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Assignment

”Fluid Structure Interaction Simulation on an Idealized Aortic Arch”

Aortic dissection is a condition where the first layer of the aortic wall is breeched
causing bleeding between the layers or out of the aorta entirely. Aortic dissection has a
high probability of death even if treated correctly. This study should look at blood flow
in a idealized aortic arch as a precursor to later studies on the subject. The final goal
is to establish a fluid-structure interaction model for physiological flow conditions in the
aorta.

Suggested steps in achieving this are:

• Parameterization of an idealized geometry of the aortic arch

• Imposition of suitable boundary conditions

• Structural calculations of the vessel walls with dynamic and/or static loading

• Flow simulations with relevant boundary conditions

• FSI simulations of the idealized aortic arch . . .
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Sammendrag

Aortabuen er svært utsatt for hjerte- og karsykdommer, slik som disseksjon av aorta.
Mange av risikofaktorene er grunnet fluid-strukturinteraksjonen mellom blodstrømmen
og aortaveggen. Fluid-strukturinteraksjon (FSI) simuleringer er et nyttig verktøy i
undersøkelsen av disse risikofaktorene. Målet med denne studien er å undersøke en
forenklet modell for det fysiologiske strømningsbildet og legge til grunn for videre studier
p̊a hjertesykdommer i aortabuen. En 3-dimensjonal, idealisert FSI modell av aortaen
ble laget ut i fra målinger funnet i literaturen. Denne modellen ble simulert ved hjelp
av de kommersielle kodene Abaqus og Ansys Fluent, som ble koblet sammen av den
akademiske koden Tango. Forsøk p̊a å simulere geometrien som inkluderte truncus
brachiocephalicus, den venstre arteria carotis communis og venstre arteria subclavia
lyktes ikke. Derfor ble en noe mer forenklet modell simulert. Hovedfokuset ble
lagt p̊a undersøkelsen av grensebetingelser. Massestrømsbetingelse, resistansemodell
eller varierende elastansemodell ble satt p̊a innløpet, mens utløpet ble satt til null
trykk, refleksjonsfri eller Windkessel. Massestrømsinnløp med Winkessel p̊a utløpet
ga de mest troverdige resultatene ettersom de andre innløpsbetingelsene ble uferdige
approksimasjoner. Det kan ikke konkluderes noe om Ansys Workbench sin evne til å
meshe for Tango grunnet manglende informasjon.
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Abstract

The aortic arch is at risk of several cardiovascular diseases, such as aortic dissection. Many
of these risk factors are due to the fluid-structure interaction that occurs in the aorta.
Fluid-structure interation (FSI) simulations are a very useful tool in identifying these
risks. The goal of this study is to obtain a simplified picture of healthy physiological flow
and lay the foundation for further studies on cardiovascular diseases in the aortic arch.
A 3-dimensional idealized FSI model of the aorta was constructed from measurements
found in the literature. This model was simulated using the commerical codes Abaqus
and Ansys Fluent, coupled with the in-house code Tango. Attempts at simulating the
model geometry including the braciocephalic, left common and left subclavian carotid
arteries were unsuccesful, so a simlified model of only the aortic arch was simulated.
Emphasis was placed on the investigation of different boundary conditions. An imposed
massflow condition, a pressure condition with resistance or a varying elastance model was
set on the inlet and combined with zero pressure, reflection free or Windkessel outlet
boundaries. The mass flow inlet with Windkessel outlet gave the most reliable results
since the other inlets were mostly incomplete approximations. No conclusion could be
drawn on the viability of Ansys Workbench as a meshing utility for studies using Tango,
due to lack of information.
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1 Introduction

The aorta is the main blood vessel in the human body. The placement of the aortic arch
can be seen in figure 1a. It transports blood from the left ventricle of the heart to the
rest of the body. The flow mechanics in blood vessels are known to cause several different
diseases, such as aortic dissection.

(a) Position of the aortic arch in the
arterial network. Gao et al. [6]

(b) Representation of the aortic arch.

Figure 1: Position and geometry of the aortic arch. 1

The aortic wall is made up of three layers: intima, media and adventitia. Unusual
flow conditions like high blood pressure or atherosclerosis, as well as genetic disorders or
trauma causing weaknesses in the aortic wall, can cause expansion of the aorta. This
expanded region is called an aortic aneurysm. The layers can also tear causing blood to
flow between them, called aortic dissection. The blood filled gap between the two layers
will expand, forming a new channel referred to as the false lumen [7]. When this false
lumen expands it could potentially block blood flow in the true aortic channel and/or
eventually rupture.

According to the Stanford classification system a Type A dissection is classified as
a dissection of the ascending aorta and Type B as occuring in the descending aorta. In

1Image source of fig. 1b : http://en.wikipedia.org
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cases of Type B aortic dissection the survival rates after treatment range from 56% to 92%
for 1 year and 48% to 82% for 5 years in different studies [17]. Hence, aortic dissection
is studied at a large scale with several different focus points, to improve detection and
treatment. This study will not consider pathological flow, but rather lay the methodical
groundwork for further studies on the topic by simulating an idealized aortic arch during
healthy conditions.

Vascular fluid mechanics represent several challenges in the form of complex
geometries, pulsatile flow due to pumping of the heart and compliant vessel walls.
Simulating only the flow field with rigid walls would miss significant flow features, such as
the pressure wave propagation. FSI simulations may provide more accurate solutions, as
compared to CFD [4] and 1-dimensional modelling, but still has limiting factors. It is very
computationally expensive, which is severely limiting widespread use. The computational
costs make simulating the entire arterial network within a reasonable time unfeasible. This
means that whatever is outside our solution domain needs to be modeled with boundary
conditions, which can be difficult to do. Numerical stability of the coupling is another
challenge, as is evident in this study. In addition there are approximations that still have
to be used. Blood is a non-Newtonian fluid with both fluid and solid components. It
is usually approximated as continuous and Newtonian as this is much easier to model.
Material properties also have to be approximated as these can be very patient specific
and not readily availible.

There have been several FSI studies on the aortic arch focusing on different aspects
of the problem on both idealized and patient-specific geometries [4, 6, 8, 11]. The current
study considers a highly idealized geometry put together from measurements found in the
literature, see sec. 4.2. The purpose of this study is to become acquainted with the solvers
used and how they interact with the model. Previously the coupling procedure has been
used to simulate geometries meshed with Gambit [9], but it is uncertain how long this
will be a valid option and may need to be replaced. This study uses Ansys Workbench
to build the geometry and mesh it to see if this is a viable alternative. Special emphasis
is also placed on the development of suitable boundary conditions . This knowledge can
then be applied to more complex situations later, see sec. 7. This is a qualitative and not
a quantitative study, so the accuracy of the solutions is not considered as much as the
trend of the solution.

This report is organized as follows. In section 2.1 the governing equations of the solvers
are briefly described and the coupling procedure is summarized. The boundary condition
models are derived in sec. 2.2. A walkthrough of the steps taken to solve the problem
is given in section 3. Section 4 gives descriptions of the different cases considered and
the motivation behind them. The results for the different cases are provided in sec. 5.
Section 7 gives recommendations for improvements and adjustments that should be made
to the methodology in future studies.
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2 Theory

2.1 Model description

Fluid Model

The fluid part of the FSI is described by the Navier-Stokes equations. To simplify our
calculations we assume incompressible flow (ρ = constant) and that blood is a Newtonian
(µ = constant) and continuous fluid. In Eulerian form and index notation this is given as
in (1).

ρf

(
∂vi
∂t

+ ∂vivj
∂xj

)
= −∂P

∂xi
+ µ

∂

∂xj

∂vi
∂xj

+ Fbj (1a)

∂vi
∂xi

= 0 (1b)

Here v is the fluid velocity, ρf is the fluid density, µ is the fluid’s dynamic viscosity,
P the pressure and Fb are the body forces acting on the fluid. Gravity is not included in
any of the calculations. In index notation i and j are integers from 1 to 3 representing the
3 dimensions.

Since we will employ the use of moving boundaries in the simulation we modify the
momentum equation to account for this. According to the Fluent Manual [1] this means
introducing the effects of the mesh velocity, vg, into (1a).

ρf
∂vi
∂t

+ ρf (vj − vg,j)
∂vi
∂xj

= −∂P
∂xi

+ µ
∂

∂xj

∂vi
∂xj

+ Fbj (2)

These equations were solved by the black box implicit FVM solver Ansys Fluent. For
details see, the Fluent Manual [1]. The walls are set as no-slip and Fluent handles the
deformation and motion of the dynamic mesh.

The flow has Reynolds numbers high enough to be in the turbulent flow regime, with
values ∼6000. It was however still modeled as laminar in the study, so no turbulence
models were applied. This was done for simplicity since fully accurate quantitave results
were not the goal of the study and turbulence models would only add to computational
time required, without adding to the understanding of how the solution behaves. This
could be included in later studies if deemed necessary.

Solid Model

The dynamic equilibrium equations for a solid are given below in index notation.

∂σij
∂xj

+ Fbj = ρs
∂2ui
∂t2

(3)
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Here σij are the stresses, Fbj the body forces, ρs the wall density and ui the
deformation.

To complete the system we need a constitutive relation between the stress and strain.
For a linear, isotropic material this is usually Hooke’s law, which in Liu and Quek [10] is
given as

σ = cε (4a)



σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c12 0 0 0
c11 c11 0 0 0

c11 0 0 0
(c11−c12)

2 0 0
sym. (c11−c12)

2 0
(c11−c12)

2





ε11

ε22

ε33

ε23

ε13

ε12


(4b)

c11 = E(1− ν)
(1− 2ν)(1 + ν) , c12 = Eν

(1− 2ν)(1 + ν) (4c)

c is here a symmetrical matrix. E is Young’s modulus and ν is Poisson’s ratio. These
two material constants need to be found or approximated. ε is the strain vector and it
can be written as a function of the deformation ui, as is done in (5).

ε11 = ∂u1

∂x1
, ε22 = ∂u2

∂x2
, ε33 = ∂u3

∂x3
, (5)

ε23 = ∂u2

∂x3
+ ∂u3

∂x2
, ε13 = ∂u1

∂x3
+ ∂u3

∂x1
, ε12 = ∂u1

∂x2
+ ∂u2

∂x1

The solid model calculations are done with the black box FEM solver Abaqus.

Fluid Structure Interaction

The coupling between the structure and fluid components of the calculation is handled by
the in-house code Tango. A detailed description of the coupling algorithms can be found
in Degroote [5], but a summary of the relevant procedure is given in this section.
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xn, tn

xk+1 = xk +
̂(
R′k

)−1
(−rk)

F(xk, Pi)Oj(Ωj, Qi)
Pi

Qi

S(tk+1)

||rk||2 ≤ ε

xn+1, tn+1

k = k + 1

tk+1

xk+1

yes

no

Figure 2: Schematic representation of fluid structure interaction coupling including the
lumped boundary models. n is the timestep counter and k the subiteration counter. F
and S represent the fluid and solid solvers respectively and Oj are the lumped boundary
models. Leinan et al. [9].

The coupling is handled in a partitioned manner where the commercial code Ansys
Fluent calculates the fluid domain and Abaqus the solid domain of the system. The
problem is divided into separate parts using a Dirichlet Neumann (DN) decomposition.
This means that the flow is solved with regard to a velocity of the fluid-structure interface
and the solid is solved for a stress distribution on this interface. This way the interface is
the only part of the problem that needs to be considered by both sides.

The general procedure for the solution is given in fig. 2. The notation used is

t = F(x, P ), x = S(t) (6)

This illustrates how the fluid solver, F , takes in the displacement of the fluid structure
interface, x, and returns the traction stress distribution, t. The solid solver, S, then uses
the traction stress distribution and calculates for the displacement of the interface. The
lumped models, Oj (see section 2.2), are inserted into the fluid solver using the mass flow
and returning a pressure to be imposed on the fluid boundary, Ω. Using this we can state
that the FSI problem becomes (7).
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R(x) = S ◦ F(x, P )− x = 0 (7)

R is the residual operator in the root finding problem. Since Tango utilizes two black
box solvers it is difficult to get their exact Jacobian matrices. These thus have to be
approximated. The system is solved by quasi-Newton iterations so that the displacement
of the interface is calculated by

xk+1 = xk +
̂(
R′k

)−1
(−rk) (8)

Here
̂(
R′k

)−1
is the approximation of the inverse Jacobian of the residual operator. k

is the subiteration counter and rk is the residual. When the L2-norm of the residual is
lower than the convergence criteria, ||rk||2 ≤ ε, the new timestep is updated. Verification,
validity and stability analysis of these methods can be found in Degroote [5].

2.2 Boundary Conditions

Reflection Free Boundary

The reflection coefficient of a boundary is given in (9).

Γ = R− Zc
R + Zc

(9)

R is a resistance on the boundary and Zc is the characteristic impedance of the system,
defined as (10).

Zc = ρc(P )
A

(10)

To obtain a reflection free boundary condition we set the reflection coefficient to zero,
Γ = 0. This is true when R = Zc. Using this we can derive a discrete equation for the
outlet condition, (11).

P n+1 = P n + Zc
(
Qn+1 −Qn

)
(11)

Windkessel Model

The purpose of a Windkessel model is to approximate the behavior of the peripheral
system. The peripheral system means anything outside our computational domain, and
the effects are modeled and imposed on the boundary to simulate physiological behavior.
Below is a derivation of the 2 element Windkessel model.

The idea is that the mass flow into a blood vessel can be approximated by the volume
expansion of that vessel due to interior flow, and the mass flow to that vessel’s peripheral
system. This is mathematically given in (12) as a volume flux, since the density can be
removed everywhere.
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Q = dV

dt
+Qp = C

dP

dt
+ P − P0

R
(12)

Here C is the compliance, defined as dV
dP

. The compliance is a measure of how much
the vessel wall will deform with changes in pressure. Rearranging this we get the two
element Windkessel model

dP

dt
+ P − P0

τ
= Q

C
, τ = RC (13)

A three element Windkessel model also includes an impedance, Zc. Doing so helps
absorb the high frequency pulse waves. Including this we get the differential equation for
a three element WK.

dP

dt
+ (P − P0)

τ
= Zc

dQ

dt
+Q

dZc
dt

+Q
( 1
C

+ Zc
τ

)
(14)

This differential equation must be solved at the boundaries where the lumped models
are prescibed.

Using implicit backward Euler to discretize (14) we end up with an equation for P at
our current timestep. No superscript denotes previous timestep, while n+1 is the current
timestep.

P n+1 = 1(
1 + ∆t

τ

) [P + P0

τ
∆t+ Zc

(
Qn+1 −Q

)
+Qn+1∆t

( 1
C

+ Zc
τ

)]
(15)

Here dZc

dt
is neglected due to the linear wall elasticity and small changes in Zc. Zc is

calculated by (10).
Following Beulen et al. [3] we can calculate the coefficients for a physiological pressure

drop.

Zc +R = P̄

Q̄
(16a)

C = τ

R
(16b)

P̄ and Q̄ denote the mean pressure and mean volume flow respectively, while τ is a
time scale. For physiological pressure drops Beulen et al. suggests τ =1.5 s.

Resistance Model

The resistance model is an attempt at obtaining aortic flow conditions by modeling the
ventricular pressure and including a source resistance, Rs, to prevent backflow. The idea
is that the resistance should force reflection of the backward traveling waves going into
the ventricle. This is modeled as

P = PLV +RsQ (17)
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P is the pressure prescribed at the inlet, PLV is the ventriclur pressure and Q is the
volume flux over the boundary. To control the reflection the resistance has to be set
accordingly. The reflection coefficient is defined as in (11). The resistance can then be
calculated as a function of the characteristic impedance Zc. Ideally the resistance should
be variable in time to simulate complete resistance to flow as the aortic valve is closed,
and very small resistance when it is open. This would mean that Rs →∞ in order to let
Γ→ 1.

Time - Varying Elastance Heart Model

The varying elastance model was first introduced by Suga and Sagawa [16] in 1972 and
is well established. The model used here is an expanded version, including a source
resistance. The model can be found in Mynard et al. [12], but is briefly discussed below.

P (t) = E(t) [V (t)− V0] +RsQ (18)

The model is used to prescribe an inlet pressure and is given by the relation in (18).
P is the inlet pressure, E the time-varying elastance, V the volume of the heart, V0 the
unstressed volume, Q the volume flow rate and Rs is the source resistance. The source
resistance can be expressed as KsE(V − V0) giving the final equation.

P (t) = E(t) [V (t)− V0] [1 +KsQ] (19)

For our cases Q < 0 as this is inflow into the domain, and the normal vector is pointed
out of the domain.

Figure 3: Two-Hill function used to describe the elastance time history in terms of its
variables. From [12].

The time-varying elastance is described by the Two-Hill function. This is a function
consisting of two combined ”hills”, one modelling the contraction and the other the
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relaxation of the heart. It can be viewed in figure 3, which also depicts how the constants
affect the model. The function is given by

E = k

(
g1

1 + g1

)(
1

1 + g2

)
+ Emin (20a)

g1 =
(
t

τ1

)m1

, g2 =
(
t

τ2

)m2

(20b)

k = Emax − Emin

max
[(

g1
1+g1

) (
1

1+g2

)] (20c)

The model uses several coeffecients. These are taken from Mynard et al. [12] and are
given in table 1.

Table 1: Parameters used in the varying elastance heart model, taken from Mynard et
al. [12]. T = 0,89 s

Parameter Symbol Units Left Ventricle
Source resistance coefficient Ks 10−9 s/mL 4
Minimal elastance Emin mmHg/mL 0,08
Maximal elastance Emax mmHg/mL 3,00
Residual volume V0 mL 10
Initial volume V 0 mL 135
Contraction rate constant m1 - 1,32
Relaxation rate constant m2 - 27,4
Systolic time constant τ1 s 0,269T
Diastolic time constant τ2 s 0,452T

Combined with the fact that Q = dV
dt

we can discretize and solve these equations.
Using the same discretization, but with Q < 0, we get

V n+1 = V n + 1
2
(
Qn+1 +Qn

)
∆t (21a)

P n+1 = En+1
(
V n+1 − V0

) [
1 +KsQ

n+1
]

(21b)

Using Q from the inlet of the domain is however a flaw. The volume flow into the
left ventricle should be used, which is a combination of flow over the mitral valve and the
backflow across the aortic valve. A rough approximation is possibly to use the volume
flux over the boundary and return the heart volume to its initial state after each cycle.
The validity of this is examined in section 5.3.

Valve Model

Mynard et al. [12] propose a valve model to approximate the valve motion due to pressure
differences in the left ventricle and the aorta. A more complete model is given in their
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paper, which accounts for damaged valves etc., but since this study deals with healthy
conditions this was not considered.

The pressure difference is approximated by the Bernoulli equation. This relation
includes the Bernoulli resistance (B) which models losses due to convection and the
inertance (L) modelling blood acceleration, giving (22).

∆P = BQ|Q|+ L
dQ

dt
(22a)

B = ρ

2(Aannζ)2 , L = ρleff
Aannζ

(22b)

Aann is the area of the annulus the heart model is placed at and leff is an effective
length. The effective length was not given, but is assumed to be the length over the heart
valve. They were set to 314e-6 m2 and 0.01 m respectively. The differential equation for
the opening valve motion is

dζ

dt
= (1− ζ)Kvo(∆P −∆Popen) (23)

where ζ is the valve state, ζ = 1 being open and ζ = 0 closed. Kvo is the opening rate
coefficient and ∆Popen the pressure difference required to open the valve. For closing the
equation becomes

dζ

dt
= ζKvc(∆P −∆Pclose) (24)

A test case was constructed to see if it gave similar results. The pressure difference ∆P
was set as a sinusoidal wave with increasing amplitude, i.e. ∆P = 2tsin(π1.6t) mmHg.
The valve model then calculated its state from this. The results can be viewed in figure 4.
The results correspond to those found by Mynard et al. [12].
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Figure 4: Valve state according to the differential equations. Above figure [red] is time
history of a set ∆P i Pa. Below [blue] is the time history of the valve state ζ.

3 Method

The initial problem went through the following steps:

• Parameterize and create geometry

• Mesh geometry

• Solid model solved with Abaqus as standalone system

• Fluid model solved with Fluent as standalone system

• Solid model solved with Abaqus as CSM problem through Tango

• Fluid model solved with Fluent as CFD problem though Tango

• Solved FSI problem with Tango

When the FSI of the full idealized arch failed to run (sec. 5.2), a test case was
constructed with a tube geometry and run through the same steps, see sec. 4.1. When this
calculation was successful, the same parameters and conditions were applied to the full
model. This did not resolve the issue. The full model’s mesh was then rebuilt with better
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quality and hexahedral, instead of tetrahedral, elements for the solid and tet elements
for the fluid. The boundary conditions for these cases were sin2 velocity inlets and 0
pressure outlets. Since simulations were still unsuccessful, the full geometry was altered
by removing the three carotid arteries from the model, see sec. 4.3. Boundary conditions
were then investigated for our simplified geometry.
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4 Case Description

4.1 Simple Tube

A simple test case was set up and run using Tango. A straight tube was modeled after the
descending aorta to achieve a measure of relevance. Parameters for the simulation were
found in the literature [9, 13] and are presented in table 2. Many different parameters
have been used in the literature since accurate data can be difficult to obtain and possibly
patient specific. These are therefore to be viewed as approximations. The simulations
were run with ∆t = 0.005 s.

Table 2: Model parameters for all simulations

Parameter Symbol Value
Dynamic viscosity µ 3 ∗ 10−3 Pa s
Density of blood ρf 1050 kg/m3

Wall density ρs 1200 kg/m3

Poisson’s ratio ν 0.49
Young’s modulus (Linear) E 5.3 ∗ 105 Pa

4.1.1 Geometry and Mesh

The tube was modeled after the descending aorta with a inner diameter Di = 20.5 mm,
wall thickness ∆r = 1 mm and length L = 140 mm.

A mesh consisting of tetrahedral cells was created for the fluid model, fig. 5c. For
the solid model two seperate meshes were created, one using brick elements (fig. 5a) and
another with tetrahedral elements (fig. 5b). The latter was used to see if Tango could
use continuous tet elements, as this was not listed in the Tango Manual [2].
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(a) Brick C3D8 Elements (b) Tet C3D4 Elements

(c) Fluid mesh consisting of tet F3D4 elements

Figure 5: Meshes used in the test cases of a straight tube.

4.1.2 Boundary Conditions

For this case a square sine wave was prescribed as a velocity normal to the inlet. As this
was a test case there was no need for physiological conditions.

vinlet(t) = 0.1sin2(5πt) (25)

The outlet was set to a pressure outlet with 0 pressure. Both the inlet and the
outlet was able to expand freely in the radial direction, but constrained lengthwise and
rotationally.
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4.2 Aortic Arch

4.2.1 Geometry and Mesh

The geometry analyzed is an idealized aortic arch, including ascending and descending
aorta and the bifurcations to the brachiocephalic, left common and left subclavian carotid
arteries. The inner geometry of the aorta was taken from Redheuil et al. [14] for an average
male in his twenties. The measurements for the carotid arteries were given in Stergiopolus
et al. [15]. Wall thickness was taken from Pahlevan and Gharib [13] at specified points, see
table 3. Since both the inner measurements and the wall thickness was given at discrete
points, a smooth transition used between them. For simplicity the carotid arteries were
placed in line, and perpendicular to the centerline, on the top of the aortic arch. They
are also modeled as 40 mm from the outlet to the centerline of the arch to reduce the
effect of the boundary conditions on the flow in the aorta. The model file is constructed
in such a way that individual measurement changes to the geometry can be made, which
causes the rest of the model to adjust accordingly. A 25 mm segment has been added to
the inlet to allow the flow to develop and stabilize before entering the curvature.

The measurements of the model that were used can be viewed in figure 6 and table 3.
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Figure 6: Geometry of the solution domain for the full model.

Table 3: Radial geometry measurements for cross sections of the model.

Artery Proxima Diameter Prox. Wall Thickness
Ascending Aorta 27.5 mm 1.4 mm
Aortic Arch 27.5 mm 1.4 mm
Descending Aorta 20.5 mm 1 mm
Abdominal Aorta 18.3 mm 0.9 mm
Braciocephalic Artery 12.4 mm 0.8 mm
Left Common Carotid Artery 7.4 mm 0.8 mm
Left Subclavian Carotid Artery 8.46 mm 0.8 mm

Meshes were attempted optimized in order to obtain a succesful simulation. The mesh
of the highest quality was a hexahedral swept mesh for the solid and a tetrahedral mesh
for the fluid. Combined these had a maximum skewness of 0.7.
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4.2.2 Boundary Conditions

A sin2 wave, (25), was set as the velocity profile on the inlet and 0 Pa pressure on the
outlets. Several other conditions were also set to see if this had any effect. These included
reflection free and Windkessel models on the outlets, as well as no inflow, constant velocity
and sinusoidal pressure waves at the inlet.

4.3 Simple Aortic Arch

Since the fluid-structure interaction simulations were unsuccesful for the aortic model
including bifurcations (see sec. 5.2), a simpler geometry was made consisting of only the
ascending aorta, aortic arch and descending aorta in the hope that this would be easier
to simulate.

4.3.1 Geometry and Mesh

Figure 7: Model of the simplified aortic arch.

The carotid arteries were removed from the model found in section 4.2. Otherwise the
parameters are the same for this case. The measurements can be seen in fig. 7 and table 3.
The model parameters can be viewed in tab. 2.
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(a) Sideview

(b) View of inlet and outlet

Figure 8: Solid mesh: C3D8 linear brick element mesh created with Ansys Workbench.

For the solid part a hexahedral mesh was constructed using Ansys Workbench.
Figure 8 shows two different views of the mesh. The mesh is constructed with C3D8
linear brick elements. The highest skewness of this mesh is 0.2.
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(a) Sideview

(b) View of inlet and outlet

Figure 9: Fluid mesh: F3D6 linear wedge element mesh created with Ansys Workbench.

The fluid mesh can be viewed in figure 9. It is comprised of F3D6 wedge elements
with a maximum skewness of 0.4.

A coarser mesh was made with the same setup, but fewer divisons along the centerline
for both the fluid and solid. This was used to obtain quicker results. This could be done
as the exact results were not important to the study. Cases where the coarser mesh is
used is specified.

4.3.2 Boundary Conditions

A linear elasticity model was used for the wall. See sec. 2.1 for the explanation of the
constitutive relation.

A flow rate profile exiting the heart was found in Pahlevan and Gharib [13]. This was
programmed as a UDF in Fluent and prescribed as a velocity inlet for case2, described
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below.

Figure 10: Velocity profile for the inlet. Profile [red] and 20 frequency harmonic
approximation [blue]

In fig. 10 we can see the inlet profile as it is presented in Pahlevan and Gharib [13]
and the harmonic approximation superimposed on top. The harmonic approximation
utilizes 20 frequencies, found using FFT in Matlab. The original profile was extracted
using Datathief.

Multiple cases of different combinations of boundary conditions were run to investigate
the differences between them. The cases are presented below.

Case 1 At the inlet a sin2 wave with frequency 3.3 s−1 and amplitude of 0.6 m/s for the
velocity is imposed. A reflection free outlet condition has also been set. ∆t = 0.005 s.

Case 2 The physiological velocity inlet in figure 10 was used. At the outlet a reflection
free boundary conditon was imposed.

Case 3 A 3 element Windkessel model, sec. 2.2, was used for the outlet. The
model parameters were calculated with the method used by Beulen et al. [3]. The final
parameters can be viewed in section 5.3.

For the inlet conditions a sin2 wave was utilized as a massflow inlet, with frequency
2.77 s−1 and an amplitude of 450 ml/s. After each pulse wave a pause of 0.5 seconds was
inserted. This approximated the refill period of the heart cycle. This equals a mean flow
of ∼ 95 ml/s over the heart cycle. The coarse mesh was used.

Case 4 The resistance model, see section 2.2, was applied on the inlet, and a 3 element
Windkessel model at the outlet. A stationary Rs was set to 3Zc, which corresponds to
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Γ = 0.5, since a time-variable Rs was unsuccesful. The ventricular pressure was set as a
sin2 wave with frequency 2.77 s−1 and amplitude 150 mmHg. The coarser mesh was used
in this case.

Case 5 The time-varying elastance heart model was set on the inlet according to sec.
2.2. The outlet was a Windkessel model. The coarser mesh was used.
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5 Results and Discussion

The meshes have not been examined with mesh independence tests. As this is not a
quantitive analysis results were not required to be mesh independent, but show trends
in response to different boundary conditions. No inflation is applied near the boundaries
either. This would severely affect the computational time needed and increase the chances
of the mesh collapsing under the dynamic mesh condition. It was therefore decided that
the boundary layers would not need to be resolved to that extent.

5.1 Tube

This was a test case to obtain a running simulation. This case could later be modified
for the other geometries and conditions. The calculations were run with a timestep
∆t = 0.005s. The results at the inlet and outlet of the tube can be viewed in figures 11
and 12 for the different meshes.

Hex Element Mesh

(a) Diameter (b) Pressure

(c) Massflow (d) Velocity

Figure 11: Results for the Hex mesh. 2D plots of 4 different parameters on the inlet [-]
and outlet [- -] of the tube as a function of time.

The figures are graphical representations of 4 different parameters on each of the inlets
and outlets as functions of time.
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Since the pressure pulse is recorded at the outlet later than at the inlet we can deduce
that there is propagation of the applied pressure pulse through the tube, and not an
instantanious reacton. This is because of the compliant walls. We can see in fig. 11 that
the inlet and outlet are not reflection free, but reflects the pulse back and forth between
them. There is not total reflection of the wave so the pulse diminishes time. The nature
of the reflections can be seen by the oscillating velocities at the outlet when there are no
pulsewaves being forced on the inlet.

The hex case was run for a longer time than the tet mesh. This was done to examine
the effects of the 0 mmHg pressure outlet, and once done would not need to be repeated
for the other mesh.

Tet Element Mesh

(a) Diameter (b) Pressure

(c) Massflow (d) Velocity

Figure 12: 2D plots of 4 different parameters on the inlet [-] and outlet [- -] of the tube
as a function of time for the tet mesh.

The results are very similar for the tet element mesh, with differences that can be
attributed to mesh refinement.

We can see the wave propagating through the pipe and then being reflected at the
outlet as it does for the hexahedral mesh. It is evident that the simulation also works for
continuous tet elements.
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5.2 Aortic Arch

Computational Fluid Dynamics

For the sin2 velocity inlet the CFD results with rigid walls are given in fig. 13.

(a) Diameter in mm (b) Pressure in Pa

(c) Massflow in ml/min (d) Velocity in m/s

Figure 13: 2D plots of 4 different parameters as a function of time for each of the 5
boundaries: Inlet [red], outlet [green], brachiocephalic [blue], left common artery [purple]
and left subclavian artery [black]. ∆t = 0, 005s.

With rigid pipe walls there is instantanious propagation of information through the
geometry, meaning that the outlets immediately react to the inflow. This can be seen
in figure 13d in that the velocities on the outlets increase as a reaction to the inlet flux
without any delay. There is no pressure wave transporting the information downstream
and hence also no reflection. We can see that the pressure stays zero at the outlets and
the diameter stays constant. This confirms that the outlet conditions behave as intended
and that there no interaction with the solid.

The inlet pressure seems to be slowly converging back to 0 after the pulse has passed.
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This results in a slight pressure difference between the outlets, set to zero pressure, and
the inlet. It seems that this causes flow from the carotid arteries down the descending
aorta (figure 13d), as the flow is not allowed to go through the inlet. This is most likely
an artifact of the unphysiological boundary conditions.

Computational Solid Mechanics

A uniform pressure of 8000 Pa ' 60 mmHg was set on the inner surface of the wall. A
steady state calculation was carried out. For every increment of the solution the pressure
is increased until it hits the intended pressure, being the solution to the steady state
problem. A sudden increase in pressure, i.e. a step function, would be very hard to
calculate.

Figure 14: Plots for the deformation of the aortic arch from the side. Steady state
calculation with a uniform pressure of 8000 Pa. ∆t = 0.005s.
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Figure 15: Plots for the deformation of the aortic arch from the back. Steady state
calculation with a uniform pressure of 8000 Pa. ∆t = 0.005s.

There is a uniform pressure inside the model and equal material parameters
everywhere. There is a maximum displacement of 9.323 mm, which is on the descending
aorta. This displacement is however not symmetrical, even though the pressure field is.
The inlet and all of the outlets are set in the lengthwise direction, meaning that the aorta
is basically expanding between two plates. The geometry inflates and since it is restriced
by the outlets it will buckle outwards on the descending aorta. This leads to the wall
extending furthest in the point of failure.

Fluid Structure Interaction

The FSI simulation did not run, claiming ”Convergence error in Abaqus” before any
subiterations have completed. Abaqus returns error code 16, which is ”An Unexpected
Error”. This is a general error message without a distinct cause. The problem seems to
be mesh dependent as the same meshes repeatedly gets this error, while other meshes, of
different geometries, never receive it. This is despite several modifications to parameters
and boundary conditions. Since no iterations complete the physics of the problem should
not be able to pose a problem. Hypothesized causes are mesh quality or the numbering
methods Ansys Workbench employ, which may conflict with the coupling code. These are
however just guesses. Mesh quality was improved, but what should be adequate meshes
(Max skewness 0.7) still gets the same error. Attempts at creating two similar cases where
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one works and the other does not, for troubleshooting purposes, have been unsuccessful.
The differences of these cases could then be examined more thoroughly. In order to create
one case that doesn’t work and another that does with differences that are easily studied,
it is beneficial to know what the problem is beforehand.

The problem could be persisting in the cases that do run, but isn’t prominent enough
to affect the solution significantly. This will hopefully be looked at in future work as it
was not resolved during this project.

5.3 Simple Arch

Case 1 Results for the simplest arch case studied.

(a) Diameter in mm (b) Pressure in mmHg

(c) Massflow in ml/min (d) Velocity in m/s

Figure 16: 2D plots of 4 different parameters as a functions of time for each of the
boundaries: Inlet [red], outlet [green - -]. ∆t = 0.005s.

There is no reflection at the outlet, which was the intention of the boundary condition.
There is a pressure build up at the outlet since the initial pressure is set to 0, and it takes
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some time to adjust to the massflow periodically entering the vessel.

Case 2 The simulation would not converge. A velocity inlet condition is a strict
condition and the complexity of the profile could be a problem for the solution.

Case 3 The 3WK model uses the pulse wave velocity c in calculating the characteristic
impedance used as a resistance factor. The PWV is a material property and a function
of pressure. The definition is given in eq 26.

c =
√
A

ρ

dP

dA
(26)

To find the wavespeed a calculation of the solid mesh was performed with a uniform
pressure distribution. This was done in much the same way as the CSM calculation in
section 5.2, but for a larger pressure. From this the wavespeed for a range of pressures
was found. The results are given in figure 17. A second order polynomial was used to
approximate the solution on the outlet and transfered to the FSI simulation.

Figure 17: Wavespeed approximation from steady state FEM simulations for a range of
pressures with calculated values [–] and polynomial approximation [.].

The drop in c is because of the linear wall elasticity. For a hyperelastic wall condition
the wavespeed would grow exponentially as a higher pressure would meet more resistance.
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The literature [4,8,11,13] gives different possible parameters for the Windkessel model,
even for similar simulations. Basing our Windkessel on the method used in Beulen et
al. [3], see sec. 2.2, with a mean pressure of 100 mmHg and mean flow of 94.3 ml/s we get
the parameters stated in table 4. The mean flow is calculated for a sin2 wave with 450
ml/s as amplitude, frequency 2.77 s−1 and pause of 0.5 s between pulses.

Table 4: Parameters for the 3 element Windkessel model applied on the outlet

Parameter Value
R [mmHg s/ml] 0.935
C [ml/mmHg] 1.604

The simulation is run for a long time to allow the pressure in the Windkessel model to
build up. The buildup is shown in fig. 18. After a while the solution stabilizes into
a periodic pattern. The results are shown in fig. 19. The simulation was run with
convergence criteria of 1e-6 and timestep of 20 ms.

Figure 18: Pressure at the inlet [red] and outlet [green - -] for the pressure buildup period
of the Windkessel model.
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(a) Diameter in mm (b) Pressure in mmHg

(c) Massflow in ml/min (d) Velocity in m/s

Figure 19: 2D plots of 4 different parameters as a function of time for each of the
boundaries: Inlet [red], outlet [green - -]. Plots are of one iteration of the periodic solution.
∆t = 0.02s

The pressure has built up to a physiological range of 80 - 110 mmHg. We can see a
dip in the pressure when the influx of blood ceases. This resembles the dicrotic notch,
which occurs in physiological flow when the heart valve closes. This would most likely be
more prominent with a more accurate inflow condition.

Because of the mass flow inlet condition, the flow at the inlet is prescribed and will
not adapt to the flow conditions inside the domain. Backflow is not possible if not set in
the profile. This means that we have also decided, before the simulation, what reflections
we allow at the inlet.

Figures 20 and 21 show vector plots and contour plots respectively of the simplified
arch at 4 separate timesteps. This is shown to give an idea of how the pressure wave
travels through the domain and how this affects the velocity.
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(a) Time: 4.4 s (b) Time: 4.5 s

(c) Time: 4.6 s (d) Time: 4.7 s

Figure 20: Vector plots at different timestep. Colors denote velocity magnitude from 0
m/s to 0.8 m/s. ∆t = 0.02s.
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(a) Time: 4.4 s (b) Time: 4.5 s

(c) Time: 4.6 s (d) Time: 4.7 s

Figure 21: Contour plots at 4 different timesteps. Colors denote pressure from 80 mmHg
to 110 mmHg in Pa. ∆t = 0.02s.

Case 4 For the resistance model the results are given below. Figure 22 shows that there
is only a slight buildup of pressure, while figure 23 shows the results from a single pulse
at the end of the simulation.
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Figure 22: Pressure history of the simulation for the inlet [red] and outlet [green –]. There
is hardly any buildup in the outlet model.
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(a) Diameter in mm (b) Pressure in mmHg

(c) Massflow in ml/min (d) Velocity in m/s

Figure 23: 2D plots of 4 different parameters as a function of time for each of the
boundaries: Inlet [red], outlet [green - -] ∆t = 0.01s.

With this resistance model there is only a slight buildup of pressure inside the vessel.
After the pulse passes there is no pressure at the inlet. Because of the resistance of the
Windkessel model the outlet pressure is not zero. We therefore have a gradient from the
outlet to the inlet. When the flow reaches the inlet the resistance there will reflect some,
but not all of it. This means that blood is allowed to flow back into the heart. The
blood will basically slosh back and forth rather than be pushed through the system. If
we increase the resistance to allow less blood back into the heart, the ventricular pressure
needed to pass through the resistance at the inlet would need to be unphysiologically
large. The source resistance, Rs, needs to be varying in time on order to use this method,
as the average value used here does not model any physical feature of the flow and does
not produce physiological results.

In the simulation we have run there is a slightly smaller peak mass flow than case
3, but is within physiological ranges. The pressure is not however as the inlet does not
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force blood to accumulate in the vessel, thereby raising the pressure to push through the
peripheral resistance in the Windkessel.

Case 5 The solution did not progress further than 0.41 seconds. At this point it seems
that the subiterations hit backflow at the outlet and did not converge.

(a) Diameter in mm (b) Pressure in mmHg

(c) Massflow in ml/min (d) Velocity in m/s

Figure 24: 2D plots of 4 different parameters as a function of time for each of the
boundaries: Inlet [red], outlet [green - -] ∆t = 0.01s.

It is difficult to get any information without seeing how the solution progresses. The
initial pulse from the heart model has a much higher peak than the earlier simulations,
and the pressure is lower than expected for physiological conditions. The inlet pressure as
given here represents the ventricular pressure since no valve approximation was favorably
implemented.
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5.4 Convergence

Convergence was a problem throughout the project. This was mostly a problem when
there was backflow on the outlet. When the flow was about to reverse flow vectors could
line up with the outlet, as shown in figure 25. If this happened the solution would not
converge.

(a) Perspective view (b) Side view

Figure 25: Vectors on the outlet for a non-converging solution. The vectors are lining up
with the outlet plane.

This problem did not occur for all instances of backflow, as some simulations seemed
to move past this without incident. This was mostly an issue with cases 3, 4, and 5 on
the simplifed geometry since these cases included backflow on the outlet.

This problem does not affect the succesful simulations. Either the simulations ran
smoothly or did not converge. There would be no adverse effects on the simulations that
converged, as the problem would not present itself.
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6 Conclusion

The simplified model was simulated for several cases with different boundary conditions.
The mass flow condition produces nearly physiological responses as it is modeled as an
approximation of the mass flow produced by the heart motion. All reflections at the inlet
are predetermined as these must fit with the inlet condition. This requires an accurate,
patient specific profile for every pathological case that needs to be studied.

The resistance model inlet produced too little resistance to backflow after the initial
pressure pulse. The pressure did not build up to expected ranges as the blood would just
flow back out of the inlet. This is because the resistance was constant through the cycle,
and not changing in accordance with a valve motion. The resistance at the inlet does
therefore not represent any physical mechanism, and was in that regard a poor model.

A time-varying elastance approach represents a potential of easily adapting the inlet to
different healthy and pathological conditions, with changes to the parameters. However,
because of convergence issues no conclusions can be drawn regarding this in our study.
The lack of an accurate expression for flow in and out of the left ventricle and lack of
valve produced results differing from the literature.

Results were not obtained for the full model, so it had to be simplified in order to
continue the investigation. The full model’s inability to run was not resolved. The cause of
the problem has not been found, but is most likely connected to the mesh as other meshing
tools have functioned in conjunction with Tango earlier. The problem also seemed to stay
with the meshes, i.e. if a mesh recieved the error message it would not run for any other
conditions or alterations.

No conclusion can be drawn on the viability of Ansys Workbench as a meshing tool
for Tango simulations. There were startup issues with some meshes, but not all of them.
Since the root cause of this could not be found ruling out Ansys Workbench would be
premature.

Epilogue: A physiological aortic arch was constructed from MRI measurements,
modeled and meshed by Kamil Rehak. The mesh was created with Ansys ICEM, and
attempted simulated. However the simulation gave the same error message as the full
idealized model, section 5.2.

7 Further Work

As the FSI simulation of the full arch, including bifuractions, did not run the logical next
step is to figure out why this is and get it working. This could include meshing with
another software, which has worked in other studies. It would, on the other hand, be
beneficial to find out why this mesh generation was unsuccesful, if that is the problem.
In addition a model of a patient specific aortic arch has been constructed and should

39



be simulated. This a much more complicated geometry, but gives greater insight into to
the physics in a true human aorta as opposed to our simplified model. If a quantitative
analysis is to be run mesh independence needs to be examined and the mesh refined in
areas of larger gradients. The addition of turbulence models shoudl also be considered.

The varying elastance model should be examined to see if it is a viable option. This
would probably include separating forward and backward travelling waves at the inlet and
finding a way of refilling the cavity volume.

The goal of this study was to lay the groundwork for future studies on aortic dissection.
Pathological flow should be examined, looking at hypertension, stenosis and/or weaknesses
in the aortic wall to see how these affect the forces leading to the development of aneurysms
or dissection. Gao et al. [6] uses the wall shear stress as an indicator of dissection risk.

There is also work on a 1 dimensional arterial network code. Crosetto et al. [4]
uses 1D solutions as outlet conditions on the FSI simulation and this could possibly be
implemented in the current framework.
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