	115
8T NOR2	72	78	104

Table 7.9: The minimum supply voltage in the ring oscillators constructed of the logical gates.

Figure 7.17: The minimum supply voltage in the ring oscillators constructed of the logical gates

Here are the sets of transistor gate sizes that have the lowest power consumption and lowesst delay at stable oscillations, oscillations between 25% and 75% of $V_{D D}$, and 5% and 95% of $V_{D D}$ in a ring oscillator. The tables below are constructed in the following manner. The first colum contains a description of how the signal is oscillating (stable oscillations, oscillations between 25% and 75% of $V_{D D}$ or 5% and 95% of $V_{D D}$). The next column contains the supply voltage. The next three column lists the transistor gate dimensions (Length, Width nfet and Width $p f e t)$. The delay column contains the average delay. The last column contains the average power consumption.

Inverter

Table 7.10 containst the sets of transistor gate sizes that gives the lowest supply voltages and lowest power in the ring oscillator. Table 7.11 presents the sets with the lowest supply voltage and lowest delay. Table 7.12 presents the sets with the lowest supply voltage and lowest power delay product.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a j})$
2T inverter	Stable	73.0	40.0	250	2150	20.8	2.06	42.1
2T inverter	Between 25% and 75% of $V_{D D}$	79.0	40.0	200	2250	18.1	2.98	53.8
2T inverter	Between 5\% and 95% of $V_{D D}$	108	40.0	200	2150	9.32	8.35	77.8
4T inverter	Stable	71.0	40.0	200	2000	72.7	1.04	75.5
4T inverter	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	1.32	78.9
4T inverter	Between 5% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	3.37	111

Table 7.10: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption. Devices are 2T and 4T Inverters

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(a j})$
2T inverter	Stable	73.0	40.0	200	1700	19.7	2.73	53.9
2T inverter	Between 25% and 75% of $V_{D D}$	79.0	40.0	200	2250	18.1	2.98	53.8
2T inverter	Between 5% and 95% of $V_{D D}$	108	40.0	200	2150	9.32	8.35	77.8
4T inverter	Stable	71.0	40.0	250	2350	70.0	1.28	89.3
4T inverter	Between 25% and 75% of $V_{D D}$	79.0	40.0	250	2450	58.6	1.68	98.3
4 T inverter	Between 5% and 95% of $V_{D D}$	104	40.0	200	2450	32.2	4.29	138

Table 7.11: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay. Devices are 2T and 4T Inverters

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a j})$
2T inverter	Stable	73.0	40.0	250	2150	20.8	2.06	42.1
2T inverter	Between 25% and 75% of $V_{D D}$	79.0	40.0	200	2250	18.1	2.98	53.8
2T inverter	Between 5% and 95% of $V_{D D}$	108	40.0	200	2150	9.32	8.35	77.8
4T inverter	Stable	71.0	40.0	200	2000	72.7	1.04	75.5
4T inverter	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	1.32	78.9
4T inverter	Between 5% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	3.37	111

Table 7.12: The sets of transistor gate sizes that use the lowest supply voltage and have the lowest power delay product. Devices are 2 T and 4 T Inverters

NAND2

Table 7.13 containst the sets of transistor gate sizes that gives the lowest supply voltages and lowest power in the ring oscillator. Table 7.14 presents the sets with the lowest supply voltage and lowest delay. Table 7.15 presents the sets with the lowest supply voltage and lowest power delay product.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(\mathbf { a j })}$
4T NAND2	Stable	73.0	40.0	200	700	30.5	1.24	37.8
4T NAND2	Between 25% and 75% of $V_{D D}$	78.0	40.0	450	1400	22.9	3.40	77.9
4T NAND2	Between 5% and 95% of $V_{D D}$	106	40.0	300	950	13.1	6.11	79.9
8T NAND2	Stable	73.0	40.0	300	1950	62.1	2.70	168
8T NAND2	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	2.94	176
8T NAND2	Between 5% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	6.75	222

Table 7.13: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(a j})$
4T NAND2	Stable	73.0	40.0	750	2200	24.3	4.72	115
4T NAND2	Between 25% and 75% of $V_{D D}$	78.0	40.0	800	2400	21.7	6.12	133
4T NAND2	Between 5% and 95% of $V_{D D}$	106	40.0	750	2150	11.4	15.4	176
8T NAND2	Stable	73.0	40.0	300	2100	59.3	2.82	167
8T NAND2	Between 25% and 75% of $V_{D D}$	78.0	40.0	250	2450	58.6	3.36	197
8T NAND2	Between 5% and 95% of $V_{D D}$	108	40.0	250	2450	32.2	8.59	277

Table 7.14: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay.

Device	Oscillation	$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { W nfet } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \text { W pfet } \\ & \text { (nm) } \end{aligned}$	Mean delay ($\mu \mathrm{s}$)	Power $(\mathbf{p W})$	$\begin{aligned} & \text { PDP } \\ & (\mathrm{aj}) \end{aligned}$
4T NAND2	Stable	73.0	40.0	200	700	30.5	1.24	37.8
4T NAND2	Between 25\% and 75% of $V_{D D}$	78.0	40.0	450	1400	22.9	3.40	77.9
4T NAND2	Between 5\% and 95% of $V_{D D}$	106	40.0	300	950	13.1	6.11	79.9
8T NAND2	Stable	73.0	40.0	300	2000	60.3	2.74	165
8T NAND2	Between 25\% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	2.94	176
8T NAND2	Between 5\% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	6.75	222

Table 7.15: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power delay product.

NOR2

Table 7.16 containst the sets of transistor gate sizes that gives the lowest supply voltages and lowest power in the ring oscillator. Table 7.17 presents the sets with the lowest supply voltage and lowest delay. Table 7.18 presents the sets with the lowest supply voltage and lowest power delay product.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a J})$
4T NOR2	Stable	75.0	35.0	200	3100	22.0	8.79	193
4T NOR2	Between 25% and 75% of $V_{D D}$	86.0	35.0	200	3750	11.9	13.8	165
4T NOR2	Between 5% and 95% of $V_{D D}$	115	35.0	200	3950	6.48	38.8	251
8T NOR2	Stable	72.0	40.0	200	1550	65.2	1.87	122
8T NOR2	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	2.64	158
8T NOR2	Between 5% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	6.74	222

Table 7.16: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest power consumption.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(\mathbf { a j })}$
4T NOR2	Stable	75.0	35.0	200	3550	15.0	9.50	142
4T NOR2	Between 25% and 75% of $V_{D D}$	86.0	35.0	200	3750	11.9	13.8	165
4T NOR2	Between 5% and 95% of $V_{D D}$	115	35.0	200	3950	6.48	38.8	251
8T NOR2	Stable	72.0	40.0	300	2350	63.3	2.90	184
8T NOR2	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	2000	60.3	2.68	161
8T NOR2	Between 5% and 95% of $V_{D D}$	104	40.0	250	2500	31.8	8.67	276

Table 7.17: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay.

Device	Oscillation	$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Mean delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(\mathbf { a j })}$
4T NOR2	Stable	75.0	35.0	200	3450	15.1	9.35	141
4T NOR2	Between 25% and 75% of $V_{D D}$	86.0	35.0	200	3750	11.9	13.8	165
4T NOR2	Between 5% and 95% of $V_{D D}$	115	35.0	200	3950	6.48	38.8	251
8T NOR2	Stable	72.0	40.0	200	1550	65.2	1.87	122
8T NOR2	Between 25% and 75% of $V_{D D}$	78.0	40.0	200	1950	59.8	2.64	158
8T NOR2	Between 5% and 95% of $V_{D D}$	104	40.0	200	1950	32.9	6.74	222

Table 7.18: The sets of transistor gate sizes that uses the lowest supply voltage and have the lowest delay.

7.3 Robustness

Monte Carlo analyses were performed on the following sets of transistor gate sizes.

- The sets with the lowest gate area and having good balance (Low area \& GB, table 7.3).
- The sets with the largest gate area and having good balance (Large area \& GB, table 7.5).
- The sets with the lowest ratio between the width of the pfet and the nfet (Low size ratio, table 7.6)
- The sets with the lowest ratio between the higher and lower noise margins (Low VNM ratio, table 7.7).
- The sets with the lowest supply voltage and the power delay product in the ring oscillator (Low $V_{D D}$ \& low PDP, table 7.12, 7.15 and 7.18).

Inverter

Table presents the different sets of transistor gate sizes from the 2 T and 4 T inverters. The first colum gives the device. The next coulmn states the names of the size sets. The next three columns presents the gate sizes. The area column gives the total gate area for the device, while the ratio column gives the size ratio between the pfet and the pfet.

Device	Size set name	L (nm)	W nfet (nm)	W pfet (nm)	Area fm 2	Ratio $\left(\frac{\mathrm{m}}{\mathrm{m}}\right)$
2T Inverter	Low area \& GB	30.0	200	800	30.0	4.00
2T Inverter	Low size ratio	30.0	800	2150	88.5	2.69
2T Inverter	Low VNM ratio	40.0	200	2150	94.0	10.8
2T Inverter	Low $V_{D D} \&$ low PDP	40.0	200	2150	94.0	10.8
2T Inverter	Large area \& GB	40.0	200	2500	108	12.5
4T Inverter	Low area \& GB	30.0	200	800	60.0	4.00
4T Inverter	Low size ratio	30.0	800	2050	171	2.56
4T Inverter	Low VNM ratio	35.0	200	2200	168	11.0
4T Inverter	Low $V_{D D} \&$ low PDP	40.0	200	1950	172	9.75
4T Inverter	Large area \& GB	40.0	250	2500	220	10.0

Table 7.19: Names of transistor gate size sets. Devices are 2T and 4T Inverters.

Table 7.20 contains the results of the Monte Carlo analysis of the 2T an 4 T inverters. Here are the mean value and the standard deviation of $S P_{x}$, the lower and the higher noise margin $\left(V M N_{L}\right.$ and $\left.V M N_{H}\right)$. Test was performed with 200 samples, and all samples passed (100% yield).

Device	Size set name	Mean $\mathbf{S P}_{x}$ $(\mathbf{m V})$	σ $\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{M e a n}_{\mathbf{V N M}_{L}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{M e a n}_{\mathbf{V N M}_{H}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{H}$ $(\mathbf{m V})$
2T Inverter	Low area \& GB	44.8	9.67	26.2	8.35	32.6	7.59
2T Inverter	Low size ratio	40.8	5.12	22.5	3.87	36.3	3.87
2T Inverter	Low VNM ratio	47.8	7.57	30.7	6.80	32.6	6.67
2T Inverter	Low $V_{D D} \&$ low PDP	47.8	7.57	30.7	6.80	32.6	6.67
2T Inverter	Large area GB	50.5	7.52	33.1	6.62	30.2	6.78
4T Inverter	Low area \& GB	47.0	7.59	31.5	6.14	28.4	6.76
4T Inverter	Low size ratio	40.6	4.21	36.8	3.04	22.7	3.72
4T Inverter	Low VNM ratio	49.9	5.93	31.1	5.27	32.9	5.36
4T Inverter	Low $V_{D D} \&$ low PDP	43.8	5.49	36.5	4.61	27.4	5.12
4T Inverter	Large area \& GB	48.2	5.41	32.6	4.77	31.4	4.93

Table 7.20: Results from the Monte Carlo simulations of the 2 T and the 4 T Inverters.

Figure 7.18 shows the relative process variations of $S P_{x}$ for the inverters. Here the standard deviation of $S P_{x}$ is divided by the mean value $\left(\frac{\sigma}{\text { Mean }}\right)$. The figures shows the relative process variation for each of the size sets in table 7.19 for the 2 T and 4 T inverters.

Figure 7.18: The relative process variation of $S P_{x}$ for the 2 T and the 4 T inverters.

NAND2

Table 7.21 presents the sets of transistor gate sizes that were used for the Monte Carlo analyses of the 4 T and the 8 T NAND2 gates.

Device	Size set name	L (nm)	W nfet (nm)	W pfet (nm)	Area fm 2	Ratio $\left(\frac{m}{m}\right)$
4T NAND2	Low area \& GB	30.0	200	600	48.0	3.00
4T NAND2	Low size ratio	30.0	800	1450	135	1.81
4T NAND2	Low VNM ratio	40.0	600	1750	141	2.92
4T NAND2	Low $V_{D D} \&$ low PDP	40.0	300	950	100	3.17
4T NAND2	Large area \& GB	40.0	400	2500	232	6.25
8T NAND2	Low area \& GB	30.0	200	1750	234	8.75
8T NAND2	Low size ratio	30.0	300	2050	282	6.83
8T NAND2	Low VNM ratio	30.0	200	2200	288	11.0
8T NAND2	Low $V_{D D} \&$ low PDP	40.0	200	1950	344	9.75
8T NAND2	Large area \& GB	30.0	250	2500	330	10.0

Table 7.21: Names of transistor gate size sets. Devices are 4T and 8T NAND2 gates.

Table 7.22 contains the results of the Monte Carlo analysis of the 4T an 8T NAND2 gates. Here are the mean value and the standard deviation of $S P_{x}$, the lower and the higher noise margin $\left(V M N_{L}\right.$ and $\left.V M N_{H}\right)$. Test was performed with 200 samples, and all samples passed (100% yield).

Device	Size set name	$\mathbf{M e a n}^{\mathbf{S P}_{x}}$ $(\mathbf{m V})$	σ $\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{M e a n}_{\mathbf{V N M}_{L}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{M e a n}_{\mathbf{V N M}_{H}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{H}$ $(\mathbf{m V})$
4T NAND2	Low area \& GB	48.4	10.2	24.1	7.89	29.1	7.83
4T NAND2	Low size ratio	40.5	5.56	18.6	4.81	35.7	3.92
4T NAND2	Low VNM ratio	52.4	6.00	27.0	4.55	26.4	4.95
4T NAND2	Low $V_{D D} \&$ low PDP	31.1	6.81	13.9	6.49	44.4	4.01
4T NAND2	Large area \& GB	45.7	5.52	25.4	4.79	33.9	4.60
8T NAND2	Low area \& GB	45.7	6.43	22.8	5.34	31.8	4.95
8T NAND2	Low size ratio	40.1	5.35	18.6	4.69	36.1	3.76
8T NAND2	Low VNM ratio	51.8	5.29	27.0	4.93	26.9	5.29
8T NAND2	Low $V_{D D} \&$ low pdp	48.6	6.41	255	5.16	29.5	5.12
8T NAND2	Large area \& GB	49.6	5.76	25.6	4.59	28.8	4.66

Table 7.22: Results from the Monte Carlo simulations of the 4 T and the 8 T NAND2 gates.

Figure 7.19 shows the relative process variations of $S P_{x}$ for the NAND2 gates. Here the standard deviation of $S P_{x}$ is divided by the mean value $\left(\frac{\sigma}{\text { Mean }}\right)$. The figures shows the relative process variation for each of the size sets in table 7.21 for the 4 T and 8T NAND2 gates.

Figure 7.19: The relative process variation of $S P_{x}$ for the 4 T and the 8 T NAND2 gates.

NOR2

Table 7.23 presents the sets of transistor gate sizes that were used for the Monte Carlo analyses of the 4 T and the 8 T NOR2 gates.

Device	Size set name	L (nm)	W nfet (nm)	W pfet (nm)	Area fm ${ }^{2}$	Ratio ($\frac{m}{m}$)
4T NOR2	Low area \& GB	30.0	200	1300	90.0	6.50
4T NOR2	Low size ratio	30.0	450	2400	171	5.33
4T NOR2	Low VNM ratio	30.0	250	1450	102	5.80
4T NOR2	Low $V_{D D}$ \& low PDP	40.0	200	3750	316	18.8
4T NOR2	Large area \& GB	35.0	200	2450	186	12.3
8T NOR2	Low area \& GB	30.0	200	450	78	2.25
8T NOR2	Low size ratio	30.0	800	1200	240	1.50
8T NOR2	Low VNM ratio	40.0	400	1600	320	4.00
8T NOR2	Low $V_{D D}$ \& low PDP	40.0	200	1950	344	9.75
8T NOR2	Large area \& GB	40.0	600	2500	496	4.17

Table 7.23: Names of transistor gate size sets. Devices are 4T and 8T NOR2 gates.
Table 7.24 contains the results of the Monte Carlo analysis of the 4 T an 8T NOR2 gates. Here are the mean value and the standard deviation of $S P_{x}$, the lower and the higher noise margin $\left(V M N_{L}\right.$ and $\left.V M N_{H}\right)$. Test was performed with 200 samples, and all samples passed (100% yield).

Device	Size set name	$\mathbf{M e a n}^{\mathbf{S P}_{x}}$ $\mathbf{(\mathbf { m V })}$	σ $\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{M e a n}_{\mathbf{V N M}_{L}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{L}$ $\mathbf{(\mathbf { m V })}$	$\mathbf{M e a n}_{\mathbf{V N M}_{H}}^{(\mathbf{m V})}$	σ $\mathbf{V N M}_{H}$ $\mathbf{(\mathbf { m V })}$
4T NOR2	Low area \& GB	47.3	9.69	28.0	7.91	24.9	7.03
4T NOR2	Low size ratio	44.2	6.59	25.6	5.59	27.2	4.65
4T NOR2	Low VNM ratio	44.9	8.79	26.0	7.35	26.5	6.15
4T NOR2	Low $V_{D D} \&$ low PDP	51.5	7.45	33.5	6.31	25.7	6.24
4T NOR2	Large area \& GB	50.6	8.27	31.9	6.88	25.0	6.65
8T NOR2	Low area \& GB	48.8	7.94	29.2	6.43	24.4	6.16
8T NOR2	Low size ratio	45.2	4.25	26.3	3.60	27.1	3.18
8T NOR2	Low VNM ratio	47.4	4.31	29.9	3.79	28.9	3.58
8T NOR2	Low $V_{D D} \&$ low PDP	66.7	5.67	45.3	3.61	13.4	5.16
8T NOR2	Large area \& GB	48.5	3.51	30.9	3.06	28.2	2.95

Table 7.24: Results from the Monte Carlo simulations of the 4 T and the 8 T NOR2 gates.

Figure 7.20 shows the relative process variations of $S P_{x}$ for the NOR2 gates. Here the standard deviation of $S P_{x}$ is divided by the mean value $\left(\frac{\sigma}{M e a n}\right)$. The figures shows the relative process variation for each of the size sets in table 7.23 for the 4 T and 8 T NOR2 gates.

Figure 7.20: The relative process variation of $S P_{x}$ for the 4 T and the 8 T NOR2 gates.

7.4 Deciding final sizes

7.4.1 Summary

Here the summary of the results for the DC and transient analyses performed on the different sets of gate sizes for the different logical gates. The results are presented in both tables and figures. The tables with DC results presents area, size ratio, higher and lower noise margins, mean noise margins, ratio between the higher and lower noise margins and the process variation of $S P_{x}$ relative to the mean value. The tables with the transient results presents the lowest supply voltages that supports stable oscillations, oscillations between 25% and 75% of $V_{D D}$, and between 5% and 95% of $V_{D D}$. They also presents power, delay and power delay product obtained at a supply voltage of 100 mV in the ring oscillator.

The figures presents the following metrics: Area, size ratio, balance, noise margins, lowest $V_{D D}$, delay, power and power delay product. The values in the figures are results relative to the set low area \mathcal{E} good balance. In the figures area represents the total gate area. Size ratio is the ratio between the width of the pfet and the nfet. Balance represents the absolute value of the difference between $S P_{x}$ and $\frac{V_{D D}}{2}$. The lower the value of the balance, the closer $S P_{x}$ is to $\frac{V_{D D}}{2}$. Noise margin in the figure is the mean value of the noise margins. The process variations are the process variations of $S P_{x}$ relative to the mean value in the Monte Carlo analyses. The lowest $V_{D D}$ represents the lowest supply voltage that gives oscillations between 5% and 95% of $V_{D D}$. The delay, power and PDP are the delay, power and power delay product obtained at 100 mV in the ring oscillator.

Inverter

Table 7.25 presents the results from the DC analyses of the different transistor size sets for the inverters.

Device	Size set name	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{VNM}_{L} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \mathrm{VNM}_{H} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \text { Mean VNM } \\ & (\mathrm{mV}) \end{aligned}$	VNM ratio $\left(\frac{V}{V}\right)$	Relative σ of $\mathbf{S P}_{x}(\mathrm{mV})$
2T Inverter	Low area \& GB	46.2	27.5	32.1	29.8	1.17	21.6
2T Inverter	Low size ratio	41.5	23.3	35.9	29.6	1.54	12.6
2T Inverter	Low VNM ratio	48.9	31.8	31.9	31.9	1.00	15.8
2T Inverter	Low $V_{D D}$ \& low PDP	48.9	31.8	31.9	31.9	1.00	15.8
2T Inverter	Large area \& GB	51.5	34.2	29.5	31.9	0.863	14.9
4 T Inverter	Low area \& GB	45.9	27.6	32.6	30.1	1.18	16.1
4T Inverter	Low size ratio	40.3	22.4	37.2	29.8	1.66	10.4
4T Inverter	Low VNM ratio	48.9	32.2	32.1	32.1	1.00	11.9
4T Inverter	Low $V_{D D}$ \& low PDP	42.8	26.5	37.5	32.0	1.41	12.5
4T Inverter	Large area \& GB	47.2	30.6	33.6	32.1	1.10	11.2

Table 7.25: Summary of the DC properties of the different transistor gate size sets of the 2 T and the 4 T inverters.

Table 7.26 presents the results from the transient analyses of the different transistor size sets for the inverters.

Device	Size set name	$\mathbf{V}_{D D}$ at $\mathbf{S t a b l e}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{2 5 \% - 7 5 \%}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{5 \%} \mathbf{- 9 5 \%}$ $\mathbf{(\mathbf { m V })}$	Delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a J})$
2T Inverter	Low area \& GB	82.0	91.0	127.0	0.935	35.96	33.6
2T Inverter	Low size ratio	83.0	96.0	135.0	0.715	131.10	93.8
2T Inverter	Low VNM ratio	73.0	80.0	108.0	11.2	6.23	69.5
2T Inverter	Low $V_{D D} \&$ low PDP	73.0	80.0	108.0	11.2	6.23	69.5
2T Inverter	Large area \& GB	73.0	80.0	110.0	11.8	6.74	79.5
4T Inverter	Low area \& GB	79.0	87.0	117	3.13	17.8	55.5
4T Inverter	Low size ratio	81.0	92.0	124	2.32	62.8	146
4T Inverter	Low VNM ratio	76.0	85.0	118	14.4	8.42	121
4T Inverter	Low $V_{D D} \&$ low PDP	71.0	78.0	104	36.0	2.91	105
4T Inverter	Large area \& GB	71.0	78.0	104	35.5	3.75	133

Table 7.26: Summary of the results of the transient analyses of the different transistor gate size sets of the 2 T and the 4 T inverters.

Figures 7.21 and 7.22 presents the metrics of the different sets of transistor gate sizes for the 2 T and 4 T inverters respectively. The values in the figures are relative to the low area $\& 8$ good balance sets.

Figure 7.21: Comparison of the relative metrics of the 2 T inverter.

Figure 7.22: Comparison of the relative metrics of the 4 T inverter.

NAND2

Table 7.27 presents the results from the DC analyses of the different transistor size sets for the NAND2 gates.

Device	Size set name	$\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	Mean VNM $\mathbf{(\mathbf { m V })}$	VNM ratio $\left(\frac{V}{V}\right)$	Relative σ $\mathbf{o f ~} \mathbf{S P}_{x}(\mathbf{m V})$
4T NAND2	Low area \& GB	47.1	23.7	30.8	27.3	1.30	21.1
4T NAND2	Low size ratio	40.0	18.3	36.2	27.3	1.97	13.7
4T NAND2	Low VNM ratio	51.9	26.9	27.0	27.0	1.00	11.4
4T NAND2	Low $V_{D D} \&$ low PDP	30.6	12.8	45.6	29.2	3.57	21.9
4T NAND2	Large area \& GB	45.3	25.2	34.4	29.8	1.36	12.1
8T NAND2	Low area \& GB	45.6	23.0	32.2	27.6	1.40	14.1
8T NAND2	Low size ratio	40.0	18.7	36.4	27.6	1.95	13.3
8T NAND2	Low VNM ratio	51.6	27.3	27.2	27.3	1.00	10.2
8T NAND2	Low $V_{D D} \&$ low PDP	27.2	10.1	47.9	29.0	4.77	13.2
8T NAND2	Large area \& GB	49.5	25.8	29.0	27.4	1.13	11.6

Table 7.27: Summary of the DC properties of the different transistor gate size sets of the 4 T and the 8T NAND2 gates.

Table 7.28 presents the results from the transient analyses of the different transistor size sets for the NAND2 gates.

Device	Size set name	$\mathbf{V}_{D D}$ at $\mathbf{S t a b l e}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{2 5 \% - 7 5 \%}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{5 \%} \mathbf{- 9 5 \%}$ $(\mathbf{m V})$	Delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a J})$
4T NAND2	Low area \& GB	85.0	87.0	139	1.82	27.7	50.3
4T NAND2	Low size ratio	82.0	86.0	130	1.29	104	135
4T NAND2	Low VNM ratio	88.0	107.0	146	1.48	96.9	143
4T NAND2	Low $V_{D D} \&$ low PDP	74.0	79.0	106	14.8	4.91	72.8
4T NAND2	Large area \& GB	76.0	89.0	124	10.4	22.1	230
8T NAND2	Low area \& GB	84.0	97.0	134	3.78	55.7	210
8T NAND2	Low size ratio	82.0	92.0	128	3.28	76.4	251
8T NAND2	Low VNM ratio	88.0	105	134	4.15	62.0	257
8T NAND2	Low $V_{D D} \&$ low PDP	72.0	78.0	104	5.83	36.0	210
8T NAND2	Large area \& GB	88.0	102	140	3.90	75.4	294

Table 7.28: Summary of the results of the transient analyeses of the different transistor gate size sets of the 4 T and the 8 T NAND2 gates.

Figures 7.23 and 7.24 presents the metrics of the different sets of transistor gate sizes for the 4T and 8 T NAND2 gates respectively. The values in the figures are relative to the low area ξ^{6} good balance sets.

Figure 7.23: Comparison of the relative metrics of the 4T NAND2 gate.

Figure 7.24: Comparison of the relative metrics of the 8T NAND2 gate.

NOR2

Table 7.29 presents the results from the DC analyses of the different transistor size sets for the NOR2 gates.

Device	Size set name	$\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	VNM ratio $\left(\frac{V}{V}\right)$	Relative σ $\mathbf{o f} \mathbf{S P}_{x}(\mathbf{m V})$
4T NOR2	Low area \& GB	48.1	25.3	29.0	27.2	1.15	20.5
4T NOR2	Low size ratio	44.6	27.5	26.1	26.8	0.948	14.9
4T NOR2	Low VNM ratio	45.6	26.9	26.9	26.9	1.00	19.6
4T NOR2	Low $V_{D D} \&$ low PDP	52.0	25.8	34.1	30.0	1.32	14.5
4T NOR2	Large area \& GB	51.2	25.2	32.7	28.9	1.30	16.3
8T NOR2	Low area \& GB	47.6	28.5	25.8	27.1	0.904	16.3
8T NOR2	Low size ratio	44.8	26.1	27.5	26.8	1.05	9.40
8T NOR2	Low VNM ratio	46.9	29.5	29.5	29.5	1.00	9.10
8T NOR2	Low $V_{D D} \&$ low PDP	65.7	45.0	14.3	29.6	0.318	8.50
8T NOR2	Large area \& GB	48.1	30.6	28.6	29.6	0.932	7.23

Table 7.29: Summary of the DC properties of the different transistor gate size sets of the 4 T and the 8 T NOR2 gates.

Table 7.30 presents the results from the transient analyses of the different transistor size sets for the NOR2 gates.

Device	Size set name	$\mathbf{V}_{D D}$ at Stable (mV)	$\begin{aligned} & \mathrm{V}_{D D} \text { at } \\ & 25 \%-75 \% \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{V}_{D D} \text { at } \\ & \mathbf{5 \%}-\mathbf{9 5 \%} \\ & (\mathbf{m V}) \\ & \hline \end{aligned}$	Delay ($\mu \mathrm{s}$)	Power (pW)	$\begin{aligned} & \text { PDP } \\ & (\mathrm{aJ}) \end{aligned}$
4T NOR2	Low area \& GB	88.0	105	142	1.81	45.7	82.6
4T NOR2	Low size ratio	90.0	109	147	1.58	97.1	153
4T NOR2	Low VNM ratio	89.0	109	146	1.72	54.1	93.0
4T NOR2	Low $V_{D D}$ \& low PDP	77.0	91.0	121	23.9	7.92	189
4T NOR2	Large area \& GB	81.0	95.0	128	7.71	17.3	133
8T NOR2	Low area \& GB	87.0	104	137	3.34	22.5	75.1
8T NOR2	Low size ratio	89.0	107	142	2.42	87.6	212
8T NOR2	Low VNM ratio	80.0	96.0	125	27.5	7.07	194
8T NOR2	Low $V_{D D}$ \& low PDP	71.0	79.0	104	36.0	5.83	210
8T NOR2	Large area \& GB	79.0	94.0	123	26.6	11.2	297

Table 7.30: Summary of the results of the transient analyses of the different transistor gate size sets of the 4 T and the 8 T NOR2 gates.

Figures 7.25 and 7.26 presents the metrics of the different sets of transistor gate sizes for the 4T and 8 T NOR2 gates respectively. The values in the figures are relative to the low area \mathcal{E} good balance sets.

Figure 7.25: Comparison of the relative metrics of the 4T NOR2 gate

Figure 7.26: Comparison of the relative metrics of the 8T NOR2 gate

7.4.2 Final sizes

Table 7.31 presents the transistor gate size sets that were decided to be the final sizes for the different logical gates.

Device	Size set name	L (nm)	W nfet (nm)	W pfet (nm)	${\text { Area } \mathbf{f m}^{2}}^{\text {Ratio }\left(\frac{m}{m}\right)}$	
2T Inverter	Low VNM ratio	40.0	200	2150	94.0	10.8
4T Inverter	Low VNM ratio	35.0	200	2200	168	11.0
4T NAND2	Low VNM ratio	30.0	600	1750	141	2.92
8T NAND2	Low VNM ratio	30.0	200	2200	288	11.0
4T NOR2	Low VNM ratio	30.0	250	1450	102	5.80
8T NOR2	Low VNM ratio	40.0	400	1600	320	4.00

Table 7.31: The final sets of transistor gate sizes.
Table 7.32 presents the results from the DC analyses of the final sizes of the different logical gates.

Device	$\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	VNM ratio $\left(\frac{V}{V}\right)$	Relative σ $\mathbf{o f ~ S P}_{x}(\mathbf{m V})$
2T Inverter	48.9	31.8	31.9	31.9	1.00	15.8
4T Inverter	48.9	32.2	32.1	32.1	1.00	11.9
4T NAND2	51.9	26.9	27.0	27.0	1.00	11.4
8T NAND2	51.6	27.3	27.2	27.3	1.00	10.2
4T NOR2	45.6	26.9	26.9	26.9	1.00	19.6
8T NOR2	46.9	29.5	29.5	29.5	1.00	9.10

Table 7.32: The results of the DC analyses of the final sets of transistor gate sizes.
Table 7.33 presents the results from the transient analyses of the final sizes of the different logical gates.

Device	$\mathbf{V}_{D D}$ at Stable $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{2 5 \% - 7 5 \%}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{5 \%} \mathbf{- 9 5 \%}$ $(\mathbf{m V})$	Delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $(\mathbf{a J})$
2T Inverter	73.0	80.0	108.0	11.2	6.23	69.5
4T Inverter	76.0	85.0	118	14.4	8.42	121
4T NAND2	88.0	107.0	146	1.48	96.9	143
8T NAND2	88.0	105	134	4.15	62.0	257
4T NOR2	89.0	109	146	1.72	54.1	93.0
8T NOR2	80.0	96.0	125	27.5	7.07	194

Table 7.33: The results of the transient analyses of the final sets of transistor gate sizes.

Figure 7.27 presents the metrics of the final sizes of the logical gates. The values are relative to the 2 T inverter.

Figure 7.27: Comparison of the final transistor gate size sets of the different logical gates. Values are relative to the 2 T inverter.

7.5 Effects of body biasing

Figures 7.28 and 7.29 presents how body biasing the $n f e t$ and the pfet respectively affects the transfer characteristics of the output of the 8T NAND2 gate.

Figure 7.28: Body biasing the nfet in a 8 T NAND2 gate. $\mathrm{L}=30 \mathrm{~nm}$, W nfet $=$ $200 \mathrm{~nm}, \mathrm{~W}$ pfet $=2000 \mathrm{n}$

Figure 7.29: Body biasing the pfet in a 8 T NAND2 gate. $\mathrm{L}=30 \mathrm{~nm}$, W nfet $=$ $200 \mathrm{~nm}, \mathrm{~W}$ pfet $=2000 \mathrm{n}$

Figure 7.30 presents how body biasing both the $n f e t$ and the pfet affects the transfer characteristics of the output of the 8T NAND2 gate.

Figure 7.30: Body biasing both the nfet and the pfet in a 8T NAND2 gate. $\mathrm{L}=$ $30 \mathrm{~nm}, \mathrm{~W}$ nfet $=200 \mathrm{~nm}, \mathrm{~W}$ pfet $=1500 \mathrm{n}$

The table 7.34 presents the different sets of transistor gate sizes for the body biased 8T NAND2 gate that gives the lowest area, lowest size ratio, lowest VNM ratio and largest gate area.

Size set name	\mathbf{L} $(\mathbf{n m})$	$\mathbf{W N}$ $(\mathbf{n m})$	$\mathbf{W P}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{\mathbf{2}}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	VNM ratio $\left(\frac{V}{V}\right)$
Low area	30.0	200	1050	150	5.25	40.1	18.8	36.4	27.6	1.94
Low area \& GB	30.0	200	1300	180	6.50	46.0	23.3	31.9	27.6	1.37
Low size ratio	30.0	450	2150	312	4.78	40.1	18.8	36.4	27.6	1.94
Low VNM ratio	30.0	250	1950	264	7.80	51.6	27.2	27.3	27.3	1.00
Large area	40.0	200	2500	432	12.50	40.0	21.3	39.0	30.1	1.83
Large area \& GB	35.0	200	2500	378	12.50	48.6	27.0	31.0	29.0	1.15

Table 7.34: The different sets of transistor gate sizes for the 8T NAND2 gate using body biasing.

Figures 7.31, 7.32 and 7.33 shows how the power, delay and power delay products for the different NAND2 gates varies with increasing supply voltages.

Figure 7.31: The power consumption in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.32: The delay in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

Figure 7.33: The power delay product in the ring oscillators constructed of the NAND2 gates. $V_{D D}$ was increased from 85 mV to 130 mV .

Table 7.35 shows the transistor gate sizes for the set low VNM ratio for the different NAND2 gates.

Device	Size set name	L $(\mathbf{n m})$	W nfet $(\mathbf{n m})$	W pfet $(\mathbf{n m})$	Area $\mathbf{f m}^{2}$	Size ratio $\left(\frac{m}{m}\right)$
4T NAND2	Low VNM ratio	30.0	600	1750	141	2.92
8T NAND2	Low VNM ratio	30.0	200	2200	288	11.0
8T NAND2. Body Biased	Low VNM ratio	30.0	250	1950	264	7.80

Table 7.35: Transistor gate dimensions for the different NAND2 gates.
Table 7.36 shows the process variations for the set low VNM ratio for the different NAND2 gates.

Device	Mean $\mathbf{S P}_{x}$ $\mathbf{(m V})$	σ $\mathbf{S P}_{x}$ $\mathbf{(m V})$	Mean $\mathbf{V N M}_{L}$ $\mathbf{(m V)}$	σ $\mathbf{V N M}_{L}$ $\mathbf{(m V)}$	Mean $\mathbf{V N M}_{H}$ $\mathbf{(m V)}$	σ $\mathbf{V N M}_{H}$ $\mathbf{(m V)}$
4T NAND2	51.5	6.29	29.6	5.12	28.9	5.50
8T NAND2	51.8	5.29	27.0	4.93	26.9	5.29
8T NAND2 BB	51.7	5.86	27.0	4.55	27.0	4.84

Table 7.36: Results from the Monte Carlo simulations of the different NAND2 gates.

Table 7.37 shows the results of the DC analyses for the set low VNM ratio for the different NAND2 gates.

Device	$\mathbf{S P}_{x}$ $(\mathbf{m V})$	$\mathbf{V N M}_{L}$ $(\mathbf{m V})$	$\mathbf{V N M}_{H}$ $(\mathbf{m V})$	Mean VNM $(\mathbf{m V})$	VNM ratio $\left(\frac{V}{V}\right)$	Relative σ $\mathbf{o f ~} \mathbf{S P}_{x}(\mathbf{m V})$
4T NAND2	51.9	26.9	27.0	27.0	1.00	11.4
8T NAND2	51.6	27.3	27.2	27.3	1.00	10.2
8T NAND2 BB	51.6	27.2	27.3	27.3	1.00	11.3

Table 7.37: Summary of the DC properties of the differnet NAND2 gates.
Table 7.38 shows the results of the transient analyses for the set low VNM ratio for the different NAND2 gates.

Device	$\mathbf{V}_{D D}$ at $\mathbf{S t a b l e}$ $(\mathbf{m V})$	$\mathbf{V}_{D D}$ at $\mathbf{2 5 \% - 7 5 \%}$ $\mathbf{(\mathbf { m V })}$	$\mathbf{V}_{D D}$ at $\mathbf{5 \% - 9 5 \%}$ $(\mathbf{m V})$	Delay $(\mu \mathbf{s})$	Power $(\mathbf{p W})$	PDP $\mathbf{(a J)}$
4T NAND2	79.0	97.0	134	20.4	7.69	157
8T NAND2	88.0	105	134	4.15	62.0	257
8T NAND2 BB	87	104	143	3.60	65.7	237

Table 7.38: Summary of the results of the transient analyses of the differnet
NAND2 gates.

Figure 7.34 shows the different metrics for the set low VNM ratio for the different NAND2 gates. The metrics in this figure are the same as in chapter 7.4.1, and the values are relative to the 4T NAND2 gate.

Figure 7.34: Comparison of the relative metrics for the different NAND2 gates

8. Discussion

8.1 Gate balance

8.1.1 Switching point

The tables in chapter 7.1.1 presents the sets of transistor gate sizes that have the lowest and largest transistor gate area, and lowest size ratio between the pfet and the nfet. They do also satesfy the condition of having an $S P_{x}$ between 40% and 60% of $V_{D D}$. The results was used to investigate how gate size, and size ratio affected noise margins, power, delay, supply voltage and process variations. However, first some general tendencies of transistor gate sizing will be discussed here

Low area

The sets of transistor gate sizes that gives the lowest area are presented in tables 7.2 and 7.3. When it comes to gate area, the 2 T inverter and the 4 T inverter are similar in gate dimensions. The dimensions that give the lowest gate area are the same for both inverters. They achieve balance with gate length of 30 nm , an $n f e t$ width of 200 nm and a pfet width of 700. This gives a size ratio between the widths of $3.5 \frac{\mathrm{~m}}{\mathrm{~m}}$ and a total gate area of respectively $27 \mathrm{fm}^{2}$ and $54 \mathrm{fm}^{2}$. By increasing the widths to 800 nm , both inverters have good balance. This gives a ratio of $4 \frac{m}{m}$ and a total gate area of respectively $30 \mathrm{fm}^{2}$ and $60 \mathrm{fm}^{2}$

The two NAND2 gates have a larger difference in gate dimensions. The 4T NAND2 gate achieves good balance with a gate area of $24 \mathrm{fm}^{2}$ and a ratio of $3 \frac{\mathrm{~m}}{\mathrm{~m}}$, while the 8T NAND2 gate needed an area of $117 \mathrm{fm}^{2}$ and a ratio of $8.75 \frac{\mathrm{~m}}{\mathrm{~m}}$. The 4 T were able to achieve good balance with a much lower gate area than the 8T NAND2 gate.

For the NOR 2 gates, the opposite was true. The 8T NOR2 was able to achieve good balance with a total gate area of $39 \mathrm{fm}^{2}$ and a ratio of $2.25 \frac{\mathrm{~m}}{\mathrm{~m}}$. The 4T NOR2 gate needed a gate area of $45 \mathrm{fm}^{2}$ and a ratio of $6.5 \frac{\mathrm{~m}}{\mathrm{~m}}$ to have good balance.

Large area

The tables 7.4 and 7.5 presents the the sets of transistor gate sizes that give the largest gate area. Again, the inverter had similar sizes. The 2 T inverter achieved the largest gate area that also had good balance with an area of $108 \mathrm{fm}^{2}$ and a ratio of $12.5 \frac{\mathrm{~m}}{\mathrm{~m}}$, while the 4 T inverter had an area of $110 \mathrm{fm}^{2}$ and a ratio of $10.5 \frac{\mathrm{~m}}{\mathrm{~m}}$. The 4T NAND2 performed better than the 8T NAND2 in terms of achieving the largest area. The 4 T was able to get an area of $116 \mathrm{fm}^{2}$ and a ratio of $6.25 \frac{m}{m}$ while having good balance. The 8T NAND2 gate achieved an area of $82.5 \mathrm{fm}^{2}$ and a ratio of $10 \frac{m}{m}$. The situation was again the opposite for the NOR2 gates. The 8T NOR2 gate had a larger area of $124 \mathrm{fm}^{2}$ and a ratio of $4.17 \frac{\mathrm{~m}}{\mathrm{~m}}$, and good balance. The 4T NOR2 only achieved an area of $92.8 \mathrm{fm}^{2}$ and a ratio of $12.3 \frac{\mathrm{~m}}{\mathrm{~m}}$.

Low size ratio

As a rule of thumb, the gate size of the pfet should be double the size of the nfet to obtain a well balanced device. The results in chapter 7.1.1 shows that this ratio might have to be increased at sub-threshold supply voltages. The inverters obtain balance with a size ratio of approximately 2,5 which is not so far away from the situations with super-threshold supply voltages. The 4 T NAND2 gate and the 8 T NOR2 gate achieved balance with a size ratio below 2 , while the 8 T NAND2 gate and the 4T NOR2 gate however, had a ratio above 5 .

8.1.2 Noise margin

All the results in chapter 7.1 have an $S P_{x}$ between 40% and 60% of $V_{D D}$. This ensures that all the results have a transfer characteristic that is somewhat balanced. To further discuss gate balance, noise margin is a more suitable tool. This is because it identifies how large area of the output signal is a logical state (" 1 " or " 0 ") or the undefined region. All sets of transistor gate sizes in table 7.7 have a ratio between the lower and higher noise margins of 1 . This means that the logical " 1 " and " 0 " have equal size on the transfer characteristics and will produce an $S P_{x}$ close to $\frac{V_{D D}}{2}$. The additional information the noise margins provide is how large noise signals are needed to push the device from a defined logical state to the undefined region.

Inverter

The 2 T and 4 T inverters have quite similar noise margins. For supply voltages close to 100 mV they are both below $\frac{1}{3}$ of $V_{D D}$. Noise signals with an amplitude of $33 m V$ can influence the inverters at $V_{D D}=100 \mathrm{mV}$. This makes the inverters prone to noise. The 4T inverter has a slightly higher noise margin than the 2 T inverter, however the difference is so small that it will not make any difference in most cases. When it comes to order of magnitude, they are equal. At $V_{D D}$ above 108 mV both the inverters will have mean noise margins above $\frac{1}{3}$ of $V_{D D}$, and be slightly less prone to noise signals.

NAND2

The 4T and 8T NAND2 gates also have quite similar noise margins. The 8 T device has a slightly higher mean noise margin than the 4T NAND2 gate. The mean noise margins for the 4 T and the 8 T NAND2 gates are below $\frac{1}{3}$ of $V_{D D}$ with $V_{D D}$ close to 100 mV . Both the 4 T and the 8 T NAND2 gate have a noise margin right below $\frac{1}{3}$ of $V_{D D}$ at $V_{D D}=130 \mathrm{mV}$. Even though there is a slight difference in noise margins they are both prone to noise signals at supply voltages in the area 85 mV to 130 mV .

NOR2

The noise margins of the 4 T and 8 T NOR2 gates are similar to the Inverters and NAND2 gates in terms of magnitude. The difference from the NAND2 gate is that the traditional 4T topology has a lower mean noise margin that the 8 T topology. For $V_{D D}$ close to 100 mV the noise margins are below $\frac{1}{3}$ of $V_{D D}$. For the 4 T NOR2 gate, the mean noise margin is below $\frac{1}{3}$ for $V_{D D}=130 \mathrm{mV}$, while it is above $\frac{1}{3}$ for $V_{D D}=118 \mathrm{mV}$ for the 8T NAND2 gate. This means that both NOR2 gates are prone to noise at voltages close to 100 mV .

8.2 Power and delay

8.2.1 PDP

The results of the ring oscillators provides power delay products of each device. This indicates at which $V_{D D}$ least energy is consumed. The power delay product graphs show that the lower
the supply voltage goes, the lower the PDP goes. This is because the power is reduced at a higher rate than the delay is increased as $V_{D D}$ is reduced. For the 2 T Inverter the delay is increased from 500 ns to 1.25 us when $V_{D D}$ is reduced from 130 mV to 85 mV . The power is reduced from $94 p W$ to $24 p W$ for the same change in $V_{D D}$. The change in delay is $\frac{3}{5}$ of max delay while the change in power is $\frac{7}{9}$ of max power. Due to this, the $V_{D D}$ that gives the lowest energy consumption is the lowest. In order to find the most energy efficient device, the supply voltage must be as low as possible.

8.2.2 Minimum supply voltage

The lowest $V_{D D}$ that support oscillations in the ring oscillator are in the area of $71 m V$ to 73 mV . These values are good compared to the goal of 100 mV , however these oscillations have maximum amplitude between 45% and 55% of $V_{D D}$, which makes them useless for most logical operations. Oscillations between 25% and 75% of $V_{D D}$, and 5% and 95% of $V_{D D}$ are more likely able to support regular operation of a logical gate. Oscillations between 25% and 75% of $V_{D D}$ are achieved with $V_{D D}$ spanning from $77 m V$ (8 T NOR2) to 86 mV (4T NOR2). If the circumstances allows operations with oscillations of this magnitude, the supply voltage can be reduced below 100 mV . If the oscillations of at least 5% and 95% of $V_{D D}$ is required, the supply voltage mus be the area 104 mV to 115 mV , which is also quite close to 100 mV .

The traditional topologies (2T Inverter, 4T NAND2 and 4T NOR2) have a higher $V_{D D}$ and a lower power delay product than the new topologies (4T Inverter, 8T NAND2 and 8T NOR2). So even though the new topologies can have a slightly lower $V_{D D}$ they are less energy effective than the traditional topologies. This is because the traditional gates have a lower delay than the new ones.

8.3 Robustness

Based on the Monte Carlo analysis presented in chapter 7.3 relationships between transistor gate sizing and process variations can be identified. Common for all gates in this project is that the process variations was decreased when the transistor gate area was increased. Another relationship that might be observed is that a low size ratio between the width of the pfet and the nfet also lowered the process variations. However, the sets with low size ratio also had a large total gate area, so the low process variation for low ratio might just be a bi-effect of a large area.

The Monte Carlo analyses uncovered another important result. The new topologies (4T inverter, 8 T NAND2 and 8 T NOR2) had lower process variations than the traditional topologies (2T inverter, 4T NAND2 and 4T NOR2). The new topologies had double the amount of transistors compared to the traditional topologies, and therefore also a larger total gate area. The larger gate area was probably the cause of the lower process variations. One anomaly however, is the case of low area $\delta \mathcal{E}$ good balance for the NOR2 gates. The 4T NOR2 gate had a total gate area of $90 \mathrm{fm}^{2}$ while the 8 T NOR2 gate had a total gate area of $78 \mathrm{fm}^{2}$. In table 7.24 it can be seen that the process variations for the 8 T NOR2 was lower than for the 4 T NOR2, while the mean values were almost equal. The main difference from these two situations is that the 8 T NOR2 had the lowest transistor width ratio.

The robustness of logical gates at sub-threshold voltages can be increased by increasing the total gate area and reduce the ratio between the sizes of the pfet and the nfet. The use of the new topologies presented in this project can even further increase the robustness.

8.4 Deciding final sizes

8.4.1 Summary

In chapter 7.4.1 the results of the DC analyses and the transient analyses are summarized for the different sets of transistor size sets from chapter 7.1.1. Here are the results further discussed. The figures $7.21,7.22,7.23,7.24,7.25$ and 7.26 shows that there are trade-offs between the different metrics used in this project. There are some general tendencies for all the gates.

Gate balance is affected by the area of the transistor gates. The gate balance was increased as the total gate area and the size ratio between the pfet and the nfet were increased. This indicates that the unbalance between the strength of nfet and pfet transistors is larger at sub-threshold voltages than at super-threshold voltages.

The gate area had little influence on the mean noise margins. The mean noise margins were almost equal for all the different sizes of transistor gate sizes. This means that manipulating the transistor dimensions will not influence the size of the undefined region in a large degree at sub-threshold voltages. The most effecitve method for for reducing the size of the undefined region is to increase the supply voltage.

The robustness of the logical gates are affected by the transistor sizes. Common for all the devices is that the process variations were decreased as the transistor gate area was increased.

The size of the transistor gate lengths had the largest influences on the results from the transient analyses. A larger length decreased the supply voltage needed to support stable operation, and also reduce the power consumption. The delay will however increase, as the length increases. The widths of the transistor gates do also have an effect on the supply voltage, power and delay. A larger width will reduce the delay, and increase the power consumption. Low gate width will reduce the power consumption, but increase the delay. A low gate length will increase the power consumption and lower the delay. This indicates maybe the most prominent trade-off, low delay gives large power, and a large delay gives low power. To help decide what is most energy effective, the power delay product is calculated. The figures in chapter 7.4.1 shows that the lowest power delay product is achieved with the size set low area $\xi^{\text {g good balance. }}$

It is important to note that the power delay products in chapter 7.4.1 were measured with $V_{D D}=100 \mathrm{mV}$. So the set low $V_{D D} \xi$ low PDP has a lower PDP at the lowest supply voltages it achieves. However the sets low area \mathcal{E} good balance had a lower PDP at 100 mV than the sets low $V_{D D} \&$ low PDP had at the lowest $V_{D D}$ for the inverters and NOR2 gates. For the NAND2 gates, the lowest PDP was achieved by the sets low $V_{D D} \&$ low PDP at the lowest supply voltages. In table 8.1 below this is shown.

Set	Device	$\mathbf{V}_{D D}(\mathbf{m V})$	PDP (aJ)
Low $V_{D D}$ \& low PDP	2T inverter	73	42,1
Low area \& GB	2T inverter	100	33,6
Low $V_{D D}$ \& low PDP	4T inverter	71	75,5
Low area \& GB	4T inverter	100	55,5
Low $V_{D D} \&$ low PDP	4T NAND2	73	37,8
Low area \& GB	4T NAND2	100	50,3
Low $V_{D D} \&$ low PDP	8T NAND2	73	165
Low area \& GB	8T NAND2	100	210
\mid			
Low $V_{D D} \&$ low PDP	4T NOR2	75	141
Low area \& GB	4T NOR2	100	82,6
\mid			
Low $V_{D D} \&$ low PDP	8T NOR2	72	122
Low area \& GB	8T NOR2	100	75,1

Table 8.1: Comparison of the power delay product.

Figure 8.1: Comparison of the power delay product.

8.4.2 Final sizes

One of the main goals of this project was to create logical gates that were able to operate at a low $V_{D D}$. The results that supported the lowest $V_{D D}$ in the ring oscillators were too unbalanced to satisfy the requirement of having an $S P_{x}$ between 40% and 60% of $V_{D D}$. In a noiseless environment the sets with the lowest $V_{D D}$ would have been a good choice due to low supply voltage, low PDP and decent robustness.

Instead was the set Low VNM ratio chosen for all the devices. This is because it is a set that have good results in the DC analyses. It has good balance and low process variations. When it comes to the transient analyses the performance was more average. It was not the set that was most energy efficient, but have a decent performance relative to the lowest $V_{D D}$ and PDP. It was amongst the sets that were least prone to noise and variations in the manufacturing process. This makes it a set that is likely to function properly in a practical implementation, but still have a relative low $V_{D D}$, and was therefor chosen to be the final set.

8.4.3 Comparing topologies

The figure 7.27 in chapter 7.4.2 indicates the main differences between the traditional topologies (2T inverter, 4T NAND2 and 4T NOR2) and the new topologies (4T inverter, 8T NAND2 and 8T NOR2). The new topologies have a larger area, this is not surprising since they have double the amount of transistors. The new topologies achieved a little better gate balance than the traditional ones, but the mean noise margins were almost the same. The lowest $V_{D D}$ were also quite similar for all devices. When it comes to process variations, the new topologies performed better than the traditional ones. Power and delay, were a little inconsistent for the different devices, but the power delay product was lowest for the traditional topologies.

The new topologies tested in this project give better performance in terms of gate balance and process variations compared to the traditional topologies. They are however, less energy effective and have a larger transistor gate area.

8.5 Effects of body biasing

The two figures 7.28 and 7.29 in chapter 7.5 shows how biasing the bulks of the nfet and the pfet affects the gate balance. Reverse biasing the bulk increased the transistors threshold voltage making the transistors weaker. Forward biasing the bulk, did the opposite, lowering the threshold voltage and making the transistors stronger. In sub-threshold the nfet is stronger than the pfet. To reduce this unbalance the nfet needs to be reverse biased, while the $p f e t$ must be forward biased. Figure 7.30 shows how this body bias configuration was used to balance an 8T NAND2 gate.

By forward biasing the pfet with 100 mV , and reverse biasing the $n f e t$ with 100 mV the sets size ratios in table 7.34 were created. The requirements to $S P_{x}$ were the same, but they were achieved with lower ratio between the widths of the pfet and the nfet.

The figures $7.31,7.32$ and 7.33 shows how the body biasing affected power, delay and the power delay product in the ring oscillator with the transistor gate size set low area 83 good
balance. For this size set, the power and the delay was slightly reduced, resulting in a reduction of the power delay product compared to the unbiased 8T NAND2 gate.

Tables $7.35,7.36,7.37,7.38$ and figure 7.34 presents the results of the DC and transient analyses for the 8T NAND2 gate with body biasing compared to the other NAND 2 gates. The body biased 8T NAND2 gate performed relatively similar to the unbiased 8T NAND2 gate. The main differences were that the body biased version had a smaller gate area and a lower gate size ratio, and a lower power delay product.

The main benefits of body biasing the 8T NAND2 gate is that it will take less area and consume less energy while still performing quite similar to an unbiased gate in terms of balance, noise margins and process variations.

8.6 Evaluation of the method

8.6.1 Constructing the logical gates

All gates were created in Cadence Virtuoso with schematics and symbols. They were created according to the theoretical schematics in chapter 2.1 with extra inputs to the bulks of the nfet and pfet. Few problems were encountered during the construction of the gates, and the work was performed in a time effective manner.

8.6.2 Testing the logical gates

The test benches used to test the logical gates were created in Cadence Virtuoso with schematics. The tool used for testing the gates was ADE XL. Construction of the test benches and the setup of the tests were done with few problems.

The main method for testing the logical gates in this project was to run large parametric analyses with different transistor gate dimensions. The results of these analyses have been post processed using excel to identify the largest and lowest values. This method has made sure that many results have been included and examined. This has resulted in a thorough investigation, that have been very time consuming, which limited the scope of this project. The large analyses ensured that all results within the test parameters were investigated and included in the post evaluation.

8.6.3 Sources of errors

In this project many transistor gate sizes was tested at different supply voltages in both DC and transient analyses. The problem with this large tests was actually the amount of test results produced. Even though all results were available, to identify important results was at time somewhat confusing and difficult. There might still be results that need more attention hidden in the maze of all the test results. When faced with such a mass of raw data, the chance for human error is present.

Another source of errors are that important results might be outside the parameters of the tests. Since much time and effort was used on the results within the test parameters, the boundaries of the tests them self was not investigated in dept. Transistor sizes and voltages
outside the boundaries presented in chapter 6 were unfortunately not investigated.

All tests performed in this project was solely based on schematic design. An effect of this is that all test results are theoretical values lacking the parasitic parameters that will be added with a practical implementation. If layouts were made, the tests results would have given a more realistic representation on how the logical gates had performed.

The test benches used for the DC analyses of the NAND2 gates and the NOR2 gates only investigated the the case when one output changed from " 0 " to " 1 " while the other input was connected to $V_{D D}$ and gnd respectively. The case of an inverter coupled NAND2 or NOR2 was not investigated. The test benches for the transient analyses only considered the inverter coupled case. Some important sets of transistor sizes might have been found if the other cases were tested.

8.6.4 What could have been done differently

The majority of the time spent on this project have been used to run large simulations and post process the results. This have limited the investigation to schematic analyses within rigid test parameters. If fewer devices were investigated with less parametric analyses, more time would probably have been available for investigating other tests and creating layouts. Other areas of investigation could have been rise time and fall time, DC analyses of inverter coupled NAND2 and NOR2, ring oscillators without inverter coupled NAND2 and NOR2 gates, ring oscillators with more than 3 devices, and of course layout with parametric extractions.

Layout would especially be included if this project were to be repeated. A parametric extraction could have provided valuable information about how a practical implementation would have behaved.

9. Conclusion

9.1 What were done

In this project the three logical gates Inverter, 2 -input NAND and 2 -input NOR were constructed in Cadence Virtuoso. Each gate was constructed with two different topologies. All gates were able to operate with a supply voltage below the transistors threshold voltage, and can therfor be reffered to as sub-threshold logical gates. All gates were tested with DC and transient analyses and the following metrics were measured; Area, balance, noise margin, process variations, supply voltage, power, delay and energy. Based on this, the different topologies for each gates were compared to each other.

9.2 Comparing results to task specification

All gates that the task specification described were constructed, and they were able to operate at sub-threshold voltages. They were also tested according to the metrics described in the project specification. One of the main goals in this project was to push the supply voltage as low as possible. Nowaks statement of 100 mV being the practical lower limit for $V_{D D}$ was challenged[4]. Gates able to operate at $V_{D D}$ close to 80 mV were created. These gates however, were unbalanced and prone to noise. Logical gates with satisfactory tolerance for noise and process variations were able to operate with a $V_{D D}$ between 108 mV and 146 mV .

The new gate topologies were compared to the traditional ones. The new topologies had a larger transistor gate area, were more robust towards process variations, but were less energy effective. This result is quite similar to the results found with the same gate topologies and the 65 nm library[1].

The effect of body biasing were tested. The results showed that the gate area, and energy consumption could be decreased without influencing the other metrics, by the use of body biasing.

9.3 Conclusion

Creating sub-threshold logic is possible. The low $V_{D D}$ will reduce the performance of the gates in terms of gate area, noise margins, robustness towards process variations and delay. Different gate topologies, different transistor gate dimensions and bulk biasing can mitigate some of these trade-offs.

The benefits of the new topologies tested in this project (4T Inverter, 8T NAND2 and 8T NOR2) is that they can mitigate process variations and increase gate balance. The negative properties of the new topologies are that they consume more energy and occupies a larger gate area than the traditional gates (2T inverter, 4T NAND2 and 4T NOR2). The gates that had the largest benefit of the new topology were the inverter and the NOR2 gate. The traditional 4T topology of the NAND2 had better performance than the new 8 T topology.
The focus of this project has been to do in dept investigations on the theoretical characteristics of the different logical gates. Large amounts of tests have been performed, and lots of test results have been post processed to ensure that the most important results were identified and further investigated.

9.4 Further work

The natural next stage of this project will be to create layouts based upon the final transistor sizes. A layout can take the theoretical values found here and investigate how a practical implementation would behave. After layouts have been created the construction of larger logical structures can begin. For implementation in a sleep mode circuit, a real time counter would be interesting to create.

A. Schematics

A. 1 Test bench nfet

Figure A.1: Nfet testbench schematic

A. 2 Testbench pfet

Figure A.2: Pfet testbench schematic

A. 32 Transistor inverter schematic

Figure A.3: 2 Transistor inverter schematic

A. 42 Transistor inverter symbol

Figure A.4: 2 Transistor inverter symbol

A. 52 Transistor inverter test bench

Figure A.5: 2 Transistor inverter test bench

A. 62 Transistor inverter ring oscillator

Figure A.6: 2 Transistor inverter ring oscillator

A. 74 Transistor inverter schematic

Figure A.7: 4 Transistor inverter schematic

A. 84 Transistor inverter symbol

Figure A.8: 4 Transistor inverter symbol

A. 94 Transistor inverter test bench

Figure A.9: 4 Transistor inverter test bench

A. 104 Transistor inverter ring oscillator

Figure A.10: 4 Transistor inverter ring oscillator

A. 114 Transistor NAND2 gate schematic

Figure A.11: 4 Transistor NAND2 gate schematic

A. 124 Transistor NAND2 gate symbol

Figure A.12: 4 Transistor NAND2 gate symbol

A. 134 Transistor NAND2 gate test bench

Figure A.13: 4 Transistor NAND2 gate test bench

A. 144 Transistor NAND2 gate ring oscillator

Figure A.14: 4 Transistor NAND2 gater ring oscillator

A. 158 Transistor NAND2 gate schematic

Figure A.15: 8 Transistor NAND2 gate schematic

A. 168 Transistor NAND2 gate symbol

Figure A.16: 8 Transistor NAND2 gate symbol

A. 178 Transistor NAND2 gate test bench

Figure A.17: 8 Transistor NAND2 gate test bench

A. 188 Transistor NAND2 gate ring oscillator

Figure A.18: 8Transistor NAND2 gater ring oscillator

A. 194 Transistor NOR2 gate schematic

Figure A.19: 4 Transistor NOR2 gate schematic

A. 204 Transistor NOR2 gate symbol

Figure A.20: 4 Transistor NOR2 gate symbol

A. 214 Transistor NOR2 gate test bench

Figure A.21: 4 Transistor NOR2 gate test bench

A. 224 Transistor NOR2 gate ring oscillator

Figure A.22: 4 Transistor NOR2 gater ring oscillator

A. 238 Transistor NOR2 gate schematic

Figure A.23: 8 Transistor NOR2 gate schematic

A. 248 Transistor NOR2 gate symbol

Figure A.24: 8 Transistor NOR2 gate symbol

A. 258 Transistor NOR2 gate test bench

Figure A.25: 8 Transistor NOR2 gate test bench

A. 268 Transistor NOR2 gate ring oscillator

Figure A.26: 8TransistorNOR2 gater ring oscillator

B. Tables

B. 1 Gate balance

Table B.1: The $S P_{x}$ of the 2 T Inverter at 100 mV . Results from the parametric DC analysis.

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \hline \text { PW } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100	145	30.0	200	650	25.5	3.25	41.0
100	160	30.0	200	700	27.0	3.50	42.9
100	175	30.0	200	750	28.5	3.75	44.6
100	190	30.0	200	800	30.0	4.00	46.2
100	205	30.0	200	850	31.5	4.25	47.7
100	220	30.0	200	900	33.0	4.50	49.1
100	235	30.0	200	950	34.5	4.75	50.3
100	236	35.0	200	950	40.3	4.75	40.2
100	250	30.0	200	1000	36.0	5.00	51.5
100	251	35.0	200	1000	42.0	5.00	41.2
100	265	30.0	200	1050	37.5	5.25	52.7
100	266	35.0	200	1050	43.8	5.25	42.2
100	280	30.0	200	1100	39.0	5.50	53.7
100	281	35.0	200	1100	45.5	5.50	43.2
100	295	30.0	200	1150	40.5	5.75	54.7
100	296	35.0	200	1150	47.3	5.75	44.1
100	310	30.0	200	1200	42.0	6.00	55.7
100	311	35.0	200	1200	49.0	6.00	44.9
100	325	30.0	200	1250	43.5	6.25	56.6
100	326	35.0	200	1250	50.8	6.25	45.7
100	340	30.0	200	1300	45.0	6.50	57.5
100	341	35.0	200	1300	52.5	6.50	46.5
100	355	30.0	200	1350	46.5	6.75	58.3
100	356	35.0	200	1350	54.3	6.75	47.3
100	357	40.0	200	1350	62.0	6.75	40.4
100	370	30.0	200	1400	48.0	7.00	59.1
100	371	35.0	200	1400	56.0	7.00	48.0
100	372	40.0	200	1400	64.0	7.00	41.1
100	385	30.0	200	1450	49.5	7.25	59.9
100	386	35.0	200	1450	57.8	7.25	48.7
100	387	40.0	200	1450	66.0	7.25	41.8
100	401	35.0	200	1500	59.5	7.50	49.3
100	402	40.0	200	1500	68.0	7.50	42.4

Continued on next page

Table B. 1 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	PW $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100	416	35.0	200	1550	61.3	7.75	50.0
100	417	40.0	200	1550	70.0	7.75	43.0
100	431	35.0	200	1600	63.0	8.00	50.6
100	432	40.0	200	1600	72.0	8.00	43.6
100	446	35.0	200	1650	64.8	8.25	51.2
100	447	40.0	200	1650	74.0	8.25	44.1
100	461	35.0	200	1700	66.5	8.50	51.8
100	462	40.0	200	1700	76.0	8.50	44.7
100	476	35.0	200	1750	68.3	8.75	52.3
100	477	40.0	200	1750	78.0	8.75	45.2
100	491	35.0	200	1800	70.0	9.00	52.9
100	492	40.0	200	1800	80.0	9.00	45.7
100	506	35.0	200	1850	71.8	9.25	53.4
100	507	40.0	200	1850	82.0	9.25	46.2
100	521	35.0	200	1900	73.5	9.50	53.9
100	522	40.0	200	1900	84.0	9.50	46.7
100	536	35.0	200	1950	75.3	9.75	54.4
100	537	40.0	200	1950	86.0	9.75	47.1
100	551	35.0	200	2000	77.0	10.00	54.9
100	552	40.0	200	2000	88.0	10.00	47.6
100	566	35.0	200	2050	78.8	10.25	55.3
100	567	40.0	200	2050	90.0	10.25	48.0
100	581	35.0	200	2100	80.5	10.50	55.8
100	582	40.0	200	2100	92.0	10.50	48.4
100	596	35.0	200	2150	82.3	10.75	56.2
100	597	40.0	200	2150	94.0	10.75	48.9
100	611	35.0	200	2200	84.0	11.00	56.7
100	612	40.0	200	2200	96.0	11.00	49.3
100	626	35.0	200	2250	85.8	11.25	57.1
100	627	40.0	200	2250	98.0	11.25	49.7
100	641	35.0	200	2300	87.5	11.50	57.5
100	642	40.0	200	2300	100.0	11.50	50.1
100	656	35.0	200	2350	89.3	11.75	57.9
100	657	40.0	200	2350	102.0	11.75	50.4
100	671	35.0	200	2400	91.0	12.00	58.3
100	672	40.0	200	2400	104.0	12.00	50.8
100	686	35.0	200	2450	92.8	12.25	58.7
100	687	40.0	200	2450	106.0	12.25	51.2
100	701	35.0	200	2500	94.5	12.50	59.1
100	702	40.0	200	2500	108.0	12.50	51.5
100	880	30.0	250	750	30.0	3.00	40.3
100	895	30.0	250	800	31.5	3.20	41.8
100	910	30.0	250	850	33.0	3.40	43.3
100	925	30.0	250	900	34.5	3.60	44.7
100	940	30.0	250	950	36.0	3.80	46.0
100	955	30.0	250	1000	37.5	4.00	47.2
	5	2					

Continued on next page

Table B. 1 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	NW $(\mathbf{n m})$	PW $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100	970	30.0	250	1050	39.0	4.20	48.3
100	985	30.0	250	1100	40.5	4.40	49.3
100	1000	30.0	250	1150	42.0	4.60	50.4
100	1015	30.0	250	1200	43.5	4.80	51.3
100	1016	35.0	250	1200	50.8	4.80	40.8
100	1030	30.0	250	1250	45.0	5.00	52.2
100	1031	35.0	250	1250	52.5	5.00	41.6
100	1045	30.0	250	1300	46.5	5.20	53.1
100	1046	35.0	250	1300	54.3	5.20	42.4
100	1060	30.0	250	1350	48.0	5.40	53.9
100	1061	35.0	250	1350	56.0	5.40	43.1
100	1075	30.0	250	1400	49.5	5.60	54.8
100	1076	35.0	250	1400	57.8	5.60	43.9
100	1090	30.0	250	1450	51.0	5.80	55.5
100	1091	35.0	250	1450	59.5	5.80	44.5
100	1105	30.0	250	1500	52.5	6.00	56.3
100	1106	35.0	250	1500	61.3	6.00	45.2
100	1120	30.0	250	1550	54.0	6.20	57.0
100	1121	35.0	250	1550	63.0	6.20	45.8
100	1135	30.0	250	1600	55.5	6.40	57.7
100	1136	35.0	250	1600	64.8	6.40	46.5
100	1150	30.0	250	1650	57.0	6.60	58.3
100	1151	35.0	250	1650	66.5	6.60	47.1
100	1152	40.0	250	1650	76.0	6.60	40.1
100	1165	30.0	250	1700	58.5	6.80	59.0
100	1166	35.0	250	1700	68.3	6.80	47.6
100	1167	40.0	250	1700	78.0	6.80	40.7
100	1180	30.0	250	1750	60.0	7.00	59.6
100	1181	35.0	250	1750	70.0	7.00	48.2
100	1182	40.0	250	1750	80.0	7.00	41.2
100	1196	35.0	250	1800	71.8	7.20	48.7
100	1197	40.0	250	1800	82.0	7.20	41.7
100	1211	35.0	250	1850	73.5	7.40	49.3
100	1212	40.0	250	1850	84.0	7.40	42.2
100	1226	35.0	250	1900	75.3	7.60	49.8
100	1227	40.0	250	1900	86.0	7.60	42.7
100	1241	35.0	250	1950	77.0	7.80	50.3
100	1242	40.0	250	1950	88.0	7.80	43.2
100	1256	35.0	250	2000	78.8	8.00	50.8
100	1257	40.0	250	2000	90.0	8.00	43.6
100	1271	35.0	250	2050	80.5	8.20	51.2
100	1272	40.0	250	2050	92.0	8.20	44.0
100	1286	35.0	250	2100	82.3	8.40	51.7
100	1287	40.0	250	2100	94.0	8.40	44.5
100	1301	35.0	250	2150	84.0	8.60	52.1
100	1302	40.0	250	2150	96.0	8.60	44.9
	C						

Continued on next page

Table B. 1 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}$ $($
$(\mathbf{m V})$							

Continued on next page

Table B. 1 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100	1945	30.0	300	1950	67.5	6.50	58.3
100	1946	35.0	300	1950	78.8	6.50	46.9
100	1960	30.0	300	2000	69.0	6.67	58.9
100	1961	35.0	300	2000	80.5	6.67	47.4
100	1962	40.0	300	2000	92.0	6.67	40.4
100	1975	30.0	300	2050	70.5	6.83	59.4
100	1976	35.0	300	2050	82.3	6.83	47.9
100	1977	40.0	300	2050	94.0	6.83	40.8
100	1990	30.0	300	2100	72.0	7.00	59.9
100	1991	35.0	300	2100	84.0	7.00	48.3
100	1992	40.0	300	2100	96.0	7.00	41.3
100	2006	35.0	300	2150	85.8	7.17	48.8
100	2007	40.0	300	2150	98.0	7.17	41.7
100	2021	35.0	300	2200	87.5	7.33	49.2
100	2022	40.0	300	2200	100.0	7.33	42.1
100	2036	35.0	300	2250	89.3	7.50	49.6
100	2037	40.0	300	2250	102.0	7.50	42.5
100	2051	35.0	300	2300	91.0	7.67	50.1
100	2052	40.0	300	2300	104.0	7.67	42.9
100	2066	35.0	300	2350	92.8	7.83	50.5
100	2067	40.0	300	2350	106.0	7.83	43.3
100	2081	35.0	300	2400	94.5	8.00	50.9
100	2082	40.0	300	2400	108.0	8.00	43.6
100	2096	35.0	300	2450	96.3	8.17	51.2
100	2097	40.0	300	2450	110.0	8.17	44.0
100	2111	35.0	300	2500	98.0	8.33	51.6
100	2112	40.0	300	2500	112.0	8.33	44.4
100	2365	30.0	350	1000	40.5	2.86	40.6
100	2380	30.0	350	1050	42.0	3.00	41.7

Table B.2: The $S P_{x}$ of the 4 T Inverter at 100 mV . Results from the parametric DC analysis.

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $\mathbf{(n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	145	30.0	200	650	25.5	3.25	40.8
100.0	160	30.0	200	700	27.0	3.50	42.7
100.0	175	30.0	200	750	28.5	3.75	44.4
100.0	190	30.0	200	800	30.0	4.00	46.0
100.0	205	30.0	200	850	31.5	4.25	47.4
100.0	220	30.0	200	900	33.0	4.50	48.8
100.0	235	30.0	200	950	34.5	4.75	50.1
100.0	250	30.0	200	1000	36.0	5.00	51.3
100.0	251	35.0	200	1000	42.0	5.00	40.9
100.0	265	30.0	200	1050	37.5	5.25	52.4
100.0	266	35.0	200	1050	43.8	5.25	41.9
100.0	280	30.0	200	1100	39.0	5.50	53.5
100.0	281	35.0	200	1100	45.5	5.50	42.8
100.0	295	30.0	200	1150	40.5	5.75	54.5
100.0	296	35.0	200	1150	47.3	5.75	43.7
100.0	310	30.0	200	1200	42.0	6.00	55.4
100.0	311	35.0	200	1200	49.0	6.00	44.6
100.0	325	30.0	200	1250	43.5	6.25	56.4
100.0	326	35.0	200	1250	50.8	6.25	45.4
100.0	340	30.0	200	1300	45.0	6.50	57.2
100.0	341	35.0	200	1300	52.5	6.50	46.2
100.0	355	30.0	200	1350	46.5	6.75	58.1
100.0	356	35.0	200	1350	54.3	6.75	46.9
100.0	357	40.0	200	1350	62.0	6.75	40.1
100.0	370	30.0	200	1400	48.0	7.00	58.9
100.0	371	35.0	200	1400	56.0	7.00	47.6
100.0	372	40.0	200	1400	64.0	7.00	40.8
100.0	385	30.0	200	1450	49.5	7.25	59.6
100.0	386	35.0	200	1450	57.8	7.25	48.3
100.0	387	40.0	200	1450	66.0	7.25	41.4
100.0	401	35.0	200	1500	59.5	7.50	49.0
100.0	402	40.0	200	1500	68.0	7.50	42.0
100.0	416	35.0	200	1550	61.3	7.75	49.6
100.0	417	40.0	200	1550	70.0	7.75	42.6
100.0	431	35.0	200	1600	63.0	8.00	50.2
100.0	432	40.0	200	1600	72.0	8.00	43.2
100.0	446	35.0	200	1650	64.8	8.25	50.8
100.0	447	40.0	200	1650	74.0	8.25	43.8
100.0	461	35.0	200	1700	66.5	8.50	51.4
100.0	462	40.0	200	1700	76.0	8.50	44.3
100.0	476	35.0	200	1750	68.3	8.75	52.0
100.0	477	40.0	200	1750	78.0	8.75	44.8
100.0	491	35.0	200	1800	70.0	9.00	52.5
100.0	492	40.0	200	1800	80.0	9.00	45.3
100.0	506	35.0	200	1850	71.8	9.25	53.0
	$C 0$						

Continued on next page

Table B. 2 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}$ $($
$(\mathbf{m V})$							

Continued on next page

Table B. 2 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	Area $\left(\mathrm{fm}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100.0	1090	30.0	250	1450	51.0	5.80	55.3
100.0	1091	35.0	250	1450	59.5	5.80	44.2
100.0	1105	30.0	250	1500	52.5	6.00	56.0
100.0	1106	35.0	250	1500	61.3	6.00	44.9
100.0	1120	30.0	250	1550	54.0	6.20	56.7
100.0	1121	35.0	250	1550	63.0	6.20	45.5
100.0	1135	30.0	250	1600	55.5	6.40	57.4
100.0	1136	35.0	250	1600	64.8	6.40	46.1
100.0	1150	30.0	250	1650	57.0	6.60	58.1
100.0	1151	35.0	250	1650	66.5	6.60	46.7
100.0	1165	30.0	250	1700	58.5	6.80	58.7
100.0	1166	35.0	250	1700	68.3	6.80	47.3
100.0	1167	40.0	250	1700	78.0	6.80	40.3
100.0	1180	30.0	250	1750	60.0	7.00	59.3
100.0	1181	35.0	250	1750	70.0	7.00	47.9
100.0	1182	40.0	250	1750	80.0	7.00	40.9
100.0	1195	30.0	250	1800	61.5	7.20	59.9
100.0	1196	35.0	250	1800	71.8	7.20	48.4
100.0	1197	40.0	250	1800	82.0	7.20	41.4
100.0	1211	35.0	250	1850	73.5	7.40	48.9
100.0	1212	40.0	250	1850	84.0	7.40	41.8
100.0	1226	35.0	250	1900	75.3	7.60	49.4
100.0	1227	40.0	250	1900	86.0	7.60	42.3
100.0	1241	35.0	250	1950	77.0	7.80	49.9
100.0	1242	40.0	250	1950	88.0	7.80	42.8
100.0	1256	35.0	250	2000	78.8	8.00	50.4
100.0	1257	40.0	250	2000	90.0	8.00	43.2
100.0	1271	35.0	250	2050	80.5	8.20	50.9
100.0	1272	40.0	250	2050	92.0	8.20	43.7
100.0	1286	35.0	250	2100	82.3	8.40	51.3
100.0	1287	40.0	250	2100	94.0	8.40	44.1
100.0	1301	35.0	250	2150	84.0	8.60	51.8
100.0	1302	40.0	250	2150	96.0	8.60	44.5
100.0	1316	35.0	250	2200	85.8	8.80	52.2
100.0	1317	40.0	250	2200	98.0	8.80	44.9
100.0	1331	35.0	250	2250	87.5	9.00	52.6
100.0	1332	40.0	250	2250	100.0	9.00	45.3
100.0	1346	35.0	250	2300	89.3	9.20	53.1
100.0	1347	40.0	250	2300	102.0	9.20	45.7
100.0	1361	35.0	250	2350	91.0	9.40	53.5
100.0	1362	40.0	250	2350	104.0	9.40	46.1
100.0	1376	35.0	250	2400	92.8	9.60	53.8
100.0	1377	40.0	250	2400	106.0	9.60	46.5
100.0	1391	35.0	250	2450	94.5	9.80	54.2
100.0	1392	40.0	250	2450	108.0	9.80	46.9
100.0	1406	35.0	250	2500	96.3	10.00	54.6

Continued on next page

Table B. 2 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathbf{P W} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100.0	1407	40.0	250	2500	110.0	10.00	47.2
100.0	1630	30.0	300	900	36.0	3.00	40.9
100.0	1645	30.0	300	950	37.5	3.17	42.2
100.0	1660	30.0	300	1000	39.0	3.33	43.3
100.0	1675	30.0	300	1050	40.5	3.50	44.5
100.0	1690	30.0	300	1100	42.0	3.67	45.5
100.0	1705	30.0	300	1150	43.5	3.83	46.6
100.0	1720	30.0	300	1200	45.0	4.00	47.5
100.0	1735	30.0	300	1250	46.5	4.17	48.4
100.0	1750	30.0	300	1300	48.0	4.33	49.3
100.0	1765	30.0	300	1350	49.5	4.50	50.1
100.0	1780	30.0	300	1400	51.0	4.67	50.9
100.0	1781	35.0	300	1400	59.5	4.67	40.2
100.0	1795	30.0	300	1450	52.5	4.83	51.7
100.0	1796	35.0	300	1450	61.3	4.83	40.9
100.0	1810	30.0	300	1500	54.0	5.00	52.5
100.0	1811	35.0	300	1500	63.0	5.00	41.5
100.0	1825	30.0	300	1550	55.5	5.17	53.2
100.0	1826	35.0	300	1550	64.8	5.17	42.2
100.0	1840	30.0	300	1600	57.0	5.33	53.8
100.0	1841	35.0	300	1600	66.5	5.33	42.8
100.0	1855	30.0	300	1650	58.5	5.50	54.5
100.0	1856	35.0	300	1650	68.3	5.50	43.4
100.0	1870	30.0	300	1700	60.0	5.67	55.1
100.0	1871	35.0	300	1700	70.0	5.67	44.0
100.0	1885	30.0	300	1750	61.5	5.83	55.8
100.0	1886	35.0	300	1750	71.8	5.83	44.5
100.0	1900	30.0	300	1800	63.0	6.00	56.4
100.0	1901	35.0	300	1800	73.5	6.00	45.1
100.0	1915	30.0	300	1850	64.5	6.17	57.0
100.0	1916	35.0	300	1850	75.3	6.17	45.6
100.0	1930	30.0	300	1900	66.0	6.33	57.5
100.0	1931	35.0	300	1900	77.0	6.33	46.1
100.0	1945	30.0	300	1950	67.5	6.50	58.1
100.0	1946	35.0	300	1950	78.8	6.50	46.6
100.0	1960	30.0	300	2000	69.0	6.67	58.6
100.0	1961	35.0	300	2000	80.5	6.67	47.1
100.0	1962	40.0	300	2000	92.0	6.67	40.0
100.0	1975	30.0	300	2050	70.5	6.83	59.1
100.0	1976	35.0	300	2050	82.3	6.83	47.5
100.0	1977	40.0	300	2050	94.0	6.83	40.5
100.0	1990	30.0	300	2100	72.0	7.00	59.6
100.0	1991	35.0	300	2100	84.0	7.00	48.0
100.0	1992	40.0	300	2100	96.0	7.00	40.9
100.0	2006	35.0	300	2150	85.8	7.17	48.4
100.0	2007	40.0	300	2150	98.0	7.17	41.3

Continued on next page

Table B. 2 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $\mathbf{(\mathbf { n m })}$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	2021	35.0	300	2200	87.5	7.33	48.9
100.0	2022	40.0	300	2200	100.0	7.33	41.7
100.0	2036	35.0	300	2250	89.3	7.50	49.3
100.0	2037	40.0	300	2250	102.0	7.50	42.1
100.0	2051	35.0	300	2300	91.0	7.67	49.7
100.0	2052	40.0	300	2300	104.0	7.67	42.5
100.0	2066	35.0	300	2350	92.8	7.83	50.1
100.0	2067	40.0	300	2350	106.0	7.83	42.9
100.0	2081	35.0	300	2400	94.5	8.00	50.5
100.0	2082	40.0	300	2400	108.0	8.00	43.3
100.0	2096	35.0	300	2450	96.3	8.17	50.9
100.0	2097	40.0	300	2450	110.0	8.17	43.6
100.0	2111	35.0	300	2500	98.0	8.33	51.3
100.0	2112	40.0	300	2500	112.0	8.33	44.0
100.0	2365	30.0	350	1000	40.5	2.86	40.4
100.0	2380	30.0	350	1050	42.0	3.00	41.5
100.0	2395	30.0	350	1100	43.5	3.14	42.6

Table B.3: The $S P_{x}$ of the 4T NAND2 at 100 mV . Results from the parametric DC analysis.

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100	34	30.0	200	500	21.0	2.50	41.1
100	39	30.0	200	550	22.5	2.75	44.3
100	44	30.0	200	600	24.0	3.00	47.1
100	49	30.0	200	650	25.5	3.25	49.7
100	54	30.0	200	700	27.0	3.50	52.1
100	59	30.0	200	750	28.5	3.75	54.3
100	64	30.0	200	800	30.0	4.00	56.4
100	69	30.0	200	850	31.5	4.25	58.3
100	279	30.0	250	600	25.5	2.40	41.8
100	284	30.0	250	650	27.0	2.60	44.3
100	289	30.0	250	700	28.5	2.80	46.6
100	294	30.0	250	750	30.0	3.00	48.8
100	299	30.0	250	800	31.5	3.20	50.8
100	304	30.0	250	850	33.0	3.40	52.6
100	309	30.0	250	900	34.5	3.60	54.4
100	314	30.0	250	950	36.0	3.80	56.1
100	319	30.0	250	1000	37.5	4.00	57.6
100	324	30.0	250	1050	39.0	4.20	59.1
100	519	30.0	300	650	28.5	2.17	40.0
100	524	30.0	300	700	30.0	2.33	42.3
100	529	30.0	300	750	31.5	2.50	44.4
100	534	30.0	300	800	33.0	2.67	46.3
100	539	30.0	300	850	34.5	2.83	48.2
100	544	30.0	300	900	36.0	3.00	49.9
100	549	30.0	300	950	37.5	3.17	51.5
100	554	30.0	300	1000	39.0	3.33	53.0
100	559	30.0	300	1050	40.5	3.50	54.5
100	564	30.0	300	1100	42.0	3.67	55.9
100	569	30.0	300	1150	43.5	3.83	57.2
100	574	30.0	300	1200	45.0	4.00	58.5
100	579	30.0	300	1250	46.5	4.17	59.7
100	764	30.0	350	750	33.0	2.14	40.7
100	769	30.0	350	800	34.5	2.29	42.7
100	774	30.0	350	850	36.0	2.43	44.5
100	779	30.0	350	900	37.5	2.57	46.1
100	784	30.0	350	950	39.0	2.71	47.7
100	789	30.0	350	1000	40.5	2.86	49.2
100	794	30.0	350	1050	42.0	3.00	50.7
100	799	30.0	350	1100	43.5	3.14	52.0
100	804	30.0	350	1150	45.0	3.29	53.3
100	809	30.0	350	1200	46.5	3.43	54.6
100	814	30.0	350	1250	48.0	3.57	55.7
100	819	30.0	350	1300	49.5	3.71	56.9
100	824	30.0	350	1350	51.0	3.86	58.0
100	829	30.0	350	1400	52.5	4.00	59.1

Continued on next page

Table B. 3 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \mathbf{P W} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100	1009	30.0	400	850	37.5	2.13	41.3
100	1014	30.0	400	900	39.0	2.25	43.0
100	1019	30.0	400	950	40.5	2.38	44.5
100	1024	30.0	400	1000	42.0	2.50	46.0
100	1029	30.0	400	1050	43.5	2.63	47.4
100	1034	30.0	400	1100	45.0	2.75	48.8
100	1039	30.0	400	1150	46.5	2.88	50.0
100	1044	30.0	400	1200	48.0	3.00	51.2
100	1049	30.0	400	1250	49.5	3.13	52.4
100	1054	30.0	400	1300	51.0	3.25	53.5
100	1059	30.0	400	1350	52.5	3.38	54.6
100	1064	30.0	400	1400	54.0	3.50	55.7
100	1069	30.0	400	1450	55.5	3.63	56.7
100	1074	30.0	400	1500	57.0	3.75	57.6
100	1079	30.0	400	1550	58.5	3.88	58.6
100	1084	30.0	400	1600	60.0	4.00	59.5
100	1249	30.0	450	900	40.5	2.00	40.2
100	1254	30.0	450	950	42.0	2.11	41.8
100	1259	30.0	450	1000	43.5	2.22	43.2
100	1264	30.0	450	1050	45.0	2.33	44.6
100	1269	30.0	450	1100	46.5	2.44	45.9
100	1274	30.0	450	1150	48.0	2.56	47.2
100	1279	30.0	450	1200	49.5	2.67	48.4
100	1284	30.0	450	1250	51.0	2.78	49.5
100	1289	30.0	450	1300	52.5	2.89	50.6
100	1294	30.0	450	1350	54.0	3.00	51.7
100	1299	30.0	450	1400	55.5	3.11	52.7
100	1304	30.0	450	1450	57.0	3.22	53.7
100	1309	30.0	450	1500	58.5	3.33	54.7
100	1314	30.0	450	1550	60.0	3.44	55.6
100	1319	30.0	450	1600	61.5	3.56	56.5
100	1324	30.0	450	1650	63.0	3.67	57.4
100	1329	30.0	450	1700	64.5	3.78	58.2
100	1334	30.0	450	1750	66.0	3.89	59.0
100	1339	30.0	450	1800	67.5	4.00	59.8
100	1494	30.0	500	1000	45.0	2.00	40.8
100	1499	30.0	500	1050	46.5	2.10	42.1
100	1504	30.0	500	1100	48.0	2.20	43.4
100	1509	30.0	500	1150	49.5	2.30	44.7
100	1514	30.0	500	1200	51.0	2.40	45.9
100	1519	30.0	500	1250	52.5	2.50	47.0
100	1524	30.0	500	1300	54.0	2.60	48.1
100	1529	30.0	500	1350	55.5	2.70	49.1
100	1534	30.0	500	1400	57.0	2.80	50.1
100	1539	30.0	500	1450	58.5	2.90	51.1
100	1544	30.0	500	1500	60.0	3.00	52.1

Continued on next page

Table B. 3 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathrm{mV}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100	1549	30.0	500	1550	61.5	3.10	53.0
100	1554	30.0	500	1600	63.0	3.20	53.9
100	1559	30.0	500	1650	64.5	3.30	54.7
100	1564	30.0	500	1700	66.0	3.40	55.6
100	1569	30.0	500	1750	67.5	3.50	56.4
100	1574	30.0	500	1800	69.0	3.60	57.2
100	1579	30.0	500	1850	70.5	3.70	57.9
100	1584	30.0	500	1900	72.0	3.80	58.7
100	1589	30.0	500	1950	73.5	3.90	59.4
100	1739	30.0	550	1100	49.5	2.00	41.2
100	1744	30.0	550	1150	51.0	2.09	42.4
100	1749	30.0	550	1200	52.5	2.18	43.6
100	1754	30.0	550	1250	54.0	2.27	44.7
100	1759	30.0	550	1300	55.5	2.36	45.8
100	1764	30.0	550	1350	57.0	2.45	46.9
100	1769	30.0	550	1400	58.5	2.55	47.9
100	1774	30.0	550	1450	60.0	2.64	48.8
100	1779	30.0	550	1500	61.5	2.73	49.7
100	1784	30.0	550	1550	63.0	2.82	50.7
100	1789	30.0	550	1600	64.5	2.91	51.5
100	1794	30.0	550	1650	66.0	3.00	52.4
100	1799	30.0	550	1700	67.5	3.09	53.2
100	1804	30.0	550	1750	69.0	3.18	54.0
100	1809	30.0	550	1800	70.5	3.27	54.8
100	1814	30.0	550	1850	72.0	3.36	55.5
100	1819	30.0	550	1900	73.5	3.45	56.3
100	1824	30.0	550	1950	75.0	3.55	57.0
100	1829	30.0	550	2000	76.5	3.64	57.7
100	1834	30.0	550	2050	78.0	3.73	58.4
100	1839	30.0	550	2100	79.5	3.82	59.1
100	1844	30.0	550	2150	81.0	3.91	59.7
100	1979	30.0	600	1150	52.5	1.92	40.4
100	1984	30.0	600	1200	54.0	2.00	41.6
100	1989	30.0	600	1250	55.5	2.08	42.7
100	1994	30.0	600	1300	57.0	2.17	43.8
100	1999	30.0	600	1350	58.5	2.25	44.8
100	2004	30.0	600	1400	60.0	2.33	45.8
100	2009	30.0	600	1450	61.5	2.42	46.7
100	2014	30.0	600	1500	63.0	2.50	47.7
100	2019	30.0	600	1550	64.5	2.58	48.6
100	2024	30.0	600	1600	66.0	2.67	49.4
100	2029	30.0	600	1650	67.5	2.75	50.3
100	2034	30.0	600	1700	69.0	2.83	51.1
100	2039	30.0	600	1750	70.5	2.92	51.9
100	2044	30.0	600	1800	72.0	3.00	52.6
100	2049	30.0	600	1850	73.5	3.08	53.4

Continued on next page

Table B. 3 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	PW $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100	2054	30.0	600	1900	75.0	3.17	54.1
100	2059	30.0	600	1950	76.5	3.25	54.8
100	2064	30.0	600	2000	78.0	3.33	55.5
100	2069	30.0	600	2050	79.5	3.42	56.2
100	2074	30.0	600	2100	81.0	3.50	56.8
100	2079	30.0	600	2150	82.5	3.58	57.5
100	2084	30.0	600	2200	84.0	3.67	58.1
100	2089	30.0	600	2250	85.5	3.75	58.7
100	2094	30.0	600	2300	87.0	3.83	59.4
100	2099	30.0	600	2350	88.5	3.92	60.0
100	2224	30.0	650	1250	57.0	1.92	40.9
100	2229	30.0	650	1300	58.5	2.00	41.9
100	2234	30.0	650	1350	60.0	2.08	42.9
100	2239	30.0	650	1400	61.5	2.15	43.9
100	2244	30.0	650	1450	63.0	2.23	44.9
100	2249	30.0	650	1500	64.5	2.31	45.8
100	2254	30.0	650	1550	66.0	2.38	46.6
100	2259	30.0	650	1600	67.5	2.46	47.5
100	2264	30.0	650	1650	69.0	2.54	48.3
100	2269	30.0	650	1700	70.5	2.62	49.1
100	2274	30.0	650	1750	72.0	2.69	49.9
100	2279	30.0	650	1800	73.5	2.77	50.7
100	2284	30.0	650	1850	75.0	2.85	51.4
100	2289	30.0	650	1900	76.5	2.92	52.1
100	2294	30.0	650	1950	78.0	3.00	52.8
100	2299	30.0	650	2000	79.5	3.08	53.5
100	2304	30.0	650	2050	81.0	3.15	54.2
100	2309	30.0	650	2100	82.5	3.23	54.8
100	2314	30.0	650	2150	84.0	3.31	55.5
100	2319	30.0	650	2200	85.5	3.38	56.1
100	2324	30.0	650	2250	87.0	3.46	56.7
100	2329	30.0	650	2300	88.5	3.54	57.3
100	2334	30.0	650	2350	90.0	3.62	57.9
100	2339	30.0	650	2400	91.5	3.69	58.5
100	2344	30.0	650	2450	93.0	3.77	59.1
100	2349	300	650	2500	94.5	3.85	59.6
100	2464	30.0	700	1300	60.0	1.86	40.2
100	2469	30.0	700	1350	61.5	1.93	41.2
100	2474	30.0	700	1400	63.0	2.00	42.2
100	2479	30.0	700	1450	64.5	2.07	43.1
100	2484	30.0	700	1500	66.0	2.14	44.0
100	2489	30.0	700	1550	67.5	2.21	44.9
100	2494	30.0	700	1600	69.0	2.29	45.7
100	2499	30.0	700	1650	70.5	2.36	46.6
100	2504	30.0	700	1700	72.0	2.43	47.4
100	2509	30.0	700	1750	73.5	2.50	48.1
	C						

Continued on next page

Table B. 3 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $\mathbf{(\mathbf { n m })}$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100	2514	30.0	700	1800	75.0	2.57	48.9
100	2519	30.0	700	1850	76.5	2.64	49.6
100	2524	30.0	700	1900	78.0	2.71	50.3
100	2529	30.0	700	1950	79.5	2.79	51.0
100	2534	30.0	700	2000	81.0	2.86	51.7
100	2539	30.0	700	2050	82.5	2.93	52.4
100	2544	30.0	700	2100	84.0	3.00	53.0
100	2549	30.0	700	2150	85.5	3.07	53.6
100	2554	30.0	700	2200	87.0	3.14	54.3
100	2559	30.0	700	2250	88.5	3.21	54.9
100	2564	30.0	700	2300	90.0	3.29	55.5
100	2569	30.0	700	2350	91.5	3.36	56.0
100	2574	30.0	700	2400	93.0	3.43	56.6
100	2579	30.0	700	2450	94.5	3.50	57.2
100	2584	30.0	700	2500	96.0	3.57	57.7
100	2709	30.0	750	1400	64.5	1.87	40.6
100	2714	30.0	750	1450	66.0	1.93	41.5

Table B.4: The $S P_{x}$ of the 8 T NAND2 at 100 mV . Results from the parametric DC analysis.

$\mathbf{V}_{D D}$ $\mathbf{(\mathbf { m V })}$	$\mathbf{P o i n t}$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	385	30.0	200	1450	49.5	7.25	40.7
100.0	400	30.0	200	1500	51.0	7.50	41.6
100.0	415	30.0	200	1550	52.5	7.75	42.4
100.0	430	30.0	200	1600	54.0	8.00	43.3
100.0	445	30.0	200	1650	55.5	8.25	44.1
100.0	460	30.0	200	1700	57.0	8.50	44.9
100.0	475	30.0	200	1750	58.5	8.75	45.6
100.0	490	30.0	200	1800	60.0	9.00	46.4
100.0	505	30.0	200	1850	61.5	9.25	47.1
100.0	520	30.0	200	1900	63.0	9.50	47.8
100.0	535	30.0	200	1950	64.5	9.75	48.5
100.0	550	30.0	200	2000	66.0	10.00	49.1
100.0	565	30.0	200	2050	67.5	10.25	49.8
100.0	580	30.0	200	2100	69.0	10.50	50.4
100.0	595	30.0	200	2150	70.5	10.75	51.0
100.0	610	30.0	200	2200	72.0	11.00	51.6
100.0	625	30.0	200	2250	73.5	11.25	52.2
100.0	640	30.0	200	2300	75.0	11.50	52.8
100.0	655	30.0	200	2350	76.5	11.75	53.4
100.0	670	30.0	200	2400	78.0	12.00	54.0
100.0	685	30.0	200	2450	79.5	12.25	54.5
100.0	700	30.0	200	2500	81.0	12.50	55.0
100.0	701	35.0	200	2500	94.5	12.50	40.4
100.0	1180	30.0	250	1750	60.0	7.00	40.3
100.0	1195	30.0	250	1800	61.5	7.20	41.0
100.0	1210	30.0	250	1850	63.0	7.40	41.7
100.0	1225	30.0	250	1900	64.5	7.60	42.4
100.0	1240	30.0	250	1950	66.0	7.80	43.1
100.0	1255	30.0	250	2000	67.5	8.00	43.7
100.0	1270	30.0	250	2050	69.0	8.20	44.3
100.0	1285	30.0	250	2100	70.5	8.40	45.0
100.0	1300	30.0	250	2150	72.0	8.60	45.6
100.0	1315	30.0	250	2200	73.5	8.80	46.2
100.0	1330	30.0	250	2250	75.0	9.00	46.7
100.0	1345	30.0	250	2300	76.5	9.20	47.3
100.0	1360	30.0	250	2350	78.0	9.40	47.9
100.0	1375	30.0	250	2400	79.5	9.60	48.4
100.0	1390	30.0	250	2450	81.0	9.80	48.9
100.0	1405	30.0	250	2500	82.5	10.00	49.5
100.0	1975	30.0	300	2050	70.5	6.83	40.0
100.0	1990	30.0	300	2100	72.0	7.00	40.6
100.0	2005	30.0	300	2150	73.5	7.17	41.2
100.0	2020	30.0	300	2200	75.0	7.33	41.8
100.0	2035	30.0	300	2250	76.5	7.50	42.4
100.0	2050	30.0	300	2300	78.0	7.67	42.9
	$C 0$						

Continued on next page

Table B. 4 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left.\mathbf{(f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	2065	30.0	300	2350	79.5	7.83	43.5
100.0	2080	30.0	300	2400	81.0	8.00	44.0
100.0	2095	30.0	300	2450	82.5	8.17	44.5
100.0	2110	30.0	300	2500	84.0	8.33	45.0
100.0	2785	30.0	350	2400	82.5	6.86	40.4
100.0	2800	30.0	350	2450	84.0	7.00	40.9
100.0	2815	30.0	350	2500	85.5	7.14	41.4

Table B.5: The $S P_{x}$ of the 4T NOR2 at 100 mV . Results from the parametric DC analysis.

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $\mathbf{(n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	84	30.0	200	1000	36.0	5.00	40.3
100.0	89	30.0	200	1050	37.5	5.25	41.8
100.0	94	30.0	200	1100	39.0	5.50	43.2
100.0	99	30.0	200	1150	40.5	5.75	44.6
100.0	104	30.0	200	1200	42.0	6.00	45.8
100.0	109	30.0	200	1250	43.5	6.25	47.0
100.0	114	30.0	200	1300	45.0	6.50	48.1
100.0	119	30.0	200	1350	46.5	6.75	49.2
100.0	124	30.0	200	1400	48.0	7.00	50.2
100.0	129	30.0	200	1450	49.5	7.25	51.2
100.0	134	30.0	200	1500	51.0	7.50	52.1
100.0	139	30.0	200	1550	52.5	7.75	53.0
100.0	144	30.0	200	1600	54.0	8.00	53.8
100.0	149	30.0	200	1650	55.5	8.25	54.6
100.0	154	30.0	200	1700	57.0	8.50	55.4
100.0	159	30.0	200	1750	58.5	8.75	56.2
100.0	164	30.0	200	1800	60.0	9.00	56.9
100.0	169	30.0	200	1850	61.5	9.25	57.6
100.0	174	30.0	200	1900	63.0	9.50	58.3
100.0	179	30.0	200	1950	64.5	9.75	59.0
100.0	184	30.0	200	2000	66.0	10.00	59.6
100.0	339	30.0	250	1200	43.5	4.80	40.0
100.0	344	30.0	250	1250	45.0	5.00	41.2
100.0	349	30.0	250	1300	46.5	5.20	42.4
100.0	354	30.0	250	1350	48.0	5.40	43.5
100.0	359	30.0	250	1400	49.5	5.60	44.6
100.0	364	30.0	250	1450	51.0	5.80	45.6
100.0	369	30.0	250	1500	52.5	6.00	46.5
100.0	374	30.0	250	1550	54.0	6.20	47.4
100.0	379	30.0	250	1600	55.5	6.40	48.3
100.0	384	30.0	250	1650	57.0	6.60	49.2
100.0	389	30.0	250	1700	58.5	6.80	50.0
100.0	394	30.0	250	1750	60.0	7.00	50.8
100.0	399	30.0	250	1800	61.5	7.20	51.5
100.0	404	30.0	250	1850	63.0	7.40	52.2
100.0	409	30.0	250	1900	64.5	7.60	52.9
100.0	414	30.0	250	1950	66.0	7.80	53.6
100.0	419	30.0	250	2000	67.5	8.00	54.3
100.0	424	30.0	250	2050	69.0	8.20	54.9
100.0	429	30.0	250	2100	70.5	8.40	55.5
100.0	434	30.0	250	2150	72.0	8.60	56.1
100.0	439	30.0	250	2200	73.5	8.80	56.7
100.0	444	30.0	250	2250	75.0	9.00	57.3
100.0	449	30.0	250	2300	76.5	9.20	57.9
100.0	454	30.0	250	2350	78.0	9.40	58.4
	$C 04$						

Continued on next page

Table B. 5 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	459	30.0	250	2400	79.5	9.60	58.9
100.0	464	30.0	250	2450	81.0	9.80	59.4
100.0	469	30.0	250	2500	82.5	10.00	59.9
100.0	599	30.0	300	1450	52.5	4.83	40.9
100.0	604	30.0	300	1500	54.0	5.00	41.9
100.0	609	30.0	300	1550	55.5	5.17	42.8
100.0	614	30.0	300	1600	57.0	5.33	43.7
100.0	619	30.0	300	1650	58.5	5.50	44.6
100.0	624	30.0	300	1700	60.0	5.67	45.4
100.0	629	30.0	300	1750	61.5	5.83	46.2
100.0	634	30.0	300	1800	63.0	6.00	47.0
100.0	639	30.0	300	1850	64.5	6.17	47.7
100.0	644	30.0	300	1900	66.0	6.33	48.5
100.0	649	30.0	300	1950	67.5	6.50	49.2
100.0	654	30.0	300	2000	69.0	6.67	49.8
100.0	659	30.0	300	2050	70.5	6.83	50.5
100.0	664	30.0	300	2100	72.0	7.00	51.1
100.0	669	30.0	300	2150	73.5	7.17	51.7
100.0	674	30.0	300	2200	75.0	7.33	52.3
100.0	679	30.0	300	2250	76.5	7.50	52.9
100.0	684	30.0	300	2300	78.0	7.67	53.5
100.0	689	30.0	300	2350	79.5	7.83	54.0
100.0	694	30.0	300	2400	81.0	8.00	54.6
100.0	699	30.0	300	2450	82.5	8.17	55.1
100.0	704	30.0	300	2500	84.0	8.33	55.6
100.0	854	30.0	350	1650	60.0	4.71	40.6
100.0	859	30.0	350	1700	61.5	4.86	41.5
100.0	864	30.0	350	1750	63.0	5.00	42.3
100.0	869	30.0	350	1800	64.5	5.14	43.1
100.0	874	30.0	350	1850	66.0	5.29	43.9
100.0	879	30.0	350	1900	67.5	5.43	44.6
100.0	884	30.0	350	1950	69.0	5.57	45.3
100.0	889	30.0	350	2000	70.5	5.71	46.0
100.0	894	30.0	350	2050	72.0	5.86	46.7
100.0	899	30.0	350	2100	73.5	6.00	47.3
100.0	904	30.0	350	2150	75.0	6.14	48.0
100.0	909	30.0	350	2200	76.5	6.29	48.6
100.0	914	30.0	350	2250	78.0	6.43	49.2
100.0	919	30.0	350	2300	79.5	6.57	49.7
100.0	924	30.0	350	2350	81.0	6.71	50.3
100.0	929	30.0	350	2400	82.5	6.86	50.8
100.0	934	30.0	350	2450	84.0	7.00	51.4
100.0	939	30.0	350	2500	85.5	7.14	51.9
100.0	1109	30.0	400	1850	67.5	4.63	40.4
100.0	1114	30.0	400	1900	69.0	4.75	41.2
100.0	1119	30.0	400	1950	70.5	4.88	41.9
	609						

Continued on next page

Table B. 5 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100.0	1124	30.0	400	2000	72.0	5.00	42.6
100.0	1129	30.0	400	2050	73.5	5.13	43.3
100.0	1134	30.0	400	2100	75.0	5.25	44.0
100.0	1139	30.0	400	2150	76.5	5.38	44.6
100.0	1144	30.0	400	2200	78.0	5.50	45.2
100.0	1149	30.0	400	2250	79.5	5.63	45.8
100.0	1154	30.0	400	2300	81.0	5.75	46.4
100.0	1159	30.0	400	2350	82.5	5.88	47.0
100.0	1164	30.0	400	2400	84.0	6.00	47.6
100.0	1169	30.0	400	2450	85.5	6.13	48.1
100.0	1174	30.0	400	2500	87.0	6.25	48.6
100.0	1364	30.0	450	2050	75.0	4.56	40.3
100.0	1369	30.0	450	2100	76.5	4.67	41.0
100.0	1374	30.0	450	2150	78.0	4.78	41.6
100.0	1379	30.0	450	2200	79.5	4.89	42.3
100.0	1384	30.0	450	2250	81.0	5.00	42.9
100.0	1389	30.0	450	2300	82.5	5.11	43.5
100.0	1394	30.0	450	2350	84.0	5.22	44.1
100.0	1399	30.0	450	2400	85.5	5.33	44.6
100.0	1404	30.0	450	2450	87.0	5.44	45.2
100.0	1409	30.0	450	2500	88.5	5.56	45.7
100.0	1619	30.0	500	2250	82.5	4.50	40.2
100.0	1624	30.0	500	2300	84.0	4.60	40.8
100.0	1629	30.0	500	2350	85.5	4.70	41.4
100.0	1634	30.0	500	2400	87.0	4.80	42.0
100.0	1639	30.0	500	2450	88.5	4.90	42.5
100.0	1644	30.0	500	2500	90.0	5.00	43.1
100.0	1874	30.0	550	2450	90.0	4.45	40.1
100.0	1879	30.0	550	2500	91.5	4.55	40.6
100.0	3194	35.0	200	1550	61.3	7.75	40.0
100.0	3199	35.0	200	1600	63.0	8.00	40.9
100.0	3204	35.0	200	1650	64.8	8.25	41.6
100.0	3209	35.0	200	1700	66.5	8.50	42.4
100.0	3214	35.0	200	1750	68.3	8.75	43.1
100.0	3219	35.0	200	1800	70.0	9.00	43.8
100.0	3224	35.0	200	1850	71.8	9.25	44.5
100.0	3229	35.0	200	1900	73.5	9.50	45.1
100.0	3234	35.0	200	1950	75.3	9.75	45.8
100.0	3239	35.0	200	2000	77.0	10.00	46.4
100.0	3244	35.0	200	2050	78.8	10.25	47.0
100.0	3249	35.0	200	2100	80.5	10.50	47.6
100.0	3254	35.0	200	2150	82.3	10.75	48.1
100.0	3259	35.0	200	2200	84.0	11.00	48.7
100.0	3264	35.0	200	2250	85.8	11.25	49.2
100.0	3269	35.0	200	2300	87.5	11.50	49.7
100.0	3274	35.0	200	2350	89.3	11.75	50.2

Continued on next page

Table B. 5 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $\mathbf{(n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left.\mathbf{(f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	3279	35.0	200	2400	91.0	12.00	50.7
100.0	3284	35.0	200	2450	92.8	12.25	51.2
100.0	3289	35.0	200	2500	94.5	12.50	51.6
100.0	3469	35.0	250	1950	77.0	7.80	40.4
100.0	3474	35.0	250	2000	78.8	8.00	41.1
100.0	3479	35.0	250	2050	80.5	8.20	41.7
100.0	3484	35.0	250	2100	82.3	8.40	42.3
100.0	3489	35.0	250	2150	84.0	8.60	42.9
100.0	3494	35.0	250	2200	85.8	8.80	43.4
100.0	3499	35.0	250	2250	87.5	9.00	44.0
100.0	3504	35.0	250	2300	89.3	9.20	44.5
100.0	3509	35.0	250	2350	91.0	9.40	45.0
100.0	3514	35.0	250	2400	92.8	9.60	45.5
100.0	3519	35.0	250	2450	94.5	9.80	46.0
100.0	3524	35.0	250	2500	96.3	10.00	46.5
100.0	3739	35.0	300	2300	91.0	7.67	40.2
100.0	3744	35.0	300	2350	92.8	7.83	40.7
100.0	3749	35.0	300	2400	94.5	8.00	41.2
100.0	3754	35.0	300	2450	96.3	8.17	41.7
100.0	3759	35.0	300	2500	98.0	8.33	42.2
100.0	6314	40.0	200	2200	96.0	11.00	40.2
100.0	6319	40.0	200	2250	98.0	11.25	40.7
100.0	6324	40.0	200	2300	100.0	11.50	41.2
100.0	6329	40.0	200	2350	102.0	11.75	41.7
100.0	6334	40.0	200	2400	104.0	12.00	42.2
100.0	6339	40.0	200	2450	106.0	12.25	42.7
100.0	6344	40.0	200	2500	108.0	12.50	43.1

Table B.6: The $S P_{x}$ of the 8 T NOR2 at 100 mV . Results from the parametric DC analysis.

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $\mathbf{(n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	5512	30.0	200	400	18.0	2.00	43.1
100.0	5515	30.0	200	450	19.5	2.25	47.6
100.0	5518	30.0	200	500	21.0	2.50	51.4
100.0	5519	35.0	200	500	24.5	2.50	40.4
100.0	5521	30.0	200	550	22.5	2.75	54.6
100.0	5522	35.0	200	550	26.3	2.75	43.3
100.0	5524	30.0	200	600	24.0	3.00	57.4
100.0	5525	35.0	200	600	28.0	3.00	45.9
100.0	5527	30.0	200	650	25.5	3.25	60.0
100.0	5528	35.0	200	650	29.8	3.25	48.1
100.0	5529	40.0	200	650	34.0	3.25	40.5
100.0	5531	35.0	200	700	31.5	3.50	50.2
100.0	5532	40.0	200	700	36.0	3.50	42.5
100.0	5534	35.0	200	750	33.3	3.75	52.0
100.0	5535	40.0	200	750	38.0	3.75	44.2
100.0	5537	35.0	200	800	35.0	4.00	53.7
100.0	5538	40.0	200	800	40.0	4.00	45.8
100.0	5540	35.0	200	850	36.8	4.25	55.3
100.0	5541	40.0	200	850	42.0	4.25	47.3
100.0	5543	35.0	200	900	38.5	4.50	56.7
100.0	5544	40.0	200	900	44.0	4.50	48.7
100.0	5546	35.0	200	950	40.3	4.75	58.1
100.0	5547	40.0	200	950	46.0	4.75	50.0
100.0	5549	35.0	200	1000	42.0	5.00	59.3
100.0	5550	40.0	200	1000	48.0	5.00	51.2
100.0	5553	40.0	200	1050	50.0	5.25	52.3
100.0	5556	40.0	200	1100	52.0	5.50	53.4
100.0	5559	40.0	200	1150	54.0	5.75	54.4
100.0	5562	40.0	200	1200	56.0	6.00	55.3
100.0	5565	40.0	200	1250	58.0	6.25	56.3
100.0	5568	40.0	200	1300	60.0	6.50	57.1
100.0	5571	40.0	200	1350	62.0	6.75	57.9
100.0	5574	40.0	200	1400	64.0	7.00	58.7
100.0	5577	40.0	200	1450	66.0	7.25	59.5
100.0	5656	30.0	250	450	21.0	1.80	41.9
100.0	5659	30.0	250	500	22.5	2.00	45.8
100.0	5662	30.0	250	550	24.0	2.20	49.1
100.0	5665	30.0	250	600	25.5	2.40	52.0
100.0	5666	35.0	250	600	29.8	2.40	40.5
100.0	5668	30.0	250	650	27.0	2.60	54.6
100.0	5669	35.0	250	650	31.5	2.60	42.9
100.0	5671	30.0	250	700	28.5	2.80	56.9
100.0	5672	35.0	250	700	33.3	2.80	45.0
100.0	5674	30.0	250	750	30.0	3.00	59.0
100.0	5675	35.0	250	750	35.0	3.00	46.9
	$C 5$	$3 n$					

Continued on next page

Table B. 6 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	Area $\left(\mathrm{fm}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100.0	5678	35.0	250	800	36.8	3.20	48.6
100.0	5679	40.0	250	800	42.0	3.20	40.7
100.0	5681	35.0	250	850	38.5	3.40	50.2
100.0	5682	40.0	250	850	44.0	3.40	42.3
100.0	5684	35.0	250	900	40.3	3.60	51.7
100.0	5685	40.0	250	900	46.0	3.60	43.7
100.0	5687	35.0	250	950	42.0	3.80	53.1
100.0	5688	40.0	250	950	48.0	3.80	45.0
100.0	5690	35.0	250	1000	43.8	4.00	54.4
100.0	5691	40.0	250	1000	50.0	4.00	46.3
100.0	5693	35.0	250	1050	45.5	4.20	55.6
100.0	5694	40.0	250	1050	52.0	4.20	47.4
100.0	5696	35.0	250	1100	47.3	4.40	56.7
100.0	5697	40.0	250	1100	54.0	4.40	48.5
100.0	5699	35.0	250	1150	49.0	4.60	57.8
100.0	5700	40.0	250	1150	56.0	4.60	49.6
100.0	5702	35.0	250	1200	50.8	4.80	58.8
100.0	5703	40.0	250	1200	58.0	4.80	50.5
100.0	5705	35.0	250	1250	52.5	5.00	59.8
100.0	5706	40.0	250	1250	60.0	5.00	51.5
100.0	5709	40.0	250	1300	62.0	5.20	52.4
100.0	5712	40.0	250	1350	64.0	5.40	53.2
100.0	5715	40.0	250	1400	66.0	5.60	54.0
100.0	5718	40.0	250	1450	68.0	5.80	54.8
100.0	5721	40.0	250	1500	70.0	6.00	55.5
100.0	5724	40.0	250	1550	72.0	6.20	56.2
100.0	5727	40.0	250	1600	74.0	6.40	56.9
100.0	5730	40.0	250	1650	76.0	6.60	57.6
100.0	5733	40.0	250	1700	78.0	6.80	58.2
100.0	5736	40.0	250	1750	80.0	7.00	58.8
100.0	5739	40.0	250	1800	82.0	7.20	59.4
100.0	5742	40.0	250	1850	84.0	7.40	60.0
100.0	5800	30.0	300	500	24.0	1.67	41.1
100.0	5803	30.0	300	550	25.5	1.83	44.5
100.0	5806	30.0	300	600	27.0	2.00	47.5
100.0	5809	30.0	300	650	28.5	2.17	50.2
100.0	5812	30.0	300	700	30.0	2.33	52.5
100.0	5813	35.0	300	700	35.0	2.33	40.6
100.0	5815	30.0	300	750	31.5	2.50	54.7
100.0	5816	35.0	300	750	36.8	2.50	42.6
100.0	5818	30.0	300	800	33.0	2.67	56.6
100.0	5819	35.0	300	800	38.5	2.67	44.4
100.0	5821	30.0	300	850	34.5	2.83	58.4
100.0	5822	35.0	300	850	40.3	2.83	46.0
100.0	5825	35.0	300	900	42.0	3.00	47.6
100.0	5828	35.0	300	950	43.8	3.17	49.0

Continued on next page

Table B. 6 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	Point	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	Size ratio $\left(\frac{m}{m}\right)$	$\begin{aligned} & \mathbf{S P}_{x} \\ & (\mathbf{m V}) \end{aligned}$
100.0	5829	40.0	300	950	50.0	3.17	40.9
100.0	5831	35.0	300	1000	45.5	3.33	50.3
100.0	5832	40.0	300	1000	52.0	3.33	42.2
100.0	5834	35.0	300	1050	47.3	3.50	51.5
100.0	5835	40.0	300	1050	54.0	3.50	43.4
100.0	5837	35.0	300	1100	49.0	3.67	52.7
100.0	5838	40.0	300	1100	56.0	3.67	44.5
100.0	5840	35.0	300	1150	50.8	3.83	53.8
100.0	5841	40.0	300	1150	58.0	3.83	45.5
100.0	5843	35.0	300	1200	52.5	4.00	54.8
100.0	5844	40.0	300	1200	60.0	4.00	46.6
100.0	5846	35.0	300	1250	54.3	4.17	55.8
100.0	5847	40.0	300	1250	62.0	4.17	47.5
100.0	5849	35.0	300	1300	56.0	4.33	56.8
100.0	5850	40.0	300	1300	64.0	4.33	48.4
100.0	5852	35.0	300	1350	57.8	4.50	57.7
100.0	5853	40.0	300	1350	66.0	4.50	49.3
100.0	5855	35.0	300	1400	59.5	4.67	58.5
100.0	5856	40.0	300	1400	68.0	4.67	50.1
100.0	5858	35.0	300	1450	61.3	4.83	59.3
100.0	5859	40.0	300	1450	70.0	4.83	50.9
100.0	5862	40.0	300	1500	72.0	5.00	51.6
100.0	5865	40.0	300	1550	74.0	5.17	52.4
100.0	5868	40.0	300	1600	76.0	5.33	53.1
100.0	5871	40.0	300	1650	78.0	5.50	53.7
100.0	5874	40.0	300	1700	80.0	5.67	54.4
100.0	5877	40.0	300	1750	82.0	5.83	55.0
100.0	5880	40.0	300	1800	84.0	6.00	55.6
100.0	5883	40.0	300	1850	86.0	6.17	56.2
100.0	5886	40.0	300	1900	88.0	6.33	56.8
100.0	5889	40.0	300	1950	90.0	6.50	57.3
100.0	5892	40.0	300	2000	92.0	6.67	57.9
100.0	5895	40.0	300	2050	94.0	6.83	58.4
100.0	5898	40.0	300	2100	96.0	7.00	58.9
100.0	5901	40.0	300	2150	98.0	7.17	59.4
100.0	5904	40.0	300	2200	100.0	7.33	59.9
100.0	5944	30.0	350	550	27.0	1.57	40.6
100.0	5947	30.0	350	600	28.5	1.71	43.6
100.0	5950	30.0	350	650	30.0	1.86	46.3
100.0	5953	30.0	350	700	31.5	2.00	48.8
100.0	5956	30.0	350	750	33.0	2.14	50.9
100.0	5959	30.0	350	800	34.5	2.29	52.9
100.0	5960	35.0	350	800	40.3	2.29	40.7
100.0	5962	30.0	350	850	36.0	2.43	54.8
100.0	5963	35.0	350	850	42.0	2.43	42.4
100.0	5965	30.0	350	900	37.5	2.57	56.4

Continued on next page

Table B. 6 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	$\mathbf{P o i n t}$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}$ \mathbf{x} $(\mathbf{m V})$
100.0	5966	35.0	350	900	43.8	2.57	44.0
100.0	5968	30.0	350	950	39.0	2.71	58.0
100.0	5969	35.0	350	950	45.5	2.71	45.4
100.0	5971	30.0	350	1000	40.5	2.86	59.4
100.0	5972	35.0	350	1000	47.3	2.86	46.8
100.0	5975	35.0	350	1050	49.0	3.00	48.0
100.0	5978	35.0	350	1100	50.8	3.14	49.2
100.0	5979	40.0	350	1100	58.0	3.14	41.0
100.0	5981	35.0	350	1150	52.5	3.29	50.3
100.0	5982	40.0	350	1150	60.0	3.29	42.1
100.0	5984	35.0	350	1200	54.3	3.43	51.4
100.0	5985	40.0	350	1200	62.0	3.43	43.1
100.0	5987	35.0	350	1250	56.0	3.57	52.4
100.0	5988	40.0	350	1250	64.0	3.57	44.1
100.0	5990	35.0	350	1300	57.8	3.71	53.4
100.0	5991	40.0	350	1300	66.0	3.71	45.0
100.0	5993	35.0	350	1350	59.5	3.86	54.3
100.0	5994	40.0	350	1350	68.0	3.86	45.9
100.0	5996	35.0	350	1400	61.3	4.00	55.1
100.0	5997	40.0	350	1400	70.0	4.00	46.8
100.0	5999	35.0	350	1450	63.0	4.14	56.0
100.0	6000	40.0	350	1450	72.0	4.14	47.6
100.0	6002	35.0	350	1500	64.8	4.29	56.8
100.0	6003	40.0	350	1500	74.0	4.29	48.3
100.0	6005	35.0	350	1550	66.5	4.43	57.5
100.0	6006	40.0	350	1550	76.0	4.43	49.1
100.0	6008	35.0	350	1600	68.3	4.57	58.3
100.0	6009	40.0	350	1600	78.0	4.57	49.8
100.0	6011	35.0	350	1650	70.0	4.71	59.0
100.0	6012	40.0	350	1650	80.0	4.71	50.5
100.0	6014	35.0	350	1700	71.8	4.86	59.7
100.0	6015	40.0	350	1700	82.0	4.86	51.1
100.0	6018	40.0	350	1750	84.0	5.00	51.8
100.0	6021	40.0	350	1800	86.0	5.14	52.4
100.0	6024	40.0	350	1850	88.0	5.29	53.0
100.0	6027	40.0	350	1900	90.0	5.43	53.6
100.0	6030	40.0	350	1950	92.0	5.57	54.1
100.0	6033	40.0	350	2000	94.0	5.71	54.7
100.0	6036	40.0	350	2050	96.0	5.86	55.2
100.0	6039	40.0	350	2100	98.0	6.00	55.7
100.0	6042	40.0	350	2150	100.0	6.14	56.2
100.0	6045	40.0	350	2200	102.0	6.29	56.7
100.0	6048	40.0	350	2250	104.0	6.43	57.2
100.0	6051	40.0	350	2300	106.0	6.57	57.6
100.0	6054	40.0	350	2350	108.0	6.71	58.1
100.0	6057	40.0	350	2400	110.0	6.86	58.5
	609						

Continued on next page

Table B. 6 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	Point	\mathbf{L} $\mathbf{(n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	Area $\left(\mathbf{f m}^{2}\right)$	Size ratio $\left(\frac{m}{m}\right)$	$\mathbf{S P}_{x}$ $(\mathbf{m V})$
100.0	6060	40.0	350	2450	112.0	7.00	59.0
100.0	6063	40.0	350	2500	114.0	7.14	59.4
100.0	6088	30.0	400	600	30.0	1.50	40.2
100.0	6091	30.0	400	650	31.5	1.63	43.0
100.0	6094	30.0	400	700	33.0	1.75	45.4
100.0	6097	30.0	400	750	34.5	1.88	47.7
100.0	6100	30.0	400	800	36.0	2.00	49.7
100.0	6103	30.0	400	850	37.5	2.13	51.5
100.0	6106	30.0	400	900	39.0	2.25	53.2
100.0	6107	35.0	400	900	45.5	2.25	40.8
100.0	6109	30.0	400	950	40.5	2.38	54.8
100.0	6110	35.0	400	950	47.3	2.38	42.3
100.0	6112	30.0	400	1000	42.0	2.50	56.3
100.0	6113	35.0	400	1000	49.0	2.50	43.7
100.0	6115	30.0	400	1050	43.5	2.63	57.7
100.0	6116	35.0	400	1050	50.8	2.63	45.0
100.0	6118	30.0	400	1100	45.0	2.75	59.0

B. 2 Gate balance

Table B.7: The power and delay in the ring oscillator constructed of three 2T inverters. Results of transient analyses

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	delay_Low ($\mu \mathrm{s}$)	delay_high ($\mu \mathrm{s}$)	Mean delay ($\mu \mathbf{s}$)	$\begin{aligned} & \text { power } \\ & (\mathrm{pW}) \end{aligned}$
73.0	40.0	200	1700			19.7	2.73
73.0	40.0	200	1750			19.8	2.76
73.0	40.0	200	1800			19.8	2.70
73.0	40.0	200	1850			19.8	2.79
73.0	40.0	200	1900			19.9	2.85
73.0	40.0	200	1950			20.0	2.82
73.0	40.0	200	2000			20.0	2.66
73.0	40.0	200	2050			20.1	2.63
73.0	40.0	200	2100			20.2	3.14
73.0	40.0	200	2150			20.2	2.16
73.0	40.0	200	2200			20.3	2.19
73.0	40.0	200	2250			20.4	2.12
73.0	40.0	200	2300			20.4	2.22
73.0	40.0	200	2350			20.5	2.60
73.0	40.0	200	2400			20.6	2.25
73.0	40.0	200	2450			20.6	2.28
73.0	40.0	200	2500			20.7	2.31
73.0	40.0	250	2100			20.8	2.09
73.0	40.0	250	2150			20.8	2.06
73.0	40.0	250	2200			20.9	2.34
73.0	40.0	250	2250			21.0	2.37
73.0	40.0	250	2300			21.3	2.40
73.0	40.0	250	2350			21.3	2.42
73.0	40.0	250	2400			21.4	2.45
73.0	40.0	250	2450			21.7	2.48
73.0	40.0	250	2500			21.7	2.50
73.0	40.0	300	2500			22.1	2.53
79.0	40.0	200	2250	18.2	18.0	18.1	2.98
79.0	40.0	200	2300	18.4	18.4	18.4	3.01
79.0	40.0	200	2350	18.5	18.4	18.5	3.05
79.0	40.0	200	2400	18.6	18.6	18.6	3.08
108	40.0	200	2150	9.32	9.32	9.32	8.35
108	40.0	200	2200	9.40	9.40	9.40	8.45

Table B.8: The power and delay in the ring oscillator constructed of three 4 T inverters. Results of transient analyses

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~nm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	delay_Low $(\mu \mathbf{s})$	delay_high ($\mu \mathrm{s}$)	Mean delay ($\mu \mathrm{s}$)	$\begin{aligned} & \text { power } \\ & (\mathrm{pW}) \end{aligned}$
71.0	40.0	200	2000			72.7	1.04
71.0	40.0	200	2050			73.1	1.05
71.0	40.0	200	2100			74.1	1.07
71.0	40.0	200	2150			74.5	1.08
71.0	40.0	200	2200			75.0	1.09
71.0	40.0	200	2250			75.9	1.11
71.0	40.0	200	2300			76.5	1.12
71.0	40.0	200	2350			77.0	1.13
71.0	40.0	200	2400			77.1	1.15
71.0	40.0	200	2450			78.9	1.16
71.0	40.0	200	2500			79.3	1.17
71.0	40.0	250	2100			71.3	1.20
71.0	40.0	250	2150			72.0	1.21
71.0	40.0	250	2200			71.6	1.23
71.0	40.0	250	2250			70.7	1.25
71.0	40.0	250	2300			70.6	1.26
71.0	40.0	250	2350			70.0	1.28
71.0	40.0	250	2400			70.7	1.29
71.0	40.0	250	2450			70.9	1.30
71.0	40.0	250	2500			71.0	1.32
71.0	40.0	300	2500			78.6	1.45
78.0	40.0	200	1950	59.8	59.8	59.8	1.32
78.0	40.0	200	2000	60.3	60.3	60.3	1.34
78.0	40.0	200	2050	60.9	60.9	60.9	1.36
78.0	40.0	200	2100	61.4	61.4	61.4	1.37
78.0	40.0	200	2150	61.9	61.9	61.9	1.39
78.0	40.0	200	2200	62.4	62.4	62.4	1.41
78.0	40.0	200	2250	62.9	62.9	62.9	1.43
78.0	40.0	200	2300	63.4	63.4	63.4	1.44
78.0	40.0	200	2350	63.9	63.9	63.9	1.46
78.0	40.0	200	2400	64.4	64.4	64.4	1.47
78.0	40.0	200	2450	65.0	65.0	65.0	1.49
78.0	40.0	200	2500	65.5	65.5	65.5	1.51
78.0	40.0	250	2450	58.6	58.6	58.6	1.68
78.0	40.0	250	2500	59.0	59.0	59.0	1.70
104.0	40.0	200	1950	32.6	33.3	32.9	3.37
104.0	40.0	200	2000	33.3	32.5	32.9	3.42
104.0	40.0	200	2050	33.6	32.8	33.2	3.46
104.0	40.0	250	2450	31.9	32.5	32.2	4.29
104.0	40.0	250	2500	31.9	32.5	32.2	4.34

Table B.9: The power and delay in the ring oscillator constructed of three 4T NAND2 gates. Results of transient analyses

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & \text { (nm) } \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	delay_Low ($\mu \mathrm{s}$)	delay_high ($\mu \mathrm{s}$)	Mean delay ($\mu \mathrm{s}$)	$\begin{aligned} & \text { power } \\ & (\mathrm{pW}) \end{aligned}$
73.0	40.0	200	750			30.4	1.30
73.0	40.0	200	700			30.5	1.24
73.0	40.0	200	800			31.2	1.34
73.0	40.0	200	850			31.9	1.39
73.0	40.0	250	850			28.9	1.57
73.0	40.0	250	900			29.2	1.62
73.0	40.0	250	950			29.6	1.67
73.0	40.0	250	1000			29.9	1.72
73.0	40.0	250	1050			30.3	1.77
73.0	40.0	250	1100			30.4	1.81
73.0	40.0	300	950			27.6	1.85
73.0	40.0	300	1000			27.8	1.90
73.0	40.0	300	1050			28.1	1.96
73.0	40.0	300	1100			28.4	2.01
73.0	40.0	300	1150			28.8	2.06
73.0	40.0	300	1200			28.9	2.10
73.0	40.0	300	1250			29.4	2.15
73.0	40.0	300	1300			29.6	2.19
73.0	40.0	350	1100			26.9	2.18
73.0	40.0	350	1150			27.1	2.23
73.0	40.0	350	1200			27.3	2.29
73.0	40.0	350	1250			27.6	2.34
73.0	40.0	350	1300			27.9	2.39
73.0	40.0	350	1350			28.1	2.44
73.0	40.0	350	1400			28.3	2.48
73.0	40.0	350	1450			28.7	2.53
73.0	40.0	350	1500			29.2	2.57
73.0	40.0	350	1550			29.4	2.62
73.0	40.0	400	1250			26.3	2.51
73.0	40.0	400	1300			26.6	2.57
73.0	40.0	400	1350			26.7	2.62
73.0	40.0	400	1400			27.0	2.67
73.0	40.0	400	1450			27.2	2.72
73.0	40.0	400	1500			27.6	2.77
73.0	40.0	400	1550			27.7	2.82
73.0	40.0	400	1600			28.1	2.86
73.0	40.0	400	1650			28.4	2.91
73.0	40.0	400	1700			28.8	2.95
73.0	40.0	400	1750			29.7	3.00
73.0	40.0	400	1800			76.7	3.04
73.0	40.0	450	1400			25.9	2.84
73.0	40.0	450	1450			26.2	2.90
73.0	40.0	450	1500			26.2	2.95
73.0	40.0	450	1550			26.6	3.00

Continued on next page

Table B. 9 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	delay_Low ($\mu \mathbf{s}$)	$\begin{aligned} & \text { delay_high } \\ & (\mu \mathrm{s}) \end{aligned}$	Mean delay ($\mu \mathrm{s}$)	power (pW)
73.0	40.0	450	1600			26.8	3.05
73.0	40.0	450	1650			27.0	3.10
73.0	40.0	450	1700			27.2	3.15
73.0	40.0	450	1750			27.5	3.20
73.0	40.0	450	1800			28.0	3.25
73.0	40.0	450	1850			28.0	3.29
73.0	40.0	450	1900			28.2	3.34
73.0	40.0	450	1950			28.7	3.38
73.0	40.0	450	2000			29.0	3.42
73.0	40.0	450	1350			63.5	2.79
73.0	40.0	500	1550			25.4	3.17
73.0	40.0	500	1500			25.4	3.12
73.0	40.0	500	2250			25.6	3.85
73.0	40.0	500	1600			26.0	3.23
73.0	40.0	500	1650			26.1	3.28
73.0	40.0	500	1700			26.3	3.33
73.0	40.0	500	1750			26.4	3.39
73.0	40.0	500	1800			26.6	3.44
73.0	40.0	500	1850			26.7	3.49
73.0	40.0	500	1900			27.1	3.53
73.0	40.0	500	1950			27.4	3.58
73.0	40.0	500	2050			27.6	3.67
73.0	40.0	500	2000			27.7	3.63
73.0	40.0	500	2100			28.0	3.72
73.0	40.0	500	2200			28.4	3.80
73.0	40.0	500	2150			28.5	3.76
73.0	40.0	550	1650			25.1	3.45
73.0	40.0	550	1700			25.5	3.51
73.0	40.0	550	1750			25.6	3.56
73.0	40.0	550	1850			25.8	3.67
73.0	40.0	550	1800			25.8	3.61
73.0	40.0	550	1900			26.0	3.72
73.0	40.0	550	1950			26.3	3.77
73.0	40.0	550	2000			26.4	3.82
73.0	40.0	550	2050			26.6	3.87
73.0	40.0	550	2100			27.0	3.92
73.0	40.0	550	2150			27.1	3.96
73.0	40.0	550	2250			27.4	4.05
73.0	40.0	550	2200			27.4	4.01
73.0	40.0	550	2300			27.7	4.10
73.0	40.0	550	2400			28.1	4.19
73.0	40.0	550	2350			28.2	4.14
73.0	40.0	550	2450			28.7	4.23
73.0	40.0	600	1800			24.9	3.78
73.0	40.0	600	1850			25.1	3.84
73.0	40.0	600	1900			25.3	3.89

Continued on next page

Table B. 9 - Continued from previous page

$\begin{aligned} & \mathbf{V}_{D D} \\ & (\mathbf{m V}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { NW } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \text { PW } \\ & (\mathrm{nm}) \end{aligned}$	delay_Low ($\mu \mathbf{s}$)	$\begin{aligned} & \text { delay_high } \\ & (\mu \mathrm{s}) \end{aligned}$	Mean delay ($\mu \mathrm{s}$)	power (pW)
73.0	40.0	600	1950			25.3	3.95
73.0	40.0	600	2000			25.5	4.00
73.0	40.0	600	2050			25.7	4.05
73.0	40.0	600	2100			25.9	4.10
73.0	40.0	600	2150			26.2	4.15
73.0	40.0	600	2200			26.3	4.20
73.0	40.0	600	2250			26.4	4.25
73.0	40.0	600	2300			26.5	4.30
73.0	40.0	600	2350			26.8	4.34
73.0	40.0	600	2450			27.2	4.44
73.0	40.0	600	2400			27.3	4.39
73.0	40.0	600	2500			27.5	4.48
73.0	40.0	650	1900			24.6	4.06
73.0	40.0	650	1950			24.6	4.11
73.0	40.0	650	2050			24.9	4.23
73.0	40.0	650	2000			25.1	4.17
73.0	40.0	650	2100			25.3	4.28
73.0	40.0	650	2200			25.5	4.38
73.0	40.0	650	2150			25.5	4.33
73.0	40.0	650	2250			25.7	4.43
73.0	40.0	650	2300			25.9	4.49
73.0	40.0	650	2350			26.1	4.53
73.0	40.0	650	2400			26.2	4.58
73.0	40.0	650	2450			26.4	4.63
73.0	40.0	650	2500			26.4	4.68
73.0	40.0	700	2050			24.6	4.39
73.0	40.0	700	2100			24.7	4.45
73.0	40.0	700	2200			24.8	4.56
73.0	40.0	700	2150			25.1	4.50
73.0	40.0	700	2300			25.1	4.66
73.0	40.0	700	2250			25.2	4.61
73.0	40.0	700	2350			25.4	4.72
73.0	40.0	700	2400			25.6	4.77
73.0	40.0	700	2450			25.7	4.82
73.0	40.0	700	2500			25.8	4.87
73.0	40.0	750	2200			24.3	4.72
73.0	40.0	750	2250			24.6	4.78
73.0	40.0	750	2300			24.8	4.84
73.0	40.0	750	2350			24.8	4.89
73.0	40.0	750	2400			24.9	4.94
73.0	40.0	750	2450			25.0	5.00
73.0	40.0	750	2500			25.1	5.05
73.0	40.0	750	2150			60.1	4.67
73.0	40.0	800	2400			24.4	5.11
73.0	40.0	800	2350			24.5	5.06
73.0	40.0	800	2450			24.5	5.17

Continued on next page

Table B. 9 - Continued from previous page

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	delay_Low $(\mu \mathbf{s})$	delay_high $(\mu \mathbf{s})$	Mean delay $(\mu \mathbf{s})$	power $(\mathbf{p W})$
73.0	40.0	800	2300			24.8	5.00
73.0	40.0	800	2500			24.9	5.22
78.0	40.0	450	1400	22.6	23.2	22.88	3.40
78.0	40.0	500	1550	22.5	23.0	22.745	3.80
78.0	40.0	550	1700	22.5	22.6	22.545	4.20
78.0	40.0	550	1750	22.9	22.6	22.76	4.27
78.0	40.0	600	1850	22.3	22.1	22.155	4.60
78.0	40.0	650	2000	22.2	22.2	22.19	5.00
78.0	40.0	700	2150	21.6	21.9	21.735	5.39
78.0	40.0	750	2350	22.1	21.7	21.885	5.86
78.0	40.0	750	2300	21.9	21.9	21.915	5.79
78.0	40.0	800	2400	21.7	21.8	21.73	6.12
78.0	40.0	800	2450	21.8	21.8	21.825	6.19
78.0	40.0	800	2500	22.0	21.9	21.935	6.26
106	40.0	300	950	13.3	12.9	13.1	6.11
106	40.0	350	1050	12.5	12.4	12.5	7.02
106	40.0	400	1200	12.2	12.5	12.3	8.12
106	40.0	450	1350	12.3	12.0	12.1	9.21
106	40.0	500	1450	12.0	11.7	11.8	10.1
106	40.0	500	1500	12.1	12.0	12.1	10.3
106	40.0	550	1600	11.7	12.0	11.8	11.2
106	40.0	550	1650	12.0	11.7	11.9	11.4
106	40.0	600	1800	11.5	11.8	11.7	12.5
106	40.0	600	1750	11.7	11.8	11.7	12.3
106	40.0	650	1900	11.7	11.6	11.7	13.4
106	40.0	700	2000	11.5	11.6	11.5	14.3
106	40.0	700	2050	11.6	11.5	11.6	14.5
106	40.0	700	1950	11.5	11.7	11.6	14.1
106	40.0	700	2100	11.9	11.7	11.8	14.7
106	40.0	750	2150	11.5	11.3	11.4	15.4
106	40.0	750	2200	11.4	11.7	11.5	15.6
106	40.0	750	2250	11.8	11.6	11.7	15.8
106	40.0	800	2300	11.3	11.6	11.4	16.5
106	40.0	800	2250	11.4	11.5	11.5	16.3
106	40.0	800	2350	11.5	11.5	11.5	16.7
106	40.0	800	2400	11.6	11.6	11.6	16.9

Table B.10: The power and delay in the ring oscillator constructed of three 8T NAND2 gates. Results of transient analyses

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	delay_Low $(\mu \mathbf{s})$	delay_high $(\mu \mathbf{s})$	Mean delay $(\mu \mathbf{s})$	power $(\mathbf{p W})$
73.0	40.0	300	1950			62.1	2.70
73.0	40.0	300	2000			60.3	2.74
73.0	40.0	300	2050			59.5	2.78
73.0	40.0	300	2100		59.3	2.82	
73.0	40.0	300	2150		59.6	2.86	
73.0	40.0	300	2200			59.9	2.90
73.0	40.0	300	2250		60.0	2.93	
78.0	40.0	200	1950	59.8	59.8	59.8	2.64
78.0	40.0	250	2450	58.6	58.6	58.6	3.36
78.0	40.0	250	2500	59.0	59.0	59.0	3.39
104	40.0	200	1950	33.3	32.6	32.9	6.75
104	40.0	250	2450	32.5	31.9	32.2	8.59
104	40.0	250	2500	32.5	32.7	32.6	8.68

Table B.11: The power and delay in the ring oscillator constructed of three 4T NOR2 gates. Results of transient analyses

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	$\mathbf{N W}$ $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	delay_Low $(\mu \mathbf{s})$	delay_high $(\mu \mathbf{s})$	Mean delay $(\mu \mathbf{s})$	power $(\mathbf{p W})$
75.0	35.0	200	3100			22.0	8.79
75.0	35.0	200	3150			22.2	8.87
75.0	35.0	200	3400			15.6	9.27
75.0	35.0	200	3450		15.1	9.35	
75.0	35.0	200	3500		15.3	9.43	
75.0	35.0	200	3550			15.0	9.50
75.0	35.0	200	3600		15.1	9.58	
75.0	35.0	200	3650			15.0	9.65
75.0	35.0	200	3700			15.2	9.73
75.0	35.0	200	3750			15.2	9.80
75.0	35.0	200	3800			15.2	9.87
75.0	35.0	200	3850			15.3	9.95
75.0	35.0	200	3900			15.3	10.0
75.0	35.0	200	3950			15.4	10.1
75.0	35.0	200	4000			15.5	10.2
75.0	35.0	250	3900			11.2	
75.0	35.0	250	3950			11.3	
86.0	35.0	200	3750	12.0	11.9	11.9	13.8
86.0	35.0	200	3800	12.0	12.0	12.0	13.9
86.0	35.0	200	3850	12.1	12.2	12.1	14.0
86.0	35.0	200	3900	12.1	12.1	12.1	14.1
86.0	35.0	200	3950	12.2	12.3	12.2	14.2
86.0	35.0	200	4000	12.3	12.2	12.2	14.3
115	35.0	200	3950	6.42	6.53	6.48	38.8

Table B.12: The power and delay in the ring oscillator constructed of three 8T NOR2 gates. Results of transient analyses

$\mathbf{V}_{D D}$ $(\mathbf{m V})$	\mathbf{L} $(\mathbf{n m})$	NW $(\mathbf{n m})$	$\mathbf{P W}$ $(\mathbf{n m})$	delay_Low $(\mu \mathbf{s})$	delay_high $(\mu \mathbf{s})$	Mean delay $(\mu \mathbf{s})$	power $(\mathbf{p W})$
73.0	40.0	300	1950			62.1	2.70
73.0	40.0	300	2000			60.3	2.74
73.0	40.0	300	2050			59.5	2.78
73.0	40.0	300	2100			59.3	2.82
73.0	40.0	300	2150			59.6	2.86
73.0	40.0	300	2200			59.9	2.90
73.0	40.0	300	2250			60.0	2.93
78.0	40.0	200	1950	59.8	59.8	59.8	2.64
78.0	40.0	250	2450	58.6	58.6	58.6	3.36
78.0	40.0	250	2500	59.0	59.0	59.0	3.39
104	40.0	200	1950	33.3	32.6	32.9	6.75
104	40.0	250	2450	32.5	31.9	32.2	8.59
104	40.0	250	2500	32.5	32.7	32.6	8.68

Bibliography

[1] Jonatan Edvard Bjerkedok, Ali Asghar Vatanjou, Trond Ytterdal, and Snorre Aunet. Modular layout-friendly cell library design applied for subthreshold cmos. NTNU, Department of Electronics and Telecommunications, Bitvis, 2014.
[2] Massimo Alioto. Ultra-low power vlsi. IEEE, January 2012.
[3] Alice Wang, Benton H. Calhoun, and Anantha P. Chandrakasan. Sub-threshold design for ultra low-power systems. Springer, ISBN 978-0-387-34501-7, 2006.
[4] E. J. Nowak. Maintaining the benefits of cmos scaling when scaling bogs down. IBM Journal of Research and Development, March/ May 2002.
[5] Tony Chan Carusone, David Johns, and Kenneth Martin. Analog integrated circuit design. John Wiley $\begin{gathered}\text { Son, Inc., } 2013 .\end{gathered}$
[6] John P. Uyemura. Introduction to vlsi circuit and systemsl. John Wiley \& Son, Inc., 2002.
[7] V. Beiu, S. Aunet, J. Nyathi, R. R. Rydberg III, and W. Ibrahim. Serial addition: Locally connected architectures. IEEE Transactions on circuits and systems - I: Regular papers, Vol: 54, No. 11, November 2007.
[8] Marcel J. Pelgrom, Aad C. J. Duinmaijer, and Anton P. G: Welbers. Matching properties of mos transistors. IEEE journal of solid-state circuits, October 1989.

