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Problem description
A pulsed laser source emitting nanosecond pulses at 1.6µm wavelength has
important applications within laser based distance measurements. Due to
a lack of appropriate direct laser sources at this wavelength, it is necessary
to reach this wavelength range by nonlinear frequency conversion. One de-
vice for achieving this is an intra-cavity optical parametric oscillator (OPO),
where a nonlinear crystal, e.g. KTiOAsO4, is placed inside the laser cavity
for efficient frequency conversion of the laser beam.

This assignment involves:

1. Design of a Q-switched end-pumped Nd:LiYF4 laser, with special em-
phasis on optimizing conversion efficiency and beam quality, and study-
ing thermal lensing effects.

2. Investigation of how to efficiently convert the wavelength of the Nd:LiYF4
laser using an intracavity nonlinear crystal.

3. If time permits, building a prototype of the intra-cavity OPO and char-
acterize its performance.
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Sammendrag
En numerisk modell for å simulere en pulset laser er blitt implementert.
Den modellerte laseren kan generere pulser med en varighet p̊a et noen
f̊a nanosekunder og med en justerbar bølglengde. Laseren best̊ar av en
diodepumpet neodym-LiYF4 laser som blir frekvenskonvertert i en intrakavitet
optisk parametrisk oscillator med en KTiOAsO4-krystall. Den numeriske
modellen er blitt sammenlignet med eksperimentelle data for å teste gyldigheten
til denne. Den har videre blitt benyttet til å optimalisere et eget design av
en laser som genererer pulser med en justerbar bølgelengde rundt 1.6µm.
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Summary
A numerical model for simulating a pulsed laser has been implemented. The
modelled laser can generate pulses with a duration of a few nanoseconds and
a tunable wavelength. The laser consists of a diode-pumped neodymium-
LiYF4 laser that is frequency converted in an intracavity optical parametric
oscillator with a KTiOAsO4-crystal. This model was then compared to ex-
perimental results to test its validity. It was then used to optimize the design
of a laser generating pulses with a tunable wavelength around 1.6µm.
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Chapter 1

Introduction

Near infrared lasers have several applications including spectroscopy, medicine
and range finding. Notably, lasers in the wavelength range of 1.5-1.8µm are
well suited for range finding. This region has low absorption in the atmo-
sphere (ref. figure 1.1), ensuring a long range. In addition, this range is
considered more eye-safe than lower wavelengths [1], as it is absorbed in the
cornea.

A range finder requires a high pulse energy and a good beam quality
(low divergence) to ensure that it performs well over large distances. As
light travels 30 cm in one nanosecond, the pulse width should only be a few
nanoseconds (e.g. 10 ns) to get a good depth resolution. The pulse should
have a small spectral bandwidth to get a good signal to noise ratio. In some
applications, a tunable wavelength might be desired. Finally, a good overall
efficiency (electrical to optical power) is desired.

Erbium doped fiber lasers [3] are one possible source for this application.
Erbium-doped lasers can generate a tunable signal in the 1.5-1.6µm spectral
band. These fibers are relatively easy to produce, require no alignment of
mirrors and can be made into compact devices [4]. A challenge with these
fibers is the low pulse energy, particularly for short pulses [5]. This comes
from the small mode area in the fiber. Higher pulse energies lead to a poor
beam quality and risk of damage in the fiber.

An alternative to fibers is using a diode pumped solid state (DPSS) laser
[6] in combination with an optical parametric oscillator (OPO) [7]. This
combination allows for high pulse energies with a tunable wavelength.

A DPSS laser and an OPO can be combined into an intracavity optical
parametric oscillator (IOPO). In an IOPO, the OPO resonator is a part of
the laser resonator. An IOPO can reach higher efficiencies than an extra-
cavity OPO [8]. They can also be made more compact as everything can be
combined in one resonator. However, an IOPO is a complex physical system,
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Figure 1.1: Modelled transmittance of Earth’s atmosphere. Figure from [2]

linking the dynamics of the laser medium with the nonlinear interaction. It
is difficult to fabricate as it requires careful alignment of components. It is
also very sensitive to damage as the intensities can become very high before
the conversion starts. Another major limitation is the thermal lensing in the
laser rod caused by heat dissipation.

Numerical models and simulations can greatly help study IOPOs as they
can solve the complex dynamics of the system. Computer modelling is also
easier than laboratory tests as the former can test a wider set of parame-
ters faster and at a lower cost. Accurate simulations can give advice when
ordering expensive components and help avoid component damage.

There have been many studies regarding both DPSS lasers in general and
IOPOs in particular. Thermal effects in DPSS lasers have been studied exten-
sively, using both analytical and numerical solutions. A select examples are
e.g. Cousins [9] (general theory and computer simulations on thermal lensing
and thermal stresses in end pumped laser rods), Pfistner et al. [10] (compar-
ison between theoretical model and experiments), Clarkson [11] (presents a
model for thermal lensing, birefringence and energy transfer upconversion as
well as measurements of the thermal lensing) and Zelenogorskii and Khaz-
anov [12] (influence of the photoelastic effect in neodymium doped LiYF4).
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Likewise, there have been several studies on IOPOs. Oshman and Harris
[8] first introduced intracavity OPOs and showed that their efficiency can be
higher than extracavity OPOs. Falk et al. [13] further generalized the IOPO
theory by implementing the interactions with a laser medium. Debuisschert
et al. [14] presented some theory on a single resonant IOPO (where only
one of the produced signals are coupled back in the OPO). There have been
several practical demonstrations of IOPOs. Some examples are Nettleton et
al. [15], Wu et al. [16], Peng et al. [17] and Bai et al. [18].

Structure of this thesis
The scope of this thesis is to present a design for a pulsed IOPO laser gener-
ating nanosecond pulses with a tunable wavelength around 1.6µm. To reach
this goal, a simulation scheme for simulating this system will be developed
and tested. The scheme uses advanced software to accurately model the
various effects.

The main objectives of this thesis can be summarized in the following
points

• Develop a simulation model for pulsed intracavity optical parametric
oscillators, incorporating laser medium interactions, thermal effects in
the laser rod and nonlinear frequency conversion.

• Compare the simulation model with results from the literature.

• Use the simulation model to optimize a design of an intracavity optical
parametric oscillator according to a set of given specifications.

The text starts with an introduction to elementary laser theory. In this
chapter, the fundamental components of a laser will be introduced and ex-
plained. It includes a brief look at the thermal effects present in a laser rod.
Expanding on this, the next chapter introduce nonlinear optics as a method
for creating lasers with new wavelengths, with an introduction to the most
fundamental theory on nonlinear frequency conversion. The two chapters
following the theory explains the simulation method as well as the simula-
tion goals and laser design. The simulation results are then presented along
with a discussion of the strengths and weaknesses of both the model and the
results.
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Chapter 2

General laser theory

The acronym laser stands for light amplification by stimulated emission of
radiation. Lasers differ from other sources of light due to their high degree
of coherence, monochromaticity and radiance. A laser consists of several
key components, the laser medium, the resonator and a pumping mechanism
to supply energy. There are many different lasers (defined by their laser
medium), but some of the most important are semiconductor lasers, fiber
lasers and solid state lasers.

2.1 Laser amplification
Electrons bound by atoms and molecules can take on certain discrete energy
levels. An electron can interact with radiation and change states depend-
ing on the nature of the interaction. The three processes that define these
interactions are absorption, stimulated emission and spontaneous emission.

Assume an electron bound to an atom has two states with corresponding
energies E1 and E2 > E1. If the atom is in the state characterized by E1, it
can absorb a photon with frequency ω = (E2 − E1)/h̄ and be raised to the
state E2 while the photon is absorbed.

Similarly, an atom in state E2 can interact with an incoming photon
with frequency (E2 − E1)/h̄ and emit another photon (making the total
two photons) while it drops to state E1. This is the process of stimulated
emission. The atom can also spontaneously drop to the lower energy level
and emit a photon. This is the process of spontaneous emission.

As stimulated emission increases the net photon number, it can be used
to amplify incoming radiation. However, it can be shown that in thermo-
dynamic equilibrium the material cannot act as an amplifier. It was shown
by Einstein [19] that the rates for stimulated emission and absorption are
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Figure 2.1: Ideal four level scheme.

equal. In other words, a photon is as likely to be absorbed by an atom in
state E1 as it is to stimulate an emission from an atom in state E2. In
thermodynamic equilibrium at temperature T , the ratio between the two
populations Ni (number of elements in the state i per unit volume) is given
by the Boltzmann distribution [20]

N2

N1
= e−(E2−E1)/kbT , (2.1)

with kb the Boltzmann’s constant. This distribution implies that one
cannot have a higher population in state E2 than E1 (E2 > E1). A lower
population in the higher state will lead to incoming radiation being absorbed.
A system where the upper state has a higher population is said to have a
population inversion.

There are several schemes to obtain a population inversion. One example
is the four level scheme. The four level scheme is presented in figure 2.1. The
four levels are: the ground state, the pump level, the upper laser level and
the lower laser level. Electrons are raised from the ground state to the pump
level by pump photons. The pump level has a very short lifetime, and the
electrons transition quickly down to the upper laser level. The upper laser
level has a long lifetime, and this causes an accumulation of electrons in this
level. The transition down to the lower laser level is the lasing transition. The
lower level has a very short lifetime, and any electron in this state transitions
quickly to the ground state.

The general concept of a laser is sketched in figure 2.2. A laser medium
of length l is spaced between two mirrors M1 and M2 forming a resonator.
The laser mode in the resonator is marked with red. The active volume (Va)

5



Figure 2.2: Fundamental concept of a laser. The laser medium with length l is
positioned between two mirror M1 and M2 spaced a distance L apart. A pumping
process supplies energy to the laser medium. The laser mode is marked in red.

is the volume of the mode in the laser medium. The pump supplies to the
laser medium, building and maintaining the population inversion. Some of
the laser is coupled out of the resonator at mirror M2.

For an idealized four level scheme, the population in the upper laser
level N and photon number φ are linked, and are given by the coupled rate
equations [19]

dN
dt = Rp −BφN −

N

τ
, (2.2)

dφ
dt = VaBφN −

φ

τc
. (2.3)

The various terms in this equation comes from the different mechanisms
involved. The first is a pumping term, Rp. This represents a contribution to
the upper laser level from the pumping, and gives the number of electrons
raised to the upper laser level per second per unit volume. The second, BφN
is a term coming from stimulated emission. B is a stimulated emission rate
per photon. The stimulated emission decreases the population, while increas-
ing the photon number. Va, is the volume of the active laser medium (ref.
figure 2.2). The terms involving the lifetimes τ and τc represent spontaneous
emissions (for (2.2)) and cavity losses (for (2.3)).
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The stimulated emission rate per photon B can be expressed as [19]

B = σlc

VaLe
. (2.4)

Here, σ is the stimulated emission cross section, l is the length of the laser
medium, c the speed of light and Le = L + l(n − 1) the optical path length
of the laser cavity, with a total length L (ref. figure 2.2). The laser medium
has refractive index n.

The laser starts with spontaneous emissions and build up with feedback.
A wave circulating in a laser resonator will increase in amplitude from the
stimulated emissions, as well as lose energy from resonator losses. The min-
imum population inversion required to reach a state where the gain equals
the loss is called the lasing threshold.

2.2 Optical resonators
A resonator uses two or more mirrors to form wave patterns with a given
transversal and longitudinal profile. It has two primary objectives. The first
is to provide feedback for the laser medium. The second is to reduce the
number of possible modes in the system.

The most basic resonator consists of two mirrors positioned in parallel
with a distance L between them, with the most fundamental example being
two plane mirrors. The first mirror is typically highly reflecting (HR), the
other has a reflectance lower than unity to extract energy from the resonator.
This mirror is typically called the output coupler (OC). This resonator has
particularly simple longitudinal modes, with resonant frequencies ν = mc/2L
(m being an integer and c the speed of light). The resonant frequencies are
evenly spaced with interval c/2L.

A more general resonator can use two (or more) spherical mirrors. Spher-
ical mirrors give better control over the transverse profile of the beam and
are easier to align. The resonator can be either stable or unstable. In a stable
resonator, the beam retraces itself after a single round trip. In an unstable
resonator, an arbitrary ray will diverge away from the propagation axis.

The transverse profile of a beam in a stable resonator reproduces itself
after one round trip. It can be shown that only discrete field distribution sat-
isfies this criterion, and the distributions that does are called the transversal
modes of the resonator. Higher order transversal modes have larger beam
widths and higher divergence angles. The longitudinal modes of the system
correspond to the resonance frequencies of the resonator.
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2.3 Gaussian beams
The fundamental mode in a resonator is to a very good approximation a
Gaussian beam. As the name suggests, the Gaussian beam has an amplitude
u(~r) given by a Gaussian function in the transversal coordinates x and y [19]

u(~r) = w0

w(z) exp
(
−(x2 + y2)

w(z)2

)
exp

(
−ik (x2 + y2)

2R(z)

)
exp(iφ), (2.5)

with wavenumber k and the width w(z), radius of the wavefronts R(z),
Rayleigh length zR and phase φ given by

w(z) = w0

√√√√1 +
(
z

zR

)2

, (2.6)

R(z) = z

[
1 +

(
zR
z

)2
]
, (2.7)

zR = πω2
0

λ
, (2.8)

φ = arctan
(
z

zR

)
, (2.9)

λ being the wavelength of the beam. The beam width w0 is the radius of
the beam at the position z = 0. The beam width in (2.5) is the 1/e-radius of
the amplitude. The width of the intensity is denoted by the 1/e2 amplitude,
a factor

√
2 higher. The Rayleigh length zR is the distance in the z-direction

the wave must propagate to increase its width by a factor
√

2. An illustration
of some of the most central properties of a Gaussian beam is shown in figure
2.3.

The divergence of a Gaussian beam can be expressed using (2.6). When
z � zR the width grows approximately linearly in z, and the resulting diver-
gence angle θ of the beam can be approximated by

θ ≈ λ

πw0
. (2.10)

A Gaussian beam can also be characterized by a complex beam parameter,
denoted the q-parameter of the beam. This parameter is given as

1
q

= 1
R
− i λ

nπw2 . (2.11)
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Figure 2.3: Central properties of the Gaussian beam, showing waist w0, Rayleigh
length zR and beam width w(z).

Here, n is the refractive index of the medium. This parameter can be
regarded as a complex radius of curvature of the beam. A simple law governs
the change of this parameter as the beam propagates through an optical
system with a specified ray transfer matrix M (see e.g. [21]). If the q-
parameter of the beam is initially qi, the new qf is given by [19]

qf = Aqi +B

Cqi +D
, M =

(
A B
C D

)
. (2.12)

A Gaussian beam is the lowest order mode of both the Hermite-Gaussian
and Laguerre-Gaussian modes. These modes are defined by the characteristic
polynomial of the respective modes [22].

2.4 Resonator mode size and stability
The ABCD law (2.12) can be used to study the modes of a stable resonator.
The starting point is finding the ray transfer matrix of the entire resonator,
taking propagation, refraction and reflection into account. The ABCD law
can then be applied to find the new q-parameter from the intial qi. If the
solution is a mode of the resonator, it must reproduce itself after a round
trip. This demand means that the initial and final q-values must be equal.
This results in a second order equation in q with solution

q =
(A−D)±

√
(D − A)2 + 4BC
2C . (2.13)

Once the complex beam parameter is known for a single point in the
resonator, it can be found for an arbitrary point by finding the required ray
transfer matrix and applying the ABCD law yet again. The definition of the
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complex beam parameter (2.11) can then be applied to find the mode size
for a given complex q.

The previous discussion applies to a general, stable resonator. As seen in
(2.11), the beam only has a defined width if q is a complex quantity. If q is
real, the resonator is unstable and the previous discussion does not apply.

The ray transfer matrix M for a complete round trip in the resonator can
also be used to check the stability of the resonator. By demanding that the
ray transfer matrix does not diverge for n roundtrips as n goes to infinity,
the stability criterion for a general resonator can be written as [19]

−1 <
(
A+D

2

)
< 1. (2.14)

2.5 Beam quality
A useful tool for characterizing non-Gaussian beams is the beam quality
factor M2. This factor gives an indication of the divergence of the beam
compared to a perfect Gaussian beam (given by (2.6)). The beam quality is
derived from the second moment of intensity I, which is defined by [23]

σ2
x =

∫
(x− x0)2I(x, y)dxdy∫

I(x, y)dxdy , (2.15)

with center position x0 and similarly for the y-direction, σy. Once the
second moment is found, the radius of the beam can be found by the relation
Wx = 2σx. To find the beam quality of the beam, the second moment width
can be measured at several longitudinal positions. The beam quality can
then be found by making a fit to a function of the form

W (z) = W0

√√√√1 +M4

(
z

zR

)2

. (2.16)

When z � zR, the square root can be approximated by M2z/zR. Com-
paring this to the same relation for an ideal Gaussian beam (2.6), it can be
seen that the beam diverges with a factor M2 higher than an ideal Gaussian
beam. An M2 close to 1 means the beam behaves as a Gaussian beam to a
good approximation. Higher order modes will contribute to worsen the beam
quality as they increase the width and divergence of the beam. When M2 is
large, it does not say anything about the transversal profile of the beam, as
there can be many transversal profiles that fit one value.
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Figure 2.4: Conceptual sketch of laser end pumping. A diode laser beam enters
the resonator through one of the sides and is absorbed in the rod.

2.6 Pumping schemes
The pumping process supplies energy to the system and it creates and main-
tains the population inversion. There are various types of pumping mecha-
nisms, and the type of pumping is dependent on the laser medium. Diode
lasers are electrically pumped, whereas solid state lasers are optically pumped.
For the purpose of this text, the focus will be on optical pumping, specifically
diode pumping.

There are two common methods of optical pumping. A laser (or several)
can be used to pump another laser. The most usual choice for this is diode
lasers. Another option is flashlamps. The main difference between these
types of optical pumping is the difference in radiance (power per area per
solid angle). Laser sources reach far higher radiances than flashlamps due to
the confined nature of the beam as well as much smaller spectral bandwidths.
Flash lamps are common due to their low cost, but their broad emission
spectrum often translates to less efficient absorption and more heat deposited
in the laser rod [24]. They are always used in a side-pumped geometry.

Lasers can both be used in an end pumped scheme or by side pumping.
The principle of end pumping is shown in figure 2.4. Light from the pump
laser (typically a diode laser) enters the resonator from one or both ends of
the resonator and is absorbed in the rod. This pumping method has the
advantage that the pump spot size can be tuned to the fundamental mode
of the system. By choosing a laser diode with a specific wavelength, the
pumping can to some extent be adapted to a single or a few strong absorption
lines in the material.
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2.7 Q-switching
Q-switching is used to generate high intensity laser pulses. Q-switching uses
a modulator to alter between a state of high and low round trip loss in the
resonator. When the loss is high, lasing is blocked and the population of the
upper laser level can build up to values well above threshold. When the loss
is reduced to a low value, an intense pulse develops that quickly drains the
stored upper state population. The duration of the pulse is typically a few
nanoseconds, and the instantaneous power can reach megawatt-levels.

There are several methods of implementing a Q-switch. Two examples are
acousto-optical and electro-optical Q-switches. An acousto-optical Q-switch
uses sound waves to change the the refractive index in a material. This
diffracts and deflect the beam. An electro-optical Q-switch use an electric
field over a crystal to modify the polarization of the beam, which can be
utilized to block the wave from oscillating.

2.8 Thermal effects in laser crystals
A major limiting factor to power scaling in lasers are thermal effects in the
laser medium. With increasing heat dissipation in the laser crystal, it starts
to act like an aberrated lens. As the pump power scales even higher, the ther-
mal stresses in the material can ultimately lead to crystal fracture. Thermal
lensing can to some extent be compensated by introducing a lens with op-
posite power in the system, but the aberrations of a thermal lens are much
harder to mitigate.

Most of the heat dissipated in the crystal comes from the energy dif-
ference between the pump and laser photons. This difference is called the
quantum defect. The heat generated from the quantum defect can typically
be 20-30% of the absorbed pump power, depending on the pump and lasing
wavelength. Other processes that contribute to heat generation are energy
transfer upconversion, where energy is transferred between excited ions, as
well as nonradiative decays from the upper laser level.

The thermal lensing can be attributed to three mechanisms, thermo-
optical effects, stress-based effects and end-face expansion. These effects
vary in magnitude with the geometry and the material. The effects might
also vary in sign depending on the material.

Thermo-optical effects are caused by the temperature dependence of the
refractive index. The index of refraction will vary along with the temperature,
and this causes shifts in the phase of the beam. The strength of the effect
is given by the thermo-optic coefficient, dn/dT . The focal length of the
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induced lens from the thermo-optical effect can be both positive or negative
depending on the sign of the thermo-optical coefficient.

As the material heats up, it will expand. In the bulk of the material,
thermal stresses caused by the expansion cause a shift in the refractive index.
This is known as the photoelastic effect. The net shift in refractive index
from this effect causes a contribution to the thermal lensing. In addition
to thermal lensing, the photo-elastic effect also leads to thermally induced
birefringence.

A third contribution to thermal lensing comes from the end face deforma-
tion. Due to the thermal expansion, the end faces will expand and deform.
This can be imagined as a lens-like shape on the crystal’s edges, creating a
refractive interface.

There have been some measurements to determine the magnitude of the
various contributions to the thermal lensing. Neodymium doped YAG (yt-
trium aluminium garnet) has been studied extensively due to its widespread
use. Clarkson [11] estimates that approximately 86% of the thermal lens-
ing in end-pumped Nd:YAG comes from the thermo-optical effect, with the
rest from end face expansion and photoelastic effects. Koechner [24] cites a
value of 74% for the thermo-optical effects, with roughly 20% coming from
photo-elastic effects.

It is often hard to estimate the effects of thermal lensing in laser crystals.
Thermal lenses are generally aberrated, with a radially varying focal length.
This makes predicting their effect on the resonator mode difficult. Several of
the parameters related to thermal lensing varies or are virtually non-existent
in the literature. Some sources of heat are also difficult to estimate, such as
energy-transfer upconversion.

There are some simple cases where the thermal focal length can be evalu-
ated analytically. One such case is a uniformly pumped, very long cylindrical
rod with a constant boundary temperature. It can be shown that the tem-
perature profile has a parabolic shape [24]. This results in a uniform thermal
focal length. Using a Gaussian profile on the pump beam increases aberra-
tions significantly [11], with a radially dependent focal length.

A more realistic temperature profile in an end-pumped laser rod is shown
in figure 2.5. It shows the temperature profile in a 2 cm long, 4 mm diameter
0.5% neodymium doped LiYF4 (YLF) rod end-pumped by a laser diode with
wavelength of 808 nm. The pump power is 30 W, and the pump diode has a
Gaussian intensity profile. The temperature profile varies both radially and
longitudinally, as the pump is absorbed and drops in intensity. The juncture
in the center of the rod is an artefact of the solver used.

13



Figure 2.5: Cross section of a temperature profile in end-pumped Nd:YLF. The
temperature decreases longitudinally and radially.
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Chapter 3

Frequency conversion of laser
radiation

3.1 Ray propagation in uniaxial and biaxial
materials

The starting point for this chapter is a closer look on ray propagation in
anisotropic materials. As will be shown later, this is of importance for fulfill-
ing a criterion known as phase matching in nonlinear frequency conversion.

An isotropic material has a single value for the refractive index at a
given wavelength. This index of refraction is typically given in the form of a
Sellmeier equation, which is a fit to a series of measurements of the refractive
index as a function of wavelength. There can exist several different Sellmeier
equations for a single material.

In a uniaxial or biaxial material, the refractive index does not only vary
with the frequency of the wave, but it is also dependent on the polarization
of the propagating wave. This phenomenon is known as birefringence. For a
uniaxial material, the refractive index differs along one of the principal axes.
A wave polarized along this axis, denoted the optical axis, experiences a
different refractive index compared to the other two axes. A biaxial material
has a different value for each axis.

A common way of labelling the polarization of waves in a birefringent
crystal is using the notation of extraordinary and ordinary waves (e-waves
and o-waves). Consider propagation in one of the crystal planes in a biaxial
crystal. It is common to denote the wave with polarization in the crystal
plane an e-wave and the wave with the polarization orthogonal to the plane
an o-wave.
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Figure 3.1: Index ellipsoid in the xz-plane. The wave with wave vector ~k prop-
agates with an angle θ with respect to the z-axis.

Another way to label polarizations in birefringent materials use slow and
fast axes. This labelling use the value of the refractive index experienced
by the two polarizations. The polarization experiencing the lowest index of
refraction is labelled fast (due to the higher phase velocity v = c/n) with a
corresponding slow polarization.

A key concept in birefringent materials is the index ellipsoid. The index
ellipsoid specifies the magnitude of the refractive index for a given propaga-
tion direction, and can be used to find the refractive index for an arbitrary
ray. An illustration of the index ellipsoid is shown in figure 3.1. A wave with
wave vector ~k propagates in the xz-plane with an angle θ with respect to the
z-axis in a birefringent material. The two polarization states are either in
the xz-plane (ne) or along the y-axis (no).

The refractive index for the polarization in the xz-plane (e-polarization)
in figure 3.1, ne(θ), varies with the propagation angle θ and can be written
as

1
n2
e(θ)

= sin2 θ

n2
z

+ cos2 θ

n2
x

. (3.1)

Here, nx and nz refers to the refractive index along the x-axis and z-axis
respectively. The index ellipsoid can be used to calculate the refractive index
by choosing the propagation direction. This gives a gradual transition from
the index along one axis to another.

For birefringent materials, the wave vector and ~k and the electric field for
e-waves are not necessarily orthogonal [23]. As a result of this, the Poynting
vector (~S = ~E× ~H) is not parallel to the propagation direction. This leads to
an effect called walk-off, where the energy of the e-wave will diverge from the
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Figure 3.2: Walk-off. The e-wave and o-wave separate as they propagate through
a birefringent crystal with a walk-off angle ρ.

propagation axis. This means that an e-wave and an o-wave will separate as
they propagate in the crystal. An illustration of the walk-off effect is shown
in figure 3.2.

An expression can be found for the walk-off angle ρ in a unixial crystal
[23]

ρ = tan−1
(
n2
o

n2
e

tan θ
)
− θ. (3.2)

This equation can also be used to find the walk-off angle in biaxial crystals
when propagating in one of the crystal planes.

3.2 Nonlinear frequency conversion
Due to the limited number of suitable lasing transitions, many wavelengths
cannot be generated directly by lasers. Instead, nonlinear frequency conver-
sion can be used to generate these frequencies. One example of this is green
laser pointers, using frequency doubled light from a diode pumped solid state
laser.

In linear media, applying an electric field results in a linear response in
the polarization. However, this assumption does not hold if the amplitude of
the applied field becomes very large. This is often the case when illuminating
the material with a laser beam. In general, the polarization ~P of the medium
is given as a power series expansion in the electric field

Pi(E) = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ε0χ

(3)
ijklEjEkEl + . . . (3.3)

The Einstein notation for summation is used, meaning a sum over re-
peated indices. Indices refer to the three spatial directions x, y and z. The
expansion coefficients χ(n) are tensors of order n+1. They represent the n-th
order susceptibility of the material. ε0 is the vacuum permittivity.
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The most common type of nonlinear frequency conversion originates from
the second order term1 in (3.3). It can be shown this applies only to non-
centrosymmetric materials [23]. For a second order nonlinearity, the nonlin-
ear polarization ~PNL can be written as

PNL
i = 2ε0dijkEjEk. (3.4)

The coefficient dijk is similar to the expansion coefficient χ(2)
ijks (2dijk =

χ
(2)
ijk). This coefficient is usually of the order pm/V.

The nonlinear coefficient dijk is a third order tensor, and in its most
general form it has 27 components. However, symmetry considerations bring
this number down to 18. The non-zero elements in tensor are determined
by the point group of the material, and are tabulated for many nonlinear
materials (e.g. table 3.2 in [23]). To simplify calculation, a concept known
as the effective nonlinearity, deff is introduced. This is the effective nonlinear
coefficient for a given interaction when propagating in a specific propagation
plane.

Using the effective nonlinearity, the expression (3.4) can be rewritten to

PNL = 2ε0deffE
2. (3.5)

To illustrate how a nonlinear polarization can be used to generate new
frequencies, assume two plane waves with frequency ω1 and ω2 (ω1 > ω2)
propagates through a medium with a nonlinear polarization given by (3.5).
The electric field amplitude of the combined wave can be written as

E = E1 cos(k1z − ω1t+ φ1) + E2 cos(k2z − ω2t+ φ2). (3.6)

The plane waves have wave number ki = ωin/c (c the speed of light
and ni the refractive index evaluated at ωi), amplitude Ei and phase φi.
The nonlinear polarization of the medium can then be found from (3.5) by
squaring the expression for the field amplitude

PNL = 2ε0deff [E2
1 cos2(k1z − ω1t+ φ1) + E2

2 cos2(k2z − ω2t+ φ2)
+2E1E2 cos(k1z − ω1tφ1) cos(k2z − ω2t+ φ2)].

(3.7)

Setting 2ε0deff = γ, this result can be rewritten using trigonometric identities,
and leads to five different contributions

1Higher order terms can also play a role, but these are not relevant in the context of
this text
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PNL = γ

2E
2
1 cos[2(k1z − ω1t+ φ1)] + γ

2 cos[2(k2z − ω2t+ φ2)]

+γ2 (E2
1 + E2

2) + γE1E2 cos[(k1 + k2)z − (ω1 + ω2)t+ (φ1 + φ2)]

+γE1E2 cos[(k1 − k2)− (ω1 − ω2)t+ (φ1 − φ2)].

(3.8)

This oscillating polarization will then radiate away energy with the corre-
sponding frequencies [25]. The various terms in (3.8) correspond to different
processes. The two first terms are second harmonic generation of 2ω1 and
2ω2 respectively. Second harmonic generation is a frequency-doubling pro-
cess of the input frequency, and this can be seen from the expression as they
oscillate with frequency 2ω1 and 2ω2. The third term is simply a constant
term that is known as optical rectification.

The last two terms are sum frequency generation (SFG, with ω1 +ω2) and
difference frequency generation (DFG, with ω1 − ω2). Note that second har-
monic generation can be seen as a sub-process of sum frequency generation,
where ω1 = ω2.

One way of implementing the nonlinear frequency conversion can be us-
ing an optical parametric oscillator (OPO). An OPO uses the premise of
nonlinear frequency conversion along with an optical resonator to build a
macroscopic signal from noise. An OPO can both be an external resonator
(extracavity) or it can be included in the cavity of a laser to make an in-
tracavity OPO (IOPO). In an OPO, a pump wave (ω3) generates two new
waves from noise. These waves are denoted signal (ω2) and idler (ω1). This
process fulfils ω3 = ω2 +ω1, which can be regarded as an energy conservation
statement where a pump photon splits into a signal and an idler photon.

To further investigate the nonlinear interaction, the starting point is
Maxwell’s equations in a dielectric medium (see f.i. [25]). These can be
used to derive a wave equation in dielectric media

∇2 ~E = 1
c2
∂2 ~E

∂t2
+ µ0

∂2 ~P

∂t2
. (3.9)

E is the electric field amplitude and P is the polarization (from equation
(3.3). In the expression above, c is the speed of light and µ0 is the vacuum
permeability.

Assume three interacting waves with frequencies ω3 > ω2 ≥ ω1 propagate
through a material with a polarization given by (3.5). The electric field
amplitude for wave m can be written as

~Em = êmEm(z, t) exp(ikmz), (3.10)
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with km = ωmn(ωm)/c with n(ωn) = nm the refractive index and êm a unit
vector in the direction of the field. By making the slowly varying envelope
approximation [23], a set of coupled amplitude equations for the three fields
can be derived [26]

∂E1

∂z
= i

ω1

n1c
deffE3E

∗
2 exp(i∆kz), (3.11)

∂E2

∂z
= i

ω2

n2c
deffE3E

∗
1 exp(i∆kz), (3.12)

∂E3

∂z
= i

ω3

n3c
deffE1E2 exp(−i∆kz). (3.13)

In the previous equations, ∆k is the phase mismatch, ∆k = k3 − k2 − k1
and deff the effective nonlinearity. While the coupled amplitude equations
can be solved exactly, there are some simplifications that can be illustrative.
One such example is for difference frequency generation (with ω1 = ω3−ω2).
Making the assumption that there is no depletion of fields E2 and E3, the
amplitude E1 can be found by integrating (3.11)

E1(z) = iω1deff

n1c
E3E

∗
2e
i i∆kz

2
sin

(
∆kz

2

)
∆k . (3.14)

The corresponding intensity I1, proportional to the square of the ampli-
tude, can be found to be

I1 = ε0ω
2
1d

2
effz

2

n1c
|E3|2|E2|2 sinc2

(
∆kz

2

)
. (3.15)

The resulting intensity is proportional to the amplitudes of the two other
waves. In addition, the phase mismatch, ∆k, plays a central role in the
conversion. The sinc2-function has a global maximum when ∆k = 0 (as
z > 0), indicating that the optimal conversion happens when the phase
mismatch is zero. This is known as the phase matching criterion.

For the case of DFG, the phase matching criterion can be rewritten as

ω3n(ω3) = ω1n(ω1) + ω2n(ω2), ω3 = ω2 + ω1. (3.16)

As the refractive index generally varies with frequency, this relation can-
not be fulfilled in isotropic materials. However, this problem can be cir-
cumvented in uniaxial or biaxial materials where the refractive index can be
tuned with the polarization and the propagation direction.
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3.3 Phase matching
The phase matching criterion can be solved by finding the polarizations and
propagation direction that satisfies the phase matching criterion (A.4). With
normal dispersion, the refractive index increases with growing frequency.
This results in the wave with the highest frequency having the lowest phase
velocity. To counteract this, the polarization of this wave is laid along the
fast axis. The remaining waves can be polarized along either the slow or fast
axis. The polarization of these beams define the phase matching type. The
various phase matching types are listed in table 3.1. Several properties, such
as the effective nonlinearity and phase matching bandwidth are dependent
on the phase matching type.

Table 3.1: Phase matching types
Type ω3 ω2 ω1

Pump Signal Idler

I Fast Slow Slow
IIa Fast Slow Fast
IIb Fast Fast Slow

In a birefringent material, the propagation direction is given by the polar
angle φ and the azimuthal angle θ. For simplicity, the propagation is chosen
to lie in one of the main symmetry planes. This specifies either φ or θ.
The angle where the phase matching criterion is fulfilled is called the phase
matching angle.

It is possible to derive expressions for the phase matching angle for some
types of phase matching in certain crystal planes. A derivation of the phase
matching angle θ for type IIb phase matching in the xz-plane of a biaxial
material is shown in the appendix (A.4). The resulting expression can be
used to find the phase matching angle for DFG using a fixed pump ω3 and a
varying signal ω2. The idler frequency is determined by ω1 = ω3−ω2. Similar
expressions exist for different phase matching types and crystal planes [27].

In figure 3.3, the phase matching angle (A.4) is shown for a specific mate-
rial with varying signal wavelength. The material is KTA (potassium titanyl
arsenate, KTiOAsO4) with propagation in the xz-plane. The pump wave-
length is fixed at 1053 nm. This corresponds to a case of a neodymium doped
LiYF4 pump laser undergoing difference frequency generation. The value of
the phase matching angle can vary slightly if a different Sellmeier equation
for the material is used.

The effective nonlinearity can be found once the phase matching type
and angle are determined. For the example above, the effective nonlinearity
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Figure 3.3: Phase matching angles as a function of signal wavelength for type
IIa and IIb phase matching in KTA for propagation in the xz-plane. The pump
wavelength is fixed at 1053 nm
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Figure 3.4: Effective nonlinearity deff for type II phase matching in KTA for
varying signal wavelength. Propagation in the xz-plane. The pump wavelength
is fixed to 1053 nm.

can be written as deff = d24 sin θ, with d24 = 4.5 pm/V [28]. The effective
nonlinearity for type II phase matching in the xz-plane for KTA is shown in
figure 3.4.

For a given nonlinear process (e.g. an OPO amplifying a signal ω2), there
is a certain phase matching bandwidth where conversion will take place. This
bandwidth can be derived from (3.15), and this is done in the appendix (A.9)
for a pump beam with no bandwidth. The phase matching bandwidth for
type IIb phase matched KTA in the xz-plane for varying signal wavelength
is shown in figure 3.5. The pump wavelength is fixed at 1053 nm.

The walk-off effect also affects the conversion. Walk-off sets a limit to the
interaction length due to the physical separation of the beams. When the
beams no longer overlap, the conversion will cease. This is dependent on the
walk off angle (3.2) and the beam diameters.

23



Figure 3.5: Phase matching bandwidth in type IIb phase matched KTA in the
xz-plane as a function of signal wavelength. The pump wavelength is fixed at
1053 nm.
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Figure 3.6: Fundamental concept of an IOPO. The OPO resonator formed by
mirrors M2 and M3 is a part of the laser resonator formed by mirrors M1 and M3.

3.4 Dynamics of an intracavity optical para-
metric oscillator

The fundamental concept of an IOPO is shown in figure 3.6. The mirrors
M1 and M3 form the laser resonator, and the mirrors M2 and M3 form the
OPO resonator with a nonlinear crystal inside. Both mirror M1 and M3 are
highly reflective at the pump frequency ω3, so the pump is contained within
the resonator. M3 is chosen to have a suitable output coupling at the signal
and the idler frequencies.

The full dynamics of an IOPO is beyond the scope of this text. However,
there are some key concepts that come from a qualitative analysis of the
system. Assume a Q-switched laser is pumping an IOPO. When the Q-
switch opens, the pump pulse starts building in intensity. Conversion does
not start until the pump pulse has surpassed the OPO threshold. As the
signal output grows in intensity, it starts depleting the pump pulse. With
optimal timing, the signal pulse starts when the pump pulse has reached its
maximum [14]. At this point, all the energy has been extracted from the
laser rod. Rapid pump depletion is desired to avoid damage on components
due to the high intensities in the resonator.

If the signal starts too early, it can deplete the pump before it manages
to extract all the energy from the laser rod. If there is sufficient energy left
in the rod, the process can repeat itself and lead to multiple pulses. This
can happen if the nonlinear crystal is too long. If the nonlinear crystal is too
short, the signal pulse can start too late and lead to energy being lost to the
resonator round trip loss.

Numerical simulations are useful to illustrate several of these phenomena
(e.g. [13] and [14]). Multipulsing and inefficient conversion is shown in figure
3.7 for an OPO pump of 1053 nm and an OPO signal of 1600 nm. The
nonlinear crystal is KTA with type IIb phase matching in the xz-plane. In
(a), the crystal length is 15 mm long, in (b) this is reduced to 5 mm.
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Figure 3.7: Illustration showing multipulsing for a 15 mm long nonlinear crystal
(a) and inefficient conversion for a 5 mm long nonlinear crystal (b).
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Chapter 4

Computational methods

This chapter will describe a general method for simulating a Q-switched in-
tracavity optical parametric oscillator (IOPO). An IOPO is a fairly complex
physical system. It involves the interactions in the laser medium, the non-
linear interactions and thermal effects in the laser rod, and is well suited for
computer simulations. For this purpose, a computational model for solving
the dynamics of this system will be described in the following sections.

The concept of pumping is used both in the context of the laser diode
pumping a laser and a beam pumping an OPO. To avoid confusion, anything
referring to pump or pump beams refer to the laser diode pump. The OPO
pump coming from the solid state laser will be referred to as the 1µm signal.
The output from the OPO will be referred to as the 1.6µm signal. Any
mention of population refers to the population in the upper laser level.

4.1 Simulation software
The simulations uses a combination of two different software. The primary
software is SISYFOS (Simulation System for Optical Sciences), a software
developed at FFI. It can take into account 3D diffraction with spectral reso-
lution, dispersion, laser media interaction and nonlinear interactions. Sisyfos
can simulate various thermal effects of the laser rod, notably a temperature
dependent refraction index and end face expansion. The simulations can use
several spatial symmetries (cylindrical, half plane, quadrant) as well as run
plane wave simulations [29].

Sisyfos implements the thermal effects in different ways depending on the
effect. The thermo-optical effect is implemented by introducing a temper-
ature profile in the material and specifying the thermo-optical coefficients.
The end face deformation is implemented as two lenses with a given expan-
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sion profile and a given refractive index. At the time of writing, photoelastic
effects were not implemented in Sisyfos, and these are therefore not included
in the simulations.

Sisyfos relies on an external source to supply both temperature profile
and displacement data. In the simulations, this is supplied by the finite
element method (FEM) software Comsol Multiphysics. Comsol also supplies
the values of the thermal stress to compare against the fracture limit to
ensure that the structural integrity is preserved. Python was employed to
manage the data flow between Sisyfos and Comsol, as well as keeping track
of simulation parameters.

4.2 Simulation structure
Our scope is to study the dynamics of a continuously pumped, Q-switched
IOPO. To do this, an iterative scheme with repeated pumping and lasing
was implemented. The procedure follows a three step iteration that can be
summarized in the following points

• Pump simulation. Build up a population inversion and deposit heat
(Sisyfos)

• FEM analysis of thermal effects. Find steady state temperature profile,
expansion and stress (Comsol)

• Laser simulation. Generate a pulse from the stored population, using
a calculated thermal lens (Sisyfos)

After performing these three steps, the process is repeated. This proce-
dure is performed for a given number of iterations, checking for convergence.
The goal is to find the steady state solution with stable output.

The justification behind this kind of scheme comes from the dynamics of
the system. When the Q-switch is closed, the only dynamic of interest is the
storage of energy in the medium (population and heat). This happens over
a time scale of 200µs for a pulse repetition rate of 5 kHz. There is no need
for a fine time resolution in this part, as the dynamics are fairly slow. In
comparison, the pulse can build up and pass in a time span of 200-500 ns.
Splitting the pumping and the pulse allows much better resolution of the
pulse without needlessly increasing the computational time.

The heat stored in the pump simulation is used to calculate the corre-
sponding thermal lensing. The data imported to Comsol is the total heat
absorbed per unit volume. This is multiplied with the repetition rate to give
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the steady state heat generation. The laser rod is assumed to be cylindrical
with cooling along the sides. The exterior is assumed to keep a constant
temperature of 293 K. Approximately 20-30% of the absorbed pump energy
is deposited as heat in the laser rod, depending on the pump wavelength.

The population stored after pumping is used as an initial condition for a
pulse simulation. Both the temperature profile and the end face expansion are
included in this simulation. The simulation is run until the pulse has passed,
or in the case of IOPO simulations when the 1µm pulse has dissipated.

After the pulse has passed, the remaining population (if any) is used as
an initial condition for a new pump simulation. The thermal effects used for
the pulse are included in this simulation to study how the pump distribution
changes with thermal lensing. In theory, the inclusion of thermal effects on
the pump simulation could lead to an infinite loop where the temperature
profile does not stabilize. Fortunately, all configurations tested converged in
a rapid manner.

The nonlinear crystal will typically absorb some of the interacting beams,
leading to heat dissipation in the crystal. For simplicity, all thermal effects
were ignored in the nonlinear crystal. However, these effects could be imple-
mented in a similar manner as the thermal effects in the laser rod.

The simulation can switch between two modes, with or without the IOPO
element. When enabling the OPO, the output coupler is simply replaced with
a resonator consisting of two mirrors and a nonlinear crystal. In this way,
the simulations can switch between simulating with the nonlinear conversion
or not.

The pump laser diode is simulated with no bandwidth. This simplifies the
pump simulation.When only simulating the 1µm signal, this is also done with
no bandwidth. However, as the spectral properties of the 1µm signal can
affect the OPO output, it is not expected that this gives a correct result when
performing IOPO simulations. This is corrected by giving the 1µm emission
cross section a bandwidth (as specified by the material) and running the
IOPO simulations with spectral resolution.

The simulations are run with a spatial resolution of 0.1 mm. This was
found to work well for almost all cases. The pump simulation is run for
approximately 200µs, and has a time resolution of 1µs. The pulse simula-
tion is typically run for a few hundred nanoseconds (250-500 ns). Without
the IOPO, the time resolution is the same as the round trip time of the
resonator (most cases around 1.5 ns). When simulating with the IOPO, the
time resolution is finer (most cases around 0.4 ps).
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Chapter 5

Simulation goals and
parameters

5.1 Simulation goals
The goal of the simulations is to design and optimize an intracavity optical
parametric oscillator with a tunable signal around 1.6µm. The IOPO is
pumped by a Q-switched, end-pumped Nd:YLF laser with a wavelength of
1053 nm.

The desired specifications can be summarized to

• Signal pulse energies of 1 mJ or higher when supplied with 30 W input
power from the pump diodes at 5 kHz pulse repetition rates with a
wavelength of 1.6µm

• A beam quality (M2) of 2 or better.

• Temporal pulse width equal or less than 10 ns.

• Radiant fluences below damage thresholds (3 J/cm2).

A too high fluence on the nonlinear crystal or laser rod can cause damage
to the antireflective coating. Damage threshold for the nonlinear crystal coat-
ings is set to 2-3 J/cm2. This estimate is a lowered threshold of the threshold
given in [30]. This damage threshold is specified for KTP (potassium titanyl
phosphate, KTiOPO4), and has a value of 4 J/cm2.

An intracavity OPO was chosen over an extracavity OPO, as IOPOs can
potentially reach higher efficiencies than external OPOs [8] and can be made
more compact (see f.i. [15]). The disadvantage is that the higher fluences in
the resonator can cause damage more easily.
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The simulations are split into three parts. The first is to reproduce the
results from an IOPO demonstrated by Peng et al. [17]. This is done to en-
sure our simulation produces sensible results and to calibrate the simulation
parameters. Ref. [17] was chosen as it uses the same materials (Nd:YLF and
KTA) as well as similar pump power and repetition rates to those specified
above. The second section studies sensitivity for variation of some selected
parameters. The third focuses on optimizing the design of an IOPO by find-
ing a suitable set of simulation parameters, given the specifications above.

5.2 Choice of materials
The laser rod material chosen for this application is neodymium doped LiYF4
(yttrium lithium fluoride, YLF). YLF has several properties that make it a
well suited choice over some of the other alternatives, notably Nd:YAG (yt-
trium aluminium garnet, Y3Al5O12) and Nd:YVO4 (yttrium orthovandate).
The upper state lifetime of YLF is approximately 480µs [31] compared to
250µs in YAG [31] and 100µs in YVO4. Using a pulse repetition rate of
5 kHz (pumping time of approx 200µs) makes YVO4 unattractive due to the
short lifetime. Compared to YAG, YLF has lower stimulated emission cross
section [31], and is YLF is more brittle than YAG. However, the thermal
lensing is weaker in YLF [10]. This, along with a higher upper state lifetime
favours the choice of YLF.

YLF is a birefringent material, and the lasing wavelength is polarization
dependent. The polarization parallel to the crystal axis (π-polarization) has
a wavelength of 1047 nm, whereas the polarization orthogonal to the crystal
axis (σ-polarization) has a wavelength of 1053 nm. Due to the natural bire-
fringence in the material, there is virtually no issue with thermally induced
birefringence [24].

The σ-polarization (1053 nm) was chosen for lasing. While having lower
stimulated emission cross section, the thermal lensing is also lower for this
polarization. The π-line can be blocked from oscillating by insertion of a
polarizer in the resonator that blocks this polarization.

The most relevant material data for Nd:YLF are listed in table 5.1. Data
from [11, 31, 32]. Some of the values are polarization-dependent or vary
between axes.
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Table 5.1: YLF material properties
Lasing wavelength 1047 nm (π)

1053 nm (σ)
Thermo-optic coeff. -4.3 ppm/K (π)

-2 ppm/K (σ)
Emission cross section 3.7·10−19 cm2 (π)

2.6·10−19 cm2 (σ)
Lasing linewidth 14.5 cm−1 (π)

12.5 cm−1 (σ)
Linear expansion coeff. 8 ppm/K (‖ c-axis)

13 ppm/K (⊥ c-axis)
Upper state lifetime 480µs
Density 3.95 g/cm3

Thermal conductivity 6 W/mK
Ultimate tensile strength 40 MPa
Young’s Modulus 7.65·109 kg/m2

Poisson’s ratio 0.33
Upconversion rate 17·10−17 cm3/s
Refractive index (1064 nm) 1.46

Table 5.2: KTA material properties
Point group mm2
Density 3.454 g/cm3

Refractive index (1053 nm) 1.868 (z)
1.793 (y)
1.789 (x)

Nonlinear coefficient 2.5 pm/V (d15)
4.5 pm/V (d24)
2.8 pm/V (d31)
4.2 pm/V (d32)
16.2 pm/V (d33)

The nonlinear crystal is chosen to be KTA (potassium titanyl arsenate,
KTiOAsO4). Compared to a similar material like KTP it has a higher damage
threshold [33] and better IR-transparency (figure B.1, [34]). The simulations
will employ a type IIb phase matching with propagation in the xz-plane. The
phase matching properties (phase matching angles, effective nonlinearity and
phase matching bandwidth) for this phase matching type can be found in
figure 3.3, 3.4 and 3.5. Some material properties are listed in table 5.2, data
from [28].
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Figure 5.1: Resonator design. Main components labelled (a)-(e), mirrors M1-M5
and resonator dimensions L1 − L3. The pump is shown in blue, the 1µm signal
in red and the 1.6µm signal in yellow.

5.3 Resonator design and simulation param-
eters

An illustration of the resonator design is shown in figure 5.1. The pump
profile (blue), 1µm signal profile (red) and the 1.6µm signal (yellow) are
illustrated. The main components are labelled (a)-(e), and are given as
follows: (a) pump diode and focusing element, (b) laser rod, (c) quarter
wave plate, (d) modulator, (e) KTA crystal.

The mirrors are labelled M1-M5, and are summarized in table 5.3. The
mirrors are denoted by their reflectivity, being highly reflecting (HR), par-
tially reflecting (PR) and anti-reflecting (AR). The resonator lengths are
labelled L1−L3. L1 is the total length between mirrors M1 and M2, L2 is the
total length between mirrors M2 and M4 and L3 is the total length between
mirrors M4 and M5 (OPO resonator length).

The folding mirror M2 has two primary purposes. It splits the resonator
into two arms. This separates the pump and laser signal paths as the pump
continues to M3. It also acts as a focusing element, focusing the beam towards
the mirror M4 and the nonlinear crystal. In the simulations, the mirror M2
is placed very close to the laser rod.
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Figure 5.2: Stability diagram for resonator in figure 5.1. This is shown for
variations in the radius of curvatures of mirrors M1 and M2 with a fixed resonator
length. The areas in black are stable, with the areas in white unstable.

The pump enters through mirror M1 and is focused in the center of the
laser rod with a suitable focusing element. The pump mirror M3 reflects
the pump beam back for another pass through the crystal. The radius of
curvature of the mirror is chosen to match the pump beam curvature (2.7)
so the pump beam retraces itself on the return pass. The spacing between
the pump mirror and the folding mirror M2 is taken to be a few centimetres.

A stability diagram for the resonator found from (2.14) is shown in figure
5.2. This is shown for variations in the curvature of the mirrors M1 and M2.
This is found for L1 = 6 cm and L2 +L3 = 15 cm for no thermal lensing. The
areas marked in black are stable, with the areas in white unstable.

Absorption in YLF is polarization dependent. The pump light emitted
from the pump diodes is assumed to be equally split in two polarization
states. To ensure good absorption, a quarter wave plate (ref (c) in figure 5.1)
is inserted. This wave plate swaps the polarization state of the pump on the
return pass, resulting in equal absorption of both polarizations.
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Table 5.3: Resonator mirrors

Mirror Radius of curvature Reflectivity
M1 Adjustable HR at 1053 nm

AR at 808/877 nm
M2 Adjustable HR at 1053 nm

AR at 808/877 nm
M3 Adjustable HR at 808/877 nm
M4 Plane AR at 1053 nm

HR at ∼1600 nm
M5 Plane HR at 1053 nm

PR at ∼1600 nm

Table 5.4: Absorption cross sections in Nd:YLF

Wavelength (nm) Polarization Cross section (cm2)

808 π 9.15·10−21

σ 1.39·10−20

877 π 3.03·10−21

σ 2.79·10−21

The pump is a fiber coupled laser diode with a wavelength of 808 nm or
877 nm. The maximum output power of the pump is 30 W and the beam
quality is M2

P ≈ 40 [35]. The absorption cross sections for these wavelengths
were found from absorption measurements at FFI [35]. They are listed in
table 5.4. The absorption measurements are shown in figure B.2.

5.4 Parameter uncertainty
Some simulation parameters are hard to estimate accurately or vary between
sources in the literature. One example is the resonator round trip loss. This is
seldom known to high accuracy. The value of this parameter strongly affects
the output power of the laser as well as the fluences in the resonator. An
estimate for the loss can be found by making an estimate for each component
and summing up to a total loss.

Some sources [12, 36] specifies two values for the thermal conductivity
in YLF, either along the crystal axis (7 W/mK) or perpendicular to this
axis (5.3 W/mK). Other references [24, 31, 32] specify one value of 6 W/mK,
which is the value used in the simulations. This value seem to be some sort
of compromise between the two values.
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The thermo-optical coefficient is crucial to determine the thermal lensing.
There exists at least two different values for the thermo-optical coefficients
in the literature. The values listed in table 5.1 are tabulated in [31], but a
different set of values are given by Aggarwal et al. [36]. They cite values
of -4.6 ppm/K and -6.6 ppm/K for σ- and π-polarization respectively. An
incorrect value of this parameter could make an otherwise stable resonator
unstable (or vice versa).

The value for the upconversion rate is not certain. The value listed in ta-
ble 5.1 (17·10−17 cm3/s) comes from Clarkson [11], but this rate might change
with doping concentration [37]. This dependence on the doping is assumed
to stem from clustering of dopant ions at higher doping concentrations.
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Chapter 6

Simulation Results

This chapter is split in three sections. The first is a comparison between
the simulations and results from a similar IOPO. Then follows a brief look
at parameter sensitivity for some given parameters. The last part is an
optimization based on the resonator described in the previous chapter. This
section is further split into two parts. The first optimizes the 1µm signal, the
second uses these results to optimize the IOPO design with the specifications
given in the previous chapter.

6.1 Comparison of simulations to experimen-
tal results

To validate the computational model used, it was compared to experimental
results. The model was compared to a similar design done by Peng et al. [17].
They use a diode pumped, Q-switched Nd:YLF laser with a KTA IOPO to
generate a signal around 1.9µm, using a resonator similar to the one shown
in figure 5.1.

Peng et al. have results for both a pure 1µm signal as well as IOPO
signal output (1.9µm signal). The results from the article are listed in table
6.1. Included in this are the average output power of the pure 1µm signal
and pulse energies for the 1.9µm signal at fixed repetition rates. All results
are stated for a pump power of 36 W. There is no mention of beam quality
besides a value of 1.1 for the 1µm signal output.

The pump diode beam quality is estimated to be M2
P ∼ 300 from values

stated in the article. For the 1µm signal, the round trip loss was estimated
to be 5%. This value was found by assuming a 0.5% loss in each component
per pass. When using the IOPO, the round trip loss was set to 10%.
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Table 6.1: Peng et al. results

Rep.rate (kHz) 1µm output (W) 1.9µm pulse energies (mJ)

1 6.5 2.5
2 9.2 1.55
4.5 11.6 0.67

Table 6.2: Simulation results

Rep.rate (kHz) 1µm output (W) 1.9µm pulse energies (mJ)

1 6.15 2.25
2 9 1.38
4.5 10.85 0.68

The simulation results are listed in table 6.2. The simulations gave a
beam quality of approximately 1.2 for the 1µm signal and 3.5 for the 1.9µm
signal.

In the simulation, the 1.9µm signal pulse widths were approximately 6 ns
(FWHM) for all repetition rates. The entire pulse passes in ∼20 ns. The
simulations gave a total fluence in front of the KTA crystal of 15 J/cm2 for
1 kHz repetition rate, with a reduction to 8-9 J/cm2 for 4.5 kHz. Double
pulsing is also seen for a repetition rate of 1 kHz.

6.2 Parameter sensitivity
This section gives a brief look on parameter sensitivity in the simulations.
Three parameters are tested, the round trip loss, the thermo-optical coeffi-
cient and the upconversion rate. In addition to this, the effects of the thermal
lensing is investigated by removing the thermal lensing completely.

All simulations in this section are simulations of the 1µm signal and use
a 3 cm long, 1 at.% doped rod pumped with a wavelength of 877 nm. The
pulse repetition rate is 5 kHz and the internal round trip loss is set to 10%.
Other simulation parameters are found in table 6.3.

To demonstrate the effects of thermal lensing on the system, s simula-
tion with all thermal lensing removed was compared to a simulation with
thermal lensing included. The simulation without thermal lensing gave an
average output power of 11.8 W with a beam quality of approximately 1.02.
The simulation with thermal lensing gave an average output power of 12 W
with a beam quality of 1.3. The 1/e2-radius for some specific positions in
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Figure 6.1: Beam size comparison of the 1/e2-radius with and without thermal
lensing to the fundamental mode.

the resonator of the two cases are shown in figure 6.1. It also shows the
fundamental mode found from (2.13).

Next, the round trip loss was altered from its initial value of 10% down
to 0. The output power increased from 12 W with 10% loss to approximately
15.9 W for no loss. The maximum fluence at the output coupling also in-
creased with lower losses, from a value of 7.9 J/cm2 up to 10.5 J/cm2 for no
loss.

To test the dependence on the thermo-optical coefficients, two differing
values were compared to see their effect on the output. The two values tested
were -2 ppm/K [31] and -4.6 ppm/K [36]. The output had an average power
of 12 W and 6 W with a beam quality of 1.3 and 3.6 for the values of -2 ppm/K
and -4.6 ppm/K respectively.

The last parameter tested was the upconversion rate. The simulations
done compared no upconversion with the value listed in table 5.11. Including
the upconversion resulted in a 5-6% increase in the heat dissipated in the laser
rod. The output power dropped from 12.2 W to 12 W. Both simulations had
a beam quality of approx. 1.3.

117·10−17 cm3/s, ref. [11]
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Table 6.3: Section 6.2 simulation parameters
L1 7 cm
L2 44 cm
M1 RoC -50 cm
M2 RoC 60 cm
OC 30%
rp (e−2) 0.5 mm

6.3 Optimization of IOPO design
The last section focuses on finding an optimized IOPO design. This is split
in two parts. The first part will focus solely on optimizing the resonator for
optimal output of the 1µm signal. The second includes an intracavity OPO
and focuses on the 1.6µm signal output.

Unless stated otherwise, the pulse repetition rate is set to 5 kHz, the
round trip loss to 10% and the input power to 30 W. The laser rod can vary
in length and doping percentage, but it is assumed to be cylindrical with a
diameter of 4 mm. Pump radius is defined as the e−2-radius of the beam at
focus.

6.3.1 1 µm signal optimization
To make the resonator relatively compact, the length of the second arm
formed by mirror M2 and the OPO was limited to 15 cm. For the simulations
without the OPO, this sets L2 to 15 cm.

The rod was chosen to be 3 cm long with an 1% doping concentration.
This is pumped with a wavelength of 877 nm. This gives an absorption that is
greater than 90%. The thermal stresses never surpassed 6.5 MPa (von Mises
stress) for a pump power of 30 W. An output coupling of 30% was found to
be optimal when the round trip loss was set to 10%.

A pump wavelength of 808 nm was also tested. For this pump wavelength,
the doping concentration was lowered to 0.5%. In comparison to the 3 cm,
1% doped, 877 nm pumped rod, a 2 cm long, 0.5% doped, 808 nm pumped
rod produced roughly the same average output power (∼12 W). The rod
pumped with 808 nm had slightly worse beam quality (1.5 versus 1.3) and
the maximum thermal stress reached approximately 12 MPa.

Contour plots showing variations in output power, maximum total fluence
at the output coupler and beam quality (M2) are shown in figure 6.2 for
variations in the pump radius and the radius of curvature of the mirror M2.
Other simulation parameters are found in table 6.4.
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Table 6.4: 1µm optimization simulation parameters
L1 6 cm
L2 15 cm
M1 RoC -50 cm
OC 30%

The maximum output power in figure 6.2 (a) is estimated to occur for a
curvature R of 75 cm and a pump radius rp of 0.35 mm. An input/output
(IO) curve for these specific parameters is shown in figure 6.3. This is labelled
case 1. It also includes a curve for the values used in the IOPO simulations
(next section). This is labelled case 2. Here, R = 86 cm and rp = 0.5 mm.
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Figure 6.2: Contour plots of output power (a), maximum total fluence at the
output coupler (b) and beam quality M2 (c) for variations in the radius of cur-
vature and pump radius.
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Figure 6.3: IO-curve showing output power (a) and beam quality M2 (b) for
two specific choices of pump radius rp and M2 curvature R. Case 1 corresponds
to rp = 0.35 mm and R = 75 cm, and case 2 to rp = 0.5 mm and R = 86 cm
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Figure 6.4: Average pulse energy of the 1.6µm signal (a) and maximum total
fluence at the KTA crystal (b) for varying radius of curvature of the mirror M2.

6.3.2 IOPO optimization
When simulating with the IOPO, the length of L2 was reduced to 12 cm with
an OPO length L3 of approximately 3 cm. This keeps the total arm length
between M2 and M5 fixed at 15 cm.

Including the IOPO caused the fluences in the system to increase. This is
seen in figure 6.4, where the pulse energy of the 1.6µm signal and maximum
total fluence in front on the KTA crystal is illustrated for varying radius of
curvature of the mirror M2. Other simulation parameters are found in table
6.5. For a value of 75 cm, the fluence reached values of 6-7 J/cm2, which
surpasses the damage threshold (3 J/cm2). A value of 86 cm was chosen for
the radius of curvature in order to get below the damage threshold.
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Table 6.5: IOPO simulation parameters
L1 6 cm
L2 12 cm
L3 3± 0.3 cm
M1 RoC -50 cm
M2 RoC 86 cm
OC (1.6µm) 50%
OC (idler) 100%
rp (e−2) 0.5 mm

The design was further tested for variations in the KTA crystal length.
The KTA crystal length was varied from 8 to 13 mm. An important consider-
ation here is to avoid double pulsing. Other simulation parameters are found
in table 6.5. The results are shown in figure 6.5 for pulse energy, maximum
total fluence (at the KTA crystal) and beam quality. No double pulsing was
observed for any of the crystals lengths tested in this simulation.

From these results, a value of 10 mm was chosen considering all three
parameters shown in figure 6.5. The pulse shape for this specific value is
seen in figure 6.6. It shows the signal pulse with the corresponding 1µm
pump pulse. The average pulse energy is 1.16 mJ with a beam quality of
approximately 2. The pulse width is 3.6 ns (FWHM), with the entire pulse
passing in 15 ns. In addition to this, the OPO generated an idler with a
wavelength of 3.08µm and 0.42 mJ average pulse energy.

Field distributions for the total near field and total far field of both the
1µm and 1.6µm signal are shown in figure 6.7. Fields (a)-(b) are the total
near/far field of the 1µm signal at the front of the KTA crystal. The fields
(c)-(d) are similarly the 1.6µm fields at the output coupler M5. The wave-
length spectrum of the signal and idler is shown in figure 6.8. The FWHM
bandwidth of the 1.6µm signal is estimated to 1-1.5 nm and approximately
5 nm for the idler.

To demonstrate the ability to tune signal wavelength, the simulations
were run with a varying signal wavelength. The resulting change in phase
matching angle and effective nonlinearity can then be found from figure 3.3
and 3.4. The pulse energies for varying signal wavelength are shown in figure
6.9.
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Figure 6.5: Average pulse energy (a), maximum total fluence at the KTA crystal
(b) and beam quality (c) as a function of KTA crystal length for the 1.6µm
signal.
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Figure 6.6: Pulse shapes, showing both the 1µm pulse and the 1.6µm signal
pulse. The pulses have been smoothed by a low pass filter.
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Figure 6.7: Figure showing total near field and total far field of the 1µm signal
at the KTA crystal (a-b) and total near field and total far field of the 1.6µm
signal at the output coupler M5 (c-d).

48



Figure 6.8: Wavelength spectrum of 1.6µm signal (a) and idler (b).

Figure 6.9: Tuning curve showing variations in pulse energies for varying IOPO
signal wavelength.
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Chapter 7

Discussion and conclusion

7.1 Comparison of simulations to experimen-
tal results

The simulations started out with a test of the computational model with
experimental results. This was done to check the correspondence between
simulated results and actual experiments. Peng et al. [17] was chosen as
they used a combination of YLF and KTA. The design of the resonator was
to some extent motivated by their design.

One thing that did not match the article was the type of phase matching.
Peng et al. specifies phase matching in the yz-plane in their article, but it was
found that the conversion in this phase matching type was too low. It was
therefore judged that the actual results had used type IIb phase matching in
the xz-plane as this gives the highest nonlinear coefficient.

As mentioned in the previous chapter, Peng et al. have both results for
a pure 1µm signal and for a 1.9µm signal from an IOPO. For the 1µm
signal, they report average output powers of 6.5, 9.2 and 11.6 W for fixed
repetition rates of 1, 2 and 4.5 kHz. The simulation results are 6.15, 9 and
10.85 W respectively. This difference could simply be attributed to a too
high estimate for the round trip loss used in the simulations.

For the IOPO, Peng et al. specifies 1.9µm signal pulse energies of 2.5,
1.55 and 0.67 mJ for the same repetition rates. The simulation results are
2.25, 1.38 and 0.68 mJ. Peng et al. states that they get double pulsing for a
repetition rate of 1 kHz, and this is also seen in the simulations.

The difference in IOPO pulse energies cannot be explained by the round
trip loss alone. The simulation pulse energies are lower for 1 and 2 kHz,
but higher for 4.5 kHz. In the article, the pulse energies die off when the
repetition rate is set even higher (ref. figure 6 in [17]). This does not seem
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to be the case for the simulations. One indication of this is seen in the pulse
durations. Peng et al. states values of 10, 15 and 41 ns for pulse widths
(1 kHz, 2 kHz and 4.5 kHz respectively). The simulations produced a FWHM
pulse width of 6 ns for all repetition rates. The cause of this discrepancy is
unclear.

Another serious concern are the fluences in the simulations. The article
does not mention any numbers relating to the fluences, but the values from
the simulations are higher than what is expected to cause damage on compo-
nents. The lowest value obtained was approximately 8-9 J/cm2, almost three
times the value considered as the damage threshold. Peng et al. only men-
tions coating damage when generating a signal with a wavelength of 1.6µm.
This damage is attributed to idler absorption in water. The high fluences
might be a result of the remaining pump after the signal pulse has passed.

7.2 Parameter sensitivity
One of the advantages with computer simulations is that they allow for rapid
testing of various parameters. Included in the results was a brief look on
parameter sensitivity on some specific parameters. There are numerous pa-
rameters that could be tested, but time limitations hindered more extensive
testing.

A high round trip loss reduces the pulse energies from the laser as well as
the fluences in the resonator. Going from a lossless resonator to a 10% round
trip loss reduced the average output power by almost 25%. Meanwhile, the
fluences in the resonator decreased correspondingly by 25%. While a low
loss is usually beneficial, it might be an advantage to include some loss in
applications where it is important to avoid component damage. This way,
the application can sacrifice pulse energy to avoid damage.

An important goal was to include the thermal lensing in the simulations.
The exact influence of the thermal lensing is seen in figure 6.1. Without the
thermal lensing, the beam width is seen to fit very well with the theoretical
mode size in the resonator. When the thermal lensing is included, the mode
profile is altered. The beam quality deteriorates slightly from 1.02 to 1.3.
This is most likely cause by the aberrations of the thermal lens. The average
output power increases slightly (1.7%), which is likely a result of a slightly
better overlap between the pump and the signal in the laser rod (positioned
between 4-7 cm mark in figure 6.1).

An important part of determining the strength of the thermal lensing is
the thermo-optical coefficient (dn/dT ). The case of YLF is somewhat special
as the thermo optical coefficient is negative. This means that the end face
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expansion and thermo-optical effect will counteract each other. Two different
values found in the literature was tested (-2 ppm/K and -4.6 ppm/K). The
simulations with the strongest thermal lensing (-4.6 ppm/K) had the pulse
energies halved, with a notable deterioration in beam quality (from 1.3 to
3.6). A possible explanation is that the resonator becomes unstable due to
the increased negative lens.

One problem with the thermal lens implemented is the lack of photoe-
lastic effects. This could not be implemented as Sisyfos did not support it.
There might be reason to believe this effect contributes to the thermal lens-
ing [11]. One estimate of the effect is given by Zelenogorskii and Khazanov
[12]. They calculated the relative contributions to the thermal lensing for the
three major contributions (thermo-optical, photoelastic, end face expansion)
in uniformly pumped Nd:YLF, using experimental data to estimate the pho-
toelastic coefficients. The relative contributions to the optical power of the
thermal lens were approximately -2 from the thermo-optical effect, 0.5 from
end face expansion and 1.3 from the photoelastic effect1. If the contribu-
tions are similar for an end-pumped rod, this would indicate that a sizeable
positive contribution is missing in the simulations.

Removing the upconversion did not alter the output in any significant
way, with a mere 1.5% drop in average output power. Including upconversion
resulted in a 5-6% increase in the dissipated heat. This is in contrast to
what is stated in the literature [11, 37], where upconversion is mentioned
as a potential problem in Nd:YLF. One possible explanation is that the low
absorption spreads the population inversion throughout the rod. This lowers
the local population inversion and helps reduce the upconversion processes.
It could also be that the rate found in the literature is too low, or that the
rate used in Sisyfos does not accurately model the issues with high doping
concentrations.

It was also discovered that the value for the stimulated emission cross
section used in the simulation might be too high. The value listed in table 5.1
(2.6·10−19 cm2) was used in the simulations. Other sources set this to around
a factor 2 lower [24, 37] (1.2-1.4·10−19 cm2). As the stimulated emission cross
section affects the pulse build up time and extraction of stored energy, it
might favour a different values for parameters such as the output coupling
and pump radius.

1All these numbers apply for a σ-polarized wave
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7.3 IOPO optimization
The main goal with the computational model was to use it to optimize the
design of an IOPO with a set of given specifications (listed in section 5.1).
The resonator used was inspired by Peng et al. [17], but with some modifi-
cations. The simulations used double pass pumping instead of two separate
pump diodes, and the resonator was overall shorter. The decision to make it
shorter was motivated by having a compact design.

As the OPO is pumped by the 1µm signal, it was natural to start op-
timizing this signal to get a good overall efficiency. Due to the numerous
simulation parameters available for testing, it was decided to narrow down
the scope to a few parameters. In particular, the simulations studied the ef-
fect of varying the curvature of the focusing mirror M2 and the pump radius
rp. These results are summarized in figure 6.2.

For the pure 1µm signal, the highest output power seems to be located
at a radius of curvature of 75 cm with a pump radius of 0.35 mm. This is case
1 in the IO curve seen in figure 6.3. Here, the effects of the thermal lensing
is seen clearly as the beam quality starts to degrade when the pump power
increases.

To further describe the behaviour seen in the contour plots, an illustration
of the theoretical modes (found from equation (2.13)) for varying curvature
of the mirror M2 is shown in figure 7.1. The position of the laser rod is
marked in black. As the curvature increases, so does the fundamental mode
size in the resonator. To get good overlap between the laser rod and the
mode, a higher curvature should favour a larger pump radius. This is also
seen in the contour plot (figure 6.2 (a)).

Another thing to note is that by increasing the curvature, the mode size
at the output coupler (and correspondingly, the KTA crystal for the case of
an IOPO) increases. This increase in beam width reduces the fluence, which
is both seen in figure 6.2 (b) for the pure 1µm signal as well as in figure 6.4
for the IOPO. In the latter, the slight increase at the end is caused by a spike
in the middle of the transversal profile of the beam.

The choice of pump radius and radius of curvature of mirror M2 (0.5 mm,
86 cm) was motivated by the reduction of the fluences in the resonator. As
seen in figure 6.4, the damage threshold is surpassed for all values with the
exception of 86 cm. The pump radius was chosen in an attempt to maximize
the 1µm signal power. A smaller pump radius could lead to a degradation
of the 1µm power and beam quality, which in turn deteriorates the 1.6µm
signal. A larger pump radius could also start reducing the 1µm signal power,
leading to a lower overall efficiency.
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Figure 7.1: 1/e2 mode size in resonator with varying radius of curvature R of
mirror M2.

The downside with this choice is the sensitivity to thermal lensing and
small parameter changes. The sensitivity to thermal lensing is seen in figure
6.3. As the input power increases over 30 W, the beam quality rapidly de-
teriorates. This is also seen in the output power, as the efficiency starts to
drop when the the pump power grows.

The sensitivity is also seen in the stability diagram for the resonator (fig-
ure 5.2). The choices of curvature (M1 -50 cm and M2 86 cm) is close to the
edge between a stable and an unstable resonator. A negative thermal lens
can then bring the resonator even closer to the edge. The lacking photoe-
lastic effect could possibly help reduce the instability if it contributes with a
positive sign (ref. [12]).

In hindsight, it might have been favourable to drop the 1µm even more
by increasing the pump radius slightly (f.i. to a value of 0.55 mm). This way,
one could hope to reduce the instability in the system while still keeping a
decent pulse energy and beam quality. However, time did not allow for the
simulations to be repeated with this pump radius.

The simulations with variations in KTA crystal length (figure 6.5) seems
to behave in accordance to theory. When the crystal is too short, the con-
version takes too long and energy is lost to the round trip loss. If the pulse
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is too long, the conversion starts too fast, and the 1µm pulse is depleted
before it can drain all the energy from the laser rod. In this particular case,
the remaining energy is not high enough to generate a new pulse. For this
particular set of parameters, the optimal point is found to be 10 mm.

The phase matching bandwidth seems to be a bit smaller than what is
expected from the one in figure 3.5. The bandwidth estimated from the figure
is roughly 2.5-3 nm (for a 10 mm long crystal) in comparison to the simulation
value of approximately 1-1.5 nm. This difference might be investigated more
with a finer spectral resolution in the simulations.

As seen in the wavelength tuning curve (figure 6.9), the pulse energies
drop as the signal wavelength increase. This can be explained by the re-
duction of the effective nonlinearity (figure 3.4) for increasing signal wave-
lengths. The reduced effective nonlinearity decrease the conversion efficiency.
A higher signal wavelength might require a slightly longer crystal to com-
pensate.

One issue that was briefly mentioned in the previous chapter was the
choice of rod and pump wavelength. A pump wavelength of 808 nm was also
an option. This wavelength had higher absorption (ref. table 5.3) than
877 nm. This allows for a lower doping concentration and shorter rods.
Pumping a 2 cm long, 0.5% doped rod with 808 nm gives the same, if not
higher, absorption than for the rod used (3 cm, 1% doped). However, the
output is generally not better than 877 nm as long as there is sufficient ab-
sorption in the latter. The thermal stresses are also noticeably higher (around
a factor 2) in the 808 nm pumped rod, which is probably caused by the higher
quantum defect at 808 nm. Pumping with 808 nm should not be completely
disregarded, but 877 nm is generally considered to be the better option.

7.4 Conclusion
A computational model for simulating a laser generating near infrared nanosec-
ond pulses has been implemented. The model includes both laser medium
interactions, thermal effects in the laser rod and nonlinear effects. The model
includes both the thermo-optical effect and end face expansion. The model
has been compared to experimental results, showing a good correspondence
in pulse energies given the uncertainty in simulation parameters. However,
other features such as pulse width and radiant fluence does not seem to match
the experimental results. The model was then used to optimize the design
of a laser source with a set of given specifications. The final design produces
3.6 nanosecond long pulses with a tunable wavelength around 1.6µm. The
average pulse energy is 1.16 mJ with a beam quality M2 ' 2.
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7.5 Recommendations for further work
There are some issues that could be improved with further work. The first
would be to implement the photoelastic effects. This effect was not imple-
mented in Sisyfos at the time of writing, and could not be implemented. One
possible solution is to find the equivalent phase shift due to the change in
refractive index and implement this as an effective focal length.

The simulations were run without any thermal lensing and absorption in
the KTA crystal. This was a result of time constraints. A thermal lens in the
nonlinear crystal could be implemented in a similar manner as the thermal
lens in the laser rod. The absorption could also reduce the efficiency of the
conversion.

One possible way to reduce the thermal lensing in the laser rod is by using
end caps. A laser rod with end caps has some undoped material attached to
the end faces on the rod. The option for end caps was not implemented in
the model due to time constraints.

While Nd:YLF was the most promising choice for the laser rod, Nd:YAG
is also a viable candidate. A comparison between these two materials might
be profitable, as YAG has some benefits over YLF (higher emission cross
section, higher fracture limit). The change in thermal lensing might require
a slightly different resonator as YAG has stronger positive lensing coming
from a positive thermo-optical coefficient.

A final suggestion is a comparison between different nonlinear crystals.
One possible choice could be KTP as it is similar to KTA. The transparency
of the crystals and thermal effects should be implemented to make this com-
parison more realistic.
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Appendix A

Derivations

A.1 Determining the phase matching angle
An analytical expression can be found for some specific types of phase match-
ing in specific principal planes of the crystal. The following derivation finds
the phase matching angle for type IIb phase matching (as defined in table
3.1) in the xz-plane of a uniaxial or biaxial material. The starting point is
the phase matching criterion (3.16) and the index ellipsoid (figure 3.1)

ω3no(ω3) = ω2no(ω2) + ω1ne(θ, ω1), ω3 = ω2 + ω1. (A.1)

In this expression, ω3, ω2 and ω1 are the pump, signal and idler frequen-
cies, with refractive index n(ωi). The subscripts denote whether the corre-
sponding wave is an o-wave or an e-wave. In this particular case, the values
for the refractive index are so that the polarization in the xz-plane (e-wave)
is slow, the o-waves in the xy-plane are fast. By substituting for the wave-
length (ω = 2πc/λ, c the speed of light), and inserting (3.1), the resulting
expression becomes

no3
λ3
− no2

λ2
= 1
λ1

(
cos2 θ

n2
x1

+ sin2 θ

n2
z1

)−1/2

, (A.2)

where for simplicity no(λ3) have been set to no3 and so forth. Setting
nx1/λ1 = A, no2/λ2 = B, no3/λ3 = C and nz1/λ1 = D, and proceeding with
squaring and inverting the expression gives

A2

(C −B)2 = A2

D2 sin2 θ + cos2 θ. (A.3)

This expression can be solved for θ, and yields
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tan2 θ = 1− T
T − Z

; T =
(

A

C −B

)2

, Z =
(
A

D

)2

. (A.4)

Similar expressions can be found for some other cases, tabulated in e.g.
[27].

A.2 Derivation of the phase matching band-
width

Conversion of a pump beam can occur for signal wavelengths that are not
perfectly phase matched, as long as the phase mismatch is sufficiently small.
This occurs in a given spectral bandwidth denoted the phase matching band-
width.

To evaluate the phase matching bandwidth, the phase matching angle is
assumed to be constant and the pump is assumed to have no bandwidth.
The starting point is the phase matching intensity (3.15) in a crystal with
lenght L. By constraining the changes in the intensity to no less than half the
maximum value, the argument of the sinc-function is reduced to an interval∣∣∣∣∣∆kL2

∣∣∣∣∣ < 2.78. (A.5)

Performing Taylor expansion to first order in the signal frequency

∆k(ω2 + ∆ω2) = ∂∆k
∂ω2

∆ω2 (A.6)

By demanding at least 50% efficiency (A.5), the total bandwidth becomes

|∆ω2| =
5.56

L
∣∣d∆k/dω2

∣∣ (A.7)

Evaluating the derivative in this expression at a constant pump frequency
ω3 and using that ω1 = ω3 − ω2 and ω = 2πc/λ, the derivative becomes

d∆k
dω2

= 1
c

(
−n2 + λ2

dn2

dλ2
+ n1 − λ1

dn1

dλ1

)
(A.8)

Using |∆λ| = λ2|∆ω|/2πc, the expression for the phase matching band-
width can be written in terms of wavelength as

L∆λ2 = 5.56λ2
2

2π
[
(n1 − n2) + (dn2

dλ2
− dn1

dλ1
)
] (A.9)
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Appendix B

Supplementary figures

Figure B.1: Transmittance of 3 mm thick KTP, RTA (RbTiOAsO4) and KTA.
Figure from Petrov et al. [38]
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Figure B.2: Absorption in 0.9% doped Nd:YLF around 808 (top) and 877 nm
(bottom) for π and σ-polarization. Figure from [35].
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