
Subspace Modeling of Discrete
Features for Language Recognition

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2014

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Electronics and Telecommunications

Mehdi Soufifar

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Electronics and Telecommunications

© Mehdi Soufifar

ISBN 978-82-326-0496-8 (printed ver.)
ISBN 978-82-326-0497-5 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2014:292

Printed by NTNU-trykk

Abstract

This thesis addresses the language recognition problem with a special focus
on phonotactic language recognition. A full description of different steps
in a language recognition system is provided. We study state-of-the-art
speech modeling techniques in language recognition that comprise phono-
tactic, acoustic and prosodic language modeling. A brief understanding
of the state-of-the-art subspace modeling technique known as the iVector
model for continuous features is given. Using recent proposals on training
the iVector model for continuous features, we explain our recipe for ex-
tracting iVectors for acoustic and prosodic features that results in similar
language recognition performance as the state-of-the-art results reported in
the recent literature. In the next step, inspired by the intuition behind the
iVector model for continuous features, we propose our iVector model for
discrete features. After a general explanation of the model, adaption of the
proposed model to the n-gram model that is used to extract iVectors rep-
resenting the language phonotactics is given. Finally a regularized iVector
extraction model for discrete features that is robust to model overfitting is
proposed. The full theoretical derivation of the proposed iVector model for
discrete features is given. We also explain use of discriminative and genera-
tive classifiers for training language models based on the different extracted
iVectors. Effects of the iVector normalizations for binary and multi-class
formulation of the used classifiers is also studied.

We report performances of our iVector model on NIST language recogni-
tion evaluation LRE2009, LRE2011 and RATS language recognition as the
most recent and challenging language recognition task. Using our phonotac-
tic iVector model, we obtain a significant improvement over our phonotactic
baseline system which was a state-of-the-art system at the time of starting
this thesis. Our results on NIST LRE09, NIST LRE2011 and RATS con-
firms superior advantage of our iVector model for discrete features compared
to the other state-of-the-art phonotactic system.

i

ii

Acknowledgements

May individuals have influenced me during the compilation of this thesis.
First, I would like to thank my supervisor Torbjørn Svendsen who gave
me the opportunity to do this PhD and all his support during this thesis.
Specially for supporting my collaboration with other speech groups and in
particular the collaboration with Speech@FIT. Takk Torbjørn!

During the last five years, I had the pleasure of visiting other speech
groups and share moments of hard work, deadline nights and cheer. My
very special thanks to Honza Černocký and Lukáš Burget at Speech@FIT
who kindly accepted me as a member of Speech@FIT and helped me to
pursue my research on language and speaker recognition. Even though only
Lukáš Burget is the co-supervisor on this thesis, I should thank them both
equally, Lukáš for his splendid technical supervisions and all the midnight
discussions, and Honza for organizing everything and keeping the group
running on such a high level. Moje veliké děkuji patř́ı oběma!

I would like to thanks all my colleagues at Speech@FIT particularly
Pavel Matějka, Ondrej Glembek, Olda Plchot, Karel Veselý, Sandro Cumani,
Marcel Kockmann, Martin Karafiát and Petr Schwarz for their support and
for making my stay in Brno such a memorable chapter in my life. I was
privileged to participate in BOSARIS, SRE and LRE workshops during my
stay in Speech@FIT and enjoy my time with all the great participants, in
particular, Nikko Brümmer and Najim Dehak. Thank you all!

Even though my visit from speech group at university of eastern Finland
was fairly short, I learned a lot from working with great people there in
particular Rahim Saeidi, Tomy Kinnunen and Pasi Fränti.

I feel grateful of my family to whom I owe everything in my life. Their
patience and support have always delighted every single moment of my life.
It was far from reality to accomplish this PhD without their inspiration.

Last but not least, I would like to thank all my Friends at NTNU and
Trondheim who supported me during this thesis. Thank you Timo, Marco,
Babak, Hessam, John, Line, Alfonso, Arild and Jarle.

iii

Contents

1 Introduction 1

1.1 Automatic language recognition 1

1.2 Automatic language recognition solutions 4

1.2.1 Phonotactic solutions 5

1.2.2 Acoustic solutions . 7

1.2.3 Language recognition back-end 8

1.3 Claims and contributions of this thesis 9

1.3.1 Publications within the scope of this thesis 11

1.4 Clarification on the terminologies 12

1.5 Structure of this thesis . 13

2 Acoustic speech modeling 15

2.1 Feature extraction . 16

2.1.1 Mel-frequencies cepstral coefficients (MFCC) 16

2.1.2 Shifted delta cepstra (SDC) features 17

2.2 Gaussian mixture model (GMM) 17

2.2.1 The likelihood function 20

2.3 GMM as universal background model 22

2.4 iVector Model . 23

2.4.1 Likelihood function . 24

2.4.2 Posterior distribution of hidden variables 25

2.4.3 Estimation of the hyper parameter T 25

2.4.4 iVector versus joint factor analysis 28

3 Prosodic speech modeling 31

3.1 Speech preprocessing . 33

3.2 Basic prosodic features . 33

3.3 Segmentation . 34

3.4 Fitting curves to feature contours 35

v

vi Contents

4 Phonotactic speech modeling 39
4.1 Introduction . 40

4.1.1 Thesis intuition . 43
4.2 Speech tokenizer . 46
4.3 N-gram model . 48
4.4 Feature transformation using principal component analysis . 49
4.5 Phonotactic iVectors . 50

4.5.1 Background . 50
4.5.2 Subspace multinomial model (SMM) 52
4.5.3 Parameter estimation 55
4.5.4 Model initialization 58
4.5.5 Numerical optimizations 61
4.5.6 Subspace n-gram model 62
4.5.7 Regularized subspace n-gram Model 64
4.5.8 Parameter estimation 64

4.6 SMM model and 3-gram statistics 66
4.7 Soft count n-gram statistics 66

5 Statistical language modeling 67
5.1 Binary language models . 69

5.1.1 Support vector machines 70
5.1.2 Binary logistic regression 72

5.2 Multi-class language models 73
5.2.1 Multi-class logistic regression 73
5.2.2 Multi-class SVM . 74
5.2.3 LRE11 multi-class logistic regression 74
5.2.4 Gaussian linear classifier 75

5.3 Discussion . 76
5.4 Calibration and fusion . 77

5.4.1 LRE09 calibration and fusion 78
5.4.2 LRE11 back-end . 78

6 Data selection and preparation 81
6.1 LID evaluation . 81
6.2 NIST evaluations . 82

6.2.1 NIST LRE2009 . 84
6.2.2 NIST LRE2011 . 86

6.3 RATS . 87
6.4 Evaluation metrics . 87

6.4.1 Cavg average cost . 87
6.4.2 Pair-wise system evaluation 89

Contents vii

6.5 Development data collection and preparation 90
6.5.1 NIST LRE09 . 90
6.5.2 NIST LRE11 . 93
6.5.3 RATS . 93

7 Experiments 97
7.1 iVector pre-processing . 98
7.2 Establishing the baseline . 98
7.3 Subspace multinomial model system tuning 100
7.4 SMM versus PCA-transformed feature 101
7.5 Multi-class versus binary classifiers 102
7.6 iVector fusion and score level fusion 103
7.7 Regularized subspace n-gram model parameter tuning 104
7.8 Regularized subspace n-gram model 106
7.9 iVectors for acoustic continuous features 111
7.10 iVectors for prosodic continuous features 112
7.11 System fusion . 114
7.12 NIST LRE 2011 . 117

7.12.1 Phonotactic systems 117
7.12.2 System fusion and submission 117

7.13 RATS . 120

8 Conclusion 125
8.1 Conclusion and summary . 125
8.2 Future work . 128

A Derivation of a Subspace Multinomial Model 131

B HU mapping table 137

viii Contents

List of Figures

1.1 Language discrimination in different levels 4

1.2 A general language recognition block diagram. 5

2.1 Steps toward getting Mel filter bank cepstral coefficients. . . 17

2.2 Extraction of SDC features in 7-1-3-7 configuration for one
MFCC coefficient. 18

3.1 F0 (blue) and energy (green) contours extracted for a speech
sentence. 32

3.2 Defining syllable segmentation based on phoneme recognizer
output. 35

3.3 Curve fitting to F0 contours using the first six Legendre poly-
nomial basis. 37

4.1 General LID system diagram in PPRLM configuration. . . . 42

4.2 Distribution of PCA transformed and mean normalized BUT
HU 3-gram statistics for the first four NIST LRE09 languages. 46

4.3 Hybrid HMM/NN phoneme recognition block diagram based
on split temporal context [67]. 47

4.4 Steps in transforming n-gram statistics using PCA. 50

4.5 Distribution of unigram probabilities obtained from data and
by spanning iVectors. 54

4.6 ML projection of 3-dimensional multinomial probabilities to
subspace multinomial probabilities. 55

4.7 Log likelihood change for different T initializations for NIST
LRE09 with 600 dimensional subspace. The iteration 0 refers
to the initialization step. 61

4.8 Convergence of the quadratic optimization vs. gradient de-
scent over TRAIN set with 600 dimensional subspace. 62

5.1 Detailed LID back-end block diagram. 68

ix

x List of Figures

5.2 Expansion of LID front-end for phonotactic iVectors. 68

7.1 The Cavg × 100 on DEV and LRE09 EVAL set for different
subspace dimensions over 30s, 10s and 3s conditions for SMM
using BUT HU 3-gram statistics. 100

7.2 Tuning of λ for RSnGM using BUT HU. Cavg×100 for SnGM-
BLR over DEV and EVL set for 30s, 10s and 3s conditions
on NIST LRE09 EVAL set. 105

7.3 Distribution of the values in dimensions of iVector and T
rows for SnGM using BUT HU 3-grams. 107

7.4 Distribution of the values in dimensions of iVector and T
rows for RSnGM using BUT HU 3-grams. 107

7.5 Distribution of iVectors for first four NIST LRE09 languages
extracted with RSnGM using BUT HU 3-grams statistics.
iVectors are projected into 2-dimensional space using LDA. . 108

7.6 Distribution of iVectors for all 23 NIST LRE09 languages
extracted with RSnGM using BUT HU 3-grams statistics.
iVectors are projected into 2-dimensional space using LDA. . 110

7.7 Analysis of the phonotactic iVectors from BUT HU 3-grams
(red), PCA-features from BUT RU 3-grams(yellow) and acous-
tic iVectors (blue) systems over the NIST LRE11 worst 24
language pairs condition by means of PER. See Table 6.5 for
abbreviations. 119

8.1 Distribution of phonotactic iVectors and PCA transformed 3-
gram statistics using BUT HU for the first four NIST LRE09
languages. 129

List of Tables

4.1 Sample voiced and unvoiced consonants in English. 39

6.1 NIST LRE 2003 target language list. 83

6.2 NIST LRE 2005 target language list. 83

6.3 NIST LRE 2007 target language list. 84

6.4 NIST LRE 2009 target language list. 85

6.5 NIST LRE 2011 target language list. 86

6.6 RATS target language list. 87

6.7 Train & Development data source for NIST LRE 2009. 91

6.8 Data distribution of DEV sets for NIST LRE 2009. 92

6.9 Data distribution over TRAIN, DEV and TEST sets for NIST
LRE 2011. 94

6.10 Data sources for TRAIN, DEV and TEST sets of NIST LRE
2011. 95

6.11 Distribution of DEV2 set for RATS language evaluation. . . . 96

7.1 The Cavg×100 for baseline systems using full and PCA-transformed
3-gram statistics from BUT HU with BSVM and BLR on
DEV and EVAL sets over all the conditions of NIST LRE09
EVAL set. 99

7.2 Cavg × 100 for different iVector normalization for BLR on
BUT HU phonotactic iVectors on NIST LRE09 EVAL set. . . 102

7.3 The Cavg × 100 for PCA-transformed 3-grams and phonotac-
tic iVectors form BUT HU with BSVM and BLR classifiers on
DEV and EVAL sets over all the conditions of NIST LRE09
EVAL set. 102

7.4 Cavg × 100 for different multi-class and binary classifiers on
BUT HU phonotactic iVectors on NIST LRE09 EVAL set. . . 103

7.5 Cavg×100 for different phonotactic iVectors and their feature
and score level fusions on NIST LRE09 EVAL set. 104

xi

xii List of Tables

7.6 Cavg×100 for different iVector feature extractions using BUT
HU over all conditions of NIST LRE09 EVAL set. 110

7.7 Cavg × 100 for different acoustic iVectors dimension using
GLC on NIST LRE09 Evaluation task over 30s, 10s and 3s
conditions. Taken from [46] 111

7.8 Effect BLR, MLR and GLC classifier over acoustic iVector
using diagonal and full covariance matrix in terms of Cavg ×
100 on NIST LRE09 Evaluation task over 30s, 10s and 3s
conditions. 112

7.9 Cavg × 100 for prosodic systems on NIST LRE09 Evaluation
task over 30s, 10s and 3s conditions. 113

7.10 Cavg×100 for different system fusions of different LID systems
with the GLC classifiers on NIST LRE09 Evaluation task over
30s, 10s and 3s conditions. 115

7.11 Cavg×100 for different system fusions of different LID systems
with the best classifiers on NIST LRE09 Evaluation task over
30s, 10s and 3s conditions. 115

7.12 Cavg × 100 for different phonotactic and acoustic iVector fu-
sions on NIST LRE09 Evaluation task over 30s, 10s and 3s
conditions. 116

7.13 PER% results for worst 24 and all language pairs over NIST
LRE11 EVAL set. 118

7.14 Fusion results in PER% for worst 24 and all language pairs
over NIST LRE11 EVAL set. 118

7.15 Cavg×100 for PCA-based, SnGM, RSnGM and acoustic iVec-
tor and their fusions on RATS DEV2 language recognition
task over 120s, 30s, 10s and 3s conditions. 122

8.1 The Cavg × 100 for PCA-transformed 3-grams and phonotac-
tic iVectors form BUT HU with BSVM and BLR classifiers
on NIST LRE09 EVAL set. 129

B.1 HU mapping table from 61 phonemes to 33. 138

Nomenclature

BLR Binary Logistic Regression

BNBS Broadcast Narrow Band Speech

BSVM Binary Support Vector Machines

BUT Brno University of Technology

CTS Conversational Telephony Speech

DCT Discrete Cosine Transform

EM Expectation Maximization

GD Gradient Descent

GLC Generative Linear Classifier

GLDS Generalized Linear Discriminant Sequence

GMM Gaussian Mixture Model

IPA International Phonetic Association

LDC Linguistic Data Consortium

LR Logistic Regression

LVCSR Large Vocabulary Continuous Speech Recognition

MFCC Mel-Frequency Cepstral Coefficients

ML Maximum Likelihood

MLR Multi-class Logistic Regression

MMI Maximum Mutual Information

xiii

xiv List of Tables

MSVM Multi-class Support Vector Machine

NIST National Institute of Standards and Technology

PER Pair Error Rate

PPRLM Parallel Phoneme Recognizer Language Model

SID Speaker Identification

SMM Subspace Multinomial Model

SnGM Subspace n-gram Model

SVD Singular Value Decomposition

UBM Universal Background Model

VAD Voice Activity Detection

VOA Voice Of America

WCCN Within Class Covariance Normalization

Chapter 1

Introduction

Languages are the main means of communication nowadays. There are more
than 7 billion people and more than 6912 known languages in the world [30].
Recent communication advances, and in particular Internet, has made mul-
timedia information from all around the world available for everyone. This
has removed geographical borders for communication and there is an in-
creasing demand for communication among people with different languages.
Nevertheless, there is a barrier for those who would like to use and pro-
cess multimedia and in particular speech data; language diversity. Almost
the whole automatic speech processing technology requires prior information
about the embedded language in the data to have a reasonable performance.
In this thesis, we address the problem of the automatic language recogni-
tion that can serve as a front-end to many other speech technologies (e.g
automatic speech recognition, automatic translation, speech synthesis etc.).
Having an accurate prior on the data language makes a huge improvement
in the performance of these systems.

1.1 Automatic language recognition

The task of automatically determining the language of a spoken utterance
is called Language recognition. Being able to recognize a language requires
prior knowledge of the target languages. This leads us to a better definition
of the task that we are going to address in this thesis as:

Having some prior knowledge from a target list of languages, we are asked
to automatically determine the language identity of a trial speech utterance.

1

2 Introduction

Similar to many other technologies, language recognition and more gen-
erally automatic speech processing technology is inspired by the human
capability of understanding speech. In the early years of language recogni-
tion, a comparative study showed that even by providing the machine with
reasonable amount of prior knowledge about a language, humans seem to
outperform machines in this task [53]. A native speaker of a language can
detect a person speaking the same language in a speaking crowd almost
immediately. A multilingual person can easily recognize the language of a
speech sample and in case the language is not among the languages of his
expertise, he can make a reasonable guess. However, as the trials are taken
from linguistically closer languages, or as the length of trials become shorter,
recognizing the target languages becomes more challenging. A recent hu-
man benchmark for National Institute of Standards and Technology (NIST)
proposed by [16] language recognition tasks (see Chapter 6) showed that in
many adverse conditions, the current state-of-the-art language recognition
systems outperform human beings in language recognition [83].

Let us have a closer look at the world’s languages. Even though there
are more than 7 billion people and 6912 known languages in the world, 5% of
the world’s languages are spoken by 94% of the world’s population [30]. In
fact, there are lots of similarities among some of the spoken languages and
in many cases, it is not really easy to decide whether two spoken languages
are dialects of the same language or they should be considered as separate
languages. Languages are partly characterized by their phoneme sets. In
linguistics a phoneme is a basic element of a given language or dialect, from
which, words in that language or dialect are built. From a linguistic point
of view, a language can be characterized by the following features:

I) Phonetics: The articulatory system of the human being is capable of
producing many phonemes. However, number of the phonemes in each
language ranges from 15 to 50 with the peak at 30 [87]. Many of these
phonemes are common in different languages. Some are phonetically
the same but produced slightly different in different languages. Some
phonemes are more frequent in some languages than others. In general,
the phoneme set of a language and frequency of each phoneme in the
corresponding language can lead us to the language identity.

II) Phonotactics: Phonotactics is dealing with the combination of the
phonemes. Two languages may share almost the same phoneme set.
However, the combination of sounds may differ. E.g. in Slavic lan-
guages, it is possible to have multiple consonants in a row while that is
not common in some other languages such as Farsi. As we will see, the

1.1. Automatic language recognition 3

repetition pattern of phonemes is a very useful source of information
to discriminate among languages.

III) Prosody: Prosody is a perceptual music of speech. It is strongly
correlated with fundamental frequency (F0) [77]. Prosody is generally
suprasegmental, i.e. that it is not common to speak of the prosody
of a sound. Rather, prosody usually refers to the syllabic, word or
phrase level (or even longer segments). Features like loudness and stress
are also affecting the prosody. English is an exemplar language for
the prosodic features. The three widely spoken variations of English:
American, British and Indian are the same language. However, the
prosody is very different.

IV) Lexicon & Morphology: In linguistic, a morpheme is roughly de-
fined as the smallest linguistic unit that has semantic meaning and
morphology is the identification, analysis and description of the struc-
ture of words. Two languages may have very similar sets of sounds.
However, the lexica, containing the words of the two languages may
be different, and the frequency of words may be different. For exam-
ple, Farsi and Dari have very similar phoneme sets and lots of words
in common. However, some words are rarely used in one compared to
the other. Two languages might even have similar words with different
morphologies as is the case with Farsi and Arabic.

V) Grammar: This is probably the highest level of abstraction that may
carry useful information to discriminate among languages. However,
we are not aware of any reported language recognition system (LID)
system that takes advantage of that.

Such a language characterization does not provide a quantitative mea-
sure on language similarity and just shows the broad level of information
that can be exploited for the language recognition task. In the case of dialect
recognition, more specific techniques might be more practical. Normally, we
regard variations of a language as different dialects of the language if the
difference is not only different accents but also different lexicons.

In this thesis, We are addressing the language recognition problem in
general and we do not get into dialect recognition. Nevertheless, some of
the techniques might be useful for the dialect recognition as well.

So far, we have talked about sources of information that can lead us to
discriminate among languages from a linguistic point of view. Almost all
of these information sources require a certain level of abstraction for speech
modeling. The lowest level of speech representation is the signal itself.

4 Introduction
A

bs
tr

ac
tio

n Word

Basic linguistic units

Frame

Pure signal

Sentence Syntax, Semantics

lexicon

Phone, Syllable

Channel, Signal, Noise

Prosody

Morphology

Phonotactics

Acoustic

None

D
at

a
sc

ar
ci

ty

Feature level Information unit

Speech feat.(e.g. MFCC)

Information source

Figure 1.1: Language discrimination in different levels

Statistical modeling of the speech cepstrum has been shown to be a very
effective way of speech modeling. Figure 1.1 depicts levels of abstraction
and the corresponding sources of information in the speech signal. In fact,
the more abstract we get, the more uncertain the information becomes.
This is mainly because the information sources in each level depend on
the output of the lower level and any error in the lower level would be
propagated bottom-up. For example to have a relatively good stream of
spoken phonemes in an utterance, a proper phoneme recognizer trained on
the same kind of signal is necessary. Furthermore, the more abstract we get,
the more expensive it is to have training data and we have a sparser source
of information.

1.2 Automatic language recognition solutions

A general block diagram of a typical language recognition system is de-
picted in Figure 1.2. As any other statistical modeling based system, it is
based on collecting statistics for the problem and modeling the space and
finally deciding on a newly observed statistics based on the trained model.
The whole process can be split into two main sub–systems: front-end and
back-end. In the field of language recognition, we regard any effort with the
purpose of providing an information to the statistical model as front-end and
the statistical modeling and interpretation of the input data is regarded as
back-end.

Solutions for the language recognition problem mainly vary in the front-end
of the system and as long as the model assumption holds, similar back-ends
can be used for different front-ends. More specifically, the differences are
mainly in the steps up to language modeling in Figure 1.2. Generally, solu-

1.2. Automatic language recognition solutions 5

Feature
extraction

Language
modeling

Language
model

Supervised
Information

Speech

Feature
vector

Train

Test

Front−end Back−end

Language model
scoring

C
al

ib
ra

tio
n

an
d

fu
si

on

Score

Figure 1.2: A general language recognition block diagram.

tions to the language recognition task are classified into two main categories:
phonotactic and acoustic that mainly differ in front-end speech modeling.
Let us first briefly talk about phonotactic and acoustic modeling of speech.

1.2.1 Phonotactic solutions

The main idea behind phonotactic language recognition is that languages
can be discriminated according to their phonotactics. To get statistics
about language phonotactics, we normally use a linguistic unit recognizer
(i.e. phoneme in this work) to tokenize a speech signal to a stream of
linguistic unit symbols based on which n-gram statistics that represent lan-
guage phonotactics are extracted. Lots of effort has been put into train-
ing proper phoneme recognizers for the language recognition tasks in the
system front-end. Even though it has been shown that high precision
phoneme recognizers can effectively improve the language recognition sys-
tem performances [49], it should be noted that phoneme recognition ac-
curacy is not the only criterion for the effectiveness of the phoneme rec-
ognizer. Robustness against the channel variability and acoustic coverage
of the phoneme recognizer should be always taken into consideration while
training a phoneme recognizer for the language recognition tasks. To have a
better acoustic coverage of languages, different configurations for multilin-
gual phoneme recognizers have been studied [75],[42]. Use of other acoustic
sub-word units without corresponding linguistic definition as an alterna-
tive to phoneme recognizer was also proposed in the literature [42]. The

6 Introduction

phoneme recognizer (either monolingual or multilingual) is then used to ex-
tract n-gram statistics for all utterance from any language of interest. The
generated n-gram statistics corresponding to language specific training ut-
terances are then used to train statistical language models for the languages
of the interest. The n-gram statistics can be used to train language models
(e.g. n-gram language models) directly or they can be transformed to any
other form that may be effective for modeling languages. This basically
means that the feature extraction block in the system front-end can include
subsystems.

A traditional approach in the language recognition is to use n-gram
statistics and train generative n-gram language models as in phoneme recog-
nition followed by language modeling (PRLM) [88]. In the PRLM, we run
the phoneme recognizer on training data from each target language and then
we train a separate n-gram language model for the corresponding language.
This way, we will end up with N language models where N is number of the
target languages in our language recognition task. During the test phase,
we can calculate the likelihood of each test speech sample with respect to
each of the target languages by running the phoneme recognizer on the test
speech sample and calculating the likelihood of the produced phoneme se-
quence with respect to the corresponding language model. This is done in
the Language model scoring block in Figure 1.2. In case of using monolingual
phoneme recognizer, we are simulating a situation in the real word where
a monolingual person is exposed to samples from list of target languages
and he is asked to decide on the language identity of a test speech sample.
There might be many phonemes in the target languages that are unfamiliar
for him. However, he tries to project the acoustic space of the target lan-
guages to his own acoustic space and decide on the language identity of the
test speech sample based on the language models he has already made for
each of the target languages. A step up to this solution is to use multiple
phoneme recognizers. This is called parallel phoneme recognition followed by
language modeling (PPRLM) configuration and is inspired by the behavior
of multilingual people [88][85]. This way, every utterance is decoded with
multiple phoneme recognizers that gives us different n-gram statistics. For
each phone recognizers, n-gram statistics corresponding to the language spe-
cific utterances are used to train a separate n-gram language model. More
info on PRLM system configuration is given in Section 4.1.

In the current state-of-the-art phonotactic language recognition systems,
the n-gram statistics are still the main tool for describing the language
phonotactics in the front-end. However, recent proposals for the back-end
shows that it is more reasonable to separate within-class and between-class

1.2. Automatic language recognition solutions 7

variability while training language models. In [16], the author showed that
we can represent an utterance by putting all the n-gram statistics of a cer-
tain order in a fixed length vector that is considered as an multidimen-
sional observation of the corresponding language. This way we can model
the within-class variability as well as the between-class variability. In [16]
SVM classifiers are used to discriminate between observations from differ-
ent languages. As we will see later in this thesis, different classifiers (e.g.
logistic regression or Gaussian classifiers) are other alternatives. Later on,
other researchers proposed more effective features based on transformed
n-gram statistics. In [42] a vector space modeling (VSM) formulation for the
language recognition is proposed and [50] proposed a PCA-based transfor-
mation of the n-gram statistics. These methods use a combination of linear
and nonlinear transformations to represent the vector of n-gram statistics
with a low-dimensional representation of the corresponding speech utter-
ance. These low-dimensional representations of each language are then used
to train classifiers that are used as our language models. The phonotactic
solutions and the corresponding speech modeling techniques are described
in detail in Chapter 4.

1.2.2 Acoustic solutions

Acoustic solutions are using solely information contained in the signal spec-
trum without using any higher level information such as linguistic units. As
a result, they have a much simpler front-end. Normally, conventional speech
feature vectors, e.g. Mel-frequency cepstral coefficients (see Section2.1.1),
are extracted from the signal. The main idea is to estimate the distribu-
tion of extracted feature vectors for each language of the interest. This is,
mainly, accomplished through Gaussian mixture model (GMM) modeling of
the feature vectors. Many other features for the front-end of the language
recognition system has been proposed among which, shifted delta cepstral
(SDC) [81] features are widely used for the language recognition problem.
The extracted features in the front-end can be used to train language mod-
els. In other words, we will end up with multidimensional GMMs as our
language models. Generalized linear discriminant sequence (GLDS) pro-
posed by [16] and discriminative training of language specific GMMs based
on maximum mutual information (MMI) criterion proposed by [15] were
successful proposals in this category.

More recently, researchers tried to use utterance-specific GMMs instead
of language-specific GMMs. Success of subspace modeling and eigenchan-
nel compensation which was originally proposed for speaker identification
(SID) tasks, has revolutionized acoustic language recognition [35][36] [10].

8 Introduction

The most recent front-end subspace modeling technique known as iVector,
which is a feature extraction model in the front-end of the language recog-
nition system, has become the state-of-the-art technique in SID [21] and
was successfully adapted for the language recognition [46]. The main idea
of the iVector model in acoustic language recognition is to represent each
utterance dependent GMM with a low-dimensional latent variable (see Sec-
tion 2.4) and use the low-dimensional representation of the utterance as a
feature vector to the following language classifier. The acoustics solutions
and the corresponding speech modeling techniques are described in detail
in Chapter 2.

1.2.3 Language recognition back-end

So far we briefly spoke about main approaches for modeling the speech us-
ing phonotactic or acoustic features. Note that, as Figure 1.2 shows, the
front-end processing is the same for all training and test speech utterances.
Once we have the representation of a speech utterance in terms of feature
vectors, we can train language models on top of that. The language model
can be a traditional generative n-gram language model, a Gaussian linear
classifier or discriminative classifiers. In this thesis we use SVM and logistic
regression as different flavors of discriminative classifiers and a Gaussian lin-
ear classifier as generative classifier. These classifiers are used to generate
language and utterance specific scores. These scores can be probabilistic
(e.g log likelihoods or log likelihood ratios) or other different scores that
do not have a probabilistic interpretation (i.e output of SVM). Training of
the language models is discussed in Chapter 5. The language scores have
to be converted to comparable class conditional likelihoods by means of a
multi-class classifier (e.g. Gaussian linear classifier or multi-class logistic
regression). We also should calibrate the class likelihoods to get reasonable
performance on the test data. The calibration is normally done on a de-
velopment set that has a closer distribution to the test data. In the next
step, we may also have multiple language recognition front-ends and we
would like to used them to define the language label of an utterance. This
is referred to as fusion in the language recognition. The calibration and
fusion are normally done by means of training another layer of a multi-class
classifier on development data and can be done jointly or separately. This is
shown as calibration and fusion in Figure 1.2. The output of the calibration
and fusion is a vector of class conditional likelihoods corresponding to the
target language set. In other words, each dimension in the output vector
of the calibration and fusion is P (x|lk) where x stands for a test utterance
and lk is the kth language in the target language set.

1.3. Claims and contributions of this thesis 9

Once we have the calibrated and fused class likelihoods, we can make a
decision on the language label of a speech utterance. When making the de-
cision, we can consider a particular application (or operating point) defined
in terms of prior probabilities over languages. The language priors are used
to produce language posterior probabilities using Bayes rule:

p(ln|x) = p(x|ln)p(ln)∑
k p(x|lk)p(lk)

. (1.1)

Labels are typically assigned to utterances based on maximum a-posteriori
(MAP) rule (i.e. language with highest posterior probability is chosen). This
procedure is discussed in detail in Chapter 5.

The performances of different language recognition systems should be
evaluated on standard widely used evaluation sets. NIST arranges language
recognition evaluations (LRE) that are normally held every other year. The
history and definition of the language recognition task in NIST LREs are
given in Chapter 6. The last two NIST language recognition evaluations
(i.e. NIST LRE11 and NIST LRE2009) are used in this thesis.

1.3 Claims and contributions of this thesis

The state-of-the-art solutions in both of the language recognition approaches
are focusing on similar problem: distinguishing between sources of the
within-class variability that are imposed by language variability with those
that are imposed by other factors (e.g. transmission channel, speaker, etc.).
Benefiting from SID, acoustic language recognition based on iVector model
for continuous features has a more mature mathematical background and
also better performance compared to the phonotactic state-of-the-art sys-
tems. In this thesis, we show how we can represent an utterance-specific
n-gram language model with a low-dimensional vector that we refer to as
phonotactic iVector based on iVector model for discrete features. We pro-
pose a framework for extraction of iVectors from vector of the n-gram statistics.

The main objective of this thesis is to provide a framework for phonotac-
tic iVector extraction and show that we can obtain better language recog-
nition performance by extracting phonotactic iVectors from the output of
the commonly used phoneme recognizers. In the next step, we show that,
not only do the phonotactic iVectors outperform the state-of-the-art phono-
tactic language recognition as a stand-alone system, it provides more com-
plementary information, compared to previous state-of-the-art system, to
the language recognition system fusion. To achieve this goal, we need to
develop other state-of-the-art language recognition systems (e.g. acoustic

10 Introduction

iVectors) to show how the complementary systems can improve the overall
performance of a language recognition system.

The main contributions of this thesis are as follows:

I) Acoustic iVector extraction: we present our understanding of
the iVector model for continuous features based on which, we build
the acoustic language recognition system that is comparable with the
reported state-of-the-art acoustic iVector language recognition systems
[46].

II) Prosodic iVectors: prosodic language recognition yields much lower
performance than phonotactic and acoustic language recognition sys-
tems. However, since it is exploiting different sources of information,
it provides complementary information to language recognition system
fusion [69]. We develop a prosodic language recognition system based
on the iVector model for continuous features by adapting the prosodic
feature extraction that was proposed for SID [39]. We explain our
prosodic feature extraction and modeling and we show that prosodic
language recognition system can improve the language recognition per-
formance along with other more efficient acoustic and phonotactic lan-
guage recognition systems.

III) Phonotactics iVector: we propose our iVector model for discrete
features and explain how to extract phonotactic iVectors. We show that
the phonotactic language recognition based on the proposed phonotac-
tic iVectors performs better than current state-of-the-art phonotactic
language recognition systems. In the next step, we propose an enhanced
regularized phonotactic iVector extraction model that is theoretically
consistent with the n-gram model assumption, robust to model overfit-
ting and significantly outperforms the current state-of-the-art phono-
tactic language recognition systems.

IV) Comparative study: we compare performances of the proposed
phonotactic, acoustic and prosodic language recognition systems. Dif-
ferent fusion schemes are studied and reported. A descriptive compar-
ison on phonotactic and acoustic language recognition systems for the
most recent NIST LRE (i.e. LRE11, see Chapter 6) is given and rea-
sonable intuitions for inspiring researchers to work on both categories
of solutions are given. Furthermore, we study the performance of our
phonotactic iVectors along with acoustic iVectors over the most recent
and challenging language recognition task called RATS. This gives us

1.3. Claims and contributions of this thesis 11

a valuable system performance comparison under noisy channel condi-
tions.

1.3.1 Publications within the scope of this thesis

List of my publication related to the scope of this thesis are as follows:

• Mehdi Soufifar, Marcel Kockmann, Lukáš Burget, Oldřich Pl-
chot and Torbjørn Svendsen. iVector Approach to Phonotactic
Language recognition. In Proceeding of Interspeech 2011 Florence,
Italy.

This paper includes the subspace multinomial model (SMM) for
discrete features (see Section 4.5). It also studies performances of
binary SVM and logistics regression for the language recognition.

• Mehdi Soufifar, Sandro Cumani, Lukáš Burget and Jan Čer-
nocký. Discriminative Classifiers for Phonotactic Language Recog-
nition with iVectors. In proceeding of International Conference on
Acoustic, Speech and Signal Processing (ICASSP) 2012, Kyoto,
Japan.

This paper studies performances of binary and multi-class formu-
lations of SVM and logistic regression used for training language
models. Effect of different normalization techniques on the perfor-
mance of the language recognition is also studied (see Section 7.5).

• Mehdi Soufifar, Lukáš Burget, Oldřich Plchot, Sandro Cumani
and Jan Černocký. Regularized Subspace n-gram Model for Phono-
tactic iVector Extraction. In proceeding of Interspeech 2013 Lyon,
France.

This paper proposed our latest iVector model for discrete features
(see Section 4.5.6 and Section 4.5.7). An extension to the previous
iVector model for discrete features is given. To avoid model over-
fitting, a regularized iVector model parameter estimation is also
proposed.

• Niko Brümmer and Sandro Cumani and Ondřej Glembek and Mar-
tin Karafiát and Pavel Matějka and Jan Pešán and Oldřich Plchot
and Mehdi Soufifar and Edward Villiers de and Jan Černocký.
Description and analysis of the Brno276 system for LRE2011. In
proceedings of Odyssey: The Speaker and Language Recognition
Workshop 2012 Singapor, Singapor.

This paper provides description of the systems that were submit-
ted to NIST language recognition evaluation 2011 under the name

12 Introduction

Brno276. Part of the phonotactic systems were developed by the
author of this thesis and are reported in Section 7.12.

• Pavel Matějka and Oldřich Plchot andMehdi Soufifar and Ondřej
Glembek and Fernando Luis D’Haro and Karel Veselý and Fran-
tǐsek Grézl and Jeff Ma and Spyros Matsoukas and Najim De-
hak. Patrol Team Language Identification System for DARPA
RATS P1 Evaluation. In proceedings of Interspeech 2012, Port-
land, USA.

This paper provides description of the systems that were submit-
ted to RATS language recognition evaluation under the name Pa-
trol. The phonotactic systems were developed by the author of
this thesis and are reported in Section 7.13.

• Fernando Luis D’Haro and Ondřej Glembek and Oldřich Plchot
and Pavel Matějka and Mehdi Soufifar and Ricardo Cordoba
and Jan Černocký. Phonotactic Language Recognition using i-
vectors and Phoneme Posteriogram Counts. In proceedings of In-
terspeech 2012, Portland, USA

This paper shows that the iVector model based on discrete features
can be used for other discrete features than n-gram statistics. This
paper uses phonotactic features called Posteriogram as an input
to the iVector model for discrete features.

1.4 Clarification on the terminologies

The language recognition problem can be treated as either a verification
task or an identification task. Verification is about accepting or refusing
that a trial utterance belongs to a certain language while identification is
about defining a language label for a trial utterance. We will explain the
difference in Chapter 6. Nevertheless, we shall mention in the beginning that
we address the language recognition as defined by NIST. Since it is common
to use the term LID as a reference to the NIST language recognition task,
we use the same terminology. All the LID terms in this thesis are referring
to language recognition as defined in NIST language recognition task.

The iVectors based on iVector model for continuous cepstral features
is commonly referred to as acoustic iVector in the LID community. Other
continuous features (e.g prosodic features as explained in Chapter 3) can
also be modeled with iVector model for continuous features. In this thesis
acoustic iVectors and prosodic iVectors are referring to the iVectors that
are extracted using iVector model for continuous features using cepstral

1.5. Structure of this thesis 13

(e.g. SDC) and prosodic features, respectively.

The main contribution of this thesis is the proposal of iVector model for
discrete features. We use phonotactic n-gram statistics as an input to this
model and therefore we refer to the iVectors extracted using the iVector
model for discrete features shortly as phonotactic iVectors.

1.5 Structure of this thesis

The rest of this thesis is organized as follows:

• Chapter 2 explains language modeling with acoustic features. The
subspace modeling of GMM means is described and steps towards
making state-of-the-art iVector extraction for continuous features are
explained.

• Chapter 3 explains language modeling with prosodic features. Dif-
ferent methods for segmentation of speech in syllable-like segments
are explained. Approximation of prosodic features (pitch and energy)
contours in each segment with Legendre polynomials is explained and
steps toward building fixed-length feature vectors suitable for iVector
model for continuous features are explained.

• Chapter 4 we describe the current state-of-the-art phonotactic LID
systems. Next, we propose our subspace multinomial model to model
n-gram probabilities and our iVector extraction scheme for discrete
features. We also explain how it differs from the iVector model for
continuous features. The enhanced phonotactic iVector model, called
regularized subspace n-gram model is the state-of-the-art solution for
the LID problem that is proposed in this thesis.

• Chapter 5 different techniques for training language models are ex-
plained. The necessity of a calibration and fusion module in LID
system is discussed and different calibration and fusion plans used in
this thesis are explained

• Chapter 6 we briefly describe NIST language recognition evaluation
history and evaluation metrics used by NIST language recognition
evaluations. Next, different data sets used for the experiments in
this thesis for each NIST language recognition evaluation is described.
Sources of the collected data, distribution of the data in different train,
development and evaluation sets are given.

14 Introduction

• Chapter 7 all the experiments regarding the development and tuning
of each system are explained. The comparison of the baseline with the
proposed techniques, performance of each of the explained systems
and different fusion plans of the explained systems are given. Next,
a comparison of the phonotactic and acoustic iVectors on the NIST
LRE11 task is given. In the end, performance of the acoustic and
phonotactic iVectors over RATS language recognition is compared.

• Chapter 8 we conclude this thesis with a summary of our approaches
and findings, followed by an outline of the potential extension of this
work.

Chapter 2

Acoustic speech modeling

For many speech applications, the speech waveform is not directly usable.
In the case of SID and LID, we normally segment the speech signal into
overlapping frames and extract a feature vector for each frame. There have
been many different feature extraction schemes proposed by researchers for
different applications among which, MFCC and SDC [81] are widely used in
SID and LID. The conventional approach to modeling speech for acoustic
LID using cepstral features (e.g. MFCC, SDC and etc) involves training of
a GMM (see Section 2.2) for each language of interest. A successful alter-
native to this approach was to train a GMM model referred to as universal
background model (UBM) by pooling data from all languages and then
adapt the UBM to a language of the interest using language specific data
[62]. This adaptation was done using maximum a posteriori (MAP) adap-
tation and was originally proposed for SID. The MAP adaptation can give
us a fairly robust language model estimation. Later, discriminative training
between language specific GMMs that focuses on the boundaries of language
distributions rather than estimating language distributions, was proposed
in [15]. After that, works on channel compensation methods showed notable
effect on SID system performances [13].

A breakthrough in LID modeling was the proposal of the subspace mod-
eling approaches which are based on the assumption that each utterance
(even those corresponding to a same language) has potentially different
(channel specific) distribution of features. It is further assumed that such
distribution can be modeled by an utterance specific GMM. The parame-
ters of such GMM are, however, constrained to live in a low-dimensional
subspace and are represented by low-dimensional latent vector. A success-
ful subspace modeling approach that was called joint factor analysis (JFA)
model and was originally proposed for SID [37], was successfully transformed

15

16 Acoustic speech modeling

to LID [18]. In JFA, language specific GMM parameters were allowed to
move in the subspace corresponding to channel variability. This was used
to adapt language models to the channel of each test utterance. Recently,
a successful variation of subspace modeling that serves as a feature extrac-
tion model, known as iVectors, was proposed in [21] and soon became a
permanent part of all state-of-the-art SID and LID systems. The iVector is
a low-dimensional representation of an utterance that contains information
about all important sources of data variability. More specifically, the iVec-
tor is the value of the latent vector corresponding to the GMM adapted to
a given utterance.

We shall mention that subspace modeling of model parameters has been
used for many applications in speech technology. In [41] it was proposed
for speaker adaptation in large vocabulary continuous speech recognition
(LVCSR), [25] proposed it for cluster adaptive training of hidden Markov
models and [60] proposed it for subspace modeling of the GMMs in LVCSR.

In the rest of this chapter, we first explain acoustic features extraction
and then training of a GMM on top of the acoustic features. To achieve the
objective of this thesis, we developed an acoustic LID system according to
the recipe given in [29] using iVector model. This way, we showed that, one
can obtain state-of-the-art acoustic LID using a published recipe and fur-
thermore, we use the acoustic iVector system for the purpose of comparison
and fusion with the other systems. In Section 2.4, we briefly explain the
iVector model as used in this thesis. Extensive study of the recent subspace
modeling techniques are available in [29] and [26].

2.1 Feature extraction

The MFCC[19] features are widely used as acoustic features in LID systems.
However, authors in [81] showed that it is useful to use broader temporal
information for LID and proposed use of shifted delta cepstra (SDC) for
LID. Let us first briefly explain the extraction of the MFCC features and
then extraction of SDC based on MFCC features.

2.1.1 Mel-frequencies cepstral coefficients (MFCC)

To get the Mel filter bank energies, the speech signal is first filtered by
pre-emphasis linear filter to amplify higher frequencies and is then divided
into overlapping frames with a typical length of 25ms and 10ms shift between
each frame. A Hamming window is applied in the next step and the Fourier
power spectrum is calculated for each frame. Finally a Mel filter bank is

2.2. Gaussian mixture model (GMM) 17

LogPre−emphasis
Hamming
Widow DFT DCT

Output energy
of filters on
Mel−scale

Figure 2.1: Steps toward getting Mel filter bank cepstral coefficients.

applied to smooth the spectrum. To mimic the human’s nonlinear frequency
resolution of loudness, a logarithm is applied to the output of the Mel filter
bank energies and finally the discrete cosine transform is applied on the
logarithm of the Mel filter bank energies to decorrelate the features and
to reduce the dimensionality. Typical dimensionality for the final feature
vector is 13. Steps toward getting MFCC features are shown in Figure 2.1.

The output of the Mel filter banks are used as input features for training
the phoneme recognizers as is explained in Section 4.2.

2.1.2 Shifted delta cepstra (SDC) features

1st and 2nd order temporal derivatives of the MFCCs (delta- and delta-delta-cepstra)
have typically been used to provide information about temporal evolution.
In LID, the SDC features [81] comprise delta cepstra computed across mul-
tiple frames. The SDC is specified by four parameters: N , d, P and k
where N is the number of cepstral coefficients computed at each frame, d
defines the time advance for delta computation, k stands for number of the
blocks whose data coefficients are stacked to form the final feature vector
and P is the time shift between consecutive blocks. Calculation of SDC
features in 7-1-3-7 configuration and for one of the MFCC coefficients is
shown in Figure 2.2. Note that in 7-1-3-7 configuration, each SDC feature
vector comprises 49 coefficients calculated fro MFCC C0 to C6 according
to Figure 2.2. In this thesis, experiments on acoustic LID use SDC features.

2.2 Gaussian mixture model (GMM)

The Gaussian mixture model (GMM) is a weighted sum of C component
Gaussian densities and the probability of a D-dimensional observation vector
is calculated as:

p(oi|GMM) =

C∑
c=1

ηcN (oi;μc,Σc)), (2.1)

18 Acoustic speech modeling

Current frame

SDC feature corresponding to one

MFCC coefficient

Δ Δ Δ Δ Δ Δ Δ

Figure 2.2: Extraction of SDC features in 7-1-3-7 configuration for one
MFCC coefficient.

where μc, c = 1 . . . C denotes a D-dimensional Gaussian mean for compo-
nent c. Σc and ηc are covariance matrix and weight for the corresponding
Gaussian component c, respectively. Assuming that the observations in an
utterance are statistically independent, the likelihood of all the observations
in an utterance w.r.t. a GMM model is:

p(O|GMM(μ,Σ,η)) =

N∏
i=1

C∑
c=1

ηcp(oi|μc,Σc). (2.2)

In order to have a fine resolution in acoustic space modeling, we need to
train a fairly big GMM (normally 1024 or 2048 Gaussian components)

For the GMM training, we assume that lots of training utterances that
represent the whole acoustic space are available. To keep the notations
simple, we pool all the training data together and consider it as N training
frames denoted asO. All of C GMM components in the GMM are multivari-
ate D dimensional Gaussians, where D is the dimensionality of the feature
vector extracted from the speech signal. The parameters of the GMM com-
prise weights ηc, means μc and covariance matrices Σc. The parameters
are trained in a maximum likelihood (ML) manner using the iterative ex-
pectation maximization (EM) algorithm [22]. To avoid an over-fitting of
the Gaussian components to the training data, we used covariance flooring
[86]. This means that if a GMM variance gets too small, we force it to
stay above a predefined variance floor. The covariance matrix can be full
or diagonal. In this thesis, diagonal covariance matrices are used for all
experiments unless stated otherwise. Each EM iteration has two steps:

I) E step: Given each frame, we calculate the posterior probability of

2.2. Gaussian mixture model (GMM) 19

each Gaussian component γc.

II) M step: Re-estimation of the current model parameters based on the
soft assignment of frames to the Gaussian components of the GMM
given by γc from E step.

The E step involves calculation of the posterior probability of each
Gaussian component for a given observation. The posterior probability of
a Gaussian component c for observation oi is:

γc(i) =
ηcN (oi|μc,Σc)

ΣC
j=1ηcN (oi|μj ,Σj)

. (2.3)

Posterior probabilities are assigning Gaussian component to each frame
and this is called alignment of the data to the Gaussian components. To
update the model parameters in the M step, we have to first accumulate
sufficient statistics over all training frames. The sufficient statistics can be
used to estimate any parameters of the GMM model [8]. We can calculate
the sufficient statistics as:

γc =
∑
i

γc(i) (2.4)

θc =
∑
i

γc(i)oi (2.5)

Θc =
∑
i

γc(i)oio
T
i (2.6)

The γc is called zero-order statistics and can be seen as the occupation
count of the Gaussian component c over all the data. The θc is called
first-order statistics and Θc is called the second–order statistics. Having
the accumulated sufficient statistics, the mean of each Gaussian component
can be updated as:

μnew
c =

1

γc
θc. (2.7)

The covariance matrix can be updated as:

Σnew
c =

1

γc
Θc − μnew

c μnew T
c . (2.8)

The mixture component weights can be updated as:

ηc =
γc
N

. (2.9)

20 Acoustic speech modeling

Algorithm 1: maximum likelihood training of UBM-GMM

Data: Pool data from the UBM training set
Output: UBM-GMMs
C ← 1 ;
μc ← mean of the training set ;
Σc ← covariance of the training set;
while not enough mixture components do

split each mixture component in two ;
find the largest eigenvalue of the covariance matrix Σc and its
eigenvector r μp1

c ← μp
c +

√
2r ;

μp2
c ← μp

c −
√
2r ;

while log-likelihood changes significantly do
do E step ;
do M step ;

The iterative training of the GMMs starts with a single multivariate
components that represents the whole training data. Until reaching a pre-
defined number of Gaussian components, we keep splitting every Gaussian
component in two and run the iterative EM algorithm. In each iteration,
the likelihood of the data with respect to the GMM is calculated and the
iteration continues until the change in the likelihood value between two con-
secutive iterations becomes negligible. At this point we split each Gaussian
component and start the iteration all over again. To initialize the Gaus-
sian components after the split, component weights are set to half of the
old Gaussian component weight, means are moved in the direction of the
largest variability with a small step of ±√

2r and we keep the covariance as
before. The r is the eigenvector corresponding to the largest eigenvalue of
the covariance matrix. The algorithm we used to train the UBM is shown
in Algorithm 1

2.2.1 The likelihood function

We need to calculate the likelihood of data with respect to the Gaussian
components in many places in this thesis (e.g in (2.4)). Since we describe
the data in terms of sufficient statistics, we need to express the likelihood
function in terms of sufficient statistics. We start with a simple case where
we know the model parameters, Ω. The likelihood of the whole observation,
O, with N frames for a component c of the GMMs:

2.2. Gaussian mixture model (GMM) 21

p(O|Ωc) =
N∏
i=1

N (oi|μc,Σc) (2.10)

N (oi|μc,Σc) =
1√

(2π)D|Σc|
exp (−1

2
(oi − μc)

T Σ−1c (oi − μc)), (2.11)

where D is the dimensionality of the feature vector. Normally, we prefer
the logarithm of the likelihood function mainly because it is easier to work
with. The log-likelihood of a GMM with C components is

log p(O|Ω) =

N∑
i=1

log

C∑
c=1

ηc N (oi|μc,Σ−1c). (2.12)

The sum inside the logarithm term in (2.12) is difficult to deal with
and as a consequence there is no closed form solution for the maximization
of the likelihood function in (2.12). To get the summation outside of the
logarithm, we can expand (2.12) as:

log p(O|Ω) =
∑
i

log p(oi)

=
∑
i

∑
c

p(c|oi)︸ ︷︷ ︸
=1

log

(
p(oi|c)p(c)
p(c|oi)

)

=
∑
i

∑
c

p(c|oi)︸ ︷︷ ︸
γc
i

log p(oi|c)︸ ︷︷ ︸
N (oi;μc,Σc)

−
∑
i

∑
c

p(c|oi) log p(c|oi)
p(c)︸︷︷︸
ηc

=
∑
i

∑
c

γci logN (oi;μ
c,Σc)−

∑
n

∑
c

γc log
γci
ηc

.

(2.13)

Expanding Equation 2.13 and using diagonal covariance matrices, we
can efficiently express the likelihood in terms of sufficient statistics as:

22 Acoustic speech modeling

log p(O|Ω) =
N∑
i=1

C∑
c=1

γci log N (oi;μ
c,Σc)−

N∑
i=1

C∑
c=1

γci log
γci
ηc

=
N∑
i=1

C∑
c=1

γci log
1

(2π)d/2|Σc|1/2
−

N∑
i=1

C∑
c=1

γci log
γci
ηc

−
N∑
i=1

C∑
c=1

γci
1

2
[(oi − μc)TΣ−1c (oi − μc)]

= D +
C∑
c=1

[−1

2
tr(Σ−1c Θc) + μcTΣ−1c θc − 1

2
μcTγcΣ−1c μc],

(2.14)

where D is a constant which does not depend on μc

D =
N∑

n=1

C∑
c=1

γcn log
1

(2π)d/2|Σc|1/2
−

N∑
n=1

C∑
c=1

γcn log
γcn
ηc

.

2.3 GMM as universal background model

So far we have explained how to train a GMM model. In the traditional
LID, cesptral acoustic observations of each language are assumed to be
drawn from a language-specific GMM as:

oi ∼ GMM(μL,ΣL,ηL), (2.15)

where oi stands for an observation from language L, μL are language specific
means, ΣL are language specific covariance matrices and ηL are language
specific Gaussian component weights. Even though such a language spe-
cific GMM can be estimated using Maximum likelihood (ML) estimation, it
yields a poor language model since there is no prior knowledge of the vari-
ability source in the observations. A successful alternative to this approach
was to train a universal background model (UBM) by pooling data from
all languages and then adapt the UBM to a target language using language
specific data [62]. This adaptation was done using maximum a posteriori
(MAP) adaptation and was originally proposed for SID. The MAP adapta-
tion can give us a fairly robust language model estimation.

In the subspace modeling of the GMMmean parameters, the UBM-GMM
is used to generate Baum-Welch sufficient statistics (see (2.4) and (2.5))
that describe utterances in the acoustic space.

2.4. iVector Model 23

2.4 iVector Model

In the traditional GMM–based LID system, the assumption is that obser-
vations (oin) are drawn from language specific GMMs

oin ∼ GMM(μL,ΣL,ηL), (2.16)

where μL denotes a vector of Gaussian component means for language L,
ΣL defines the corresponding covariance matrices for the language L and ηL

is a vector holding the weights of Gaussian components in the GMM model.
In other words, we assume that the parameters of the language model live
in the original space of GMM parameters and we model within-class and
between-class variability in the space of GMM parameters. However, in the
subspace model and in particular, the iVector model, the key assumption is
that observations in each utterance (oin) are drawn from a utterance specific
GMM

oin ∼ GMM(μn,Σn,ηn). (2.17)

We also assume that all the utterance specific GMMs have corresponding
Gaussian components that share the same covariance matrices and Gaus-
sian component weights, η, that are the same as those in the UBM. By this
parameter sharing, the problem reduces to estimation of the utterance spe-
cific GMM means, μn. By stacking vectors of Gaussian component means
to form a single vector, we form a supervector of GMM means (μn). Next,
we assume that the utterance specific mean supervector lives in a subspace
that has much lower dimensionality compared to the dimensionality of the
mean supervector and can be expressed as:

μn = m+Tφn, (2.18)

where φn defines the coordinates the utterance specific model in the low-
dimensional subspace. This low-dimensional subspace is represented by a
low rank matrix T. The m defines the origin of the GMM mean space and
is set to the GMM-UBM mean. We assume that φn is a latent variable with
standard normal prior

p(φn) = N (φn;0, I). (2.19)

This way, the prior distribution of μn is given as:

p(μn) = N (μn;m,TTT). (2.20)

24 Acoustic speech modeling

Each utterance is associated with a low-dimensional latent variable, φn.
We can use the EM algorithm to estimate the model parameter T and the
posterior distribution of the utterance–dependent latent variables φn. The
model parameter T is also referred to as the subspace matrix in this thesis
since it defines the expansion from the low-dimensional latent variable space
to the space of GMM means and is fixed for all utterances. First, we need
to express the data likelihood in terms of posteriors of the hidden variables.
To avoid confusion, we shall mention that, unlike in GMM training, we do
not pool all the data together. In the discussion about subspace, n refers
to a single utterance.

As we mentioned before, in the iVector model, we use a UBM to generate
sufficient statistics for utterances. For each utterance, zero, first and second–
order statistics denoted as γn,θn and Θn, respectively, are extracted and
used to represent the corresponding utterance.

To simplify the notations in the following equations, we use transformed
sufficient statistics. First, we center the sufficient statistics of each utterance
with respect to the UBM

θ̃c
n = θc

n − γc
nm

c. (2.21)

where c stands for a Gaussian component in the GMM. This removes the
role of m in (2.18). In the next step we normalize first order sufficient
statistics and the T by means of UBM covariance as:

θ̂c
n = Σ(c)−1/2θ̃c

n,

T̂c = Σ(c)−1/2Tc,
(2.22)

where Σ(c)−1/2 is a Cholesky decomposition of the inverse of Σ(c). The Tc is
a D×r dimensional sub-matrix ofT corresponding to the mixture component
c. r is the dimensionality of the subspace. Note that after normalizations
in (2.22), Σ becomes the identity matrix.

2.4.1 Likelihood function

So far, we showed how to represent utterance specific GMM means in terms
of the iVector model parameter T and an utterance dependent latent vari-
able φn. The log likelihood of a data set, O, given corresponding utterance
dependent GMM models, Ω is:

log p(O|Ω) =
∑
n

∑
i

logN (oni;Ωn) (2.23)

2.4. iVector Model 25

The Ωn stands for utterance specific model parameters that comprise
the utterance specific mean, μn and shared covariance matrix and weights.
By expanding the likelihood function in (2.14) in iVector form and using
transformed sufficient statistics in (2.21) and (2.22), the likelihood function
in the iVector form becomes

log p(On|φn,T) = φT
n T̂

T θ̂n − 1

2
φT
n T̂

TγnT̂φn + const. (2.24)

where all terms independent of T̂ or φn are included in the constant.

2.4.2 Posterior distribution of hidden variables

To estimate the model parameter T, we need to have the utterance de-
pendent latent variable φn defined. In our calculation we use φ̂n as a MAP
point estimate of φn. To do so, we first need to get the posterior distribution
of φn. We know that

p(φn|On,T) ∝ p(On|φn,T)p(φn). (2.25)

Since both log p(φn,on|T) and log p(φn) are quadratic functions of φn,
it follows that log p(φn|on,T) is quadratic function of φn and therefore
p(φn|on,T) is Gaussian distributed.

p(φn|On,T) = N (φn; φ̂n,L
−1
n), (2.26)

where the mean φ̂n can be shown to be:

φ̂n = L−1n T̂T θ̂n (2.27)

and Ln is the precision matrix:

Ln = I+
C∑
c=1

γcn(T̂
c)

T
T̂c (2.28)

2.4.3 Estimation of the hyper parameter T

Our objective for training the model parameter T is to maximize the data
likelihood where likelihood for each utterance is marginalized over the latent
variable:

26 Acoustic speech modeling

p(On|T) =

∫
p(On|φn,T)p(φn)dφn (2.29)

However, we can also conventionally express the likelihood in terms of
p(On|φ̄n,T) from (2.24) and p(φ̄n|On,T) from (2.26) using any φ̄n as fol-
lows: using Bayes rule we can write:

p(On|T) =
p(On|φ̄n,T)p(φ̄n)

p(φ̄n|On,T)
. (2.30)

Notice that (2.30) holds for any value of φ̄n. Using (2.24), (2.26) and
choosing φ̄n = 01, we can write the logarithm of (2.30) as:

log p(On|T) = log p(On|φ̄n,T)− log p(φ̄n|On,T) + const.

= − log |Ln| +
1

2
φ̂n

TLnφ̂n + const.
(2.31)

Leaving out the terms that are constant w.r.t. T, we can write our ML
objective function for the nth utterance and for the whole train set as:

Ln(T) = − log |Ln| +
1

2
φ̂n

TLnφ̂n,

L(T) =
∑
n

Ln(T).
(2.32)

We shall mention that so far in this section we described the likelihood
function in (2.32) that we calculate after each update of the T to make sure
that the corresponding update results in a higher likelihood. Estimation of
the T matrix is described in the following:

Expectation Maximization
For maximum likelihood estimation of the T matrix, we use the EM algo-
rithm as described in [9]. Given an initial value for T as T0, an auxiliary
function Q, is defined as:

Q(T|T0) =
∑
n

E[log p(On,φn|T)]. (2.33)

1φ̄n refers to a certain value for the random variable φn

2.4. iVector Model 27

Based on (2.19) and (2.26), we can rewrite (2.33) as:

Q(T|T0) =
∑
n

E[log p(On|φn,T) + const]

=
∑
n

E[φT
n T̂

T θ̂n − 1

2
φT
n T̂

TγnT̂φn + const]

=
∑
n

tr(CnT̂
T)− 1

2
tr(AnT̂

TγnT̂) + const

, (2.34)

where

Cn = θ̂nφ̂n

An = φ̂nφ̂
T
n + Ln

(2.35)

More detail on defining the auxiliary function is given in [29]. Taking
the derivative of (2.34) with respect to each sub-matrix corresponding to
the GMM component c, gives us:

∂Q(T,T0)

∂T̂c
=

∑
n

(Cc
n)

T −
(∑

n

γcnA
c
n

)
(T̂c)T (2.36)

Setting the derivatives to zero, it gives us a closed form solution for the
hyper parameter matrix T as:

T̂c = Cc(Ac)−1, (2.37)

where Ac and Cc are the accumulators collected in the E-Step using
(2.35) as:

Cc =
∑
n

θ̂nφ̂
T
n

Ac =
∑
n

γ(c)n (L−1n + φnφ
T
n)

(2.38)

Minimum Divergence
In the original recipe for the EM estimation of the hyper parameter T in
[35], there are two different updates. The first one is what we have just

28 Acoustic speech modeling

explained and the second one is called Minimum Divergence. In fact the
latter is just a modification to the first estimation so that the assumption of
a standard normal prior on φ holds during the hyper parameter estimation.
That helps us to get a faster convergence. The minimum divergence step
can be done separately or jointly with the update of T̂c. For the sake of
computational overhead, we do it jointly with the T̂c update. This requires
collecting the following statistics along with C and Ac as:

y =
1

N

N∑
i=1

φn

P−1 =
1

N

N∑
i=1

Ln + (φn − y)(φn − y)T ,

(2.39)

The joint update of T̂c is given as:

T̂(c)
em = CA(c)−1

T̂md = TemJ, (2.40)

where J is the symmetrical Cholesky decomposition of P−1 as JJT = P−1.

2.4.4 iVector versus joint factor analysis

Joint factor analysis (JFA) was a successful proposal of the subspace mod-
eling that was originally proposed for SID [37]. It was successfully adapted
for LID [18] later on. The iVector model for continuous features as the most
recent and the most successful proposal of the subspace modeling in SID
and LID was inspired by JFA model. However, we shall mention that there
is an important difference between these two models that gives the iVector
model a separate characteristic. In adapted JFA model for LID, language
specific GMM parameters are allowed to move in the subspace correspond-
ing to channel variability. This was used to adapt language models to the
channel of each utterance as:

μn,k = μk +Uxn,k, (2.41)

where μn,k and μk are the adapted and the original supervector of GMM
k parameters, respectively. U is a low rank matrix projecting the channel
factors subspace, in the supervector domain [18]. In other words, calcu-
lating the likelihood of a given utterance for each of the target languages

2.4. iVector Model 29

is still done in the space of the GMM parameters. On the other hand,
the iVector model constrains the utterance specific GMM parameters to
live in a low-dimensional subspace and uses a MAP point estimate of this
low-dimensional subspace to represent the corresponding utterance [21].
Calculating the likelihood of an utterance specific iVector with respect to a
target language is done in the iVector space by means of a statistical clas-
sifier trained on the iVectors corresponding to labeled utterances [46]. The
successful application of the iVector model for continuous features in the
LID and SID inspired us to base this thesis on the iVector model idea and
propose our iVector model for discrete features.

Chapter 3

Prosodic speech modeling

Processing of speech prosody is another approach to extract information for
language discrimination. It has shown success in SID [23][20][39] and LID
[45][56] tasks. The change in the speech loudness and the fundamental fre-
quency (also referred to as pitch) are important characteristics of the speech
prosody. As a measure of loudness, the short-term energy of the speech sig-
nal can be used. In this work we refer to pitch and energy values of each
speech frame as prosodic features. Many algorithms have been proposed
for pitch extraction. A common solution is to estimate the fundamental
frequency using cross-correlation of the time domain signal in the voiced
part of speech. The pitch and energy trajectories of a signal are depicted
for a sample speech signal in Figure 3.1 and we refer to them as prosodic
feature contours. We shall mention that a typical pitch value is in the range
of 80 − 250Hz and since the pitch and the energy contours are depicted in
the same figure, variations of the pitch contour is smoothed out. However,
human ears are very sensitive to small variations in pitch contour.

Pitch and energy contours in Figure 3.1 show lots of variation within
a sentence. To get a better representation of speech prosody, it is better
to analyze pitch and energy values within shorter segments. The shorter
the segment is, the less abruption is observed in the values of prosodic
features. Analyzing pitch and energy values in syllable-sized segment has
been shown to be an effective tool to discriminate among different speakers
or languages [61]. For many non-tonal languages, the pitch values stays
fairly smooth in syllable-sized segments. However, the pitch is only defined
for the voiced frames. On the other hand, energy values may change a
lot in syllable-sized windows. Fitting curves to the values of the pitch in
syllable-sized segments by means of polynomial basis functions was proposed
in [61]. In this framework, within each defined segment and using basis

31

32 Prosodic speech modeling

Figure 3.1: F0 (blue) and energy (green) contours extracted for a speech
sentence.

functions, a curve is fit to pitch values. The coefficients of the basis functions
(referred to as regression coefficients) are then used as a feature vector
representing the corresponding segment of speech. A similar feature vector
can be extracted for the energy values within each segment of speech. This
gives us a fixed length feature vector for each segment that can be modeled
with the GMM-UBM paradigm [62] similar to standard continuous features
explained in Section 2. In [20], a JFA style subspace modeling approach was
proposed to model such feature vectors. After the proposal of the iVectors
in [21], a subspace modeling approach based on iVectors was studied in [39].
A similar approach was used for the LID problem in [45].

In this work, I develop a prosodic LID system by adapting the recipe
proposed in [39] and [45]. The main goal of developing a prosodic LID
system was to compare performance of the different approaches and their
contribution to a final system fusion.

The prosodic front-end for the LID system in our implementation in-
volves the following steps:

1. Pre-processing of the speech signal (e.g. frequency filtering, normal-
izing etc. see Section3.1).

2. Extracting prosodic features (e.g. pitch and energy).

3. Segmenting the speech signal to syllable-sized segments.

4. Fitting curves to the prosodic feature values using Legendre polyno-
mials and representing the contours in terms of regression coefficients.

3.1. Speech preprocessing 33

5. Subspace modeling of regression coefficients with iVector model.

3.1 Speech preprocessing

The goal of the pre-processing is mainly to remove interfering effects from
the speech signal caused by external factors. This mainly comprises band
pass filtering and voice activity detection (VAD). The speech signal is nor-
mally collected from different and occasionally diverse channels. In the case
of telephony speech, it has already gone through a bandpass filter since a
common frequency band in telephony is 300-3400Hz. However, a close look
at the signal spectrum shows some harmonics in the lower frequencies be-
low 300Hz. That is normally caused by channel noise. To be safe, we send
every speech signal through a bandpass filter of 300-3400Hz to remove any
noisy channel effect. Typical pitch values are in the range of 85-180Hz for
male speakers and 165-255Hz for female speakers [80]. Nevertheless, the
fundamental frequency can be still estimated from harmonics of the signal.

Another useful preprocessing is applying the VAD. It helps us to focus
on the informative part of the signal by excluding non-informative part of
the signal. Normally a phoneme recognizer that is trained on similar kinds
of data is used to classify speech signal into speech and non-speech segments.

3.2 Basic prosodic features

Pitch
Pitch is a perceptual property that allows the ordering of sounds on a
frequency-related scale [38]. It can not be represented in a quantitative
way. However, the fundamental frequency, F0, seems to be strongly corre-
lated with the perceived pitch. In this work, we may interchangeably use
the value of F0, referring to the pitch. However, we shall mention that they
are not identical. There are many different algorithms for estimating the F0
value. One popular algorithm that we use in this work is based on a robust
algorithm for pitch tracking (RAPT) proposed in [77]. It uses normalized
cross correlation function (NCCF) over the time signal. The output of the
algorithm is the estimated F0 and probability of voiced frames. If a frame
is unvoiced it outputs zero as the probability of being voiced frame and if
the pitch tracker algorithm can not find any F0 value, it outputs 0 as the
pitch value for the corresponding frame. We use a frame rate of the 10ms
throughout this work. The blue line in Figure 3.11 shows the F0 contour

1Figure is produced using wavesurfer that is publicly available at

34 Prosodic speech modeling

estimated using the RAPT algorithm.

Energy
Another important prosodic feature is the speech loudness. It is normally
measured in terms of the signal energy [5] and it can be either directly
estimated from the speech signal or from the squared magnitude of the
signal short term spectrum. We use the same 10ms frame rate to extract
the short term signal energy. The Green line in Figure 3.1 shows the short
term signal energy contours for the same utterance.

3.3 Segmentation

As we mentioned before, we are trying to analyze prosodic features in shorter
segments where the prosodic feature values are smoother. For this purpose,
syllable-sized segments are popular units since in many languages prosodic
characteristics of the speech (like stress, rhythm and loudness) are affected
by the syllable. In some other languages (e.g Mandarin), syllables are the
basic blocks of the language. However, there is no unique definition of
syllable structure. To see what are the possible solutions, let us first explain
the structure of a syllable.

The syllable is a linguistic unit that consists of three parts:

• onset: A group of one or more consonants.

• nucleus: A vowel or, more specifically, a voiced sound.

• coda: A group of one or more consonants.

Depending on the language or linguistic rules, the nucleus can be merged
with onset in left-branching or the coda in right-branching segmentation.
What remains fixed is that in each syllable there should be at least one vowel
(or a syllabic consonant). A common solution for the syllable segmentation
is the use of phoneme recognizer [39]. This way, we can obtain a typical
syllable segmentation by applying the following heuristic rules:

• Run a phoneme recognizer (of possibly mismatched language)

• Map the output to one of the three classes: silence, vowel and conso-
nant

• For two consecutive vowels, do

https://www.speech.kth.se/wavesurfer/

3.4. Fitting curves to feature contours 35

sil silcon con con con convow vow vow con

Figure 3.2: Defining syllable segmentation based on phoneme recognizer
output.

1. If there is less than two consonants in between, draw syllable
boundary before the second vowel

2. otherwise, draw the syllable boundary before the last consonant.

This algorithm is shown in Figure 3.2. Note that the phoneme recognizer
is normally trained on a different language than the processing data and
the phoneme boundaries are not that accurate. To alleviate this problem
one can use a multilingual phoneme recognizer with many phonemes in its
acoustic model set.

As we mentioned before, loudness is one of the prosodic features that is
affected by the syllable and normally boundaries of the syllables lay in areas
with lower energy values. In [20] segmentation of speech based on local min-
ima in the energy contour was proposed for defining the syllable boundaries.
This approach was first used by [43] for the LID problem. Another solution
proposed in [23] is based on the output of a Large Vocabulary Continuous
Speech Recognizer (LVCSR).

Fixed-length segmentation
Use of a phoneme recognizer or an LVCSR system to define the syllable
boundaries rely on the output of the third party systems and this makes
the segmentation more complicated and computationally expensive. An
interesting alternative was proposed in [40] that is inspired by the MFCC
feature extraction. In this approach, the speech signal is segmented into a
fixed typical length syllable units with a few frames shift. This produces
highly overlapped fixed length segments that will cause lots of redundancy
in the produced features. However, similar to MFCC feature extraction, the
GMM model will learn the useful information in the feature vectors.

3.4 Fitting curves to feature contours

Let us first explain why we want to fit a curve to prosodic feature contours.
The first question is why do we not use the absolute values of prosodic fea-
tures as our feature vector? There are two main reasons: firstly, the absolute

36 Prosodic speech modeling

values of prosodic features are very noisy and second and most importantly,
not all the frames have corresponding prosodic features. For example the
pitch estimation value may fail to produce pitch value for a frame or pitch
may not be defined for some frames (e.g unvoiced frames). This means that
we can not represent all speech segments with fixed length feature vectors.
By regression of prosodic features within a segment, we obtain a smoothed
curve that represents the change in the prosodic features in the correspond-
ing segment. For the regression, we are interested in expressing values of
the prosodic features within each segment by a linear combination of ba-
sis functions. Two popular classes of basis functions used in SID and LID
communities are:

• Legendre polynomials (LP) [1]

• Discrete cosine transform (DCT) basis functions

We can achieve a perfect curve fit by using high order of the basis func-
tions. However, this would result in curve over-fitting [8, Chapter 1]. Ex-
periments showed that, the first 6 basis function in both LP and DCT basis
functions, give us reasonable curves [40]. This, however, requires at least
6 contiguous values in the prosodic contour of each segment. It may hap-
pen that there are missing values in the prosodic features that is caused by
silence or unvoiced phonemes. In [40] a median filter is used to fix a dis-
continuity of 1 frame. However, in case of longer discontinuities the whole
segment is discarded and no feature vector is extracted. In this work, we
use LP as our basis functions with a different algorithm for the curve fitting
that is based on a regression recipe proposed in [8, chapter 4]. The Legendre
polynomials are defined in the domain of −1 to 1 as shown in Figure 3.3(a).
Given that our regression problem is a curve fitting for N data points, we
need to get the value of LPs for N points corresponding to the N frames in
the fixed length segmentation of the pitch and energy values as explained
in Section 3.3. These points are referred to as xi then obtained as

xi =
2 ∗ i
N − 2

− 1,

i = 0 . . . N − 1
(3.1)

Then assume that values of the first M +1 LPs in each of N frames are
stored in a matrix as:

3.4. Fitting curves to feature contours 37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x
i

φ

φ
0

φ
1

φ
2

φ
3

φ
4

φ
5

φ
1
(x

i
)

(a) First six LP basis function.

2 4 6 8 10 12 14 16 18 20

−0.5

0

0.5

1

1.5

2

2.5

i

φ

data1
data2
φ

0
(i)

φ
1
(i)

φ
2
(i)

φ
3
(i)

φ
4
(i)

φ
5
(i)

(b) Regression of LP basis to fit curves to a
prosodic feature contour.

Figure 3.3: Curve fitting to F0 contours using the first six Legendre poly-
nomial basis.

Φ =

⎡
⎢⎢⎢⎣
φ0(x1) φ1(x1) ... φM (x1)
φ0(x2) φ1(x2) ... φM (x2)

...
...

. . .
...

φ0(xN) φ1(xN) ... φM (xN)

⎤
⎥⎥⎥⎦ (3.2)

The φm(xi) denotes the value of the LP of order m for the point xi. By
assigning different weights to each of the LP functions, we can fit a curve
to the pitch and energy contours as:

yT = wTΦ, (3.3)

where yT is a vector holding values of the resulting curve in each of the
frame indices and w is a weight vector. We choose the curve that results
in the least squared error between the existing prosodic feature values with
those of yT . The w that results in such a curve is our solution and is given
as [8, chapter 3]:

wML = (ΦTΦ)−1ΦT t. (3.4)

where tT = [t1...tN] is a row vector of prosodic feature values. For
missing prosodic values, the corresponding rows in (3.2) will be omitted.
This is depicted for an example prosodic feature vector in Figure 3.3. The
first six LPs are drawn in Figure 3.3(a). In Figure 3.3(b), blue circles are

38 Prosodic speech modeling

prosodic feature values. The light blue curve is the regression result of using
the first six LPs. The corresponding first six weighted LPs are also shown.

We use the basis function weight vector w as our feature vector that is
going to be modeled in the iVector model. This way, we can also look at
the given solution as a feature reduction method that represents prosodic
features of N frames with a (M +1)–dimensional vector. This way, we also
remove the limitation of having defined prosodic feature values for every
frame. All we need is to have defined prosodic feature values for M + 1
frames in each segment.

Fixed length feature vector
As we mentioned before our goal of approximating feature contours with
LP is to represent speech prosody in segments with a fixed length feature
vector so that it can be modeled in iVector model for continuous features. It
is important to mention that once we get the segmentation, it applies to all
different prosodic features (i.e energy and pitch in this work). The regression
coefficients (w) for the different prosodic features of each segment can be
stacked together and modeled in the same iVector model as we explained in
Section 2.4.

Chapter 4

Phonotactic speech modeling

Phonetics and Phonotactics are rich sources of discrimination among lan-
guages and are used by human beings to discriminate languages. In phonol-
ogy, the smallest discrete segment of sound in a stream of speech that carries
language-specific information is called a phone. A phone can be a voiced
or unvoiced sound. It can also be a vowel or a consonant. A voiced sound
is produced by vibration of the vocal folds while there is no vibration of
the vocal folds during pronunciation of unvoiced sound. On the other hand,
if there is no constriction or closure in the vocal tract while pronouncing a
phone, it is regarded as vowel. Otherwise it is a consonant. These categories
may have overlap as well. All the vowels are voiced but consonants can be
voiced or unvoiced. Table 4.1 shows some example of voiced and unvoiced
consonants.

From a linguistic point of view, a phoneme is a basic element of a given
language or dialect, from which, words in that language or dialect are built.
The international phonetic association (IPA) defines the phoneme as the
smallest segmental unit of sound employed to form meaningful contrasts
between utterances [3]. For most of the languages, phonemes are the basic
elements of the languages. However, there are syllabic and tonal languages
such as Japanese and Vietnamese.

Table 4.1: Sample voiced and unvoiced consonants in English.

Articulation Voiceless Voiced

Pronounced with the lower lip against the teeth [f] (fan) [v] (van)
Pronounced with the tongue near the gums [s] (sip) [z] (zip)

39

40 Phonotactic speech modeling

Phonotactics is dealing with combinations of the sounds. Different lan-
guages have distinct phonotactics. For example in Czech, a word can start
with three consonants without any vowel in between (as in “Brno”) while
in Farsi, a consonant in the beginning of the word must be followed by
a vowel. As we move up toward more abstract level in Figure 1.1, there
are more structured rules in case of the phonology to discriminate among
languages.

4.1 Introduction

Language identification performed by humans, similar to other astonish-
ing capabilities of the brain, is a complicated process, that uses all various
sources of information in the speech signal in parallel. Among all the knowl-
edge sources, distribution of the sound patterns seems to be one of the main
tools of analyzing the speech signal by humans. A typical human being is
capable of speaking a native language and the acoustic space that his ears
can cover tends to be limited to phones available in his native language.
It is a question whether humans are using similar phone units while ana-
lyzing acoustic characteristics of an unknown language or not. During the
past few decades researchers have been exploring an effective solution for
the LID problem, known as phonotactic LID, which is based on tokenizing
speech signal to some elementary units and performing statistical analysis
on the repetition patterns of the elementary elements. Different elementary
units have been explored during these years. In [88] and [82] phonemes were
used as the elementary unit. [64] proposed use of techniques in LVCSR for
the LID task. [54] used syllable-like units in a parallel tokenizer architec-
ture. More recently, the discriminative power of articulatory features was
also explored for the LID task in [71].

Among all different configurations proposed by researchers for phonotac-
tic LID, having single or multiple phoneme recognizers for tokenizing speech
is widely used in the community [85][52]. A simple configuration is to let
a phoneme recognizer tokenize a speech signal into a stream of phoneme
labels. During the training phase, language-specific data is passed to the
phoneme recognizer and n-gram statistics are calculated from the generated
stream of phonemes based on which, an n-gram language model for the cor-
responding language is trained. LID is then performed based on calculating
the likelihood of the phoneme stream with respect to the language-specific
n-gram language models. The n-gram language model represents probabil-
ity of a phoneme in a context of n− 1 previous phonemes and is explained
in detail in Section 4.3. This configuration is called phoneme recognizer fol-

4.1. Introduction 41

lowed by language model (PRLM). We shall mention that the language of
the phoneme recognizer and list of the target languages in LID task does not
necessarily have to have any overlap. For example, Mandarin training data
may be tokenized by a Hungarian phoneme recognizer. This resembles the
real world condition where a Hungarian speaker is exposed to the unknown
language Mandarin and is trying to model the acoustics of the Mandarin
language with his own Hungarian acoustic space.

Researchers have studied the effect of the higher order n-gram language
models as well. [55] tried to capture discriminative power of higher order
n-grams in a binary tree structure where nodes split and distribution of
leaves are estimated in a ML way. Even though an effective order of the
n-gram model may depend on the amount of the training data, it is not
common to use higher order than 4. It was also shown in [59] that it is rare
to find useful information with orders higher than five. A common choice
of order for the language model used for the LID task is 3-gram.

An step up to the PRLM system is to have multiple phoneme recognizers
in the system front-end. The idea was inspired by the fact that multilingual
people can discriminate languages better. This is partly due to the fact
that their perception can cover a wider acoustic space and more sounds.
With respect to the statistical modeling, having multiple tokenizers in par-
allel can provide more evidence for the classifier to discriminate among lan-
guages. Figure 4.1 shows a parallel tokenizer in a typical Parallel Phoneme
Recognizers followed by Language Models (PPRLM) configuration. In the
conventional PPRLM system, there are multiple phoneme recognizers in the
front-end. The language specific training data is decoded by each of these
phoneme recognizers and serves as a resource to train an n-gram language
model. For the M target languages and P phoneme recognizers, we will
have M × P language models. During the test phase, each test utterance
is sent through all the phoneme recognizers. The likelihood of the output
stream of each phoneme recognizer is calculated using all the n-gram lan-
guage models trained for this phoneme recognizer. The produced likelihoods
from different language models are, however, not comparable directly since
each of them may have used different training data and have different dy-
namic ranges. To solve this, another module is normally included in a LID
system, that calibrates and fuses input scores from heterogeneous sources.
It is shown as the score calibration and fusion in Figure 4.1.

Even though, having parallel phoneme recognizers is an effective way
of providing statistics for language discrimination, training a separate lan-
guage model for every language in the list of the target languages, based
on the output of each of the phoneme recognizers, is complicated. Further-

42 Phonotactic speech modeling

Sc
or

e
ca

lib
ra

tio
n

an
d

fu
si

on

Spoken utterance

Front−end Back−end

��� � ������

��� � �	
���

��� � ����

��� � ���	��

��� � ��	
����	

��� � ������	

��� � ������

��� � �	
���

��� � ����

��� � ���	��

��� � ����

��� � ������

��� � �	
���

��� � ����

��� � ���	��

Figure 4.1: General LID system diagram in PPRLM configuration.

more, as the LID task evolved in time since its introduction, dealing with
low-resources languages has become an interest in LID tasks and training
of an n-gram language model for a low-resource language requires careful
smoothing and tuning.

Having a single phoneme recognizer with finer acoustic models covering
multiple languages can reduce the number of the required n-gram language
models. [32] used 87 phonemes extracted from the multilingual OGI-TS1

corpus. A set of phonemes with higher discriminative power was proposed in
[7]. Even though having a single multilingual phoneme recognizer removes
the overhead of training and running multiple phoneme recognizers, it does
not outperform the parallel phoneme recognizer architecture. Furthermore,
using finer acoustic models in a multilingual phoneme recognizer with a
bigger phoneme set would require more training data to estimate a robust
n-gram language model.

Most of the phonotactic LID solutions proposed before 2004 are based
on extracting n-gram statistics from the single best output stream of the
phoneme recognizer. In [28], a new phone lattice based method for au-
tomatic language recognition was proposed. They demonstrated that the

1http://cslu.cse.ogi.edu/corpora/corpCurrent.html

4.1. Introduction 43

use of phoneme posteriors from phoneme lattices improves the accuracy of
phonotactic LID systems significantly. The phoneme lattices contain al-
ternative hypotheses of phoneme sequences as suggested by the phoneme
recognizer. The posterior probabilities of phoneme arcs in the phoneme lat-
tices gives us better estimates of how likely it is to observe those phonemes
rather than using hard counts from a single best output. These phoneme
posterior probabilities as referred to as the soft counts in this thesis.

Recently, the use of discriminative classifiers has gained lots of attrac-
tion. The key is to focus on the class boundaries rather than the distribution
of the language classes. In this approach, after decoding the speech signal to
a stream of labels, n-gram counts extracted for each utterance are stacked
in a fixed length vector. These fixed length vectors (or a transformation
of them) are then processed by discriminative classifiers. Use of n-gram
soft counts along with support vector machines was proposed in [17] as a
successful solution for the LID task. Their proposal simplified the problem
of dealing with low-frequent n-gram counts and obviated n-gram language
model training for LID task. However, training language models using a
huge vector of n-gram statistics is an issue of concern in this approach.

4.1.1 Thesis intuition

Let us first bring a short summary of the recent evolution in speech modeling
with continuous features (acoustic and prosodic features in this thesis) that
has inspired the work on this thesis. For a long time before the proposal of
subspace modeling, and in particular the iVector model, training a language
specific GMM model or adapting a UBM-GMM to language specific data,
was the dominant approach for speech modeling with continuous features.
This way, it was assumed that observations oi in utterance n are drawn
from language specific GMM models:

oin ∼ GMM(μL,ΣL,ηL)

where μL,ΣL,ηL are standing for supervector of language specific means,
covariances and Gaussian component weights, respectively. In the training
of the GMM model, the assumption is that frames are independent iden-
tically distributed (i.i.d assumption). Nevertheless, latent channel factors
(e.g. channel, speaker and etc) that are constant in each utterance affect the
distribution of the observations and consequently make the i.i.d assumption
invalid.

In the iVector model, we assume that an observation oin in utterance n
is drawn from utterance specific GMM that is adapted from the UBM while

44 Phonotactic speech modeling

constraining the model parameter to live in a low-dimensional subspace as:

oin ∼ GMM(μn,Σ,η),

μn = m+Tφn,

where φn defines coordinates of the utterance dependent model parameters
(the mean supervector) in the low-dimensional subspace. φn is used as a
feature vector representing the utterance n. This way, the Gaussian com-
ponent variances in the utterance specific GMM accounts for intra-session
variability and the latent variable representing utterance specific GMM ac-
counts for inter-session (e.g. channel, speaker and etc.) variability. The
intersession variability modeling is postponed to the system back-end and
is done in the low-dimensional subspace. In LID tasks, iVectors are mod-
eled using discriminative classifiers like SVM or logistic regression. In fact,
since iVectors are extracted under the assumption of being Gaussian dis-
tributed, a simple linear generative classifier may perform even better than
SVM [46]. We believe that there are two main conclusions that we can draw
from the evolution of language modeling with continuous features in the last
decade: first, to postpone modeling of intersession variability to the system
back-end in low-dimensional subspace and second, to model language classes
discriminatively and to focus on the class borders rather than the language
distribution.

In the traditional PRLM approach, we use a phoneme recognizer to
generate n-gram statistics. The generated n-gram statistics carry informa-
tion about both language specific and intersession variability. By training
a generative n-gram language model, we treat all this information as lan-
guage specific information and we assume phoneme li to be generated from
a language specific n-gram language model φL as:

li ∼ nGram(φL)

This approach has a similar problem as in training language specific
GMMs in acoustic LID: the latent channel factor leads to “corruption” of
n-gram statistics of a given utterance, which makes n-gram model assump-
tion (each phone depends only on n− 1 previous phones) unrealistic. It has
been shown that instead of pooling n-gram statistics from language specific
utterances together and training a generative n-gram language model for
each language, we can put the n-gram statistics extracted from each utter-
ance in a separate fixed length vector and model these language specific
vectors of n-gram statistics with SVM [17]. This approach showed better

4.1. Introduction 45

results than the traditional PRLM approach. However, SVM has to deal
with the huge dimensionality in the vectors of n-gram statistics.

At the time of starting this thesis, reducing dimensionality of n-gram
statistics with PCA and modeling PCA-transformed n-gram statistics with
SVMwas the state of art technique used in LID community for NIST LRE09.
Even though it gives us a good LID performance, there are issues behind
it! The n-gram statistics are counts of discrete events and are not Gaus-
sian distributed. However, since PCA relies on the covariance matrix of
the input data, Gaussian distributed data would be more suitable. In fact,
n-gram statistics are more multinomial distributed. In Figure 4.2, we show
the distribution of PCA-transformed 3-grams taken from the output of the
Hungarian phoneme recognizer for the first 4 languages of NIST LRE09 tar-
get language list. For the data points depicted in Figure 4.2, the dimension-
ality of the PCA-transformed n-gram statistics is reduced to 2 using LDA.
It is clear from the picture that samples from each class are not drawn from
a Gaussian distribution since they are not normally distributed. In other
words, modeling languages with SVM using PCA-transformed n-grams is an
ad hoc phonotactic LID solution. In fact, for getting a good performance
using this solution, lots of SVM parameter tuning is required and as you
will see in Section 7.2, the Gaussian linear classifier (as a linear generative
classifier) fails to model PCA-transformed n-grams compared to logistic re-
gression and we believe it is due to the distribution of PCA-transformed
n-grams .

The goal of this thesis is to apply the same idea as in subspace modeling
of continuous features to the discrete n-gram features. As we mentioned
in the iVector model for continuous features, utterance specific GMMs are
adapted from the UBM while constraining the model parameters to live
in a low-dimensional subspace. For the n-gram language model, we assume
that utterance specific n-gram language models can be adapted from a back-
ground n-gram language model trained over utterances from all languages
while we constrain the parameters of the adapted model to live within a
low-dimensional subspace. This way, we can represent each utterance spe-
cific n-gram language model in terms of the corresponding low-dimensional
coordinates in the subspace. This low-dimensional representation can then
be used as feature vector to system back-end. We refer to this low-dimensional
representation of the utterance specific n-gram language model as a phono-
tactic iVector. Having a Gaussian distributed phonotactic iVector, we can
use a simpler back-end for language classification e.g. Gaussian linear clas-
sifier.

In the next sections, we explain basic elements of phonotactic language

46 Phonotactic speech modeling

−8 −6 −4 −2 0 2 4 6
−10

−5

0

5

10

15

Dim 1

D
im

 2

 Amharic
Bengali
Farsi
German

Figure 4.2: Distribution of PCA transformed and mean normalized BUT
HU 3-gram statistics for the first four NIST LRE09 languages.

modeling and then we propose our phonotactic iVector extraction technique.

4.2 Speech tokenizer

As we explained in Section 4.1, a tokenizer is normally used in phonotactic
LID front-end to convert the continuous stream of speech signal into discrete
units. In this thesis, we use phoneme recognizers as the tokenizer. It has
been shown that the quality of the phoneme recognizer plays a crucial role
in the overall performance of an LID system [49][68]. In [47] many differ-
ent architectures for a phoneme recognizer were studied. One of the most
successful ones is a hybrid HMM/NN architecture based on split temporal
context [67]. The structure of this phoneme recognizer is depicted in Figure
4.3.

The Mel filter bank energies, which are obtained in the conventional way
along with the temporal evolution of critical band spectral densities are used
as the input features to the neural network. Use of the split temporal context
[66] allows for more precise modeling of the whole trajectory while limiting
the size of the model (number of weights in the NN) and reducing the
amount of necessary training data. The input for each of the left and right
contexts is processed by discrete cosine transform (DCT) in the time domain

4.2. Speech tokenizer 47

Figure 4.3: Hybrid HMM/NN phoneme recognition block diagram based on
split temporal context [67].

to de-correlate and reduce dimensionality. Two NNs are then trained to
produce the phoneme posterior probabilities for the left and right contexts.
The third NN functions acts as a merger and produces the final set of
posterior probabilities [49]. Next, the phoneme posterior probabilities are
sent to a Viterbi decoder to obtain phoneme lattices. Only acoustic scores
are used for the decoding and no language model is applied. It has been
shown that using soft counts extracted from phone lattices rather than hard
counts from one-best decoder output, improves performance of the LID
system [28]. In fact, we are not looking for exact match of phonemes in the
decoded speech. We are trying to obtain statistics from projection of a new
language acoustic space to the the phoneme recognizer acoustic space. These
statistics are expressed in the form of phoneme counts. Soft counts based
on the phone lattices can give us more robust statistics. Furthermore, along
with having a high quality phoneme recognizer, it is preferred to have more
phonemes in the decoded stream, compared to the phoneme recognition
task. This can be adjusted by the phoneme insertion penalty during the
decoding. In this thesis, most of the experiments on phonotactic LID are
carried out using Hungarian, Russian and Czech phoneme recognizers from
Brno University of Technology. We will refer to them as BUT HU, RU and
CZ, respectively. They are all trained using the same hybrid HMM/NN
architecture. These phoneme recognizers are publicly available2. In the
case of BUT HU, we merge long and short versions of the same phoneme
to achieve a smaller phoneme set with 33 phonemes. This speeds up the
experiments without significant degradation of the LID system performance.
The corresponding mapping table is given in Appendix B. In all experiments

2http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-
context

48 Phonotactic speech modeling

in this thesis, we use soft count n-gram statistics obtained from phoneme
lattices. However, for simplicity, we explain all the techniques as if we were
using one–best decoded stream of phonemes. The only difference is that, in
practice, numbers will be soft counts instead of hard counts.

4.3 N-gram model

The joint probability of a phoneme label stream with length W is expressed
by the chain rule as:

P (l1l2l3...lW) = P (l1)P (l2|l1)P (l3|l1l2)...P (lW |l1...lW−1) (4.1)

With the n-gram assumption, the probability of each phoneme label
depends only on the (n−1) previous phonemes. We can write the likelihood
of a phoneme stream with length W as:

P (l1l2l3 . . . lW) = P (l1)
n−1∏
j=2

P (lj |l1 . . . lj−1)
W∏
i=n

P (li|li−n+1 . . . li−1). (4.2)

For example, with a 3-gram model assumption, (4.2) becomes:

P (l1l2l3 . . . lW) = P (l1)P (l2|l1)P (l3|l1l2)P (l4|l2l3) . . . P (lW |lW−2lW−1).
(4.3)

Notice that the first 2 terms (P (l1) and P (l2|l1)) are evaluated only for
the beginning of a sentence and their value dynamic range is normally bigger
than the 3-gram probabilities. We can exclude them and approximate the
likelihood function as:

P (l1l2l3 . . . lW) ≈ P (l3|l1l2)P (l4|l2l3) . . . P (lW |lW−2lW−1). (4.4)

The ML estimate of 3-gram probabilities are calculated as:

P (lk|lilj) = freq(liljlk)

freq(lilj)
, (4.5)

where freq(liljlk) stands for number of occurrences of the phoneme sub-sequence
liljlk. In case of utterance specific 3-grams probabilities, (4.5) is calculated
over a sentence and in case of language specific 3-grams probabilities, it
is calculated by pooling phoneme sequences of all utterances in a language.

4.4. Feature transformation using principal component analysis49

Normally, to get rid of numerical precision problems, logarithms of the prob-
abilities are used. Using the approximation from (4.4) we can write

log(P (l1l2l3 . . . lW)) ≈
W∑
i=n

logP (li|li−n+1 . . . li−1). (4.6)

This gives us a useful tool for statistical analysis of a language phono-
tactics.

4.4 Feature transformation using principal com-
ponent analysis

In Principal component analysis (PCA), we are interested to find the direc-
tions in which we observe the highest variability in our data. This can be
done by finding eigenvectors of the covariance matrix corresponding to the
largest eigenvalues.

In the case of phonotactic LID, data consist of vectors of stacked n-gram
statistics. By putting these vectors into a matrix, we form a document ma-
trix Lc×d where c is the number of n-grams and d is the number of utterances
in the data. To get the eigenvectors of the covariance matrix corresponding
to the biggest eigenvalues, we use a randomized PCA algorithm proposed
in [63] that outputs decomposition of the L matrix in the form of singular
value decomposition (SVD) as:

Lc×d = Uc×rΣr×rVT
r×d, (4.7)

where the Σ is a diagonal matrix holding singular values of L sorted in de-
scending order. The columns of U are eigenvectors of LLT and the columns
of V are eigenvectors of LTL. r is the number of non-zero (i.e strictly
positive) eigenvalues of the covariance matrix where r ≤ min(c, d) [76].

Once we have U, we can project the L into directions of the eigenvectors
corresponding to the largest eigenvalues of the covariance matrix as UTL.
The transformed L can then be used as feature vector for phonotactic lan-
guage modeling.

Researchers have proposed different pre-processing of the document ma-
trix. Authors in [42] proposed to use latent semantic indexing (LSI) tech-
niques. The LSI uses SVD to identify patterns and relationships between the
terms and concepts contained in an unstructured collection of text. To apply
the LSI for the phonotactic LID, the authors treat phoneme labels as terms
in text documents and replace n-gram counts by their corresponding latent

50 Phonotactic speech modeling

Phoneme
recognition

Calculate nGram

Train data

All data

Transformed data

Speech data nGram counts pre−processing
(LSI, square root, etc)statistics

PCA

transform
DATA

Figure 4.4: Steps in transforming n-gram statistics using PCA.

semantic index (LSI) representations [6] and decompose the document ma-
trix holding the LSI representations with SVD. This chain of transforming
n-gram statistics is called vector space modeling. Authors in [50] proposed
to use square roots of n-gram counts that squeezes dynamic ranges of the
n-gram counts and transform the resulting data with U and they call it
PCA-based feature extraction. Steps in these two methods are shown in
Figure 4.4.

4.5 Phonotactic iVectors

The term iVector3 was adapted by the SID community for the low-dimensional
representation of the super vector of GMM means. In general, the iVector
refers to an efficient low-dimensional representation of a huge parameter
vector that can serve as a feature vector for SID and LID tasks. Let us
have a quick review of the iVector model for continuous features and the
intuition behind it so that we can explain how our subspace model for dis-
crete features was inspired by acoustic iVectors. We shall mention in the
beginning that since we are dealing with discrete features in our proposal of
iVector extraction, a different mathematical model than the iVector model
for continuous features is deployed.

4.5.1 Background

In the iVector model for the continuous features, all the observations are
represented by means of sufficient statistics that are generated using UBM.
Unlike language specific GMM, we assume that the observations oin in the
utterance n are drawn from an utterance specific GMM and all the utterance
specific GMMs share the same Σ and η (i.e. the same as those in the UBM).
We further assume that the the alignments γc can be taken from the UBM

3Many equivalent are proposed for the iVector such as intelligent vector, informative
vector and etc.

4.5. Phonotactic iVectors 51

(i.e. the sufficient statistics can be collected using the UBM instead of the
utterance specific GMM). This way we can write:

oin ∼ GMM(μn,Σ,η), (4.8)

Then, we limit the utterance specific GMM means supervector Φn to
live in a low-dimensional subspace as:

Φn = m+Tφn,

where T is a low–rank matrix that linearly spans the low-dimensional sub-
space to the original space of the GMM means and φn are the coordinates
of the utterance specific GMM model in the low-dimensional subspace. In
other words, we adapt the UBM–GMM to each utterance and represent
the utterance n with a point estimate of the corresponding model’s latent
variable φn.

In the case of phonotactic LID, the inputs to the system are sequences
of phoneme labels for each utterance. Note that the label values are lim-
ited to the phoneme recognizer’s phoneme set. In other words, this means
that the LID system inputs are discrete features. By fixing the phoneme
recognizer, we assume that the phoneme set (phonetics) for all the target
languages is the same and we try to characterize each target language by
the repetition pattern of the phonemes (phonotactics). The information
about this repetition patterns are given by n-gram statistics as explained in
Section 4.3.

In the traditional n-gram language model, we assume that phoneme li
is drawn from a language specific n-gram language model φL as:

li ∼ nGram(φL) (4.9)

So all the within-class variability reflected in the n-gram statistics is
considered as language specific information and is affecting training of the
language specific n-gram language model. In our proposal for phonotac-
tic iVector extraction, we assume that the phoneme li is drawn from an
utterance specific n-gram language model as:

li ∼ nGram(φn) (4.10)

52 Phonotactic speech modeling

We expand the φn in a form inspired by the iVector model for con-
tinuous features in (2.18). Similar to the iVector model for continuous
features, we represent the utterance specific n-gram language model φn

with a low-dimensional vector that is later used for training the language
model using discriminative or generative classifiers. This way, we leave the
intersession variability modeling to the back-end classifiers.

Before moving forward, let us take a closer look at n-gram language
modeling. While training a traditional n-gram language model, observations
of all phoneme labels li with a same history h in the decoded stream of
phonemes are treated as set of i.i.d observations drawn from a categorical
distribution. The categorical distribution is a special case of the multinomial
distribution in which the number of sampled items is fixed at 1 [51][2]. A
decoded stream of phonemes for an utterance with length M can be seen as
M observations drawn from a multinomial distribution where length of each
observation is fixed at 1. The conditional probability P (li|h) is calculated
using (4.5). Observations of a phoneme label with different histories are
considered to be drawn from different multinomial distributions.

In the following sections we first explain how to represent utterance
specific multinomial distribution using a low-dimensional vector. To do so,
we first assume that all the observations are outputs of a single multinomial
distribution and likelihood of an utterance given the observations can be
calculated using (4.4). This model is referred to as subspace multinomial
model (SMM) and is our first proposal of iVector for discrete features. In the
next step, we introduce an extension to the SMM that allows us to model
language phonotactics that is consistent with the n-gram model. This latter
model is referred to as subspace n-gram model (SnGM).

4.5.2 Subspace multinomial model (SMM)

Assume that all the phoneme labels in the decoded sequence are outcomes
of a single multinomial distribution. We use a unigram approximation of
(4.3) as:

P (l1l2l3 . . . lW) ≈ P (l1)P (l2) . . . P (lW). (4.11)

Now assume that the unigram probabilities in 4.11 are utterance-dependent.
Using (4.11), we can write the likelihood of an utterance as:

P (On) =

E∏
e=1

(φen)
νen , (4.12)

4.5. Phonotactic iVectors 53

where φen is the probability of the unigram e in the nth utterance, νen is
the number of occurrences of the corresponding phoneme in the utterance
and E is the total number of the unigrams. As usual, we prefer to work
with the logarithm of the likelihood function for the sake of precision and
math simplification. The log likelihood of the observation set O comprising
N utterances then becomes:

logP (O) =
N∑

n=1

E∑
e=1

νen log φen. (4.13)

Now we can use a model similar to (2.18) to synthesize the utterance
specific multinomial distribution. We could be tempted to simply expand
the utterance-dependent unigram probabilities similar to (2.18) as:

φen = me + tewn, (4.14)

where te is corresponding row of the T matrix to the eth multinomial prob-
ability and me is an offset for φe calculated by pooling all the data together.
However, we need to put additional constraints to satisfy the following con-
ditions:

∑
e

φen = 1,

φen > 0.

(4.15)

Our solution is to represent the “unnormalized” logarithm of the φne

using a linear subspace model and normalize it in a softmax style as:

φen =
exp(me + tewn)∑E
j=1 exp(mj + tjwn)

(4.16)

to obtain correct multinomial distribution. Representing the log probabili-
ties in iVector-style and exponentiating it not only guarantees the positive
value for the probabilities but also simplifies derivation of (4.13) for the
parameter estimation.

In (4.16), the m is a column vector holding logarithms of unigram prob-
abilities and is calculated by pooling data from all languages. te is the eth

row of a low rank hyper parameter matrix T that linearly spans the sub-
space, which is not linear in the space of unigram probabilities due to the
softmax term in (4.16). wn is the low-dimensional vector corresponding to
the nth utterance, which determines the position of each utterance specific

54 Phonotactic speech modeling

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(b)p(a)

p
(c

)

(a) Distribution of unigram probabilities for
sample data.

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(b)p(a)

p
(c

)

em+Tx∑
em+Tx

(b) Distribution of unigram probabilities
obtained by expanding corresponding iVec-
tors.

Figure 4.5: Distribution of unigram probabilities obtained from data and
by spanning iVectors.

model in the low-dimensional subspace. In the case of iVector model for con-
tinuous features, we can impose a Gaussian prior over the low-dimensional
latent vector w. However we do not impose any prior on w in our subspace
multinomial model4.

Figure 4.5 shows the distributions of unigram multinomial probabilities
(Figure 4.5 assumes that we have just 3 unigram multinomial probabilities).
The blue dots represent the utterance specific multinomial distribution es-
timated using ML (see (4.5)). All the blue dots lay on a simplex as a space
of all possible 3-dimensional multinomial distributions. The red curve rep-
resents all possible distributions (for different wn; one-dimensional in our
example) for a particular choice of T. The depicted red curve is actually
composed of red dots corresponding to the distributions that are represented
by ML estimated w as will be explained in Section4.5.3. This is depicted in
Figure 4.6.

4Perhaps, a better model could be achieved by imposing a prior on the w. However,
estimating w in such a model and in a fully Baysian way is not easily mathematically
tractable.

4.5. Phonotactic iVectors 55

X: 0.2484
Y: 0.3705
Z: 0.3812

em+Tx∑
em+Tx

this point is given only by x

Figure 4.6: ML projection of 3-dimensional multinomial probabilities to
subspace multinomial probabilities.

4.5.3 Parameter estimation

So far, the problem of estimating utterance-dependent unigram probabilities
has effectively translated into estimation of the hyper parameter T, the
latent variables w and m. We can merge m and T by setting the last
column of T to the m and forcing the last row of w to be 1 for all the
utterances. This way, we can jointly estimate m and T. However, we do
not believe that reestimating the offset in each iteration would contribute
that much to the system performance. In our implementation, we calculate
m over all the training data as explained in Section 4.5.4 and keep it fixed
during the parameter estimation.

Defining the log likelihood in (4.13) as our objective function, we can
estimate the model parameters T and w using ML parameter estimation.
Once the model hyper parameter T is trained, we can use the trained model
for feature extraction by using the point estimate of the latent variable w as
a representation of the corresponding utterance. To estimate T we need w
and the other way around. We start with an initialization of T and iterate
between estimation of w based on the fixed T and the other way round for
estimating T. Due to the nonlinearity in (4.16), there is no closed form
solution for the maximum likelihood estimation of model parameters T and
latent variable w. We need to resort to a non-linear numerical optimization
to solve it. We use a similar quadratic optimization as proposed in [60] that
is based on an efficient optimization scheme from [24]. Before explaining

56 Phonotactic speech modeling

how to estimate w with fixed T, we need to work on our likelihood function
in (4.13). Similar treatment can be used for estimating T with fixed w.

By substituting (4.16) in (4.13), we can rewrite our objective function
as:

logP (O|T,wn) =k +
∑
e

νe[tewn − log
∑
i

exp(mi + tiwn)], (4.17)

where k is a constant part that depends neither on T nor on w. Now, we
can use the inequality 1− x/x̄ ≤ − log(x/x̄), which is an equality at x = x̄,
to remove the logarithm from (4.17). Considering x to be the normalization
term (

∑
hi exp(mhi + thiwn)) and x̄ to be its current value (i.e. for current

T and wn), we can write:

logP (O|T,wn) =

k +
∑
e

νe[tewn − log
∑
i

exp(mi + tiwn)] =

k +
∑
e

νe[tewn − log
∑
i

exp(mi + tiwn) + log
∑
i

exp(mi + tiw̄n)−

log
∑
i

exp(mi + tiw̄n)] =

k +
∑
e

νe[tewn − log

∑
i exp(mi + tiwn)∑
i exp(mi + tiw̄n)

− log
∑
i

exp(mi + tiw̄n)] ≥

k +
∑
e

νe[tewn + 1−
∑

i exp(mi + tiwn)∑
i exp(mi + tiw̄n)

− log
∑
i

exp(mi + tiw̄n)],

(4.18)

where w̄n is the current value for wn. Representing all the constant terms
with k′, we can write the new objective function as:

Q = k′ +
∑
e

νe[tewn −
∑

i exp(me + tewn)∑
j exp(mj + tjw̄n)

]. (4.19)

This makes the denominator constant with respect to wn and simplifies
the calculus. In fact, the new objective function Q, is a lower bound for the
objective function in (4.13) with equality for w̄n = wn, which means that,

4.5. Phonotactic iVectors 57

if we increase the Q, the likelihood also increases. For estimation of w, the
following Newton Raphson-like update using the the lower bound Q is used:

wnew
n = wold

n +H−1
n

n, (4.20)

where, ∇n is the gradient of the objective function in (4.19) with respect
to the wn and Hn is the Hessian (i.e. the matrix of the second derivatives
w.r.t. wn). Taking the first derivative of (4.19) with respect to wn gives us
the gradient as:

∇∇∇n =
E∑

e=1

tTe (νne − φold
ne

E∑
i=1

νin). (4.21)

where φold
ne is the current estimate of the φne. The Hn is:

Hn =
E∑

e=1

tTe teφφφ
old
ne

E∑
i=1

νin. (4.22)

The full derivations of Hn and ∇∇∇n are given in Appendix A. Hn is a
square r×r matrix where r is the dimension of the subspace. Unfortunately,
this quadratic approximation of the objective function gives us a too big
update step particularly in the first optimization iteration. As a result
the parameter update does not result in higher likelihood which results
in frequent update step modification as we will explain later. A similar
problem was reported in [60] and we use a similar solution to what was
proposed there. The following Hn is used in our case.

Hn =

E∑
e=1

tTe temax(νne,φ
old
ne

E∑
i=1

νin). (4.23)

In other words, as long as we have not obtained a reasonable estimate for
φφφold
ne , we trust the value of νne. This modification speeds up the model con-

vergence significantly as we will see in Section 4.5.5. The φold
ne is calculated

according to (4.16) using the current estimate of wn.

By fixing the w and applying the same technique, we get our lower
bound of the objective function in (4.13) for estimation of T:

Q′ = k′′ +
∑
n

∑
e

νe[tewn −
∑

i exp(me + tewn)∑
j exp(mj + t̄jwn)

]. (4.24)

We use the following update formula for each T matrix row te:

58 Phonotactic speech modeling

tnewe = tolde +H−1
e ∇e, (4.25)

where ∇e is the gradient of the likelihood function in 4.24 with respect to
te (eth row of T) defined as:

∇e =
N∑

n=1

(νne −φφφold
ne

E∑
i=1

νin)w
T
n , (4.26)

and He is an r × r square matrix as an Hessian approximate:

He =
N∑

n=1

max(νne,φφφ
old
ne

E∑
i=1

νin)wnw
T
n . (4.27)

The update of the T or w in (4.25) and (4.20), respectively, may fail to
increase the overall likelihood in (4.13). In that case, we keep reducing the
update step in (4.25) or (4.20) by half until it results in higher overall like-
lihood. If halving the step size does not result in overall likelihood increase
after a few times (normally less than 10 tries), we can resume the previous
value of te or wn. The iterations of estimating te and wn continue until the
change in the overall training data likelihood given the model parameter for
consecutive global iterations become negligible. At this point, the model
hyper parameter T is trained and it can be used as a feature extraction
model by obtaining the ML estimate of w for any utterance of interest.

The quadratic optimization of T and w in (4.20) and (4.25) is similar
to Newton-Raphson optimization. However, the updates are applied for
each wn and each row of the T matrix and we always assume independence
among different wn and te. This way, instead of the Hessian matrix used
in Newton-Raphson optimization, we get a block diagonal estimate of the
Hessian matrix where elements of the block diagonal matrix are calculated
using the corresponding equation of (4.27) and (4.23).

The parameter estimation of the model and iVector feature extraction
are algorithmically shown in Algorithm 2 and Algorithm 3, respectively.

4.5.4 Model initialization

As stated in Section 4.5.3, the value of m is fixed during estimation of the
other parameters. It is calculated as:

me = log(

∑N
n=1 νne∑E

j=1

∑N
n=1 νnj

), (4.28)

4.5. Phonotactic iVectors 59

Algorithm 2: Subspace multinomial model training

r ← subspace dimension;
m ← initialize with (4.28);
T ← Random small numbers or PCA transform matrix (4.7) over log
probabilities;
w ← 0;
for iter ← 1 to number of the global iterations do

for wIter ← 1 to number of iteration on w do
foreach wn in TRAIN set do

LL ← calculate log likelihood of nth utterance using (4.13)
;
do wwIter update using (4.20);
newLL ← calculate (4.13) ;
while newLL < LL do

reduce wn update step by half ;
newLL ← calculate (4.13) ;

LL ← newLL;

LL ← calculate log likelihood of the training data using (4.13) ;
for TIter ← 1 to number of iteration on T do

for dim ← 1 to number of rows in T do
do TTIter update for T rows using (4.25);
newLL ← calculate (4.13) ;
while newLL < LL do

reduce tdim update step by half ;
newLL ← calculate log likelihood of the training data
using (4.13) ;

LL ← newLL;

60 Phonotactic speech modeling

Algorithm 3: Subspace multinomial model, feature Extraction

wold ← 0;
for wIter ← 1 to number of iteration on w do

foreach wn corresponding to a utterance do
LL ← calculate (4.13) ;
do wwIter update for wn;
newLL ← calculate (4.13) ;
while newLL < LL do

reduce wn update step by half ;
newLL ← calculate (4.13) ;

LL ← newLL;

where me is log of the ML estimate of the eth multinomial probability and
νne is the number of occurrences of the corresponding phoneme in utter-
ance n. To avoid the problem of getting minus infinity for the multinomial
probabilities that are not observed through the whole training set, we filter
low–frequent phonemes. More information on input feature filtering is given
in Section 7.8. Since we have to have the T matrix fixed before estimating
the w, we need to define an initialization for T. One solution is to initialize
the T matrix with very small random numbers. Another possibility is to
set the initial T to the PCA transformation matrix U over log probabilities
of unigrams as explained in Section 4.4. It is worth mentioning that even
though it is proven that estimating each of T or w is a convex optimiza-
tion problem [8, chapter 4], the joint estimation of them does not have a
unique solution. For example, any scaling of w as αw, can be compensated
by inverse scaling of T as 1/αT, which gives us a different joint solution
for estimating w and T. Nevertheless, based on the discussion in [79], we
believe that there is a region of global maxima for the objective function.
Our expectation is that any random initialization of T should lead us to
the intended region of global maxima. Figure 4.7 shows how the data like-
lihood changes with two different initializations of the T matrix. It is clear
that initializing T with SVD transformation matrix does not give a better
likelihood. The only advantage is that we start with a higher likelihood
in the first iteration. After all, both initializations need the same number
of iterations for the likelihood convergence. Since estimation of the PCA
transformation matrix is computationally expensive, we use the random ini-
tialization. In the case of w, we do not need any initialization since the wn

vectors are estimated using the initialized T. We set wold
n in (4.20) to zero in

4.5. Phonotactic iVectors 61

0 1 2 3 4 5
−5.55

−5.5

−5.45

−5.4

−5.35

−5.3

x 10
7

Iteration

Lo
gl

ik
el

ih
oo

d

Random init.
PCA trans.

Figure 4.7: Log likelihood change for different T initializations for NIST
LRE09 with 600 dimensional subspace. The iteration 0 refers to the initial-
ization step.

the first iteration. The model typically seems to converge after 4 iterations.

4.5.5 Numerical optimizations

We already explained our quadratic numerical optimization. Here, we give
a comparison between standard gradient descent (GD) and our quadratic
numerical optimization.

I) gradient descent(GD): Estimation of the subspace T and the iVec-
tors w is done with a fixed step size α in the optimization. This can
be easily implemented by replacing the H matrix in (4.23) and (4.27)
with a fixed scalar value α. This method is very sensitive to the value
of α. Since we do not need to calculate the second derivative of the
objective function, each iteration becomes much faster than quadratic
numerical optimizations. However, even with a proper α value, it takes
many more iterations to converge.

II) Our quadratic numerical optimization: This is our main ap-
proach. In our solution, to simplify the calculus, we apply two simpli-
fications: first, we use a lower bound for the objective function (4.13)
that leads to a simpler second derivative of the objective function and
second, to speed up the convergence, we modify the H according to
(4.27) and (4.23). This modifications were inspired by work in [60]. It

62 Phonotactic speech modeling

2 4 6 8 10 12 14
−5.5

−5.45

−5.4

−5.35

−5.3

−5.25

−5.2

−5.15

x 10
7

Iteration

Lo
gl

ik
el

ih
oo

d

Gradient descent.
Hessian Approx.

Figure 4.8: Convergence of the quadratic optimization vs. gradient descent
over TRAIN set with 600 dimensional subspace.

is claimed that similar modification of the second derivative function,
results in faster convergence compared to Newton-Raphson [39].

The speed of convergence (in terms of number of iterations) between GD
and our quadratic numerical optimization is depicted in Figure 4.8. It is not
easy to give exact comparison between speed of convergence in terms of time
since the optimization is done using a computation cluster and many factors
can affect the speed. In our implementation, 5 iterations of our quadratic
numerical optimization takes roughly the same time as 15 iterations of GD.
However, the GD needs many more iterations to produce a likelihood close
to the likelihood produced by our quadratic numerical optimization after 4
iterations.

4.5.6 Subspace n-gram model

So far, we have explained the SMM and steps toward representing utterance
specific unigram probabilities with a low-dimensional vector that we refer
to iVector for discrete features. As we mentioned in Section 4.5.1, in the
n-gram model, we assume that higher order n-grams with the same history
are drawn from the same multinomial distribution and n-grams with dif-
ferent histories are drawn from different multinomial distributions. Here,
we explain how to model 3-gram probabilities within the iVector model for
discrete features [72].

4.5. Phonotactic iVectors 63

In Section 4.3 we showed that, assuming the 3-gram model, the likelihood
of a sequence of phonemes with length M is:

P (l1l2l3 . . . lM) = P (l3|l1l2)P (l4|l2l3) . . . P (lM |lM−2lM−1). (4.29)

In order to model the phoneme generation process, we assume that the
conditional distribution of a phoneme l given a history h is a multinomial
distribution with parameters φhl:

logP (l|h) = log φhl, (4.30)

where φhl > 0 and
∑

l φhl = 1. The joint log likelihood of a sequence of
phonemes l1 l2 . . . lM in the general n-gram model can then be computed as:

logP (l1 l2 . . . lM) =
∑
i

logP (li|hi) =
∑
i

log φhili , (4.31)

where hi = (li−n+1li−n+2 . . . li−1) denotes the history for the observed phoneme
li. Let us denote the number of times that phoneme l with history h ap-
peared in a phoneme stream as νhl. We can rewrite (4.31) as:

logP (l1 l2 . . . lM) =
∑
i

logP (li|hi) =
∑
h

∑
l

νhl log φhl, (4.32)

where
∑

l φhl = 1. Note that the objective function that we used in Sec-
tion 4.5.2 represents a different probability model. The objective in Sec-
tion 4.5.2 was given as:

logP (l1 l2 . . . lM) =
∑
i

logP (li, hi) =
∑
e

νl log φe, (4.33)

where φe is a multinomial probability and e ranges over all possible phonemes
and

∑
e φe = 1.

To model 3-gram probabilities with multinomial distributions and ex-
tract phonotactic iVectors by maximizing the likelihood function in (4.32),
we condition the probability of each phoneme on the corresponding history.
This is accomplished by modeling every history with a separate multino-
mial distribution. We call this model, the subspace n-gram model (SnGM).
Using the similar intuition as explained in Section 4.5.2, we can express the
conditional probability of φhl as:

φhln =
exp(mhl + thlwn)∑
i exp(mhi + thiwn)

, (4.34)

64 Phonotactic speech modeling

where mhl is the log-probability of n-gram hl calculated over all the training
data, thl is a row of a low–rank rectangular matrix T and wn is utterance–
specific low-dimensional vector, which can be seen as a low-dimensional
representation of the utterance–specific n-gram model. Note that the sum-
mation in the denominator is over the n-grams with the same history. The
parametersmhl and the matrixT are the parameters of the proposed SnGM.
Normalizing the φhln over the n-grams with the same history to satisfy con-
dition of the probability in (4.34) is the main difference between SMM and
SnGM. This results in slightly different equations for the first and second
derivatives of the objective function in (4.19). We give the new equations
along with an enhanced SnGM in Section 4.5.7.

4.5.7 Regularized subspace n-gram Model

In the case of iVector model for continuous features, the utterance–dependent
parameters wn are treated as latent random variables with a standard nor-
mal prior. The subspace parameters are then trained using the standard
EM algorithm, where the M-step integrates over the latent variable pos-
terior distributions from the E-step. Unfortunately, the calculation of the
posterior distribution for wn is intractable in the case of SnGM. Instead,
SnGM parameters are updated using only wn point estimates, which can
negatively affect the robustness of SnGM parameter estimation. To miti-
gate this problem, we propose to regularize the ML objective function using
L2 regularization terms for both the subspace matrix T and the vectors
wn. This corresponds to imposing an isotropic Gaussian prior on both the
SnGM parameter (T) andwn, and obtaining MAP rather than ML point es-
timates. In order to train our model, we maximize the regularized likelihood
function

N∑
n=1

∑
h

∑
l

(νhln log φhln − 1

2
λ ‖thl‖2 − 1

2
λ‖wn‖2), (4.35)

where the sum extends over all N training utterances. The term λ is the
regularization coefficient for both the model parameters T and for wn and
‖.‖ stands for the norm of a vector. Notice that we should regularize both
T and w since limiting the magnitude of T without regularizing w would
be compensated by a dynamic range increase in w.

4.5.8 Parameter estimation

The model parameters mhl are shared for all utterances and can be ini-
tialized as the logarithm of the conditional probability of a phoneme given

4.5. Phonotactic iVectors 65

its history computed over all training utterances (i.e. log ML estimate of
n-gram probabilities).

mhl = log

(∑
n νhln∑

n

∑
i νhin

)
. (4.36)

Similar to the SMM, we assume that the terms mhl do not require re-
training. In order to alternately maximize the objective function (4.35) with
respect to T and w, we use the same approach as for the subspace multino-
mial model. The update formulas for T and w, are the same as (4.25) and
(4.20), respectively. Here, we just write the new equations for calculating
the gradient and H. The gradient of the regularized objective function in
(4.35) with respect to every wn for estimating w with a fixed T matrix is:

∇wn =
∑
h

∑
l

tThl(νhln − φold
hln

∑
i

νhin)− λwn, (4.37)

where the terms φold
hln are the n-gram probabilities computed from the cur-

rent estimate of wn and Hwn is

Hwn =
∑
h

∑
l

tThlthl max(νhln, φ
old
hln

∑
i

νhin)− λI. (4.38)

The gradient of the regularized objective function in (4.35) with respect
to every row thl of T is:

∇thl =
∑
s

(νhln − φold
hln

∑
i

νhin)w
T
n − λthl, (4.39)

and
Hthl =

∑
s

max(νhln, φ
old
hln

∑
i

νhin)wnwn
T − λI. (4.40)

Notice that in (4.39), since we only need the n-gram statistics corre-
sponding to the n-gram history h, there is no need to load the whole vector
of n-gram statistics. This reduces the memory requirements of the T matrix
update. Moreover, the updates of the T rows belonging to different histories
are completely independent, which simplifies parallel estimation of T.

The matrix T is initialized with small random numbers. Similar to
SMM, update of T or wn may fail to increase the objective function in
(4.35). In that case, we do a similar step halving strategy as explained in
Section 4.5.3.

Note that in the SnGM, we model each n-gram history with a separate
distribution. However, parameters of all the distributions are constrained

66 Phonotactic speech modeling

to live in a single low-dimensional subspace. In other words, for each ut-
terance, the parameters of all the distributions are controlled with a single
low-dimensional vector wn.

4.6 SMM model and 3-gram statistics

In Section 4.5.2 we described the SMM model using the unigram counts as
the input features. However, the unigram statistics provide information only
about the phonetics of a language and not the phonotactics of a language.
The 3-gram statistics can be used as input to the SMM model [74] while
using the same mathematics. To do so, we assume that all the 3-gram
statistics extracted from the decoded sequence of phonemes for an utterance
are drawn from a single multinomial distribution. We shall mention that this
treatment of the 3-gram statistics is not consistent with the i.i.d assumption
of observations in the SMM model. However, as we will see in Section7.4, we
can still get better LID system performance compared to the PCA feature
transformation. All the reported results on SMM in Section7 are using
3-gram statistics as the input.

4.7 Soft count n-gram statistics

As we mentioned earlier in this chapter, we use n-gram soft counts calcu-
lated from phoneme lattices instead of the hard count n-grams based on the
single best output of a phoneme recognizer. The only difference for the tech-
niques explained in this chapter is that the repetition of n-gram statistics
(ν in (4.12)) are floating point numbers instead of integers. For generating
n-gram soft counts, the output of the third neural network in Figure 4.3
that generates the final phoneme posterior probabilities per frame, is sent
to HVite from HTK5 to generate phoneme lattices. The generated phoneme
lattices are then sent to lattice-tool6 to calculate soft count 3-gram statistics.

5http://htk.eng.cam.ac.uk/
6http://www.speech.sri.com/projects/srilm/manpages/lattice-tool.1.html

Chapter 5

Statistical language modeling

So far, we explained extraction of the iVectors for continuous and discrete
features. The next step in an LID system is training of language models
using the generated iVectors. According to what we depicted in Figure 4.3,
we are talking about the back-end in LID system. Figure 5.1 briefly shows
what we want to do in the back-end. We refer to all processing steps that
result in extraction of iVectors as feature extraction. As an example, ex-
pansion of this module for phonotactic iVectors is depicted in Figure 5.2.
In this chapter, we use the term iVector in general form referring to all
kinds of low-dimensional representation of speech utterances that comprise
PCA-transformed n-gram features as explained in Section 4.4, phonotactic
iVectors as explained in Section 4.5 and acoustic iVectors as explained in
Section 2.4.

An specific LID application is usually defined in terms of priors over
languages of interest and the cost for making mistakes. As we mentioned
before, we deal with the LID problem as defined in NIST LREs. The goal
in NIST tasks is to have the lowest cost function that is defined for each
NIST LRE (see Section6.4.1). All of the NIST tasks that are studied in this
thesis can be broken down to a set of verification tasks that involve making
binary decisions of whether the trial utterance belongs to the defined tar-
get language or not. To accomplish NIST tasks, it is enough to have class
(language) likelihoods so that we can make an optimal Bayesian decision
on the language of a trial. The optimal Bayesian decision could be made
if our LID system delivers optimal likelihoods for the languages of interest.
E.g. if the task is to minimize the probability of language misclassification,
we can select the most likely language, where the language posteriors can
be obtained using Bayes rule from the priors and likelihoods. Having iVec-
tors, our back-end would be a single multi-class probabilistic classifier (e.g.

67

68 Statistical language modeling

Training

Language Models
Feature
Extraction

Feature
Extraction

Label

Train data

L
an

gu
ag

e

M
od

el
s

Scores

Test data

Label

Train data

Scores

Test data

LID system 1

LID system 2

M
odels

L
anguage

iVec

iVec

iVec

iVec

Scoring LM

Scoring LM
Feature

Extraction

Training

Language ModelsFeature

Extraction

C
al

lib
ra

tti
on

 &
 f

us
io

n

Callibrated & fused

Scores

V
er

if
ic

at
io

n
de

ci
si

on

Figure 5.1: Detailed LID back-end block diagram.

Extractor
iVectorAcoustic feature

extraction

MFCC

Recognizer
Phoneme

Statistics

nGram iVec

Figure 5.2: Expansion of LID front-end for phonotactic iVectors.

5.1. Binary language models 69

multi-class logistic regression, Gaussian linear classifier and etc.) that takes
iVectors as inputs and, by definition, delivers class likelihoods.

An alternative for training multi-class classifiers is to use binary classi-
fiers (binary logistic regression or SVM) to detect each class (i.e. language
in our case) against all the other classes. This solution can be used in the
cases where we do not want to train multi-class classifiers on the vector rep-
resentation of the utterances. Note that in this case, we do not obtain class
likelihoods from the binary classifiers. Each binary classifier gives us a class
score. This means that we need yet another multi-class classifiers to convert
the scores obtained from the binary classifiers to the class likelihoods which
would be well calibrated and suitable for the final Bayesian decision making.

Even if our classifiers give us class likelihoods (in case of multi-class clas-
sifier), the produced class likelihoods may not be well calibrated likelihoods
for the target (EVAL) data because of the mismatch between training and
EVAL data distribution or because of the incorrect assumption made by
the model. For these reasons, the classifiers’ scores can be used as features
to another multi-class probabilistic classifier, which is trained on possibly
smaller but well matched training (development) set to obtain calibrated
class likelihoods. The input to the multi-class classifier in the second stage
may also be scores from multiple LID subsystems (e.g. phonotactic and
acoustic) in order to perform system fusion.

In the following, we describe training of language models in different
configurations and, in the next step, we explain different calibration fusion
schemes used in this thesis.

5.1 Binary language models

A common configuration for training language models is to train a sepa-
rate two class classifier for each language of interest. This is denoted as
one-vs-all . To do so, all the training iVectors corresponding to language
k are labeled as in–class data and all the other iVectors are considered as
out–of–class data. There are many possibilities to train classifiers in this
form. In this thesis, we use binary SVM classifiers as proposed in [16] and
binary logistic regression (BLR). All the K classifiers in one-vs-all config-
uration receive all the training iVectors. However, the labeling varies for
each classifier. In this configuration, some languages may have more train-
ing iVectors than others. To alleviate this problem, we use balanced training
set of iVectors for all languages as explained in Section 6.2.1. We shall men-
tion that in one-vs-all configuration, we have more out–of–class data than
of–class data while training the classifiers and to avoid biasing the classifier

70 Statistical language modeling

toward the out–of–class data, a proper weighting should be applied.

In this thesis, we use SVM and logistic regression (LR) for discrimina-
tive modeling of language classes. SVM discriminates between observation
from different classes based on a maximum margin model and logistic re-
gression decides on the separation class boundary based on minimizing the
cross entropy between the classifier output probabilities and the correct class
labels.

Among different optimizations that are proposed to find the class sepa-
ration boundary (hyperplane), we use the formulation proposed in [8, Chap-
ter 6] for SVM and [8, Chapter 4] for logistic regression. All the derivations
for the formula are given in the corresponding chapters of [8]. The imple-
mentations of SVM and logistic regression used in this thesis are done by
Sandro Cumani from BUT and Niko Brummer from AGNITiO. We briefly
describe these discriminative classifiers and provide reference to more de-
scriptive articles on the optimization process.

5.1.1 Support vector machines

Support vector machines (SVM) were in principle proposed to discriminate
between linearly separable observations of two classes. In linear classifiers,
we assume that a set of N P -dimensional observations wn belongs to either
of the two classes C1 or C2 and the hyperplane separating these two classes
is defined as:

xTwn + b = 0, (5.1)

where x ∈ �P and b is and offset.

Assuming that there is a margin between observations of a class and the
decision hyperplane (i.e. distance between the hyperplane and the closest
observation point) called M , the objective in a maximum margin linear
classifier is to find x corresponding to the hyperplane that separates the
classes C1 and C2 and maximizes M . In [8, Chapter 4], a full optimization
process to find class separation hyperplane with a maximum margin using
Lagrange multipliers is provided. Using the coding scheme yn ∈ {−1,+1} to
represent class labels for the binary problem, the maximum margin solution
classifier is presented in terms of minimizing the error function

x∗, b∗ = argmin
x,b

{
N∑

n=1

E∞((xTwn + b)︸ ︷︷ ︸
D(wn)

yn − 1) +
1

2
‖x‖2}, (5.2)

5.1. Binary language models 71

where E∞(z) is a function that is zero if z ≥ 0 and ∞ otherwise. Note
that based on the error function in (5.2), we have to classify all observa-
tions correctly otherwise we get an infinite penalty for a wrongly classified
observation. However, in many of the real world problems, class-conditional
distributions that result in non-linear separable observations from the cor-
responding classes may overlap. This problem is addressed by proposing
a soft–margin that allows misclassification of observations. To do so, for
each observation, n a penalty function ξn is defined which is zero for the
observations that respect the margin and ξn = |yn−D(wn)| for others. The
ξn is a linear function of distance between the observation and the decision
boundary for the misclassified observations. The soft margin solution SVM
is presented in terms of minimizing the error function:

C
N∑

n=1

ξn +
1

2
‖x‖2 , (5.3)

where C is a constant that controls the trade-off between the penalty ξn
and the margin.

∑
n ξn is an upper bound on the number of misclassified

observations. The C is therefore playing a similar role as the regularization
coefficient since it controls the trade-off between minimizing training errors
and maximizing the margin (i.e. having low model complexity). In case
C → ∞ the model changes to SVM with maximum margin. The solution
for soft margin SVM corresponds to:

x∗, b∗ = argmin
x,b

{1
2
‖x‖2 + C

N∑
n=1

ξn}

= argmin
x,b

{1
2
‖x‖2 + C

N∑
n=1

max{0, 1− yn(x
Twn + b)︸ ︷︷ ︸

l(x,wn,yn)

}},
(5.4)

and score for each observation wn in this model is calculated as:

xTwn + b. (5.5)

An in interesting characteristic of SVM is the possibility to transform
a non-linear separable problem in the original space to a linear separable
problem in a higher dimensional space by means of non-linear kernel func-
tions. We shall mention that, for the SVM implementations that are used
in this thesis, only the linear kernel is used. Binary SVM classifiers are
referred to as BSVM in this thesis.

72 Statistical language modeling

5.1.2 Binary logistic regression

In a two class problem, the posterior probability for class C1 can be written
as

p(C1|wn) =
p(wn|C1)p(C1)

p(wn|C1)p(C1) + p(wn|C2)p(C2)

=
1

1 + exp(−a)
= σ(a),

(5.6)

where we define a as

a =
p(wn|C1)p(C1)

p(wn|C2)p(C2)
, (5.7)

and σ is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (5.8)

For two classes C1 and C2 it holds that p(C1|wn) + p(C2|wn) = 1. LR
assumes that a can be modeled using a linear function of wn

a = xTw + b. (5.9)

Logistic regression provides a discriminative framework to estimate pa-
rameters x and b that maximize the likelihood of training set class labels.

Similar to the binary SVM case, we assume that the observation wn

belongs to either of C1 or C2 classes with a corresponding label tn ∈ 0, 1.
Let γn = σ(xTw + b) denote the posterior probability p(C1|wn). The log
likelihood of the target labels can then be expressed as :

log p(t1, . . . , tn|w) =

N∑
i=n

(tn log γn + (1− tn) log(1− γn)), (5.10)

We can obtain the parameters x and b by maximizing (5.10). Note that
in case of linearly separable classes, there would be unlimited number of
solutions with an infinitely long vector x assigning the training data to the

5.2. Multi-class language models 73

correct class with probability one. Standard ML estimation of the param-
eters results in such solution [8, Chapter 4]. To avoid this problem we put
a prior on vector x and obtain its MAP estimate. The use of prior can
be interpreted as regularization. This variant of logistic regression is called
regularized logistic regression. By expanding γn in (5.10) and adding the
regularization term on ‖x‖2, the objective for regularized binary logistic
regression is:

x∗, b∗ = argmin
x,b

{λ
2
‖x‖2 + 1

N

N∑
n=1

log(1 + e−yn(x
Twn+b)} (5.11)

where 1
N is just scaling of the error function with respect to the number of

the observations. Comparing (5.11) and (5.4) shows similarity of the ob-
jective functions for SVM and logistic regression classifiers. Binary logistic
regression classifiers are referred to as BLR in this thesis.

5.2 Multi-class language models

As we explained in the beginning of this Chapter, we need to train multi-class
classifiers either directly on the vector representation of the utterances or
on top of language scores obtained by means of binary classifiers. For
multi-class SVM and multi-class LR, the parameter X is actually a ma-
trix of parameters X = [x1, . . .xK] representing hyper-planes separating
classes and K is number of the classes.

The process is similar to the one-vs-all technique, however, the train-
ing stage involves slightly different loss functions and the hyper-planes are
jointly optimized.

5.2.1 Multi-class logistic regression

Multi-class logistic regression assumes that the posterior for each class can
be computed as:

p(Ci|wn) =
exp(XT

i wn + bi)∑
k exp(X

T
kwn + bk)

, (5.12)

where Xi is the matrix of model parameters representing hyperplanes that
results in assigning wn to class i. For the multi-class variant of logistic
regression, the multi-class cross entropy loss function

l(X,wn, yn) = − log
exp(XT

ynwn + byn)∑
y′ exp(X

T
y′wn + by′)

, (5.13)

74 Statistical language modeling

is used, which again results in an objective function where the probability
of the correct labeling of all training examples is maximized. The objective
function for multi-class is given as:

X∗, b∗ = argmin
X,b

{ λ

N
tr(XTX) +

1

K

K∑
k=1

1

Nk

∑
n∈Sk

l(X,wn, yn)}, (5.14)

where N =
∑

k Nk, Nk is the number of training samples for language k,
Sk is a subset of training utterances corresponding to class k and N is the
total number of training utterances. We refer to the first term in (5.14)
as regularization penalty and the second term as multi-class cross entropy.
For each observation wn the scores are calculated as XTwn+ b. Multi-class
logistic regression classifiers are referred to as MLR in this thesis.

5.2.2 Multi-class SVM

The objective function for the the multi-class SVM [78] is an extension of
the binary objective function given by

l(X,wn, yn) = max
y′

{(XT
y′wn + by′)− (XT

ynwn + byn) + Δ(y
′
, yn)} (5.15)

where Δ(y1, y2) is the cost of misclassifying class y1 for y2. In our context,
we use Δ(yi, yj) = 1−δij , where δij is the Kronecker delta. Multi-class SVM
can be interpreted as a joint optimization ofN SVMs where the hyper-planes
are trained to maximize the margin between each class and all the remaining
classes [8]. For each observation wn the scores are calculated as Xwn + b.
Multi-class SVM classifiers are referred to as MSVM in this thesis.

5.2.3 LRE11 multi-class logistic regression

For evaluating various iVectors over the LRE11 evaluation set, we use an-
other variant of MLR. An affine transform is used to convert theM -dimensional
iVector wn, into a K-dimensional score-vector, sn as follow:

sn = XTwn + b, (5.16)

where the T is an M×M matrix which does the within-class covariance nor-
malization (WCCN) [31]. The WCCN squashes the within-class covariance
matrix so that it becomes identity. This is necessary since in regularized

5.2. Multi-class language models 75

parameter estimation of LR, the dynamic range of the different iVector
dimensions should have the same effect in the regularization term. X is
estimated by minimizing the regularized objective function from [12]:

X∗, b∗ =

argmin
X,b

{ λ

N
tr(XTX)− 1

K lnK

K∑
k=1

1

Nk

∑
n∈Sk

ln
exp(skn)∑K
j=1 exp(sjn)

}, (5.17)

where N =
∑

k Nk, skn is the kth component of sn and Sk is a subset of
training utterances corresponding to class k. The regularization weight, λ,
is set to[12]:

λ =

(
1

N

∑
n∈S

√
wT

nT
TTwn

)2

, (5.18)

where S =
⋃

k Sk [12]. Note that (5.17) and (5.14) differ only in including
the lnK term in the normalization of the loss function in (5.17), regular-
ization coefficient value and use of the transformed iVectors as the input
instead of the iVectors themselves.

5.2.4 Gaussian linear classifier

A Gaussian classifier is an alternative for modeling language in the space of
the iVectors. This way, we train a single Gaussian for each language using
an ML estimate of the Gaussian mean as:

μk =
1

Nk

∑
wn∈Sk

wn, (5.19)

where μk is the mean for language k and Sk is the subset of training iVectors
corresponding to language k. The within-class covariance Σwc is shared
among all the Gaussians and estimated using data from all the languages
as:

Σwc =
1

N

N∑
n=1

(wn − μwn)(wn − μwn)
T , (5.20)

where the μwn is the mean of the language that wn belongs to. The likeli-
hood of an iVector w.r.t. each Gaussian is:

76 Statistical language modeling

P (wn|Ck) = N (wn;μk,Σ
−1
wc). (5.21)

By expanding the logarithm of (5.21) we get

logP (wn|Ck) = −1

2
wT

nΣ
−1
wcwn +wT

nΣ
−1
wcμk − 1

2
μT
kΣ

−1
wcμk + const.

(5.22)

Note that, since we use a shared covariance matrix for all language mod-
els, the first quadratic term is constant over all Gaussians for every iVector.
If there is no need for calibrating the class likelihoods obtained using (5.22),
we can directly calculate the posterior probabilities of languages using Bayes
rule p(Ck|wn) =

p(wn|Ck)p(Ck)∑
j p(wn|Cj)p(Cj)

where the quadratic term cancels out since

it scales both the nominator and the denominator by the same amount.
Therefore, we can simplify the likelihood calculation by omitting this term.
However, it may be important to include the quadratic term in case the
scores are used as features for the following calibrating classifier. In [46], the
authors claimed that using the correct likelihood as an input to the calibra-
tion marginally outperforms the simplified likelihood calculation. However,
we did not observe a significant difference in the final system performances.
Note that by omitting the quadratic term in (5.22), the likelihood calcula-
tion changes to a linear transformation of the iVectors. As a result, we call
this style of classifiers as Gaussian linear classifier (GLC).

5.3 Discussion

Each of the mentioned classifiers have advantages and disadvantages. In
general discriminative classifiers (e.g. SVM and LR) are modeling class
borders rather than class distributions which makes them less sensitive to
the outlier iVectors. However, they are prone to get overtrained. On the
other hand, generative language classifiers are less likely to get overtrained
while they are sensitive to outlier iVectors that do not follow the assumed
distribution. In fact, the use of the generative GLC assumes that the input
(iVectors in our case) are drawn from Gaussian distribution. We will show
more results on this in Section 7.2.

As we mentioned, one of the thesis objectives is producing Gaussian
distributed iVectors, which simplifies the back-end of the LID system. In
the case of the GLC back-end the shared within–class covariance matrix is

5.4. Calibration and fusion 77

calculated over iVectors from all languages. We can calculate the shared
within–class covariance matrix in advance over a reasonable amount of data
from many languages and keep it fixed. This way, we can add a new language
to the list of target languages by simply calculating the mean from iVectors
corresponding to the new language. However, in case of the discriminative
classifiers, we would need to train all the language models again after adding
a new language to the list of target languages. In both cases, we need to
retrain the calibration.

Another interesting question in this area is, whether to use a binary
formulation of language classifiers or to use a multi-class formulation. Our
experiments showed that, as long as we keep two layers of classifiers in our
back-end (i.e. a first layer to generate class scores and a second layer for
score calibration), the choice of binary or multi-class discriminative classi-
fiers in the first layer does not have a significant effect on the LID perfor-
mance [73].

5.4 Calibration and fusion

As we mentioned earlier in this chapter, we need a multi-class classifier as
the second layer of classifiers that we call calibration and fusion in Figure 5.1
to produce calibrated class likelihoods for each utterance. The input to this
module can be class likelihood ratio (in case of BLR in the first classification
layer), class likelihoods (in case of MLR classifier in the first layer) or scores
from other LID systems. There are two main reasons for the calibration
and fusion module: obtaining likelihood scores calibrated on a development
set that has data distribution close to the evaluation set and fusing outputs
of multiple LID systems. The calibration and fusion can be done either
jointly or separately. In case we do the fusion separately there will be a
third multi-class classifier after generating calibrated class likelihoods. We
use different configurations of calibration and fusion in this thesis. In the
following, we explain our NIST LRE09 calibration and fusion that does
calibration and fusion jointly and is used for most of the experiments in this
thesis. We also explain our NIST LRE11 calibration and fusion that does
calibration and fusion separately. The main reason for having two different
calibration fusion plans is simply the availability of these plans as I was
working on this thesis. For main part of the this thesis, we had only NIST
LRE09 calibration and fusion. The NIST LRE11 calibration and fusion was
developed for NIST LRE11 at BUT and after NIST LRE11, we were still
interested in comparing some of the systems with previous experiments.

78 Statistical language modeling

5.4.1 LRE09 calibration and fusion

Assume that there areM separate LID systems each producing aK-dimensional
score vector sin and corresponding ancillary information (din) for each ut-
terance n and system i. In our experiments K is the number of target
languages. Note that the score vector does not necessarily has to have the
same dimensionality as the number of the target languages. For example,
we can train classifiers using other criteria or data that can be seen as
side information providing a useful information about test utterances. The
ancillary information din represents duration-related information for each
utterance. In the case of the acoustic front-end, it can be the number of the
speech frames in each utterance and in the case of the phonotactic systems,
it can be the expected number of phonemes in the corresponding utterance.
For every front-end, three GLC classifiers, denoted by B1, B2 and B3, are
trained over different normalizations of score vectors: the pure score vectors,
the score vectors normalized by corresponding ancillary values and score
vectors normalized by square root of corresponding ancillary values that are
denoted as B1(sin), B2(d−0.5in) and B3(d−1in sin), respectively . Based on the
output of these three GLC transforms and ancillary informations, we can
write the output of the calibration fusion module as

In =

M∑
i=1

(a1iB1(sin) + a2iB2(d−0.5in sin) + a3iB3(d−1in sin)) + b+Cγ (5.23)

where din is the ancillary information for the utterance n from LID system i,
aji is the scalar weights for each GLC classifier, b is a K-dimensional offset
vector, C is a square matrix corresponding to the dimensionality of γ and γ
is a vector of concatenated ancillary information from different LID systems.
The din varies for different system. B1(), B2(), B3() are calculated using
(5.22) replacing wn with sin, d

−0.5
in and sind

−1
in , respectively. In our acoustic

LID system, the number of voiced frames in each utterance is used as the
ancillary information and for the phonotactic LID system, we set it to num-
ber of the expected phonemes (sum of all the 3-grams in each utterance) in
each utterance. The parameters of the calibration fusion, (aji,b,C), are dis-
criminatively trained to minimize multi-class cross-entropy (as in multi-class
logistic regression) as implemented in [8],[58].

5.4.2 LRE11 back-end

The LRE11 calibration fusion plan is simpler than LRE09. We shall men-
tion that this calibration fusion plan is only used for LRE11 and RATS

5.4. Calibration and fusion 79

experiments. For each system, the output scores are calibrated using an
affine transform trained on the development set:

rn = Csn + d, (5.24)

where C is a full K ×K matrix and d is a K-dimensional vector. Note
that this calibration plan does not change the score vector dimensionality.
The model parameters, C,d, are trained by same regularized logistic regres-
sion as explained in Section 5.2.3 without WCCN. After this step, for all the
utterances where we failed to generate scores1, an rn = 0 is inserted. In the
next step, the calibrated scores are sent to the fusion. For each utterance
n, the output of the fusion is:

It =
M∑
i=1

αirti + B. (5.25)

where αi is the fusion weight for the system i and B is a K-dimensional bias
vector. These parameters are also trained to minimize the cross-entropy
objective function as explained in Section 5.2.3.

1This may happen when an utterance is too short or has no speech in it

Chapter 6

Data selection and
preparation

In this chapter, we first explain the meaning of different measures which are
used to express different aspects of LID system performance. In the next
step, we give a full description of the data used for training of our front-ends
and back-ends.

6.1 LID evaluation

We shall first specify what we mean by evaluation. The LID problem can
be defined either as an identification or a verification task. In general we
can define an LID task as:

“Given a trial utterance and a set of target languages, determine what is
its language identity.”

The target list may contain only the known language (presented in the
training data) or additionally more unknown (out-of-set) languages. The
first task is regarded as closed-set LID and the latter is called open-set LID
problem. In this thesis, we regards the LID problem as a verification task.
This means that, for each verification trial, we should verify a hypothe-
sis. The hypothesis for a verification task is: “test utterance X belongs
to a target language Y ”. For the verification task, we accept or reject the
hypothesis. However, as we explained in Section 5.4, language scores are
continuous values and to make a hard decision, we need to define a thresh-
old based on which, we either accept or reject the hypothesis. This way, we
have four cases:

81

82 Data selection and preparation

I) Correct acceptance: correctly accepting the hypothesis.

II) False acceptance: wrongly accepting the hypothesis.

III) Correct rejection: correctly rejecting the hypothesis.

IV) False rejection: wrongly rejecting the hypothesis.

Among all four cases, false acceptance and false rejection are the system
errors that are denoted as false alarm and miss, respectively for the rest of
this thesis.

6.2 NIST evaluations

National Institute of Standards and Technology (NIST1) is the US federal
technology agency that works with industry to develop and apply tech-
nology, measurements, and standards. NIST is the main organizer of the
speaker and language recognition evaluations. NIST started language recog-
nition evaluations for comparing system performances from all over the
world by means of organized evaluations. For each evaluation, evaluation
data is sent to the participants. In case no data is publicly available for a
subset of target languages, development data is also provided by NIST. Nor-
mally, participants use the data from previous NIST LRE evaluations and
any other available data sources to train their systems. We briefly summa-
rize the earlier NIST evaluation campaigns. For LRE09 and LRE11, which
we based our experiments on, more descriptive information is provided.

NIST LRE1994
The first NIST LRE took place in 1994. The evaluation data was taken from
OGI multilingual telephony speech corpus2. The OGI corpus is monologue
speech data.

NIST LRE19963

The second NIST LRE was in 1996. The evaluation data was selected from
different sources, mainly OGI multilingual telephony speech and Switch-
board (wide-band and narrow-band). Starting with this evaluation, three
standard duration conditions have been defined in all the subsequent NIST
LRE evaluations: 30s, 10s and 3s. The parallel phoneme recognizer followed

1http://www.nist.gov/
2http://www.cslu.ogi.edu/corpora/mlts/
3http://www.itl.nist.gov/iad/mig//tests/lang/1996/LRE96EvalPlan.pdf

6.2. NIST evaluations 83

Table 6.1: NIST LRE 2003 target language list.
Arabic (Egyptian) German Farsi French (Canadian)

Hindi Japanese Korean English (American)

Mandarin Tamil Vietnamese Spanish (Latin American)

Table 6.2: NIST LRE 2005 target language list.
English (American) English (Indian) Hindi Japanese Korean

Mandarin (Mainland) Mandarin (Taiwan) Spanish (Mexican) Tamil

by language model (PPRLM) was the dominant approach used by LRE1996
participants.

NIST LRE2003
The NIST LRE 2003 was very similar to NIST LRE96 [44]. The evaluation
data was selected from CallFriend Conversational Telephony Speech (CTS)
for twelve languages as listed in Table 6.1. Similar to LRE1996, the PPRLM
was the dominant approach used by the LRE2003 participants [70][65].

NIST LRE20054

The NIST LRE 2005 was similar to previous NIST LRE evaluations in the
sense that it was on CTS data. However, NIST started to include more
challenges to push the LID community to improve their technologies. The
task was defined on dialect and language recognition. There were seven
languages for the primary condition5 and dialects for English and Mandarin
were added to the extended condition. Table 6.2 shows the LRE05 lan-
guages. In this evaluation, discriminative training of GMM-based acoustic
systems was used and, for the first time, performance of the acoustic sys-
tems became comparable to the dominant PPRLM approach.

NIST LRE20076

There was a significant increase in the number of target languages in this
evaluation compared to NIST LRE05. The list of target languages consisted
of 14 languages as listed in Table 6.3. The task was again defined on CTS

4http://www.itl.nist.gov/iad/mig//tests/lang/2005/LRE05EvalPlan-v5-2.pdf
5NIST often chooses to define a subset of evaluation trials as representing the primary

conditions of interest in an evaluation. The rest of the trials are regarded as extended
condition.

6http://www.itl.nist.gov/iad/mig//tests/lang/2007/LRE07EvalPlanv8b.pdf

84 Data selection and preparation

Table 6.3: NIST LRE 2007 target language list.
Test General Chinese Mandarin English Hindustani Spanish
Lang. or Dial. Rec. LR LR DR DR DR DR

Arabic �
Bengali �
Farsi �
German �
Japanese �
Korean �
Russian �
Tamil �
Thai �
Vietnamese �
Chinese �

Cantonese �
Mandarin �

Mainland �
Taiwan �

Min �
Wu �

English �
American �
Indian �

Hindustani �
Hindi �
Urdu �

Spanish �
Caribbean �
non-Caribbean �

data with three conventional duration conditions: 30s, 10s and 3s. The main
focus of the task was dialect recognition and the task was defined as two
language recognition tests along with 4 different dialect recognition tests.

In this evaluation, acoustic systems obtained the best performance. The
best performance was achieved by combining channel compensation tech-
niques (eigenchannel adaptation in the feature domain) and discriminative
training of GMM [33].

6.2.1 NIST LRE2009

At the time of starting this thesis, the NIST LRE097 was the most recent
NIST LRE. It was also the most complicated one. There are 23 languages

7http://www.itl.nist.gov/iad/mig//tests/lang/2009/LRE09 EvalPlan v6.pdf

6.2. NIST evaluations 85

Table 6.4: NIST LRE 2009 target language list.
Amharic Bosnian Cantonese Creole(Haitian)

Croatian Dari English(American) English(Indian)

Farsi French Georgian Hausa

Hindi Korean Mandarin Pashto

Portuguese Russian Spanish Turkish

Ukrainian Urdu Vietnamese

in the LRE09 target language list as shown in Table 6.4. There are three
main evaluation conditions: open-set, closed-set and pairwise as:

I) closed-set: For each trial, the test utterance comes from one of
the known target languages and is hypothesized to be from one of the
known target languages. This was the mandatory condition for all the
participants.

II) open-set: For each trial, the test segment can also come from an
additional set of unknown languages. The identities of the unknown
languages were not disclosed at the time of the evaluation.

III) pairwise: For each trial, the test utterance comes from one of two
suggested languages.

There are three duration conditions as:

I) 3 seconds nominal. 2-4 seconds actual.

II) 10 seconds nominal. 7-13 seconds actual.

III) 30 seconds nominal. 25-35 seconds actual.

The primary performance measure is Cavg (see Section 6.4.1). The eval-
uation data contains both conversational telephone speech (CTS) and tele-
phony speech that is broadcast through Voice of America (VOA) broadcast
news. The latter involves people making phone calls to the broadcast stu-
dio. The evaluation data comprise at least 100 segments from each duration
condition for the languages in the target language list. The complete Evalu-
ation set contained 41793 utterances from all durations and all the languages
including out-of-set languages. The number of evaluation segments for the
closed-set condition is 31178.

86 Data selection and preparation

Table 6.5: NIST LRE 2011 target language list.

Language Abbreviation

Arabic Iraqi arir
Arabic Levantine arle

Arabic MSA arms
Arabic Maghrebi arma
English Indian engi

English American enga
Russian russ
Farsi fars
Slovak slvk
Hindi hind
Spanish span
Lao laot
Tamil tami
Bangali bang
Mandarin mand

Thai thai
Czech czec
Panjabi pjbc
Turkish turk
Dari dari

Pashto pash
Ukrainian ukra
Polish poli
Urdu urdu

6.2.2 NIST LRE2011

The NIST LRE 2011 evaluation differs from all the prior ones in empha-
sizing the language pair condition, which was introduced in LRE09. The
target language list comprises 24 languages as listed in Table 6.5. Like
LRE09 it contains both conversational telephone speech (CTS) and broad-
cast narrow-band speech (BNBS), generally involving people making phone
calls to the broadcast studio. Multiple broadcast sources are included. For
LRE09, we called it VOA since that was the only broadcast news source.
As for the NIST LRE09, there are three duration conditions 30s, 10s and
3s.

6.3. RATS 87

Table 6.6: RATS target language list.
Arabic Levantine Dari Farsi Pashto Urdu

6.3 RATS

RATS stands for robust automatic transcription of speech and is a DARPA
program which seeks to advance the state of the art in speech technology
using audio from highly degraded communication channels. The goal of
the RATS program is to create technology capable of accurately determin-
ing speech activity regions, detecting keywords, identifying language and
speakers in highly degraded, weak and/or noisy communication channels.
Here, we only talk about the language recognition task of RATS. There are
five target languages in RAST LID as shown in Table 6.6 and 10 non-target
languages in four duration conditions as 120s, 30s, 10s and 3s.

6.4 Evaluation metrics

There are many different ways to measure the performance of an LID system
which take into accounts errors of a LID system i.e. false alarm and miss.

6.4.1 Cavg average cost

This is the main metric that we use for this thesis and it was introduced for
NIST LRE07. The main idea behind the Cavg metric is to have an applica-
tion dependent evaluation metric. This is because in different applications,
we might be interested to check the system performance for different oper-
ating points. Each operating point is defined by a miss cost (Cmiss), a false
alarm cost (CFA) and prior probability of target, non–target and out–of–set
languages denoted as Ptarget, Pnon−target and Pout−of−set, respectively. The
Cavg for a given operating point is calculated as:

Cavg =
1

NL

∑
LT

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cmiss · Ptarget · Pmiss(LT)

+
∑

LN
CFA · Pnon−target · PFA(LT , LN)

+CFA · (1− Pout−of−set) · PFA(LT , LO)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (6.1)

where NL is the number of languages in the closed set of target languages,
LT and LN denote target and non-target language respectively and LO is

88 Data selection and preparation

denoting the out-of-set languages. Cmiss and CFA are application-dependent
costs for miss or false alarm, respectively. The operating point for NIST
LRE09 and RATS in terms of parameter values is defined as:

Pout−of−set = 0 : closed set

Pout−of−set = 0.2 : open set

PNon−target = (1− Ptarget − Pout−of−set)/(NL − 1)

Cmiss = CFA = 1,

Ptarget = 0.5

(6.2)

We shall mention that Pout−of−set is used in open set evaluation which
is reported only for RATS in this thesis. In this thesis, we address the closed
set condition for NIST LREs. PNon−target defines the prior probability for
the test segments coming from other languages than the hypothesized target
language. The input from each LID system to the Cavg formula is the prob-
ability of miss for a target language LT denoted as Pmiss(LT) and probabil-
ity of false-alarm for each language pair (LT , LN) denoted as PFA(LT , LN).
These probabilities are calculated as:

Pmiss(LT) =
#miss(LT)

#Trial(LT)
,

PFA(LT , LN) =
#FA(LT , LN)

#Trial(LN)
.

(6.3)

where # denotes number of trials. The FA(LT , LN) means that a trial
belongs to LN according to the key but the LID system labeled it as LT ,
#Trial(LN) defines the number of non-target trials, #Trial(LT) defines
the number of trials for the target language LT and #miss(LT) defines the
number of misses for the target language LT . We are always interested
in Pmiss(LT) and PFA(LT , LN) that give us a lower Cavg. Now let us ex-
plain how we calculate these parameters. To have the Pmiss(LT) and the
PFA(LT , LN), we first need to make a binary decision whether the trial be-
longs to the corresponding LT or not. Notice that at the time of making
this binary decision, we do not know the correct label of the trial. In other
words, rejecting that the trial belongs to the target language (LT) means
that it belongs to the other languages in list. Let us denote the set of other
languages than the target language LT as LImposters. Assume that we have

6.4. Evaluation metrics 89

language likelihood P (X|LT) as the output of the language classifier. Hav-
ing the prior probabilities of the target and other languages defined by the
application (For NIST tasks is defined as (6.2)), we make our decision based
the value of the posterior probabilities P (LT |X) as:

If P (LT |X) > 0.5 ⇒ X belongs to LT

If P (LT |X) < 0.5 ⇒ X belongs to LImposters
(6.4)

where P (LT |X) is calculated using the Bayes rule

P (LT |X) =
P (X|LT)P (LT)

P (X)

=
P (X|LT)P (LT)

P (X|LT)P (LT) + (1− P (X|LT))(1− P (LT))

(6.5)

Based on this decision for all the hypotheses and after having correct
language labels of all the trials, we can calculate Pmiss(LT) and PFA(LT).

6.4.2 Pair-wise system evaluation

This is the primary performance measure for the NIST LRE118. Trials
consist of a test segment along with a specified target language pair. The
full set of trials consist of all combinations of an evaluation test utterance
and a target language pair. Thus if K is the number of target languages,
each test segment will be used for K * (K-1) / 2 trials. For each lan-
guage pair (L1, L2), the miss probability for L1 and L2 is calculated. These
probabilities are combined into a single number that represents the cost
performance of a system for distinguishing the two languages, according to
an application-dependent cost model as:

C(L1, L2) = CL1PL1Pmiss(L1) + CL2(1− PL1)Pmiss(L2), (6.6)

where CL1, CL2 and PL1 are application-dependent parameters. Here CL1

and CL2 may be viewed as the costs of a miss for L1 and L2, respectively,
and PL1 as the prior probability for L1 with respect to this language pair.
These parameters will be set to give equal cost and probability to each
language:

CL1 = CL2 = 1,

PL1 = 0.5
(6.7)

8http://www.nist.gov/itl/iad/mig/upload/LRE11 EvalPlan releasev1.pdf

90 Data selection and preparation

For the NIST LRE11, systems are evaluated based on the 24 language
pairs with the highest costs. To do so, 24 language pairs with highest
pairwise cost for the 30s duration are selected. The performance measure
for each duration will be the mean of the pairwise cost for the corresponding
24 language pairs. This is denoted as Pair Error Rate (PER) in this thesis.

This performance measure is a good analytical tool for spotting defects
of a LID system. However, since different systems may have different 24
worst pairs, it is not a useful performance criterion for system comparisons.

In this work, most of our system analyses are based on the NIST LRE09.
We also report performance of our LID systems on NIST LRE11 evaluation
set.

6.5 Development data collection and preparation

6.5.1 NIST LRE09

All the previous NIST LRE evaluations were based on CTS data. From
LRE09, NIST utilized telephony bandwidth broadcast radio speech for most
of the target languages as well. This includes telephone conversations that
are broadcast through radio channels. This has two advantages: firstly, we
should deal with channel variability which was not considered as a challenge
for the LID problem during the previous LREs and secondly, it is much easier
to collect the telephony data transmitted over radio channel. Two DVDs
were provided by the NIST that includes the last 2 years archive of Voice Of
America (VOA) from the languages in the target language list. The BUT
group also downloaded other similar sources from the Internet. Table 6.7
shows sources from which the training and development data were taken.

We split the training data into two independent subsets, which we denote
as TRAIN and DEV. The TRAIN set has 23 languages (according to the
NIST LRE09) and has about 49190 segments in total that sum to 1572 hours
of speech. The DEV set also has 23 languages and a total of 38135 segments.
The DEV set is split into balanced subsets having nominal durations of 3s,
10s and 30s. It is mainly based on segments from the previous evaluations
plus additional segments extracted from longer files from CTS and VOA
databases (which were not contained in the TRAIN set). The detailed data
selection for different languages from the two main channels (CTS and VOA)
are shown in Table 6.8.

In the next step, we run the BUT speaker identification system over
DEV and TRAIN sets to spot overlapping speakers in both sets. If found,

6.5. Development data collection and preparation 91

Table 6.7: Train & Development data source for NIST LRE 2009.

CF CallFriend
F Fisher English Part 1.and 2.
F Fisher Levantine Arabic
F HKUST Mandarin

SRE Mixer (data from NIST SRE 2004,2005,2006, 2008)
LDC07 development data for NIST LRE 2007
OGI OGI-multilingual

OGI22 OGI 22 languages
FAE Foreigners Accented English
SpDat SpeechDat-East
SB SwitchBoard
VOA Voice of America radio broadcast

we removed data of such speakers from one of the sets so that the TRAIN
and DEV sets contain data from disjoint sets of speakers. This way, we make
sure that our LID system is learning classes based on language information,
not speaker information.

As shown in Table 6.8 the languages in the LRE09 do not have the same
amount of available data. Number and durations of the recordings for each
language are different. To avoid the problem of unbalanced training data for
the languages in the target list, we further limit the number of recordings
for each language to maximum of 500 while keeping longer utterance rather
than shorter utterances. Some languages may have less than 500 utterances.
This gives us in total 9810 recordings that sum up to 359 hours of speech.

The TRAIN set is used for the front-end training and the DEV set is
used for training of the calibration and fusion in the back-end. This means
that we do not have a separate set for internal evaluation of our system
after calibrating and tuning the performance on the DEV set. To avoid
the problem of over-tuning to the DEV set, tuning on the DEV set is done
using a jackknifing scheme. We do 5 outer iterations, where in each, we
randomly partition the DEV data into 5 subsets balanced across all 23
languages. In each outer iteration, we run 5 inner iterations. In each inner
iteration, one subset is held out as test data, while the other 4 are used for
back-end training. The Cavg is calculated over all 25 subsets and averaged
over all. The same is done for the fusion and the calibration parameters.
The averaged fusion/calibration weights were applied to the NIST LRE09
evaluation set [34].

92 Data selection and preparation

Table 6.8: Data distribution of DEV sets for NIST LRE 2009.

CTS VOA

Language #files #hours #files #hours

Amharic 0 0 1724 77.7
Bosnian 0 0 268 7.0
Cantonese 482 6.9 34 2.1
Creole Haitian 0 0 425 14.8
Croatian 0 0 150 5.3
Dari 0 0 2410 78.8
English Indian 714 2.2 0 0
Englisg American 10560 290.9 3963 132.5
Farsi 656 22.6 1673 70.6
French 403 21.8 3679 88.7
Georgian 0 0 100 4.7
Hausa 0 0 2599 74.4
Hindi 755 26.0 358 15.7
Korean 691 21.3 342 16.3
Mandarin 1321 64.8 1049 35.7
Pashto 0 0 6317 102.3
Portuguese 294 0.5 1069 48.7
Russian 643 8.4 3071 82.2
Spanish 1001 47.5 1623 67.6
Turkish 0 0 262 9.8
Ukrainian 0 0 105 3.0
Urdu 24 1.4 1242 67.2
Vietnamese 743 25.7 113 8.9

SUM 18287 540 32576 1004

6.5. Development data collection and preparation 93

6.5.2 NIST LRE11

For each of the new languages in NIST LRE11, 100 segments with 30s length
were provided by NIST through the Linguistic Data Consortium (LDC)
at the time of the evaluation. They are all selected from BNBS and are
human-audited and are marked as the first development set, D1. The longer
files from which the D1 segments are selected are also provided in 16kHz
format for possible use by participants (marked as D2). Similar to LRE09,
we downloaded data from other available radio archives on the web. Sources
from which LRE11 development data is selected are listed in Table 6.10.
We split the data into three independent sets denoted as TRAIN, DEV and
TEST. They all contain data from the 24 target languages. The TRAIN set
has about 60000 segments, the DEV set has about 38000 segments and the
TEST set has about 26000 segments in total. The DEV and TEST sets are
split into balanced subsets having nominal durations of 3s, 10s and 30s.

The DEV set is based on LRE09 DEV set and contains data from the
previous LRE evaluations up to and including LRE07. The data for the
new languages include additional segments extracted from longer D2, CTS
and BRBS (which were not contained in the TRAIN set). The TEST set
mainly consists of the NIST LRE09 evaluation data, plus data for the new
languages. In the case of LRE11, since we have an internal held out TEST
set, we do not use the jackknifing as we did for LRE09.

Table 6.9 shows details on the numbers of segments and lengths of record-
ings in hours for TRAIN, DEV and TEST sets. The pairwise evaluation
metric is explained in Section 6.4.2. The official NIST LRE11 evaluation
metric is based on the 24 language pairs that has the worst PER. In fact,
the system performance is represented in terms of just the 24 most difficult
language pairs and does not reflect the overall performance of an LID sys-
tem. This makes the comparison between systems from different sites hard
since the worst pairs for each subsystem and each site may vary. For this
reason, we provide our system performance in terms of PER over the worst
24 language pairs and PER over all language pairs.

6.5.3 RATS

The linguistic data consortium (LDC) provided the training and test data
for the RATS participants. The annotated audio recordings were selected
from the existing and newly collected data sources as follows:

1. Fisher conversational telephone speech (CTS) : Arabic Levantine

94 Data selection and preparation

Table 6.9: Data distribution over TRAIN, DEV and TEST sets for NIST
LRE 2011.

TRAIN DEV TEST
Language #files #hours #files #hours #files #hours

Arabic Iraqi 476 17.01 579 2.63 585 2.84
Arabic Levantine 3442 158.74 576 2.52 585 2.66
Arabic Moroccan 212 6.83 399 1.77 438 2.05
Arabic MSA 201 4.72 435 2.71 391 1.96
Bengali bang 4084 88.54 633 2.32 563 1.91
Czech 2279 19.49 1015 5.49 694 4.02
Dari 2410 78.83 579 1.79 1167 3.33
English Indian 1444 4.72 1174 3.82 1167 3.85
English American 14523 423.33 8170 24.81 2615 8.80
Farsi 2477 96.63 1718 5.53 1540 4.89
Hindi 1113 41.79 2222 6.68 1922 6.26
Laotian 147 3.68 357 1.82 336 1.82
Mandarin 2370 100.55 6281 18.43 2976 9.94
Pashto 6317 102.35 588 1.87 1185 3.52
Panjabi 160 4.36 360 2.17 348 2.10
Polish 2098 17.63 772 4.02 489 3.30
Russian 8792 122.45 3014 10.26 2247 7.68
Slovakian 1776 13.55 505 3.26 513 3.41
Spanish 2624 115.08 4784 14.44 1155 3.44
Tamil 623 19.59 900 2.49 888 2.67
Thai 267 7.52 943 3.05 595 2.08
Turkish 262 9.77 579 1.90 1182 3.43
Ukrainian 967 24.07 572 1.91 1535 4.65
Urdu 1266 68.65 1016 3.53 1133 3.41

total 60330 1549.91 38171 129.23 26249 94.00

6.5. Development data collection and preparation 95

Table 6.10: Data sources for TRAIN, DEV and TEST sets of NIST LRE
2011.

CF CallFriend
F Fisher English Part 1. and 2.
F Fisher Levantine Arabic
F HKUST Mandarin

SRE Mixer (data from NIST SRE 2004, 2005, 2006, and 2008)
LRE Development and evaluation data from previous NIST LRE
OGI OGI-multilingual
OGI22 OGI 22 languages
FAE Foreign Accented English
SpDat SpeechDat-East9

SB SwitchBoard
VOA Voice of America radio broadcast
RFEL Radio Free Europe broadcast
AR-IR Iraqi Arabic Conv. Tel. Speech (LDC2006S45)

AR-MSA 2003 NIST Rich Transc. Eval Data (LDC2007S10)
AR-MSA Arabic Broadcast News Speech (LDC2006S46)

2. CallFriend conversational telephone speech : Farsi

3. NIST LREs: Dari, Farsi, Pashto, Urdu and non target languages

4. RATS: Farsi, Urdu, Pashto, Levantine

All recordings were retransmitted through 8 different communication
channels, labeled by the letters A through H. A push-to-talk (PTT) trans-
mission protocol was used in all channels except G. PTT states produce
some regions where two or more non-transmission (NT) segments may oc-
cur. In addition to the speech (S) and non-speech (NS) regions, these NT
regions are supposed to be marked in the annotations.

There are four conditions with durations 120s, 30s, 10s and 3s. Only
recordings from the 120s condition were released for training and develop-
ment. We therefore had to construct our own development samples for the
shorter durations from the 120s audio files, based on BUT’s voice activity
detection (VAD).

During the development period, LDC delivered three incremental data
releases for training and test. Only the first two releases are used for the
main training and development sets that we report here. The whole data is
split into TRAIN and DEV sets. We try to keep longer files in the TRAIN

96 Data selection and preparation

Table 6.11: Distribution of DEV2 set for RATS language evaluation.

Language All files 120s Trials 30s Trials 10s Trials 3s Trials

Arabic 1085 307 277 289 212
Dari 184 59 50 44 31
Farsi 947 291 259 238 159
Pashto 1032 309 280 259 184
Urdu 980 275 261 263 181

set. So, recordings with more than 60s of speech (according to the VAD
output), are mainly included in the TRAIN set. This results in results in
a TRAIN set containing 30774 files, that is not balanced among five target
languages (e.g. we have 668 files for Dari, 12778 for Arabic Levantine).
In the next step, we balanced the TRAIN set to have approximately 700
recordings for each target language.

The DEV set comprises 2432 recordings from non-target languages and
1000 recordings for each target language (Except Dari). These files are
chosen in a way to have 600-900 files for each channel/language and 7120
files for each duration.

As we mentioned in Section 6.3, the key for RATS evaluation data is
not disclosed to the participants. However, LDC released a development set
called DEV2 that was sent through similar channels as the evaluation data.
All the results that we report in this thesis are on the DEV2 set. Since
the DEV2 set is not the official RATS evaluation set, some statistics about
distribution of the recordings and numbers of the recordings are given in
Table 6.11.

Chapter 7

Experiments

Any new proposal should be accompanied and confirmed by the experi-
mental results. In this part, we first present results of our baseline system
and state-of-the-art results at the time of starting this thesis. In the next
step, we experiment with tuning the parameters of the proposed multino-
mial subspace and subspace n-gram models. All the tunings are done using
NIST LRE09 as explained in Section 6.2.1. All the experiments use 3-gram
statistics.

We shall initially mention in the beginning that all the parameter tun-
ings and training of calibration and fusion are done over the DEV sets and
EVAL sets are considered as unseen new data. This way, we simulate the
real evaluation conditions where we do not have any information about the
EVAL sets at the time of system training and tuning. We provide results
on EVAL sets to show how our systems would perform if they had been
used for the corresponding evaluations. It is obvious that the results on
the DEV sets should be considered as cheating experiments that give us an
impression of system performance upper bound. It is also a good way of
discovering accidentally good results on EVAL set in some situations.

We should also mention that all the calibration and fusion plans that are
used in this thesis are implemented by our colleagues at BUT and mainly
by Niko Brummer from AGNITiO. Part of the NIST LRE09 calibration and
fusion is publicly available1. The rest of what is reported in this section as
phonotactic LID systems is developed by the author of this thesis. Training
of the subspace and iVector extraction for continuous features (that com-
prises acoustic and prosodic features) is done using codes from our BUT
colleagues.

1https://sites.google.com/site/nikobrummer/

97

98 Experiments

Let us first describe pre-processing of the iVectors before giving the
details on language models training.

7.1 iVector pre-processing

All the experiments presented in this chapter use mean removal and length
normalization of the iVectors unless otherwise stated. We use only 3-gram
statistics in the form of soft counts as explained in Section 4.7. We shall
mention that the term iVector refers to all the feature vectors used as an
input to the language models. For the mean removal, during the train phase,
the iVectors’ mean over N iVectors in the train set is calculated. This mean
is subtracted from all the iVectors in the train, development and evaluation
sets. The intuition behind the mean removal is that the data sources for
train, development and evaluation sets might be different and shifted with
respect to each other.

The length normalization is done as:

w̄n ← wn√∑
i(w

i
n)

2
, (7.1)

where wi
n is the ith dimension of the r-dimensional iVector wn.

7.2 Establishing the baseline

At the time of starting this thesis, I was inspired by the LID solution pro-
posed in [17]. In [17] each utterance is decoded by a phoneme recognizer
and soft count 3-grams are extracted from phoneme lattices as explained
in Section 4.7. 3-gram soft counts extracted for each utterance is then put
into a fixed length vector. These vectors of 3-gram statistics are then di-
rectly modeled by binary SVM classifiers to generate language scores using
binary classifiers as defined in Section5.1.1. The fact that we can replace
the n-gram language model in the back-end with discriminative classifiers
and the simplicity of the approach was my main interest.

As our baseline system, we replicated the system in [17] using the 3-gram
statistics obtained from the reduced phoneme set of BUT HU phoneme lat-
tices as described in Section 4.7. This results in 35937 3-grams. The system
is denoted as FULL-BSVM. On the other hand, results in [50] showed
promising advantages of reducing feature dimensionality using PCA fea-
ture extraction. We were curious to compare the performance of the re-
duced feature vector to the baseline with full feature space so we replicated

7.2. Establishing the baseline 99

Table 7.1: The Cavg × 100 for baseline systems using full and
PCA-transformed 3-gram statistics from BUT HU with BSVM and BLR
on DEV and EVAL sets over all the conditions of NIST LRE09 EVAL set.

DEV EVAL

System Dimension 30s 10s 3s 30s 10s 3s

FULL-BSVM 35937 2.56 6.75 17.64 3.08 8.5 20.93

PCA-BSVM 35937→400 2.91 7.25 18.05 3.81 9.09 21.39
PCA-BSVM 35937→600 2.83 7.05 17.77 3.62 8.89 21.09
PCA-BSVM 35937→1000 2.83 6.98 17.74 3.60 8.82 21.00

PCA-BLR 35937→600 2.22 6.22 17.26 2.93 8.29 22.60
PCA-GLC 35937→600 2.81 8.25 19.83 3.5 9.88 22.88

PCA-based feature extraction as explained in [50]. After length normal-
ization and mean removal, the PCA-transformed features are sent to the
binary support vector machines and binary logistic regression classifiers.
The corresponding systems are denoted as PCA-BSVM and PCA-BLR, re-
spectively. The PCA transformation is calculated over the square root of
the n-grams as suggested in [50]. Both the BSVM and BLR classifiers are
trained in a one-vs-all configuration. For the classifiers, we used LibSVM2

and LIBLinear3 publicly available packages. Table 7.1 compares perfor-
mance of the FULL-BSVM with PCA feature extraction on NIST LRE09
task. It also shows the effect of using BLR instead of BSVM as the language
classifiers. For all systems, scores from the classifiers are calibrated using
LRE09 back-end as explained in Section 5.4.1.

Performances of the 400, 600 and 1000 dimensional PCA-transformed
features are shown in Table 7.1. Similar to what was reported in [50], we do
not obtain notable improvement for dimensionalities higher than 600. We
shall mention that the PCA-BSVM system was the state-of-art phonotactic
LID result at the time of starting this thesis and other better phonotactic
LID results that are reported in this chapter are contributions of this thesis.
In the first step, we obtained notable improvement by using binary logistic
regression instead of binary SVM classifiers. This finding is confirmed by
using binary logistic regression for phonotactic iVectors as will be presented
in Table 7.3. Even though the Gaussian linear classifier is a multi-class

2www.csie.ntu.edu.tw/ cjlin/libsvm/
3www.csie.ntu.edu.tw/ cjlin/liblinear/

100 Experiments

200 300 400 500 600 700 800

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Sub−space dimension

C
av

g

DEV set

EVAL set

(a) 30 seconds

200 300 400 500 600 700 800 900

7

7.5

8

8.5

9

9.5

10

Sub−space dimension

C
av

g

DEV set

EVAL set

(b) 10 seconds

200 300 400 500 600 700 800 900

18

18.5

19

19.5

20

20.5

21

21.5

22

Sub−space dimension

C
av

g

(c) 3 seconds

Figure 7.1: The Cavg × 100 on DEV and LRE09 EVAL set for different
subspace dimensions over 30s, 10s and 3s conditions for SMM using BUT
HU 3-gram statistics.

classifier, we report it here to show that Gaussian linear classifier does not
perform well on PCA transformed n-gram statistics. The system is denoted
as PCA-GLC. The main reason is that PCA-transformed features are not
Gaussian distributed as explained in Section 4.1.1.

7.3 Subspace multinomial model system tuning

The theoretical part of extracting phonotactic iVectors using subspace multi-
nomial model(SMM) was presented in Section 4.5. There are two unan-
swered questions for the SMM. What is a proper number of iterations in
the parameter estimation and more importantly, what is an optimal phono-
tactic iVectors dimensionality. We make the decision on the number of
iterations based on log likelihood change in each iteration.

Figure 4.7 shows that there is no notable change in the log likelihood
after the 4th iteration. Based on this, we choose 5 iterations of the parameter

7.4. SMM versus PCA-transformed feature 101

estimation.

In the case of the iVector dimensionality, the final system performance
on the DEV set in terms of Cavg is used. Basically, higher iVector dimension
may provide us with more discriminative information. However, extracting
high-dimensional iVectors has a high memory overhead and is also compu-
tationally expensive. Furthermore, we would need more training data for
higher-dimensional hyperparameter (T) estimation since it may easily get
overfit to the training data.

Figure 7.1 shows change in the Cavg with respect to the subspace di-
mension for iVectors extracted using the BUT HU. The system settings are
explained in detail in Section 7.4 as SMM-BLR. The blue lines show the
Cavg for different duration conditions over the DEV set of NIST LRE09.
For the 30s and 10s conditions, no significant increase in the performance
is observed for dimensions higher than 600. In the case of 3s, we observe
some noise for dimensionalities higher than 300 but considering the total
trend, 600 dimensions is a reasonable choice. We also plot the performance
over the NIST LRE09 Evaluation set. We see that our conclusion about the
subspace dimension generalizes to the Evaluation set. However, we can see
performance degradation for dimensionalities higher than 600. We believe
it is due to the hyper parameter, T, overfitting.

7.4 SMM versus PCA-transformed feature

So far, we have the phonotactic iVectors generated using SMM. As we men-
tioned in Section 7.1, we use normalized iVectors. Normalizing iVectors is
a common technique that improves performance in speaker identification
using acoustic iVectors [27]. Table 7.2 shows the effect of each normaliza-
tion on the overall performance for phonotactic iVectors using BLR. The
MR stands for mean removal and LN denotes length normalization. As we
expected, mean removal improves the results significantly since the sources
of the training and evaluation data are different. In the next step, LN
slightly improves the performance but in the case of within class covari-
ance normalization (WCCN), the improvement is not notable. For rest of
the experiments in this chapter, we use only MR and LN unless otherwise
stated.

It is time to compare performances of our baseline systems with our
proposed phonotactic iVector. Table 7.3 compares FULL-BSVM with PCA
feature extraction and SMM. It also shows performances of PCA and SMM
using BSVM and BLR classifiers. Table 7.3 confirms that on the NIST
LRE09 EVAL set, BLR is outperforming BSVM on the iVector features

102 Experiments

Table 7.2: Cavg × 100 for different iVector normalization for BLR on BUT
HU phonotactic iVectors on NIST LRE09 EVAL set.

System Normalization 30s 10s 3s

SMM-BLR - 6.53 15.95 29.52
SMM-BLR MR 2.93 8.70 21.75
SMM-BLR MR+LN 2.81 8.33 21.39
SMM-BLR MR+LN+WCCN 2.83 8.09 21.34

Table 7.3: The Cavg × 100 for PCA-transformed 3-grams and phonotactic
iVectors form BUT HU with BSVM and BLR classifiers on DEV and EVAL
sets over all the conditions of NIST LRE09 EVAL set.

DEV EVAL

System Dimension 30s 10s 3s 30s 10s 3s

FULL-BSVM 35937 2.56 6.75 17.64 3.08 8.4 21.06

PCA-BSVM 35937→600 2.83 7.05 17.77 3.62 8.89 21.09
PCA-BLR 35937→600 2.22 6.22 17.26 2.93 8.29 22.60

SMM-BSVM 35937→600 2.52 7.38 18.41 3.25 9.47 23.59
SMM-BLR 35937→600 2.44 6.88 18.01 3.05 8.10 21.39

SMM-BLR + PCA-BLR Fusion 2.05 5.74 16.71 2.79 7.63 21.05

as well. We will mainly be using BLR for the rest of the experiments. It
is interesting to note that the SMM-BLR is performing better than the
FULL-BSVM in 10s and 30s conditions of the EVAL set. However, it is not
performing as well on the DEV set.

The last row in Table 7.3 shows results of score level fusion of PCA-BLR
and SMM-BLR systems according to LRE09 fusion plan explained in Sec-
tion 5.4.1. Even though the performances of these two systems are similar
on this evaluation set, their score level fusion shows notable improvement
which shows that these system are exploiting different information in the
n-gram statistics.

7.5 Multi-class versus binary classifiers

The LID task is a multi-class classification task. It is interesting to know
how multi-class formulations of our classifiers perform on the LID task. For

7.6. iVector fusion and score level fusion 103

Table 7.4: Cavg×100 for different multi-class and binary classifiers on BUT
HU phonotactic iVectors on NIST LRE09 EVAL set.

System 30s 10s 3s

SMM-BLR 2.81 8.33 21.39
SMM-BSVM 3.07 8.55 21.68

SMM-MLR 3.16 8.66 21.82
SMM-MSVM 3.89 10.60 23.92
SMM-GLC 2.92 8.03 21.13

this purpose, we use iVectors generated with SMM to train multi-class SVM,
multi-class logistic regression (MLR) and GLC as explained in Section 5.2.2,
5.2.1 and 5.3. Results are shown in Table 7.4

The results show that multi-class formulation of our SVM and logistic
regression does not give us better performance on this task compared to a
binary formulation of the corresponding classifiers. The GLC has the best
results on 10s and 3s conditions and it performs reasonably well on 30s con-
dition as well. This is in contrast to training GLC on PCA-transformed
n-gram statistics reported in Table 7.1. We believe this is due to the
distribution of the iVectors extracted with SMM model and we expect
these iVectors to be more Gaussian distributed than the PCA-transformed
n-gram statistics. More details on this is given in Section 7.8.

7.6 iVector fusion and score level fusion

In principal, our phonotactic iVectors can be fused in two different way:
feature level fusion and score level fusion. The iVectors feature level fu-
sion means that we concatenate iVectors from two systems in one fea-
ture vector. For example, 600-dimensional iVectors from BUT Hungarian
phoneme recognizer (BUT-HU) and 400-dimensional iVectors from BUT
RU form a 1000-dimensional feature vector. The choice of 400-dimensional
iVectors from BUT RU was just due to the memory and computational
overhead of 600-dimensional iVectors. The concatenated iVectors are then
treated as one system and we train BLR language classifiers on the resulting
1000-dimensional iVectors. This way, the language classifier sees informa-
tion in the two iVectors together. In the case of score fusion, two different
sets of BLR classifiers are trained for each of the iVectors extracted from
BUT HU and BUT RU n-gram statistics and the produced scores of each

104 Experiments

Table 7.5: Cavg × 100 for different phonotactic iVectors and their feature
and score level fusions on NIST LRE09 EVAL set.

System Feature Dimension 30s 10s 3s

SMM-BLR HU 600 3.05 8.10 21.05
SMM-BLR RU 400 2.59 7.42 19.83
SMM-BLR iVec fusion HU & RU 1000 2.10 5.80 17.79
SMM-BLR Score fusion HU+RU 600,400 2.09 5.34 16.53

set of classifiers goes into the LRE09 back-end as explained in Section 5.4.1.
Table 7.5 shows performances of the individual SMM-BLR systems using
HU and RU phoneme recognizers along with results of the corresponding
score fusion and iVector fusion. The results show that we can achieve signif-
icant improvements using either of the fusion styles. For longer segments,
the score level fusion gives the better performance on this task.

7.7 Regularized subspace n-gram model parame-
ter tuning

In the case of the regularized SnGM, we use the same number of iterations
for the parameter estimation since no significant change in the objective
function in (4.35) was observed after the 4th iteration. The next step is to
define the regularization coefficient λ. Basically, there is no analytical way
to define the value of λ and it is normally set experimentally. Here, we tune
it with respect to the Cavg on DEV set. In Figure 7.2, the performances of
the phonotactic iVectors LID system for the DEV set of NIST LRE09 and
different duration conditions are depicted in blue lines. The best perfor-
mance is obtained with λ = 0.01. We also plot the Cavg on the evaluation
set of the NIST LRE09 EVAL set in red lines. We see again that the best
LID performance is obtained with λ = 0.01 over different duration condi-
tions. This means that the tuning of the λ over the DEV set generalizes
very well to an independent evaluation set.

Optimizing the objective function in (4.35) with an L2 regularizer can
be seen as obtaining a maximum a-posteriori point estimate of the model
parameters T and w with Gaussian priors imposed on these parameters.

7.7. Regularized subspace n-gram model parameter tuning 105

10
−6

10
−4

10
−2

10
0

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

 λ

C
a

v
g

EVAL

DEV

(a) 30 seconds

10
−6

10
−4

10
−2

10
0

5.5

6

6.5

7

7.5

8

8.5

 λ

C
a

v
g

EVAL
DEV

(b) 10 seconds

10
−6

10
−4

10
−2

10
0

16

17

18

19

20

21

22

23

24

 λ

C
a

v
g

EVAL
DEV

(c) 3 seconds

Figure 7.2: Tuning of λ for RSnGM using BUT HU. Cavg × 100 for SnGM-
BLR over DEV and EVL set for 30s, 10s and 3s conditions on NIST LRE09
EVAL set.

106 Experiments

7.8 Regularized subspace n-gram model

The regularized subspace model over clustered n-gram statistics (3-gram in
our case) is our final proposal for phonotactic iVectors (see Section 4.5.7).
The first step toward this model is to use a separate multinomial distribu-
tion for each 3-gram history as explained in Section 4.5.6. This model allows
us to extract iVectors by maximizing the log likelihood of the phoneme la-
bels conditioned on their corresponding histories according to the n-gram
assumption. In order to estimate the model parameter and then extract
iVectors, we need counts of 3-grams. However, there are many 3-gram his-
tories that are rarely occurring in the TRAIN set. For some histories, there
are no observation of the corresponding 3-grams in the TRAIN set. In the
traditional n-gram language model, we use different smoothing techniques
to assign a small probability to the unseen 3-grams. This is necessary for
calculating the likelihood of a phoneme sequence. We have the same prob-
lem in SnGM as well. In case we have no occurrences of a 3-gram in the
training data, the ML training of SnGM would assume zero probability for
such a trigram which would result in pushing the weights (w) and the model
parameter (T) to produce large negative log likelihood that corresponds to
those zero probabilities. This can be seen as model overfitting to those
rare 3-grams. In fact this problem is more serious in SnGM than SMM.
In the SMM model all the multinomial probabilities are assumed to be the
outcomes of a single multinomial distribution. This means that many prob-
abilities are competing for the probability mass and this acts as a natural
regularizer that limits the dynamic range of updates for T and w. In case of
SnGM, much fewer n-gram probabilities modeled in each multinomial dis-
tribution are competing for the probability mass. As a result, the SnGM
focuses on these rare n-gram probabilities in a n-gram history and tends
to introduce large values in T and w in order to be able to produce the
corresponding close-to-zero probabilities. This is also why we found regu-
larization more effective in the case of SnGM as will be seen in Table 7.6.
In this thesis, as the first step, we use pruning of the 3-gram statistics to
deal with the problem of the low-frequent 3-grams. We prune the 3-grams
according to the following rules.

I) Filter out all the 3-grams that have occurred less than 10 times
throughout the whole TRAIN set.

II) If there are less than 5 3-grams with the same history, remove all
3-grams with this history.

7.8. Regularized subspace n-gram model 107

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

T

B
in

 o
c
c
u
ra

n
c
e

(a) Distribution of values in 30 random
rows of T in SnGM

−150 −100 −50 0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

w
B

in
 o

c
c
u
ra

n
c
e

(b) Distribution of values in 10 random
dimensions of w in SnGM

Figure 7.3: Distribution of the values in dimensions of iVector and T rows
for SnGM using BUT HU 3-grams.

−0.2 −0.1 0 0.1 0.2 0.3
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t

B
in

 o
c
c
u
ra

n
c
e

(a) Distribution of values in 10 random
rows of T in RSnGM.

−15 −10 −5 0 5 10 15
0

50

100

150

200

250

300

350

400

450

500

w

B
in

 o
c
c
u
ra

n
c
e

(b) Distribution of values in 10 random
dimensions of w in RSnGM.

Figure 7.4: Distribution of the values in dimensions of iVector and T rows
for RSnGM using BUT HU 3-grams.

108 Experiments

−10 −5 0 5
−15

−10

−5

0

5

10

15

Dim. 1

D
im

. 2

Amharic
Bengali
Farsi
German

Figure 7.5: Distribution of iVectors for first four NIST LRE09 languages
extracted with RSnGM using BUT HU 3-grams statistics. iVectors are
projected into 2-dimensional space using LDA.

Note that the threshold 10 for the frequency of the 3-grams is just an
ad hoc number. In fact, we did not observe any significant system degrada-
tion for using a frequency threshold of 20. Using the second rule, we also
filter histories that contain less that 5 3-grams after the first filter. We no-
ticed that such histories are also very low-frequent. By filtering low-frequent
3-grams, we also reduce the dimensionality of the 3-grams statistics which
alleviates computational and memory overhead of the model parameter es-
timation and iVector extraction. We shall mention that the filtering on
3-grams is applied both at the time of model parameter estimation and
iVector extraction. In other words, the filtered 3-grams are excluded from
3-gram statistics of all utterances in all sets.

Now, let us compare performance of our regularized subspace nGram
model with our previous phonotactic iVector models. Table 7.6 shows the
state-of-the-art results obtained from the subspace multinomial model (de-
noted as SMM) and the subspace n-gram model (denoted as SnGM). The
results are given for BLR and GLC language classifiers. We can see that we
get better result with SnGM compared to SMM in case of long utterances.
However, results degrade for the shorter conditions. To explore this behav-
ior, let us look at the values in model parameter T and w. Figure 7.3 shows
the distribution of the values for randomly chosen dimensions of iVectors
over the TRAIN set and 10 random rows of the T matrix. As Figure 7.3

7.8. Regularized subspace n-gram model 109

shows, the distribution of the values in the T matrix is very noisy. We can
also see large numbers for the w values. This implies that the model is still
trying to estimate the distribution of those low-frequent 3-grams by means
of weights (w) and basis (T). In other words model is overfitting to those
low-frequent 3-grams. Remember that the SnGM model is trying to model
utterance-specific n-gram probabilities. This means that during iVector ex-
traction and for the short utterances, we would have many low-frequent
3-grams. This pushes the weights (w) to produce large negative log likeli-
hoods that corresponds to those low-frequent 3-grams. In Section 4.5.7, we
effectively addressed the problem of model overfitting by means of regular-
ized model parameter estimation and iVector extraction using the filtered
3-grams statistics. Now, let us look at the distribution of values for the
subspace matrix T and weights w for the regularized SnGM (RSnGM). In
Figure 7.4, a histogram of 10 random dimensions of w over TRAIN set and
a histogram of 10 random rows of the matrix T are depicted. It is clear
that L2 regularization of both T and w has smoothed the distribution of
values in both T and w. It can be seen from Figure 7.4 that in case of w,
the values are close to Gaussian distributed which confirms assumption of
the Gaussian priors over w vectors. On the other hand, in the case of T
rows, values seem to be Laplace distributed. This is mainly because the
subspace matrix T is expanding the iVector space to the sparse original
space of n-gram log-probabilities. Intuitively, this suggests the use of an L1
regularizer that corresponds to the assumption of Laplace prior for the T
matrix. This is not done in this thesis and is suggested as a future work in
Section 8.2. The RSnGM can effectively deal with the overfitting problem
and we do get significant improvement over all conditions compared to the
other systems. We observe the same behavior by using GLC classifiers as
well. This is the best LID performance that is obtained for NIST LRE09
task using BUT HU.

The distributions of the iVectors are depicted in Figure 7.5 where the
600-dimensional iVectors from RSnGM are reduced to 2 dimensions using
LDA. Comparing Figure 7.5 with Figure 4.2 shows that iVectors are more
Gaussian-like distributed compared to PCA-transformed features. Note
that we used iVectors corresponding to the same first four languages in the
NIST LRE09 target language list to demonstrate the effect of our phonotac-
tic iVector extraction compared to PCA-transformed features. Distributions
of iVectors for all 23 languages in the NIST LRE09 target language list are
shown in Figure 7.6.

110 Experiments

−15 −10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

Dim. 1

D
im

. 2

Figure 7.6: Distribution of iVectors for all 23 NIST LRE09 languages ex-
tracted with RSnGM using BUT HU 3-grams statistics. iVectors are pro-
jected into 2-dimensional space using LDA.

Table 7.6: Cavg × 100 for different iVector feature extractions using BUT
HU over all conditions of NIST LRE09 EVAL set.

System Reg. Coef. 30s 10s 3s

SMM-BLR - 2.81 8.33 21.39
SMM-GLC - 2.92 8.03 21.13

SnGM-BLR - 2.68 8.63 23.15
SnGM-GLC - 2.94 8.79 21.98

RSnGM-BLR 0.01 2.52 7.06 19.11
RSnGM-GLC 0.01 2.68 7.46 19.45

7.9. iVectors for acoustic continuous features 111

Table 7.7: Cavg × 100 for different acoustic iVectors dimension using GLC
on NIST LRE09 Evaluation task over 30s, 10s and 3s conditions. Taken
from [46]

Dim.

Condition 200 300 400 500 600 700

3s 16.29 15.87 15.63 15.50 15.29 15.25
10s 5.55 5.25 5.11 4.90 4.76 4.79
30s 2.36 2.08 1.88 1.90 1.88 1.93

7.9 iVectors for acoustic continuous features

As we mentioned before, acoustic iVectors based on continuous features is
not the main focus of this thesis. Nevertheless, for comparison and fusion
of different systems, we trained the acoustic iVector extractor based on [29]
and [46]. We trained 2048 component GMMs with diagonal and full covari-
ance matrix as our UBM. Our recipe for acoustic iVector extraction is the
same as the one used in [46] where the effect of the iVectors’ dimension-
ality on system performance in terms of Cavg was studied. Their results
are shown in Table 7.7. It shows that higher iVector dimensionalities are
generally better. We can observe that as we increase the dimensionality,
improvement in performance is not consistent for all the conditions. How-
ever, the best dimensionality on NIST LRE09 task is 600. On the other
hand, training the iVectors extractor for a dimensionality higher than 400
has high memory and computational overhead. Since the performance loss
for dimensionality of 400 is not significant, we chose dimensionality 400 for
our iVectors. In accordance with [29], the iVector extractor is trained using
10 iterations of EM algorithm. Performances of our 400 dimensional iVec-
tors using GLC, BLR and MLR classifiers are shown in Table 7.8. Systems
are denoted as iVEC-GLC, iVEC-BLR and iVEC-MLR, respectively. For
the MLR, we used the same language classifiers as we used for the NIST
LRE11 which was explained in Section 7.12. The comparison shows that
the GLC classifiers are performing better than BLR and MLR. We also
tried training our GMM-UBM with full covariance to see how it affects the
LID performance. The results show that using the full covariance matrix
does not give a performance improvement over using a diagonal covariance

112 Experiments

Table 7.8: Effect BLR, MLR and GLC classifier over acoustic iVector using
diagonal and full covariance matrix in terms of Cavg × 100 on NIST LRE09
Evaluation task over 30s, 10s and 3s conditions.

System Cov. 30s 10s 3s

iVEC-GLC Diag 1.88 4.39 14.2
iVEC-GLC Full 1.92 4.5 14.36
iVEC-BLR Diag 2.08 4.61 14.56
iVEC-MLR Diag 1.83 4.5 14.36

matrix. It is also much slower to train the UBM with full covariance matrix.

7.10 iVectors for prosodic continuous features

The extraction and classification of the prosodic iVectors is very similar to
the acoustic iVectors. They only differ in the extraction of the frame-by-frame
continuous prosodic features. The first step is extraction of the prosodic fea-
tures (i.e. F0 and energy contour in our case). We use the Snack toolkit4

for this purpose. It uses the RAPT algorithm that was explained earlier
in Section 3.2. The pitch and energy values are then converted to the log
domain to simulate human perception. We also normalize the energy values
by subtracting the maximum energy in the corresponding utterance in the
log scale. This gives us more robustness against non-speech effects like chan-
nel variation. In the SID problem, we do not normalize the log F0 values
since they contain information about the speakers. However, in the case of
LID, we are interested only in the language information and therefore this
normalization at the utterance level helps. We normalize the log F0 value
by removing the mean over each utterance [45].

In [39], the authors showed that the best performance for SID is obtained
by defining the syllable boundaries based on the output of an LVCSR sys-
tem. However, running an LVCSR system for this purpose is expensive. It
also requires to know the identity of the language which, in fact, is our task.
The fixed-length segmentation was the second best choice in [39] and we
chose it. In [45], the author showed that 200ms (20 frames) segments with

4http://www.speech.kth.se/snack

7.10. iVectors for prosodic continuous features 113

Table 7.9: Cavg × 100 for prosodic systems on NIST LRE09 Evaluation
task over 30s, 10s and 3s conditions.

DEV EVAL

System 30s 10s 3s 30s 10s 3s

PRS-iVEC-GLC 9.25 16.11 25.41 16.98 23.73 32.95

50ms (5 frames) shift is a better choice for the LID problem. The authors
also showed that fixed segmentation of speech gives a better performance
compared to defining segment boundaries based on local minima of energy
contours. This is mainly because we generate more feature vectors and we
can provide more information to the GMM model. This helps particularly
for the languages with small amounts of training data. In this thesis, we
use a fixed length segmentation of 200ms (20 frames) with a shift of 50ms
(5 frames) for the consecutive segments.

In Section 3, we introduced F0 and energy contours as prosodic features.
Other prosodic features may also be considered. One can e.g. model formant
contours with the same curve fitting approach. That is not explored in this
work, though. In [20] it was proposed to include the number of voiced frames
in each segment as an extra dimension in the final feature vector. In this
work, we use a feature vector of length 13 comprising the first 6 Legendre
polynomial coefficients for F0 and energy contours plus the number of voiced
frames in corresponding segment.

The TRAIN, DEV and EVAL data setup is the same as NIST LRE09
data setup that was explained in Section 6.2.1. A UBM-GMM model is
trained over the 13-dimensional feature vectors. In [45], performance of
the different UBM sizes and iVector dimensionalities is studied. Based on
[45], we trained a 200-dimensional iVector extractor based on the sufficient
statistics extracted by a 2048 component GMM with the diagonal covariance
matrix. Results are given in Table 7.9. The results are consistent with
those reported in [45]. As we expected, prosodic LID system based on
prosodic iVectors performs worse than phonotactic and acoustic iVectors
(see Table 7.8 and Table 7.6). Nevertheless, we are interested to see whether
it improves the LID performance in the system fusion.

114 Experiments

7.11 System fusion

As we mentioned before, the main point of developing different LID systems
with different front-end is to exploit complementary informations that might
be presented in the different front-ends. Studying LID system fusions, gives
us useful clues on which system to focus on and how system fusion can
improve the overall LID system performance.

The experiments are conducted on LRE09 fusion explained in Section 5.4.1.
We use 200-dimensional prosodic iVectors as in Section 7.10 denoted by
PRS-GLC, 400-dimensional acoustic iVectors as in Section 7.9 denoted by
iVEC-GLC and phonotactic iVectors for BUT HU as in Section 7.8 denoted
by RSnGM-HU-GLC. In LRE09 fusion, the vectors of scores (vectors of
class log likelihoods in case of the GLC. See Section 5.4.1) from individual
classifiers are the input to the fusion module. To make sure that all re-
ported improvements are the result of having the different front-ends (not
the language classifiers), we use the the same language classifiers for all the
front-ends. Table 7.10 shows performances of each stand-alone system along
with all the possible system fusion combinations. The first conclusion is that
fusion of any two systems out of three is improving the overall LID perfor-
mance. The highest gain is obtained with fusion of the acoustic iVectors and
phonotactic iVectors. In the next step, we fused all the three systems. Even
though, fusion of the prosodic iVectors with iVectors extracted by either of
the other two iVector models improves the LID performance, the fusion of
all three systems is only slightly better than the fusion of the acoustic and
phonotactic iVectors and only for 3s condition.

For the next experiment, we use the best language classifier for each
iVector system and we do the same fusions. According to the results in
Tables 7.9, 7.8 and 7.6, GLC is the best choice for the acoustic and prosodic
features and BLR is the best for the phonotactic iVectors. Table 7.11 lists
performances of each stand alone system along with all possible systems
fusions.

Comparing Table 7.11 and Table 7.10 shows that not only the phono-
tactic system with BLR gives us better result than GLC classifier but also
its fusion with the prosodic system gives us slightly better improvement.
Fusion of all the three systems give us just slightly better results than the
fusion of the acoustic and phonotactic systems on 10s conditions. As we can
see from Table 7.11 and 7.10, most of the gain comes from fusing phono-
tactic and acoustic iVectors. Another conclusion is that even though BLR
language classifiers gives us the best performance for RSnGM system, it has
a marginal effect while fusing all three systems. We can see that fusion of

7.11. System fusion 115

Table 7.10: Cavg×100 for different system fusions of different LID systems
with the GLC classifiers on NIST LRE09 Evaluation task over 30s, 10s and
3s conditions.

System 30s 10s 3s

PRS-GLC 16.98 23.73 32.95
RSnGM-HU-GLC 2.68 7.46 19.45
iVEC-GLC 1.88 4.39 14.2

PRS-GLC + iVEC-GLC 1.89 4.08 13.16
RSnGM-HU-GLC + iVEC-GLC 1.56 3.29 11.75
PRS-GLC + RSnGM-HU-GLC 2.52 6.21 17.80

PRS-GLC + RSnGM-HU-GLC + iVEC-GLC 1.56 3.26 11.32

Table 7.11: Cavg×100 for different system fusions of different LID systems
with the best classifiers on NIST LRE09 Evaluation task over 30s, 10s and
3s conditions.

System 30s 10s 3s

PRS-iVEC-GLC 16.98 23.73 32.95
RSnGM-HU-BLR 2.52 7.06 19.11
iVEC-GLC 1.88 4.39 14.2

PRS-iVEC-GLC + iVEC-GLC 1.89 4.08 13.16
RSnGM-HU-LR + iVEC-GLC 1.51 3.24 11.71
PRS-iVEC-GLC + RSnGM-HU-BLR 2.44 6.05 17.52

PRS-iVEC-GLC + RSnGM-BHU-LR + iVEC-GLC 1.57 3.16 11.34

116 Experiments

Table 7.12: Cavg×100 for different phonotactic and acoustic iVector fusions
on NIST LRE09 Evaluation task over 30s, 10s and 3s conditions.

System 30s 10s 3s

SMM-HU-BLR 2.81 8.33 21.39
SnGM-HU-BLR 2.68 8.63 23.15
RSnGM-HU-BLR 2.52 7.06 19.11
iVEC-GLC 1.88 4.39 14.2

SMM-HU-BLR + iVEC-GLC 1.60 3.46 12.24
SnGM-HU-BLR + iVEC-GLC 1.54 3.45 12.46
RSnGM-HU-BLR + iVEC-GLC 1.51 3.24 11.71

all three systems in Table 7.11 and Table 7.10 is giving almost the same
results.

An interesting experiment is to study the fusion of the different phono-
tactic iVectors with acoustic iVectors. Table 7.12 shows results of fusing
our three phonotactic iVectors with acoustic iVectors. Results show that
the gradual improvement of the LID performance, coming from the differ-
ent phonotactic iVector extractions, is reflected in the system fusions as well.
In Table 7.6, we showed that SnGM performs better than SMM on the 30s
condition and it degrades for short conditions. We see the same behavior
in the system fusion as well. The fusion of SnGM and iVEC gives better
performance than the fusion of SMM and iVEC on 30s conditions. However,
it degrades for shorter conditions. After all, we can see that RSnGM gives
us the best fusion result as it does as the stand-alone phonotactic iVector
system.

As a conclusion, we can see again that the acoustic and phonotactic
iVectors have the highest effect on the overall system performance and after
fusion of these two, the prosodic system improves the performance just
marginally. During the time of writing this thesis, we came to the same
conclusion for other tasks (Robust Automatic Speech Transcription (RATS)
[48] and NIST LRE11 [12]) as well.

7.12. NIST LRE 2011 117

7.12 NIST LRE 2011

In this part, we report our system performances on NIST LRE11 evaluation
set. This comprises some of the systems that were part of the AGNITIO–
BUT–CRIM (ABC276) [12] submission to the NIST LRE11 evaluation along
with some complementary experiments.

7.12.1 Phonotactic systems

The NIST LRE11 is the most recent NIST LRE. As we mentioned in Sec-
tion 6.2.2, the evaluation metrics of NIST LRE11 is PER and is different
from the metrics used in all the other experiments. However, for any fu-
ture work, we considered it appropriate to compare the performance of our
systems in NIST LRE11. We built four phonotactic systems: phonotactic
iVectors (SnGM) and PCA-based feature extraction using BUT HU and
BUT RU 3-gram statistics. We shall mention that our results of the worst
24 language pairs are as evaluated by NIST at the time of the NIST LRE11
evaluation and since the RSnGM was proposed after the NIST LRE11, we
are not reporting results of RSnGM on the NIST LRE11.

The NIST LRE11 evaluation metric is an average of PER over the worst
24 language pairs (see Section 6.4.2). This makes the comparison task dif-
ficult since the worst 24 pairs may vary for different systems from different
labs. To make the comparison between systems more reasonable, we pro-
vide PER for the worst 24 and for all language pairs. We shall mention
that results on all language pairs are scored at BUT. NIST did not provide
results on all language pairs at the time of the NIST LRE11 evaluation.

Table 7.13 shows the result for the worst 24 language pairs and all
language pairs over the NIST LRE11 evaluation set for phonotactic sys-
tems [12]. All the phonotactic iVectors are centered to the TRAIN set
by removing the mean and length normalizing before scoring as explained
in Section 7.1. Table 7.13 shows that on the NIST worst 24 language
pairs, the SnGM model and the PCA-transformed features are perform-
ing similarly. The SnGM model is slightly better particularly on BUT RU.
Nevertheless, on all language pairs, the SMM model is outperforming the
PCA-transformed features. The improvement is more notable in the case of
BUT RU.

7.12.2 System fusion and submission

Table 7.14 shows results of different system fusions for phonotactic iVectors
using BUT HU phoneme recognizer, PCA-based features using BUT RU

118 Experiments

Table 7.13: PER% results for worst 24 and all language pairs over NIST
LRE11 EVAL set.

NIST24 ALL

System Dim. 30s 10s 3s 30s 10s 3s

PCA-HU 1000 16.12 25.03 35.99 4.16 10.34 23.92
PCA-RU 1000 14.69 24.16 34.96 3.99 10.34 22.74

SnGM-HU 600 16.45 24.96 35.89 3.91 10.09 23.90
SnGM-RU 600 14.67 22.83 34.06 3.13 8.26 21.91

Table 7.14: Fusion results in PER% for worst 24 and all language pairs over
NIST LRE11 EVAL set.

NIST24 ALL

System Dim. 30s 10s 3s 30s 10s 3s

SMM-HU+PCA-RU 1000, 1000 12.2 19.2 30.86 2.61 6.92 18.62
SMM-HU+iVEC 600, 600 8.82 15.88 26.91 1.59 4.26 13.44
PCA-RU+iVEC 1000, 600 8.69 15.18 25.53 1.47 4.07 13.17
SMM-HU+PCA-RU+iVEC 600, 1000, 600 8.47 14.84 25.68 1.46 3.81 12.67

7.12. NIST LRE 2011 119

Figure 7.7: Analysis of the phonotactic iVectors from BUT HU 3-grams
(red), PCA-features from BUT RU 3-grams(yellow) and acoustic iVectors
(blue) systems over the NIST LRE11 worst 24 language pairs condition by
means of PER. See Table 6.5 for abbreviations.

phoneme recognizer and acoustic iVectors. All the results are obtained with
score fusion as explained before.

The results show that for both the NIST worst 24 language pairs and
all language pairs, all systems are carrying complementary information and
are useful to be included in the fusion. The improvement is more significant
when acoustic iVectors are fused with phonotactic systems.

During the last few years, especially since the proposal of iVectors,
acoustic LID has benefited from different subspace modeling solutions pro-
posed in SID and acoustic LID based on the iVector model became the
state-of-the-art LID solution. During ICASSP 2011 in Prague, Douglas
Reynolds raised a question: why are we still working on phonotactic LID?
The same question was asked during the NIST LRE11 workshop by George
Doddington. Those questions made us to make a finer result analysis to see
how effective the phonotactic systems are. Figure 7.7 shows performance of
the three systems separately over the worst 24 language pairs.

We shall mention that for these particular experiments, we can not con-
clude superiority of phonotactic iVectors over PCA or the other way around
since they are using different features. The findings from Figure 7.7 are as
follows:

I) PCA-RU provides better scores for 19 language pairs compared to

120 Experiments

iVEC.

II) SnGM-HU provides better scores for 9 language pairs compared to
iVEC.

III) For 5 language pairs, shown in red arrows, both PCA-RU and SnGM-HU
are better than acoustic iVectors, iVEC.

The results are difficult to interpret. A first comparison with the sizes
of data (see Table 6.8) would suggest that phonotactic systems outperform
the acoustic system in cases with little training data. e.g. the SnGM model
using BUT RU 3-grams produces 62% smaller PER for the (Hindi,Tamil)
language pair than the acoustic iVector system. This, however, is not valid
for the (Ukrainian,Russian) pair with abundant data. We might also suspect
the correctness of data labeling. For example, Ukrainian is very similar to
Russian for east Ukrainian speakers and the performance might depend
heavily on the region in which the speakers were sampled. Similar cases are
likely to occur in other language pairs. Also, we cannot rule out over-training
of the acoustic system on a particular transmission channel (especially for
Indian and Pakistani languages): in this case, phonotactic systems should
provide better performance.

7.13 RATS

RATS is the most recent and challenging language recognition evaluation
that addresses language recognition in highly degraded, weak and/or noisy
communication channels. We shall mention that the real evaluation data for
RATS are not disclosed to the participants. However, the DEV2 set which
was delivered to participants, was already transmitted through a similar
channels as the real evaluation data by LDC. Here, we provide results of
our phonotactic iVectors models and PCA-based feature extraction on the
DEV2 set of the RATS language evaluation to show the performance of our
systems in noisy channel conditions. Note that, due to the adverse channel
conditions, we may observe different behavior from our systems than those
we reported on NIST LREs. We shall mention that we are not describing the
RATS evaluation in detail in this thesis. Nevertheless, we briefly explain our
systems and evaluation conditions that helps the reader to compare results
of the phonotactic and acoustic iVectors with those described for NIST
LREs. We refer the interested readers to the corresponding references.

Since we are dealing with different kind of channels and noise in RATS,
a new VAD is trained to model noisy and non-speech effects of the channels

7.13. RATS 121

(e.g. non-transmission noise in walkie talkie) that does not exist in NIST
LREs data. The development of the VAD is fully explained in [57]. All the
data are sent through this VAD before any other data processing. Only the
speech parts of the recordings are used by the following LID systems.

The phonotactic systems are trained using two phoneme recognizers: a
Czech (CZ) phoneme recognizer was trained in the same way as explained in
Section 4.2 with the difference that 30% of the phoneme recognizer training
data was corrupted artificially with a noise at 10dB. An Arabic phoneme
recognizer was trained on Levantine (LE) Arabic data labeled by LDC. The
LE Arabic phoneme recognizer is trained in the same way as explained in
Section 4.2. Nevertheless, unlike the CZ phoneme recognizer that is trained
on artificially corrupted data, the training data for LE Arabic phoneme
recognizer was sent through similar transmission channels as the evaluation
data. In other words, the LE Arabic phoneme recognizer is trained using
more realistic noisy data. We get 3−gram statistics from the CZ and LE
Arabic phoneme recognizers in the same way as described in Section 4.7.
The PCA-based feature extraction, SnGM and RSnGM are developed as
described in in Section 4.4, Section 4.5.6 and Section 4.5.7, respectively.

In order to study system performances in fusion as well as the stand-alone
systems, we use acoustic iVectors that were generated at the time of the
RATS evaluation. To generate the acoustic iVectors, the audio files are pro-
cessed with a Wiener filter from the Qualcom-ICSI-OGI Aurora front-end
[14]. The acoustic system uses the SDC feature extraction. After discard-
ing silence frames, every 10ms speech frame is mapped to a 56-dimensional
feature vector. The feature vector is the concatenation of an SDC-7-1-3-7
vector and 7 MFCC coefficients (including C0). Cepstral mean and vari-
ance normalization, as well as RASTA filtering are applied before SDC. The
recipe used to generate the acoustic iVectors is the same as we described in
Section 2.

All systems are scored using multi-class logistic regression (MLR) as
explained in Section 5.2.3. The generated scores are calibrated and fused
using the DEV set based on the calibration and fusion plan explained in
Section 5.4.2.

Table 7.15 shows results of phonotactic systems (PCA, SnGM, RSnGM)
along with the acoustic iVector system (IVEC). As we mentioned before,
the CZ phoneme recognizer is trained on artificially corrupted data. Using
the CZ phoneme recognizer, the PCA system performs better than both of
SnGM and RSnGM on the long conditions (120s and 30s). The PCA system
is even better than IVEC on 120s condition. The RSnGM model performs
better on short conditions (10s and 3s). After all, we can see that, except

122 Experiments

Table 7.15: Cavg×100 for PCA-based, SnGM, RSnGM and acoustic iVector
and their fusions on RATS DEV2 language recognition task over 120s, 30s,
10s and 3s conditions.

System Dimension Phn. Rec. 120s 30s 10s 3s

PCA 1000 CZ 8.36 15.75 21.20 28.27
SnGM 600 CZ 10.19 16.66 22.13 30.70
RSnGM 600 CZ 9.92 15.76 20.55 27.52

PCA 1000 LE 6.45 12.76 19.70 30.04
SnGM 600 LE 6.67 12.69 20.30 29.19
RSnGM 600 LE 5.86 12.27 16.41 26.45

IVEC 600 - 9.00 13.71 18.32 23.43

PCA+IVEC 1000 CZ, - 7.25 11.64 15.56 21.53
SnGM+IVEC 600 CZ, - 8.20 12.06 16.12 20.77
RSnGM+IVEC 600 CZ, - 7.71 11.78 15.70 20.72

PCA+IVEC 1000 LE, - 6.37 10.29 14.16 21.98
SnGM+IVEC 600 LE, - 7.84 10.53 14.90 21.40
RSnGM+IVEC 600 LE, - 6.78 10.35 14.83 20.90

7.13. RATS 123

for the 120s condition, the performance of the PCA and RSnGM are very
similar.

In case of the LE phoneme recognizer, the RSnGM is consistently out-
performing PCA in all conditions. The SnGM is also better than PCA for
30s and 3s conditions. We believe that we can trust results obtained using
the LE phoneme recognizer better than the CZ phoneme recognizer since it
is trained on more realistic noisy data. In general, all systems based on LE
phoneme recognizer are performing significantly better than those based on
CZ phoneme recognizer.

The acoustic iVectors (denoted as IVEC) is known as the state-of-the-art
stand-alone system. It has the main advantage of performing well even on
the short conditions. Based on our results in Table 7.15, the IVEC system
performs better than all the phonotactic systems based on CZ phoneme
recognizer. However, in case of the LE phoneme recognizer, the RSnGM
performs consistently better than IVEC system over all conditions except
3s condition. The improvement is more significant for longer conditions as
we get more than 40% relative improvement for Cavg on 120s condition.

The last two sections of Table 7.15 shows the results for the fusion of
IVEC with all the phonotactic systems. In case of the phonotactic sys-
tems based on the CZ phoneme recognizer, the PCA system fuses better
than RSnGM as it was performing marginally better as the stand-alone sys-
tem compared to RSnGM. In case of the LE phoneme recognizer, however,
results are surprising! We see that, as stand-alone systems, the RSnGM
performs better than IVEC on almost all conditions and SnGM performs
better than IVEC on 120s and 30s conditions. Fusion of IVEC and RSnGM
degrades the results of stand-alone RSnGM on 120s condition. This is be-
cause we do duration independent calibration. On the other conditions,
the fusion helps. Even though RSnGM performs significantly better than
PCA as the stand-alone system, fusion with the PCA system gives us better
performance than the fusion with RSnGM.

Chapter 8

Conclusion

During the last decade, solutions for LID have evolved a lot. Before sub-
space modeling of the GMM means was introduced, phonotactic approaches
were the state-of-the-art solutions for LID problem. The subspace model-
ing has revolutionized SID and LID for the last five years and has become
the state-of-the-art modeling technique in the SID and LID community.
The main goal for this thesis was to transfer the idea of subspace modeling
from GMM to n-gram model. To do so, we proposed a subspace modeling
framework for discrete n-gram probabilities so that we can represent the
utterance-dependent n-gram probabilities with a low-dimensional phonotac-
tic iVector. This low-dimensional representation of the utterance-dependent
n-gram probabilities can help us to achieve a better modeling of interses-
sion and intra-session variability which can improve performance of a LID
system.

8.1 Conclusion and summary

We started this thesis by describing subspace modeling of the GMM means.
We referred to this model as the iVector model for continuous features since
it deals with parameters of the continuous distribution (GMM means). We
explained advantages of the GMM means subspace modeling compared to
the previous language specific GMM training and GMM adaption tech-
niques. Following that and based on the published recipes, we explained
training of our iVector extractor for continuous features in Section 2.4.
This model is then used to extract acoustic iVectors using SDC features
for acoustic LID. Using the extracted acoustic iVectors, we could achieve
similar state-of-the-art acoustic LID performance to reported results for the
same NIST tasks (see Section7.9).

125

126 Conclusion

In Chapter 3, modeling of the prosodic features for LID was described.
Estimation of the pitch and energy contours by means of Legendre poly-
nomials were explained. This way, contours of the prosodic features are
represented in terms of weights of a fixed number of Legendre polynomials.
This can be also seen as a dimensionality reduction of the prosodic features
through which variable-length prosodic features are represented by fixed
number of coefficients for Legendre polynomials. This fixed length vector of
coefficients is then used as an input feature for the iVector model for con-
tinuous features as explained in Section 2.4. Using the extracted prosodic
iVectors, we achieved state-of-the-art results published for the prosodic iVec-
tors (see Section 7.10).

As it was claimed in the objectives of this thesis, enhancing state-of-the-art
phonotactic LID and proposing subspace modeling techniques inspired by
the iVector model for continuous features formed our main inspiration to
do this thesis. In Section 4.1.1, we described why a latent channel factor
interferes with the assumption of the GMM training and how the iVector
model for continuous features addresses this problem by separate modeling
of inter-session and intra-session variabilities. In the next step, we explained
how a similar problem in the language specific n-gram language models can
be addressed by proposing iVector model for discrete features. Relation
between n-gram probabilities and a multinomial distribution is discussed in
Section 4.5.1 and then our proposed subspace multinomial model (SMM) for
extracting iVector from discrete features is described in Section 4.5.2. In the
next step, we enhanced the SMM to be consistent with the n-gram language
model assumption and we proposed the subspace n-gram model for extrac-
tion of the phonotactic iVectors in Section 4.5.6. Finally, a regularized sub-
space n-gram model for robust phonotactic iVector extraction is proposed
in Section 4.5.6.

In order to compare the performance of our iVector extractor model
for discrete features with the previous state-of-the-art phonotactic and also
other iVector based LID systems (i.e. acoustic and prosodic iVectors based
on iVectors for continuous features), we set up our baselines based on the
state-of-the-art phonotactic LID system reported in [17] using full n-gram
statistics (referred to as FULL) and PCA-transformed n-gram statistics (re-
ferred to as PCA) as explained in Section 4.4. We could replicate the per-
formance as was reported in the literature (see Section 7.4).

We can improve the performance of an LID system by enhancing the
front-ends or the back-ends. Many different LID system comparisons with
different settings are given in Chapter 7. We showed that by using the same
back-end, phonotactic iVectors extracted using SMM slightly outperforms

8.1. Conclusion and summary 127

the PCA and the FULL system on NIST LRE09 task. Our experiments
showed that the use of logistic regression instead of support vector machines
for generating language scores prior to the calibration and fusion of the
scores, gives us a notable LID performance improvement (see Section 7.4).
We also showed the effect of the feature vector normalization of the feature
vectors produced by PCA-transformed n-gram statistics or SMM on the
overall LID performance (see Section 7.1).

Since the LID is, in principle, a multi-class classification, we compared
multi-class formulations of the logistic regression and SVM for producing
language scores with binary classifiers in Section 7.5. Our conclusion is
that, as long as we keep two layers of classifiers in our back-end (i.e. a first
layer to generate class scores and a second layer for score calibration), the
choice of binary or multi-class classifiers in the first layer does not have a
significant effect on the LID performance.

The performance of the the SnGM was compared to both the baselines
and to SMM in Section 7.8. We observed that SnGM is very sensitive to data
sparsity and tries to generate rare n-gram probabilities which results in poor
system performance on held out iVectors extracted from short observations.
The RSnGM along with hard pruning of the rare n-gram statistics showed
significant improvement in the performance of the phonotactic iVectors. The
RSnGM outperformed the state-of-the-art baseline consistently up to 30%
on all conditions. Table 8.1 summarizes performances of the baselines and
different iVector extraction models on NIST LRE09.

Another objective of this thesis was to obtain Gaussian-like distributed
phonotactic iVectors. This way, we could use simple Gaussian classifiers
instead of the fancy support vector machines or logistic regression to gen-
erate language scores. It was already shown that a Gaussian linear classi-
fier (GLC) produces better language scores in case of the acoustic iVectors
extracted by the iVector model for continuous features [46]. In the case
of the phonotactic iVectors, the GLC produces better language scores for
the short conditions and worse language scores for the long conditions of
the NIST LRE09 (see Section 7.5). Our conclusion is that, in general,
GLC performs similar to the logistic regression on the reported tasks. An
interesting observation is that the GLC fails to produce good language
scores for the PCA-transformed n-grams and we get relatively poor LID
system performance. We believe this is due to the distribution of the
PCA-transformed n-gram statistics. A graphical description of the distribu-
tion of the values for phonotactic iVector from SnGM and PCA-transformed
n-gram statistics from Chapter 4.1.1 are replicated in Figure8.1 for conve-
nience. As we can see, iVector values are more Gaussian-like distributed

128 Conclusion

than PCA-transformed n-gram statistics.

During this thesis, we were also interested to study effect of different
LID system fusions on the LID performance. Normally fusion of the sys-
tems that are exploiting different information sources, results in providing
complementary information to the calibration and fusion module and can
improve the overall LID performance. A simple fusion plan on the iVector
level was described in Section 7.6. Two different score level fusion plans
that are used during this thesis were also described in Section 5.4.1 and
Section 5.4.2. We showed that iVector level fusion can also improve the
LID performance as well as the score level fusion. However, score level
fusion seems to produce slightly better LID performance on the reported
task. Different combinations of the phonotactic, acoustic and prosodic LID
systems fusions are reported in Section 7.11. An interesting observation
is that fusing phonotactic LID systems based on phonotactic iVectors and
PCA-transformed n-grams using n-gram statistics obtained from the same
phoneme recognizers still improves system performance up to 10%. Fusion
of the acoustic and phonotactic iVectors have the main contribution to the
overall system performance.

To observe the performance of the proposed phonotactic iVector extrac-
tion models on other tasks, similar systems were developed for NIST LRE11
and RATS tasks. Our analysis on the individual system performance of
NIST LRE11 task shows that even though acoustic iVectors are considered
to be the-state-of-the-art stand-alone system for the LID tasks, it does not
always provide the best language likelihoods and to get the best system
performance it is necessary to fuse phonotactic iVector systems along with
the acoustic iVectors. We also studied performance of our phonotactic iVec-
tor models for the most recent challenging LID task RATS in Section 7.11.
Since RATS data is very different from NIST LREs data, it is hard to make
a conclusion based on comparing the system performances on NIST and
RATS tasks. Nevertheless, results in Section 7.13 shows effectiveness of
the phonotactic iVector systems which in some cases outperform even the
acoustic iVectors on the RATS task.

8.2 Future work

As we mentioned in Section 4.5.6, calculation of posterior distribution for
w is intractable in the case of SnGM, which makes it difficult to treat w
as a latent variable in the fully Bayesian way as is the case for iVectors for
continuous features. Instead, SnGM parameters are updated using only w
point estimates, which can negatively affect the robustness of SnGM param-

8.2. Future work 129

−8 −6 −4 −2 0 2 4 6
−10

−5

0

5

10

15

Dim 1

D
im

 2

 Amharic
Bengali
Farsi
German

(a) Distribution of PCA transformed 3-
gram statistics.

−10 −5 0 5
−15

−10

−5

0

5

10

15

Dim. 1

D
im

.
2

Amharic
Bengali
Farsi
German

(b) Distribution of iVectors extracted
with RSnGM.

Figure 8.1: Distribution of phonotactic iVectors and PCA transformed 3-
gram statistics using BUT HU for the first four NIST LRE09 languages.

Table 8.1: The Cavg × 100 for PCA-transformed 3-grams and phonotactic
iVectors form BUT HU with BSVM and BLR classifiers on NIST LRE09
EVAL set.

System Dimension 30s 10s 3s

FULL-BSVM 35937 3.08 8.4 21.06
PCA-BSVM 35937→600 3.62 8.89 21.09
PCA-BLR 35937→600 2.93 8.29 22.60

SMM-BSVM 35937→600 3.25 9.47 23.59
SMM-BLR 35937→600 3.05 8.10 21.39

RSnGM-BLR 35937→600 2.52 7.06 19.11

130 Conclusion

eter estimation. To mitigate this problem, we propose to regularize the ML
objective function using L2 regularization terms for both the subspace ma-
trix T and the vectors w (see Section 4.5.7). This corresponds to imposing
an isotropic Gaussian prior on both the SnGM parameters T and w, and
obtaining MAP rather than ML point estimates. In Figure 7.4, we showed
that iVectors are Gaussian-like distributed that confirms L2 regularization
of w. However, the distribution of values of the model parameter T looks
to be close to Laplacian. On the other hand, we know that T is expanding
the low-dimensional latent variable subspace to the original space of n-gram
log likelihoods and as a result, it is an extremely sparse matrix. A more
mathematically consistent regularization would be to apply constrained L1
regularizer on T and L2 regularizer on w. This modification may improve
the performance of our phonotactic LID even further.

Training of the iVector extractor (i.e. iVector model hyperparameter
T) is normally the most computational expensive part of the iVector model
training in both the iVector model for discrete features and the iVector
model for continuous features. In the case of the iVector model for con-
tinuous features, many different optimization enhancement are proposed by
the researcher to reduce computational and memory overhead of the iVec-
tor model training [11][29][84]. In the case of iVector model for discrete
features, however, the numerical optimization part has not been studied as
well as the iVector model for continuous features. We believe that there
are rooms for improvement in this part of the iVector model for discrete
features particularly since it is using a different mathematics compared to
the iVector model for continuous features.

The proposed multinomial subspace modeling of the discrete features
can be adapted for other purposes as well. An interesting extension of
this work is to use this model as an adaptation model rather than feature
extraction model. Such application is proposed in [4] for decomposition and
adaptation of the GMM weights.

We believe that the proposed iVector model based on the discrete fea-
tures could be used in other problems as well. An interesting potential ap-
plication of this model could be in text classification using n-gram statistics
collected over words. Since number of the words in a language is much more
than the number of characters, application of this model would require more
complicated filtering of the n-gram statistics.

Appendix A

Derivation of a Subspace
Multinomial Model

Here, we will explain the derivation of the formula used in Chapter 4.5
for numerical optimization of the multinomial subspace model parameters
estimation. For the sake of the simplicity, we consider the case of having one
multinomial distribution. Assuming that all phoneme labels are drawn from
a single multinomial distribution, we can write the likelihood of a sequence
of phonemes on corresponding to the nth utterance according to the unigram
model as:

P (on) =

E∏
e=1

φνen
en , (A.1)

where E is the total number of the multinomial probabilities (i.e. unigram
probabilities in our case), φen is an utterance-dependent probability of the
unigram e, e = 1...E and νen is the number of occurrences of the phoneme
e in the observation on. Taking the logarithm of the (A.1), we get

logP (on) =
E∑

e=1

νen log φen. (A.2)

Representing the logarithm of the φne in the iVector form and normalize
it in a softmax style, we can rewrite the Equation A.2 as:

logP (on) =
E∑

e=1

νen log φen =
E∑

e=1

νen log
exp(me + tiwn)∑E
j=1 exp(mj + tjwn)

(A.3)

131

132 Derivation of a Subspace Multinomial Model

where me is a language-independent log probability of e estimated over all
the training data, te is the e

th row of the low-rank subspace matrixT andwn

is the corresponding latent variable for the utterance n. The model param-
eter are T and m that should be estimated along with utterance-dependent
latent variable wn (one w for each utterance in the TRAIN set). We cal-
culate the m in advance and keep it fixed during estimation of the other
parameters as:

me = log(

∑N
n=1 νne∑E

j=1

∑N
n=1 νnj

), (A.4)

First, we show how to estimate w with a fixed T. To present our objec-
tive function for the parameters estimation, we modify the objective function
in (A.2). In the following, we first explain the modification of (A.2) and
corresponding derivatives for estimating wn and then for T. We can rewrite
(A.2) as

logP (on|T,w) =k +
∑
e

νe[tewn − log
∑
i

exp(mi + tiwn)], (A.5)

where k is a constant part that depends neither on T nor on wn. Now,
we can use the inequality 1 − x/x̄ ≤ − log(x/x̄) that holds for any x̄ and
is an equality at x = x̄, to remove the logarithm from (A.5). As a con-
sequence, we will be able to treat wn independently. Considering x to be∑

hi exp(mhi + thiwn), we can write:

logP (on|T,w) =

k +
∑
e

νe[tewn − log
∑
i

exp(mi + tiwn)]

= k +
∑
e

νe[tewn − log

∑
i exp(mi + tiwn)∑
i exp(mi + tiw̄n)

− log
∑
i

exp(mi + tiw̄n)]

≥ k +
∑
e

νe[tewn + 1−
∑

i exp(mi + tiwn)∑
i exp(mi + tiw̄n)

− log
∑
i

exp(mi + tiw̄n)],

(A.6)

where w̄n can be any chosen vector. Including all the terms independent of
wn into k′, we introduce auxiliary function Q:

Q = k′ +
∑
e

νe[tewn −
∑

i exp(me + tewn)∑
j exp(mj + tjw̄n)

], (A.7)

133

The auxiliary function Q is a lower bound for the likelihood function in
(A.5) that touches the objective function in (A.5) for wn = w̄n. Therefor,
setting w̄n to the current estimate of wn and choosing a new wn that
improves the auxiliary function in (A.7) guarantees to improve the likelihood
function (A.5) as well. We estimate wn iteratively where in each iteration
we set w̄n to the current value of wn and we find a wn that maximizes
(A.7). Unfortunately, (A.7) can not be maximized analytically. Therefor,
we resort to Newton-Raphson-like iterative estimation:

wnew
n = wold

n + (
∂2Q

∂w2
n︸ ︷︷ ︸

Hn

)−1(
∂QT

∂wn︸ ︷︷ ︸
∇n

) = wold
n +H−1

n ∇n, (A.8)

where,

n is the first derivative of the objective function in (A.7) with
respect to the nth utterance and Hn is the second derivative of the objective
function in (A.7) with respect to wn. The ∇n is obtained as:

∇ =
∂QT

∂wn

=
∑
e

νe

[
te −

∑
i ti exp(mi + tiwn)∑
i exp(mi + tiw̄n)

]

=
∑
e

νete −
∑
e

νe

∑
i ti exp(mi + tiwn)∑
i exp(mi + tiw̄n)

=

=
∑
e

νete −
∑

i te exp(me + tewn)∑
i exp(mi + tiw̄n)

∑
i

νi

=
∑
e

te

[
νe − exp(me + tewn)∑

i exp(mi + tiw̄n)

]∑
i

νi

=
∑
e

te [νe − φen]
∑
i

νi

(A.9)

Calculating the ∇n at w̄n results in:

∇n =
∂QT

∂wn|w̄n

=
∑
e

te

[
νe − φold

en

]∑
i

νi (A.10)

Taking the second derivative of the objective function in (4.19) gives us
the equation for H as:

134 Derivation of a Subspace Multinomial Model

Hn =
∂2Q

∂w2
n

=
∑
e

te

[
− te exp(me + tewn)∑

i ti exp(mi + tiw̄n)

]∑
i

νi (A.11)

Calculating the Hn at w̄n results in:

Hn =
∂2Q

∂wn
2|w̄n

= −
∑
e

tet
T
e φ

old
en

∑
i

νi (A.12)

After each update in (A.8), we calculate the objective function in (A.7).
In case it has increased compared to its value before the update, we accept
the update otherwise we keep halving the update step until it results in
a higher value of the objective function in (A.7). In this thesis, in case
this procedure does not result in higher value in (A.7) after 10 halving,
we retain the previous value of wn. Unfortunately this approach does not
seem to be stable and it often becomes necessary to halve the step size
many times. The same problem was mentioned in [60]. We used the same
solution as was proposed in [60]. The following equation is used to obtain
an approximate but more stable estimate of the Hessian Hn:

H̄n =
∑
e

tTe temax(νne, φ
old
ne

E∑
i=1

νni). (A.13)

Applying similar modification to the likelihood function in (A.2) to ob-
tain (A.7), we can write the auxiliary function for estimation of the model
parameter T as:

Q′ = k′ +
∑
n

∑
e

νe[tewn −
∑

i exp(mi + tiwn)∑
j exp(mj + t̄jwn)

], (A.14)

We use following Newton Raphson-like updates for estimation of the T:

tnewe = tolde + (
∂2Q′

∂t2e︸ ︷︷ ︸
He

)−1(
∂Q′T

∂te︸ ︷︷ ︸
∇e

) = tolde +H−1
e ∇e, (A.15)

Taking the first derivative of (A.16) gives us the ∇e as:

135

∇e =
∂Q′T

∂te

=
∑
n

[
νewn − exp(me + tewn)wn∑

i exp(mi + t̄iwn)

∑
e

νe

]

=
∑
n

[
νe − exp(me + tewn)∑

i exp(mi + t̄iwn)

∑
e

νe

]
wT

n

=
∑
n

[
νe − φne

∑
e

νe

]
wT

n

(A.16)

Calculating the ∇e at t̄e results in:

∇e =
∂QT

∂te|t̄e
=

∑
n

[
νe − φold

ne

∑
e

νe

]
wT

n (A.17)

Taking the second derivative of (A.16) gives us the He as:

He =
∂2Q

∂t2e

=
∑
n

[
νe − exp(me + tewn)∑

i exp(mi + t̄iwn)

∑
e

νe

]
wT

n

= −
∑
n

[
exp(me + tewn)wn∑

i exp(mi + t̄iwn)

∑
e

νe

]
wT

n

(A.18)

Calculating the He at t̄e results in:

He =
∂2Q

∂t2e|t̄e
= −

∑
n

[
φold
nc

∑
e

νe

]
wwT

n (A.19)

Similar to (A.13), following equation is used in case of He

He =
N∑

n=1

max(νnc,φφφ
old
nc

E∑
e=1

νne)w
T
nwn. (A.20)

Appendix B

HU mapping table

Table B.1 shows mapping of the long and short phonemes to the same
phoneme for the BUT Hungarian phoneme recognizer.

137

138 HU mapping table

Table B.1: HU mapping table from 61 phonemes to 33.
:2 :2
A:
b: b
d: d:: d
dz
e:
E
f
g
h1 h
i: i
j: j
J: J
k: k
l: l
F m: m
n: N n
o: o
O
p
r: r
s: s
</s> <s> pau
S: S
t: t1 t1: t
ts: tS tS: ts
u: u
v
x
y: y
z:
z
Z

Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical
functions: with formulas, graphs, and mathematical tables. Courier
Dover Publications, 2012.

[2] Alan Agresti. An introduction to categorical data analysis, volume 423.
John Wiley & Sons, 2007.

[3] International Phonetic Association. Handbook of the International Pho-
netic Association: A guide to the use of the International Phonetic
Alphabet. Cambridge University Press, 1999.

[4] Mohammad Hassan Bahari, Najim Dehak, and Hugo Van hamme.
Gaussian Mixture Model Weight Supervector Decomposition and
Adaptation. Technical report, MIT Computer Science and Artificial
Intelligence Laboratory (CSAIL), Cambridge, MA, USA, 2013.

[5] K. Bartkova, D.L. Gac, D. Charlet, and D. Jouvet. Prosodic parameter
for speaker identification. In Proceedings of Interspeech, 2002.

[6] Jerome R Bellegarda. Exploiting latent semantic information in sta-
tistical language modeling. Proceedings of the IEEE, 88(8):1279–1296,
2000.

[7] K.M. Berkling, T. Arai, and E. Barnard. Analysis of phoneme-based
features for language identification. In Proceedings of ICASSP, pages
289–292, 1994.

[8] CM Bishop. Pattern recognition and machine learning. Springer, 2006.

[9] N. Brümmer. The EM algorithm and minimum divergence. Technical
report, Agnitio Labs Technical Report. Online: http://niko. brummer.
googlepages. com/EMandMINDIV. pdf, 2009.

1

2 Bibliography

[10] N Brümmer, A Strasheim, V Hubeika, P Matejka, L Burget, and
O Glembek. Discriminative Acoustic Language Recognition via
Channel-Compensated GMM Statistics. Proceedings of Interspeech,
2009.

[11] Niko Brummer. Measuring, refining and calibrating speaker and lan-
guage information extracted from speech. PhD thesis, Stellenbosch:
University of Stellenbosch, 2010.

[12] Niko Brümmer, Sandro Cumani, Ondřej Glembek, Martin Karafiát,
Pavel Matějka, Jan Pešán, Oldřich Plchot, Mehdi Soufifar, Edward Vil-
liers de, and Jan Černocký. Description and analysis of the Brno276
system for LRE2011. In Proceedings of Odyssey: The Speaker and
Language Recognition Workshop, pages 216–223, Singapur, SG, 2012.

[13] L Burget, P Matejka, P Schwarz, O Glembek, and J Cernocky. Analysis
of Feature Extraction and Channel Compensation in a GMM Speaker
Recognition System. IEEE Transaction on Audio, Speech, and Lan-
guage Processing, 15(7):pp. 1979–1986, 2007.

[14] Lukáš Burget, Stephane Dupont, Harinath Garudadri, Frantǐsek Grézl,
Hynek Heřmanský, Pratibha Jain, Sachin Kajarekar, and Nelson Mor-
gan. QUALCOMM-ICSI-OGI Features for ASR. In Proceedings of
7th International Conference on Spoken Language Processing, page 4.
International Speech Communication Association, 2002.

[15] Lukas Burget, Pavel Matejka, and Jan Cernocky. Discriminative train-
ing techniques for acoustic language identification. In Proceedings of
ICASSP, Toulous, France, volume 1, pages I–I. IEEE, 2006.

[16] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, and P. A.
Torres-carrasquillo. Support vector machines for speaker and language
recognition. Computer Speech and Language, 20:210–229, 2006.

[17] W.M. Campbell, F. Richardson, and D.A. Reynolds. Language Recog-
nition with Word Lattices and Support Vector Machines. In Proceedings
of ICASSP, 2007.

[18] Fabio Castaldo, Daniele Colibro, Emanuele Dalmasso, Pietro Laface,
and Claudio Vair. Compensation of Nuisance Factors for Speaker and
Language Recognition. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, VOL. 15(NO. 7):1969–1978, 2007.

Bibliography 3

[19] Steven Davis and Paul Mermelstein. Comparison of Parametric Repre-
sentations for Monosyllabic Word Recognition in Continuously Spoken
Sentences. IEEE Transaction on Acoustic, Speech and Signal Process-
ing, 28(pp. 1–4):pp. 357–366, Jul 1980.

[20] N Dehak, P Dumouchel, and P Kenny. Modeling Prosodic Features
With Joint Factor Analysis for Speaker Verification. IEEE Transaction
on Audio, Speech, and Language Processing, Jan 2007.

[21] Najim Dehak, Patrick Kenny, R eda Dehak, Pierre Dumouchel, and
Pierre Ouellet. Front-End Factor Analysis for Speaker Verification.
IEEE Transaction on Audio, Speech and Language Processing, pages
pp. 1–23, Jul 2009.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, series b, 39(1):1–38., 39(1):1–38, 1977.

[23] L. Ferrer et al. Statistical modeling of heterogeneous features for speech
processing tasks. PhD thesis, 2009.

[24] R Fletcher. Practical Methods of Optimization. Wiley, second edition,
2000.

[25] M.J.F. Gales. Cluster adaptive training of hidden Markov models.
IEEE Transaction on Speech and Audio Processing, 8(4):417–428, july
2000.

[26] Daniel Garcia-Romero. Robust Speaker Recognition based on Latent
Variable Models. PhD thesis, University of Maryland, 2012.

[27] Daniel Garcia-Romero and Carol Y Espy-Wilson. Analysis of i-vector
Length Normalization in Speaker Recognition Systems. In Proceedings
of Interspeech, pages 249–252, 2011.

[28] J.L. Gauvain, A. Messaoudi, and H. Schwenk. Language recognition
using phone lattices. In Proceedings of ICSLP, 2004.

[29] Ondrej Glembek. Optimization of Gaussian Mixture Subspace Model
and Related Scoring Algorithm in Speaker Verification. PhD thesis,
BUT, 2012.

[30] Raymond G Gordon Jr. Ethnologue: Languages of the world, dallas,
tex.: Sil international. Online version: http://www. ethnologue. com,
2005.

4 Bibliography

[31] A. Hatch, S. Kajarekar, and A. Stolcke. Within-class covariance nor-
malization for SVM-based speaker recognition. In Proceedings of In-
terspeech, 2006.

[32] T. J. Hazen. Automatic Language Identification Using a Segment-Based
Approach. MIT, 1993.

[33] Valiantsina Hubeika, Lukáš Burget, Pavel Matějka, and Petr Schwarz.
Discriminative Training and Channel Compensation for Acoustic Lan-
guage Recognition. In Proceedings of Interspeech, number 9, page 4.
International Speech Communication Association, 2008.

[34] Zdeněk Janč́ık, Oldřich Plchot, Niko Brümmer, Lukáš Burget, Ondřej
Glembek, Valiantsina Hubeika, Martin Karafiát, Pavel Matějka, Tomáš
Mikolov, Albert Strasheim, and Jan Černocký. Data selection and
calibration issues in automatic language recognition - investigation with
BUT-AGNITIO NIST LRE 2009 system. In Proceedings of Odyssey
2010 - The Speaker and Language Recognition Workshop, 2010.

[35] P Kenny. Joint factor analysis of speaker and session variability:
Theory and algorithms. http://www.crim.ca/perso/patrick.kenny, Jan
2006.

[36] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel. Joint Factor
Analysis Versus Eigenchannels in Speaker Recognition. IEEE Trans-
action on Audio, Speech, and Language Processing, 15(4):1345–1447,
May 2007.

[37] Patrick Kenny, Mohamed Mihoubi, and Pierre Dumouchel. New MAP
estimators for speaker recognition. In Proceedings of Interspeech, 2003.

[38] A. Klapuri and M. Davy. Signal processing methods for music tran-
scription. Springer, 2006.

[39] Marcel Kockmann. Subspace modeling of prosodic features for speaker
verification. PhD thesis, Brno, CZ, 2012.

[40] Marcel Kockmann, Lukáš Burget, and Jan Cernocky. Investigation into
prosodic syllable contour features for speaker recognition. Proceedings
of ICASSP, Dallas, pages 1–4, Sep 2010.

[41] R. Kuhn, P. Nguyen, J. C. Junqua, L. Goldwasser, N. Niedzielski,
S. Fincke, K. Field, and M. Contolini. Eigenvoices for speaker adapta-
tion. In Proceedings of ICSLP, 1998.

Bibliography 5

[42] Haizhou Li, Bin Ma, and Chin-Hui Lee. A Vector Space Modeling
Approach to Spoken Language Identification. IEEE Transaction on
Audio, Speech, and Language Processing, 15:271–284, 2007.

[43] C.Y. Lin and H.C. Wang. Language identification using pitch contour
information. In Proceedings of ICASSP, 2005.

[44] A.F. Martin and M.A. Przybocki. NIST 2003 Language Recognition
Evaluation. In Proceedings of Eurospeech, 2003.

[45] David González Mart́ınez, Lukáš Burget, Luciana Ferrer, and Nicolas
Scheffer. Ivector-Based Prosodic System For Language Identification.
In Proceedings of Interspeech, pages 4861–4864, Kyoto, Japan, 2012.

[46] David González Mart́ınez, Oldřich Plchot, Lukáš Burget, Ondřej Glem-
bek, and Pavel Matějka. Language Recognition in iVectors Space. In
Proceedings of Interspeech 2011, Florence, Italy., pages 861–864, 2011.

[47] Pavel Matejka. Phonotactic and Acoustic Language Recognition. Doc-
toral Thesis, Brno University of Technology, pages 1–107, Aug 2008.

[48] Pavel Matějka, Oldřich Plchot, Mehdi Soufifar, Ondřej Glembek, Fer-
nando Luis D’Haro, Karel Veselý, Frantǐsek Grézl, Jeff Ma, Spyros
Matsoukas, and Najim Dehak. Patrol Team Language Identification
System for DARPA RATS P1 Evaluation. In Proceedings of Inter-
speech, Portland, USA, 2012.

[49] Pavel Matějka, Petr Schwarz, Jan Černocký, and P. Chytil. Phonotac-
tic language identification using high quality phoneme recognition. In
Proceedings of Eurospeech, 2005.

[50] Tomáš Mikolov, Oldřich Plchot, Ondřej Glembek, Pavel Matějka,
Lukáš Burget, and Jan Černocký. PCA-based feature extraction for
phonotactic language recognition. In Proceedings of Odyssey 2010 -
The Speaker and Language Recognition Workshop, pages 251–255.

[51] Tom Minka. Bayesian inference, entropy, and the multinomial distri-
bution. Technical Report., 2003.

[52] Y.K. Muthusamy, E. Barnard, and R.A. Cole. Reviewing automatic
language identification. In Signal Processing Magazine, IEEE, 1994.

[53] Y.K. Muthusamy, N. Jain, and R.A. Cole. Perceptual benchmarks for
automatic language identification. In Proceedings of ICASSP, 1994.

6 Bibliography

[54] T. Nagarajan and H.A. Murthy. Language identification using parallel
syllable-like unit recognition. In Proceedings of ICASSP, 2004.

[55] J. Navratil. Recent advances in phonotactic language recognition using
binary-decision trees. In Proceedings of Interspeech, 2006.

[56] R.W.M. Ng, Cheung-Chi Leung, Tan Lee, Bin Ma, and Haizhou Li.
Prosodic attribute model for spoken language identification. In Pro-
ceedings of ICASSP, pages 5022–5025, 2010.

[57] Tim Ng, Bing Zhang, Long Nguyen, Spyros Matsoukas, Xinhui Zhou,
NimaMesgarani, Karel Veselý, and Pavel Matějka. Developing a Speech
Activity Detection System for the DARPA RATS Program. In Pro-
ceedings of Interspeech, volume 2012, pages 1–4. International Speech
Communication Association, 2012.

[58] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, 2006.

[59] M. Penagarikano, A. Varona, L.J. Rodriguez-Fuentes, and G. Bordel. A
dynamic approach to the selection of high order n-grams in phonotactic
language recognition. In Proceedings of ICASSP, 2011.

[60] Daniel Povey, Lukáš Burget, Mohit Agarwal, Pinar Akyazi, Arnab
Ghoshal, Ondřej Glembek, K. Nagendra Goel, Martin Karafiát, Ariya
Rastrow, Richard Rose, Petr Schwarz, and Samuel Thomas. The sub-
space Gaussian mixture model-A structured model for speech recogni-
tion. Computer Speech & Language, 25(2):404–439, April 2011.

[61] U.D. Reichel. Data-driven extraction of intonation contour classes. In
Proceedings of ISCA Workshop on Speech Synthesis, pages 240–245,
Bonn, 2007.

[62] DA Reynolds, TF Quatieri, and RB Dunn. Speaker verification using
adapted Gaussian Mixture Models. Digital Signal Processing, 10(1-
3):pp. 19–41, 2000.

[63] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized
algorithm for principal component analysis. SIAM Journal on Matrix
Analysis and Applications, 31(3):1100–1124, 2009.

[64] T. Schultz, I. Rogina, and A. Waibel. LVCSR-based language identifi-
cation. In Proceedings of ICASSP, 1996.

Bibliography 7

[65] P. Schwarz, P. Matejka, and J. Černocky. Recognition of phoneme
strings using TRAP technique. In Proceedings of Eurospeech, Interna-
tional Speech Communication Association, 2003.

[66] Petr Schwarz, Pavel Matějka, and Jan Černocký. Towards Lower Error
Rates In Phoneme Recognition. Lecture Notes in Computer Science,
2004(3206):465–472, 2004.

[67] Petr Schwarz, Pavel Matejka, and Jan Cernocky. Hirarchical structures
of neural networks for phoneme recognition. Proceedings of ICASSP
2006, Toulouse, pages pp. 325–328, Mar 2006.

[68] W. Shen and R. Reynolds. Improving phonotactic language recogni-
tion with acoustic adaptation. In International Conferences on Spoken
Language Processing, pages 358–361, 2007.

[69] Elizabeth Shriberg, Luciana Ferrer, Anand Venkataraman, and
Sachin S Kajarekar. SVM modeling of” SNERF-grams” for speaker
recognition. In Proceedings of Interspeech, 2004.

[70] E. Singer, P.A. Torres-Carrasquillo, T.P. Gleason, W.M. Campbell, and
Douglas A. Reynolds. Acoustic, phonetic and discriminative approaches
to automatic language recognition. 2003.

[71] S. M. Siniscalchi, J. Reed, and C. H. Svendsen, T. andLee. Explor-
ing universal attribute characterization of spoken languages for spoken
language recognition. In Proceedings of Interspeech, pages 168–171,
2009.

[72] Mehdi Soufifar, Lukáš Burget, Oldřich Plchot, Sandro Cumani, and
Jan Černocký. Regularized Subspace n-Gram Model for Phonotactic
iVector Extraction. In Proceedings of Interspeech, number 8, pages
74–78. International Speech Communication Association, 2013.

[73] Mehdi Soufifar, Sandro Cumani, Lukáš Burget, and Jan Černocký. Dis-
criminative Classifiers for Phonotactic Language Recognition with iVec-
tors. In Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, pages 4853–4856, Kyoto, JP, 2012.

[74] Mehdi Soufifar, Marcel Kockmann, Lukáš Burget, Oldřich Plchot,
Ondřej Glembek, and Torbjorn Svendsen. iVector Approach to Phono-
tactic Language Recognition. In Proceedings of Interspeech 2011, Flo-
rence, IT, 2011.

8 Bibliography

[75] A. Stolcke, M. Akbacak, L. Ferrer, S. karayekar, C. Richey, N. scheffer,
and E. Shriberg. Improving Language Recognition with Multilingual
Phone Recognition and Speaker Adaptation Transforms. In Proceedings
of Odyssey The Speaker and Language Recognition Workshop, pages
251–255, 2012.

[76] G. Strang. Introduction to linear algebra. Wellesley Cambridge Pr,
2003.

[77] D. Talkin. A robust algorithm for pitch tracking (RAPT). Speech
coding and synthesis, 495:518, 1995.

[78] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov
networks. MIT Press, 2003.

[79] Michael E Tipping and Christopher M Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):611–622, 1999.

[80] I.R. Titze and D.W. Martin. Principles of voice production. The Jour-
nal of the Acoustical Society of America, 104:1148, 1998.

[81] PA Torres-Carrasquillo, E Singer, MA Kohler, RJ Greene,
DA Reynolds, and JR Deller Jr. Approaches to language identifica-
tion using Gaussian Mixture Models and shifted delta cepstral features.
Proceedings of Interspeech, 2002.

[82] R.C.F. Tucker, M.J. Carey, and E.S. Parris. Automatic language iden-
tification using sub-word models. In Proceedings of ICASSP, volume 1,
pages 301–304, 1994.

[83] David A Van Leeuwen, Michaël De Boer, and Rosemary Orr. A human
benchmark for the nist language recognition evaluation 2005. Proceed-
ings of Speaker and Language Odyssey, 2008.

[84] Jesús A Villalba and Niko Brümmer. Towards Fully Bayesian Speaker
Recognition: Integrating Out the Between-Speaker Covariance. In Pro-
ceedings of Interspeech, pages 505–508, 2011.

[85] Y. Yan. Development of an approach to language identification based
on language-dependent phone recognition. PhD thesis, Oregon graduate
institute of science and technology, 1995.

Bibliography 9

[86] SJ Young, G Evermann, MJF Gales, D Kershaw, G Moore, JJ Odell,
DG Ollason, D Povey, V Valtchev, and PC Woodland. The HTK book
version 3.4. 2006.

[87] MA Zissman. Overview of current techniques for automatic language
identification of speech. In Proceedings of the IEEE Automatic Speech
Recognition Workshop, 1995.

[88] M.A. Zissman. Comparison of four approaches to automatic language
identification of telephone speech. IEEE Transaction on Speech and
Audio Processing, 4(1):31, 1996.

