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Abstract

The subject of this thesis is related to verification of wind induced dynamic response

of the Svinesund Bridge in the time domain by the use of autoregressive simulations.

This thesis starts by giving a theoretical study in the field of time–series simula-

tion of wind induced dynamic loading, with emphasis on the Schur decomposition

by AR model and polynomial approximation. This is a procedure that generates

a multivariate wind field velocity vector by decomposing the PSD matrix into the

basis of the eigenvectors. The advantages of this method is that very few spec-

tral modes exhibit significant power, meaning that one could truncate the spectral

modal matrix only evaluating the m first eigenvectors (m� n). Another advantage

is that each component of the eigenvectors are very regular functions, which is true

independent of the analytical model assumed for the PSD function. This allows,

by the use of standard finite element procedure for approximating the eigenvectors,

the generation procedure, via standard AR model, to only require a limited num-

ber of samples of univariate coherent processes to describe the multivariate wind

field, and this number is independent of the number of components in the process.

Another advantage making use of the regularity of eigenvectors is that only a small

number of subdivision frequencies are needed to approximate the eigenvectors in

a polynomial form by a standard finite element procedure. All these advantages

combines makes this a very computational effective procedure for generation of a

multivariate wind field velocity vector.

As a bonus the physical meaning of eigenvectors and eigenvalues of the PSD

matrix provides useful information about the stochastic wind process in view of a

structural analysis. This because the eigenvalues could be seen as the power of n
independent processes W1 (t) , . . . , Wn (t), while the eigenvectors are mode shapes,

similar to the structural modes, associated with the wind field velocity.

After the theory is explained an explanation of how the time domain simulations

of wind induced dynamic response was created using the NatHaz On-line Wind
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Simulator [2] (NOWS) is given. Here a discussion regarding choices made in regard

to different inputs to NOWS as well as how the simulated wind field velocities was

to be applied onto the FEM. These simulations was then applied to a finite element

model of the Svinesund Bridge, created in the computer software Abaqus, using

several different strategies. Then results were extracted from the model in the

form of accelerations from these simulations. These accelerations along with the

simulated wind field velocities was then compared with real measurements obtained

when the storm Per passed Svinesund Bridge on January 14, 2007.

After comparing many different velocities and accelerations from different sim-

ulations to the measured response it was concluded that the Full in 2 points simu-

lation with approach z1 created the best representation of the measured response.

The Full in 2 points simulation uses a drag coefficient of CD = 0.15 on both the

windward and the leeward box girder, while the arch has a drag coefficient of

CD = 0.8. The z1 approach indicate that the z-coordinates should be given as if

the surface is raising linearly between the sea and the arch abutments, and between

each arch abutment and pier 5 and 8. NOWS seems to assume that the terrain

under a structure is plane, and therefore seems to use the z-coordinates for both

defining the height of a point and the spatial separation between to points. So

when z1 was the most correct approach this would indicate that getting the correct

height of each point in a simulation is more important than getting a correct spacial

representation of the nodes. It was also concluded that exposure category A and

B are ill suited for this location, but that it was difficult concluding which was the

better of C and D.

In the last chapter sources of error and possible improvements were discussed.

Here errors such as not having done a thoroughly calculation of the modulus of

elasticity for the arch, taking possible cracking of the concrete into account, which

could have great impact on the model were noted. The problems of working with

a black box such as the NOWS was also discussed. The summation of this discus-

sion being that if one are to do any improvements the first two considered should

possibly bee the modulus of elasticity the concrete arch and finding a different

simulation procedure where more controll could be obtained in how the simulation

is preformed, either by writing one’s own or by finding an open source approach

somewhere.



Norsk sammendrag

Temaet for denne masteroppgaven er knyttet til verifisering av vindindusert dy-

namisk respons av Svinesundsbrua i tidsplanet ved hjelp av autoregressive simu-

leringer. Masteroppgaven starter med å gi et innblikk i teorien bak simulering av

vindindusert dynamisk belastning i tidsplanet, med vekt p̊a Schur dekomposisjon

med hjelp av AR-modellering og polynomisk tilnærming. Her blir et vindindusert

hastighetsfelt tilnærmet ved at man benytter diverse fordelaktige egenskaper av

å faktoriserie spektralmatrisen ned til en basis best̊aende av dens egenvektorer.

Dette gjør at man kan trunkere summasjonen fra å g̊a over n punkter til å g̊a over

m punkter (m � n), siden det kun er noen f̊a av egensvingningene som har sig-

nifikant amplitude. Ogs̊a det faktum at de forkjellige komponentene som utgjør

egenvektorene er relativt glatte funksjoner kan brukes til å finne en tilnærming til

egenvektorene over et stort frekvensspekter ved dele spekteret opp i relativ f̊a deler

og tilpasse et polynom i disse punktene. Ved hjelp av vanlig elementmetode til

å tilnærme egenvektorene, trengs heller ikke denne genereringsmetoden, via bruk

av standard AR modeller, mange en-variable funksjoner for å estimere det mer

komplekse vindindusert hastighetsfeltet.

Som en bonus hjelper den fysiske forklaringen av egenvektorer og egenverdier av

spektralmatrisen oss til å bedre forst̊a hvordan vindlaste p̊avirker konstruksjoner.

Dette fordi egenvektorene kan sees p̊a som egensvingningene til vindfeltet, akku-

rat som egensvingningene til en konstruksjon, mens egenverdiene kan sees p̊a som

amplituden til responsen.

Etter denne teoretiske studien beskrives det hvordan en online vind simulator

(NatHaz On-line Wind Simulator (NOWS) [2]) ble brukt til å generere vindin-

duserte hastighetsfeltet for Svinesundsbrua. Deretter følger en diskusjon ang̊aende

inndataene som benyttes for simuleringen samt hvordan dette simulerte vindfel-

tet skal p̊aføres elementmodellen i Abaqus. Etter at diverse framgangsm̊ater ble

diskutert og forsøkt, ble simuleringene p̊aført elementmodellen og resultat i form
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av akselerasjoner ble hentet ut. Disse ble sammen med hastighetene sammenlignet

med m̊alte verdier samlet inn fra sensorer i det stormen Per passerte Svinesunds-

brua 14. januar 2007.

Etter en rekke sammenligninger kom man fram til at den strategien som ga best

tilnærming til de m̊alte verdiene var å beregne en kraft ved bruk av dragkoeffisien-

ten CD = 0.15 for begge kjørebanene i ett, funnet i et vindtunnel-forsøk gjengitt i

vedlegg B. Denne kraften ble s̊a p̊aført b̊ade den vindutsatte kjørebanen og kjørba-

nen som l̊a i le. For buen ble en dragkoeffisient p̊a CD = 0.8. brukt. Simuleringene

viste ogs̊a at det å bruke z-verdier hvor bakken ble antatt å stige lineært fra sjøkan-

ten og opp til beina p̊a buen og fra beina p̊a buen og opp til søyle 5 og 8 ga best

resultat av metodene som ble testet. Dette tilsier at det er viktigere at nodene er

representert med riktig høyde enn at avstanden mellom nodene trenger å være s̊a

nøyaktig. Det ble ogs̊a vist at eksponeringskategori A og B ikke kan brukes for

Svinesundsbrua, men at det var s̊a og svært vanskelig å si hvem av kategori C og

D som gir riktigs resultat.

Simuleringene fra NOWS ser ogs̊a ut til å inneholde mye mindre variasjon enn

de m̊alte verdiene. Hva dette kommer av er derimot vanskelig å forklare siden kun

teorien bak, men ikke koden brukt for å generere hastighetsfeltene er opplyst for

denne simulatoren. Man kan dermed ikke sjekke hvordan simuleringen tilnærmer

seg dette. Dessuten er man begrenset til å kun variere noen f̊a utvalgte verdier mel-

lom de forskjellige simuleringene. Dette bringer oss til siste kapittel der feilkilder og

forbedringer er diskutert. Her blir nettopp denne ’Black-box’-effekten fra NOWS

diskutert. En annen viktig feilkilde er antatt å være utregningen av elastisitetsmod-

ulen til betongsøylen. Fiskum fant i [5] at endringer i betongens elastisitet har stor

innvirkning p̊a stivheten til brua, men hverken her eller i [5] er denne variabelen

gitt noe prioritet. For videre arbeid bør en risskontroll av betongbuen gjennom-

føres og buens elastisitetsmodul bør oppdateres ved avvik. Det vil ogs̊a være en

god ide å forsøke å finne alternative simulatorer til NOWS, hvor koden er kjent,

evtentuelt skrive en egen simulator. Dette vil gjøre forsøk mer oversiktlig, samt at

man har mulighet til å variere mange flere variabler som kan øke nøyaktigheten av

simuleringene.
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Notation

Most of the notations used in this thesis is described when used, but some commonly

used notations are also presented here for convenience

Matrices and vectors:

Matrices are in general written as bold upper case Latin or Greek letters, e.g. Q
or Ψ.

Vectors are in general written as bold lower case Latin or Greek letters, e.g. q or

ψ.

Superscript and bars above symbol:

Super-script T indicates the transposed of a vector or a matrix

Super− script ? indicates the complex conjugate of a quantity.

A hat (∧) above a symbol (e.g.Ĥ) indicates normalized quantity

A line (-) above a symbol (e.g.U) indicates a mean value

Latin letters:

Ĉo Denotes the normalized co-spectrum

E[·] Denotes the average value of the variable within the brackets

i Denotes the imaginary unit (i.e. i =
√
−1)

f Denotes frequency given in Hz

PSD Denotes an power spectral density

S Cross spectral density matrix

Sn Denotes a spectral density

Snm Denotes a cross spectral density

U(z) Instantaneous wind velocity int the main flow direction

u(x, y, z, t) Fluctuating along-wind horizontal velocity component

v (x, y, z, t) Fluctuating across wind horizontal velocity component
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V (t) n-variate one-dimensional (n-V, 1-D) stochastic vector process containing

velocity values at n points

w(x, y, z, t) Fluctuating across wind vertical velocity component

Greek letters:

δpq Kronecker delta (δpq = 1 if p ≡ q, δpq = 0 if p 6= q).

σ Denotes the standard deviation

ψk Denoting the kth eigenvector normalized with respect to the identity matrix

ω Circular frequency given in [rad/s]

Λ Diagonal matrix listing the eigenvalues of the PSD matrix

Ψ Spectral matrix containing all the mode shapes[ψ1 . . . ψk . . . ψn]



Chapter 1

Introduction

The Norwegian Public Roads Administration (NPRA) has been commissioned to

investigate the potential for trade and industry, regional employment and settle-

ment patterns of eliminating all ferries along the western corridor (E39) between

Kristiansand and Trondheim. Further, this project will explore the technology re-

quired for the remaining fjord crossings, including the construction of several new

bridges. Some of these will be very slim making wind induced dynamic response a

key part of the the design. It is therefore desirable that a control of the accuracy and

an assessment of model uncertainty are conducted on the existing computational

tools used to calculate wind induced dynamic response. During the construction

of the Svinesund Bridge an advanced measurement system was installed measur-

ing wind forces and accelerations, among other things, and at several occasions of

strong winds these measurements are stored by the system. One of these occa-

sions occurred when the storm Per passed the bridge on January 14, 2007. Data

from this storm is in this thesis compared with data from various time domain

simulations of wind induced dynamic response.

This thesis constitutes the results of the 10th semester of the master’s degree

program at the Department of Structural Engineering at The Norwegian University

of Science and Technology (NTNU). It may be seen as a sequel to the project

preformed in the course TKT4511 by Jørgen Fiskum during the fall of 2011 titled;

System identification of constructions - Dynamic response of the Svinesund Bridge

[5].

The subject of this thesis is related to verification of wind induced dynamic

response of the Svinesund Bridge in the time domain by the use of autoregressive
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simulations. The Svinesund Bridge is a bridge located on the southern boarder

between Norway and Sweden. It consist of two approach bridges supported on

piers and a central arch section.

In this thesis a theoretical study in the field of time–series simulation of wind

induced dynamic load will be presented. Then time domain simulations of wind in-

duced dynamic response created using the NatHaz On-line Wind Simulator (NOWS)

[2] would be given. These simulations will be applied to a finite element model of

the Svinesund Bridge, created in the computer software program Abaqus. Acceler-

ations from this model would be extracted and, along with the simulated wind field

velocities, be compared with real measurements obtained during the storm Per.

At the end of the thesis a discussions on sources of errors and possible improve-

ments would be presented, the latter with work based on this thesis or further

studies within this topic in mind.



Chapter 2

Wind basics

2.1 Basics theory concerning wind and wind-statistics
Natural wind is turbulent, especially near ground where friction between the

air flow and the terrain causes turbulence. This turbulence varies in a complex,

random way in both space and time, making it nearly impossible to accurately

model the wind flow. Therefore the wind is described in statistical terms as a

stochastic process. This means that the wind itself is seldom measured and instead

statistical data is collected from measurements. This data often consist of a mean

wind velocity averaged over a 10 minute time frame. To incorporate fluctuations

in the wind, the wind velocity is described as the sum of this mean velocity and

of fluctuations. Since the fluctuations are random variables they will tend to have

zero mean value over a sufficient long period. As the mean wind velocity is usually

described as a mean over a 10 minute period, the fluctuating parts are set to have

zero mean value over the same period. The notation for the wind velocities at a

given time t will in is this paper be:

• In the main flow along-wind direction:

U (z) + u (x, y, z, t) (2.1)

• In the across wind horizontal direction

v (x, y, z, t) (2.2)
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• In the across wind vertical direction

w(x, y, z, t) (2.3)

Here the wind velocity in the main flow along-wind direction consists of a mean

value, U, that only varies with height above ground and a fluctuating part, u.

2.2 Mean wind velocity
Eurocode 1 gives the following expression for the mean wind velocity above

horizontal terrain at an height z above ground

U (z) =

 Ubas × kT × ln
(

z
z0

)
when z > zmin

Ubas × kT × ln
(

zmin
z0

)
when z ≤ zmin

(2.4)

Here z0 is the roughness length, which could be interpreted as the size of a

characteristic vortex formed as a result of friction between the air and the ground

surface. As seen in eq. 2.4 z0 coincides with the height at which the mean wind

velocity is zero. kT is the terrain factor, which is affected by the roughness of the

surface. Ubas is the reference wind velocity, often taken at an height of 10 m. The

height zmin has been introduced because the velocity profile given in eq. 2.4 has a

limited validity close to ground, where turbulence and directional effects prevail.

It should be noted that the term frictional velocity, u?, often is used instead of

Ubas and kT, where the frictional velocity is given as u? = Ubas × kT × κ. Here κ is

the von Kármán constant often taken as 0.4.

2.3 Turbulence
As stated before the wind velocity is described by the mean wind velocity, U,

and the turbulence components u, v and w as stated in eq. 2.1 - 2.3. The three

turbulence components could be described by their standard deviations, integral

length scale, power-spectral density and normalized co-spectra.

2.3.1 Standard deviation
It may be shown that if a zero mean stochastic process is stationary and Gaus-

sian, then its extreme value is proportional to its standard deviation σrk , i.e. [15]

rkmax = rk (x) + kp × σrk (2.5)
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where kp is a time invariant peak factor.

Therefore the standard deviation of the turbulence components is of special

importance in wind calculations.

The turbulence intensities are defines by [15]

In (z) = σn(z)
U(z)

where n = u, v, w (2.6)

For flat terrain the turbulence intensity for the along-wind turbulence compo-

nent, u, is approximately given by [15]

Iu (z) =

 1/ln(z/zo) when z>zmin

1/ln(zmin/zo) when z≤zmin

(2.7)

In homogenous terrain up to a height of about 200 m and not very close to the

ground [
Iv

Iw

]
≈
[

3/4

1/2

]
× Iu (2.8)

For height over 200 m above ground, Iu ≈ Iv ≈ Iw.

2.3.2 Time scales and integral length scale
The auto covariance function ρn (τ), is defined as the normalized mean value

of the product of the turbulence component n = u, v, w at time t and at time t + τ

[15]

ρn (τ) = Covn(τ)

σ2
n

= E[n(t)×n(t+τ)]

σ2
n

where n = u, v, w (2.9)

This function indicate how much information a measurement of a turbulence

component e.g. u (x, y, z, t) will provide about the value u (x, y, z, t + τ) measured

a time τ later, at the same place.

u may be said to have a characteristic time of memory, the so-called time scale

Tn. The time scale may be interpreted as the average duration of a u, v or w wind

gust, and is given as

Tn =
´ ∞

0 ρn (τ) where n = u, v, w (2.10)

Integral length scales are a measurement of the sizes of the vortices in the wind,

or in other words the average size of gust in a given direction. Adopting Taylor’s
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hypothesis that turbulence convection in the main flow direction takes place with

the mean wind velocity (i.e. that flow disturbances travel with the average velocity

U), then the average length scales of u, v and w in the x-direction are given by[15]

Lx
n = U × Tn = U ×

´ ∞
0 ρn (τ) dτ where n = u, v, w (2.11)

2.3.3 Power-spectral density function
While the auto covariance functions represent the time domain properties of

the turbulence components, it is the spectral densities that describe the frequency

domain properties. This is done because a far more convenient mathematical model

of the wind may be established in frequency domain, where the number of unknowns

may be decreased considerably without loosing much information.

One of the earliest to come up with a simple and functional function to describe

the spectral density was von Kármán in 1948 [17]

Su =
4 f̂uσ2

u(
1 + 70.8× f̂n

2
)5/6
× f

(2.12a)

Sn =
4 f̂n

(
1+755.2 f̂n

2
)

σ2
n(

1+283.2× f̂n
2
)11/6

× f
, n = v, w (2.12b)

where f̂n = f × Lx
n

U , and Lx
n is the integral length scale of the relevant turbulence

component.

Later a similar expression was proposed by Kaimal et al. based on data obtained

in the 1968 AFCRL Kansas experiments. This expression is easier to fit to relevant

data because a parameter An as well as the length scales could be changed to fit

measurements. The Kaimal spectrum is a simple and commonly used spectrum in

wind dynamics and is given as [7]:

Sn = An f̂nσ2
n

(1+1.5An× f̂n)
5/3× f

where n = u, v, w (2.13)

An may be set to Au = 6.8, Av = Aw = 9.4, unless full scale recordings indicate

otherwise.

A further revision of the von Kármán specter was made by Simiu and Scanlan

[14]:
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Sn (z, ω) =
1
2
× 200

2π
× u2

? ×
z

U (z)
× 1[

1 + 50× ωz
2πU(z)

]5/3
(2.14)

where, ω = circular frequency in [rad/s]; u? = frictional velocity; U (z) = mean

wind velocity at height z.

2.3.4 Spatial properties of wind turbulence
Spatial properties of wind turbulence are obtained measuring recordings simul-

taneously from two points separated in space. The dependence between points in

space is due to the spatial dimension of the vortices in the wind field.

The spatial distribution of the turbulence components is described by the cross-

spectrum [15]

Snn (r, f ) =
´ ∞
−∞ Covnn (r, τ)× exp (−2π f τ) dτ , n = u, v, w (2.15)

where Covnn (r, τ) is the covariance function and r is the distance between the

two points.

In wind engineering the coherence is often used, defined as [15]

Cohnn (r, f ) =
|Snn|2

S2
n

(2.16)

In eq. 2.16 |Snn| is the real part of the cross-spectrum given as [15]

Snn (r, f ) = |Snn (r, f )| exp (iΦnn(r, f )) (2.17)

Combining eq. 2.16 and eq. 2.17 the following equation may be derived for the

cross-spectrum

Snn (r, f ) = Sn ( f )×
√

Cohnn (r, f ) exp (iΦnn(r, f )) , n = u, v, w (2.18)

Since the wind field is usually assumed homogeneous and perpendicular to the

span of the (line-like) structure, phase spectra may be neglected. Because of this

the normalized co-spectrum is defined as

Ĉonm (r, f ) =
Re [Snm (r, f )]√

Sn ( f ) Sm ( f )
(2.19)
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The normalized co-spectrum Ĉo must decrease as the distance r between the

two points increases. This decrease depends on the size of the vortices, and a

measurement of this size is the ratio between the mean wind velocity and the

frequency, U/ f .

From the assumption of zero phase-spectrum Davenport suggested from a purely

empirical basis, an exponential expression for the normalized co-spectrum [4]

Ĉouu (r, f ) = exp (−Cr f/U) (2.20)

where C is a non-dimensional decay constant that determines the spatial extent

of the correlation in the turbulence.

This expression was later expanded to be used for two points with transverse

separation [4]

Ĉouu
(
ry, rz, f

)
= exp

(
− f

U

√(
Cyry

)2
+ (Czrz)2

)
(2.21)

In eq. 2.21 the mean wind velocity is the mean value of the mean wind velocities

at the two point considered, U = 1
2 (U (z1) + U (z2)).

Equation 2.20 and 2.21 has the advantage of being simple expression, but in-

corporates two inconsistencies:

1. The functions are positive for in the entire range of r, and it may be shown

that this is in conflict with the definition of zero mean turbulence components.

2. The normalized co-spectrum approaches unity for all r at small frequencies.

This is not the case as a wind structure often is characterized by a lack of

correlation even at low frequencies.

To prevent these two inconsistencies Krenk derived a modified exponential format

allowing for different horizontal and vertical decay constants, Cy and Cz [4]

Ĉouu
(
ry, rz, f

)
=

(
1− 1

2
fx

U

√(
Cyry

)2
+ (Czrz)2

)
exp

(
− fx

U

√(
Cyry

)2
+ (Czrz)2

)
(2.22)

where the modified frequency fx is

fx =

√
f 2 +

(
U

2πL

)2
, L = modi f ied length scale (2.23)

One could then use the known co-spectrum from eq. 2.22, the known autospec-

trum from eq. 2.13 - 2.12b and eq. 2.19 to find the cross-spectrum
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Snm ( f ) =
√

Sn ( f ) Sm ( f )× Ĉonm
(
ry, rz, f

)
(2.24)

Another method proposed by Simiu and Scanlan [14], where the coherence

function was defined as follows

Ĉonm (ω) = exp

[
− ω

2π

Czrz
1
2 [U (zn) + U (zm)]

]
× exp

[
− ω

2π

Cyry
1
2 [U (yn) + U (ym)]

]
(2.25)

Here Cy and Cz are non-dimensional decay constant generally taken as 10 and

16, respectively, for structural design [1]; rz = |zn − zm| and ry = |yn − ym|.
Simiu and Scanlan [14] then defined the cross-spectral density function as

Snm (ω) =
√

Snn (ω) Smm (ω)e(−Ĉonm(ω)) (2.26)





Chapter 3

Time-domain simulation of

wind

3.1 Introduction
For structures in space subject to wind one need to determine the velocity at

different points to be able to calculate the load effects due to wind. The wind

velocity at a given point in space is usually modeled as a normal stochastic process

where the velocity u at the given point depends on the coordinate of the point

in space (x, y, z) and on the time t. The stochastic field velocity u (x, y, z, t) is

therefore a so called one-variate four-dimensional (1-V, 4-D) stochastic field. If one

instead only is interested in the velocity in some specific points (say n), one could

collect the velocities in the points u1 (t) , u2 (t) , ..., un (t) into a vector V (t), and

then one would have represented the discretized stochastic field by an n-variate one-

dimensional (n-V, 1-D) stochastic vector process. Simulations of normal stochastic

vector processes are preformed using two main different approaches [11]:

• Digital simulation based on superposition of harmonic waves with random

phase

• Digital simulation obtained as output of digital filters exposed to band-limited

white noise input. These numerical schemes are commonly referred to as auto-

regressive (AR) algorithms and auto-regressive moving-average (ARMA) al-

gorithms.

In this thesis the AR algorithms are going to be examined closer, by means of the

Schur decomposition by AR model and polynomial approximation, as explained in
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the papers by Di Paola [11] and Di Paola & Gullo [12].

3.2 Schur decomposition by AR model and poly-

nomial approximation

3.2.1 Stochastic modeling of multivariate wind field
Shown in the papers by Li and Kareem [8][9] one could write the vector process

V (t) as a summation of independent fully coherent stochastic processes as follows:

V (t) =
n

∑
k=1

Yk (t) (3.1)

where

Yk (t) =

∞̂

−∞

qk (ω) eiωtdBk (ω) (3.2)

Here dB are independent orthogonally incremental stochastic processes, that is

E
[
dBj (ω)

]
= 0, dBj (ω) = dB?

j (ω)

E
[
dBj (ωr) dBk (ωs)

]
= δωrωs δjkdωr

(3.3)

where the star denotes complex conjugate and δpq is the Kronecker delta (δpq =

1 if p ≡ q, δpq = 0 if p 6= q).

qk (ω) are n-vectors such that collecting them in the square matrix Q (ω), the

following relationship holds:

Q (ω) Q? (ω)T = S (ω) (3.4)

where S (ω) is the PSD matrix:

S (ω) =


S11 S12 · · · S1n

S21 S22 · · · S2n
...

... · · ·
...

Sn1 Sn2 · · · Snn

 (3.5)

here Snm is the cross-spectrum function given in eq. 2.26.

In the case of wind velocity the matrix Q (ω) is a real one. There are ∞n ways

to decompose the matrix S (ω), so the decomposition in eq. 3.4 is not unique. A

different decomposition of the PSD matrix was proposed by Di Paola [11] where
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the PSD matrix is decomposed into the frequency-dependent eigenvectors of the

PSD matrix itself.

If ψk (ω) is the kth eigenvector normalized with respect to the identity matrix,

then by collecting these vectors into a square matrix Ψ(ω) called the spectral

matrix, the following orthogonality conditions hold:

ΨT (ω) Ψ (ω) = I, ΨT (ω) S (ω) Ψ (ω) = Λ (ω) (3.6)

where Λ (ω) is a diagonal matrix listing the eigenvalues of the PSD matrix.

The eigenvectors ψk (ω) are real (because the complex part of the cross-spectrum

has been neglected) and orthogonal. The digital simulation of the vector Yk (t) can

then be performed as follows:

Yk (t) =

∞̂

−∞

ψk (ω)
√

Λk (ω)eiωtdBk (ω) (3.7)

or in the discretized version

Yk (t) = 2
N

∑
j=1

ψk
(
ωj
)√

Λk
(
ωj
)

∆ω× g(k)
j (t) (3.8)

where

g(k)
j (t) = R(k)

j cos
(
ωjt
)

+ I(k)
j sin

(
ωjt
)

(3.9)

R(k)
j and I(k)

j being zero-mean normal random numbers obeying the following

orthogonal relationship:

E
[

R(r)
j R(s)

k

]
= 1

2 δjkδrs, E
[

I(r)
j I(s)

k

]
= 1

2 δjkδrs

E
[

R(r)
j I(s)

k

]
= 0

(3.10)

So far the procedure for generating the wind velocity vector by decomposing the

PSD matrix into the basis of the eigenvectors is shown, but the motivation for doing

so is not examined. At this stage it actually seems as much more computational

effort is needed for this method compared to a Choleski decomposition. But on

the basis of some physical meanings of eigenvalues and eigenvectors the appeal in

using the proposed procedure will be revealed in the following section.



14 Chapter 3. Time-domain simulation of wind

3.2.2 Eigen-properties of the PSD matrix of the wind veloc-

ities
Di Paola [11] and Di Paola and Gullo [12] uses two examples to explain the

physical meaning of eigenvectors and eigenvalues of the matrix S (ω). The first

one is a case of two points at the same level in the y− z plane, i.e. S1 = S2 = S.

If one uses eq. 2.25 and eq. 2.26 to calculate the coherence and the cross-spectral

density function respectively, the matrix S (ω) reduces to

S (ω) = S (ω)

[
1 e−Ĉo12(ry ,ω)

e−Ĉo12(ry ,ω) 1

]
(3.11)

The eigenvalues of this matrix are

Λ1 = S (ω)
(

1 + e−Ĉo12(ry ,ω)
)

(3.12a)

Λ2 = S (ω)
(

1− e−Ĉo12(ry ,ω)
)

(3.12b)

and the corresponding eigenvectors, normalized with respect to the identity

matrix, are

ψ1 =
1√
2

[
1
1

]
(3.13a)

ψ2 =
1√
2

[
1
−1

]
(3.13b)

that is for a bivariate wind field velocity the spectral modal matrix Ψ is inde-

pendent of ω. It follows that, according to eqs. 3.1 and 3.8, one can write

V (t) = 2ψ1

N

∑
j=1

√
Λ1
(
ωj
)

∆ω× g(1)
j (t) + 2ψ2

N

∑
j=1

√
Λ2
(
ωj
)

∆ω× g(2)
j (t) (3.14)

Remembering eq. 3.1 one could think of the summation in eq. 3.14 as two

independent processes whose PSD are Λ1 (ω) and Λ2 (ω), respectively; Then eq.

3.14 can be rewritten in the form

V (t) = ψ1W1 (t) + ψ2W2 (t) (3.15)
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From eq. 3.15 it can be recognized that for a bivariate wind field velocity two

independent (scalar) processes W1 (t) and W2 (t) whose PSD are given in eqs. 3.12a

and 3.12b, respectively, can be generated. Then using eq. 3.15, the vector V (t)
is easily generated as the contribution of two fully coherent vectors ψ1W1 (t) and

ψ2W2 (t).
Figure 3.1 shows a plot made in Di Paola and Gullo [12] which show the PSD

function S (ω), written as Sv11 , and the cross PSD function S (ω) e−Ĉo(ry ,rz ,ω),

written as Sv12 , for some given values. This figure also shows a plot of the two

functions Λ1 (ω) and Λ1 (ω) given in eqs. 3.12a and 3.12b.

From figure 3.1b one could see that the first eigenvector, having higher power

at low frequencies and shape ψ1, is the most important, while the second, having

shape ψ2, at low frequency exhibits comparatively small power. Moreover at high

frequency both W1 (t) and W2 (t) have the same power.

Using this simple example one could also take a look at the physical interpreta-

tion of this analysis method. Assuming the two points considered above are from

two anemometers located at the same level on a slender horizontal line-like con-

struction (see fig. 3.2) and ∆ is the inter-distance between the two anemometers,

then one could by virtue of eq. 3.15 decompose the wind field V1, V2 into two

independent vector processes ψ1W1 (t) and ψ2W2 (t). The first one, having the

highest power, has for a resultant a vector located at the mid point ∆/2 (visualized

in fig. 3.2b), while the second, having the smaller power, constitutes a moment

about the z-axis (visualized in fig. 3.2c).

One could then, by virtue of eqs. 3.12a, 3.12b and 2.22, see that if the inter-

distance ∆ decreases Ĉo
(
ry, rz, ω

)
→ 0, and then Λ2 (ω) → 0 and Λ1 (ω) →

2S (ω) which is consistent with the plot in fig. 3.1 for low values of ω. On the

contrary, if ∆ increases the two independent processes tend to have the same power

since Ĉo
(
ry, rz, ω

)
→ 0 when ∆→ ∞.

So one could then see the physical significance of eigenvectors and eigenvalues.

The eigenvalues are the power of the two independent processes W1 (t) and W2 (t),
while the eigenvectors are the mode shapes associated with the wind field velocity.

So the bivariate wind field blows as a sum of two independent totally coherent pro-

cesses associated with blowing shapes just as a structural vibration is decomposed

as a sum of independent structural mode shapes. Therefore these processes will

hereafter be called blowing mode shapes of the wind velocity field.

To show that the above mentioned properties remain unchanged increasing the

dimension of the vector V (t), the second example introduced by Di Paola and
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Figure 3.1: Power spectral of bivariate wind field velocity. (a) Elements of the
frequency dependent PSD matrix. (b) Frequency dependent eigenvalues Λ1 (ω)
and Λ2 (ω). From Di Paola and Gullo [12]
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Figure 3.2: Decomposition of bivariate wind velocities. (a) Wind action on two
anemometers. (b) First blowing mode shape of wind velocity. (c) Second blowing
mode shape of wind velocity. From Di Paola and Gullo [12]

Figure 3.3: Frequency dependent eigenvalues Λj (ω) for a six-variate wind field
velocity. From Di Paola and Gullo [12]

Gullo [12] was a six-dimensional wind field. Here the points 1-6 are located at

different levels having inter-distance of 5 m.

Fig. 3.3 shows the eigenvalues for the six-variate wind field velocity, Λj (ω) , j =

1, 2, . . . , 6. The eigenvalues are ordered so that Λ1 (ω) > Λ2 · · · > Λ6. This
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figure shows that the first blowing mode ψ1 has a significant higher power at

low frequencies compared to the other modes. Therefore one could evaluate only

the first few eigenvectors, those associated with the higher power, Λj (ω) , j =

1, 2, . . . , m (m� n), and still get a reasonably good answer.

Another interesting discovery is that the components of the eigenvector are very

regular functions as seen in fig. 3.4. This means that if one evaluates the actual

eigenvector ψj (ωk) using simple or simultaneous vector iteration methods and uses

the initial vector in the iteration ψj (ωk−1) as a first attempt, very few iterations

are required.

The six-variate wind field also shows good correlation between blowing mode

shapes and the structural mode shapes, as suggested in the bivariate example. In

fig. 3.5 one could see that the first and sixth blowing mode shapes plotted for

different values of ω showing a surprising similarity with the corresponding struc-

tural mode shapes. It follows that for a slender structure the contribution on the

response of each natural structural mode will be dominated by the corresponding

blowing mode shape.

To sum up: The motivation for generating the wind velocity vector by decom-

posing the PSD matrix into the basis of the eigenvectors is shown, and could be

summarized in two key points:

1. Only very few spectral modes exhibit significant power

2. Each component of the eigenvectors is a relative regular function.

By utilizing the first point one could truncate the spectral modal matrix to a sum-

mation of only the modes having significant power, say m (m� n), only evaluating

the m first eigenvectors. Because of the second point, using iterative methods for

evaluating eigenvalues and eigenvectors, and using the eigenvectors at the previ-

ous frequency ωk−1 as a first attempt, very few iterations are required in order to

compute eigenvalues and eigenvectors at the current frequency ωk.

3.2.3 Polynomial approximation of eigenvectors
So far it has been shown that the multivariate wind field velocity can be de-

composed into a a summation of independent fully coherent multivariate vectors,

i.e. one could generate at each time instant ts a vector Yj (ts) (j = 1, 2, . . . , n) and

then by summing the contribution of the various vectors Yj (ts) one gets V (ts). A

key to the appeal of the decomposition of the PSD matrix in basis of eigenvectors

lies in the fact that, according to eq. 3.7, the orthogonal increments dBj (ω) in
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Figure 3.4: Various components of frequency dependent eigenvectors of six-variate
wind field velocity: solid line exact; dashed line approximated by third-order poly-
nomial with M=1. (a) First eigenvector. (b) Sixth eigenvector. From Di Paola and
Gullo [12]
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Figure 3.5: Blowing mode shapes of the six-variate wind field velocity. (a) First
mode. (b) Sixth mode. From Di Paola and Gullo [12]
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the vector Yj (t) are scalar ones. In order to take full advantage of this fact for

generation purposes by an auto-regressive (AR) model another fundamental step

has to be made. If one defines the frequency domain [ω0, ωc] , ω0 and ωc be-

ing the appropriate lower and upper cut-off frequencies, subdivided into M parts,

ω0 ≡ Ω0, Ω1, . . . , ΩM ≡ ωc. Then the eigenvector ψj (ω) could be approximated

in the generic interval [Ωs−1, Ωs] in a polynomial form of fixed order, for example

a third order polynomial as suggested by Di Paola and Gullo [12]. Then the sth
interval could be approximated as follows

ψ
(s)
j (ω) = N(s)

j l (ω) , Ωs−1 ≤ ω ≤ Ωs (3.16)

where lT (ω) =
[
1 ω ω2 ω3]. The matrix N(s)

j (of order n× 4) can be obtained

by imposing the continuity at boundaries ω0 ≡ Ωs−1 and ω0 ≡ Ωs and hence one

can write

N(s)
j = Ψj (Ωs−1, Ωs) L−1

j (Ωs−1, Ωs) (3.17)

where

Lj (Ωs−1, Ωs) =


1 0 1 0

Ωs−1 1 Ωs 1
Ω2

s−1 2Ωs−1 Ω2
s 2Ωs

Ω3
s−1 3Ω2

s−1 Ω3
s 3Ω2

s

 (3.18)

and

Ψj (Ωs−1, Ωs) =
[
ψj (Ωs−1) ψ′j (Ωs−1) ψj (Ωs) ψ′j (Ωs)

]
(3.19)

where the prime ′ denotes differentiation with respect to ω.

Substituting eq. 3.16 into eq. 3.7 one gets

Yj (t) =
M

∑
s=1

N(s)
j

Ωsˆ

Ωs−1

l (ω)
√

Λj (ω)eiωtdB(s)
j (ω) (3.20)

where the orthogonal increments stochastic processes dB(s)
j (ω) obey the fol-

lowing relationship

E
[
dB(s)

j
(
ωp
)

dB(u)?

j
(
ωq
)]

= δωpωq δsudωp (3.21)
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Hence eq. 3.20 can be written in the form

Yj (t) =
M

∑
s=1

N(s)
j U(s)

j (t) (3.22)

where U(s)
j (t) (s = 1, 2, . . . , M) are fully coherent four-variate processes inde-

pendent of each other by virtue of eq. 3.21. So to be able to generate the entire

vector Yj (t) one would only need to generate (4×M) independent univariate pro-

cesses, instead of an n-variate vector process, each of them given in the form

U(s)
j (t) =

´ Ωs
Ωs−1

eiωt

√Λ (ω)


1
ω

ω2

ω3


 dB(s)

j (ω) , s = 1, 2, . . . , M (3.23)

Summarizing so far, the incoherent multivariate process V (t) is decomposed,

by means of eigenvectors of the PSD matrix, as the summation of n fully coherent

independent n-variate vectors Y (t) according to eq. 3.1. Each fully coherent

vector Y (t) could then be, by means of piecewise polynomial approximation of

the eigenvectors, decomposed as the summation of M independent fully coherent

four-variate vectors according to eq. 3.22.

3.2.4 AR generation
In order to evaluate the generic component Yj (t) of the vector V (t) one have

to generate the M independent fully coherent four-variate vectors U(s)
j (t) defined

in eq. 3.23. This could be done using the standard generation via AR model:

U(s)
j,1 (tk) =

p

∑
u=1

a(s)
j,u U(s)

j,1 (tk−u) + σ
(s)
j,1 W(s)

j (tk) (3.24a)

U(s)
j,2 (tk) =

p

∑
u=1

b(s)
j,u U(s)

j,2 (tk−u) + σ
(s)
j,2 W(s)

j (tk) (3.24b)

U(s)
j,3 (tk) =

p

∑
u=1

c(s)
j,u U(s)

j,3 (tk−u) + σ
(s)
j,31W(s)

j (tk) (3.24c)

U(s)
j,4 (tk) =

p

∑
u=1

d(s)
j,u U(s)

j,4 (tk−u) + σ
(s)
j,4 W(s)

j (tk) (3.24d)
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where a(s)
j,u , . . . , d(s)

j,u are the parameters of the AR model, σ
(s)
j,r (r = 1, . . . , 4) are

the variances of the input and W(s)
j (tk) are the normal random variables with zero

mean and unit variance, and p is the number of parameters in the filter.

The parameters a(s)
j,u , . . . , d(s)

j,u and σ
(s)
j,r (r = 1, . . . , 4) can be evaluated by the

usual Yule-Walker scheme, that is, the autocorrelation method. There one uses the

correlation function, R
U(s)

j,r
, of U(s)

j,r (r = 1, . . . , 4) which is evaluated as the Fourier

transform of Λj (ω) in the interval Ωs−1, Ωs, that is

R
U(s)

j,r
(τ) =

Ωsˆ

Ωs−1

Λj (ω) eiωτdω (3.25)

To e.g. find the filter parameter a(s)
j,u for the first component of U(s)

j one could

write

R
U(s)

j,1
(tk − tl) =

p

∑
u=1

a(s)
j,u R

U(s)
j,1

(tk−u − tl) (3.26)

tl = tk−1, tk−2, . . . , tk−u

Once the filter parameters are found, the standard parameter σ
(s)
j,1 of the input

can be evaluated by the relationship

R
U(s)

j,1
(0) =

p

∑
u=1

a(s)
j,u R

U(s)
j,1

(tk − tk−s) + σ
(s)2

j,1 (3.27)

Similar equations as eqs. 3.25 - 3.27 could be used to find the other components

of the vector U(s)
j (t).

By preforming the AR generation proposed above one have to solve 2 (M + 1)

eigenproblems at the end of the interval Ωs−1, Ωs because the derivatives of the

eigenvectors at the end of the intervals are needed. This could be done by evaluating

the eigenproblems at the frequencies Ω0 + δΩ, Ω1 − δΩ, . . . , ΩM − δΩ, where δΩ
is a very small frequency. One also needs to calculate 4M Fourier transforms for

the evaluation of the correlation function by means of eq. 3.25. For each vector

Yj (t) one also needs to find the solution of 4M linear systems of p equations for

the unknowns in eqs. 3.24a - 3.24d. Once the vector U(s)
j (t) (s = 1, . . . , M) is

generated, the entire vector Yj (t) could be evaluated by eq. 3.22, and then by

using eq. 3.1 the vector V (t) could easily be computed.
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3.3 Summation
In this chapter the procedure for generating a multivariate wind field velocity

vector by decomposing the PSD matrix into the basis of the eigenvectors was shown.

The physical meaning of eigenvectors and eigenvalues of the PSD matrix were

discussed, showing that the eigenvalues could be seen as the power of n independent

processes W1 (t) , . . . , Wn (t), while the eigenvectors are mode shapes, similar to the

structural modes, associated with the wind field velocity.

It was also shown that only a very few spectral modes exhibit significant power,

allowing one to truncate the spectral modal matrix retaining only the first few

mode shapes. This way the computational effort of the procedure is reduced in a

drastic way.

Also shown was the fact that each component of the eigenvectors are very

regular functions, which is true independent of the analytical model assumed for

the PSD function. This allows, by the use of standard finite element procedure for

approximating the eigenvectors, the generation procedure, via standard AR model,

to only require a limited number of samples of univariate coherent processes to

describe the multivariate wind field, and this number is independent of the number

of components in the process.

Another advantage making use of the regularity of eigenvectors is that only a

small number of subdivision frequencies are needed to approximate the eigenvectors

in a polynomial form by a standard finite element procedure.

In a paper by Ubertini and Giuliano[16]the computational efficiency of this

method is proven very good compared to other methods, while at the same time

providing good results, given a reasonable choice of model parameters. The same

paper also recommends this method since it, in addition to being very computa-

tionally efficient, provides useful information about the stochastic wind process in

view of a structural analysis.



Chapter 4

Wind velocity simulation on

the Svinesund Bridge

4.1 NatHaz On-line Wind Simulator (NOWS)
To preform the wind velocity simulation on the Svinesund bridge the NatHaz

On-line Wind Simulator (NOWS) [2] was used. This simulator is based on the

theory discussed in chapter 2 and 3.

NOWS utilizes the Simiu and Scanlan method [14] to calculate the power spec-

tral density (eq. 2.14), the coherence function (eq. 2.25) and the cross-spectral den-

sity function (eq. 2.26). In the calculation of eq. 3.22
(

Yj (t) = ∑M
s=1 N(s)

j U(s)
j (t)

)
a third order polynomial was used in eq. 3.16, as suggestion by Di Paola and Gullo

[12]. The number of subdivision frequencies used in eq. 3.22 is M = 1, and the

order of the AR model used to generate U(s)
j (t) in eqs. 3.24a - 3.24d is p = 4.

The input to the simulators online user interface is 3-sec gust wind, total number

of frequency points and cut-off frequency (which together specify the duration of

the simulation), exposure category, and the horizontal and vertical coordinates

of the points where the simulation is to be preformed. Before a description and

discussion on the chosen input is represented a short description of the Svinesund

Bridge and the utilized finite element model (FEM) is given.

4.1.1 The Svinesund Bridge
The Svinesund bridge consists of two approach bridges and a central arch sec-

tion. The arch section is a central half through arch with span width of 247.30 m.

The arch consists of a reinforced hollow concrete box-section where the outside
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Figure 4.1: Bridge profile and site plan of the Svinesund Bridge. Taken from [3].

height× width vary from 7.40 m× 4.20 m at the abutments to 4.00 m× 2.70 m at

the crown. The thickness of the box section is 1 m for the vertical walls and 1.4 m

for the horizontal ones.

The approach bridges are 337 m long on the Swedish side, 120 m long on the

Norwegian side and supported by slender piers of varying heights between 10.69 m

and 49.95 m. The entire bridge has an overall length of 704 m. The superstructure

of the bridge comprises of two steel box girders each being 11 m wide with a central

gap of 5 m.

The superstructure is attached to the arch by a fixed connection at the two

junctions between the arch and the superstructure and also suspended in the arch

rib by six pairs of hangers (12 in total).

A profile of the bridge along with a site plan is shown in figure 4.1.

The FE-model of the bridge is conducted in the computer software Abaqus and

consists of B32 elements, which are 3-node quadratic beams in space, modeled as a

wire feature through the shear center of each cross section. To capture the fact that

the arch narrows from the abutments to the crown, it is divided into 5 different

sections with different cross section measurements. A more detailed description of

the bridge and the FE-model could be found in Fiskum [5] and Darholm et al. [3].
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4.1.2 3-sec gust wind
Svinesund Bridge has a anemometer installed along with many other instru-

ments used to study the bridge. The measurement system used on the bridge

reads this anemometer at a frequency of 50 Hz, and saves the sampled data from

10 minute periods if an predetermined value is exceeded. During the storm Per

(January 14, 2007), the measurement system saved 90 of these 10 minute periods,

and based on this data a mean 10-minute wind velocity is calculated and used

in this thesis. This was done by taking the maximum mean value from these 90

10-minute periods. The result of this calculation was that the 10-minute average

wind velocity for this data set was, U10 = 23.03 m/s.

Since the online simulator is based on the American standard ASCE 7-98 it

requires the 3-sec gust wind velocity at 10 meters height as a input. This means

that the the 10-minute velocity taken near pier 5 at the bridge level needs to be

converted to an equivalent 3-sec gust wind velocity at an height of 10 m. To do this

a formula which give the the relation between wind speeds averaged over various

time intervals, and a mean ratio between wind speeds with different averaging times

was used. These are taken from Simiu and Miyata [13] and are given in table 4.1

and eq. 4.1.

Ut (z) = U (z)

[
1 +

ηc (t)
2.5 ln (z/z0)

]
(4.1)

where Ut (z) is the speed averaged over t seconds and U (z) is the speed averaged

over 1 h for the terrain with surface roughness z0. The coefficients η and c (t) may

be assumed to have the approximate values given in table 4.2.

These relations give the following formula to convert the 10 minute mean wind

at 17 meters above ground to a 3-sec gust wind at 10 meters above ground with

z0 = 0.025:

Table 4.1: Mean ratio r of the t-s speed to the hourly speed at 10 m above ground
in open terrain. [13]

t (s) 3 5 40 60 600 3600
r 1.52 1.49 1.29 1.25 1.1 1.0
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Table 4.2: Factors η (z0) and c (t). From Simiu and Miyata [13]

z0(m) 0.005 0.03 0.30 1.00
η (z0) 2.55 2.45 2.30 2.20

t 1 10 20 30 50 100 200 300 600 1000 3600
c (t) 3.00 2.32 2.00 1.73 1.35 1.02 0.70 0.54 0.36 0.16 0.00

U10 (17) = U (10)
[
1 + 2.47×0.36

2.5 ln(17/0.025)

]
U (10) = U10(17)

1.0545

U3−sec (10) = U10(17)
1.0545 × 1.52 =⇒ U3−sec (10) = 1.44×U10 (17)

(4.2)

With a 10-minute average wind velocity set to U10 (17) = 23.03 m/s this gives

a 3-sec gust wind of U3−sec (10) = 33.2 m/s.

4.1.3 Number of frequency points and cut of frequency
Since the eight first eigenfrequencies found by Fiskum [5] is less than 2 Hz, and

a cut of frequency of 2 Hz gives a reasonable time step, the cut of frequency was

set to fc = 2 Hz.

The numbers of frequency points where chosen so that the simulation becomes

10 minutes long. This is calculated by the following formula

T = 2× N × ∆t (4.3)

where T is the time of the simulation in seconds, N is the number of frequency

points and ∆t is the time step for the simulation given as

∆t =
1

2 fc
(4.4)

where fc is the cut of frequency in hertz. This gives the following equation to

determine number of points for a 10 minute simulation with fc = 2 Hz:

N =
T

2∆t
=

600
2× 0.25

= 1200 (4.5)

So the cut of frequency, fc, is set to fc = 2 Hz and the number of frequency

points, N, is set to N = 1200.
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4.1.4 Exposure category
This simulation is based on the American standard ASCE 7-98, and preforms

mean wind calculation based on the exposures categories found in this standard.

Since the terrain below the bridge is a bit non-uniform, see figure 4.1, probably

no exposure category may be set as a correct one. But assuming the exposures

categories are the same in ASCE 7-98 and ASCE 7-05, exposure category C seems

to be the most correct in this case. This is what ASCE 7-05 says about exposure

category C [10]:

Exposure C: Exposure C shall apply for all cases where Exposures B or D do

not apply.

Where exposure D and B is given as:

Exposure D: Exposure D shall apply where the ground surface roughness, as

defined by Surface Roughness D, prevails in the upwind direction for a distance

greater than 5,000 ft (1,524 m) or 20 times the building height, whichever is greater.

Exposure D shall extend into downwind areas of Surface Roughness B or C for a

distance of 600 ft (200 m) or 20 times the height of the building, whichever is

greater.

Exposure B: Exposure B shall apply where the ground surface roughness con-

dition, as defined by Surface Roughness B, prevails in the upwind direction for a

distance of at least 2,600 ft (792 m) or 20 times the height of the building, whichever

is greater.

Where Surface Roughness B, C and D is defined as [10]:

Surface Roughness B: Urban and suburban areas, wooded ares, or other ter-

rain with numerous closely spaced obstructions having the size of a single-family

dwellings or larger.

Surface Roughness C: Open terrain with scattered obstructions having heights

generally less than 30 ft (9.1 m). This category includes flat open country, grass-

land, and all water surfaces in hurricane prone regions.

Surface Roughness D: Flat, unobstructed areas and water surfaces outside hur-

ricane prone regions. This category includes smooth mud flats, salt flats, and un-

broken ice.

The reason to use exposure category C is that the lowest modes of the bridge

is manly constrained between pier 5 and 8 (see figure 4.1), and the surface under
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this section of the bridge varies from flat sea approximately 60 m below the bridge

to forested rocky slopes rising up towards the bridge to a height of 16 m below

the bridge. But to check if the assumption that category C is the best suited for

this case simulations with different exposure categories are to be preformed and

compared.

4.1.5 Horizontal and vertical coordinates of simulated points
The NatHaz simulator [2] require x and z coordinates of up to 100 points when

using the Schur decomposition by AR model and polynomial approximation. To get

the best use out of these points the first eigenmodes of the bridge was studied, since

the loading due to wind is most likely to excite the bridge at the first few natural

frequencies. Almost all the movement of the first few modes are concentrated

between pier 5 and pier 8 (see figure 4.1) so all the nodes are located between these

two piers.

The wind velocity varies a lot with the height above ground, see eq. 2.4 and

eq. 2.7, but not so much due to the horizontal distance between points, so since

the arch varies more with height than the bridge deck it was chosen to place more

points on the arch. So the simulations are run with 59 points one the arch and

41 on the bridge deck. The points on the arch then have an average separation

between to adjacent points of 4.8 m along the arc length, while the points on the

superstructure have an average horizontal separation of 8.25 m.

The NOWS seems to assume that the points are to be located above a flat

surface so the z-coordinate seems to be used both to define a points height over

ground and to define the distance between points. This could pose as a problem

when used on the Svinesund bridge since the surface under the bridge is far from

flat. It varies from flat sea approximately 60 m below the bridge to forested rocky

slopes rising up towards the bridge to a height of 16 meters below one of the box

girders (see figure 4.1) . To account for this four different approaches to specify

the z-coordinates of the selected points are to be compared to see what gives the

most accurate result. The four approaches are as follows:

z1 Calculating an approximate real height under each point by approxi-

mating the surface to rise linearly between the sea and the arch abut-

ments, and between each arch abutment and pier 5 and 8. The only

exception to this is that the arch abutment on the Norwegian side (point

7A in figure 4.1) is blasted 7.437 m into the ground, so the linear rise

here is from a point 7.437 m above the arc abutment and up to the
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abutment of pier 8. This approach would give more emphasis on get-

ting the height correct and assume that this is more important than

the correlation effects between the points, thus probably making this

the most accurate simulation with respect to the mean wind velocity.

z2 Assuming the entire span between pier 5 and 8 lies over water. This

would give correct correlation effects between points, but would give a

bad representation of the height, particularly near pier 5 and 8, thus

especially affecting the mean wind calculations.

z3 A more conservative estimate than assuming the entire bridge lies over

water would be to assume that the terrain under the bridge is uniformly

distributed equal to the mean height of the terrain and the water sur-

face, which is calculated to be 12.87 m.

z4 The last approach is to set all the points over water to their correct

value and to assume that the terrain has an equal height above the

sea set to the mean value of the terrain height (24.10 m), and that this

height is constant from the waterline and to pier 5 and 8. So the terrain

is set to be constant of an height of 24.10 m above the waterline. This

would be a sort of combinations between all of the approaches above,

where the points to some degree have the correct height and to some

degree have the correct separation between each other.

In Appendix A tables giving information about the points selected is given. Her

one could find information such as the cross section where the node is located,

the desired x-value found from calculation, the coordinates in the FE-model, the

node number in the FE-model for both windward and leeward box girder, the

length between to adjacent points, and the x-value and the four z-values used in

the simulations.

4.2 Applying the simulated velocities on to the

FE-Model
To apply the simulated wind velocities on to the FE-model, they first have to

be transformed into force components. Since the wind velocities evaluated in this

thesis seem to be somewhat strong wind velocities, but not extreme, the buffeting

theory will be used to calculate the wind load. The buffeting load on structures

includes the part of the total load that may be ascribed to the velocity fluctuations
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in the oncoming flow as well as any motion induced contributions. The basic

assumption behind the buffeting theory is that the load may be calculated from

the instantaneous velocity pressure and the appropriate load coefficients that have

been obtained from static test, and that linearization of any fluctuating parts will

render results with sufficient accuracy. So the load may be calculated from an

interpretation of the instantaneous relative velocity vector and the corresponding

flow incidence dependent drag, lift and moment coefficients that are usually applied

to calculate mean static load effects.

Since NOWS only gives the horizontal wind velocity perpendicular to the bridge,

only horizontal accelerations will be investigated. So from this point on the only

force considered would be the drag force.

The buffeting drag force are referred to the share center of a cross section and

could be split into a mean and a fluctuating part, i.e.

q̄ =
1
2

ρU2 (z) CD A (4.6a)

q =
1
2

ρu (x, y, z, t) U (z) CD A (4.6b)

where ρ is the air density, set to ρ = 1.225 kg/m3, which is the default value for

air at sea level at 15 ◦C, CD is the drag coefficient, A is the tributary area, U (z)

is the mean wind velocity and u (x, y, z, t) is the fluctuating wind speed.

The fluctuating wind speed and the mean wind velocity are obtained from the

simulation, so the only parameters left to find is the drag coefficient, CD, and the

tributary area, A.

4.2.1 Drag coefficients

4.2.1.1 Arch

In Simiu and Miyata [13] drag coefficients for several rectangular cross section

are given. The arch sections width vs. height ratio varies from B/D = 1.76 at

the abutments to B/D = 1.48 at the crown. For a rectangular cross section with

B/D ≤ 2.0 it is, in Simiu and Miyata [13], suggested to use a drag coefficient of

CD = 0.8 if one assumes that the onflow angel α is very small or equal to 0.

4.2.1.2 Superstructure

When it comes to the drag coefficient of the superstructure several wind tunnel

tests were preformed before one arrive at the chosen design. The final report on
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Table 4.3: Height for each arch section

Arch section 1 2 3 4 5
Height, D [m] 4.2 3.4 3.167 2.934 2.7

the chosen design [6] set the drag coefficient of both the steel box girders connected

together as CD = 0.15. For each box girder separate the drag coefficients are

0.08 for the windward girder and 0.06 for the leeward girder. All of these drag

coefficients are taken for an onflow angel of α = 0.

In Appendix B two plots of the drag coefficient versus onflow angle α from

the wind tunnel test [6] is given along with figures showing the defined positive

directions for Lift, Drag and Moment for two different onflow angles.

4.2.2 Tributary area
The tributary area used in eq. 4.6a and 4.6b depends on the chosen normaliza-

tion used when calculating the drag coefficients, and may wary from test to test.

Here it consists of half of the length between the two adjacent points to any given

point, Lseperation, and a chosen normalization measurement. Lseperation for each point

in the simulation may be found in table A.2. The mean length of Lseperation should

be 4.8 m for points along the arch and 8.25 m for points on the superstructure.

4.2.2.1 Arch

The chosen normalization measurement for the arch is the height of the cross

section. This means that the tributary area for the arch is the height multiplied

with the separation of the adjacent points in the FE-model, A = D × Lseperation.

The height, D, of the arch varies from section to section as given in table 4.3.

A overview of which section each point lies within is given in table A.1. It is

note taken into consideration that a point lying near the edge of a section could

have different heights inside its length interval since this would not make such a

large difference in the final results but make the calculation a bit more complex.

So the time vs. gain factor was deemed to be to small for this to be implemented.

4.2.2.2 Superstructure

The chosen normalization measurement for the drag coefficient of the super-

structure in the wind tunnel tests were the width of the entire cross section (B =

27.60 m in full scale).

The tributary area of the superstructure then becomes the width of the entire
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cross section multiplied with the separation of the adjacent points in the FE-model,

A = B× Lseperation.

4.2.3 Strategies for applying the load
The load were applied to the FEM by the use of the CLOAD and AMPLITUDE

keywords in Abaqus, with the help of input files generated in Matlab.

When applying the load on to the superstructure different strategies were used

to see which strategy would give the most correct behavior. The different strategies

are outlined below. For the four first strategies the loading on the arch were

calculated with drag coefficient of CD = 0.8. The results from the various strategies

will be discussed in chapter 5.

1 point: Using the drag coefficient for the entire cross section, CD = 0.15, and

applying the full load only to the windward box girder.

Full in 2 points: Using the drag coefficient for the entire cross section, CD = 0.15,

and applying the full load to each box girder.

Half in 2 points: Using the drag coefficient for the entire cross section, CD = 0.15,

and applying half of the load to each box girder.

Full in 2 points separate CD: Using the drag coefficient for each box girder sepa-

rate, CD = 0.08 for the windward box girder and CD = 0.06 for the

leeward box girder.

Full in 2 points CD = x, y, z: Some tests to see if changing the drag coefficient of

both the superstructure and the arch give a more correct results. Here

x indicates the windward box girders CD, y the leeward box girder and

z the drag coefficient of the arch. If only two values are present the

windward and leeward drag coefficient are the same.
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Results

In this chapter the results of the different simulations will be presented and dis-

cussed. To compare the results from the simulation with the ones from the measure-

ments several different factors will be examined, including the mean and maximum

wind velocity at the location of the anemometer, the standard deviation of the

wind velocities, and the standard deviation of accelerations at given locations on

the bridge. A spectral examination of the accelerations will also be preformed an

compared. But first a brief explanation regarding the measurement of Svinesund

bridge is presented.

5.1 Measurement of the Svinesund bridge
Since the Svinesund Bridge is such an unique structure being, at least at the

moment it was built, the world’s longest arch bridge with a single central arch

an advanced measurement system was installed during the construction phase to

monitor and check the that the bridge functions as intended during the this phase

and the first years of operation. This system consists of many different sensors col-

lecting information about wind speeds, accelerations, strains and temperatures to

mention some. The sensors of interest in this project are 4 of the 10 accelerometers

measuring accelerations in the horizontal direction perpendicular to the bridge, and

a anemometer measuring the wind. For placement of the different measurements

see table 5.1 and figure 5.1. A larger version of figure 5.1 is also reproduced as fig.

Placement of sensors in Appendix C.

The accelerometer and the anemometer all have a sampling frequency of 50 Hz,

and every 10 minute the maximum and minimum values as well as the standard
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Table 5.1: Placement of sensors

Name of sensor Type of sensor Location of sensor

ACCQ-YW Linear Servo
Accelerometer

1/4 point bridge, West side,
Y-dir, (y = transverse)

ACCM-YW ” 1/2 point bridge, West side,
Y-dir

ACCS14-Y ” S14 arch, Y-dir
ACCN26-Y ” N26, Top arch, Y-dir

Winddir 3-Axis Ultrasonic
Anemometer

Beside pier 5 (Bjälvarpet), wind
direction

WindH ” Beside pier 5 (Bjälvarpet),
horizontal wind speed

Figure 5.1: Placement of sensors

deviation are calculated and stored, along with the time the at which the values were

registered. After each 10-minute interval the storage buffer of the measurement

system is full and all the raw data is overwritten. But if the wind speed or the

bridge vibration (acceleration) exceeds a predetermined limit value, the raw data

for the entire 10-minute interval are saved. The measurements used in this thesis

is collected from 90 such 10-minutes intervals taken as the storm Per passed the

Svinesund Bridge January 14, 2007. Out of these 90 series some are more interesting

than the others, and in this chapter a closer look would be given to the 58th 10-

minute interval, which is the series that has the largest 10-minute-mean velocity,

U10 = 23.03 m/s. The 57th and 59th series are also examined too see if more raw

data makes any difference on the results.
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Figure 5.2: Plot of wind velocities for measurement interval 58 and simulation
with exposure category C and the z1 approach. Notice the difference in the x-scale
for the last plot.

5.2 Comparison of wind velocities
A plot of the wind velocity from interval 58, which is the series that has the

largest 10-minute-mean velocity, U10 = 23.03 m/s, and a simulated wind velocity

at simulation point number 60 (located at the same location as the anemometer)

with exposure category C and the z1 approach (explained in section 4.1.5) is given

in figure 5.2. In this figure one could see that the fluctuation in the simulated wind

velocity is much lower than the fluctuation in the measured wind.

Figure 5.3 and 5.4 shows the wind velocity from different simulations. In fig.

5.3 the different simulation approaches zn (n = 1, 2, 3, 4) are compared against each

other, while fig. 5.4 shows how changing the exposure category affects the wind

velocities. From these figures it seems that z1 has the lowest mean wind velocity,

as expected since the height at the anemometer is lowest using the z1 approach.

It also seems that changing the exposure category changes both the mean value

of the velocity and the turbulence in the wind field, both increasing when going

from exposure category A to category D. This first is explained by the fact that

changing exposure category changes both the roughness length z0 and the terrain
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Figure 5.3: Plot of wind velocities for the different simulation approaches z1 to z4.

factor kT, and this in turns affects the mean wind velocity as given in eq. 2.4. So

the expected effect of going from the flat an smooth terrain D with high U (z) to the

rough an coarse terrain A with low U (z) is found in the simulations. The reason

the turbulence increases going from exposure category A to D is not so obvious.

One should think that a rougher terrain creates more turbulence since the shear

friction increases with roughness. But going from a terrain with exposure category

D to a terrain with exposure category A also means that the obstructions near

ground gets larger and higher, thus lifting the threshold for where the turbulence is

strong higher into the air (higher zone near ground with high shear friction would

lower both the mean wind velocity and the turbulence in this band, thus increasing

the height were the turbulence could become sufficient large). This might explain

the reason that exposure category D has the highest standard deviation at the

anemometer (17 m above ground). There are also some random variations between

the simulations that could explain some of this difference.

The different maximum and mean values and the standard deviation of the

wind velocities at the the anemometer (Point number 60 in table Appendix A, i.e.

FEM node number 20), see fig. Placement of sensors, fig. Placement of sensors, is

given in table Wind velocities. An explanation to this table is as follows
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Figure 5.4: Plot of wind velocities from simulations using different exposure cat-
egory A to D. Important to notice that the values of the x-axis changes, but not
the scale.

Max(U) Indicates the maximum velocity

Mean(U) Indicates the mean velocity

Std(U) Indicates the standard deviation of the velocities

Mean all Calculation based on the mean values calculated from each of the 90

10-minute intervals. So in this row the max and mean value of all the 90

10-minute-mean-values, and the mean value of the standard deviation

of each of the 90 series are given.

Series 58 Calculation based on values from the 58th 10-minute interval which is

the series that has the largest 10-minute-mean velocity, U10 = 23.03 m/s.

So in this row the max value recorded in the 58th interval, the mean

value of the recorded velocities in the 58th interval, and the standard

deviation of all the recorded velocities the 58th interval is given.

Series 57 to 59 Calculation based on values from the 57th, 58th and 59th interval.

This would then give the max value recorded in any of these three inter-

vals, the mean value of the recorded velocities in these three intervals
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Table 5.2: Wind velocities

Max(U) Mean(U) Std(U)

From measurements
Mean all 23.03 11.85 2.84
Series 58 34.32 23.03 3.42

Series 57 to 59 34.32 21.31 3.51

From simulations

z1, C 24.29 23.36 0.39
z2, C 29.80 28.49 0.44
z3, C 28.59 27.36 0.45
z4, C 28.02 26.27 0.59
z1, D 29.85 28.29 0.61
z1, B 18.04 17.12 0.36
z1, A 12.31 11.74 0.21

combined, and the standard deviation of all the recorded velocities in

these three intervals.

zn, X Means that this is data from the simulation that used the n-th z-value

approach (n = 1, . . . , 4) and has exposure category X (X = A, B, C, D).

Table Wind velocities shows that the z1 simulation gives the best prediction

of the mean wind velocity, as suggested in section 4.1.5. It could also be seen

that the simulated wind velocities have a much smaller standard deviation than

the measured ones (all of the 90 10-minute intervals had a standard deviation

above 2), indicating that the simulation is a bit too conservative when it comes

to creating turbulence in the wind field. This is also clearly seen in fig. 5.2. The

table also shows that the prediction made based on fig. 5.4 that both the mean

velocity and turbulence in the wind field is increasing when going from exposure

category category A to category D. The standard deviation from the simulations

shows an apparent trend of becoming larger as one goes from exposure category A

to exposure category D, D having three times the standard deviation of A.

5.3 Comparison of acceleration
Figure 5.5 and fig. 5.6 shows the acceleration at node 511 on the superstruc-

ture and node 422 on the arch (located at the mid point of the arch and the

superstructure), respectively, demonstrating the difference between the measured

accelerations and the acceleration from simulations with exposure category C and

the z1 approach. These figures shows a trend were the simulated accelerations

seems to have lower amplitude than the measured acceleration.
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Figure 5.5: Acceleration at node 511 from measurements and simulation Full in 2
points using exposure category C and the z1 approach.

Figure 5.6: Acceleration at node 422 from measurements and simulation Full in 2
points using exposure category C and the z1 approach.
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Figure 5.7: Plot of acceleration at node 511 from simulation Full in 2 points using
exposure category C and varying simulation approach from z1 to z4.

Figure 5.7 shows how the acceleration at node 511 (mid point of bridge) changes

when varying the simulation approach from z1 to z4. Here one could see that z1

seems to have more fluctuations than the others, especially more than z3. This

could be explained by the fact that the z1 approach puts the nodes closer to ground,

where the turbulence is higher than for the nodes in the z3 approach, which are

located somewhat higher. But this could also just be due to random variation

within each simulation due tho the added noise in the simulation.

Figure 5.8 shows how the acceleration at node 511 (mid point of bridge) changes

when varying the exposure category from A to D. Here one could see that there

is not a very big difference when varying the exposure categories, but category A

and B seems to have smaller amplitude, indicating less standard deviation, than

category C and D. The reason for this is the same as the one discussed in section 5.2

on how changing the exposure category changes the wind velocity and the standard

deviation of the wind velocities.

Figure 5.9 shows how the acceleration at node 511 (mid point of bridge) changes

when varying the simulation strategy. Here one could see that there is a big dif-

ference between the Full in 2 points strategy from the others. This occurs because

the load in this strategy is approximate double that of all the other strategies used.
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Figure 5.8: Plot of acceleration at node 511 from simulation Full in 2 points using
simulation approach z1 and varying the exposure category from A to D.

One could also notice that there are almost no difference if one uses the drag co-

efficients for each box girder separate (see section 4.2.1.2), applies half the load of

the unified drag coefficient to each girder or applies the full load only on to the

windward girder. This indicates that the measurements from the wind tunnel test

seems to be good, since applying load to one or both girders with the different drag

coefficients seems to give the same result. It also indicates that the superstructure

is quite stiff, since there are almost no difference in applying the full load to one

girder, applying half the load to each girder or applying scaled loads to each girder.

The load on the bridge seems to be almost the same. If this is indeed correct be-

havior or if this is an error in the FEM does not lie within the scope of this thesis

to calculate.

The standard deviation of the acceleration at the location of the accelerometers

are compared in table 5.3. Here the standard deviation is given for the measured

acceleration, but for the simulations the difference between the standard deviation

for the simulation and the standard deviation found in the measured accelerations

of interval 58 are given, (for ex. Value1point,z1,c,152 = std(accelACCQ−YW(Node 152))−
std(accel1point,z1,c,152)). An explanation to the table is given below:
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Figure 5.9: Plot of acceleration at node 511 using simulation approach z1, exposure
category C and varying the simulation strategy between (top-down) Full in 2 points,
Half in 2 points, 1 point and Full in 2 points separate CD.

Mean: Calculation based on the mean value from each of the 90 10-minute

intervals, so the value given here is the mean value of the standard

deviation from each of the 90 series.

Max: Calculation based on the mean value from each of the 90 10-minute

intervals, so the value given here is the max value of the standard

deviation of each of the 90 series.

58: Calculation based on values from the 58th interval which is the series

that has the largest 10-minute-mean velocity, U10 = 23.03 m/s.

1 point: Calculation based on simulation using the drag coefficient for the en-

tire cross section, CD = 0.15, and applying the full load only to the

windward box girder.

Full in 2 points: Calculation based on simulation using the drag coefficient for the

entire cross section, CD = 0.15, and applying the full load to both box

girders.
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Half in 2 points: Calculation based on simulation using drag coefficient for the en-

tire cross section, CD = 0.15, and applying half of the load to each box

girder.

Full in 2 points separate CD: Calculation based on simulation using the drag coef-

ficient for each box girder separate, CD = 0.08 for the windward box

girder and CD = 0.06 for the leeward box girder.

Full in 2 points CD = x, y, z: Calculation based on test simulations made to see if

changing the drag coefficient of both the superstructure and the arch

give a more correct results. Here x indicates the windward box girders

CD, y the leeward box girder and z the drag coefficient of the arch. If

only two values are present the windward and leeward drag coefficient

are the same.

Node 152: Node number 152 which equals accelerometer ACCQ-YW, and is lo-

cated at the 1/4 point of the superstructure within the arch section.

Node 272: Node number 272 which is the node located on the east box girder at

the 1/4 point of the superstructure within the arch section, opposite to

Node 152.

Node 511: Node number 511 which equals accelerometer ACCM-YW, and is lo-

cated at the mid point of the superstructure within the arch section.

Node 661: Node number 661 which is the node located on the east box girder at

the mid point of the bridge (opposite to Node 511).

Node 872: Node number 872 which equals accelerometer ACCS14-Y, and is located

on the arch at the horizontal 1/4 point of the arch, above node 152 and

node 272.

Node 422: Node number 422 which equals accelerometer ACCN26-Y, and is lo-

cated at the mid point of the arch, above node 511 and node 661.

zn, X: Means that this is data from the simulation that used the n-th z-value

approach (n = 1, . . . , 4) and has exposure category X (X = A, B, C, D).

Table 5.3 shows in numbers what was indicated in fig. 5.7, namely that the

z1simulation gives the best results if one looks at the standard deviation of the

accelerations, just as it gave the most correct simulation when looking at the wind
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Table 5.3: Comparison of standard deviation of acceleration between the simulated
results and the values from the 58th 10 minute interval, containing the largest 10
minute mean velocity, U10 = 23.03 m/s

Node
152

Node
272

Node
511

Node
661

Node
872

Node
422

From
measurements

Mean 0.0055 - 0.0071 - 0.0077 0.0120
Max 0.0177 - 0.0231 - 0.0276 0.0406
58 0.0150 - 0.0193 - 0.0238 0.0368

1 point z1, C 0.0083 - 0.0110 - 0.0082 0.0115

Full in 2
points

z1, C 0.0032 0.0032 0.0044 0.0044 0.0031 0.0026
z2, C 0.0099 0.0099 0.0134 0.0134 0.0096 0.0147
z3, C 0.0113 0.0113 0.0150 0.0150 0.0163 0.0265
z4, C 0.0076 0.0076 0.0102 0.0102 0.0067 0.0093

Full in 2
points

z1, D 0.0025 0.0025 0.0040 0.0040 0.0052 0.0061
z1, B 0.0060 0.0060 0.0081 0.0081 0.0086 0.0117
z1, A 0.0064 0.0064 0.0085 0.0085 0.0133 0.0192

Half in 2
points

z1, C 0.0083 0.0083 0.0110 0.0110 0.0082 0.0115
z4, C 0.0107 0.0107 0.0141 0.0141 0.0112 0.0166

Full in 2
points
separate CD

z1, C 0.0086 0.0086 0.0115 0.0115 0.0086 0.0120

Full in 2
points CD =
0.15, 0.06, 0.8

z1, C 0.0063 0.0063 0.0084 0.0084 0.0062 0.0079

velocity. The table also shows that the Full in 2 points load strategy with CD = 0.18
for both box girders gives the best result, but if this is correct will be discussed

in chapter 6. The table also reveals what could be seen in fig. 5.9, that there

are almost no difference between the three load strategies Half in 2 points, 1 point

and Full in 2 points separate CD. When it comes to exposure categories table 5.3

reveals that the indication in fig. 5.8 indicating less standard deviation in category

A and B than category C and D is correct. It is also noted that category C and

D both gives reasonable correct simulations, and there have not been conducted

enough comparisons between simulations and measurements in this thesis to say

that one is more correct than the other. But doing so do not lie within the scope

of this thesis either.

To check if the 58th interval contains unusual turbulence distribution, and if

it might be more correct to include the 57th and the 59th 10-minute interval as

well as the 58th in a comparison with the simulated results another table (table
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Table 5.4: Comparison of standard deviation of acceleration between the simulated
results and the values from the 57th , 58th and the 59th 10 minute interval.

Node 152 Node 511 Node 872 Node 422
Measurements 57 to 59 0.0136 0.0175 0.0209 0.0311

Full in 2 points
z1, C 0.0018 0.0026 0.0001 −0.0032
z4, C 0.0062 0.0084 0.0037 0.0035
z1, D 0.0011 0.0022 0.0022 0.0004

5.4) is presented. In this table the standard deviation for the simulated results

are compared to all the three 10-minute intervals mentioned, and the values given

are the difference between the simulated results and the ones measured from the

57th, 58th and the 59th 10-minute intervals put together. In table 5.4 node 272

and node 661 were omitted because they give the exact same result as node 152

and 511 respectively, as seen in table 5.3. All the explanations given for table 5.3

remains valid for table 5.3 with addition of:

57 to 59: Calculation based on values from the 57th, 58th and 59th 10-minute

interval.

In this table it may be observed that the simulated values corresponds much

better with the measured ones when more values are taken into consideration.

Especially the simulation with exposure category D are very accurate for node 152

and 422, and the simulation with exposure category C is almost spot on at node

872, giving almost no difference in the standard deviation of the accelerations. This

may indicate that the 58 interval contains a very turbulent wind field, and therefore

do not correlate as well with the simulations, since they are more moderate in their

turbulence content.

5.4 Spectral analysis
The spectral analysis conducted in this thesis is based on the Burg method of

obtaining the power spectral density function (PSD). The PSD describes how the

power of a time series is distributed with frequency. In other words it shows at

which frequencies variations of a time series are strong, by peaks appearing in the

PSD, and at which frequencies variations are weak.

A short description of the Burg method for estimating the PSD is given below.

For a more thorough review see Fiskum [5].

Burg method The Burg method of PSD estimation is conducted by fitting an AR



48 Chapter 5. Results

Figure 5.10: PSD from measured accelerations at node 511 from the 58th 10
minute interval compared to the PSD from simulated accelerations using simulation
strategy Full in 2 points, exposure category C, and the z1 approach.

linear prediction filter model of a specified order to the input signal by

minimizing the arithmetic mean of the forward and backward predic-

tion errors. The spectral density is then computed from the frequency

response of the prediction filter.

5.4.1 Spectral analysis of accelerations
In figure 5.10 one could see the the PSD from the acceleration measured at

node 511 in the 58th 10-minute interval compared with the PSD from the simulated

accelerations in the same point with simulation strategy Full in 2 points, simulation

approach z1 and exposure category C. Here the measured response have peaks at

0.45 Hz, 0.95 Hz, 1.0 Hz, 1.25 Hz, 1.35 Hz and 1.80 Hz while the simulated response

have peaks at 0.30 Hz, 0.65 Hz and 0.8 Hz. The reason the simulated response seems

to roll of when it approaches 2 Hz is that it then approaches the cut off frequency

( fs = 2 Hz), also called the Nyquist frequency. Beyond this frequency no useful

information is collected.

Figure 5.11 and 5.13 shows that neither changing the simulation approach (i.e.

how the height of the points are represented), varying the exposure category from A
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Figure 5.11: PSD from simulated accelerations with simulation Full in 2 points
using exposure category C and varying simulation approach from z1 to z4.

to D nor using different simulation strategies affect the PSD matrix of the simulated

accelerations, indicating that the frequency content of the wind is maintained no

matter which load strategy, exposure category or z-approach one chooses. At least

for the last property this seems to be an wanted effect, since varying the intensity

of the load do not change the frequency spectrum of the response. The only way

this would happen is if the load is so strong that it either changes the structural

stiffness or the structural damping of the system. But that changing the exposure

category or the height and separation between points have almost no effect on the

frequency response is strange seems strange since both these factor should change

how the PSD matrix on which the time series simulation is based should also change

the frequency content of that simulated time series.
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Figure 5.12: PSD from simulated accelerations with simulation Full in 2 points
using simulation approach z1 and varying the exposure category from A to D.

Figure 5.13: PSD from simulated accelerations using simulation approach z1, ex-
posure category C and varying the simulation strategy between (top-down) Full in
2 points, Half in 2 points, 1 point and Full in 2 points separate CD.



Chapter 6

Sources of error and possible

improvements

This chapter presents a discussion around sources of error and possible improve-

ments, with further studies within this topic or work based on this thesis in mind.

6.1 Error in the finite element model
In Fiskum [5] many of sources for errors were discussed in terms of the FEM

model. No further investigations into those suggested there was made to correct

the model in this thesis. It was rather decided to spend time getting a deeper

understanding of time domain simulation of wind velocities. But to repeat some

of the most important sources of errors found by Fiskum [5] the largest uncer-

tainty lies in the determination of the modulus of elasticity for the concrete arch.

Especially whether to assume that it has cracked or not. This greatly affect the

FEM since changing this value to a large degree affects the entire stiffness of the

bridge. Another uncertainty that may be wise to investigate further is the con-

nection between the piers and the superstructure, and what impact the fact that

the cross beams being clamped to the piers by 8 tendons have on the connection.

It is also recommended to take a closer look at the abutment of pier 4, since this

is resting on soil supported by 26 steel-core piles. The last refinement suggested

worth looking into is to refine the non-linear geometries of the arch and the pillars

by dividing them up into smaller segments. Especially refining the arch could have

some impact on the results.

An error that has arrived in this thesis is the fact that the element size of the
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mesh was increased from 1 m to 5 m. This was done to shorten the simulation

time when calculating response from the 10 minute long simulation. Reducing the

number of nodes was vital to become capable of calculating the response within a

reasonable time.

6.2 Error in the time series simulation
Since some time of this thesis was lost in the investigation of what turned out to

be a dead end, time constraints led to the use of the NatHaz On-line Wind Simulator

(NOWS) instead of writing a new simulation. This means a loss of control over

what happens during the generation of the simulations, and even though a brief

theoretical background and references to the theory used in the development of the

NOWS were given, the actual code has never been investigated in this thesis. This

makes it difficult to know whether any errors occurs in the generation of any of the

simulations. But since such an approach was necessary due to time constraints, a

thorough examination of the theory behind the simulations was preformed, and it

appears to be based on acknowledged models from the theory of wind engineering

and numerical mathematics. So when it comes to errors that may occur during

the generation of the time series, they are considered to be beyond what can be

controlled in this thesis. If a further study of this subject is considered, one should

consider whether it might be better to create a new simulation where one have

complete control over all the input parameters and the calcuations preformed.

6.3 Errors in the input to the NatHaz On-line

Wind Simulator
When using NOWS several inputs are required. Among these there might be

room for errors.

6.3.1 Error in the choice of nodes
The selection of which points the wind simulations were to be performed in

were done on the basis of a number of considerations such as how the bridge would

behave under the wind load, how to best represent the variation in geometry and

how to obtain the best correlation between simulated and measured values. And

the chosen solution may be far from providing the best possible solution. But based

on the results the chosen solution seems to be adequate.
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6.3.2 Errors in the selected approaches of z-coordinates
In this thesis four different approaches to specify the z-coordinates were tested.

The one that turned out to be most accurate was the z1-approach, where a real

height is approximated using an assumed piecewise linear rise of the terrain. But

whether this is the best solution available is far from certain, and many other

approaches requires testing before any definitive conclusions can be drawn. Again,

writing a new simulation, which can take variation of the terrain into account,

could provide more bang for the buck than further testing of this solution.

6.3.3 Uncertainty in the validity of the 3-sec gust wind for-

mula
No attempt has been made in this thesis in order to validate the 3-sec gusts

formula, except to confirm the validity of it as it is represented in a well-known

book on the subject.

6.3.4 Uncertainty in the choice of exposure category
To avoid this uncertainty all the exposure categories were examined. As ex-

pected, category A and B, were the ones who differed most from the measured

values. Category C and D were both very accurate and several thorough tests

needs to be conducted if one are to declare one more suitable than the other.

6.4 Errors when the load was applied to the ele-

ment model

6.4.1 Error near the intersection of two arch section
It is not, in this thesis, taken into consideration that the intersection of two parts

of the arch may be located within the tributary are of a node. To incorporate this

correctly the tributary area should have been split into two parts both accounting

for the height of the cross section in their part. The error in not doing this is

deemed to be small and it is just as likely to be a conservative approach as a

non-conservative approach.

6.4.2 Error in the in the different strategies for applying the

loading onto the FEM
In this thesis several strategies for load appliance are used. The one that seems

to correlate best with the result are the one called Full in 2 points. The physical
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explanation of this load is that a drag coefficient of the entire superstructure, both

girders combined, is used to calculate a force which is applied to both the windward

and the leeward girder. This should produce a force that is too high, because if one

wants to apply load onto both girders, separate drag coefficient for each girder is

given (see Appendix B). But using this approach, which in this thesis is called Full

in 2 points separate CD, do not produce the most correct result compared to the

measured values. All of the strategies used in this thesis also seems to create the

same PSD function, indicating that the frequency content of the wind is maintained

no matter which load strategy one chooses. So in this thesis it seems that the best

strategy is the Full in 2 points.

6.5 Summation
In this chapter several errors what identified and some solutions on how to

improve the the accuracy of the model are made. The two main improvements

that could present a big performance boost in an later study would be to take a

closer look at the modulus of elasticity for the concrete arch, figuring aout if any

cracking of the concrete have, and thus calculating a more accurate modulus of

elasticity. The other improwment would be to find a new simulation procedure

were one could have better control on the input and calculation, either by writing

ones one or by finding a simulation where the source code is known.
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Conclusion

In this thesis a theoretical study in the field of time–series simulation of wind

induced dynamic load was presented. Starting with some basic theory concern-

ing wind and wind-statistics before moving on to an explanation of time-domain

simulation of wind, with emphasis on the Schur decomposition by AR model and

polynomial approximation, explained more thorough in the papers by Di Paola

[11] and Di Paola & Gullo [12]. This is a method where the the goal is to simulate

a n-variate one-dimensional (n-V, 1-D) stochastic vector process V (t), contain-

ing wind field velocities from n points in space. This is done by a summation of

independent fully coherent stochastic processes as follows

V (t) =
n

∑
k=1

∞̂

−∞

qk (ω) eiωtdBk (ω)

The advantages of the Schur decomposition by AR model and polynomial ap-

proximation approach to time domain solution lies in the decomposition of the PSD

matrix S into the basis of the eigenvectors. The advantage being that very few spec-

tral modes exhibit significant power, meaning that one could truncate the spectral

modal matrix to a summation of only the modes having significant power, say m
(m� n), only evaluating the m first eigenvectors. Another advantages is that

each component of the eigenvectors is a relative regular function such that using

iterative methods for evaluating eigenvalues and eigenvectors, and using the eigen-

vectors at the previous frequency ωk−1 as a first attempt, very few iterations are

required in order to compute eigenvalues and eigenvectors at the current frequency

ωk. This is then taken advantage of when the the eigenvector is approximated
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in a generic interval in a polynomial form of fixed order (third order polynomial

used in the text and later in the simulator). One is then able to approximate the

eigenvectors by generating (4×M) independent univariate processes, instead of an

n-variate vector process. It is then shown how these (4×M) independent univariate

processes could be generated using the standard generation via AR model. In the

end a description is given of how one could compute the V (t) from these generated

(4×M) independent univariate processes.

Another advantage of this model discussed in the theoretical study is the phys-

ical meaning of eigenvectors and eigenvalues of the matrix S (ω), where the eigen-

values are the power of the two independent processes W1 (t) and W2 (t), while

the eigenvectors are the mode shapes associated with the wind field velocity. It is

explained how the bivariate wind field blows as a sum of two independent totally

coherent processes associated with blowing shapes just as a structural vibration

is decomposed as a sum of independent structural mode shapes. This was also

visualized in fig. 3.2. It is then shown how this also is true for a six-variate wind

field.

Then the jump was made onto the creation of simulations of a wind field,

and how this thesis based its simulation on the NatHaz On-line Wind Simulator

(NOWS) [2]. Here a discussion were presented regarding different input to NOWS

as well as a discussion on how the simulated wind field velocities was to be applied

onto the FEM. In the end after looking at both the velocities and accelerations it

was concluded that the Full in 2 points simulation with approach z1 made the best

representation of the measured response. Full in 2 points uses a drag coefficient of

CD = 0.15 on both the windward and the leeward box girder, while the arch has

a drag coefficient of CD = 0.8. The z1 approach indicate that the z-coordinates

should be given as if the surface is raising linearly between the sea and the arch

abutments, and between each arch abutment and pier 5 and 8. It is also concluded

that the simulated response shows much lower values of variation compared to the

measured response.

At last in chapter 6 sources of error and possible improvements are discussed.

The last one with further studies within this topic or work based on this thesis in

mind. One of the topics raised here is the uncertainty in the FEM model, which

have not changes since Fiskum [5], other than the usage of a coarser mesh (element

size increased form 1 m to 5 m). So the errors discussed in Fiskum [5] also applies

here, and in Fiskum [5] the stiffness of the arch was especially noted for having
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a large impact on the total stiffness of the bridge, but not thoroughly calculated

neither in this thesis nor in Fiskum [5]. Another issue that was discussed was the

problem in working with a black box, as done with the NOWS. Since none of the

source code is known this creates issues such that one can not tweak any other

factors than the one given through the online user interface, and one do not know

exactly how the calculations are preformed.

So two improvements that could present a big performance boost in an later

study in the same field would be a closer look at the modulus of elasticity for the

concrete arch and to try and create a new simulation procedure were one could

control both input and calculations at a larger degree, either by writing ones one

or by finding an open sourced approach somewhere.
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istics of surface-layer turbulence. Q.J.R. Meteorol. Soc., 98:563–589, 1972.

[8] Y. Li and A. Kareem. Simulation of multivariate random processes: Hybrid

dft and digital filtering approach. J. Eng. Mech. ASCE, 119:1078 – 1098, 1993.

[9] Y. Li and A. Kareem. Stochastic decomposition and application to probabilis-

tic dynamics. J. Eng. Mech. ASCE, 121:162 – 174, 1993.

[10] American Society of Civil Engineers Staff. Minimum Design Loads for Build-

ings And Other Structures: Sei/asce 7-05. Asce Standard No. 7-05. Amer

Society of Civil Engineers, 2005.

http://windsim.ce.nd.edu/int_winsim.html
http://windsim.ce.nd.edu/doc/Theo_backg1.pdf


60 References

[11] M. Di Paola. Digital simulation of wind field velocity. Journal of Wind Engi-

neering and Industrial Aerodynamics, 74-76:91–109, 1998.

[12] M. Di Paola and I. V. Gullo. Digital generation of multivariate wind field

processes. Probabilistic Engineering Mechanics, 16:1–10, 2001.

[13] E. Simiu and T. Miyata. Design of Buildings And Bridges for Wind: A Prac-

tical Guide for Asce-7 Standard Users And Designers of Special Structures.

John Wiley, 2006.

[14] E. Simiu and R.H. Scanlan. Wind Effects on Structures: Fundamentals and

Applications to Design. A Wiley-Interscience publication. John Wiley, 1996.

[15] E. Strømmen. Theory of Bridge Aerodynamics. Springer, 2010.

[16] Filippo Ubertini and Fabio Giuliano. Computer simulation of stochastic wind

velocity fields for structural response analysis: Comparisons and applications,

2010.
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Appendix A

In this appendix the points in which the wind velocity simulations were generated

are described in two tables giving the coordinates and node number in the FE-

Model (table A.1), and the separation between adjacent points and coordinates

used as input in NOWS (table A.2).

In table A.1 the desired x-value given in column 3 is the calculated x-values

based on the mean separation between to adjacent points calculated from the end

points. The ”position of node” given in the second column indicates which cross

section each nodes belongs to, where super refers to the superstructure. For the

points along the superstructure there are two FEM node numbers, the first one

referring to the windward girder and the latter to the leeward girder. The z-

coordinate from Abaqus is not given here but it is z = 0 for the points along the

arch, z = +6.593 for the points on the windward girder and z = −6.593 for the

points on the leeward girder.

In table A.2 the separation of points is calculated as the sum of half the distance

to each of the two adjacent points. The x and z coordinates are the input coordi-

nates to the NatHaz On-line Wind Simulator (NOWS) [2]. The NOWS seems to

assume that the points are located above a flat surface so the z-coordinate seems

to be used both to define a points height over ground and to define the distance

between points. The different cases for the different z values are given as follows:

z1 Calculating an approximate real height under each point by approxi-

mating the surface to rise linearly between the sea and the arch abut-

ments, and between each arch abutment and pier 5 and 8. The only

exception to this is that the arch abutment on the Norwegian side (point
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7A in figure 4.1) is blasted 7.437 m into the ground, so the linear rise

here is from a point 7.437 m above the arc abutment and up to the

abutment of pier 8. This approach gives more emphasis on getting

the height correct and assume that this is more important than the

correlation effects between the points.

z2 Assuming the entire span between pier 5 and 8 lies over water. This

would give correct correlation effects between points, but would give a

bad representation of the height, particularly near pier 5 and 8, thus

especially affecting the mean wind calculations.

z3 A more conservative estimate than assuming the entire bridge lies over

water would be to assume that the terrain under the bridge is uniformly

distributed equal to the mean height of the terrain and the water sur-

face, which is calculated to be 12.87 m.

z4 The last approach is to set all the points over water to their correct

value and to assume that the terrain has an equal height above the

sea set to the mean value of the terrain height (24.10 m), and that this

height is constant from the waterline and to pier 5 and 8. So the terrain

is set to be constant of an height of 24.10 m above the waterline. This

would be a sort of combinations between all of the approaches above,

where the points to some degree have the correct height and to some

degree have the correct separation between each other.

Table A.1: FEM coordinates and node numbers

Point

no.

Position

of node

Desired

x-value

Abaqus coordinates FEM

node no.x y

1 Arch 1 −123.050 −122.046 −29.557 882

2 Arch 1 123.050 122.045 −29.557 836

3 Arch 1 −119.972 −118.727 −25.411 883

4 Arch 1 119.972 118.727 −25.411 835

5 Arch 1 −116.767 −115.268 −21.382 884

6 Arch 1 116.767 115.267 −21.382 834

7 Arch 1 −113.440 −111.672 −17.475 885

8 Arch 1 113.440 111.672 −17.475 833

9 Arch 1 −109.994 −109.824 −15.568 442
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Point

no.

Position

of node

Desired

x-value

Abaqus coordinates FEM

node no.x y

10 Arch 1 109.994 109.824 −15.568 404

11 Arch 1 −106.432 −106.032 −11.851 443

12 Arch 1 106.432 106.031 −11.852 403

13 Arch 2 −102.758 −102.113 −8.267 82

14 Arch 2 102.758 102.113 −8.268 68

15 Arch 2 −98.976 −97.847 −4.634 438

16 Arch 2 98.976 98.079 −4.825 837

17 Arch 2 −95.090 −93.451 −1.158 81

18 Arch 2 95.090 94.675 −2.100 843

19 Arch 2 −91.105 −89.060 2.066 435

20 Arch 2 91.105 90.528 1.014 842

21 Arch 2 −87.023 −86.822 3.619 877

22 Arch 2 87.023 86.280 3.987 841

23 Arch 2 −82.850 −82.266 6.606 878

24 Arch 2 82.850 81.933 6.815 840

25 Arch 2 −78.590 −77.608 9.430 879

26 Arch 2 78.590 77.495 9.495 839

27 Arch 3 −74.247 −73.096 11.957 873

28 Arch 3 74.247 72.816 12.107 845

29 Arch 3 −69.827 −68.749 14.208 874

30 Arch 3 69.827 70.366 13.391 413

31 Arch 3 −65.332 −66.550 15.282 434

32 Arch 3 65.332 65.399 15.826 71

33 Arch 3 −60.770 −60.000 18.230 869

34 Arch 3 60.770 60.392 18.063 416

35 Arch 3 −56.143 −55.755 19.948 870

36 Arch 3 56.143 55.309 20.120 415

37 Arch 3 −51.458 −51.462 21.540 871

38 Arch 3 51.458 52.741 21.081 847

39 Arch 3 −46.718 −47.124 23.003 872

40 Arch 3 46.718 47.555 22.864 846

41 Arch 4 −41.929 −42.867 24.302 867

42 Arch 4 41.929 42.425 24.429 850
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Point

no.

Position

of node

Desired

x-value

Abaqus coordinates FEM

node no.x y

43 Arch 4 −37.096 −36.601 25.973 77

44 Arch 4 37.096 37.388 25.778 855

45 Arch 4 −32.224 −32.208 26.979 425

46 Arch 4 32.224 32.335 26.951 854

47 Arch 4 −27.319 −27.788 27.855 426

48 Arch 4 27.319 27.245 27.953 853

49 Arch 4 −22.384 −23.343 28.602 427

50 Arch 4 22.384 22.125 28.784 852

51 Arch 4 −17.426 −16.641 29.479 866

52 Arch 4 17.426 16.979 29.441 851

53 Arch 5 −12.450 −12.751 29.851 861

54 Arch 5 12.450 11.855 29.923 860

55 Arch 5 −7.461 −8.553 30.142 856

56 Arch 5 7.461 6.759 30.231 859

57 Arch 5 −2.463 −3.451 30.340 857

58 Arch 5 2.463 1.655 30.370 858

59 Arch 5 0 −0.898 30.376 422

60 Super −162.814 −162.814 −0.227 22, 20

61 Super −154.591 −155.382 −0.327 715, 531

62 Super −146.368 −145.473 −0.460 713, 533

63 Super −138.145 −138.041 −0.559 300, 163

64 Super −129.922 −130.610 −0.659 710, 536

65 Super −121.699 −120.701 −0.792 708, 538

66 Super −113.476 −113.269 −0.892 295, 168

67 Super −105.253 −105.837 −0.991 705, 541

68 Super −97.030 −93.451 −1.158 56, 19

69 Super −88.807 −88.229 −1.228 309, 154

70 Super −80.584 −80.396 −1.333 720, 526

71 Super −72.361 −72.563 −1.438 306, 157

72 Super −64.138 −64.731 −1.543 717, 529

73 Super −55.915 −57.020 −1.646 274, 150

74 Super −47.692 −46.821 −1.783 272, 152

75 Super −39.469 −39.172 −1.886 676, 523
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Point

no.

Position

of node

Desired

x-value

Abaqus coordinates FEM

node no.x y

76 Super −31.246 −31.522 −1.988 384, 146

77 Super −23.023 −23.873 −2.091 806, 516

78 Super −14.800 −13.674 −2.228 804, 518

79 Super −6.577 −6.025 −2.331 265, 142

80 Super 1.646 1.625 −2.433 661, 511

81 Super 9.869 9.274 −2.536 262, 145

82 Super 18.092 16.923 −2.638 785, 504

83 Super 26.315 27.122 −2.775 783, 506

84 Super 34.538 34.772 −2.878 362, 141

85 Super 42.761 42.421 −2.981 646, 499

86 Super 50.984 50.070 −3.083 255, 135

87 Super 59.207 60.269 −3.220 253, 137

88 Super 67.430 67.981 −3.323 772, 493

89 Super 75.653 75.815 −3.429 354, 130

90 Super 83.876 83.650 −3.534 769, 496

91 Super 92.099 91.485 −3.639 351, 133

92 Super 100.322 96.708 −3.709 33, 12

93 Super 108.545 109.100 −3.875 622, 481

94 Super 116.768 116.536 −3.975 236, 119

95 Super 124.991 123.971 −4.075 619, 484

96 Super 133.214 133.885 −4.208 617, 486

97 Super 141.437 141.321 −4.307 231, 124

98 Super 149.660 148.756 −4.407 614, 489

99 Super 157.833 158.670 −4.540 612, 491

100 Super 166.106 166.106 −4.634 9, 11

Table A.2: Separation between points and input coordinates to NOWS

Point

no.

Separation

of points

Input coordinates to NOWS

x z1 z2 z3 z4

1 3.908 −122.046 2.955 30.415 17.542 6.312

2 3.908 122.045 3.251 30.415 17.542 6.312

3 5.311 −118.727 8.838 34.561 21.688 10.458

4 5.311 118.727 9.745 34.561 21.688 10.458
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Point

no.

Separation

of points

Input coordinates to NOWS

x z1 z2 z3 z4

5 5.311 −115.268 14.678 38.590 25.717 14.487

6 5.311 115.267 16.221 38.589 25.716 14.486

7 3.983 −111.672 20.467 42.497 29.624 18.394

8 3.982 111.672 22.673 42.497 29.624 18.394

9 3.982 −109.824 23.343 44.404 31.531 20.301

10 3.983 109.824 25.888 44.404 31.531 20.301

11 5.310 −106.032 39.043 48.121 35.248 24.018

12 5.310 106.031 32.288 48.120 35.247 24.017

13 5.457 −102.113 34.679 51.705 38.832 27.602

14 5.307 102.113 38.645 51.704 38.831 27.601

15 5.604 −97.847 40.545 55.338 42.465 31.235

16 4.832 98.079 44.943 55.147 42.274 31.044

17 5.526 −93.451 46.322 58.814 45.941 34.711

18 4.774 94.675 50.076 57.872 44.999 33.769

19 4.086 −89.060 51.844 62.038 49.165 37.935

20 5.186 90.528 56.125 60.986 48.113 36.883

21 4.086 −86.822 54.569 63.591 50.718 39.488

22 5.186 86.280 62.104 63.959 51.086 39.856

23 5.448 −82.266 59.940 66.578 53.705 42.475

24 5.186 81.933 66.787 66.787 53.914 66.787

25 5.310 −77.608 65.202 69.402 56.529 45.299

26 5.272 77.495 69.467 69.467 56.594 69.467

27 5.034 −73.096 70.091 71.929 59.056 47.826

28 4.062 72.816 72.079 72.079 59.206 72.079

29 3.671 −68.749 74.180 74.180 61.307 74.180

30 4.149 70.366 73.363 73.363 60.490 73.363

31 4.815 −66.550 75.254 75.254 62.381 75.254

32 5.508 65.399 75.798 75.798 62.925 75.798

33 5.882 −60.000 78.202 78.202 65.329 78.202

34 5.484 60.392 78.035 78.035 65.162 78.035

35 4.579 −55.755 79.920 79.920 67.047 79.920

36 4.113 55.309 80.092 80.092 67.219 80.092

37 4.579 −51.462 81.512 81.512 68.639 81.512
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Point

no.

Separation

of points

Input coordinates to NOWS

x z1 z2 z3 z4

38 4.112 52.741 81.053 81.053 68.180 81.053

39 4.515 −47.124 82.975 82.975 70.102 82.975

40 5.424 47.555 82.836 82.836 69.963 82.836

41 5.468 −42.867 84.274 84.274 71.401 82.836

42 5.289 42.425 84.401 84.401 71.528 84.401

43 5.496 −36.601 85.945 85.945 73.072 85.945

44 5.201 37.388 85.750 85.750 72.877 85.750

45 4.506 −32.208 86.951 86.951 74.078 86.951

46 5.188 32.335 86.923 86.923 74.050 86.923

47 4.507 −27.788 87.827 87.827 74.954 87.827

48 5.188 27.245 87.925 87.925 75.052 87.925

49 5.634 −23.343 88.574 88.574 75.701 88.574

50 5.188 22.125 88.756 88.756 75.883 88.756

51 5.334 −16.641 89.451 89.451 76.578 89.451

52 5.167 16.979 89.413 89.413 76.540 89.413

53 4.058 −12.751 89.823 89.823 76.950 89.823

54 5.126 11.855 89.895 89.895 77.022 89.895

55 4.657 −8.553 90.114 90.114 77.241 90.114

56 5.106 6.759 90.203 90.203 77.330 90.203

57 3.830 −3.451 90.312 90.312 77.439 90.312

58 2.932 1.655 90.342 90.342 77.469 90.342

59 1.655 −0.898 90.348 90.348 77.475 90.348

60 7.432 −162.814 16.745 59.745 46.872 35.642

61 8.671 −155.382 19.435 59.645 46.772 35.542

62 8.671 −145.473 23.021 59.512 46.639 35.409

63 7.432 −138.041 25.712 59.413 46.540 35.310

64 8.670 −130.610 28.401 59.313 46.440 35.210

65 8.671 −120.701 32.424 59.180 46.307 35.077

66 7.432 −113.269 36.214 59.080 46.207 34.977

67 9.909 −105.837 40.005 58.981 46.108 34.878

68 8.804 −93.451 46.322 58.814 45.941 34.711

69 6.528 −88.229 48.985 58.744 45.871 34.641

70 7.833 −80.396 52.890 58.639 45.766 34.536



68 Appendix A

Point

no.

Separation

of points

Input coordinates to NOWS

x z1 z2 z3 z4

71 7.833 −72.563 56.534 58.534 45.661 34.431

72 7.772 −64.731 54.429 58.429 45.556 58.429

73 8.955 −57.020 56.326 58.326 45.453 58.326

74 9.924 −46.821 56.189 58.189 45.316 58.189

75 7.650 −39.172 56.086 58.086 45.213 58.086

76 7.650 −31.522 55.984 57.984 45.111 57.984

77 8.924 −23.873 55.881 57.881 45.008 57.881

78 8.924 −13.674 55.744 57.744 44.871 57.744

79 7.650 −6.025 55.641 57.641 44.768 57.641

80 7.650 1.625 55.539 57.539 44.666 57.539

81 7.649 9.274 55.436 57.436 44.563 57.436

82 8.924 16.923 55.334 57.334 44.461 57.334

83 8.925 27.122 55.197 57.197 44.324 57.197

84 7.650 34.772 55.094 57.094 44.221 57.094

85 7.649 42.421 54.991 56.991 44.118 56.991

86 7.649 50.070 54.889 56.889 44.016 56.889

87 8.956 60.269 54.752 56.752 43.879 56.752

88 7.773 67.981 54.649 56.649 43.776 56.649

89 7.835 75.815 54.543 56.543 43.670 56.543

90 7.835 83.650 54.438 56.438 43.565 56.438

91 6.529 91.485 50.795 56.333 43.460 32.230

92 8.808 96.708 47.029 56.263 43.390 32.160

93 9.914 109.100 38.093 56.097 43.224 31.994

94 7.435 116.536 32.731 55.997 43.124 31.894

95 8.675 123.971 27.488 55.897 43.024 31.794

96 8.675 133.885 23.993 55.764 42.891 31.661

97 7.434 141.321 21.371 55.665 42.792 31.562

98 8.675 148.756 18.750 55.565 42.692 31.462

99 8.675 158.670 15.254 55.432 42.559 31.329

100 7.436 166.106 12.638 55.338 42.465 31.235
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Appendix B

In this appendix data for the drag coefficient from the wind tunnel test is presented.

First two figures are given to show the definition of positive directions of the drag

force (see fig. B.1 and fig. B.2). Then follows two figures showing diagrams of the

measured results of the wind tunnel test (see fig. B.3 and fig. B.4).

The formula used to determine the drag coefficoent is the following:

CD =
D

ρ/2v2B

where ρ is the density of air (1.28 kg/m3 for prototype), v is the velocity in m/s

(mean velocity in the wind tunnel) and B is the width of the cross section (27.60 m

in full scale).

Figure B.1: Definition of positive directions of Lift (L), Drag (D) and Moment
(M) for an onflow angle (inclination) of 0◦. Taken from [6].
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Figure B.2: Definition of positive directions of Lift (L), Drag (D) and Moment
(M) for an positive onflow angle (inclination >0◦).The forces in the body fixed
coordinate system are indicated with L’ and D’. Taken from [6].

Figure B.3: Drag coefficients versus onflow angle α for the final cross section
(new), the final cross section without screen (used in construction phase, erection)
and comparison with previous data. Taken from [6].
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Figure B.4: Drag coefficients versus onflow angle α for the final cross section with
screen, and each girder separately, (dotted line: result of summation). Taken from
[6].
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Appendix C

On the next pace a larger vertical alligned version of figure 5.1 is given.
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Figure C.1: Placement of sensors
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