
Implementing a Time Management Unit
for the OR1200 Processor.

Kyrre Erlend Aspelund
Gonsholt
Lars Ødegaard

Electronics System Design and Innovation

Supervisor: Bjørn B. Larsen, IET
Co-supervisor: Amund Skavhaug, ITK

Department of Electronics and Telecommunications

Submission date: July 2014

Norwegian University of Science and Technology

i

Title: Implementing a Time Management Unit for the OR1200 Processor
Student: Kyrre E. A. Gonsholt, Lars Ødegaard

Problem description:

The project will focus on implementing a time management unit to improve the real-
time capabilities of the OR1200 OpenRISC processor. The implementation will be based
on previous implementations of hardware based TMUs, but will be implemented as an
integrated part of the processor’s internal registers. The TMU will have to be able to
work with an existing operating systems scheduler.

This should be verified by hardware simulation, firmware testing and software testing
through an existing operating system. The final solution should run on an FPGA.

The project should also consider the usefulness of an hardware solution to the time
management problem associated with scheduling.

Responsible professor: Bjørn B. Larsen
Supervisor: Amund Skavhaug

ii

iii

Abstract
This thesis presents a Time Management Unit (TMU) that provides assistance to the
scheduler and the interrupt handling of a real-time operation system. The unit provides
functionality for monitoring task execution time and a mechanism for signalling when a
task depletes its resources. This applies to both regular tasks and the handling of sporadic
events. By putting the TMU inside a processor core, it has a more predictable impact on
the overhead related to task switching.

The implemented TMU is tested as a stand-alone unit with a hardware testbench,
and then integrated into the OpenRISC 1000 based OR1200 processor as special purpose
registers. The behaviour of OR1200 is verified through hardware simulation, using
compiled software as input. The Or1ksim instruction-set simulator is modified to include
the TMU functionality, which provides a reference point for the behaviour of the altered
processor.

The real-time operating system FreeRTOS is adapted to utilize the functionality of
the TMU. Its behaviour is verified through simulation on Or1ksim, simulated hardware
and execution on a Cyclone V FPGA.

Analysis of runtime statistics shows that the module is working as expected through
all phases of verification, and that it can increase determinism, reliability and user control.
Tests have shown that the TMU is able to recover a faulting task from spin-locks and
aid in fail-soft operations for software faults. By placing the TMU inside the processor
core, a fixed overhead of 131 cycles is achieved during a context switch when no caches
are used.

iv

v

Sammendrag
Denne oppgaven presenterer en tidsovervåkingsenhet (TMU) som assisterer tidsplanleg-
geren og avbruddshåndteringen i et sanntids-operativsystem. Enheten har funksjonalitet
for å overvåke kjøretiden til prosesser og signalere prosessoren når en prosess bruker opp
sine tildelte ressurser. Dette gjelder både vanlige prosesser og sporadiske hendelser. Ved
å plassere TMUen inne i en prosessor får man en mindre, og mer forutsigbar innvirkning
på tidstillegg under bytting av prosesser.

Den implementerte TMUen har blitt testet som en enkeltstående enhet med en
testbenk, og deretter integrert inn i den OpenRISC 1000-baserte OR1200 prosessoren
som spesial-register. Oppførselen til OR1200 er verifisert av maskinvare-simulering med
kompilert programvare som inngangsstimuli. Instruksjonssett-simulatoren Or1ksim er
modifisert til å inkludere TMU-funksjonaliteten, som gir et referansepunkt for oppførselen
til den modifiserte prosessoren.

Sanntids-operativsystemet FreeRTOS er tilpasset for å kunne ta i bruk funksjon-
aliteten til TMUen. Oppførselen til FreeRTOS er verifisert ved bruk av instruksjonssett-
simulatoren, maskinvare-simuleringer og kjøring på en FPGA.

Analyse av kjøretidsstatistikk viser at enheten fungerer som forventet gjennom alle
faser av verifikasjon, og at den øker determinismen, stabiliteten og brukerens kontroll
over systemet. Tester har vist at TMUen gjør det mulig å gjenopprette prosesser som
har feilet fra en spinn-lås og assisteres i mykfeil-operasjoner for programvarefeil. Ved
å plassere TMUen inne i en prosessorkjerne ble det oppnådd en fast tilleggstid på 131
klokkesykler under et kontekstbytte, når det ikke brukes hurtigminne.

vi

vii

Preface
This thesis is the final part of our graduate degree at the department of Electronics and
Telecommunications at the Norwegian University of Technology and Science.

The work cover many different areas within digital hardware design, computer
architecture and real-time systems programming, this thesis is therefore a collaboration
between two students. Both of us are studying digital systems design at the department
of Electronics and Telecommunications.

We would like to thank our supervisors Amund Skavhaug, who gave us this assignment
and provided guidance and advice throughout the work on this project, and Bjørn B.
Larsen who has guided us through the work on this project and through writing the final
report.

Trondheim, 29th June, 2014

Kyrre Gonsholt Lars Ødegaard

viii

Table of Contents

Table of Contents xii

List of Figures xiv

List of Tables xvi

List of Listings xviii

1 Introduction 1
1.1 Motivation . 1
1.2 Main contributions . 1
1.3 Outline of the report . 2

2 Background 3
2.1 Operating system . 3

2.1.1 Real-time operating systems . 3
2.1.2 Scheduling . 4
2.1.3 Processes . 5
2.1.4 Exceptions and interrupts . 9

2.2 OR1200 . 11
2.2.1 Overview . 13
2.2.2 CPU . 13
2.2.3 Caches and memory management 15
2.2.4 Registers . 15
2.2.5 Functional operation . 16
2.2.6 Exception handling . 16
2.2.7 External communication . 18

3 Design and implementation of the TMU 19
3.1 General description of a TMU . 19
3.2 Previous work with a TMU . 20

ix

x TABLE OF CONTENTS

3.2.1 On-Line Execution time limiting, 2005 20
3.2.2 A TMU for real-time systems, 2008 20
3.2.3 Functional specification for a TMU, 2010 20
3.2.4 Hardware implementation of a TMU, 2010 20

3.3 Design of the TMU . 21
3.3.1 Possible implementations placements 21
3.3.2 Chosen design . 22
3.3.3 Requirements . 22

3.4 Implementation . 22
3.4.1 Required signals for the TMU . 23
3.4.2 HDL design . 23
3.4.3 The internals of the TMU . 25
3.4.4 TMU register details . 26
3.4.5 Operation . 29

3.5 TMU testbench . 37
3.6 Results of TMU testbench . 40

3.6.1 Discussion of the results . 47

4 Integrating the TMU in OR1200 49
4.1 Integration into the OR1200 processor . 49

4.1.1 Modifications to the SPRS module 49
4.1.2 Modifications to exception module 51
4.1.3 Modifications to the configuration module 52
4.1.4 Modifications to top level modules 52
4.1.5 Additions to the configuration file 53

4.2 Setting up the complete system . 53
4.3 Setting up simulation . 54
4.4 OR1200 tests . 56

4.4.1 Full TMU test . 57
4.5 Results of the OR1200 tests . 57

4.5.1 Discussion of the results . 58
4.6 Using the TMU . 59

4.6.1 Task time counting . 59
4.6.2 Counting interrupts . 60

5 Or1ksim 63
5.1 Or1ksim description . 63

5.1.1 Downloading, installing and running 63
5.1.2 Modules . 63
5.1.3 Running Or1ksim as debug server 64
5.1.4 Orksim structures . 64
5.1.5 Or1ksim behavior . 64
5.1.6 Exceptions in Or1ksim . 65

5.2 Or1ksim changes . 67
5.2.1 Exception handling . 67
5.2.2 SPR . 67

TABLE OF CONTENTS xi

5.2.3 Programmable interrupt controller 67
5.2.4 Time management module . 68
5.2.5 Interrupt generator . 71

5.3 TMU driver . 72
5.4 Verifying Or1ksim . 72

5.4.1 TMU driver . 72
5.4.2 TMU behavior . 74

5.5 Discussion . 77

6 FreeRTOS 79
6.1 FreeRTOS description . 79

6.1.1 Introduction . 79
6.1.2 Memory layout . 79
6.1.3 Naming conventions in FreeRTOS 80
6.1.4 Task . 80
6.1.5 Exceptions and interrupts . 84
6.1.6 Scheduler . 86
6.1.7 Context switch . 87

6.2 FreeRTOS modifications . 90
6.2.1 Context layout . 90
6.2.2 xTMUStruct . 91
6.2.3 Task control block . 92
6.2.4 Task creation . 92
6.2.5 TMU exception handling . 93
6.2.6 Critical sections . 97

6.3 Setting up FreeRTOS to use the TMU . 97
6.4 Verifying FreeRTOS . 98
6.5 Discussion . 100

7 Testing the full system 103
7.1 Equipment . 103
7.2 Resource usage . 103
7.3 TMU functionality test . 105

7.3.1 Test setup . 105
7.3.2 Results . 106

7.4 Overhead . 113
7.4.1 Testing TMU overhead . 113
7.4.2 Overhead test results . 115

7.5 Processor utilization . 115
7.5.1 Expected results . 116

8 Discussion 123
8.1 TMU implementation and integration . 123
8.2 Functionality test . 124
8.3 Overhead test results . 125
8.4 Processor utilisation . 125

xii TABLE OF CONTENTS

8.5 Real-time effects . 126

9 Conclusion 129
9.1 Further work . 130

Bibliography 132

Appendix I

A TMU verilog code I

B Folder layout XI
B.1 Test results . XII
B.2 Hardware files . XIII
B.3 Or1ksim files . XV
B.4 Software files . XVI

C Full system setup XVII
C.1 Simulation . XVII

C.1.1 Tools . XVII
C.1.2 TMU testbench . XVII
C.1.3 Full system tests . XVII

C.2 Compiling for FPGA . XVIII
C.3 Uploading and running programs on the system XVIII
C.4 Building and running Or1ksim . XIX
C.5 Test tutorial FreeRTOS and Or1ksim . XIX

D Or1ksim testing XXIII
D.1 TMU test . XXIII
D.2 FreeRTOS test . XXV
D.3 Processor utilisation Figures . XXVI
D.4 Processor utilisation results . XXVI

List of Figures

2.1 Example of Process Control Block . 6
2.2 Process state transitions . 7
2.3 Process Control Block in Memory . 9
2.5 Interrupt handling . 12
2.6 Interrupt Sequence . 13
2.7 OpenRISC 1200 architecture . 14
2.8 OR1200 CPU block diagram . 14

3.1 Illustration of the TMU and connected modules 24
3.2 SPR operation . 30
3.3 Couting task time . 32
3.4 Counting interrupt replenishment . 34
3.5 Counting interrupts . 35
3.6 Loading a value into replenishment register 41
3.7 Masking an interrupt . 42
3.8 Replenishment of the interrupt counter . 43
3.9 Loading values for task execution time counting 45
3.10 Generating the exception . 46

4.1 The complete system . 55
4.2 Makefile simulation flow . 61
4.3 Key events from the TMU full test . 62

5.1 exec_main . 65
5.2 except_handle . 66
5.3 tmu_main . 69
5.4 tmu_int_filter . 70

6.1 Example of FreeRTOS memory layout . 81
6.2 Context layout . 83
6.3 Task Create . 85

xiii

xiv LIST OF FIGURES

6.4 Path of the external interrupt in FreeRTOS 86
6.5 Tick timer exception sequence . 87
6.6 vTaskSwitchContext . 89
6.7 Modified context layout . 91

7.1 Cyclone V GX starter kit . 104
7.2 Processor utilization test . 116
7.3 Task started versus time spent in the for-loop, failure rate 1%, Or1ksim . 119
7.4 Task started versus time spent in the for-loop, failure rate 1%, FPGA . . 121

D.1 Task 1 started versus time spent in the for loop, all failure rates, Or1ksim XXVII
D.2 Task 2 started versus time spent in the for loop, all failure rates, Or1ksim XXVIII

List of Tables

2.1 OR1200 execution times . 16
2.2 Exceptions in OR1200 . 17
2.3 Wishbone signals . 18

3.1 Spr signals . 23
3.2 TMU system signals . 23
3.3 TMU register list . 26
3.4 Logic function for TMU features . 31
3.5 Tests performed by the TMU testbench 37

4.1 Paramters for the TMU . 54
4.2 Tests performed by the SoC testbench . 56
4.3 Tests performed by the SoC testbench for the TMU 57
4.4 Parameters for the full TMU test . 58
4.5 TMU full test events . 59

5.1 A selection of variables and structures in Or1ksim 64
5.2 Configurable variables for the TMU in the config-struct 68
5.3 Configurable variables for the TMU in sim.cfg 68
5.4 Configurable variables in sim.cfg . 72
5.5 Functions available in the TMU driver and description 73
5.6 TMU driver special cases tests . 74
5.7 Task timer tests . 75
5.8 Interrupt filter tests . 76

6.1 Naming conventions in FreeRTOS . 80
6.2 Excerpt of TCB from task.h . 82
6.3 Parameters for vTaskCreate . 84
6.4 xTMUStruct . 92

7.1 TMU resource usage . 104

xv

xvi LIST OF TABLES

7.2 Test parameters . 106
7.3 Icarus verilog result, 200 ticks . 107
7.4 Or1ksim test results, with TMU and critical section 107
7.5 Or1ksim test results, with TMU, without critical section 108
7.6 Or1ksim test results, without TMU and critical section 109
7.7 Or1ksim result, second round: TMU disabled, short interrupt period, 20

000 ticks . 109
7.8 Or1ksim result: TMU disabled, short interrupt period, PICSR write back

moved, 20 000 ticks . 110
7.9 Or1ksim result, second round: TMU enabled, short interrupt period, 20

000 ticks . 110
7.10 Or1ksim test results, without TMU and critical section, longer minimal

interrupt time-out . 110
7.11 FPGA test results, with TMU and critical section 111
7.12 FPGA test results, with TMU, without critical section 111
7.13 FPGA test results, without TMU and critical section 112
7.14 FPGA test results, without TMU and critical section, longer minimal

interrupt time-out . 112
7.15 Overhead test parameters . 113
7.16 Execution time analysis for the overhead loop 114
7.17 Overhead test results . 115
7.18 Overhead test results . 115
7.19 Instructions per functions. 117
7.20 Processor utilization results, Or1ksim . 118
7.21 Processor utilization results, FPGA . 120

D.1 Processor utilisation results, Task 1, 10% failure rate, Or1ksim XXIX
D.2 Processor utilisation results, Task 2, 10% failure rate, Or1ksim XXX
D.3 Processor utilisation results, Task 1, 1% failure rate, Or1ksim XXXI
D.4 Processor utilisation results, Task 2, 1% failure rate, Or1ksim XXXII
D.5 Processor utilisation results, Task 1, 0.1% failure rate, Or1ksim XXXIII
D.6 Processor utilisation results, Task 2, 0.1% failure rate, Or1ksim XXXIV
D.7 Processor utilisation results, Task 1, 1% failure rate, FPGA XXXV
D.8 Processor utilisation results, Task 2, 1% failure rate, FPGA XXXVI

Listings

3.1 TMU module declaration . 25
3.2 Read and write SPR . 30
3.3 Setting operation modes . 31
3.4 Implementation of count and compare registers 33
3.5 Implementation of replenishment count . 35
3.6 Implementation of interrupt count . 36
3.7 Masking interrupts . 36
4.1 Writing TMU exception bit in SR . 50
4.2 Decoding TMU exception . 51
4.3 Decoding TMU exception . 51
4.4 Additionds to 0r1200_cpu . 53
5.1 Results from the TMU driver test on Or1ksim 74
5.2 Results from the TMU task timer test on Or1ksim 74
5.3 Results from the TMU interrupt filter test on Or1ksim, state zero 76
5.4 Results from the TMU interrupt filter test on Or1ksim, state one 76
5.5 Results from the TMU interrupt filter test on Or1ksim, state two 77
6.1 portSAVE_CONTEXT-macro . 88
6.2 portRESTORE_CONTEXT-macro 90
6.3 xTMUStruct . 91
6.4 pdExceptionCode . 92
6.5 _except_f00 . 93
6.6 vPortTMUExceptionHandler . 93
6.7 portRESTART_TMU . 94
6.8 portSTART_TMU, starts the TMU . 94
6.9 portSTOP_TMU, stops the TMU . 94
6.10 portSAVE_CONTEXT . 95
6.11 portRESTORE_CONTEXT . 96
6.12 tmu_except . 97
6.13 Excerpt from vTaskResumeAll, line 1097-1099 in task.c 97
6.14 Results from the FreeRTOS test on Or1ksim 99
6.15 Results from the FreeRTOS test on Or1ksim 99

xvii

xviii LISTINGS

7.1 Overhead test function loop assembly . 114
7.2 Overhead test function loop C . 114
listings/or1200_tmu.v . I
D.1 Results from the TMU test on Or1ksim XXIII
D.2 Results from the FreeRTOS test on Or1ksim XXV

LISTINGS xix

Abbreviation
ALM Adaptive Logic Module

CPU Central Processing Unit

DTLB Data TLB

EEAR Exception Effective Address Register

ELF Executable and Linkable Format

EPCR Exception Program Counter Register

ESR Exception Status Register

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FPP Fixed Priority Preemptive

GPR General Purpose Register

HDL Hardware Descriptive Language

ISA Instruction Set Architecture

ITLB Instruction TLB

LED Light Emitting Diode

LIFO Last-In-First-Out

LRU Least-Recently Used

LSU Load/Store Unit

LUT Look-Up Table

MAC Multiplier Accumulator

MMU Memory Management Unit

MUX MultipleXer

OS Operating System

PC Program Counter

PC Process Control Block

PIC Programmable Interrupt Controller

PICSR PIC Status Register

xx LISTINGS

PSW Program Status Word

PTE Page Table Entry

RMS Rate Monotonic Scheduling

RSP Remote Serial Protocol

RTOS Real-Time Operating System

SPR Special Purpose Register

TCB Task Control Block

TLB Translation Look-aside Buffer

TMU Time Management Unit

UART Universal Asynchronous Receiver/Transmitter

UPR Unit Present Register

USB Universal Serial Bus

VR Version Register

WCET Worst Case Execution Time

Chapter 1
Introduction

1.1 Motivation

In a real-time system the correct behaviour of a task is dependent on both the logic result
of its computation and the time of which the result arrives[1]. Failure to meet a deadline
can in some cases have very severe consequences, thus the quality of a real-time system
is highly dependent on its timing capabilities.

Scheduling of tasks in real-time systems is usually dependent on the worst-case
execution time (WCET) of that task[13], but finding this measure may in some cases
be very challenging. The average execution time will often be much smaller then WCET,
and by scheduling tasks based on the worst-case situation the processor utilization will
be poor. If scheduling is based on the average execution time, deadlines may be lost in
cases where a task overruns this time. By using execution time control, less conservative
budgets than WCET can be used and the overruns can be handled dynamically. To allow
for this option, a unit in the system has to provide information about the elapsed time of
the running tasks and interrupt the processor when an overrun has to be handled.

This thesis will present a solution for a unit designed to monitor task execution time
called Time Management Unit (TMU) implemented in hardware as a part of an OR1200
processor. The unit will measure the execution time of running tasks and measure the
arrival interrupts. By implementing a TMU inside a processor core it is believed that a
smaller and more predictable overhead than a bus implementation can be achieved.

1.2 Main contributions

The main contributions from this thesis is the design and implementation of a TMU as a
part of the OR1200 processor, modifying the OpenRISC ISA simulator Or1ksim to include
this TMU and modifying FreeRTOS to take advantage of the functionality provided by
the TMU.

Tests are provided to verify the behaviour of the TMU as a stand-alone unit, as a part

1

2 CHAPTER 1. INTRODUCTION

of the processor and as a part of Or1ksim. The modified FreeRTOS is tested through
Or1ksim, and is then executed on a computer system, containing the modified OR1200,
on an FPGA.

The complete system is tested through FreeRTOS on both Or1ksim and on an FPGA.
Test were included to verify the behaviour of the TMU as well as demonstrates some of
the features it provides.

1.3 Outline of the report
The first chapter is an introduction chapter containing information about the report.
After the introduction, relevant background theory necessary to understand the report
is presented. Chapters 3 to 6 outlines the development of different parts of the system,
where:

Chapter 3 describes the functionality, development and testing of the TMU.
Chapter 4 describes the integration of the TMU into a larger system, and the testing

of this system.
Chapter 5 describes the operation and modifications to the instruction set simulator for

the OpenRISC architecture.
Chapter 6 describes the operation and modifications done to the real-time operating

system FreeRTOS.

Chapter 7 describes the testing of the full system, using the modified processor core
and the adapted version of FreeRTOS, it also presents the results from these performed
in the different environments. Chapter 8 has a discussion of the implementation and test
results of the whole system. The final chapter concludes this thesis, and provides some
points for further work on this subject.

Each of the development chapters starts with a short introduction and summary.
Throughout the thesis a lot of results and decisions are presented as the report progress,
smaller discussions surrounding these will be done where the result or decision is presented.
Larger discussions will be made at the end of the chapter.

Chapter 2
Background

2.1 Operating system
This section will to give the reader an understanding of the basic principles relied on in
the chapter describing FreeRTOS.

An Operating system(OS) is the collection of software that provides a layer of
abstraction between user applications and hardware. It manages resources and provides
services like memory management, scheduling and input/output-control. [14, ch.2.1].

2.1.1 Real-time operating systems
For real-time systems, the correctness of the results depends not only on the logical result,
but also at which time the result arrives [14, p.463]. The degree of how dependant a task
is on timing is divided into two categories, hard and soft real-time tasks. For hard real-
time tasks the deadline is essential, a missed deadline can have fatal consequences for the
system. Soft real-time tasks on the other hand, relates to preferred deadlines, missing
one is not severe, but there should still be made an effort to schedule the task within its
deadline. Real-time tasks have another characteristic, whether it is periodic or aperiodic.
Periodic tasks has a period of time in which they must be scheduled, or scheduled an exact
number of units apart. Aperiodic tasks has an absolute time which they must start or
finish before. A real-time operating system (RTOS) can be described with having unique
requirements in five general areas [14, p.463]

Determinism
Determinism refers to what degree an OS performs operations at specific times, or
within time intervall. Like issuing or acknowledging an interrupt.

Responsiveness
Related to determinism, but is rather a measure of how long, from acknowledging,
it takes to handle the event.

User control
How much control does the user have over aspects like scheduling and memory.

3

4 CHAPTER 2. BACKGROUND

Normally a standard OS allows for much less user control than an RTOS.
Reliability

Errors in a real-time systems can end in degraded functionality and performance,
while for a standard OS it might be solved by simply rebooting, which may not be
an option for an RTOS.

Fail-soft operation
To which degree can the system fail to preserve as much capability and data as
possible.

To meet these requirements an RTOS usually include the following [14, p.465]:

• Fast task switch
• Small size
• Low response time for external events
• Multitasking, with synchronization tools like semaphores, signals and events
• Use of special sequential files for fast data storage
• Preemptive scheduling based on priority
• Functionality for task delay
• Special alarms and time-outs

The most important part for an RTOS is the scheduler. Real-time scheduling is
explained shortly.

2.1.2 Scheduling
In general the term scheduling is used for the division of resources over a period of time[12].

Two main categories of scheduling types are :

Pre-emptive:
A task can and will be switched out for a higher prioritized task should one become
available.

Co-operative:
Tasks are responsible for themselves releasing control of the processor.

Scheduler in Real-time operating systems

For real-time scheduling Stallings[14, p.467] lists four approaches:

Static table-driven:
Performing scheduling analysis prior to runtime, the resulting table decides the
scheduling order.

Static priority-driven preemptive:
Performing a scheduling analysis prior to runtime and assigning priorities, which is
used to determining execution order during runtime.

Dynamic planning-based:
Scheduling analysis is done during runtime, new tasks are only accepted for
execution if there is sufficient resources available.

2.1. OPERATING SYSTEM 5

Dynamic best effort:
All tasks are accepted, the system tries to meet all deadlines and aborts tasks with
missed deadlines.

The different approaches are used in different scheduling policies. The scheduling
policy used in FreeRTOS is known as Fixed Priority Preemptive Scheduling(FPP), this
falls under the static priority-driven preemtive-approach. During implementation the user
performs an analysis of which priority each task should have. This is very similar to Rate
Monotonic Scheduling(RMS). RMS is basically assigning priorities to task disproportional
to their period, low period - high priority [14, p.472].This policy also provides a way of
analysing the the schedulability of a set of tasks. This is done by calculating the combined
processor utilization of the set of tasks over a period. This relies on good estimates of a
tasks execution time and period. It can be shown that the set of n tasks are schedulable
within a period if the combined processor utilization is below n(21/n − 1) over the same
period.

One of the most basic scheduling policies is the round robin scheduler. Here processes
are given resources in the order at which they arrive, first-in-first-out(FIFO)[14]. Each
process will receive a pre-determined amount of time, regardless of the actual runtime
needed by the process. When its timing budget is depleted, a clock interrupt will trigger
a context switch to the next process in the queue. The switched out process then enters
the back of the ready/blocked queue. FPP is very similar to round robin, the difference
is that for FPP the task with the highest priority gets control of the CPU next.

2.1.3 Processes

The following section is based on chapter 3 in Operating Systems: Internals and Design
Principles by William Stallings [14].

A process is defined by Stallings as "The entity that can be assigned to and executed on
a processor", among other definitions. This entity is a collection of data and instructions
used to describe itself and its behaviour, this may contain the following:

Identifier:
A unique identifier for the process.

State:
Showing the current state of the process.

Priority:
Priority of the process.

Program Counter:
The address of the next instruction to be executed.

Memory pointers:
Pointers to the location of instructions, data and shared data allocated to the
process.

Context data:
Data present in the processor’s registers during execution.

I/O Status:
Includes current I/O requests and accessible I/O devices/files.

6 CHAPTER 2. BACKGROUND

Identifier

State

Priority

Program Counter

Memory Pointers

Context Data

I/O Status

Accounting Information

...

Figure 2.1: Example of Process Control Block

Accounting Information:
May include information such as processor time, real-clock time, time limits and
other tracing information.

All this information is gathered in a data structure called process control block,
Figure 2.1. This block contains enough information about the process to allow it to
be interrupted and resumed later as if the interrupt never occurred. This is what allows
for multiprocessing systems. When an interrupt arrives, the context data and program
counter are saved in their respective memory locations and the state of the process is
updated to blocked or ready. At this point it is the operating systems job to load a new
process onto the processor.

Process States

This section is a summary of information relevant to this thesis, for the full explanation
of all states and transitions refer to chapter 3.2-4 in the Operating Systems-textbook by
William Stallings [14].

During the life cycle of a process it may go through multiple states, new, ready,
running, blocked and exit. These states are organized by different lists managed by the
operating system. When a process is created it is added to the new-list, once the operating
system decides it has sufficient resources available to accommodate an extra process, the
process will be added to the ready-list.The different states and what they represent is
listed below, Figure 2.2 shows the transitions between the states.

New:
Process control block is initialized and the process is ready to enter the main
execution loop, ready-running.

2.1. OPERATING SYSTEM 7

Ready:
The process is ready to enter the execution state, Running.

Running:
Indicates that the process is currently executing on a processor.

Blocked:
The process is waiting on an event such as timing-event, I/O- or file-access

Suspended:
The process is placed outside main execution loop, waiting for some event or
resources becoming available.

Exit:
Indicates that the process is terminated and awaiting cleanup.

Figure 2.2: Process states transitions, based on [14, Fig.3.9]

8 CHAPTER 2. BACKGROUND

Process Creation

Creating a process can be done through the following steps, but not strictly locked to the
following order [14, p.156]:

1. Assign a unique identifier.
2. Allocate memory to hold the new process.
3. Initialize the process control block.

• Setting the program counter to the start of the program’s instructions
• Set Priorities and resource rights
• Set stack pointers to the correct memory area
• Set the process state

4. Add the process to the necessary lists and data structures

Process Switching

There are multiple mechanics within an operating system that may force a process switch
[14, p.157].

Timing interrupt:
If there is a time budget in place, the operating system may decide that the currently
running process has exceeded its time limit and therefore want to switch process.

I/O interrupt:
Upon handling an interrupt, a higher priority task may have been unblocked. After
switching back from the interrupt the OS will load the higher prioritized task,
assuming pre-emptive kernel and no temporary raised priority levels.

Process yielding:
A process can issue commands that directly or indirectly forces a process switch,
yielding or issuing a request to another process or I/O-device, thus blocking itself.

When a process switch is initiated an operating system follows these steps to switch
out the currently executing process[14, p.159]:

1. Save the current context, including the program counter and other registers.
2. Update the process control block that is currently loaded on the processor. Setting

the new state, and explaining the reason for this process to leave the running state
and accounting information.

3. Add the process to the correct queue(ready/blocked/suspended/exit)
4. Select the next process
5. Update the selected process control block, including setting the state to running.
6. If required, update memory management structures.
7. Restore the context: Setting the program counter and registers to the values from

the time this process was switched out of the running state.

Memory

For the programmer the memory layout of a process can be seen as something like Figure
2.3. The layout in physical memory may differ, depending on the memory placement

2.1. OPERATING SYSTEM 9

Process Control Block

Entry point to program →

⇓Increasing address values
Program Code

Program Data

Current top of stack→

Stack

Figure 2.3: Process Control Block in Memory, based on [14, Fig.7.1]

algorithms used [14, ch.7.2-4]. The figure shows the process control block followed by the
program code, program data and finally the process stack. The program code contains
the binary code for all the instructions in the order of execution. Program data contains
all variables and structures. The stack is a first-in-last-out (FILO) data structure which
is used to allocate local variables, and grows in respect to function calls and returns
[8, p.A-27]. Depending on the architecture a stack may grow upwards or downwards,
meaning new elements will have a higher or lower address related to the stackpointer.
Local variables are stored with an offset to the stack pointer.

2.1.4 Exceptions and interrupts

The terminology exception and interrupt are not used consistently throughout litterature,
in this thesis these definitions will be primarily used:

Exception:
An internal event inside the CPU.

Interrupt:

10 CHAPTER 2. BACKGROUND

Figure 2.4: S
imple instruction cycle with interrupt]Simple instruction cycle with interrupt, based on

[14, Fig.1.7]

An external event which signals the CPU.

Typical interrupts would be environmental events, a UART module signalling that it
is done with the transfer. Examples of exceptions are errors in alignment, meaning the
CPU is trying to read/write to some address that is not a power of two or suitable for
the data size.

Hennessy and Patterson lists these qualities an exception/interrupt can have [8, p.C-
44]:

Synchronous vs. asynchronous:
If the exception occurs at the same time during execution, assuming the same data
and memory layout, then the exception is synchronous, otherwise it is asynchronous.
Asynchronous events can be handled after the current instruction, thus they are
easier to handle.

User requested vs. coerced:
User requested exceptions are predictable in nature. Coerced are exceptions from
some module that is not directly under the users control.

User maskable vs. user nonmaskable:
If an interrupt can be masked by a user task, it is user maskable. The effect of this
is whether or not the hardware will respond to signals from the masked source.

Within vs. between instructions:
Wheter or not an exception prevents the completion of the current instruction(1),
or is recognized between instructions(2). Figure 2.4 shows a simplified model of the
instruction cycle.

Resume vs. terminate
If the exception/interrupt causes the current program/process to terminate or allows
it to continue after handling the event.

Handling Exceptions and Interrupts

During the normal execution of a task an interrupt may occur. Figure 2.6 shows Process
A in normal execution until an interrupt source requires handling. The interrupt source

2.2. OR1200 11

does this by e.g. setting a bit in a status register. If interrupts are enabled, the CPU will
check this register during the instruction cycle, Figure 2.4. The interrupt raised in Figure
2.6 is registered in step two in the instruction cycle. The interrupt is handled through
the following steps [14, p.39], Figure 2.5:

1. Interrupt source signals the processor.

2. The processor finishes the current instruction before responding.

3. The processor checks the status registers to determine if there has been issued
an interrupt. It also checks which source generated the interrupt and sends an
acknowledgement so that the source can remove its signal.

4. The processor prepares itself to execute the interrupt handler. It starts with saving
the information that is needed to resume the currently running process from the
point the interrupt occurred. The minimum information required is the program
status word (PSW)1 and program counter. These can be stored on a control stack.

5. The program counter is set to the start of the operating systems interrupt routine,
either a specific PC for that specific interrupt handler or a generic handler which in
turn may call a specific routine.

6. The instruction cycle continues, fetching the instruction at the new PC.

7. The first instructions in the interrupt routine must save the registers and other
essential information about the last process to the stack. The stack pointer is
updated and the program counter is set to the code handling the actual interrupt.

8. Depending on the interrupt source this may be a user defined function or a
predefined routine inside the operating system.

9. Upon completing the interrupt service, the register values of the last process will be
restored from stack.

10. And finally the PSW and program counter is retrieved from the stack. This
allows for the interrupted process to start from the point of interrupt as if nothing
happened.

An exception is handled very much in the same way, the difference is exceptions usually
have specific operating system routines unlike interrupts which usually shares one or more
generic routines.

2.2 OR1200
The processor core which will host the TMU is the OpenRISC 1000 based OR1200.
This processor was chosen because it is an open-sourced and free processor, and it is
supported by the GCC compiler. It also has support for programmable interrupts, 32-bit

1The PSW contains status information about the current process e.g. status register, memory usage
information, condition codes.

12 CHAPTER 2. BACKGROUND

Figure 2.5: Interrupt handling, based on [14, Fig.1.10]

2.2. OR1200 13

Figure 2.6: Interrupt Sequence

instructions and can be programmed on an FPGA. More details about the choice of the
hardware platform can be found in the preliminary study for this thesis[6].

This section is a summary of the most relevant information found in the OpenRISC
1200 IP Core specification[9].

2.2.1 Overview

The OR1200 processor is an implementation of the OpenRISC 1000 architecture[9]. It
is a 32-bit scalar RISC processor with Harvard microarchitecture, five stage pipeline and
virtual memory support. The processor implements the ORBIS32 instruction set.

It has separate Memory Management Units (MMU) for instructions and data, as well
as separate instruction and data caches. Both the instruction and data caches are 1-way
direct-mapped of 8KB, with 16-byte line size.

The core also contains a power management unit, a tick timer, a programmable
interrupt controller and a debug unit. An illustration of the architecture of the OR1200
is shown in Figure 2.7

2.2.2 CPU

The central processing unit of the OR1200 contains the following:

• Instruction unit
• Exception unit
• System unit
• General purpose registers
• Integer execution pipeline unit
• Multiplier accumulator (MAC) unit
• Load/Store unit

14 CHAPTER 2. BACKGROUND

Figure 2.7: OpenRISC 1200 architecture

Figure 2.8: OR1200 CPU block diagram

2.2. OR1200 15

Instruction unit The Instruction Unit implements the basic instruction pipeline. It
has a line to the instruction MMU and cache units, and is able to execute conditional
branch and unconditional jump statements.

GPR The general purpose register(GPR) file is implemented as two synchronous dual-
port memories. It has a capacity of 32 words, where one word is 32 bit.

Load/Sore unit The Load/Store unit is responsible for all data transfers between the
GPRs, the data cache and memory. It implements all load/store instructions in hardware,
has an address entry buffer and the units operation is pipelined.

Integer EX The Integer Execution Pipeline performs 32-bit integer instructions. It
handles arithmetic, compare, logical and rotate/shift instructions.

MAC The Multiplier Accumulator (MAC) unit is fully pipelined and executes DSP
MAC operations that are 32x32 bit with 48-bit accumulator.

System unit The system unit is responsible for connecting all signals of the CPU that
are not connected through other interfaces. it also contains some special purpose registers.

Exceptions The Exceptions unit in the CPU generates core exceptions, i.e. external
interrupts and internal errors.

2.2.3 Caches and memory management
Since the OR1200 has a Harvard architecture, it has separate caches and MMUs for
instructions and data. But as both the instruction- and data-caches and MMUs are
implemented in the same manner, the are described only once.

Caches The default implementation of the caches are 8KB, 1-way direct mapped cache.
The directory is physically addressed and it has a least-recently used (LRU) replacement
policy.

MMUs The memory management units enables the OR1200 to provide a virtual
memory management scheme. Both the instruction and data MMUs are by default
implemented as 1-way, direct mapped hash-based translation look-aside buffers (TLB),
with a page size of 8KB.

2.2.4 Registers
SPRs

In OR1200 special purpose registers are divided into 32 different groups. The register
address consists of a 5-bit group address and 11-bit register index. A complete list of
the registers in OR1200 can be found in [9, table 17]. If accessible, the special purpose

16 CHAPTER 2. BACKGROUND

Table 2.1: OR1200 execution times

Instruction group Clock Cycles to Execute

Arithmetic 1
Multiply 3
Compare 1
Logical 1
Rotate and Shift 1
Others 1

registers can be written to with the l.mfspr2 and l.mtspr3 instructions. When reading
from a register that is not implemented l.mfspr will return zero. Writing to a register
that is not implemented will have no effect.

GPRs

OR1200 has 32 general-purpose 32-bit registers, labelled R0-R31. Some of these registers
have reserved functionality; R0 is fixed to zero, and has to be initialized by software. R1
is the stack pointer, R2 is the frame pointer and R9 is the link register. A complete list
of the GPRs is found in the OpenRISC 1000 architecture manual [3, table 16-4].

2.2.5 Functional operation

During operation, the Instruction Unit will generate the effective address of an
instruction and fetch instructions from the instruction cache. The instruction memory
management unit then translates this into a physical address. Based on the type of
instruction, it is forwarded to the corresponding execution unit; load/store, integer
execution or MAC.

Most of the instructions in OR1200 is executed on a single cycle. Table 2.1 shows the
executions time for different instruction types.

2.2.6 Exception handling

Exceptions in OR1200 are handled precisely, meaning that all instructions up until the
start of an exception are valid, instructions in the program flow after the start of an
exception are discarded and the causing instruction’s address is saved in Exception
Program Counter Register (EPCR), the current value of SR is stored in Exception
Supervision Register(ESR), if a memory related exception is raised the effective address
of the instruction is stored in Exception Effective Address Register(EEAR). A list of all
the exceptions handled by OR1200 is shown in Table 2.2.

2move from special-purpose register
3move to special-purpose register

2.2. OR1200 17

Table 2.2: Exceptions in OR1200

Type Vector offset Pri. Conditions

Reset 0x100 1 HW or SW reset
Bus error 0x200 4/9 Attempt to access invalid address
Data page
fault

0x300 8 No matching PTE in page table for
load/store operations

Instruction
page fault

0x400 3 No matching PTE in page table for
instruction fetch

Tick timer 0x500 12 Tick timer interrupt asserted
Alignment 0x600 6 Load/store to unaligned location
Illegal in-
struction

0x700 5 Illegal instruction in the instruction
stream

External in-
terrupt

0x800 12 External interrupt asserted

DTLB Miss 0x900 7 No matching entry in DTLB
ITLB Miss 0xa00 2 No matching entry in ITLB
Range 0xb00 10 Caused by certain flags in SR
System call 0xc00 7 System call initiated by SW
Floating
point

0xd00 11 Caused by floating point instruc-
tions

Breakpoint 0xe00 7 Hardware breakpoint

18 CHAPTER 2. BACKGROUND

Table 2.3: Wishbone signals

Common signals Description

clk_i Clock input
rst_i Reset signal input
dat_i Data in
dat_o Data out
tgd_i Data tag type input
tgd_o Data tag type output

Master signals Description

ack_i Acknowledge signal from slave
cyc_o Cycle output, indicates a cycle in progress
stall_i Indicates slave is stalled
err_i Slave indicates abnormal cycle termination
rty_i Slave indicates that cycle should be retried
sel_o Slave select signal
stb_o Strobe output
we_o Write enable

2.2.7 External communication
OR1200 uses a Wishbone interface for both data and instructions. Wishbone is an
interconnection architecture for portable intellectual property (IP) cores developed by
the OpenCores community.

The Wishbone used by OR1200 is shown in Table 2.3, and is taken from the Wishbone
specification by OpenCores[11]. Only the signals for the master is shown here, but all
connected slaves has a corresponding input/output port.

During operation a read or write through the Wishbone protocol requires three clock
cycles[11], and the valid data is placed on the output on the last positive clock edge.

Chapter 3
Design and implementation of the
TMU

This chapter presents the Time Management Unit (TMU). In the first section the
purpose and responsibilities of the unit are described, in the second section some previous
implementations are reviewed. Based on the previous work, a specification for the internal
unit is devised and some alternative placements are examined. The third and fourth
section describes the design requirements and development process of the TMU, and the
fifth section presents a testbench for the designed TMU as a stand-alone unit and the
results of these tests are shown in the sixth section.

3.1 General description of a TMU

A TMU in a real-time system provides aid in solving two problems. It measures the
execution time of a normal task and signal if a task exceeds its budget, hence enable for
more optimistic scheduling budgets. And it aids in controlling the time spent handling
interrupts.

For counting the execution time of normal tasks, the TMU have to be told when the
task starts executing and when it is stopped. It also have to know the time-limit for the
running task. If a task then reaches its limit, the TMU will generate an exception so that
other tasks can get runtime, and possibly correct the faulting task.

For monitoring time spent handling interrupts, there are two main approaches. Either
count the actual time spent handling an interrupt in the same manner as with regular
tasks, or count the number of arrived interrupts during a time frame. Both of these have
its advantages and disadvantages. If the execution time is counted some overhead will be
added for loading, starting and stopping the TMU, which could be critical in the handling
of interrupts. One also have to address the problem of which process will be charged for
the overhead in masking out the active interrupt. If the number of arrived interrupts are
counted, the time it takes to handle a specific interrupt will be unknown if the user does

19

20 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

not know the execution time of the interrupt service routine. But with this approach,
counting and masking interrupts can be performed with zero overhead.

3.2 Previous work with a TMU
This section present some of the previous work that was studied for this thesis, and
provided the base for the implementation of the TMU.

3.2.1 On-Line Execution time limiting, 2005
In [13] Håvard Skinnemoen and Amund Skavhaug proposes a hardware counter with nano-
second precision in systems with variable CPU clock frequencies. This counter has 64-bits
and would act as a wall-clock time-keeper, and by adding an execution time counter one
can achieved a deferrable server scheduling approach. The counting of interrupt execution
time can be done with one counter or with a separate counter for each interrupt line. The
counting of task execution time is done with one counter register, where the counter value
is saved and restored as a part of the task context.

In addition the paper specifies a method for avoiding the "babbling idiot problem",
by counting the arrival of events instead of execution time for interrupts.

3.2.2 A TMU for real-time systems, 2008
The master thesis by Bjørn Forsmann describes the implementation of a TMU for the
LEON3 processor as a peripheral bus unit[4]. The thesis also discusses different possible
solutions for the placement of the unit, where the alternatives to a bus implementation is
either as a coprocessor or inside the processor as a register.

This unit has a count, limit and control register for counting task execution time, and
a count, limit, period and control register for each interrupt line for interrupt execution
time counting. Forsmann modified the real-time operating system eCos to incorporate the
TMU functionality, and values for count and compare are loaded as part of the running
context.

3.2.3 Functional specification for a TMU, 2010
Kristoffer Gregersen and Amund Skavhaug presented a functional specification for a bus
implementation of a TMU in 2010[7]. This paper proposed a simple unit with 64-bit
count and compare registers, and swap register. In this specification, the count and
compare values are loaded during a context switch or handling interrupts. Hence the
implementation of the TMU itself is a simple counter with support for atomic swapping
of registers. The specification was tailored for the work being done in implementing the
Ada Ravenscar profile for the Atmel AVR architecture.

3.2.4 Hardware implementation of a TMU, 2010
In his master thesis Stian Søvik improved the functional specification by Skavhaug
and Gregertsen and implemented a TMU as a bus unit inside the Atmel AVR UC3

3.3. DESIGN OF THE TMU 21

microcontroller[15]. In addition to the count and compare registers, Søvik introduced a
status and control register. The implemented module also adhered to the behaviour of
similar modules inside the UC3.

Values for the TMU registers are loaded as a part of the running context, and the
overhead added by the TMU is dependent on the availability of the bus. The minimum
overhead caused of the TMU during a context switch is claimed to be 28 clock cycles.

3.3 Design of the TMU

As described by Bjørn Forsmann in his master thesis, a possible placement for the TMU
is inside the CPU[4]. He discarded this as a to intrusive implementation, but mentioned
that it could possibly be much faster than a bus implementation. Implementing the TMU
internally in the OR1200 CPU core was the focus of this thesis.

3.3.1 Possible implementations placements

There are multiple solutions as to where to place the TMU inside the OR1200 core, and
how it should communicate with the rest of the processor. Three different positions has
been examined, all of which have pros and cons.

In the register file The TMU can be placed as a separate module inside the register
file module. This would result in some extra addressable registers, but it would be faster
because the load/store unit could write values to the TMU directly. The problem with
this implementation is the width of the addresses for the registers, which is five bits and
able to address 32 registers. To solve this problem at least one bit has to be added to
the register operand address-width and some of the custom instructions could be used to
load and store the TMU registers. Using custom instructions would also require logic for
decoding these instructions.

This solution is highly intrusive and adds the need for a lot of modifications to exiting
modules, mainly in the register file, load/store unit, instruction decode unit and
control unit.

As a part of the GPRs Instead of adding the TMU as a separate module, it could
be possible to reserve some of the existing general purpose registers to serve as TMU
registers. This would remove the need for additional bits in register addresses, but would
result in fewer registers available for general use. Depending on the number of interrupt
lines, one could end up using all of the general purpose registers to count interrupts. To
make sure that these registers are never used for anything other than TMU functionality
the compiler tool chain have to be modified.

As special purpose registers The TMU could be implemented as a separate module
inside the processor and have all registers be addressed as special purpose registers. As
compared to the other possibilities, it would be easier to load and store values in the
module since there are already several modules that uses the SPR interface inside the

22 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

processor. But reading and writing values would have to be done with two instructions,
resulting in a larger overhead than a GPR implementation.

3.3.2 Chosen design

Of the three alternatives, the chosen solution is the one that utilizes special purpose
registers. This alternative was chosen because it minimizes the need to make large
modifications to the existing modules and makes it possible to have the TMU as a separate
and independent unit. It also makes communication with the module simple, because the
existing interface for special purpose registers is used for reading and writing all data.
Implementation of the TMU as a separate module corresponds well to the way the rest
of OR1200 is written, with a module for a specific functionality[9]. The added overhead
of one extra instruction for reading or writing registers in the module, as compared to an
implementation directly in the register file, is acceptable.

3.3.3 Requirements

The requirements for the TMU implemented for the OR1200 processor is based on the
article by Skinnemoen and Skavhaug[13] and Bjørn Forsman’s master thesis[4]. The design
of the unit should be as simple as possible, but still allow the user full control control
over the operation. One of the main problems in counting execution time for both tasks
and interrupts is defining the moment the counter should start and stop. The start and
stop point for each counter decides which task should be charged with the overhead of
switching tasks, or if any task should be charged.

The following requirements are set for the TMU:

• To increase the flexibility of task counting and allow for high clock frequencies, the
count and compare registers is set to 64 bits.
• The addition of a TMU in the OR1200 should not change the behaviour of the

processor in any way if the user of the system does not specify that the TMU
should be used.
• The coding and implementation should be similar to the style used in OR1200, with

separate blocks for different synchronous functionality.
• Similar to the tick timer and interrupt exceptions the TMU exception should be

active until it is handled, meaning the exception should be cleared by the handler.
• An exception from the TMU should not interfere with the handling of other

exceptions.
• The unit should be able to take the processor state into account.

3.4 Implementation

This section contains excerpts from the TMU Verilog file, the full code can be found in
appendix A

3.4. IMPLEMENTATION 23

3.4.1 Required signals for the TMU
As a part of the special purpose registers in OR1200, the TMU has to conform to the
internal SPR interface for reading and writing data. Table 3.1 contains the signals required
by this interface. In addition to the SPR signals, the TMU needs inputs for unmasked
interrupts and outputs for masked interrupts. The number of interrupt lines can vary from
two to 32 lines depending on the processor settings, this must be set prior to compilation.
All the system signals for the TMU are listed in Table 3.2.

Table 3.1: Spr signals

Signal Direction Width Description

spr_addr In 32 Register address
spr_dat_i In 32 Data to the unit
spr_cs In 1 Chip select
spr_write In 1 Write data
spr_dat_o Out 32 Data from the unit

Table 3.2: TMU system signals

Signal Direction Width Description

clk In 1 Clock input
rst In 1 Reset input
intr Out 1 Exception output
ex_freeze In 1 Execution freezed input
except_started In 1 Exception has started
pic_ints In OR1200_PIC_INTS Interrupts input
pic_ints_masked Out OR1200_PIC_INTS Masked interrupts output

3.4.2 HDL design
Based on the description of signals in Table 3.1 and 3.2, a high level description of the
TMU was constructed. This diagram contains the TMU with connecting signals to the
other modules inside the processor, illustrated in Figure 3.1. This figure shows how the
lines of the TMU are connected to the necessary modules. The intr signal is connected
to the exception module, the spr signals are connected to the spr module, the ex_freeze
signal is connected to the freeze module, pic_ints originates at the various interrupt
sources and pic_ints_masked are connected to the programmable interrupt controller.

From this diagram an HDL module was created. Since the OR1200 processor is
written in VerilogHDL, this language was chosen for easy integration into the system. A

24 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

F
ig
ur
e
3.
1:

Il
lu
st
ra
ti
on

of
th
e
T
M
U

an
d
co
nn

ec
te
d
m
od

ul
es

3.4. IMPLEMENTATION 25

VerilogHDL compiler also uses a preprocessor similar to other high level programming
languages, which makes parametrization of modules very simple.

The TMU is implemented as a VerilogHDLmodule, which can contain input-/output-
ports and synchronous-/asynchronous-logic. The module declaration along with the port
definitions of the TMU is shown in Listing 3.1.

Listing 3.1: TMU module declaration
module or1200_tmu (

clk , r s t
, spr_addr , spr_dat_i , spr_cs , spr_write
, spr_dat_o// SPR in t e r f a c e
, i n t r , except_started //Exception i n t e r f a c e
, p ic_ints , pic_ints_masked// In t e r rup t i n t e r f a c e
, ex_freeze

) ;
input c l k ;
input r s t ;
input [3 1 : 0] spr_addr ;
input [3 1 : 0] spr_dat_i ;
input spr_cs ;
input spr_write ;
output [3 1 : 0] spr_dat_o ;
input except_started ;
input ex_freeze ;
output i n t r ;
input [‘OR1200_PIC_INTS−1:0] p i c_int s ;
output [‘OR1200_PIC_INTS−1:0] pic_ints_masked ;

3.4.3 The internals of the TMU
Since all the interaction from the software with the TMU will be through the SPR
interface, a register for the current status was needed to provide information about the
state of the TMU. This register is read only, since it only displays the current state of the
TMU.

To control the operation of the TMU a separate control register was needed, the user
can issue commands to the TMU by writing to this register. This register is used to set
different modes of operation and to issue general run-time commands. This register was
implemented as a read/write register, although reading this will not give any information
about the effect of an issued command. Writing to this register will also start and stop
the task execution-time counting, enabling the user to specify the start time of task.

Configuration parameters

To increase the flexibility of the TMU some configuration parameters was added to set
different modes of operation. To adhere to the implementation of other modules it is
possible to enable and disable exception generation. This is also included to allow for
task execution time counting without producing exception.

If an exception from another module than the TMU arrives during the execution of
a task, the designer have to choose if the running task should be charged with the time
spent handling this exception. An option to stop the counter when an exception is started

26 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

was thus included. This way the user can choose if the running task should be charged
for the exception or not.

During normal operation, a CPU will freeze execution during different stages of the
pipeline, for instance during load and store. The TMU can take this into account, by
stopping the counter during an execution freeze. This will make the count value represent
the time which the task has actually been executing instructions.

To provide control over counting and masking interrupts, this feature can be enabled
or disabled by the user. If this feature is disabled the TMU should not count or mask
any interrupts.

3.4.4 TMU register details
The core functionality of the TMU is based on registers which are accessed through the
SPR interface. Table 3.3 has an overview of all the accessible registers inside the TMU.

Table 3.3: TMU register list

Register number Register name Width Access

0 Status 32 R
1 Control 32 W
2 Compare high 32 R/W
3 Compare low 32 R/W
4 Count high 32 R/W
5 Count low 32 R/W
6 Replenish compare high 32 R/W
7 Replenish compare low 32 R/W
8 Replenish count high 32 R
9 Replenish count low 32 R
10 Masked interrupts 32 R
11 Interrupt compare base 32 W
43 Interrupt count base 32 R

The register number in Table 3.3 also indicates the offset of the address in the TMU
SPR address group.

Since the SPR data interface is only 32 bits wide, the high and low values of the 64
bit registers have to be loaded separately. This applies to count, compare and replenish
compare.

Register 3.1 lists the different fields of the status register. This register is read-only
and has a summary of the TMU’s status and configuration. Some of the bits in the
status register can be controlled by writing to the correct field in the control register
described in Register 3.2. The default values of the TMU is shown in the lower part
of the register description, this indicates which configuration the TMU will have after
a reset. By default the TMU is set to generate exceptions, count interrupts and stop
counting upon an exception.

3.4. IMPLEMENTATION 27

Register 3.1: TMU status register (32)

Un
us
ed

0x000000

31 7

SU
S

0

6

CN
TI

0

5

CI

1

4

FC

0

3

CE

0

2

EE

1

1

R

0

0

Default

R Indicates if the TMU is running

EE Indicates if TMU exception is enabled

CE Indicates if the TMU should continue counting when an
exception arrives

FC Indicates if the TMU should continue to count when
ex_freeze is set, added for debug purposes

CI Indicates if the TMU should count interrupts

CNTI If set the value of count is invalid

SUS If the TMU is suspended

Register 3.2 lists the different fields in the control register. The control register is used
to send commands to the TMU and set different modes of operation.

28 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

Register 3.2: TMU control register (32)

Un
us
ed

0x0000

32 16

CI
D

0

15

CI
E

0

14

FC
D

0

13

FC
E

0

12

CE
D

0

11

CE
E

0

10

ED

0

9

EE

0

8

Un
us
ed

0x0

7 4

CL
EA

R

0

3

RE
ST
AR
T

0

2

ST
OP

0

1

ST
AR
T

0

0

Default

START Start the TMU

STOP Stop the TMU

RESTART Restart the counter

CLEAR Clear count and compare values

EE Enable exception generation

ED Disable exception generation

CEE Enable counting during an exception

CED Disable counting during an exception

FCE Enable counting during freeze

FCD Disable counting during freeze

CIE Enable counting of interrupts

CID Disable counting of interrupts

Register 3.3 shows the interrupt mask register of the TMU. When an interrupt line
reaches its limit, the bit corresponding to the line number will be set.

Register 3.3: TMU interrupt mask register (32)

M
as
k

0 x 0 0 0 0 0 0 0 0

31 0

Default

Mask Bit n indicates a masked interrupt

Register 3.4 shows the organization of the 64 bit registers of the TMU, namely count,
compare, replenish count and replenish compare. On a reset all these registers will be set
to zero.

3.4. IMPLEMENTATION 29

Register 3.4: TMU 64-bit registers (64)

Hi
gh

0 x 0 0 0 0 0 0 0 0

63 32

Lo
w

0 x 0 0 0 0 0 0 0 0

31 0

Default

High High bits of the register value

Low Low bits of the register value

Register 3.5 shows an overview of the 32 bit count and compare registers of the TMU,
which applies to the interrupt counting and compare registers.

Register 3.5: TMU 32-bit registers (32)

Va
lue

0 x 0 0 0 0 0 0 0 0

31 0

Default

Value Value of the register

3.4.5 Operation

Reading and writing data

Reading and writing data to or from the TMU is done through the SPR interface.
Figure 3.2 shows how the SPR signals are decoded inside the module, and how data
is read/written.

An excerpt from the Verilog implementation displaying the read and write through
the SPR interface is shown in Listing 3.2. This listing only shows the write operation to
the control register, but all registers are written in the same manner.

The write operation for all registers consists of a synchronous and an asynchronous
part. Here the asynchronous part is ctrl_sel, which is updated continuously during
operation, and the write to the register itself is synchronous. This listing also shows
that the control register is cleared one clock cycle after it is written because the change
in operation is recorded and stored in the status register.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

Figure 3.2: SPR operation

Listing 3.2: Read and write SPR
assign c t r l_ s e l = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_CTRL)) ? 1 ’ b1 : 1 ’ b0 ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
c t r l <= 32 ’ b0 ;

end else i f (c t r l_ s e l && spr_write) begin
c t r l <= spr_dat_i ;

end else begin
c t r l = 32 ’ b0 ;

end
end

always @(spr_addr or s r or compare or count) begin
case (spr_addr [‘OR1200_TMUOFS_BITS])

‘OR1200_TMU_OFS_STATUS: spr_dat_o = s r ;
‘OR1200_TMU_OFS_CTRL: spr_dat_o = c t r l ;
‘OR1200_TMU_OFS_COMPARE_HI: spr_dat_o = compare [‘OR1200_TMU_HI_BITS] ;
‘OR1200_TMU_OFS_COMPARE_LO: spr_dat_o = compare [‘OR1200_TMU_LO_BITS] ;
‘OR1200_TMU_OFS_COUNT_HI: spr_dat_o = count [‘OR1200_TMU_HI_BITS] ;
‘OR1200_TMU_OFS_COUNT_LO: spr_dat_o = count [‘OR1200_TMU_LO_BITS] ;
default : spr_dat_o = s r ;

endcase
end

3.4. IMPLEMENTATION 31

Configuration

The configuration options of the TMU is listed in Register 3.2, and the TMU is configured
by writing to this register. Most of the options enable or disable different features of the
TMU, and the writing to control will affect the corresponding bit in the status register.

The implementation of enabling and disabling features can be written as a logic
function, shown in Table 3.4. This can be simplified to the logic expression found in
equation 3.1. Disabling a feature was given precedence over enabling if both are set at
the same time. In this equation SR is the current bit in the status register, EN is the
enable bit in control, DIS is the disable bit in control and TO_SR is the new value of SR.

Table 3.4: Logic function for TMU features

SR EN DIS TO_SR

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0

1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

TO_SR = EN ·DIS + SR ·DIS (3.1)

Enabling and disabling features applies to exception generation, counting through
exceptions, counting during freeze and counting interrupts, they are all decoded in the
same manner. The decoding and setting of the exception generation feature is displayed
in Listing 3.3.

Listing 3.3: Setting operation modes
wire ee ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
// Set d e f a u l t operat ion
s r [‘OR1200_TMU_SR_EE] <= 1 ’ b1 ;

end else begin
s r [‘OR1200_TMU_SR_EE] <= ee ;

end
end
assign ee = c t r l [‘OR1200_TMU_CTRL_EE] & ~ c t r l [‘OR1200_TMU_CTRL_ED] |

s r [‘OR1200_TMU_SR_EE] & ~ c t r l [‘OR1200_TMU_CTRL_ED] ;

32 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

Counting task time

One of the two main functions of the TMU is counting the execution time of tasks running
on the system and generate an exception if the active task exceeds its budget.

To do this, the TMU needs the current budget, time spent this far and when to start
and stop counting. All this information has to be loaded by software through the SPR
interface. Figure 3.3 shows how the TMU can be loaded and started. This figure shows
what will happen when the different values are loaded into the module, and the counter
is started. When the compare value is written the count invalid bit in the status register
is set to indicate that the value stored in count might not belong to the current process.
This bit is cleared when a new count value is written. To start counting, a logic 1 must
be written to the start bit in the control register. The TMU will then increment the value
of count until stop is written to the control register, or the value of count reaches the
value of compare. To make sure that that the TMU does not generate an exception by
mistake, the TMU cannot be started if no value is loaded into compare.

Figure 3.3: Couting task time

The VerilogHDL implementation of count and compare along with the exception

3.4. IMPLEMENTATION 33

generation is shown in Listing 3.4. To avoid multiple drivers for count invalid when
synthesizing the design, writing these two registers are done in the same block. From
this listing it is also shown that it is not possible to write a new value to either count or
compare when the TMU is running. This is done to protect the values of these registers.

The intr signal is the signal for exceptions from the TMU, and it is implemented in
asynchronous logic, and if at any point all the expressions evaluates to true is set to a
logic 1. The TMU will stop the counter when an exception occurs, and the intr will be
set until the count value is cleared.

The TMU can be restarted by writing to bit 2 in control, then the current counter
value is set to zero and the counter value will be indicated as valid. If the TMU is cleared
by writing to bit 3 in control, both count and compare is set to zero. The counter must
be stopped prior to attempting to clear or restart.

Listing 3.4: Implementation of count and compare registers
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
compare <= 64 ’ b0 ;
count <= 64 ’ b0 ;
count_inval id <= 1 ’ b0 ;

end else i f (running && ! suspended) begin
count <= count + 64 ’ b1 ;

end else i f (count_hi_sel && spr_write && ! running) begin
count [‘OR1200_TMU_HI_BITS] <= spr_dat_i ;
count_inval id <= 0 ;

end else i f (count_lo_sel && spr_write && ! running) begin
count [‘OR1200_TMU_LO_BITS] <= spr_dat_i ;
count_inval id <= 0 ;

end else i f (c l e a r == 1 ’ b1) begin
count <= 64 ’ b0 ;
compare <= 64 ’ b0 ;
count_inval id <= 0 ;

end else i f (r e s t a r t == 1 ’ b1) begin
count <= 64 ’ b0 ;
count_inval id <= 0 ;

end else i f (comp_hi_sel && spr_write && ! running) begin
compare [‘OR1200_TMU_HI_BITS] <= spr_dat_i ;
count_inval id <= 1 ’ b1 ;

end else i f (comp_lo_sel && spr_write && ! running) begin
compare [‘OR1200_TMU_LO_BITS] <= spr_dat_i ;
count_inval id <= 1 ’ b1 ;

end
end
assign i n t r = ((count >= compare) && (s r [‘OR1200_TMU_SR_EE] == 1 ’ b1) &&

compare != 0) ? 1 ’ b1 : 1 ’ b0 ;

Counting of interrupts

To aid in the handling of interrupts, the TMU has functionality for limiting the number of
interrupts during a specific time period. Instead of counting the time spent handling each
interrupt, this implementation counts the arrival of interrupts. This is done to avoid the
problem of which interrupt should be charged with the overhead of starting the general
interrupt handler. Another reason is to eliminate the need for starting and stopping the

34 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

TMU inside an interrupt handler, because adding overhead to these routines could result
in failure in some critical systems. The interrupts also share a replenishment budget,
because scheduling of tasks is usually done over a limited period of time and this way it
is easier to calculate the limit for each interrupt for this period. If interrupt routines are
kept small and short, it is easy to calculate the time it would take to execute a specific
handler.

The counting of interrupts is done by having a dedicated 32 bit count and compare
register for each available interrupt line, and a a 64 bit count and compare register for
the replenishment budget which is reset automatically when it reaches the compare value.
Figure 3.4 shows the operation of the replenishment counter.

Figure 3.4: Counting interrupt replenishment

The VerilogHDL implementation of the replenishment counter is shown in Listing
3.5. Here the asynchronous part is the replenishment signal, which is set to a logic 1 if
rep_count equals rep_compare. When a value is loaded into rep_compare the counter is
started, and continues until zero is written back in rep_compare.

3.4. IMPLEMENTATION 35

Listing 3.5: Implementation of replenishment count
assign r e p l e n i s h = (rep_count == rep_compare) ? 1 ’ b1 : 1 ’ b0 ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
rep_count <= 64 ’ b0 ;

end else i f (r e p l e n i s h) begin
rep_count <= 64 ’ b0 ;

end else i f (rep_compare != 0) begin
rep_count <= rep_count + 1 ;

end else begin
rep_count <= 64 ’ b0 ;

end
end

To start counting interrupts the replenishment counter should be set and the
intr_compare register corresponding with the interrupt line should be set. If the number
of arrived interrupts reaches the limit, the interrupt line is masked until the start of the
next period. Figure 3.5 shows the flow of counting and masking an interrupt line.

Figure 3.5: Counting interrupts

The number of interrupt counters inside the TMU will vary based on the processor
defines, hence the number of interrupt counters will not be known until the processor is
compiled. To implement the correct number of interrupt counters the VerilogHDL for
loop is used. As opposed to a for-loop in a normal programming language, a for-loop in

36 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

HDL will generate the required logic for the statement inside the loop. Listing 3.6 shows
the implementation of the interrupt counters and masking of interrupts. To ensure each
arrived interrupt is only counted once, the counter for each line will only be incremented
on a positive edge of the interrupt signal. Decoding the masked interrupts is done by
comparing the current value of the interrupt count registers with its limit, and writing
a logic 1 to the mask register if the line should be masked as shown in Listing 3.7. The
masked interrupts is then placed on the output of the TMU, as shown in Listing 3.7.

Listing 3.6: Implementation of interrupt count
reg [3 1 : 0] intr_count [0 : ‘OR1200_PIC_INTS−1] ;
integer p i c s ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin

intr_count [p i c s] <= 32 ’ b0 ;
end

end else i f (r e p l e n i s h == 1 ’ b1) begin
for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin

intr_count [p i c s] <= 32 ’ b0 ;
end

end else begin
for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin

i f (intr_edge [p i c s] == 1 ’ b1 && sr [‘OR1200_TMU_SR_CI]) begin
intr_count [p i c s] <= intr_count [p i c s] + 1 ;

end else begin
intr_count [p i c s] <= intr_count [p i c s] ;

end
end
p i c s = 0 ;

end
end

Listing 3.7: Masking interrupts
integer mask ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
pic_mask <= ‘OR1200_PIC_INTS ’ b0 ;
mask <= 0 ;

end else begin
for (mask = 0 ; mask < ‘OR1200_PIC_INTS ; mask = mask + 1) begin

i f ((intr_count [mask] >= intr_compare [mask])
&& (intr_compare [mask] != 0) && sr [‘OR1200_TMU_SR_CI]) begin
pic_mask [mask] <= 1 ’ b1 ;

end else begin
pic_mask [mask] <= 1 ’ b0 ;

end
end

end
end
assign pic_ints_masked = pic_ints & ~pic_mask ;

3.5. TMU TESTBENCH 37

3.5 TMU testbench
To ensure correct behaviour of the TMU, it had to be tested before it could be integrated
into the processor. The testbench for the TMU will test all the different operations of
the TMU, both one at the time and in parallel. Since the construction of a testbench
that tests every possible variation of inputs is not feasible, the testbench for the TMU
will check the most common operations and possible errors. Table 3.5 shows all the test
performed in this testbench.

The tests are run in the order indicated by Table 3.5, and report the result of each
case. If the TMU does not behave correctly on all the tests, it can not be integrated into
the processor. Since these tests are meant to aid in the development of the TMU, it will
stop when a test fail. Making it easier to examine the simulation data, locate the error,
and fixing the problem.

Table 3.5: Tests performed by the TMU testbench

Name Test case Excpected result

Simple Write compare register and
start count.

The module should start counting with
count_invalid set. An exception should
be generated when count reaches the
compare value

Simple2 Write count and compare,
then start counting. The
written count is not zero.

The module should start counting from
the written count value, and generate
an exception when count reaches the
compare value

Zero Set count and compare to
zero then start the counter

The module should not count or gener-
ate an exception

No excep-
tion

Write count and compare,
disable exception generation
and start counting.

The module should not generate any
exceptions

Read SR Write count and compare,
start counting and read the
status register during opera-
tion

The module should continue to count
when SR is read, and generate an ex-
ception when count reaches the com-
pare value. The R-bit should be set

Test freeze Write count and compare,
start counting and set the
ex_freeze signal during oper-
ation

The module should continue to count
when ex_freeze is set, and generate
an exception when count reaches the
compare value

Freeze stop Write count and compare,
disable counting during freeze
and start counting. Set
ex_freeze several times dur-
ing operation

The module should not increment the
counter when ex_freeze is set, and gen-
erate an exception when count reaches
the compare value

Continues on next page

38 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

Table 3.5 – Continued from previous page
Test
name

Test case Excpected result

Test reset Write count and compare and
start counting. Reset the
TMU during operation

The module should not continue after
reset and all registers should be set to
the default value

Start stop Write count and compare and
start counting. Stop counting
after some time, and then
continue counting

The module should continue counting
from the value it had when it was
stopped and generate an exception
when count reaches the compare value

Read count Write count and compare and
start counting. Stop counting
after some time, and read the
count register

The output values from SPR should
match the value of count when the
module is stopped

Random Apply random stimuli to
spr_addr, spr_write and
spr_data

Nothing should happen

Count ran-
dom

Write count and compare and
start counting. Apply ran-
dom stimuli to spr_addr,
spr_write and spr_data dur-
ing operation

The module should generate an excep-
tion when count reaches the compare
value

Exception
count

Write compare and count
register then start counting.
During operation, set ex-
cept_started

The module should continue counting

No excep-
tion count

Write compare and count reg-
ister, and disable the count
during exceptions then start
counting. During operation,
set except_started

The module should stop counting when
except_started is set

Replenish Write replenishment compare Module should start incrementing
rep_count and restart the timer when
rep_count reaches the rep_compare
value

No mask-
ing

Write replenish and an inter-
rupt compare register, set the
interrupts fewer times than
the limit

The interrupt should not be masked
and counter should reset at the replen-
ishment limit

Masking Write replenish and an inter-
rupt compare register. Sig-
nal more interrupts than the
limit

The interrupt should be masked at limit
and unmasked at the replenishment
limit

Continues on next page

3.5. TMU TESTBENCH 39

Table 3.5 – Continued from previous page
Test
name

Test case Excpected result

Disable
masking

Write values into replenish,
all the interrupt compare reg-
isters, and disable the inter-
rupt counters. Apply random
stimuli on the interrupt lines

The TMU should not count or mask
any interrupts

Random
masking

Write values into replenish
and all the interrupt com-
pare registers. Apply random
stimuli on the interrupt input
lines

The TMU should only mask the inter-
rupts that reaches its limit, and unmask
all interrupts at replenishment

Full Write values to replenishment
and all the interrupt com-
pare registers. Load values
into count and compare and
start the TMU. Apply ran-
dom stimuli on the interrupt
lines.

The TMU should count execution time
and mask interrupts that reaches its
limit. When count reaches compare an
exception should be generated.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

3.6 Results of TMU testbench
A simulation of the TMU testbench shows that it behaves according to the specifications
and hence passes all tests described in Table 3.5. Since the output of the testbench is to
large to include in the report, only parts of the full test is presented here, the rest can be
found in appendix B in tmu-bench. This section displays some of the key events of the
full TMU test from the testbench. For each event the figures are limited to the relevant
signals and time frame. The full waveform of this test can be found in appendix B in
tmu-bench/tmu-full.fst.

Loading the replenishment counter

The full test first loads values into the replenishment register. Loading and starting the
counter is shown in Figure 3.6. In this figure the hexadecimal value 0x20 is loaded into
compare, and the counter is started on the next positive edge of the clock. The points
marked in the figure are:

1. Replenishment value is loaded
2. Replenishment counter starts

Masking interrupts

When an interrupt reaches its limit, it is masked until the beginning of the next
replenishment period. Figure 3.7 shows that interrupt line 18 is masked the sixth time
it arrives. In this figure pic_ints is the input line to the TMU and pic_ints_masked is
the output. The intr_edge indicates the arrival of an interrupt, and pic_mask indicates
if the interrupt is masked. The point marked in the figure is:

1. Interrupt on line 18 is masked

Replenishment of the interrupt counter

During operation the interrupt counter budget is reset when the replenishment counter
reaches its limit, in this case 0x20. Figure 3.8 shows that the counter is reset when the
replenishment limit is reached, and that the interrupt mask is cleared, enabling all the
interrupts. The points marked in the figure are:

1. The replenishment counter reaches its limit
2. All interrupts are unmasked

Loading task counter values

Loading values into compare and count, and then starting the TMU is displayed in Figure
3.9. Both the 64-bit values are loaded in two operations, with the high value first. The
hexadecimal value 0x10 is loaded into count, and the TMU continues to count from this
value when it is started. The points marked in the figure are:

3.6. RESULTS OF TMU TESTBENCH 41

F
ig
ur
e
3.
6:

Lo
ad

in
g
a
va
lu
e
in
to

re
pl
en
is
hm

en
t
re
gi
st
er

42 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

F
ig
ur
e
3.
7:

M
as
ki
ng

an
in
te
rr
up

t

3.6. RESULTS OF TMU TESTBENCH 43

F
ig
ur
e
3.
8:

R
ep
le
ni
sh
m
en
t
of

th
e
in
te
rr
up

t
co
un

te
r

44 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

1. High part of compare is selected
2. Low part of compare is selected
3. High part of count is selected
4. Low part of count is selected
5. Control is selected

Exception generation

When the counter value reached the compare value, an exception was generated and the
counter was stopped. This is shown in Figure 3.10, where the signal intr is the output
from the TMU to the exception module. The exception was cleared by writing zero to
the count register. The points marked in the figure are:

1. Exception signal is asserted
2. Count value is cleared

3.6. RESULTS OF TMU TESTBENCH 45

F
ig
ur
e
3.
9:

Lo
ad

in
g
va
lu
es

fo
r
ta
sk

ex
ec
ut
io
n
ti
m
e
co
un

ti
ng

46 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

F
ig
ur
e
3.
10
:
G
en
er
at
in
g
th
e
ex
ce
pt
io
n

3.6. RESULTS OF TMU TESTBENCH 47

3.6.1 Discussion of the results
By studying the results and waveforms of the testbench, the TMU seems to behave
according to the specification. Although there are many case variants and different values
that have not been tested, the correct execution of the tested cases proves the correctness
of the module well enough for testing as a part of the entire system. To ensure that all
synchronous logic functions properly and does not generate latches, there is a delay of one
clock cycle from when an event occurs to the time the reaction arrives. This is regarded
to be acceptable and preferred over using only asynchronous logic in the TMU, which
could eliminate this delay.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE TMU

Chapter 4
Integrating the TMU in OR1200

This chapter presents the process of integrating the TMU into the OR1200 processor.
The first section is a description of the necessary changes to the existing modules of the
processor, and the instantiation of the TMU module. The second section describes the
set-up of the additional modules of the system used for testing the functionality. The last
sections presents the results of the system tests with and without the TMU as well as the
result of the tests designed to verify the behaviour of the TMU as part of the system.

4.1 Integration into the OR1200 processor

After the behaviour of the TMU was verified, it could be integrated into the OR1200
processor. To do this, several of the modules of the OR1200 had to be modified. This
section goes through the modifications necessary in order to integrate the TMU into the
processor.

4.1.1 Modifications to the SPRS module

The SPRS module or1200_sprs needed an input line for data from the TMU, and logic
to pass this data on to other modules. All the logic for writing to the TMU SPR group
was already in place. To handle reading from the TMU the TMU SPR group was added
to forward data from the TMU to the internal MUX. A bit in the supervision register(SR)
was added to enable and disable the handling of the TMU exception in the same manner
as with tick-timer and interrupts. The SPRS module needed logic to write to the bit in the
supervision register that is used to enable and disable handling of the TMU exception.
This bit can be set by a write to the supervision register via the l.mtspr instruction,
automatically set to zero when an exception is started or restored from exception status
register during a return-from-exception instruction.

Register 4.1 shows the new outline of the supervision register, the width of the part
of this register that is used inside the processor had to be increased with one bit. The
logic for writing to the TMU exceptions bit in SR is shown in Listing 4.1

49

50 CHAPTER 4. INTEGRATING THE TMU IN OR1200

Listing 4.1: Writing TMU exception bit in SR
assign to_sr [‘OR1200_SR_CEE]

= (except_started) ? {1 ’ b0} :
(branch_op == ‘OR1200_BRANCHOP_RFE) ?
e s r [‘OR1200_SR_CEE] : (spr_we && sr_se l) ?
spr_dat_o [‘OR1200_SR_CEE] :
s r [‘OR1200_SR_CEE] ;

Register 4.1: OR1200 modified SR (32)

CI
D

0 x 0

31 28

Re
se
rv
ed

0 x X

28 18

CE
E

0

17

SU
M
RA

0

16

FO

1

15

EP
H

0

14

DS
X

0

13

OV
E

0

12

OV

0

11

CY

0

10

F

0

9

CE

0

8

LE
E

0

7

IM
E

0

6

DM
E

0

5

IC
E

0

4

DC
E

0

3

IE
E

0

2

TE
E

0

1

SM

1

0

Default

SM Supervision mode

TEE Tick Timer Exception Enable

IEE Interrupt Exception Enable

DCE Data Cache Enable

ICE Instruction Cache Enable

DME Data MMU Enable

IME Instruction MMU Enable

LEE Little Endian Enable

CE CID Enable

F Conditional branch flag

CY Carry flag

OV Overflow flag

OVE Overflow flag Exception

DSX Delay Slot Exception

EPH Exception prefix high

FO Fixed One

SUMRA SPRS User Mode Access

CEE TMU Exception Enable

CID Context ID, not implemented

4.1. INTEGRATION INTO THE OR1200 PROCESSOR 51

4.1.2 Modifications to exception module

The exception module or1200_except needed an input line for the TMU exception
signal, and logic to process it. The signals except_trig and except_stop needed one
additional bit each to indicate if the TMU exception is triggered or stopped. The order
in which the TMU signal appear in these signals also indicates the priority of the TMU
exception. The TMU signal was added to the end of except_trig and the beginning of
except_stop, giving it the lowest priority.

To be able to load and store the bit in the supervision register associated with the
TMU exception. And to ensure that handling the TMU exception is enabled at the right
time, some logic was added to decode and delay the enabling of this exception. This is
done in the same manner as with the interrupt- and tick-exceptions. The conditions for
when a TMU exception will be treated as pending to be executed is shown in Listing 4.2.
This means the exception will be handled under any of these circumstances:

• CEE bit in the supervision register is set
• CEE bit will be set in the next clock cycle
• Identified program counter is valid
• Delay from l.rfe is completed
• Processor is not freezed
• Exception branch is not taken
• Exception is not delayed
• Exception will not be disable in the next clock cycle

Listing 4.2: Decoding TMU exception
assign tmu_pending = sig_tmu

& (s r [‘OR1200_SR_CEE] | (sr_we & to_sr [‘OR1200_SR_CEE]))
& id_pc_val & delayed_cee [2] & ~ex_freeze
& ~ex_branch_taken & ~ex_dslot
& ~(sr_we & ~to_sr [‘OR1200_SR_CEE]) ;

The main decoding of exceptions is done in the FSM of the exception module. In the
idle state a switch-case for the TMU exception was added to set the correct exception type
and Exception Program Counter Register (EPCR) shown in Listing 4.3. The exception
type indicates which memory address is loaded when an exception starts, and the TMU
was set to be exception 0x0f, which was the first unimplemented exception vector of the
OR1200. Placing the TMU at 0x0f also eliminates the need to increase the width of
except_type and increasing the reserved memory for exception vectors.

Listing 4.3: Decoding TMU exception
‘ i f d e f OR1200_EXCEPT_TMU

15 ’ b000_0000_0000_0001 : begin
except_type <= ‘OR1200_EXCEPT_TMU;
epcr <= id_pc ;
dsx <= ex_dslot ;

end
‘endif

52 CHAPTER 4. INTEGRATING THE TMU IN OR1200

4.1.3 Modifications to the configuration module

The configuration module or1200_cfgr is responsible for setting the correct values of
the version- (VR), unit present- (UPR) and configuration registers. The TMU position
in UPR was set to the first available bit, and the configuration module was set to write
this into the UPR at startup. Register 4.2 shows the new outline of the UPR.

Register 4.2: OR1200 modified UPR (32)

Cu
sto
m
un
its

0 x X

31 24

Re
se
rv
ed

0 x X

23 13

TM
UP

1

12

FP
P

0

11

TT
P

1

10

PI
CP

1

9

PM
P

0

8

PC
UP

0

7

DU
P

1

6

M
P

0

5

IM
P

1

4

DM
P

1

3

IC
P

1

2

DC
P

1

1

UP

1

0

Default

UP UPR present

DCP Data cache present

ICP Instruction cache present

DMP Data MMU present

IMP Instruction MMU present

MP MAC present

DUP Debug unit present

PCUP Preformance counters present

PMP Power management present

PICP PIC present

TTP Tick timer present

FPP Floating point unit present

TMUP TMU present

4.1.4 Modifications to top level modules

The central processing unit’s top level module or1200_cpu will instantiate the TMU
and needed wires for all TMU signals. Inputs for interrupts and output for the masked
interrupts also had to be added to the module declaration. Listing 4.4 show the necessary
additions to the CPU top module to make use of the TMU.

4.2. SETTING UP THE COMPLETE SYSTEM 53

Listing 4.4: Additionds to 0r1200_cpu
//Reroute o f i n t e r r up t l i n e s
input [‘OR1200_PIC_INTS−1:0] p i c_ints ;
output [‘OR1200_PIC_INTS−1:0] pic_ints_masked ;
wire [3 1 : 0] spr_dat_tmu ;
wire [1 4 : 0] except_tr ig ;
wire [1 4 : 0] except_stop ;
wire except_tmu ;
or1200_tmu or1200_tmu (

. c l k (c l k) ,

. r s t (r s t) ,

. spr_addr (spr_addr) ,

. spr_dat_i (spr_dat_cpu) ,

. spr_cs (spr_cs [‘OR1200_SPR_GROUP_TMU]) ,

. spr_write (spr_we) ,

. spr_dat_o (spr_dat_tmu) ,

// excep t ion i n t e r f a c e
. i n t r (except_tmu) ,
. except_started (except_started) ,

// i n t e r r up t i n t e r f a c e
. p i c_ints (p i c_ints) ,
. pic_ints_masked (pic_ints_masked) ,

. ex_freeze (ex_freeze)
) ;

The OR1200 top level module or1200_top only had to reroute the interrupts signals
from the input via the TMU to the interrupt controller.

4.1.5 Additions to the configuration file

The file or1200_defines.v contains the parameters used by all the modules in the
processor. The defines needed by the TMU was placed here, and the parameters that had
to be changed in order to include the TMU were modified. Table 4.1 has overview of all
the parameters affected by the adding of the TMU and new parameters needed by other
modules than the TMU itself.

4.2 Setting up the complete system

To be able to test and use the processor, it needed support from some other modules.
Much of the work on developing the system used in this thesis was done as a separate
project found in [6]. The system setup remains quite similar except for some modifications.
In this thesis the instruction and data bus is divided and controlled by separate arbiters,
and support for simulated memory is added. Two interrupt generators was connected to
the data-bus, for the testing of interrupt masking. Figure 4.1 shows how the system is
structured.

All the components used in this system were developed by the OpenCores community,

54 CHAPTER 4. INTEGRATING THE TMU IN OR1200

Table 4.1: Paramters for the TMU

Name Old Value New value

OR1200_SR_WIDTH 16 17
OR1200_SR_CEE - 17
OR1200_UPR_TMUP_BITS - 12
OR1200_UPR_RES1_BITS 23:12 32:13
OR1200_UPR_TMUP - 1
OR1200_DU_DSR_TMU - 14
OR1200_DU_DRR_TMU - 14
OR1200_EXCEPT_TMU - OR1200_EXCEPT_WIDTH’hf
OR1200_SPR_GROUP_TMU - 12

and can be downloaded for free from the internet. The complete system can also be found
in appendix B in hardware/orsoc

4.3 Setting up simulation

Throughout the work of this thesis open-source tools for compiling and simulating
hardware was used, Icarus Verilog for compilation and VVP for simulation. Because
the simulated hardware is a computer system, actual software was used as input to the
simulation. This meant that a simulation script had to handle both the compilation of
hardware and software for OpenRISC.

This was done with a makefile which compiled the processor to an executable
simulation model, compiled and converted the software to hexadecimal instructions and
ran the simulation. The input program was loaded by the simulated memory when the
simulation started. Figure 4.2 shows the steps in compiling and running the simulation.
It is possible to specify a single test or run all the available test consecutively. The
makefile used in this thesis is based on the simulation makefile from OrpSoC1, with
some modifications. The support for other compilers than Icarus Verilog is removed, the
conversion for user specified ELF files to hexadecimal files is included and some rules for
compiling and simulating FreeRTOS are added. The full description of how to set up and
use the simulation framework can be found in Appendix C.

Instead of compiling one of the software tests, a pre-compiled ELF file can be specified.
This file is then converted to hexadecimal format by the script and used as input in the
simulation.

The output from the simulation was stored in a separate folder, and an execution log
containing the completed instructions and the content of all the general purpose registers
was created for each test. A waveform file for each test is generated only if it is specified.

1OrpSoC is a OR1200 based system on chip, developed by the OpenCore community

4.3. SETTING UP SIMULATION 55

F
ig
ur
e
4.
1:

T
he

co
m
pl
et
e
sy
st
em

56 CHAPTER 4. INTEGRATING THE TMU IN OR1200

4.4 OR1200 tests
To verify the behaviour of the OR1200 processor and the connected components in the
system, the tests from OrpSoC was performed. Table 4.2 shows an overview of the
standard tests performed by the OrpSoC testbench. The tests for OR1200 were written
in either C or assembly and was compiled and loaded by the memory module during
simulation.

Table 4.2: Tests performed by the SoC testbench

Name Test case Language

or1200-
simple

Check if the main loop is reached and the exit
mechanism is functioning

C

or1200-basic Basic test of the instruction set ASM

or1200-
cbasic

Test the basic C functionality C

or1200-
dctest

Test the data cache C

or1200-float Test the floating point unit in hardware or
software

C

or1200-mmu Test the MMU C

or1200-
except

Test handling of exceptions, reset, bus error,
alignment, illegal, d-tlb miss.

ASM

or1200-mac Test the MAC unit ASM

or1200-ext Test zero and sign extension instructions ASM

or1200-cy Test setting of carry bit ASM

or1200-ov Test setting the overflow bit ASM

or1200-sf Test the comparison instructions ASM

or1200-dsx Test delay-slot exception bit generation ASM

or1200-
dsxinsn

Test delay-slot exception bit on instruction fetch
related instructions

ASM

or1200-ffl1 Test the find first and find last 1 instructions ASM

or1200-
linkregtest

Test behaviour of link register in jump-and-link
instructions

ASM

or1200-tick Test the tick timer ASM

or1200-
ticksyscall

Test the tick timer and syscall exceptions simul-
taneous

ASM

uart-simple Test the UART by printing a string C

When the TMU was added some additional tests were added, the tests written to
test the TMU functionality is shown in Table 4.3. To test the masking of interrupts two
simple interrupt generators were added to the system via the data bus. or1200-test in

4.5. RESULTS OF THE OR1200 TESTS 57

Table 4.3 will run the following tests from Table 3.5:

• Simple
• Simple2
• Read SR
• Start stop
• Read count

The test counts the number of generated interrupts and reports if the test is successful.
intgen-simple will test masking of interrupts by loading a value into the replenishment

compare register and the two interrupt count registers that corresponds to the connected
interrupt lines. To make sure that interrupts are masked, the limit for each interrupt is
set to be low relative to the replenishment period. The test will exit when a fixed number
of interrupts are handled, and report if it was successful. intgen-tmu is a combination of
or1200-tmu and intgen-simple designed to test both functions of the TMU simultaneously.

Table 4.3: Tests performed by the SoC testbench for the TMU

Name Test case Language

or1200-tmu Test basic task time counting and exception
generation

ASM

intgen-
simple

Test basic interrupt generation and masking ASM

inten-tmu Test interrupt generation and masking while
counting task execution time

ASM

tmu-full Three running tasks that has a 10% chance of
using to much time. Two interrupt sources that
generate interrupts at a random interval.

C

4.4.1 Full TMU test

The test tmu-full is the most extensive test of the TMU. It consists of three tasks which
has a 10% chance of entering a spin lock inside its critical section. During operation
interrupts from two different sources are handled, and the interrupt service routine for
each source resets the interrupt generator to a random time. The tick timer is used to
switch to the next task, and all the tasks are run for one tick period. All the configuration
parameters of this test can be found in Table 4.4. The limits and ticks per second was
set high to limit the simulation time.

4.5 Results of the OR1200 tests

All the tests described in Table 4.2 reported success when they were run both with and
without the TMU added to the processor. The results of these tests with the TMU
included in the system can be found in appendix B in or1200-tests.

58 CHAPTER 4. INTEGRATING THE TMU IN OR1200

Table 4.4: Parameters for the full TMU test

Parameter Value

Clock frequency 50 MHz
Ticks/sec 500
Tick period 100000
Interrupt replenishment 400000

Task1 limit 200000
Task2 limit 150000
Task3 limit 250000

Interrupt0 limit 5
Interrupt1 limit 4

The tests designed to check the functionality of the TMU as a part of the processor
described in Table 4.3 were also able to complete successfully. The results of these tests
can be found in Appendix B in or1200-tmu-tests. The results of the tmu-full test is found
in Appendix B in or1200-tmu-full.

Only the key events of the tmu-full test is displayed here. In each event the involved
signals along with the current program counter and current instruction is displayed. Table
4.5 shows the value of the current program counter, whether or not the TMU has generated
an exception and the current interrupt mask. These values were sampled each time a
change occurred in the TMU intr signal or pic_mask during the simulation.

By comparing the program counters at the times the TMU exception was raised to
the disassembly file for this program, the faulty tasks can be identified. The disassembly
is found in appendix B in or1200-tmu-full/tmu-full.dis and the waveform file in or1200-
tmu-full/tmu-full.fst

The waveform for this test is shown in Figure 4.3, where 4.3(a) shows the first half
and Figure 4.3(b) shows the second half of the test. The following events are marked in
the figures 4.3(a) and 4.3(b):

1. First interrupt arrives, source is line 4
2. Interrupt on line 3 is blocked by task 2
3. Task 2 reaches its limit and TMU generates the first exception
4. Interrupts on line 3 arrives for the sixth time, but it is masked
5. Replenish interrupt budget, interrupt 3 is unmasked, but it is blocked by task 1
6. Task 1 reaches its limit and TMU generates the second exception
7. Interrupts are blocked by task 3
8. Task 3 reaches its limit and TMU generates the third exception

4.5.1 Discussion of the results
The results of the standard OR1200 tests is only an indication of whether or not the
OR1200 and its connected modules are functioning correctly. The successful execution of

4.6. USING THE TMU 59

Table 4.5: TMU full test events

Time PC TMU exce PIC mask

423570 0x1de4 1 00000
5403410 0x1234 1 00000
7787030 0x11f8 0 00008
9485230 0x12c0 0 00018
12410990 0x1170 0 00000
14401850 0x1174 1 00000
19427170 0x12f0 1 00000
24148590 0x114c 0 00010

these tests before adding the TMU logic serves as a reference point for how the system
should operate. When the TMU is added to the system, the standard tests yielded the
same result, indicating that the TMU has not had any unintended effects on the normal
operation of the processor.

The correct execution of the tests for the TMU written in software yielded the same
result in regards to the TMU as the tests in Table 3.5, indicating that the TMU behaves as
specified even as a part of a larger system. The tests also show that the processor executes
the correct exception vector when the TMU exception arrives, and that the added bit to
the processors supervision register decides if the processor core will acknowledge the TMU
exception or not.

4.6 Using the TMU

This section is meant as a guideline for anyone wanting to use the functionality provided
by the TMU.

4.6.1 Task time counting

The values required for counting task execution time is count and compare. When starting
to count the execution time for a new task the user must make sure that a value is written
to the compare register, and then to the count register if a task should start without a full
budget. To be able to write these values, the counting must first be stopped. When the
values are loaded, counting is started by writing to the START -bit in control. If no value
is loaded into count, this register should be set to zero by writing to the RESTART -bit
in control.

During task execution time counting, the TMU is either stopped by writing to the
STOP -bit in control, or when an exception is generated because the limit is reached. If an
exception is generated, this is cleared by writing zero to the count register, or by setting
RESTART or CLEAR in the control register. If a task is stopped before the task limit
is reached the value in count can be read until a new value is written.

60 CHAPTER 4. INTEGRATING THE TMU IN OR1200

When switching between tasks, the user must make sure that a valid value is written
to compare before the timer is started, to prevent the new task from using the previous
task limit.

If the TMU is configured to count during exceptions, CE -bit in SR is set, it must be
ensured that the TMU is stopped before loading new values.

4.6.2 Counting interrupts
To start counting interrupts a value must first be loaded into the rep_compare register,
and the CID-bit in SR must be set. This will start the interrupt replenishment counter.
The limits for each interrupt line should be written to its corresponding intr_compare
register. All interrupts that exceeds its limit will be masked out before reaching the
interrupt controller. The programmable interrupt controller remains unchanged. To stop
masking of a specific interrupt, zero should be written to the intr_compare register of
that line. To stop counting and masking of all interrupts, zero should be written to the
rep_compare register.

4.6. USING THE TMU 61

Figure 4.2: Makefile simulation flow

62 CHAPTER 4. INTEGRATING THE TMU IN OR1200

(a
)
P
ar
t
1

(b
)
P
ar
t
2

F
ig
ur
e
4.
3:

K
ey

ev
en
ts

fr
om

th
e
T
M
U

fu
ll
te
st

Chapter 5
Or1ksim

The following chapter starts by describing the relevant behaviour and mechanics within
Or1ksim. It then continues to describe the modifications performed in this simulator. A
driver for the TMU is then presented. The chapter proceeds with a section on verification
of the TMU module and its driver in Or1ksim. The chapter ends with a short discussion
about the modifications and results. Most information in this chapter is gathered from
examining the source code. Citations are given if the information is found elsewhere.

5.1 Or1ksim description

Or1ksim is an instruction set simulator for the OpenRISC 1000 instruction set
architecture.

5.1.1 Downloading, installing and running

Or1ksim can be downloaded from the OpenRISC repository on github [10]. The version
used in this thesis is from the commit hash: cae154d3fa13882b846030e5d2242fda1fe70604.
The tool is installed by simply running the configure script, followed by make and make
install.

Running Or1ksim is done by calling the or32-elf-sim command from shell. Refer to
’–help’ for the different options available for Or1ksim. ’-i’ enables the interactive prompt
in the simulator, this allows for access to information regarding modules and memory.

5.1.2 Modules

Or1ksim is divided into several modules. Each module represents a similar hardware
module and are seperated in different directories. Each module can be customized by
changing variables in sim.cfg, a optional setup file for the simulation, included by giving
the ’-f’-option to or32-elf-sim. Modules are compiled via automake scripts in the Or1ksim
source folder.

63

64 CHAPTER 5. OR1KSIM

5.1.3 Running Or1ksim as debug server

Or1ksim can be used with remote debugging through a remote serial protocol (RSP) server
for GDB. This allows debugging of software compiled for the OR1200 processor. Step one
and tree in the explanation of Or1ksim behaviour is the handling of this connection.

5.1.4 Orksim structures

A selection of variables and structures are collected in Table 5.1

Table 5.1: A selection of variables and structures in Or1ksim

File Struct Variable Description

sim-config.h runtime sim cycles Number of executed cycles
mem_cycles Number of memory cycles.

cpu instructions Number of instructions executed
config pic Configuration of Programmable Interrupt

Controller

execute.h cpu_state sprs[] SPR register

The config-struct holds configuration data for non-peripheral modules. These
modules are mostly configurable via sim.cfg.

5.1.5 Or1ksim behavior

Upon calling the simulator from shell Or1ksim starts in the _main-function in
support.c, which sends it to main in toplevel.c. main initializes all the different
modules and configures Or1ksim for simulation. After Or1ksim is ready, main passes
control to exec_main.

During the configuration process, Or1ksim reads sim.cfg and configures itself to
the given specifications. sim.cfg is processed by reg_config_secs which calls the
configuration functions to modules configurable via sim.cfg. Configuration functions
have names like reg_<module-name>_sec, e.g. reg_pic_sec for the Programmable
Interrupt Controller (PIC). Default values are set by init_defconfig, or module specific
init functions if available. sim_reset is called before initializing the simulation, this
function calls reset functions in some of the other modules e.g. pic and tick.

Or1ksim measures time in cycles, Figure 2.4. Normally one instruction is executed
per cycle, the exceptions are reading and writing to memory, which has been observed,
during simulation, to take two or three cycles, but no more.

exec_main is the main loop in Or1ksim and the following describes a simplified
version, Figure 5.1:

1. If debug is enabled, handle debug commands as long as the CPU is stalled.

5.1. OR1KSIM DESCRIPTION 65

Figure 5.1: exec_main, from execute.c

2. Update the program counter and execute the next instruction.
3. If debug is enabled and if GDB is requesting single-step debugging, stall the CPU

for next loop iteration and store a trap exception in the rsp-struct.
4. Increment the cycle counters.
5. If there are unblocked simulator jobs, like the tick timer, execute these.

Step two and four are where the actual execution of the instruction cycle takes place.
In step five exec_main allows the different modules to get runtime. This time is not

included in the cycle count, but it is necessary to allow modules like tick timer to get
runtime so it can issue its tick exception. Jobs scheduled to be executed here are from
modules which do not necessarily need to run every cycle. As an example the tick timer
is suppose to generate an interrupt every X clock cycles. This is done by scheduling a job
at that cycle count in the future. This allows Or1ksim to reduce the overhead associated
with trying to mimic concurrent hardware with sequential software.

5.1.6 Exceptions in Or1ksim

Exceptions in Or1ksim are issued through except_handle, which takes the two
arguments: except, the exception vector for the exception, and ea the effective address of

66 CHAPTER 5. OR1KSIM

Figure 5.2: except_handle, from except.c

the instruction that generated the exception. The function behavior is described below
and shown in Figure 5.2.

1. Set pcnext to the address of the exception.
2. Save the Supervision Register(SR) to Exception Status Register(ESR) and effective

address to Exception Effective Address Register (EEAR) located in Special Purpose
Registers(SPR).

3. Disable interrupts.
4. Save the program counter with necessary adjustment in Exception Program Counter

Register(EPCR).
5. If the exceptions is in the between-instructions-category, move pcnext into the PC.

Necessary adjustments to the program counter can be subtracting four if
cpu_state.delay_insn is set, adding four if its the SYSCALL-exception or saving ea in-
stead if it is an ITLBMISS -/IPF -exception. When a between-instruction-exception occurs
the program counter is already pointing to the next instruction to be executed. Without
the check in step four updating PC would not happen until after the next instruction
has been executed, if this next instruction is a jump it would cause serious problems, as
stated in except.c.

5.2. OR1KSIM CHANGES 67

5.2 Or1ksim changes

5.2.1 Exception handling

Support for TMU exceptions are added to except_handle. An exception vector
EXCEPT_TMU is added and classified as a between-instructions exception, Figure 5.2.
A check on the count during exception bit is included to allow the exception handle to
stop the TMU counter if the bit is low. Supervision register(SR) is modified with the
addition of Count Exception Enable CEE, this is set low when an exception is raised.

5.2.2 SPR

The changes made to mtspr in sprs.c are listed below, no changes to mfspr was
necessary.

• Protection is added to the status register, replenishment counter and interrupt
counters, so that these can not be written to.

• Protection is added to count and compare (high/low), so these can not be written
to while the TMU is running.

• Count invalid is set during a write to count, and cleared when compare is written.

5.2.3 Programmable interrupt controller

In addition to adding an interrupt filter check at the start of the report_interrupt,
described later, two additional changes were made.

Ignored interrupts The Programmable Interrupt Controller (PIC) prints out a
message stating that it had ignored an interrupt. This indicates that the rate of interrupts
on one line is to large, it occurs when an interrupt arrives and the corresponding bit is
already set in PICSR. To measure the amount of issued, but ignored interrupts a series
of SPR registers was added. This allows software to read the measured amount. The
registers base is available at 0x4803, 0x3 offset from the PIC group base, 0x4800. There
is one register for each line. Each register is offset from the base according to the line
number. The print was disabled to improve simulator performance because large amount
of calls to printf has an impact on simulation time.

Simultaneous interrupts The second change involved running a test with two
interrupt sources, at seemingly random times the program would enter an infinite loop,
looping on the complete external interrupt routine in FreeRTOS. This problem seemed
like a race condition, triggered by the arrival of two interrupts within the same instruction
cycle. After examining the report_interrupt-function the most likely suspect was when
the function schedules a new interrupt. The first attempt to fix this was removing the
call to the exception from the scheduling queue prior to issuing another, because there
is no reason to signal this exception twice. The interrupt handler will read PICSR to
check the raised interrupts, so scheduling an exception is just a way of signalling that an
interrupt has been raised. This worked, so no effort was made to discover where exactly

68 CHAPTER 5. OR1KSIM

Table 5.2: Configurable variables for the TMU in the config-struct

Name Description

enabled Indicates whether or not the TMU is enabled.
status Holds the reset value for the status register.
use_tt Indicates if the task timer is enabled.
use_if Indicates if the interrupt filter is enabled.

Table 5.3: Configurable variables for the TMU in sim.cfg

Name Description

enabled 1 or 0, default: 0
status Sets the default status of the module, default: 0x2
task_timer Enable/disable the task timer, default 0
int_filter Enable/disable the interrupt filter, default 0

the simulator fails, or if this is the best solution, both of these tasks fall outside the scope
of this thesis and as shown in later chapters the module behaves as expected.

5.2.4 Time management module

The TMU module in Or1ksim is designed to the specifications given in Sections 3.3.
The TMU module is not scheduled via the Or1ksim scheduler. Instead there is a

call to tmu_main each cycle of exec_main. This call includes the cycle count value,
runtime.sim.mem_cycles, which is also added to runtime.sim.cycles.

The following are added to Or1ksim’s configuration and setup functionality.

• tmu-section is added to sim.cfg, Table 5.3 .
• reg_tmu_sec is added to reg_config_secs in sim-config.c.
• tmu-struct, Table 5.2, is added to config-struct in sim-config.h.
• Default values are added to init_defconfig.
• tmu_reset is added to sim_reset in toplevel-support.c.

A configuring section for the TMU is added to the sim.cfg. reg_tmu_sec was
created and added to reg_config_sec, this function will set the values in config.tmu
according to the TMU section in sim.cfg. The default values are set in init_defconfig
and the tmu_reset function is included in the system reset.

tmu_status is registered to the information function sim_cmd_info. This allows
the user to check the TMU registers by giving the command ’info reg’ to interactive
prompt in the simulator.

All TMU-functions callable from outside of the module are protected by the enable
parameters set up in config.tmu.

5.2. OR1KSIM CHANGES 69

Figure 5.3: tmu_main, from tmu.c

The module is added to the makefiles by searching for the tick timer file names, and
adding the TMU files accordingly, all while also referring to an automake tutorial. Due
to the low amount of places that needed changing in the makefiles, it was easier to brute
force this rather than learning all the ins and outs of automake.

The TMU module can be viewed as two separate modules and are explained as such,
however, they use some of the same functions.

Part one, task timer: This part of the TMU is responsible for measuring the
execution time of the current task. If the task exceed its given budget the task timer
will raise a TMU exception. Task timer functionality is shown in Figure 5.3.

tmu_main calls tmu_update_status, tmu_increment_count and tmu_compare,in
this order.

1. tmu_update_status checks the control register and applies the requested
changes to the status register.

2. tmu_increment_count checks if the TMU is running, if so it adds run-
time.sim.mem_cycles to the count value.

3. After checking if the task timer is running and TMU-exceptions are enabled in the
processor SR and TMU SR. tmu_compare checks if the count value has exceeded
compare, if so an exception is scheduled.

Exceptions are generated by scheduling tmu_raise_except in the current in-
struction cycle. tmu_raise_except calls except_handle with the arguments EX-
CEPT_TMU (0xF00) and the current contents of ea.

70 CHAPTER 5. OR1KSIM

Figure 5.4: tmu_int_filter, from tmu.c

Another solution is to schedule an exception at a time equal to compare in the future,
like the tick timer does. The reason for not choosing this implementation is that it requires
a significantly more complex, outspread and intrusive implementation. For example,
during the context switch upon reading the count value, this value needs to be calculated
from within the mfsr-routine and updating the status register would have to be handled
in mtspr. It means loosing cycle by cycle control over the TMU functions and values,
which comes in handy when debugging the module.

Part two, interrupt filter: The main task of this part is to filter out interrupts that
issues requests at an abnormal level. This is done by using an interrupt filter which
ignores interrupts when they deplete their budget and the same count/compare functions
from task timer to replenish the interrupt budgets.

As mentioned in Section 5.2.3, a call to the interrupt filter is added to the start of
the repport_interrupt-function. This function dismisses interrupts raised on ignored
lines. Returning true indicates the interrupt is filtered out, the function returns false
otherwise. The function is explained below and shown in Figure 5.4, it is called with an
integer representing which interrupt line is reported:

1. If count interrupts are disabled return FALSE.
2. Check if this interrupt is masked, return TRUE if it is.
3. If count interrupt is enabled, increment the interrupt counter.
4. Check if this interrupt lines counter has exceeded its limit. If true add the line to

the mask.
5. Return false.

tmu_increment_count adds the same cycle count to replenishment count as the

5.2. OR1KSIM CHANGES 71

task timer part of the function does. The addition is only performed if the interrupt filter
is enabled and the replenishment compare value is higher than zero.

When the replenishment count exceed the replenishment compare value, tmu_compare
sets the replenishment counter, filter mask and interrupt line counters to zero. The func-
tion also reasserts all the interrupts that was masked out. All actions are only performed
if the interrupt filter is enabled and the compare value is above zero. If the count interrupt
bit in SR is low, the compare function will unmask all interrupts.

Reasserting the interrupts are done to mimic how a hardware module would keep its
interrupt signal high even if it is masked. So when the filter is disabled, it would appear
to the processor like a new interrupt. If the interrupts are not reasserted by this function
they would be lost, since interrupts in Or1ksim can be thought of as if their signal is
passed through an edge-detector.

5.2.5 Interrupt generator

To properly test the TMU module, a separate module was created to generate interrupts.
This module is accessible from software via the bus at address 0xA0L.

Writing to the base address, which is directed to interrupt0 ’s time-out register, will
schedule an intgen0-job at a time in the future equal to the written value. It also sets
the timeout-variable and the active-flag in the module. Writing to 0xA0L+0x4 will clear
the timeout-variable, the active-flag and the bit in PICSR, corresponding to the interrupt
line. intgen0 reports an interrupt to line 3, and intgen1 reports on line 4. intgen1 is
written to like intgen0, but with an offset of 0x1000000.

Reading from the time-out addresses returns the time-out written, and reading from
the clearing addresses returns whether or not this interrupt is active. The reset function,
intgen_reset, is added to the sim_reset routine. This will upon Or1ksim startup reset
the interrupt generator, and print out the status of the module. intgen_sec_start sets
the default values shown in Table 5.4.

During testing it was discovered that another version of the interrupt generator was
required. This version will generate interrupt and schedule itself to generate another
interrupt at a randomly selected cycle in the future. This loop is triggered by writing
to the time-out of address of the module, this sets the time-out for the first interrupt.
After this initial time-out, the succeeding interrupts are scheduled with a time-out set by
using the rand-function in stdlib. There is no way to stop this interrupt loop when it is
triggered. A stopping function was not needed for the interrupt tests. This could easily be
implemented by adding an additional case statement in the write function. When written
to, this case statement should issue a call to SCHED_FIND_REMOVE which can
remove a scheduled job, thus breaking the loop. This functionality was not needed because
an uncontrollable interrupt source is wanted to properly test the TMU’s interrupt filter.

The two versions can be changed between by setting version in sim.cfg to one or
two. The maximum limit for random values can be set by changing the RAND_MAX -
definition in intgen.c.

72 CHAPTER 5. OR1KSIM

Table 5.4: Configurable variables in sim.cfg

Name Description

Enabled 1 or 0, default: 0
BaseAddress Sets the base address for the module, default: 0xA0000000

Size Size of the memory allocated to this module, default: 0x1000008
Version 1 or 2, Choosing between the version, default: 1

Creating the module

The module based on the generic module in generic.c/h,this is an example module
included in the Or1ksim files. Non-essential functions were deleted and the remaining
functions were re-written to act as a interrupt generator. Using the module registration
facilities allows this module to easily be modified in sim.cfg, Table 5.4 shows these.

To add compilation support, the same approach as with the TMU was taken, adding
the intgen files in the makefiles wherever the other peripheral modules were mentioned.

5.3 TMU driver

To easily control the TMUmodule a set of functions is implemented to provide an interface
for the user. These functions can be found in tmu.c/h in the arch subfolder of the
FreeRTOS folder. Table 5.5 lists the driver function names and effects. As of now the
TMU in Or1ksim does not provide the option to select whether or not to count during
freezes. The driver functions regarding this bit will only have an effect on SR.

5.4 Verifying Or1ksim

The GNU debugger was used during the development of Or1ksim. Since FreeRTOS was
already ported and was working on Or1ksim, testing of the final implementation could be
done via FreeRTOS. First the driver functions were tested, then these drivers were used
to test the task timer and interrupt filter behaviour. These test are run in FreeRTOS
without the TMU functionality.

The print out from the complete test can be viewed in Listings D.1 in Appendix D.1.
The listings in this section is an excerpt from the listing in appendix. How to run this
test is explained in the tutorial in Appendix C.5.

5.4.1 TMU driver

All the functions in the driver was called and the effect on the TMU was verified to be
as intended. tmu_driver_test in tmutest.c/h calls all the drivers and checks their
effect. The functions have been tested to verify that they work as intended, but not for all
possible combinations and orders. Table 5.6 shows special test cases outside of verifying
the behaviour from Table 5.5

5.4. VERIFYING OR1KSIM 73

Table 5.5: Functions available in the TMU driver and description

Function Description

tmu_start Starts the TMU counter.
tmu_stop Stops the TMU counter.

tmu_restart Restarts the TMU counter.
tmu_clear Clears count and compare. Counter is

stopped.

tmu_enable_exception Set the exceptions enabled bit in TMU SR.
tmu_disable_exception Clear the exceptions enabled bit in TMU SR.

tmu_enable_count_exception Set the count exceptions enabled bit in TMU
SR.

tmu_disable_count_exception Clear the count exceptions enabled bit in
TMU SR.

tmu_enable_count_freeze Set the count freeze enabled bit in TMU SR.
tmu_disable_count_freeze Clear the count freeze enabled bit in TMU

SR.

tmu_enable_count_interrupt Set the count interrupt enabled bit in TMU
SR.

tmu_disable_count_interrupt Clear count interrupt enabled bit in TMU
SR.

tmu_set_control(val) Sets the control register to the unsigned long
val given as parameter.

tmu_get_status Returns the contents of the Status Register
as unsigned long.

tmu_set_compare(val) Sets the 64 bit compare register to the given
unsigned long long parameter val.

tmu_get_compare Returns the contents of compare as an
unsigned long long value.

tmu_get_count Returns the contents of count as an unsigned
long long value.

tmu_set_interrupt_rep_period(val) Sets the replenishment period for the inter-
rupt counters to the unsigned long long pa-
rameter val.

tmu_get_interrupt_rep_period Returns the interrupt replenishment period
as an unsigned long long.

tmu_set_interrupt_compare(line, val) Sets the arrival limit, val, for the interrupt,
line.

tmu_get_interrupt_compare(line) Returns the limit for the requeste interrupt,
line, as an unsigned long.

tmu_get_interrupt_count(line) Returns the count value for the requested
interrupt, line, as an unsigned long.

74 CHAPTER 5. OR1KSIM

Table 5.6: TMU driver special cases tests

Test Case Special condition Expected result

All initial values. Check if all values are initiated
correctly.

All values are correct at
startup.

Starting when started. Make sure the counter does not
reset.

Counter continues without
change.

Stopping when stopped. Make sure the counter remains
stopped.

Counter remains stopped.

Writing compare while
running.

Make sure compare can not be
written to without stopping.

Compare is not updated.

Writing count while run-
ning.

Make sure count can not be written
to without stopping.

Count is not updated.

Writing to replenishment
count.

Make sure replenishment count can
not be written to.

Replenishment count is
not updated.

Writing to interrupt coun-
ters.

Make sure interrupt counters can
not be written to.

Interrupt counters are not
changed.

Listing 5.1: Results from the TMU driver test on Or1ksim
tmu_driver_test r e tu rn s with 0 e r r o r s

All the test cases passed, and the test returns with zero errors, printout from the test is
shown in Listings 5.1

5.4.2 TMU behavior

The two parts of the TMU is tested separately, the tests are described in the following
paragraphs.

Task timer test Task timer test is set up like a state machine, Table 5.7. States two
to five sets up and initiates different tests. State zero is the idle state where the function
waits on results from the system. When a test returns, state zero calls tmu_clear and
restores the TMU so it is ready for the next test. State one exits the test and returns the
number of errors.

Listing 5.2: Results from the TMU task timer test on Or1ksim
TMU: : Schedul ing except ion , Compare = 400000
res2_except
TMU: : Schedul ing except ion , Compare = 4294967297
res2_except
TMU: : Schedul ing except ion , Compare = 1200000
res2_except
tt_behavior_test r e tu rn s with 0 e r r o r s

Listings 5.2 shows an excerpt of the printout from the complete test. It shows that
the total test program returned with zero errors and that the expected exceptions were

5.4. VERIFYING OR1KSIM 75

Table 5.7: Task timer tests

Test Case Test Behaviour Expected result

2 Short compare Start timer with short compare, 400
000

Exception is raised
quickly.

3 Long compare Start timer with long (33-bit) com-
pare

Exception is raised.

4 Exception dis-
abled in TMU

Disable exception in TMU SR,
short compare, check vs. tick timer

Tick timer reaches
limit before exception
is raised.

5 Exception dis-
abled in SR

Disable exception in SR, short com-
pare, check vs. tick timer

Tick timer reaches
limit before exception
is raised.

6&7 Extending com-
pare

Starting the TMU with 600 000 as
compare value, state six, after one
tick set compare value to 1 200 000,
state seven.

Exception generated
in state seven, and
not state six, state six
ends after approx 500
0001 cycles.

produced. The absence of generated exceptions from state four, five and six shows that
those states completes as expected. State seven produces an exception with the compare
value 1 200 000. Without the TMU functionality in FreeRTOS the 0xF00 -exception calls
the res2_except function which prints out res2_except. During this test res2_except
also calls tmutest_exception, the exception handling function for this test.

Additionally the print out from Or1ksim shows that the compare and count values
are not flipped, so MSB and LSB remains the same in both FreeRTOS and Or1ksim.
Compare value set was 0x100000001 which equals the printed integer: 4 294 967 297.

Interrupt filter tests Table 5.8 shows the explanation of different states in this test.
It starts by testing the filter and shows that the TMU reasserts the interrupt. The second
state shows how the filter reacts under pressure from multiple sources spamming interrupt
requests.

The test stops after the first interrupts in the fifth replenishment period. During
replenishment period one and two, state zero is active. It is clear from the results that
this test works as expected. Interrupt line tree is ignored and the interrupts stops, when
the budget is replenished the interrupt gets reasserted by the TMU and the loop continues
until it is once again ignored, Listings 5.3. During state one the first interrupt triggered
the filter, but passed. This interrupt disabled the interrupt counter and unmasked all
interrupt lines. The next four interrupts passes the filter without being counted. The
fifth interrupt is counted and the mask is set. When the sixth interrupt arrives it is
ignored. This is shown in Listings 5.4

State two is active in the fourth replenishment period, and from the results it is clear
that the interrupt filter ignores interrupts as they deplete their budget, Listing 5.5

76 CHAPTER 5. OR1KSIM

Table 5.8: Interrupt filter tests

Test Case Test Behaviour Expected result

0 Reasserting While loop which requests
a new interrupt for each
arrival

Interrupts stops when exceeding the
limit(2), and continues in the next
replenishment period.

1 Enable/disable
count interrupts

While loop which requests
a new interrupt for each
arrival. Upon the first
interrupt, disable count
interrupts, re-enable upon
the fifth.

After the first interrupt, four inter-
rupts will pass the mask, the fifth
interrupt will be counted, and the
sixth will be ignored.

2 Ignoring multiple While loop which requests
two interrupts every other
tick period

Interrupts will be repeatedly ig-
nored when they exceed their
limit(2 and 3).

Listing 5.3: Results from the TMU interrupt filter test on Or1ksim, state zero
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 1

TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 4
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 2

Listing 5.4: Results from the TMU interrupt filter test on Or1ksim, state one
TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 5
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 6
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 3

5.5. DISCUSSION 77

Listing 5.5: Results from the TMU interrupt filter test on Or1ksim, state two
TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 7
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 0 Pass : : 4 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 8
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 1 Pass : : 4 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 4
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 2 Pass : : 4 | # 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 5
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 3 Ignored 4 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 6
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 3 Ignored 4 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 7

5.5 Discussion
Testing shows that the Or1ksim TMU module works as expected. All the driver function
produce the expected reaction in the TMU module. The TMU generates exceptions
correctly and it is possibly to assign compare while a task is executing.

The driver provides an easy to use interface for controlling the TMU.
Or1ksim provides a good base for developing applications that uses the TMU. The

possibility to debug by using GDB on both the simulator and the application provides a
great way to locate and correct errors. The simulator will also work as a reference point
for tests run on the FPGA.

78 CHAPTER 5. OR1KSIM

Chapter 6
FreeRTOS

This chapter starts out by describing the normal operation of FreeRTOS, the information
here is mostly gathered from examinig the source code. Appropriate citations are
given when the information is taken from elsewhere. After a description of the
different functionalities, this chapter continues on to describing the modifications made to
accomodate the Time Managemen Unit. The chapter proceeds with a test of the modified
FreeRTOS, and finishes with a short discussion of the modifications and test results.

6.1 FreeRTOS description

6.1.1 Introduction
FreeRTOS is a small and simple real-time operating system developed for embedded
applications. The FreeRTOS website highlights [2]:

• Pre-emptive scheduling option.
• Co-operative scheduling option.
• 6k to 10k ROM footprint.
• Mutexes and semaphore support.
• Very efficient software timers.

The FreeRTOS version used in this thesis is 6.1.1. It is already ported and tested for
the OpenRISC 1000 instruction set architecture simulator, Or1ksim, and can be aquired
via SVN checking out [5], the FreeRTOS used in this thesis is from 29.05.2014.

FreeRTOS was chosen because it is a simple RTOS with a small memory requirement
at its bare minimum. The authors have previous experience with this RTOS through
previous courses, as stated in the prelimenary project for this theses [6].

6.1.2 Memory layout
An example of the memory layout of FreeRTOS is shown in Figure 6.1, numbers are
collected from a map file after compiling FreeRTOS. The placement of the different

79

80 CHAPTER 6. FREERTOS

sections are defined in the linker configuration file i Appendix B in link.ld.

6.1.3 Naming conventions in FreeRTOS

Tabel 6.1 lists the naming convention used in FreeRTOS.

Table 6.1: Naming conventions in FreeRTOS

Prefix Meaning

c variable of type char
s variable of type short
l variable of type long
f variable of type float
d variable of type double
e enumerated variables
x struct
v void

p[s] pointer to [short]
u[s] unsigned variable of type [short]
prv private functions

v[Task]Create void function in task.c

API functions are prefixed with their return variable type

6.1.4 Task

The executing entity in FreeRTOS is called task instead of process. Only one task is
allowed to execute at a time, this task is chosen by the scheduler [2]. Tasks have no
knowledge of the scheduler activity, thus it is the job of the scheduler to ensure memory
integrity when swapping contexts on the processor. This is achieved by each task having
its own stack, where all information related to this task is stored. A task operates within
its own context with no coincidental dependencies to other tasks or the scheduler.

In FreeRTOS a task should not return, but instead be deleted by itself or other tasks[2].
This does not immediately free the resources previously allocated to the task, instead the
task is moved to the exit state. This tells the scheduler that it should ignore this task.
Deallocating the resources is normally performed in the idle-task, as this has the lowest
priority this might take some time.

Task states

Tasks in FreeRTOS can exist in the following states: Suspended, blocked, ready and
running [2] in addition adding the state exit is useful for understanding.

6.1. FREERTOS DESCRIPTION 81

0x14554

0xA1CC

Uninitialized read/write data

 .bss

0xA1CB

0xA178

Initialised read/write data

 .data

0x95B8

0x93EC

Read only data

 .rodata

0x92AC

0x6E08

Supporting libraries, port specific

0x6E07

0x6800

User applications

0x67FF

0x18D8

FreeRTOS source

0x18d4

0x1000

Initial function and exception/interrupt
routines, port specific code (portasm.S)

.text

0x0FFF

0x0100

Reset, Exception and interrupt handles, port
specific code(reset.S)

 .vectors

Figure 6.1: Example of FreeRTOS memory layout

82 CHAPTER 6. FREERTOS

Table 6.2: Excerpt of TCB from task.h

Struct member Description

pxTopOfStack Points to the location of the last item placed on the tasks stack
xGenericListItem List item used to place the TCB in the ready, blocked and terminate lists
xEventListItem List item used to place the TCB in event lists.

uxPriority The priority of the task where 0 is the lowest priority.
pxStack Points to the start of the stack.

pcTaskName Descriptive name given to the task when created.

Ready:
Representing that a task is ready to enter the running state. New tasks are
immediately placed in the ready state.

Running:
Execution state, pxCurrentTCB points to the task in this state.

Blocked:
The task is waiting for some event. When the event is triggered the task moves to
the ready state.

Suspended:
A task can only reach this state by suspending itself, calling vTaskSuspend.

Exit:
Task placed on the xTasksWaitingTermination list after calling vTaskDelete.

When a task is initialized it is placed in one of the ready lists. Upon initialization one
ready lists are created per available priority level. Internally the ready lists is organized
by the tasks priority, highest through lowest priority. xTaskWaitingTermination-list
is used by the idle-task to fulfil its duties as garbage collector.

Task structures

The process control block is called task control block(TCB) in FreeRTOS, Table 6.2 shows
the minimum necessary members, derived from task.h.

The global pointer pxCurentTCB points to the task currently in the running state.

Figure 6.2 shows how the context of a task is saved on the task stack in FreeRTOS.
The internal ordering of the registers are set to accommodate for cache performance.
When loading and saving the context the memory is accessed in a successive order, this
decreases the chance of cache misses, since it is common to collect blocks from memory[8,
p.78].

6.1. FREERTOS DESCRIPTION 83

0x7C

0x7C

Exception Program Counter Register(EPCR)

0x78

0x78

Exception Status Register(ESR)

Exception handling registers

0x74

0x20

R10(0x20)-R31(0x74)

0x1C

0x04

R2(0x04)-R8(0x1C)

General purpose registers

0x00

0x00

R9

Return register

Figure 6.2: Context layout on the stack, addresses are offset from pxTopOfStack, derived
from portmacro.c

Task creation

User tasks are created from main and the only operating system task, the idle-task, is
created in vTaskStartScheduler. From vTaskCreate the user task is created through
the following steps:

1. vTaskCreate is a compiler macro which calls vTaskGenericCreate, shown in
Figure 6.3. In addition to the arguments passed by vTaskCreate, shown in Table
6.3, are some parameters used when the processor requires MPU wrappers.

2. vTaskGenericCreate starts by allocating room in memory for the new task,
calling prvAllocateTCBAndStack. The amount of allocated memory equals
the size of TCB plus the requested stack size.

3. If the previous step was successful, vTaskGenericCreate sets the variables in the
TCB, calling prvInitialiseTCBVariables.

4. Next it sets up the stack according to what the operating system expects when
loading a new task onto the processer. This is done by prvPortInitialiseStack.
Now the task is set up and ready to enter running.

5. vTaskGenericCreate checks if this is the first task created, by checking if
pxCurrentTCB is already set. If it is the first, pxCurrentTCB is set to this task,

84 CHAPTER 6. FREERTOS

Table 6.3: Parameters for vTaskCreate, from task.h

Parameter Description

pvTaskCode Pointer to the task entry function.
pcName A name for the task.

usStackDepth Number of variables the stack can hold.
pvParameters Pointer to task specific parameters.

uxPriority Priority for the task.
pvCreatedTask Pointer to the TCB created for this task.

and the state lists will be initialized by calling prvInitialiseTaskLists.

6. If pxCurrentTCB is set and the scheduler is not running, the priorities are checked
and pxCurrentTCB is set to the highest prioritised task.

7. The task is added to the appropriate ready-list, depending on its priority.

8. Lastly vTaskGenericCreate does a check to see if the new task has a higher
priority than the pxCurrentTCB -task, if so pxCurrentTCB is moved and a context
switch is initiated with the portYEILD_WITHIN_API-macro.

pxPortInitialiseStack is responsible for writing the initial stack to memory,
including setting the EPCR and ESR which is loaded into PC and SR when execution of
this task start.

6.1.5 Exceptions and interrupts
Interrupt and Exception handling follows the procedure explained in Section 2.1.4. The
service starts at the interrupts/exceptions vector defined in reset.S, these are located in
the .vectors memory area, starting at 0x0100 and stretching to 0x0FFF. This is were the
processor jumps after confirming there has been an exception. The different functions are
organized in memory by using the .org <address> flag, which assigns the first line of the
succeeding code to the specified address. These architecture specific assembly functions
sends the program into portasm.S, after setting some arguments, if necessary. As an
example, the path of an external interrupt is explained below and shown in Figure 6.4

1. External interrupt source signals the processor and the exception handler at address
0x800 is executed.

2. The exception handle issues a l.j vPortExtIntHandler. vPortExtIntHandler is
located in portasm.S.

3. This starts out by saving the context, with the portSAVE_CONTEXT, before
jumping to int_main.

4. int_main collects the programable interrupts controllers status register(PICSR).

6.1. FREERTOS DESCRIPTION 85

Figure 6.3: Task Create

86 CHAPTER 6. FREERTOS

Figure 6.4: Path of the external interrupt in FreeRTOS

5. int_main iterates through every bit in this register looking for a high interrupt.
When finding one int_main realeases control to the corresponding interrupt
routine.

6. This loop continues to all the bits have been checked. Before returning int_main
sets PICSR to zero, knowing non-handled interrupts will be re-asserted.

7. After int_main returns to vPortExtIntHandler, vTaskSwitchContext is
called, this function moves pxCurrentTCB to the highest prioritized task in the
ready queue.

8. Lastly the routine will restore the context of the task pointed to pxCurentTCB
by issuing the portRESTORE_CONTEXT-macro.

This is mostly the software part of the general operating system interrupt routine. The
values saved from EPCR and ESR, in portSAVE_CONTEXT-macro, are updated by
hardware to the value at the time of interrupt prior to updating the program counter to
0x800, as with the general handling.

6.1.6 Scheduler
In FreeRTOS there is no task with the scheduler responsibility. All scheduling associated
functions are called either by a user task or by exception/interrupt handlers. To make
it easier to understand, the scheduler will be portrayed as a single entity as if it was a
process.

FreeRTOS has two primary scheduling modes, pre-emptive and co-operative. If
it is in co-operative all tasks must yield to release processor control, using the
portYIELD-macro, because vTaskSwitchContext is disabled in all task switching

6.1. FREERTOS DESCRIPTION 87

Figure 6.5: Task A is running, gets interrupted, Task B gets control

routines. The modes are set in FreeRTOSConfig.h by the define variable confi-
gUSE_CO_ROUTINES. In this thesis the scheduler is set to use preemtion, meaning
that the scheduler can force a context switch.

Periodically a hardware timer will signal an interrupt to the processes, this interrupt
is called the tick-timer. The period can be set in FreeRTOSConfig.h. This interrupt
is handled by the vPortTickHandler in portasm.c. In short, the function stores
current context, increments tick count, manages state-lists, moves pxCurrentTCB to
highest prioritized task and finally restores the new context. This is the active part
of the scheduler, all other functions are called passively from either this routine, the
idle-task or user tasks.

Figure 6.5 shows normal execution with two tasks. Task A is running with low
priority, while task B(high priority) is blocked waiting for the next tick. At the
end of the time slice, the tick interrupt is generated. This pre-empts A and gives
the scheduler control over the processor. The scheduler increases tick count and
discovers task B has been unblocked and puts B into the ready queue. pxCurrentTCB
will be set to task B in vTaskSwitchContext, because B has a higher priority.
portRESTORE_CONTEXT will load task B onto the processor and resume the
execution of B. This policy is called fixed priority pre-emptiv scheduling. Processes with
equal priority will get runtime according to a round-robin policy.

6.1.7 Context switch
The term refers to switching processor control between two tasks. The context
switch in FreeRTOS is primarily done by the portSAVE_CONTEXT-, portRE-
STORE_CONTEXT-macros and vTaskSwitchContext. The three functions are
explained below, in the order of execution during a context switch.

portSAVE_CONTEXT-macro , Listing 6.1:

1. Make room in the stack for the context.
2. Early save some registers, to be used as clobber register1

1Clobber registers are a term used for overwriteable registers.

88 CHAPTER 6. FREERTOS

3. Save the Supervision Register(SR) and Program Counter(PC) at the time of the
exception, respectively from ESR and EPCR.

4. Save the content of the remaining registers.
5. Refresh the pxTopOfStack-pointer in the TCB.

Listing 6.1: portSAVE_CONTEXT-macro
. macro portSAVE_CONTEXT

. g l oba l pxCurrentTCB
make rooms in stack
l . addi r1 , r1 , −STACKFRAME_SIZE
ea r l y save r3−r5 , the se are c l obber r e g i s t e r
l .sw 0x08 (r1) , r3
l .sw 0x0C(r1) , r4
l .sw 0x10 (r1) , r5
save SPR_ESR_BASE(0) , SPR_EPCR_BASE(0)
l .mfspr r3 , r0 , SPR_ESR_BASE
l .mfspr r4 , r0 , SPR_EPCR_BASE
l .sw 0x78 (r1) , r3
l .sw 0x7C(r1) , r4
Save Context
l .sw 0x00 (r1) , r9
l .sw 0x04 (r1) , r2
l .sw 0x14 (r1) , r6
l .sw 0x18 (r1) , r7
l .sw 0x1C(r1) , r8
l .sw 0x20 (r1) , r10
l .sw 0x24 (r1) , r11

.

.

.

l .sw 0x74 (r1) , r31
Save the top o f s tack in TCB
l .movhi r3 , h i (pxCurrentTCB)
l . ori r3 , r3 , l o (pxCurrentTCB)
l . lwz r3 , 0x0 (r3)
l .sw 0x0 (r3) , r1
re s t o r e c l obber r e g i s t e r
l . lwz r3 , 0x08 (r1)
l . lwz r4 , 0x0C(r1)
l . lwz r5 , 0x10 (r1)

. endm

vTaskSwitchContext , Figure 6.6:

1. If the scheduler is suspended, switching the task will not be allowed.
2. Check if there is a stack overflow for the current task.
3. Iterate through the prioritized ready lists to find the highest prioritized non-empty

list.
4. Move pxCurrentTCB to the next entry in this list.

portRESTORE_CONTEXT , Listing 6.2:

6.1. FREERTOS DESCRIPTION 89

Figure 6.6: vTaskSwitchContext

1. Load the stack pointer from pxCurrentTCB
2. Restore the non-clobber registers.
3. Load the previous PC and SR into SPR.
4. Restore clobber registers.
5. Move the stackpointer.
6. Issue l.rfe(return from exception). This loads the PC and SR from SPR and resumes

exception from this point.

90 CHAPTER 6. FREERTOS

Listing 6.2: portRESTORE_CONTEXT-macro
. macro portRESTORE_CONTEXT

l .movhi r3 , h i (pxCurrentTCB)
l . ori r3 , r3 , l o (pxCurrentTCB)
l . lwz r3 , 0x0 (r3)
l . lwz r1 , 0x0 (r3)
r e s t o r e context
l . lwz r9 , 0x00 (r1)
l . lwz r2 , 0x04 (r1)
l . lwz r6 , 0x14 (r1)
l . lwz r7 , 0x18 (r1)
l . lwz r8 , 0x1C(r1)
l . lwz r10 , 0x20 (r1)
l . lwz r11 , 0x24 (r1)

.

.

.

l . lwz r31 , 0x74 (r1)
r e s t o r e SPR_ESR_BASE(0) , SPR_EPCR_BASE(0)
l . lwz r3 , 0x78 (r1)
l . lwz r4 , 0x7C(r1)
l .mtspr r0 , r3 , SPR_ESR_BASE
l .mtspr r0 , r4 , SPR_EPCR_BASE
r e s t o r e c l obber r e g i s t e r
l . lwz r3 , 0x08 (r1)
l . lwz r4 , 0x0C(r1)
l . lwz r5 , 0x10 (r1)
l . addi r1 , r1 , STACKFRAME_SIZE
move
l . rfe
l .nop

. endm

6.2 FreeRTOS modifications

6.2.1 Context layout

Figure 6.7 shows how the TMU registers are placed in the context stack. The addresses
are chosen to remain cache friendly while they are written back and forth from memory.
Addresses 0x00 -0x7C are kept unchanged, Figure 6.2.

6.2. FREERTOS MODIFICATIONS 91

0x8C

0x88

64-bit Count register.
High(0x8c), low (0x88)

0x84

0x80

64-bit Compare register.
High(0x84), low (0x80)

TMU registers

0x7C

0x00

...

Figure 6.7: Context layout on the stack, with the addition of the TMU registers.
Addresses are offset from pxTopOfStack, from portmacro.c

The context size was set to 144, after the addition of four extra registers.
The red-zone was also increased accordingly, in portmacro.h. After this change
vPortMiscIntHandler was no longer able to locate its parameter. Before the change
the function stored the parameter on the stack with an offset which accounted for the
stack pointer shift in the context switch. Now that the stack pointer was moved 288
instead of 256, the offset for the parameter had to be set to 292 instead of 260. This
change was made in reset.S

6.2.2 xTMUStruct

For easy setup of the TMU a struct named xTMUStruct was created, prepended
with the x to follow FreeRTOS standards, Table 6.4 shows the members, Listing
6.3 shows the struct as c-code. The structure is forward declared in portable.h so
pxPortInitialiseStack would have access to it and at the same time avoid a header
declaring error. The error is raised when breaking a circular include raised by trying to
include task.h in portable.h. The compiler is then unable to include FreeRTOS.h
before task.h, even when specifically including FreeRTOS.h before all task.h.

Listing 6.3: xTMUStruct
struct xTMUStruct{

pdEXCEPTION_CODE vExceptionHandle ;
unsigned long long ullCompare ;
void ∗pvParameters ; /∗ i f NULL: Set by ∗/

} ; /∗ vTaskGenericCreate ∗/

vExceptionHandle is of type pdEXCEPTION_CODE. This type was added to
projdefs.h to be used as a function pointer for the exception handle. This function
pointer can take a void pointer parameter, which allows passing parameters to the
exception handle.

92 CHAPTER 6. FREERTOS

Table 6.4: xTMUStruct

Name Description
vExceptionHandle Function pointer to the user exception routine.

ullCompare Compare value for the task.
pvParameters Parameters set via vTaskCreateTMU.

Listing 6.4: pdExceptionCode
typedef void (∗pdEXCEPTION_CODE) (void ∗) ;

Compare is used to initialise the compare value on the task stack. Count is not
included in the struct because it is always initialized to zero, since a task always starts
with a full budget.

pvParameters is used to pass arguments to the exception handle, either specific
exception parameters may be passed, or the same pvParamters sent to the task.
The latter only happens if the TMU-struct with pvParameters as NULL is passed to
vTaskGenericCreate. Having this as a pointer allows for sharing private data between
the task and exception function. It is up to the user to add the necessary protection for
this data.

6.2.3 Task control block

The decleration of pxCurrentTCB was moved from task.c to task.h, and renamed to
xCurrentTCB since it is no longer private. Moving this handle forces a move of the
task control block (TCB) struct, which was also moved to task.h, a forward deceleration
did not suffice. Moving this handle was necessary to allow access to the task control
block currently in the running state. A pointer could be set to point to the same as
xCurrentTCB, but that would only increase memory size and the pointer would still
give write access to the data. If xCurrenTCB was written to or the pointer was being
manipulated this solution would be preferred, but since the TMU functionality only
requires read access, the hazard of using the xCurrentTCB pointer is dismissed. In
addition to moving the TCB, a new member was added, a pointer to an xTMUStruct-
struct. To connect the currently running tasks control block, xCurrentTCB, with the
information required by the TMU.

6.2.4 Task creation

Following the already existing task creating system in FreeRTOS, the macro vTaskCre-
ateTMU is declared in task.h. This function translates into vTaskGenericCreate,
as described in Section 6.1.4, this function initialises a task. To accommodate the TMU
an additional argument was added to vTaskGenericCreate, xTMUStruxt * xTMU.
With this new parameter, xTMUStruct can be passed to the task creating process.
As a part of the Initialise TCB -state in Figure 6.3, the TMU struct is attached to the

6.2. FREERTOS MODIFICATIONS 93

xTMUStruct-pointer in the TCB. During this state vTaskGenericCreate also checks
if pvParameters equals NULL, if it does the pvParameters sent to the task are attached
to the TMU struct. The rest of the function remain unchanged.

pxPortInitialiseStack is modified to accept a pointer to a TMU struct, from which
it extracts compare and splits this value between the high and low compare addresses.
The function also sets the TMU exception bit in the ESR-word on stack and writes zero
to the count high/low-address. The reason for sending the task pointer instead of the
compare value itself, is to open for future initialisation values, like writing the initial
control register or setting a initial count value above zero. This is not done at this point
because there is no special circumstance modes in the TMU that would benefit this.

6.2.5 TMU exception handling
In the OpenRISC 1000 architecture specification the 15th exception vector is unused,
0xF00. The exception handle at this address in reset.S was changed to work as a starting
point for the TMU exception routine, shown in Listings 6.5. The existing tick timer
handle was used as an example, since this is the closest categorized exception. Both are
in-between- and synchronous-exceptions.

Listing 6.5: _except_f00
. org 0 xf00
_except_f00 :

l .nop
l . j vPortTMUExceptionHandler
l .nop

The handle passes control along to the vPortTMUExceptionHandler, shown in
Listing 6.6.

Listing 6.6: vPortTMUExceptionHandler
. t ex t
. g l oba l vPortTMUExceptionHandler
. type vPortTMUExceptionHandler , %func t i on
vPortTMUExceptionHandler :

portRESTART_TMU
portSAVE_CONTEXT

l . j a l tmu_except
l .nop

. i f configUSE_PREEMPTION == 0
do nothing

. e l s e
l . j a l vTaskSwitchContext
l .nop

. e nd i f

portRESTORE_CONTEXT
. s i z e vPortTMUExceptionHandler , .−vPortTMUExceptionHandler

This function starts by restarting the TMU then it saves the register content using a
modified version of the portSAVE_CONTEXT -macro.

94 CHAPTER 6. FREERTOS

The portRESTART_TMU macro was used to reset the count value after an
exception is raised. Writing to count works at this point because the module stops when
it reaches a TMU-exception and using the value from r0 is safe because it is always zero.
This action will clear the exception flag from the TMU module. Clearing the count at
this time is not a problem because no other module/program depends on the count value.
If the user is using it to measure time, the compare value can be used instead of the count
value at this point.

Listing 6.7: portRESTART_TMU
. macro portRESTART_TMU

l .mtspr r0 , r0 , SPR_TMU_CNT_L
l .mtspr r0 , r0 , SPR_TMU_CNT_H

. endm

To aid in the context switch the following macros were created: portStart_TMU
in Listings 6.8 and portSTOP_TMU shown in Listings 6.9.

Listing 6.8: portSTART_TMU, starts the TMU
. macro portSTART_TMU

l . ori r3 , r0 , SPR_TMU_CTRL_START
l .mtspr r0 , r3 , SPR_TMU_CTRL

. endm

Listing 6.9: portSTOP_TMU, stops the TMU
. macro portSTOP_TMU

l . ori r3 , r0 , SPR_TMU_CTRL_STOP
l .mtspr r0 , r3 , SPR_TMU_CTRL

. endm

When using these macros great care had to be taken to call them at the right time cause
they do not protect the current content of r3.

After resetting the counter, vPortTMUExceptionHandler calls the port-
SAVE_CONTEXT-macro. This macro was modified to include automatic control
of the TMU. The first change to the portSAVE_CONTEXT-macro was to have it
stop the TMU with the stop-macro, because the context switch should not be counted on
the tasks budget. This happens after making room in the stack and saving r3.

It is not done sooner because of the previously stated reasons of not protecting the
contents of r3. Next after saving r4 and r5 it saves the essential data from TMU, count-
and compare-values. They are saved before EPCR and ESR so that the save context
routine is still able to provide good cache performance. Continuing from ESR the macro
remains unchanged.

6.2. FREERTOS MODIFICATIONS 95

Listing 6.10: portSAVE_CONTEXT
. macro portSAVE_CONTEXT
. macro portSAVE_CONTEXT

. g l oba l xCurrentTCB
make rooms in stack
l . addi r1 , r1 , −STACKFRAME_SIZE
ea r l y save r3−r5 , the se are c l obber r e g i s t e r
l .sw 0x08 (r1) , r3
portSTOP_TMU
l .sw 0x0C(r1) , r4
l .sw 0x10 (r1) , r5

#SPR_TMU_CMP
l .mfspr r4 , r0 , SPR_TMU_CNT_H
l .mfspr r3 , r0 , SPR_TMU_CNT_L
l .sw 0x8C(r1) , r4
l .sw 0x88 (r1) , r3
#SPR_TMU_CNT
l .mfspr r4 , r0 , SPR_TMU_CMP_H
l .mfspr r3 , r0 , SPR_TMU_CMP_L
l .sw 0x84 (r1) , r4
l .sw 0x80 (r1) , r3

save SPR_ESR_BASE(0) , SPR_EPCR_BASE(0)
l .mfspr r3 , r0 , SPR_ESR_BASE
l .mfspr r4 , r0 , SPR_EPCR_BASE
l .sw 0x78 (r1) , r3
l .sw 0x7C(r1) , r4

Save Context
l .sw 0x00 (r1) , r9
l .sw 0x04 (r1) , r2
l .sw 0x14 (r1) , r6
l .sw 0x18 (r1) , r7
l .sw 0x1C(r1) , r8
l .sw 0x20 (r1) , r10

.

.

.

l .sw 0x74 (r1) , r31
Save the top o f s tack in TCB
l .movhi r3 , h i (xCurrentTCB)
l . ori r3 , r3 , l o (xCurrentTCB)
l . lwz r3 , 0x0 (r3)
l .sw 0x0 (r3) , r1
re s t o r e c l obber r e g i s t e r
l . lwz r3 , 0x08 (r1)
l . lwz r4 , 0x0C(r1)
l . lwz r5 , 0x10 (r1)

. endm

First the modified portRESTORE_CONTEXT-macro makes sure the TMU is
stopped, because compare/count can not be written while the TMU is running. After
this the macro gradually unloads the stack, by increasing memory addresses. When it gets

96 CHAPTER 6. FREERTOS

to the point where count and compare is saved these values are sent to SPR, before starting
the TMU, restoring the last clobber register, moving the stack register and returning from
exception.

Listing 6.11: portRESTORE_CONTEXT
. macro portRESTORE_CONTEXT
portSTOP_TMU
l .movhi r3 , h i (xCurrentTCB)
l . ori r3 , r3 , l o (xCurrentTCB)
l . lwz r3 , 0x0 (r3)
l . lwz r1 , 0x0 (r3)

r e s t o r e context
l . lwz r9 , 0x00 (r1)
l . lwz r2 , 0x04 (r1)
l . lwz r6 , 0x14 (r1)
l . lwz r7 , 0x18 (r1)
l . lwz r8 , 0x1C(r1)
l . lwz r10 , 0x20 (r1)

.

.

.

l . lwz r31 , 0x74 (r1)
r e s t o r e SPR_ESR_BASE(0) , SPR_EPCR_BASE(0)
l . lwz r3 , 0x78 (r1)
l . lwz r4 , 0x7C(r1)
l .mtspr r0 , r3 , SPR_ESR_BASE
l .mtspr r0 , r4 , SPR_EPCR_BASE
#SPR_TMU_CMP
l . lwz r3 , 0x80 (r1)
l . lwz r4 , 0x84 (r1)
l .mtspr r0 , r3 , SPR_TMU_CMP_L
l .mtspr r0 , r4 , SPR_TMU_CMP_H
#SPR_TMU_CNT
l . lwz r3 , 0x88 (r1)
l . lwz r4 , 0x8c (r1)
l .mtspr r0 , r3 , SPR_TMU_CNT_L
l .mtspr r0 , r4 , SPR_TMU_CNT_H

r e s t o r e c l obber r e g i s t e r
l . lwz r4 , 0x0C(r1)
l . lwz r5 , 0x10 (r1)

portSTART_TMU
re s t o r e c l obber r e g i s t e r
l . lwz r3 , 0x08 (r1)
l . addi r1 , r1 , STACKFRAME_SIZE
l . rfe
l .nop

. endm

Besides the context macros, vPortTMUExceptionHandle also calls tmu_except
and vTaskSwitchContext, vTaskSwitchContext remains unchanged.

tmu_except is the function which calls the user exception routine. This uses the
function pointer set up in xTMUStruct. First it checks if the function pointer is not

6.3. SETTING UP FREERTOS TO USE THE TMU 97

NULL. If it is not, it calls this function via the pointer and sends along the parameters
stored in xTMUStruct. If the pointer was NULL and the function did not perform this
check. Then the program would jump to 0x0000 where it loops upon its own address.
In other words, the contents at 0x0000 is 0x0000, and this instruction is decoded into a
jump to the same address. And as with other jump instruction there is a delay of one
instruction. So the program counter would alternate between 0x0000 and 0x0004.

Listing 6.12: tmu_except
/∗TMU in t e r r up t handler ∗/
void tmu_except (void) {

i f (xCurrentTCB−>xTMU−>vExceptionHandle != NULL)
{

xCurrentTCB−>xTMU−>vExceptionHandle (xCurrentTCB−>xTMU−>pvParameters) ;
}

}

From tmu_except the jump is made to the user function. At this point the user has
access to the same pvParameters as the task, and if used correctly the exception handle
can use this shared memory to correct errors from the task.

6.2.6 Critical sections

The CEE is added to vPortEnableInterrupts/vPortDisableInterrupts, this disables
the handling of the TMU exception in the processor when vTaskEnterCritical is called,
and enables when vTaskExitCritical.

The addition of this was to avoid a situation where the TMU did not properly
stop before entering the scheduler functions, which frequently uses these functions when
manipulating state lists. If the scheduler gets interrupted by the TMU, the scheduler could
loose tasks. Listings 6.13 shows an example in vTaskResumeAll at line 1097 in task.c.
If the TMU exception is raised after the task is removed from the xPendingReadyList,
but before it is added to the ready list. This results in the task not being connected to
any of the state list and possibly lost. Another example is in vTaskPlaceOnEventList.

Listing 6.13: Excerpt from vTaskResumeAll, line 1097-1099 in task.c
1097 : vListRemove (&(pxTCB−>xEventListItem)) ;
1098 : vListRemove (&(pxTCB−>xGener icLi s t I tem)) ;
1099 : prvAddTaskToReadyQueue (pxTCB) ;

To disable the tick timer and external interrupts while keeping TMU exceptions en-
abled, the function vPortDisableInterruptsAndTick and vPortDisableInterrupt-
sAndTick are created. They disable/enable external interrupts and the tick timer. They
do not support nesting critical sections.

6.3 Setting up FreeRTOS to use the TMU

To use the TMU in FreeRTOS the follow these simple steps.

1. Create a xTMUStruct: struct xTMUStruct xTMU{ };.

98 CHAPTER 6. FREERTOS

2. Add the function name of the function which should run upon a TMU exception,
to the first argument of the struct: {excFunc, ...}.

3. Set a compare value as the second argument: {excFunc, comp, ..}.
4. Set specific parameters as the third argument, or NULL if the same parameters as

the task should be passed. {excFunc, comp, NULL }.
5. Pass the address of this struct to vTaskCreateTMU as the last parameter. The

other arguments remain the same as in vTaskCreate

6.4 Verifying FreeRTOS

During the modifications FreeRTOS was debugged via RSP on Or1ksim. When trying to
verify the correct behaviour of the modified context switch a fatal flaw was discovered.
The problem was that the general purpose registers was not consistent across context
switches. The effect of the error is that the program was sent to a random location in the
code when the the program counter reached a jump instruction to a address indicated
by the value in the corrupted register. More often than not to a location initialized to
zero or into an align exception loop. If the location was initialized to zero the PC then
alternate between the current instruction address and the next. The align exception loop
was caused by the value of the stack pointer being corrupted and when the align exception
tried to read from the stack, this read was issued on a non aligned memory address, thus
starting the align loop. After correcting this the context switch performed as expected.

FreeRTOS was used as the platform for testing the TMU behaviour on Or1ksim, so
the following test will focus on verifying the changes made to FreeRTOS.

FreeRTOS test The test was set up with two tasks alternating between execution.
This was to verify that the count and compare values are kept correctly between context
switches. The task behavior:

1. Enter critical section and print count and compare to UART. Prepend the string
with "Start". Exit critical.

2. Busy wait.
3. Enter critical. If no exception occurred, print count and compare to UART.Prepend

the string with "End". Exit Critical.
4. Yield.

Protecting the uart-printing from exceptions ensures that the strings are printed
correctly. It will also demonstrates that exceptions raised during critical sections will
be handled immediately upon exiting that critical section. The busy wait is a for-loop
which served as a point where exceptions can be issued, while helping to run up the count
and also avoid to many switches back and forth.

This test also generates TMU exceptions to verify that the exception handler was set
up correctly. And that the appropriate registers were set up correctly at initialization.
After two exceptions the exception handler will kill task one. And after task two has
generated four exceptions task two will also be killed by the exception handler. After the

6.4. VERIFYING FREERTOS 99

two tasks are deleted the idle-task gets control of the processor. The idle-task stops the
simulation by calling ftIdleHook2, which was added to the idle-hook function in main.c

Using only one exception handler showed that the exception handler correctly got the
same pvParameters as the task.

Results Listings 6.14 shows that count and compare are written correctly, so that task
two’s runtime got counted on task two’s count value. The jump between End and Start
count values was because of the time it takes to print to UART between retrieving the
count values from the TMU. It also showed that the TMU exception is raised when task
one exits critical, count is 80 000 more than compare.

Listing 6.14: Results from the FreeRTOS test on Or1ksim
Star t Task 2 , Compare = 2000000 , Count = 58
End Task 2 , Compare = 2000000 , Count = 510841
Star t Task 1 , Compare = 1000000 , Count = 58
End Task 1 , Compare = 1000000 , Count = 510301
Star t Task 2 , Compare = 2000000 , Count = 549322
End Task 2 , Compare = 2000000 , Count = 1080397
Star t Task 1 , Compare = 1000000 , Count = 548794
End Task 1 , Compare = 1000000 , Count = 1079346
1−except ion

Listings 6.15 shows the next part of the simulation were task one gets deleted in the
exception handler. From that point Task two is the only task remaining. The simulation
ends when task two generates its fourth exception.

Listing 6.15: Results from the FreeRTOS test on Or1ksim
Star t Task 2 , Compare = 2000000 , Count = 1123674
End Task 2 , Compare = 2000000 , Count = 1659600
Star t Task 1 , Compare = 1000000 , Count = 53
End Task 1 , Compare = 1000000 , Count = 510301
Star t Task 2 , Compare = 2000000 , Count = 1703090
2−except ion
Star t Task 1 , Compare = 1000000 , Count = 548789
End Task 1 , Compare = 1000000 , Count = 1079337
1−except ion
Star t Task 2 , Compare = 2000000 , Count = 50279
End Task 2 , Compare = 2000000 , Count = 576029
Star t Task 2 , Compare = 2000000 , Count = 614502
End Task 2 , Compare = 2000000 , Count = 1145557
Star t Task 2 , Compare = 2000000 , Count = 1188932
End Task 2 , Compare = 2000000 , Count = 1724841
Star t Task 2 , Compare = 2000000 , Count = 1768344
2−except ion

The complete output of this test can be seen in Appendix D.2, Listings D.2. How to
run this test is explained in the tutorial in Appendix C.5.

2ft-prepending signifies that this is a part of FreeRTOS test, it is unrelated to FreeRTOS naming
conventions

100 CHAPTER 6. FREERTOS

6.5 Discussion

xTMUStruct

At first it was decided to include a task handle to allow an exception handler to delete its
parent task. But after discovering that vTaskDelete will delete the calling task when
given the parameter NULL, the handle was unnecessary. However, it is an important part
of what the TMU exceptions can be used for.

vTaskDelete can be viewed as a large function, large enough to be undesirable to
run from within an exception. An alternative solution to this would be for the user set
a global flag for tasks that should be deleted, and a separate task managing this. But
there is one significant drawback, if the malfunctioning task has a higher priority than
the managing task. The managing task would not get scheduled if the faulting task is
stuck in a spin-lock. Another solution would be giving the managing task the highest
priority and periodically invoke it. This would still lock the processor until the next time
the managing task is scheduled. And in some cases, like a task eating up memory, waiting
for the managing task is not an option.

Context switch changes

Start- and stop-macros The decision of implementing the start- and stop-macros
without protecting r3 was based on the the goal of adding the least amount of overhead.
The protection could easily be added, but that would add two additional instructions to
each macro, up to a total of six addition instructions in a complete context switch. And
since all of these instructions are memory accesses the worst case additional delay caused
by the bus is 6 ∗ 4096 = 24 570 clock cycles. The bus access has a time-out which triggers
when a twelve bit wide register reaches 0xFFF (4096).

Considering that achieving worst case response time is rare and the total number of
instructions in a complete context switch, adding six more instruction does not seem like
a significant amount, but the goal is adding the TMU with minimum overhead. Another
option would be to let the compiler determine which register to use. This could be done
with inline assembly in C, but would require a l.jal to the function and a jump to return.
This is also two additional instructions, and the compiler might decide that the best
approach is to temporary save a register, and by that it adds the delay from the other
solution as well as the jumping instructions. For these reasons the best solution was
handling the macros with care.

Restore context race condition Starting the TMU three instructions prior to
returning from the exception can potentially be hazardous. If a task gets preemted with
less time in its budget than it takes to execute the last l.lwz - and l.addi -instructions. Then
the next time the task gets runtime its counter would start at portSTART_TMU. This
will produce a TMU exception between portSTART_TMU and the point where PC
and SR is restored via l.rfe. If not for the CEE -bit in SR the processor would start
handling the exception from this point. Saving ESR, EPCR and the context. Most of the
context would be correct except r3 and/or r1, depending on where the exception is raised.
This would most likely end up in an align exception, if r1 or r3 contains a non-aligned

6.5. DISCUSSION 101

value, or a loop around l.rfe and the EPCR from the l.lwz - or l.addi -instruction. But
since SR contains a bit which enables/disables the handling of these exceptions, this race
condition is eliminated.

Complete solution The xTMUStruct along with vTaskCreateTMU-macro pro-
vides an easy interface for initialising the TMU and connecting user written exception
handlers to the TMU exceptions. The context macroes swap in and out count and compare
values correctly, and the user does not need concern her/him-self with starting/stopping
the counter.

Passing values to functions are mostly done with generic solutions, like sending
xTMUStruct. This is to make further modifications as easy as possible. For example,
if someone in the future has a need for setting an initial count value. This can be done
by adding an unsigned long long to the xTMUStruct and then adding this value to the
correct address in pxPortInitialiseStack.

By changing the exception handle at 0xF00 and adding a new path for the TMU
exception helps separate the TMU exception functionality from the rest of the system,
making errors in exception handling less likely. This is a more direct solution for TMU
exceptions, which means it provides a quicker response time for the user written exception
function. Compared to calling the user function from res2_except, which requires
FreeRTOS to decode the exception vector in misc_int_handler.

Stopping the TMU counter at the start of both the portSAVE_CONTEXT-macro
and the portRESTORE_CONTEXT-macro is added to ensure that the TMU is
stopped before the context switch macro tries to write to it. This is not really necessary
if the count during exception bit is not set in the TMU status register. If the two stop
macros were removed it would save four instructions each context switch. The total
number of instructions during a context switch is significantly higher, approximately 100
instructions plus the vTaskSwitchContext-function and all its calls. They also serve
as an extra precaution to make sure the TMU is stopped correctly. Considering the total
amount of instructions this is an acceptable trade-off. Should the user want to change this,
it can be done by removing calls to the the macro in the context macros in portasm.S.

The FPP scheduling policy in FreeRTOS does not directly benefit from the TMU, other
than the fact that it might be called at a higher rate. But the simplicity of FreeRTOS
made making the necessary modifications easier and FreeRTOS provided a good base to
create programs for verification. Through applications, FreeRTOS is still able to help
produce results that proves the behaviour of the TMU and what effects it can have in
more complex systems.

102 CHAPTER 6. FREERTOS

Chapter 7
Testing the full system

7.1 Equipment

The FPGA development kit used to run the full system is a Terasic Cyclone V GX starter
kit with an Altera Cyclone V FPGA, seen in Figure 7.1. This board was chosen because it
was available, had enough embedded memory for FreeRTOS and because it uses the Altera
USBBlaster I for JTAG communication[16]. As opposed to the Altera’s USBBlaster II,
version I is supported by the JTAG bridge software used to communicate with the system
debugger. Some of the most relevant features of the Cyclone V GX starter kit is:

• 77 000 programmable logic elements
• 4884 Kbits embedded memory
• 18 LEDs
• 4 de-bounced push buttons
• 1 CPU reset push button

7.2 Resource usage

Some relevant number from the Quartus compilation report are examined to determine
the cost of adding the TMU in terms physical resources. Table 7.1 shows the resource
usage of the TMU for the full system and for the standalone unit. In this table the full
system values includes both the resources from the TMU and other parts of the system.
The number of adaptive logic modules (ALM) is the total number of blocks needed and
the number of registers shows how many of the ALMs that are used as registers.

103

104 CHAPTER 7. TESTING THE FULL SYSTEM

Figure 7.1: Cyclone V GX starter kit

Table 7.1: TMU resource usage

Parameter Value

Full system without TMU Adaptive logic modules 3 296
Registers 2 609

Full system with TMU Adaptive logic modules 3 842
Registers 3 160

Increase Adaptive logic modules 16.57%
Registers 21.12%

Only TMU Logic cells combinationals 520
Logic cells registers 497

7.3. TMU FUNCTIONALITY TEST 105

7.3 TMU functionality test

7.3.1 Test setup

The functionality test was written using FreeRTOS and contains three running tasks and
two interrupt sources. It was constructed to be dependent on the correct operation of the
TMU in order to complete its execution, and to show how the TMU provides security in
systems that contains tasks with critical sections which disables external interrupts and
tick handling.

The test has three running tasks, which each has a 10% chance of failing in its critical
section. If a task fails, it will enter an infinite loop ignoring both ticks and external
interrupts. If a task does not fail, it will be suspended until the next tick. Each of the
tasks increments a counter every time it is started and the number of executions for each
task will be reported when the test is completed. When a task reaches its limit and the
TMU exception is handled, a separate task exception counter is incremented to indicate
how many times a task has failed.

To test the interrupt masking functionality, the two interrupt generators will get a
low budget for the number of interrupt arrivals. The replenishment budget will be set
to a much higher value than the tick period to make sure that interrupts are masked.
When running on the FPGA, the interrupt line of each of the generators is mapped to
a LED, which will light up when an interrupt is pending on that source. To make it
possible to observe this, the replenishment period is set much lower than it would be in
a real real-time system. Each time an interrupt is handled, a counter associated with
the interrupt source will be incremented, to indicate how many times this interrupt has
arrived. The time-out for an interrupt generator will be written by the interrupt handler,
and is set to a random value. The maximum time-out value for the interrupt generators
are tested with different values to examine the effects of fewer interrupts on the system.

Table 7.2 shows all the configuration parameters of the test. The limit for the tasks
and replenishment of interrupts in Table 7.2 is given in clock cycles. The cycles per tick
is found by Equation 7.1.

Cycles per tick : tt =
fc
ft

(7.1)

Where tt is the number of cycles per tick, fc is the clock frequency and ft is the tick
frequency.

During the execution of the test, no information will be printed. This is done because
printing to UART is a very time consuming operation. Instead the execution statistics
are printed when the test is completed.

The functionality test was executed on Or1ksim and the FPGA. Four cases were
examined, both with and without a critical section guarding the spin lock from
external/tick interrupts.

• Interrupt time-out limit of 65 535

• Interrupt time-out limit of 65 535, with seeding of the random number generator

• Interrupt time-out limit of 268 435 455

106 CHAPTER 7. TESTING THE FULL SYSTEM

Table 7.2: Test parameters

Paramter Value

Clock frequency[MHz] 50
Ticks to run 20 000
Tick frequency[Hz] 100
Cycles per tick 500 000
Replenishment limit 5 000 000
Interrupt 0 limit 2
Interrupt 1 limit 2
Task 1 limit 1 000 000
Task 2 limit 1 500 000
Task 3 limit 2 500 000

Interrupt timer max 65 535
268 435 455

• Interrupts disabled

The test is also performed on the system, but without the TMU. This is achieved by
compiling and synthesizing the processor without defining OR1200_TMU_IMPLEMENTED

in or1200_defines.v. Since the test would never complete with tasks that have a critical
section, this case is omitted when the TMU is removed from the system.

7.3.2 Results

Expected results

Running the test with the TMU enabled and a low maximum time-out for the interrupt
generators, it is expected that the tasks will get more runtime than the interrupt handlers.
The number of generated TMU exceptions should be ten percent per task. By allowing
two interrupts per replenishment period for each source, the expected number of interrupts
are about 4 000 interrupts being handled for each source, 20 000/2 ∗ 2 = 4 000.

When running the test without the TMU, the tasks are expected to get stuck in the
spin lock. This test is to show how a system without the TMU solution will react under
the same circumstances. The expected amount of interrupts when no TMU is used are
calculated using Equations 7.1-7.3. Using the parameters from Table 7.2 the expected
number of interrupts would be interrupt EI = 305 180 per source.

Expected timeout : Eto =
Maximumtimeout

2
(7.2)

Expected interrupts : NI =
∆tt
Eto
∗Nt (7.3)

7.3. TMU FUNCTIONALITY TEST 107

Simulation on Icarus Verilog

When the test is run on simulated hardware using Icarus Verilog, the tick count had to
be decreased because the simulation time is very long. It takes approximately five hours
to simulate 100 ticks on a Linux system with an Intel Xeon CPU clocked at 2.66 GHZ.
The number of ticks to run is lowered to 200 for this simulation. The simulation results
from Icarus Verilog is included as verification of the correct operation of the TMU and
FreeRTOS, and can be seen in Table 7.3.

Table 7.3: Icarus verilog result, 200 ticks

Rounds Exceptions %

Task 1 167 16 9.6
Task 2 165 19 11.5
Task 3 164 21 12.8

Interrupt 0 54
Interrupt 1 55

Or1ksim

The result from running the tests on Or1ksim is shown in Table 7.4, 7.5 and 7.6.

Table 7.4: Or1ksim test results, with TMU and critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65535
Rounds 16 655 16 612 16 661 4 630 4 647
Exceptions 1 681 1 696 1 639
% 10.09 10.21 9.84

65 535 seeded
Rounds 16 663 16 696 16 690 4 649 4 667
Exceptions 1 694 1 677 1 632
% 10.11 9.91 10.41

268 435 455
Rounds 16 611 16 618 16 594 139 92
Exceptions 1 652 1 680 1 696
% 9.95 10.11 10.22

No interrupts
Rounds 16 597 16 605 16 597 0 0
Exceptions 1 662 1 653 1 715
% 10.01 9.95 10.33

108 CHAPTER 7. TESTING THE FULL SYSTEM

Table 7.5: Or1ksim test results, with TMU, without critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 14 410 15 032 14 252 3 928 3 937
Exceptions 1 457 1 489 1 484
% 10.11 9.91 10.41

65 535 seeded
Rounds 14 559 15 085 14 350 3 932 3 944
Exceptions 1 408 1 528 1 448
% 9.67 10.13 10.09

268 435 455
Rounds 14 321 14 955 14 296 72 183
Exceptions 1 459 1 515 1 402
% 10.19 10.13 9.81

No interrupts
Rounds 14 408 14 931 14 173 0 0
Exceptions 1 388 1 517 1 471
% 9.63 10.16 10.38

Based on the results in Table 7.4 and 7.5 a second test was created with Or1ksim.
Here some minor modifications were done to the interrupt generator to make it send out
interrupts without the need for receiving a new time-out value through the bus. The
time-out is generated as in test one, by taking a random number between 0 and 65 535.
The results are shown in Table 7.7. Test one was also run on the same set-up for reference,
Table 7.9 The ignored interrupt number are collected from the counter explained in Section
5.2.3.

Moving the write back of PICSR closer to reading it, during int_main, does not
break the loop for both interrupts during the initial main test, Table 7.8. The same
behavior can be seen when increasing the minimum time-out to 5000, Table 7.10

FPGA execution

During the execution of the test on FPGA the LEDs, assigned to the interrupts lines,
were observed to be on for long periods, indicating blocked interrupts. The results of the
test execution on FPGA is found in Table 7.11, 7.12 and 7.13. Where Table 7.11 shows
the execution with TMU included in the processor and where each task has a critical
section. Table 7.12 shows the results when the TMU is included, but the tasks does not
have a critical section, and Table 7.13 shows the results when the TMU is not included
in the processor and the tasks have no critical section.

7.3. TMU FUNCTIONALITY TEST 109

Table 7.6: Or1ksim test results, without TMU and critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 1 4 6 18 166
Exceptions 0 0 0
% 0 0 0

65 535 seeded
Rounds 10 4 26 14 313
Exceptions 0 0 0
% 0 0 0

268 435 455
Rounds 9 1 2 70 73
Exceptions 0 0 0
% 0 0

No interrupts
Rounds 9 1 2 0 0
Exceptions 0 0 0
% 0 0 0

Table 7.7: Or1ksim result, second round: TMU disabled, short interrupt period, 20 000
ticks

Rounds Exceptions

Task 1 2
Task 2 9
Task 3 1

Interrupt 0 293 137
Interrupt 1 293 235
Ignored Int0 1 690
Ignored Int1 4 652

110 CHAPTER 7. TESTING THE FULL SYSTEM

Table 7.8: Or1ksim result: TMU disabled, short interrupt period, PICSR write back
moved, 20 000 ticks

Rounds Exceptions %

Task 1 1
Task 2 11
Task 3 13

Interrupt 0 297 254
Interrupt 1 358
Ignored Int0 0
Ignored Int1 0

Table 7.9: Or1ksim result, second round: TMU enabled, short interrupt period, 20 000
ticks

Rounds Exceptions %

Task 1 16 611 1 732 10.4
Task 2 16 590 1 640 9.9
Task 3 16 604 1 658 10

Interrupt 0 3 814
Interrupt 1 3 818
Ignored Int0 869
Ignored Int1 913

Table 7.10: Or1ksim test results, without TMU and critical section, longer minimal
interrupt time-out

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 1 5 3 258 862 4
Exceptions 0 0 0
% 0 0 0

7.3. TMU FUNCTIONALITY TEST 111

Table 7.11: FPGA test results, with TMU and critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 16 633 16 594 16 633 5 540 5 450
Exceptions 1 670 1 675 1 705
% 10.04 10.09 10.25

65 535 seeded
Rounds 16 645 16 655 16 645 5 497 5 405
Exceptions 1 678 1 621 1 669
% 10.08 9.73 10.03

268 435 455
Rounds 16 682 16 649 16 671 85 80
Exceptions 1 661 1 671 1 679
% 9.96 10.04 10.07

No interrupts
Rounds 16 642 16 646 16 657 0 0
Exceptions 1 679 1 654 1 680
% 10.09 9.94 10.09

Table 7.12: FPGA test results, with TMU, without critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 14 491 15 117 14 307 4 750 4 683
Exceptions 1 440 1 475 1 483
% 9.94 9.76 10.37

65 535 seeded
Rounds 14 501 15 008 14 285 4 672 4 649
Exceptions 1 414 1 574 1 446
% 9.75 10.49 10.12

268 435 455
Rounds 14 391 15 007 14 271 78 82
Exceptions 1 426 1 491 1 452
% 9.91 9.94 10.17

No interrupts
Rounds 14 364 14 987 14 288 0 0
Exceptions 1 443 1 509 1 421
% 10.05 10.07 9.95

112 CHAPTER 7. TESTING THE FULL SYSTEM

Table 7.13: FPGA test results, without TMU and critical section

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 1 6 10 23 894 20 910
Exceptions 0 0 0
% 0 0 0

65 535 seeded
Rounds 16 44 14 59 802 21 637
Exceptions 0 0 0
% 0 0 0

268 435 455
Rounds 16 5 18 74 67
Exceptions 0 0 0
% 0 0

No interrupts
Rounds 16 5 18 0 0
Exceptions 0 0 0
% 0 0 0

Table 7.14: FPGA test results, without TMU and critical section, longer minimal
interrupt time-out

Interrupt Parameter Value

time-out Task 1 Task 2 Task 3 Interrupt 0 Interrupt 1

65 535
Rounds 8 6 34 231 315 230 333
Exceptions 0 0 0
% 0 0 0

7.4. OVERHEAD 113

Table 7.15: Overhead test parameters

Parameter Value

Clock frequency[MHz] 50
Ticks to run 20 000
Tick frequency[Hz] 100
Cycles per tick 500 000

7.4 Overhead

7.4.1 Testing TMU overhead

A simple test was devised to test the overhead introduced by using the TMU in a context
switch. The modified context switch has an additional 22 instructions to accommodate
the TMU. The test is a single running task which increments a value in a loop for a fixed
number of ticks, and reports this number when the test is done. The overhead can be
calculated from the reported numbers by running the test with and without the TMU.
Table 7.15 shows the parameters for the test. During this test the TMU will not generate
any exceptions.

The executing loop was analysed to determine how many clock cycles it took to
execute. To make this calculation easier, both instruction- and data-cache were disabled
during the execution of this test. Disabling caches also has the benefit of the resulted
overhead representing the absolute worst case, when instructions and data has to be
loaded from memory for each instruction. through simulation the fetch of an instruction
was found to be four cycles, and the memory access time for read/write instructions was
found to be four cycles. The execution time for the different instructions is given in Table
2.1.

The assembly code for the execution loop is shown in Listing 7.1 and is compiled from
the C-code in Listing 7.2. The analysis of each instructions execution time is shown in
Table 7.16.

114 CHAPTER 7. TESTING THE FULL SYSTEM

Table 7.16: Execution time analysis for the overhead loop

Instruction I-Bus cyc. D-Bus cyc. Ex-cyc. Total

l.lwz r2,0x4(r1) 4 4 1 9
l.addi r2,r2,0xffffffff 4 0 1 5
l.movhi r4,0x1 4 0 1 5
l.ori r4,r4,0x6cb8 4 0 1 5
l.slli r3,r2,0x2 4 0 1 5
l.add r3,r4,r3 4 0 1 5
l.lwz r3,0x0(r3) 4 4 1 9
l.addi r3,r3,0x1 4 0 1 5
l.movhi r4,0x1 4 0 1 5
l.ori r4,r4,0x6cb8 4 0 1 5
l.slli r2,r2,0x2 4 0 1 5
l.add r2,r4,r2 4 0 1 5
l.sw 0x0(r2),r3 4 4 1 9
l.j 6fdc 4 0 1 5
l.nop 4 0 1 5

Total cycle count 87

Listing 7.1: Overhead test function loop assembly
l . lwz r2 , 0 x4 (r1)
l . addi r2 , r2 , 0 x f f f f f f f f
l .movhi r4 , 0 x1
l . ori r4 , r4 , 0 x6cb8
l . s l l i r3 , r2 , 0 x2
l .add r3 , r4 , r3
l . lwz r3 , 0 x0 (r3)
l . addi r3 , r3 , 0 x1
l .movhi r4 , 0 x1
l . ori r4 , r4 , 0 x6cb8
l . s l l i r2 , r2 , 0 x2
l .add r2 , r4 , r2
l .sw 0x0 (r2) , r3
l . j 6 fdc <ohTaskFunction+0x14>
l .nop

Listing 7.2: Overhead test function loop C
while (1) {

ohTaskCount++;
}

Some key values are calculated based on the total number of instructions in the loop.
The average difference in value per tick from Equation 7.4 and the number of overhead

7.5. PROCESSOR UTILIZATION 115

clock cycles per tick from Equation 7.5.

difftick =
CountNoTMU − CountTMU

NTicks
(7.4)

Where difftick is the difference in loop execution per tick, Nticks is the number of ticks
and the Count values are the value of the counter when execution is complete.

cycleoverhead = difftick · cyclesloop (7.5)

Where cycleoverhead is cycles added for each tick and cyclesloop is the number of cycles
for one iteration of the counter loop.

7.4.2 Overhead test results

Table 7.17 shows the results of the overhead test for the system. In the table the difference
per tick is calculated according to Equation 7.4 and delayed cycles per tick is calculated
according to Equation 7.5.

Table 7.17: Overhead test results

Parameter Value

Count no TMU 115 934 630
Count TMU 115 904 472
Difference/tick 1.51
Delayed cycles/tick 131.19

The test is also executed with instruction- and data-caches included in the system,
but in this case it is impossible to calculate the number of cycles used by the counting
loop. Table 7.18 shows the results of the overhead test when caches are used.

Table 7.18: Overhead test results

Parameter Value

Count no TMU 587 168 191
Count TMU 587 105 985
Difference/tick 3.11

7.5 Processor utilization

To show how the TMU can help in processor utilization the following test is created. This
test models the behaviour of a simple task which usually finishes quickly, but in some

116 CHAPTER 7. TESTING THE FULL SYSTEM

cases it will get overworked and not finish in time, e.g. a calculating task gets input that
are too large or otherwise requires to much work. An upper limit can be set by using the
TMU, this will preempt the task if it reaches this limit, allowing the task to reset itself
and allow more important work to be done.

To verify that the TMU can consistently preempt tasks when they deplete their budget
two tasks are created, each will fail at a given failure rate, this is implemented by using
a counter because using rand makes calculating WCET a lot harder.

The test behaviour is shown in Figure 7.2, dualtask.c contains the source code for
this test.

Figure 7.2: Processor utilization test

These task first prepares for the new round by resetting the TMU counter and setting
the TMU exception help flag to zero, then they increment the failure counter and checks
if it is time for a failure. If the tasks are suppose to fail they enter a for-loop which
increments the loop counter, up to 50 times. If the ExceptionHelp-flag is raised during
the loop, it will exit and return to the start of the main loop. The completed counter is
only incremented when a task does not fail.

7.5.1 Expected results

Calculating the WCET of the main work of the task is done by accumulating the number
of cycles each instruction uses. The results are shown in Table 7.19, addresses are read
from the disassembly file produced after compilation. The for-loop trap is excluded from
the calculation.

During debugging the delay per instruction for Or1ksim was observed to be one cycle
per non-load/store-instruction. Load instructions required one additional cycle, while
store instructions needed two.

7.5. PROCESSOR UTILIZATION 117

To calculate the execution time on the FPGA the values from the overhead test are
used, Section 7.4.

Table 7.19: Instructions per functions. Derived from rtosdemod.asm in Appendif B

Function Start End #Instructions #Load #Store

Duaktask while-loop 6B58 6CC8 93 15 7
Failure trap 6BD0 6C64 38 6 3
tmu_restart 7B20 7B58 15 2 2
tmu_set_control 7D18 7D4C 14 3 3
mtspr 6FFC 7028 12 3 3

Total Instruction count one iteration SUM 94 17 12

From the TMU’s point of view the loop starts when tmu_restart writes restart to
the control-register, and ends when tmu_restart writes stop. Therefore the compare
value must be the sum of instruction executed between these two writes. Table 7.19 shows
how many instructions each function has. tmu_restart calls tmu_set_control and
mtspr twice each loop iteration. The first call to these function stops the TMU, the
second starts it. Because this is done with the same functions, the instructions between
these to writes equals to the instruction count formtspr and tmu_set_control and the
number of instructions between the two calls to tmu_set_control in tmu_restart,
which is two.

When setting the compare value the starting offset, four instructions, should be
considered. This is the number of instructions between issuing the mtspr -instruction
which starts the TMU and the l.nop after l.rfe. But this additional delay is only related
to context switches. Since the main loop in this test does not include a yield.

Or1ksim The expected execution time on Or1ksim is 94+17+12∗2 = 135 cycles. This
is using the observed delay for load and store, which will vary depending on the workload
for the bus at any given time.

The calculations indicate that the lowest amount of for-loop iterations should be with
a compare value at 135. With values higher than 135 the results should show that the
time spent in the for-loop increases upto 50 times the failure rate.

Below 135, exceptions will be raised every iteration. This will be the case until a
compare value of 68 where the number of exceptions should be twice as many as the
number of started tasks. This happens because the exception trigger has time to create
multiple exceptions during the execution time of one round in the task. Time spent in
the for-loop will not increase because the for-loop will be broken by an exception, and at
one point the for-loop will break before incrementing the counter, because the flag will
be set prior to evaluating it at the start of the for-loop.

The for-loop contains 32 instruction total, where six are load instructions and two
are store instructions. Prior to the loop there are five normal instructions and two store
instruction. This means that the for-loop needs 135+5+2∗2+50∗(32+6∗1+2∗2) = 2 244
cycles to complete without generating an exception.

118 CHAPTER 7. TESTING THE FULL SYSTEM

FPGA The expected cycle count for the loop on the FPGA is 586, 94∗5+17∗4+12∗4 =
586, five cycles per instruction, 4 additional cycles for load/store. For the FPGA the loop
counter should stop counting at around 586+5∗5+2∗4+50∗(32∗5+6∗4+2∗4) = 10 219
.The overall behaviour is expected to be the same as with Or1ksim.

Results

All the results are shown in dualtask.xls in the dualtask folder in Appendix B. Sheet
one is for Or1ksim, sheet two is for FPGA.

Or1ksim Figure 7.3 shows how many times a task started versus how many iterations
the for-loop achieved plotted against the compare value. As the compare value decreases
the iterations by the for-loop also decreases and the amount of task starts increases. The
figure is based on the numbers from the tables in Appendix D.4.

The overall behaviour is as expected. The expected value of 135 does yield the lowest
amount of time spent in the for-loop, but it gives a higher than requested exception rate.
The lowest compare value that did not yield an exception rate above 1% was 300.

The expected rise in exceptions happened at a compare value of 134-135. The same
increase happened again at 61-62, the magnitude was as expected, but the second rise
happened at a slightly lower value than expected. From 2 332 and above the for-loop
managed to finish within the time limit, and the task was restarted without the TMU
raising any exceptions. This was expected to happen a earlier, at 2 244.

Comparison between the different failure rates show that the results and overall
behaviour is the same, see Appendix D.3 for all the figures.

Table 7.20 shows the results from the test. By using the expected cycle count(135) as
the compare value the processor utilization increased by 8.02% and the time spent doing
the unwanted work was decreased by 89.15%. For a more conservative compare value set
at twice the expected runtime, 270, the same numbers went slightly down, 7.41% and
89.27% respectively. With the lowest value which did not produce extra exceptions the
utilisation was 7.26% better and it allowed 87.15% less time in the for-loop. All values
are compared to running the test without the TMU enabled.

Table 7.20: Processor utilization results, Or1ksim

Compare Task one Task two Average

Util.[%] Loop [%] Util.[%] Loop[%] Util.[%] Loop[%]

135 8.26 95.69 7.77 95.69 8.02 95.69
270 7.55 89.27 7.27 89.27 7.41 89.27
300 7.26 87.15 7.14 87.15 7.2 87.15

FPGA For the FPGA the expected value of 586 yielded a low for-loop time, the
difference down to the measured best value is negligible. The best result were with a
compare value of 579. The exception rate was even more unstable on the FPGA than in

7.5. PROCESSOR UTILIZATION 119

(a) Task one

(b) Task two

Figure 7.3: Task started versus time spent in the for-loop, failure rate 1%, Or1ksim

120 CHAPTER 7. TESTING THE FULL SYSTEM

Or1ksim. The lowest compare value which finished with 1% exception rate was 1 400.
Between a compare value of 9 500 and 10 000 the started to finish every iteration.

Figure 7.4 shows the results for FPGA for how many times the task started versus
time spent in the for-loop. These results also show the drop in started tasks just below
the best compare value.

Table 7.21 shows the utilization results from the test run on the FPGA. This resulted
in slightly better results, compared to running the test on Or1ksim.

Table 7.21: Processor utilization results, FPGA

Compare Task one Task two Average

Util.[%] Loop [%] Util.[%] Loop[%] Util.[%] Loop[%]

579 7.63 95.63 9.20 95.63 8.42 95.63
586 6.78 95.62 9.94 95.60 8.36 95.61
1 158 8.09 89.23 7.95 95.62 8.02 92.42
1 172 7.30 89.19 8.19 95.61 7.75 92.40
1 400 7.84 87.06 7.86 87.06 7.85 87.06

7.5. PROCESSOR UTILIZATION 121

(a) Task one

(b) Task two

Figure 7.4: Task started versus time spent in the for-loop, failure rate 1%, FPGA

122 CHAPTER 7. TESTING THE FULL SYSTEM

Chapter 8
Discussion

8.1 TMU implementation and integration

Sections 3.4 and 4.1 shows how the TMU is designed and integrated into OR1200. The
TMU is basically a simple counter module with the ability to generate exceptions and
mask interrupts. Even though the operation of the TMU is simple in many ways, it could
potentially lead to erroneous behaviour when it is integrated into a large and complex
system. All the changes listed in Section 4.1 shows that this placement of the module is
highly intrusive, and should be part of the initial design. Because of the flexible design
of the OR1200 processor it was still possible to integrate an extra module, with relative
ease through the use of the existing special-purpose register interface.

The results shown in Section 4.5 shows that the TMU is implemented successfully in
OR1200, and that it is able to operate as a part of the system without any unintended
side-effects. The overhead related to switching tasks is strongly related to the context
switch implementation, but the lowest possible overhead would be seven instructions
from where the top value of compare is loaded to the timer is started as shown in Figure
3.9. The overhead related to acknowledging the exception generated by the TMU is the
time it takes to write to the count register, and is two instructions. Stopping the TMU
and reading the count register can be done with six instructions. For the counting and
masking of interrupts there will be no overhead once the limits for each interrupt line and
the replenishment period is loaded.

From Table 7.1 one can see that adding the TMU to the system increases the total
usage of resources by 16.57%. The large increase in area is because the TMU implements
its registers in the FPGA’s adaptive logic modules, whereas other large register modules,
like the register file, uses megafunctions on the FPGA. Since the full system only uses
3 862 of the 29 080 available ALMs on the FPGA no effort has been put into reducing the
resource usage of the TMU.

123

124 CHAPTER 8. DISCUSSION

8.2 Functionality test

Overall The results produced by running FreeRTOS on the FPGA shown in Tables
7.11 and 7.12 indicates that the TMU is functioning properly inside the processor, and
that FreeRTOS is able to use the functionality it provides. If the TMU had not been
functioning correctly, the number of task iterations would be around ten and the exception
counters would have been set to zero, as shown in Table 7.13.

Each of the three tasks are executed almost the same number of times, and the fail
rate is almost 10%. The difference in the specified fail rate and the reported can most
likely be attributed to the random number generator.

The reported number of interrupts is also as expected, and it is much lower than the
best case scenario. If the TMU was not functioning and the random number generator
returned the maximum value of 65 535 every time, the minimum number of interrupts
would be approximately seven interrupts per generator per tick period. Resulting in a
total of 7 ∗ 2 ∗ 20 000 = 280 000 interrupts.

By disabling the TMU and critical section, the amount of interrupts were expected
to be about 305 000 interrupts per source. Even though the number of interrupts is
significantly higher in this case, Table 7.13, the system was not able to handle this rate
of interrupts, resulting in interrupts being lost.

Or1ksim FreeRTOS and Or1ksim was not able to keep the interrupt loop alive during
execution without the TMU active. This is most likely because interrupt zero is raised
after PICSR is read during the handling of interrupt one. When interrupt one finishes
execution, PICSR will be set to zero, in other words, deleting the interrupt request from
interrupt zero. Table 7.8 shows the results of a test run where the write-back of PICSR
is moved up in int_main, right after it is read from the PIC. During this execution the
system is able to keep one interrupt source alive. When the minimum interrupt time-out
is increased to 5 000, the system is still only able to keep one interrupt alive.

After these test results, some minor modifications was made to the interrupt generator
to support the theories of why the interrupts stop during the first test runs. The solution
was to move the interrupt setting loop entirely into Or1ksim. As explained in Section
5.2.5, when an interrupt is generated it will also schedule another at an arbitrary time in
the future. This yielded the results in Table 7.7. This shows that the FreeRTOS running
on Or1ksim can handle receiving the amount of interrupts, and it supports the theory
of why it was not able to do this in the initial test. Table 7.9 is the initial test run
with a short random interrupt time-out, critical section enabled around the spin lock, on
Or1ksim with the interrupt generator generating the time-outs. Interestingly the amount
of ignored interrupts equals the difference in handled interrupts. They are most likely
from situations where the TMU tries to reassert the interrupt at the approximately same
time that the interrupt generator signals a new interrupt. This table serves as a reference
to show that the test results remain the same, regardless of where the interrupt time-out
is generated.

FPGA The results of running FreeRTOS on an FPGA provides a good indication that
the TMU is functioning according to the specifications. Because none of the internal

8.3. OVERHEAD TEST RESULTS 125

signals of the processor has been measured during the test execution, one cannot be sure
that the results are not a false positive. But since the results are consistent during multiple
executions, this seems unlikely. Since removing the TMU from the system yielded the
expected result, the probability of a false positive decreases even more.

When the minimum time-out limit for the interrupt generators were increased to 5 000,
the system was able to handle the received number of interrupts as shown in Table 7.14.
This proves that there is a limit for the number of interrupts the system is able to handle
without the TMU.

By comparing the values from executing the test on the instruction-set simulator and
an FPGA, one can see that the values corresponds closely with each other. This serves
as additional proof of the correct behaviour of the modified OR1200 core.

8.3 Overhead test results

From the results in Table 7.17 the overhead per tick is calculated to be 131 clock cycles,
which includes both fetching data from memory and writing it to the TMU. With an
average execution time of six cycles per added instruction this number is consistent with
the theoretical overhead of 6 ∗ 22 = 132 cycles. The actual time of this overhead is
dependent on system clock, and in the case of a 50MHz clock the overhead delay from
the TMU is 2.62µs. This value only shows the added overhead during a context switch
and not the handling of the exception from the TMU.

All the read/write operations via the special-purpose register interface is done with
a single instruction, which has a fixed execution time, and will not be subjected to
delays caused by waiting on the bus. As opposed to previous implementations of a
TMU connected through an external bus, the overhead of the internal implementation
will remain constant. This will make the behaviour of the system more predictable, and
provide easier scheduling calculations.

When caches are included in the system the number of iterations increases dramatically
and the difference per tick increases. If one assumes that all instructions of the loop are
present in the cache at all times meaning one cycle per instruction, then the loop will
have a cycle count of 15.

The number of overhead cycles per tick is then cycleoverhead = 3.11 ·15 = 46.65, which
is much lower than when no caches are used.

It is unclear whether memory accesses for TMU data is included in the overhead
in Stian Søvik’s solution, which is 28 clock cycles. Based on the waveform diagram in
[15, figure 11], the 28 clock cycles only include time spent reading and writing data to
the TMU. Hence to get a comparable number, the time for all load/store operations is
deducted from the overhead in Table 7.17. The number of cycles is then 6 ·11 = 66 cycles
without cache and 11 cycles with cache.

8.4 Processor utilisation

The general behaviour is as expected. For Or1ksim the expected cycle count for the loop
was correct. Below 135 the exception rate went up to 100%, as expected. The same

126 CHAPTER 8. DISCUSSION

happened at 579 for the FPGA, this was expected at 586, the difference is negligible.
Because this test pushes the compare value so close to the actual cycle count for the task
there is a slight increase in exceptions as the limit approaches. The low magnitude of
this implies that the system is fairly deterministic. The increase is most likely because of
some rare events that cause an increase in the bus delay.

For certain values for the test run with 0.1% failure rate, the started counter is
unexpectedly high. By comparing the results from task one and two it can be observed
that the temporary oscillations of the two tasks started value are opposite of each other.
This indicates that there is a difference in how many times each task was scheduled,
although the exact reason for this is unknown. The same behaviour can be observed in
the FPGA results, Figure 7.4.

As a reference point this could be compared to a monitor solution. A task which is
called periodically, but in FreeRTOS such a task can only be called related to the tick
period, tasks can only be unblocked during a tick timer exception. A task can not as
of now have its delay extended by other tasks. This means that a monitor-task can not
occur between ticks and it would have to be invoked every tick to check if a task is stuck
in a loop or performing unnecessary work. The tick timer would have to be set as low
as the period of a non failed task. All in all, this would lead to an extraordinary large
amount of tick interrupts. Therefore this is not a comparable solution, although it is the
closest one available in software.

This test shows that by using the TMU tasks can be guaranteed to finish within a
certain time, either by actually finishing or by calling its exception handle. The processor
is able to perform more actual work by setting an appropriate compare value.

8.5 Real-time effects

Real-time improvements The TMU contributes in four of the five characteristics of
real-time operating systems explained in Section 2.1.1. The systems determinism, user
control, reliability and fail-soft operation are improved. The TMU provides a way to
guarantee the maximum execution time for a task. This ensures that no task will overrun
its budget, even if the budget is less than the tick period. The interrupt filter part of
the TMU can set a limit for incoming interrupts, ensuring that the processor will not
get overwhelmed by interrupts. Compared to other solutions half of the bus delay is
removed, since during a context switch the processor only has to access the memory via
the bus, and not the TMU. This increases the determinism of the system because when
the user assigns execution time for a set of tasks, the latest point of time when a task gets
to start can be guaranteed as the sum of execution times for previous tasks added with
the sum of maximum interrupt handling over the same period. Since the user has full
control over task execution budgets, interrupt replenishment times and interrupt arrival
limits, the system has increased user control by introducing a more hands on control
of execution times. Software reliability is increased because of the possibility of TMU
exceptions. When a task exceed its limit for execution time, the TMU exception will
be raised. Meaning that if a task is locked in a spin- or dead-lock, the TMU exception
function can be used to help that task recover, either by correcting the cause of the spin
lock or, worst case, terminate tasks. Terminating individual tasks can be preferable to a

8.5. REAL-TIME EFFECTS 127

complete reboot, which would mean possible data loss. Before deleting tasks the TMU
exception could store some vital data so that the task could be resumed from a recovery
point. Depending on the user implementation of the TMU exception functions, their
behaviour can be viewed as introducing a simple exception handling to FreeRTOS, either
termination or resumption. This is one way the TMU can help to achieve decent fail-soft
operation.

Areas of use The Fixed Priority Preemptive (FPP) scheduling policy used in
FreeRTOS does not really benefit from a TMU in other aspects than the fact that
the scheduler may possibly be invoked at a higher rate. Other scheduling policies can
benefit greatly from TMU assistance. Out of all the scheduling policies described in [14],
Rate Monotonic Scheduling(RMS) is the most obvious one to benefit from having TMU
assistance. As explained in 2.1.2 RMS performs an analysis of the schedulability of a set
of tasks prior to execution. Since this requires definitive numbers in regards to execution
time and periodicity, the TMU can contribute in two ways. First, the TMU can guarantee
an upper limit to a task’s execution time. Secondly, interrupts will be easier to account
for since asynchronous interrupts can be given a periodic maximum limit. This makes
the analysis for RMS easier.

As seen in the TMU test performed on Or1ksim the compare value of a task can be
changed during runtime. This implies that a task can dynamically change its compare
value dependent on events during runtime. Meaning if a task generates unwanted TMU
exceptions, it can increase its compare value, vice versa, if a task completes long before
its budget it can decrease its compare value. For schedulers that perform long-term
scheduling1 a dynamic compare approach may be beneficial in the way that the scheduler
will have an exact upper limit regarding required runtime for each of the already running
tasks. This can not be tested on the current FreeRTOS version, because it does not
perform long-term scheduling.

1resource analysis before admitting new tasks to the ready queue[14]

128 CHAPTER 8. DISCUSSION

Chapter 9
Conclusion

This thesis has presented a working implementation of a Time Management Unit (TMU)
for the OpenRISC based OR1200 processor. The TMU was designed and implemented to
be an integrated part of the processor. By counting the execution time and the arrival of
interrupts it can provide assistance to a operating system’s scheduler. The ISA simulator
Or1ksim has been modified to provide a reference for the behaviour of OR1200 with
the TMU included, and the real-time operating system FreeRTOS was adapted use the
functionality provided by the TMU.

Simulations and tests on an FPGA have shown that the TMU behaves according to
its specifications without affecting the normal operation of the processor. Tests executed
on both Or1ksim and on an FPGA show that FreeRTOS is able to use the functionality
provided by the TMU. By counting task execution time, tests have proven that the TMU
exceptions can help improve processor utilization and guarantee an upper limit for a
tasks runtime. By counting the arrival rate of interrupts it provides a limit to how much
time will be spent handling interrupts, and it protects the processor from faulty interrupt
sources. Task and interrupt budgets are both set by the user, and can dynamically
changed. The TMU exception routine can be used to implement fail-soft functions from
software errors. With this the TMU adds increased determinism, reliability, user control
and fail-soft operation.

By implementing the TMU inside a processor core, the overhead becomes fixed for
all context switches, which is more stable and also provides higher predictability than
previous implementation, where the overhead is dependent on the availability of the
system bus.

The potential gains of having a TMU in a real-time system are considerable with
regard to scheduling and security, this makes the TMU functionality described in this
report a viable candidate for inclusion in other processor architectures and operating
systems.

129

130 CHAPTER 9. CONCLUSION

9.1 Further work
During the work with this project some options and ideas were discovered as possible
improvements for the TMU, but they were not implemented.

• An option for connecting the replenishment budget for interrupt countering to the
tick timer can be included, with an additional option for using a fixed number of
tick periods as the replenishment limit.

• To remove the overhead related to starting and stopping the TMU, it could be
configured to start counting automatically when the count and compare values are
written. This is done by Forsman in his master thesis[4].

• A wall-clock timer could be included as described in [13]. Writing the limit for task
execution, would then be calculated relative to this timer.

In addition some concepts with regard to the TMUs effect on scheduling policies remain
unverified. The most promising areas are considered to be Rate Monotonic Scheduling
and long-term scheduling.

Bibliography

[1] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages.
Pearson Education, 4 edition, 2009.

[2] FreeRTOS community. Freertos online reference. www.freertos.org, Feb 2014.

[3] D. L. Damjan Lampret et. al. Openrisc 1000 architecture manual, ver.
1.0. http://opencores.org/websvn,filedetails?repname=openrisc&path=
%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf, cited feb. 2014„
December 2012.

[4] Bjørn Forsman. En time managment unit (tmu) for sanntidssystemer. Master’s
thesis, NTNU, 2008.

[5] FreeRTOS. Freertos repository. http://opencores.org/ocsvn/openrisc/
openrisc/trunk/rtos/freertos-6.1.1.

[6] Kyrre E. Gonsholt and Lars Ødegaard. Developing an openrisc system-on-chip.
Technical report, NTNU, 2013.

[7] Kristoffer Gregertsen and Amund Skavhaug. Functional specification for a time
management unit. Vienna, Austria: SAFECOMP, 2010. 29th International
Conference on Computer Safety, Reliability and Security, 2010.

[8] David Patterson John Hennessy. Computer Architecture A Quantitaive Approach.
Morgan Kaufmann, 2012.

[9] Damjan Lampret. Openrisc 1200 ip core specification, rev. 0.7. http://opencores.
org/ocsvn/openrisc/openrisc/tags/or1200/rel2/doc/, cited feb. 2012, file must
be downloaded as pdf, September 2001.

[10] OpenCores. Or1ksim repository. https://github.com/openrisc/or1ksim.

[11] OpenCores. Wishbone system-on-chip interconnection architecture. http://cdn.
opencores.org/downloads/wbspec_b4.pdf, cited feb. 2014, 2010.

131

www.freertos.org
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/ocsvn/openrisc/openrisc/trunk/rtos/freertos-6.1.1
http://opencores.org/ocsvn/openrisc/openrisc/trunk/rtos/freertos-6.1.1
http://opencores.org/ocsvn/openrisc/openrisc/tags/or1200/rel2/doc/
http://opencores.org/ocsvn/openrisc/openrisc/tags/or1200/rel2/doc/
https://github.com/openrisc/or1ksim
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

132 BIBLIOGRAPHY

[12] Micheal L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer
Science+Business Media, 4 edition, 2010.

[13] Håvard Skinnemoen and Amund Skavhaug. Hardware support for on-line execution
time limiting of tasks in a low power environment. Linz: Institute of System Science,
Johannes Kepler University, EUROMICRO/DSD Work in Progress Session. ISBN:
3-902457-21-X, 2003.

[14] William Stallings. Operating Systems: Internals and Designs Principles. Pearson
Education, 7 edition, 2012.

[15] Stian Juul Søvik. Hardware implementation of a time management unit (tmu).
Master’s thesis, NTNU, 2010.

[16] Terasic Technologies. Cyclone v gx starter kit, user manual. http:
//www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=
English&No=830&FID=17219f04ba333c8a2ee2066deab991e5, cited, jun. 2014,
April 2014.

http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=830&FID=17219f04ba333c8a2ee2066deab991e5
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=830&FID=17219f04ba333c8a2ee2066deab991e5
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=830&FID=17219f04ba333c8a2ee2066deab991e5

Appendix A
TMU verilog code

/∗
∗ or1200_tmu . v
∗
∗ Time management un i t f o r OR1200
∗
∗ Lars Ødegaard & Kyrre Gonsholt
∗ NTNU 2014
∗
∗/

‘ include " or1200_def ines . v"

module or1200_tmu (
// c l k and r s t
c lk , r s t

// SPR in t e r f a c e
, spr_addr , spr_dat_i , spr_cs , spr_write , spr_dat_o

// excep t ion i n t e r f a c e
, i n t r , except_started

// In t e r rup t i n t e r f a c e
, p ic_ints , pic_ints_masked

, ex_freeze

) ;

input c l k ;
input r s t ;
//
// SPR in t e r f a c e
//
input [3 1 : 0] spr_addr ;
input [3 1 : 0] spr_dat_i ;

I

II APPENDIX A. TMU VERILOG CODE

input spr_cs ;
input spr_write ;
output [3 1 : 0] spr_dat_o ;
//
// Exception i n t e r f a c e
//
input except_started ;
output i n t r ;
//
// In t e r rup t i n t e r f a c e
//
input [‘OR1200_PIC_INTS−1:0] p i c_ints ;
output [‘OR1200_PIC_INTS−1:0] pic_ints_masked ;

input ex_freeze ;

‘ i f d e f OR1200_TMU_IMPLEMENTED

//
// TMU s t a t u s r e g i s t e r
//
reg [3 1 : 0] s r ;

//
// TMU c t r l r e g i s t e r
//
reg [3 1 : 0] c t r l ;

//
// TMU count r e g i s t e r
//
reg [6 3 : 0] count ;

//
// TMU compare r e g i s t e r
//
reg [6 3 : 0] compare ;

//
// In t e r rup t rep lenishment counter
//
reg [6 3 : 0] rep_count ;
reg [6 3 : 0] rep_compare ;

//
// In t e r rup t f l an k r e g i s t e r
//
wire [‘OR1200_PIC_INTS−1:0] intr_edge ;
reg [‘OR1200_PIC_INTS−1:0] i n t r_s i n g l e ;

//
// In t e r rup t count ing r e g i s e r s
//
reg [‘OR1200_PIC_INTS−1:0] pic_mask ;
reg [3 1 : 0] intr_compare [0 : ‘OR1200_PIC_INTS−1] ;
reg [3 1 : 0] intr_count [0 : ‘OR1200_PIC_INTS−1] ;

III

//
// In t e rna l wires and regs
//
wire s r_se l ;
wire comp_hi_sel ;
wire comp_lo_sel ;
wire count_hi_sel ;
wire count_lo_sel ;
wire repcomp_hi_sel ;
wire repcomp_lo_sel ;
wire repcnt_hi_sel ;
wire repcnt_lo_sel ;

wire [‘OR1200_PIC_INTS−1:0] intr_count_sel ;
wire [‘OR1200_PIC_INTS−1:0] intr_compare_sel ;
reg [3 1 : 0] spr_dat_o ;

wire s t a r t ;
wire stop ;
wire r e s t a r t ;
wire c l e a r ;
wire ee ;
wire ce ;
wire f cd ;
wire ac ;
wire i n t r ; /∗ s yn t h e s i s keep ∗/
wire r e p l e n i s h ;

reg running ;
reg count_inval id ;
reg suspended ;

//
// Decode r e g i s t e r address
//
assign s r_se l = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_STATUS)) ? 1 ’ b1 : 1 ’ b0 ;
assign c t r l_ s e l = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_CTRL)) ? 1 ’ b1 : 1 ’ b0 ;
assign comp_hi_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_COMPARE_HI)) ? 1 ’ b1 : 1 ’ b0 ;
assign comp_lo_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_COMPARE_LO)) ? 1 ’ b1 : 1 ’ b0 ;
assign count_hi_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_COUNT_HI)) ? 1 ’ b1 : 1 ’ b0 ;
assign count_lo_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_COUNT_LO)) ? 1 ’ b1 : 1 ’ b0 ;
assign repcomp_hi_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_REPCOMP_HI)) ? 1 ’ b1 : 1 ’ b0 ;
assign repcomp_lo_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_REPCOMP_LO)) ? 1 ’ b1 : 1 ’ b0 ;
assign repcnt_hi_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_REPCNT_HI)) ? 1 ’ b1 : 1 ’ b0 ;
assign repcnt_lo_sel = (spr_cs && (spr_addr [‘OR1200_TMUOFS_BITS] ==

‘OR1200_TMU_OFS_REPCNT_LO)) ? 1 ’ b1 : 1 ’ b0 ;

IV APPENDIX A. TMU VERILOG CODE

generate
genvar pic_nr ;

for (pic_nr = 0 ; pic_nr<‘OR1200_PIC_INTS ; pic_nr = pic_nr+1) begin :
INTR_SEL

assign intr_compare_sel [pic_nr] = (spr_cs && (spr_addr [
‘OR1200_TMUOFS_BITS] == ‘OR1200_TMU_OFS_INTRCOMP+pic_nr)) ? 1 ’ b1 :
1 ’ b0 ;

assign intr_count_sel [pic_nr] = (spr_cs && (spr_addr [
‘OR1200_TMUOFS_BITS] == ‘OR1200_TMU_OFS_INTRCNT+pic_nr)) ? 1 ’ b1 :
1 ’ b0 ;

end
endgenerate

//
// Write to c t r l
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
c t r l <= 32 ’ b0 ;

end else i f (c t r l_ s e l && spr_write) begin
c t r l <= spr_dat_i ;

end else begin
c t r l = 32 ’ b0 ;

end
end

//
// Write to sr
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
// Set d e f a u l t operat ion
s r [‘OR1200_TMU_SR_R] <= 1 ’ b0 ;
s r [‘OR1200_TMU_SR_EE] <= 1 ’ b1 ;
s r [‘OR1200_TMU_SR_CE] <= 1 ’ b0 ;
s r [‘OR1200_TMU_SR_FC] <= 1 ’ b0 ;
s r [‘OR1200_TMU_SR_CI] <= 1 ’ b1 ;
s r [‘OR1200_TMU_SR_CNTI] <= 1 ’ b0 ;
s r [‘OR1200_TMU_SR_SUS] <= 1 ’ b0 ;
s r [‘OR1200_TMU_SR_AC] <= 1 ’ b1 ;

s r [‘OR1200_TMU_SR_UNUSED] <= 0 ;
end else begin

s r [‘OR1200_TMU_SR_R] <= running ;
s r [‘OR1200_TMU_SR_EE] <= ee ;
s r [‘OR1200_TMU_SR_CE] <= ce ;
s r [‘OR1200_TMU_SR_FC] <= fcd ;
s r [‘OR1200_TMU_SR_CI] <= c i ;
s r [‘OR1200_TMU_SR_CNTI] <= count_inval id ;
s r [‘OR1200_TMU_SR_SUS] <= suspended ;
s r [‘OR1200_TMU_SR_AC] <= ac ;

s r [‘OR1200_TMU_SR_UNUSED] <= 0 ;
end

end

V

//
// Write to compare and count
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
compare <= 64 ’ b0 ;
count <= 64 ’ b0 ;
count_inval id <= 1 ’ b0 ;

//Count r e g i s t e r
end else i f (running && ! suspended) begin

count <= count + 64 ’ b1 ;
end else i f (count_hi_sel && spr_write && ! running) begin

count [‘OR1200_TMU_HI_BITS] <= spr_dat_i ;
count_inval id <= 0 ;

end else i f (count_lo_sel && spr_write && ! running) begin
count [‘OR1200_TMU_LO_BITS] <= spr_dat_i ;
count_inval id <= 0 ;

end else i f (c l e a r == 1 ’ b1) begin
count <= 64 ’ b0 ;
compare <= 64 ’ b0 ;
count_inval id <= 0 ;

end else i f (r e s t a r t == 1 ’ b1) begin
count <= 64 ’ b0 ;
count_inval id <= 0 ;

//Compare r e g i s t e r
end else i f (comp_hi_sel && spr_write && ! running) begin

compare [‘OR1200_TMU_HI_BITS] <= spr_dat_i ;
count_inval id <= 1 ’ b1 ;

end else i f (comp_lo_sel && spr_write && ! running) begin
compare [‘OR1200_TMU_LO_BITS] <= spr_dat_i ;
count_inval id <= 1 ’ b1 ;

end
end

//
// Read TMU r e g i s t e r s
//
always @(spr_addr or s r or compare or count) begin

case (spr_addr [‘OR1200_TMUOFS_BITS])
‘OR1200_TMU_OFS_STATUS: spr_dat_o = s r ;
‘OR1200_TMU_OFS_CTRL: spr_dat_o = c t r l ;
‘OR1200_TMU_OFS_COMPARE_HI: spr_dat_o = compare [‘OR1200_TMU_HI_BITS] ;
‘OR1200_TMU_OFS_COMPARE_LO: spr_dat_o = compare [‘OR1200_TMU_LO_BITS] ;
‘OR1200_TMU_OFS_COUNT_HI: spr_dat_o = count [‘OR1200_TMU_HI_BITS] ;
‘OR1200_TMU_OFS_COUNT_LO: spr_dat_o = count [‘OR1200_TMU_LO_BITS] ;
‘OR1200_TMU_OFS_REPCOMP_LO: spr_dat_o = rep_compare [

‘OR1200_TMU_LO_BITS] ;
‘OR1200_TMU_OFS_REPCOMP_HI: spr_dat_o = rep_compare [

‘OR1200_TMU_HI_BITS] ;
‘OR1200_TMU_OFS_REPCNT_LO: spr_dat_o = rep_count [‘OR1200_TMU_HI_BITS

] ;
‘OR1200_TMU_OFS_REPCNT_HI: spr_dat_o = rep_count [‘OR1200_TMU_HI_BITS

] ;
‘OR1200_TMU_OFS_PIC_MASK: begin

VI APPENDIX A. TMU VERILOG CODE

spr_dat_o [3 1 : ‘OR1200_PIC_INTS] = {32−‘OR1200_PIC_INTS{1 ’ b0 }} ;
spr_dat_o [‘OR1200_PIC_INTS−1:0] = pic_mask ;

end
‘OR1200_TMU_OFS_INTRCNT: spr_dat_o = intr_count [0] ;
‘OR1200_TMU_OFS_INTRCNT+1: spr_dat_o = intr_count [1] ;
‘OR1200_TMU_OFS_INTRCNT+2: spr_dat_o = intr_count [2] ;
‘OR1200_TMU_OFS_INTRCNT+3: spr_dat_o = intr_count [3] ;
‘OR1200_TMU_OFS_INTRCNT+4: spr_dat_o = intr_count [4] ;
‘OR1200_TMU_OFS_INTRCNT+5: spr_dat_o = intr_count [5] ;
‘OR1200_TMU_OFS_INTRCNT+6: spr_dat_o = intr_count [6] ;
‘OR1200_TMU_OFS_INTRCNT+7: spr_dat_o = intr_count [7] ;
‘OR1200_TMU_OFS_INTRCNT+8: spr_dat_o = intr_count [8] ;
‘OR1200_TMU_OFS_INTRCNT+9: spr_dat_o = intr_count [9] ;
‘OR1200_TMU_OFS_INTRCNT+10: spr_dat_o = intr_count [1 0] ;
‘OR1200_TMU_OFS_INTRCNT+11: spr_dat_o = intr_count [1 1] ;
‘OR1200_TMU_OFS_INTRCNT+12: spr_dat_o = intr_count [1 2] ;
‘OR1200_TMU_OFS_INTRCNT+13: spr_dat_o = intr_count [1 3] ;
‘OR1200_TMU_OFS_INTRCNT+14: spr_dat_o = intr_count [1 4] ;
‘OR1200_TMU_OFS_INTRCNT+15: spr_dat_o = intr_count [1 5] ;
‘OR1200_TMU_OFS_INTRCNT+16: spr_dat_o = intr_count [1 6] ;
‘OR1200_TMU_OFS_INTRCNT+17: spr_dat_o = intr_count [1 7] ;
‘OR1200_TMU_OFS_INTRCNT+18: spr_dat_o = intr_count [1 8] ;
//‘OR1200_TMU_OFS_INTRCNT+19: spr_dat_o = intr_count [1 9] ;
//‘OR1200_TMU_OFS_INTRCNT+20: spr_dat_o = intr_count [2 0] ;
//‘OR1200_TMU_OFS_INTRCNT+21: spr_dat_o = intr_count [2 1] ;
//‘OR1200_TMU_OFS_INTRCNT+22: spr_dat_o = intr_count [2 2] ;
//‘OR1200_TMU_OFS_INTRCNT+23: spr_dat_o = intr_count [2 3] ;
//‘OR1200_TMU_OFS_INTRCNT+24: spr_dat_o = intr_count [2 4] ;
//‘OR1200_TMU_OFS_INTRCNT+25: spr_dat_o = intr_count [2 5] ;
//‘OR1200_TMU_OFS_INTRCNT+26: spr_dat_o = intr_count [2 6] ;
//‘OR1200_TMU_OFS_INTRCNT+27: spr_dat_o = intr_count [2 7] ;
//‘OR1200_TMU_OFS_INTRCNT+28: spr_dat_o = intr_count [2 8] ;
//‘OR1200_TMU_OFS_INTRCNT+29: spr_dat_o = intr_count [2 9] ;
//‘OR1200_TMU_OFS_INTRCNT+30: spr_dat_o = intr_count [3 0] ;
//‘OR1200_TMU_OFS_INTRCNT+31: spr_dat_o = intr_count [3 1] ;
default : spr_dat_o = s r ;

endcase
end

//
// Decode o f running
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
running <= 1 ’ b0 ;

end else i f (i n t r == 1 ’ b1) begin
running <= 1 ’ b0 ;

end else i f (running == 1 ’ b0 && s t a r t == 1 ’ b1 && compare > 0) begin
running <= 1 ’ b1 ;

end else i f (running == 1 ’ b1 && stop == 1 ’ b1) begin
running <= 1 ’ b0 ;

end else i f (running == 1 ’ b1 && ce == 1 ’ b0 && except_started == 1 ’ b1)
begin

running <= 1 ’ b0 ;
end else i f (running == 1 ’ b1) begin

running <= 1 ’ b1 ;

VII

end else begin
running <= 1 ’ b0 ;

end
end

//
// Decode o f suspended
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
suspended <= 1 ’ b0 ;

end else i f (f cd == 1 ’ b1 && ex_freeze == 1 ’ b1) begin
suspended <= 1 ’ b1 ;

end else i f (c i == 1 ’ b0 && 1 ’ b1) begin
suspended <= 1 ’ b1 ;

end else begin
suspended <= 1 ’ b0 ;

end
end

//
// Write to rep lenishment compare
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
rep_compare <= 64 ’ b0 ;

end else i f (repcomp_hi_sel && spr_write) begin
rep_compare [‘OR1200_TMU_HI_BITS] <= spr_dat_i ;

end else i f (repcomp_lo_sel && spr_write) begin
rep_compare [‘OR1200_TMU_LO_BITS] <= spr_dat_i ;

end
end

//
// Write to i n t e r r up t compare r e g i s t e r s
//
integer piccm ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
for (piccm = 0 ; piccm < ‘OR1200_PIC_INTS ; piccm = piccm + 1) begin

intr_compare [piccm] <= 32 ’ b0 ;
end

end else begin
for (piccm = 0 ; piccm < ‘OR1200_PIC_INTS ; piccm = piccm + 1) begin

i f (intr_compare_sel [piccm] && spr_write) begin
intr_compare [piccm] <= spr_dat_i ;

end
end

end
end

//
// Increment i n t e r r up t counters
//
integer p i c s ;

VIII APPENDIX A. TMU VERILOG CODE

always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin
i f (r s t == ‘OR1200_RST_VALUE) begin

for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin
intr_count [p i c s] <= 32 ’ b0 ;

end
end else i f (r e p l e n i s h == 1 ’ b1) begin

for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin
intr_count [p i c s] <= 32 ’ b0 ;

end
end else begin

for (p i c s = 0 ; p i c s < ‘OR1200_PIC_INTS ; p i c s = p i c s + 1) begin
i f (intr_edge [p i c s] == 1 ’ b1 && sr [‘OR1200_TMU_SR_CI]) begin

intr_count [p i c s] <= intr_count [p i c s] + 1 ;
end else begin

intr_count [p i c s] <= intr_count [p i c s] ;
end

end
p i c s = 0 ;

end
end

//
// Edge de t e c t o r f o r i n t e r r u p t s
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
i n t r_s i n g l e <= ‘OR1200_PIC_INTS ’ b0 ;

end else begin
i n t r_s i n g l e <= pic_ints ;

end
end
assign intr_edge = pic_ints & (~ i n t r_s i n g l e) ;

//
// Decode i n t e r r up t mask
//
integer mask ;
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

i f (r s t == ‘OR1200_RST_VALUE) begin
pic_mask <= ‘OR1200_PIC_INTS ’ b0 ;
mask <= 0 ;

end else begin
for (mask = 0 ; mask < ‘OR1200_PIC_INTS ; mask = mask + 1) begin

i f ((intr_count [mask] >= intr_compare [mask]) && (intr_compare [mask]
!= 0) && sr [‘OR1200_TMU_SR_CI]) begin

pic_mask [mask] <= 1 ’ b1 ;
end else begin

pic_mask [mask] <= 1 ’ b0 ;
end

end
end

end

//
// Increment rep lenishment counter
//
always @(posedge c l k or ‘OR1200_RST_EVENT r s t) begin

IX

i f (r s t == ‘OR1200_RST_VALUE) begin
rep_count <= 64 ’ b0 ;

end else i f (r e p l e n i s h) begin
rep_count <= 64 ’ b0 ;

end else i f (rep_compare != 0) begin
rep_count <= rep_count + 1 ;

end else begin
rep_count <= 64 ’ b0 ;

end
end

assign ee = c t r l [‘OR1200_TMU_CTRL_EE] & ~ c t r l [‘OR1200_TMU_CTRL_ED] |
s r [‘OR1200_TMU_SR_EE] & ~ c t r l [‘OR1200_TMU_CTRL_ED] ;

assign ce = c t r l [‘OR1200_TMU_CTRL_CEE] & ~ c t r l [‘OR1200_TMU_CTRL_CED] |
s r [‘OR1200_TMU_SR_CE] & ~ c t r l [‘OR1200_TMU_CTRL_CED] ;

assign f cd = c t r l [‘OR1200_TMU_CTRL_FCE] & ~ c t r l [‘OR1200_TMU_CTRL_FCD] |
s r [‘OR1200_TMU_SR_FC] & ~ c t r l [‘OR1200_TMU_CTRL_FCD] ;

assign c i = c t r l [‘OR1200_TMU_CTRL_CIE] & ~ c t r l [‘OR1200_TMU_CTRL_CID] |
s r [‘OR1200_TMU_SR_CI] & ~ c t r l [‘OR1200_TMU_CTRL_CID] ;

assign ac = c t r l [‘OR1200_TMU_CTRL_ACE] & ~ c t r l [‘OR1200_TMU_CTRL_ACD] |
s r [‘OR1200_TMU_SR_AC] & ~ c t r l [‘OR1200_TMU_CTRL_ACD] ;

assign s t a r t = c t r l [‘OR1200_TMU_CTRL_START] ;
assign stop = c t r l [‘OR1200_TMU_CTRL_STOP] ;
assign r e s t a r t = c t r l [‘OR1200_TMU_CTRL_RESTART] ;
assign c l e a r = c t r l [‘OR1200_TMU_CTRL_CLEAR] ;

assign r e p l e n i s h = (rep_count == rep_compare) ? 1 ’ b1 : 1 ’ b0 ;
assign i n t r = ((count >= compare) && (s r [‘OR1200_TMU_SR_EE] == 1 ’ b1) &&

compare != 0) ? 1 ’ b1 : 1 ’ b0 ;
assign pic_ints_masked = pic_ints & ~pic_mask ;

‘ e l se

//When TMU i s not implemented dr i v e output s as i f i t was i n a c t i v e

assign i n t r = 1 ’ b0 ;
assign spr_dat_o = 32 ’ b0 ;
assign pic_ints_masked = pic_ints ;

‘endif //OR1200_TMU_IMPLEMENTED

endmodule

X APPENDIX A. TMU VERILOG CODE

Appendix B
Folder layout

The attached files contains the following directories:

results: Results from test executions

hardware: Hardware source and support files

simulator: Simulator source and support files

software: FreeRTOS source and support files

XI

XII APPENDIX B. FOLDER LAYOUT

B.1 Test results
The test results file is located in the folder results, and has the following subdirectories:

or1200-tests: Results of the tests from OrpSoC with the TMU included in the system

or1200-tmu-full: Results of the TMU-full test

tmu-bench: Results from the TMU testbench

dualtask: Results from the processor utilization test

For each of the tests described in tables 4.2 and 4.3 five different log-files are created:

vvp.log: Output from the vvp simulator

sprs.log: Access logs for the special-putpose registers

lookup.log: Instruction number and simulation time

general.log: Status reports from the simulator

executed.log: Executed instructions and register file contents after each instruction

.fst: Waveform file

results
or1200-tests
or1200-tmu-tests
or1200-tmu-full
tmu-bench
dualtask

B.2. HARDWARE FILES XIII

B.2 Hardware files
The files for the System-on-chip and all components necessary to compile the design for
simulation is found in the hardware folder. This folder has several subdirectories, each
with a different purpose.

orsoc: Contains all files for the System-on-Chip

bench: Contains the testbench top-level modules and files

board: Contains board-specific modules and files

rtl: Contains the different modules used in the system, including OR1200

sim: Contains files for simulating the system

sw: Contains test software and drivers

utils: Contains some software utilities

tmu_testbench: Contains the TMU testbench

XIV APPENDIX B. FOLDER LAYOUT

hardware
orsoc

bench
verilog

include
boards

altera
cycloneV

rtl
verilog

include
orsoc_top
ram_wb

vhdl
altera_virtual_jtag

syn
quartus
rtl

verilog
adbg_if
arbiter
include
intgen
jtag_tap
or1200
orsoc_top
ram_wb
uart16550

sim
bin
out
run

sw
board

include
drivers

cfi-ctrl
or1200
simple-spi
uart

lib
include

tests
intgen
or1200
uart

utils
or32-idecode

tmu_testbench

B.3. OR1KSIM FILES XV

B.3 Or1ksim files
simulator

argtable2
autom4te.cache
bpb
cache
cpu

common
or1k
or32

cuc
debug
doc
m4
mmu
pcu
peripheral

channels
pic
pm
port
softfloat
support
tick
tmu
vapi

XVI APPENDIX B. FOLDER LAYOUT

B.4 Software files
The files for FreeRTOS can be found in the software folder. The main application files
is found in Application/OpenRISC_SIM_GCC, which has the main FreeRTOS file, the
configuration file and the makefile. In addition this folder contains three subdirectories.

arch: Architecture specific files and drivers

drivers: Drivers for

test: Source files for tests

The back-end source files for FreeRTOS is located in Source, and contains all files for
the functionality provided by the operating system.

include include files

portable files for architecture dependent support functionality

software
FreeRTOSV6.6.6

Application
OpenRISC_SIM_GCC

arch
drivers
test

License
Source

include
portable

GCC
OpenRISC

MemMang

Appendix C
Full system setup

C.1 Simulation

C.1.1 Tools
To run the system simulation the following tools are required:

make GNU make utility
iverilog Icarus Verilog compiler
vvp Open-Source hardwre simulator
or32-elf-gcc Compiler tool-chain for OpenRISC
Quartus Alteras development tool
adv_jtag_bridge Debug communication tool for OR1200

C.1.2 TMU testbench
To run the TMU testbench, type make in the testbench folder. This will compile and run
the tests defined in bench_defines.v. If some tests are to be excluded from simulation,
comment them out in bench_defines.v. When the tests complete, the waveform-viewer
GTKWave will display the waveform from the tests.

C.1.3 Full system tests
Themakefile for the full system tests is located in hardware/orsoc/sim/run. The two main
targets are rtl-tests and rtl-test. Where rtl-tests will run through all the tests
specified in the TESTS variable. To execute a single test, build the target rtl-test
and define the desired test by setting the TEST variable. If a waveform file should be
created specify VCD=1.

Examples

Run all the tests:

XVII

XVIII APPENDIX C. FULL SYSTEM SETUP

make rtl-tests

Run all the tests and generate waveform:

make rtl-tests VCD=1

Run a single test and generate waveform:

make rtl-test TEST=<name> VCD=1

Simulate using a specified elf -file, and generate waveform:

make rtl-test USER_ELF=<elf-file> VCD=1

Additional targets

clean cleans all files generated during compilation and simulation
sw-elf build an elf -file from the specified test
sw-dis disassemble the elf -file from the specified test
sram.vmem build the memory input file for the simulator

Simulation FreeRTOS

To simulate the execution of FreeRTOS the FREERTOS_DIR has to be set, the
freertos-sim can then be executed.

make freertos-sim FREERTOS_DIR=</path/to/freertos/makefile>

C.2 Compiling for FPGA
The compilation and synthesizing for FPGA was done useing Alteras Quartus. All nec-
essary set-up information for quartus is found in the .tcl -files in hardware/orsoc/board-
s/altera/cycloneV/syn/quartus/tcl. The board specific design files are located in hard-
ware/orsoc/boards/altera/cycloneV/rtl.

C.3 Uploading and running programs on the system
Once the system is compiled and loaded to the FPGA, communication with the
system is done through adv_jtag_bridge. To start this program, navigate to
hardware/orsoc/boards/altera/cycloneV/syn/quartus/bsdl, where the boundary scan files
are located, and run:

adv_jtag_bridge -a 1 -b ./ -g 9999 ft245

This will initiate communication with the debugger in the system and set up a
communication port for GDB at port 9999. The debugger uses the USBBlaster on the
FPGA board, and this USB-cable has to be connected.

To upload an executable to the system compile it with or32-elf-gcc, and execute the
following command to start GDB:

C.4. BUILDING AND RUNNING OR1KSIM XIX

or32-elf-gdb <target-file>

When GDB is started, the following commands will upload and start the program:

target remote :9999
load
set $pc=0x100
continue

C.4 Building and running Or1ksim
To build the Or1ksim included in appendix, enter the parent folder of the Or1ksim folder
and run the following commands:

mkdir bld-or1ksim
cd bld-or1ksim
../or1ksim/configure
make

This will configure the Or1ksim and build a executable for the simulator. Programs can
be run on this by:

./sim --nosrv -f sim.cfg <PROG>.or32

The ’–nosrv’ option indicates that the debug server should not be launched. The ’-f’
option includes the simulation configuration file.

C.5 Test tutorial FreeRTOS and Or1ksim
From the FreeRTOSV6.1.1/Application/OpenRISC_SIM_GCC-folder all tests
are compiled and via makefile commands. Makefile, FreeRTOSConfig.h and sim.cfg
are located in this folder, interrupts.c is located in the arch sub folder. All test source
files are located in the test sub folder. Other paths are specified.

In Makefile the directory where Or1ksim is build must be specified to the
OR1KSIM_DIR-variable. Depending on the version of or32/or1k-elf-gcc this must be
specified in Makefile.inc, the variables are TARGET and GCCVER. The variable
CCPATH must also be specified to the folder where the compiler toolchain was installed.
If the compiler still complains about problems regarding the linker, make sure that the
LIBS variable in the Makefile is correct.

All FreeRTOS applications are known to work for version 4.9.0 20140308 (experimen-
tal) or1k-elf-gcc-compiler.

After setting up a test run the following command in this folder.

make sim

tmutest.c:

• In FreeRTOSConfig.h:

XX APPENDIX C. FULL SYSTEM SETUP

– configUSE_TMU 0
– configUSE_TICK_HOOK 1

• Define tmutest in:

– interrupts.c
– main.c
– <or1ksim-path>/tmu/tmu.c

• Add tmutest.c to TEST_SRC in the makefile, exclude all other tests.
• In sim.cfg:

– section tmu:

∗ enabled = 1
∗ task_timer = 1
∗ int_filter = 1
∗ status = 0x12

– section intgen

∗ enabled = 1
∗ baseaddr = 0xa0000000
∗ size = 0x01000008
∗ version = 1

Recompile Or1ksim to include the printout for this test. Remember to remove the tmutest
definition in <or1ksim-path>/tmu/tmu.c and interrupts.c and recompile after this
test is run. Otherwise Or1ksim will spam the simulator output and the other tests will
take significantly more time.

freertostest.c:

• In FreeRTOSConfig.h:

– configUSE_TMU 1
– configUSE_PREEMPTION 0
– conigUSE_IDLE_HOOK 1
– configUSE_TICK_HOOK 1

• Define freertostest in:

– main.c

• Add freertostest.c to TEST_SRC in the makefile, exclude all other tests.
• In sim.cfg:

– section tmu:

∗ enabled = 1
∗ task_timer = 1
∗ int_filter = N/A
∗ status = 0x12

maintest.c:

C.5. TEST TUTORIAL FREERTOS AND OR1KSIM XXI

• In FreeRTOSConfig.h:

– configUSE_TMU 1
– configUSE_PREEMPTION 1
– configUSE_TICK_HOOK 1

• In main.c in:

– Define maintest
– Define ENDTIME 20 000

• Add maintest.c to TEST_SRC in the makefile, exclude all other tests.
• In sim.cfg:

– section tmu:
∗ enabled = 1|0
∗ task_timer = 1
∗ int_filter = 1
∗ status = 0x12

– section intgen
∗ enabled = 1
∗ baseaddr = 0xa0000000
∗ size = 0x01000008
∗ version = 1|2

Running maintest with version two of the interrupt generator, line 88 in maintest.c
must be removed, intgen_set_timeout (intgen, rand()%RAND_MAX);. Changing the
maximum time-out for version two can be done by changing the RAND_MAX in
<or1ksim-path>/peripheral/intgen.c and the recompile Or1ksim. To run this test
on the FPGA, the part about setting up sim.cfg can be discarded.

dualtask.c:

• In FreeRTOSConfig.h:

– configUSE_TMU 1
– configUSE_PREEMPTION 1
– configUSE_TICK_HOOK 1

• In main.c in:

– Definemaintest
– Define ENDTIME 2000

• Add dualtask.c to TEST_SRC in the makefile, exclude all other tests.
• In sim.cfg:

– section tmu:
∗ enabled = 1
∗ task_timer = 1
∗ int_filter = N/A
∗ status = 0x12

XXII APPENDIX C. FULL SYSTEM SETUP

This test can receive arguments from the make command, specificaly: compare and failure
rate(1 failure every rate). Without cleaning before recompiling, the variable change will
not have any effect.

make clean; make sim VARS=’-Dcompare=135 -Drate=100’

To run this test on the FPGA, the part about setting up sim.cfg can be discarded.

Appendix D
Or1ksim testing

D.1 TMU test

Listing D.1: Results from the TMU test on Or1ksim
~/Master/bld−or1ksim/sim −−nosrv −f ~/Master/ or1ksim/sim . c f g rtosdemo . or32
Seeding random genera to r with value 0x355308e0
Warning : Unknown Ethernet type : f i l e assumed .
Or1ksim 2012−04−27
Bui ld ing automata . . . done , num uncovered : 0/215 .
Pars ing operands data . . . done .
Warning : PS2 keyboard unable to open RX f i l e stream .
Rese t t ing PIC .
loadcode : f i l ename rtosdemo . or32 s ta r taddr =00000000 v i r tphy_trans l

=00000000
Not COFF f i l e format
ELF type : 0x0002
ELF machine : 0x005c
ELF ve r s i on : 0x00000001
ELF sec = 18
Sec t i on : . vector s , vaddr : 0x00000000 , paddr : 0x0 o f f s e t : 0x00002000 , s i z e :

0 x00000f1c
Sec t i on : . text , vaddr : 0x00001000 , paddr : 0x1000 o f f s e t : 0x00003000 , s i z e :

0 x00009df4
Sec t i on : . rodata , vaddr : 0x0000adf4 , paddr : 0 xadf4 o f f s e t : 0 x0000cdf4 , s i z e

: 0x00000378
Sec t i on : . data , vaddr : 0x0000b16c , paddr : 0xb16c o f f s e t : 0x0000d16c , s i z e :

0 x0000000c

IntGen dev i ce " In t e r rup t Generator " at 0xa0000000 :
S i z e 0x1000008
Fu l l word R/W enabled

Hardware setup s u c c e s s f u l l
S t a r t i ng FreeRTOS
Sta r t i ng s chedu l e r
tmu_driver_test r e tu rn s with 0 e r r o r s

XXIII

XXIV APPENDIX D. OR1KSIM TESTING

TMU: : Schedul ing except ion , Compare = 400000
res2_except
TMU: : Schedul ing except ion , Compare = 4294967297
res2_except
TMU: : Schedul ing except ion , Compare = 1200000
res2_except
tt_behavior_test r e tu rn s with 0 e r r o r s
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 1

TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 4
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 2

TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 5
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Count i n t e r r up t s are d i s ab l ed : : Int 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 6
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 3

TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 7
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 0 Pass : : 4 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 1 Pass : : 3 | # 8
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 1 Pass : : 4 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 4
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 2 Pass : : 4 | # 3
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 5
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 3 Ignored 4 | # 1
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 6
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 3 Ignored 4 | # 2
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 2 Ignored 3 | # 7

D.2. FREERTOS TEST XXV

TMU: : Replen ish −−−−−−−−−−−−−
TMU: : F i l t e r : : Checking l i n e 4

Budget = 3 Count = 0 Pass : : 4 | # 4
TMU: : F i l t e r : : Checking l i n e 3

Budget = 2 Count = 0 Pass : : 3 | # 9
i f_behav ior_test r e tu rn s with 0 e r r o r s
TMU t e s t f i n i s h e d with 0 e r r o r s
e x i t (0)
@reset : c y c l e s 0 , insn #0
@exit : c y c l e s 4318617772 , insn #3580670882
d i f f : c y c l e s 4318617772 , insn #3580670882

D.2 FreeRTOS test

Listing D.2: Results from the FreeRTOS test on Or1ksim
~/Master/bld−or1ksim/sim −−nosrv −f ~/Master/ or1ksim/sim . c f g rtosdemo . or32
Seeding random genera to r with value 0x8eca1501
Warning : Unknown Ethernet type : f i l e assumed .
Or1ksim 2012−04−27
Bui ld ing automata . . . done , num uncovered : 0/215 .
Pars ing operands data . . . done .
Warning : PS2 keyboard unable to open RX f i l e stream .
Rese t t ing PIC .
loadcode : f i l ename rtosdemo . or32 s ta r taddr =00000000 v i r tphy_trans l

=00000000
Not COFF f i l e format
ELF type : 0x0002
ELF machine : 0x005c
ELF ve r s i on : 0x00000001
ELF sec = 18
Sec t i on : . vector s , vaddr : 0x00000000 , paddr : 0x0 o f f s e t : 0x00002000 , s i z e :

0 x00000f0c
Sec t i on : . text , vaddr : 0x00001000 , paddr : 0x1000 o f f s e t : 0x00003000 , s i z e :

0 x00008c18
Sec t i on : . rodata , vaddr : 0x00009c18 , paddr : 0x9c18 o f f s e t : 0x0000bc18 , s i z e

: 0x00000338
Sec t i on : . data , vaddr : 0 x00009f50 , paddr : 0 x9f50 o f f s e t : 0x0000bf50 , s i z e :

0 x0000002c

IntGen dev i ce " In t e r rup t Generator " at 0xa0000000 :
S i z e 0x1000008
Fu l l word R/W enabled

Hardware setup s u c c e s s f u l l
S t a r t i ng FreeRTOS
Sta r t i ng s chedu l e r
Sta r t Task 2 , Compare = 2000000 , Count = 58
End Task 2 , Compare = 2000000 , Count = 510841
Star t Task 1 , Compare = 1000000 , Count = 58
End Task 1 , Compare = 1000000 , Count = 510301
Star t Task 2 , Compare = 2000000 , Count = 549322
End Task 2 , Compare = 2000000 , Count = 1080397
Star t Task 1 , Compare = 1000000 , Count = 548794
End Task 1 , Compare = 1000000 , Count = 1079346

XXVI APPENDIX D. OR1KSIM TESTING

1−except ion
Star t Task 2 , Compare = 2000000 , Count = 1123674
End Task 2 , Compare = 2000000 , Count = 1659600
Star t Task 1 , Compare = 1000000 , Count = 53
End Task 1 , Compare = 1000000 , Count = 510301
Star t Task 2 , Compare = 2000000 , Count = 1703090
2−except ion
Star t Task 1 , Compare = 1000000 , Count = 548789
End Task 1 , Compare = 1000000 , Count = 1079337
1−except ion
Star t Task 2 , Compare = 2000000 , Count = 50279
End Task 2 , Compare = 2000000 , Count = 576029
Star t Task 2 , Compare = 2000000 , Count = 614502
End Task 2 , Compare = 2000000 , Count = 1145557
Star t Task 2 , Compare = 2000000 , Count = 1188932
End Task 2 , Compare = 2000000 , Count = 1724841
Star t Task 2 , Compare = 2000000 , Count = 1768344
2−except ion
Star t Task 2 , Compare = 2000000 , Count = 110247
End Task 2 , Compare = 2000000 , Count = 640810
Star t Task 2 , Compare = 2000000 , Count = 679287
End Task 2 , Compare = 2000000 , Count = 1210440
Star t Task 2 , Compare = 2000000 , Count = 1253778
End Task 2 , Compare = 2000000 , Count = 1789700
Star t Task 2 , Compare = 2000000 , Count = 1833230
2−except ion
Star t Task 2 , Compare = 2000000 , Count = 110247
End Task 2 , Compare = 2000000 , Count = 640815
Star t Task 2 , Compare = 2000000 , Count = 679287
End Task 2 , Compare = 2000000 , Count = 1210439
Star t Task 2 , Compare = 2000000 , Count = 1253781
End Task 2 , Compare = 2000000 , Count = 1789703
Star t Task 2 , Compare = 2000000 , Count = 1833233
2−except ion
e x i t (0)
@reset : c y c l e s 0 , insn #0
@exit : c y c l e s 11126601 , insn #7209972
d i f f : c y c l e s 11126601 , insn #7209972

D.3 Processor utilisation Figures

D.4 Processor utilisation results
Percentages is calculated in dualtask.xls and not included here because of limited space.

D.4. PROCESSOR UTILISATION RESULTS XXVII

(a) 10% failure rate

(b) 1% failure rate

(c) 0.1% failure rate

Figure D.1: Task 1 started versus time spent in the for loop, all failure rates, Or1ksim

XXVIII APPENDIX D. OR1KSIM TESTING

(a) 10% failure rate

(b) 1% failure rate

(c) 0.1% failure rate

Figure D.2: Task 2 started versus time spent in the for loop, all failure rates, Or1ksim

D.4. PROCESSOR UTILISATION RESULTS XXIX

Table D.1: Processor utilisation results, Task 1, 10% failure rate, Or1ksim

Task 1
Compare Started Exception Completed For-loop

50 484 411 1 017 312 10 0
61 504 548 1 009 134 27 1
62 805 043 886 674 6 0
67 496 917 993 764 447 131 2
80 841 122 841 314 756 986 2
100 835 610 835 654 752 022 83 558
120 835 668 835 669 752 087 83 561
130 830 087 830 094 747 078 166 011
134 830 082 830 090 747 073 166 011
135 2 161 517 216 892 1 945 365 430 542
140 2 156 777 216 236 1 941 093 431 869
150 2 157 550 216 221 1 941 762 431 774
175 2 121 657 212 409 1 909 426 636 618
200 2 123 747 212 493 1 911 286 635 985
250 2 051 147 205 574 1 846 023 1 025 827
270 2 053 066 205 671 1 847 760 1 025 152
290 2 019 124 201 962 1 817 212 1 211 502
300 2 019 667 202 011 1 817 700 1 211 115
325 1 986 117 198 612 1 787 505 1 390 327
350 1 986 702 198 670 1 788 032 1 391 191
400 1 955 977 195 598 1 760 379 1 564 796
500 1 867 967 186 797 1 681 170 2 055 278
600 1 813 537 181 354 1 632 183 2 358 325
700 1 738 198 173 820 1 564 378 2 781 122
800 1 691 227 169 122 1 522 104 3 043 869
900 1 625 177 162 518 1 462 659 3 412 540

1 000 1 584 247 158 425 1 425 822 3 642 118
1 250 1 454 867 145 487 1 309 380 4 363 643
1 500 1 359 647 135 965 1 223 682 4 894 620
1 750 1 276 287 127 628 1 148 658 5 360 403
2 000 1 202 477 120 248 1 082 229 5 772 422
2 250 1 309 667 16 1 309 657 6 509 614
2 331 1 304 507 3 1 304 506 6 535 600
2 332 1 305 799 0 1 305 799 6 529 150
2 500 1 305 799 0 1 305 799 6 529 150
3 000 1 305 799 0 1 305 799 6 529 150

No TMU 1 305 799 0 1 305 799 6 529 150

XXX APPENDIX D. OR1KSIM TESTING

Table D.2: Processor utilisation results, Task 2, 10% failure rate, Or1ksim

Task 2
Compare Started Exception Completed For-loop

50 484 412 1 017 323 6 0
61 504 563 1 009 158 22 1
62 806 195 887 404 22 0
67 496 919 993 782 447 137 2
80 841 231 841 372 757 057 2
100 835 659 835 695 752 042 83 558
120 835 653 835 655 752 055 83 561
130 830 116 830 123 747 103 166 011
134 830 122 830 126 747 110 166 011
135 2 153 254 216 365 1 937 928 430 542
140 2 159 478 216 331 1 943 526 431 869
150 2 158 894 216 251 1 942 980 431 774
175 2 122 062 212 428 1 909 789 636 618
200 2 119 984 212 361 1 907 709 635 985
250 2 052 153 205 791 1 846 938 1 025 827
270 2 050 554 205 529 1 845 498 1 025 152
290 2 019 414 201 978 1 817 472 1 211 502
300 2 018 764 201 954 1 816 887 1 211 115
325 1 986 733 198 673 1 788 060 1 390 327
350 1 987 694 198 770 1 788 924 1 391 191
400 1 956 148 195 615 1 760 533 1 564 796
500 1 868 534 186 854 1 681 680 2 055 278
600 1 814 470 181 447 1 633 022 2 358 325
700 1 738 234 173 824 1 564 410 2 781 122
800 1 691 054 169 106 1 521 948 3 043 869
900 1 625 034 162 504 1 462 530 3 412 540

1 000 1 583 542 158 354 1 425 188 3 642 118
1 250 1 454 554 145 456 1 309 098 4 363 643
1 500 1 359 740 135 974 1 223 766 4 894 620
1 750 1 276 294 127 630 1 148 664 5 360 403
2 000 1 202 614 120 261 1 082 352 5 772 422
2 250 1 301 924 23 1 301 917 6 509 614
2 331 1 307 121 1 1 307 121 6 535 600
2 332 1 305 829 0 1 305 829 6 529 150
2 500 1 305 829 0 1 305 829 6 529 150
3 000 1 305 829 0 1 305 829 6 529 150

No TMU 1 305 829 0 1 305 829 6 529 150

D.4. PROCESSOR UTILISATION RESULTS XXXI

Table D.3: Processor utilisation results, Task 1, 1% failure rate, Or1ksim

Task 1
Compare Started Exception Completed For-loop

50 503 783 1 012 658 7 0
61 505 889 1 011 791 17 0
62 860 480 870 200 33 0
67 497 446 994 821 492 383 0
80 842 764 842 834 834 316 0
100 842 244 842 265 833 774 8 422
120 842 243 842 245 833 793 8 422
130 841 676 841 677 833 260 16 834
134 841 672 841 672 833 255 16 832
135 2 688 097 28 065 2 661 216 53 519
140 2 675 497 27 724 2 648 739 53 787
150 2 663 297 27 209 2 636 654 54 077
175 2 674 297 27 079 2 647 529 80 460
200 2 677 883 27 077 2 650 917 80 360
250 2 662 230 26 975 2 635 571 133 570
270 2 670 497 26 973 2 643 792 133 171
290 2 656 597 26 699 2 630 031 159 992
300 2 663 268 26 666 2 636 636 159 599
325 2 655 797 26 558 2 629 239 185 920
350 2 656 297 26 563 2 629 734 185 918
400 2 650 797 26 508 2 624 289 212 029
500 2 633 297 26 333 2 606 964 289 763
600 2 623 223 26 232 2 596 990 340 912
700 2 606 497 26 065 2 580 432 416 974
800 2 595 697 25 957 2 569 740 467 161
900 2 579 997 25 800 2 554 197 541 553

1 000 2 568 797 25 688 2 543 109 590 828
1 250 2 532 297 25 323 2 506 974 759 712
1 500 2 499 897 24 998 2 474 898 901 410
1 750 2 472 347 24 723 2 447 624 1 038 276
2 000 2 443 197 24 432 2 418 765 1 172 730
2 250 2 485 507 2 2 485 505 1 240 300
2 331 2 480 597 1 2 480 596 1 242 785
2 332 2 483 072 0 2 483 072 1 241 550
2 500 2 483 072 0 2 483 072 1 241 550
3 000 2 483 072 0 2 483 072 1 241 550

No TMU 2 483 072 0 2 483 072 1 241 550

XXXII APPENDIX D. OR1KSIM TESTING

Table D.4: Processor utilisation results, Task 2, 1% failure rate, Or1ksim

Task 2
Compare Started Exception Completed For-loop

50 503 770 1 012 659 14 0
61 505 910 1 011 830 21 0
62 860 570 870 253 41 0
67 497 473 994 857 492 403 0
80 842 794 842 856 834 341 0
100 842 241 842 261 833 776 8 422
120 842 266 842 269 833 821 8 422
130 841 699 841 699 833 282 16 834
134 841 704 841 704 833 287 16 832
135 2 676 170 28 026 2 649 409 53 519
140 2 690 035 27 807 2 663 135 53 787
150 2 704 058 27 518 2 677 012 54 077
175 2 682 373 27 168 2 655 469 80 460
200 2 678 994 27 091 2 652 014 80 360
250 2 671 594 27 023 2 644 876 133 570
270 2 663 530 26 932 2 636 895 133 171
290 2 666 786 26 768 2 640 119 159 992
300 2 660 394 26 678 2 633 790 159 599
325 2 656 502 26 565 2 629 937 185 920
350 2 656 279 26 562 2 629 717 185 918
400 2 650 497 26 505 2 623 991 212 029
500 2 634 455 26 344 2 608 111 289 763
600 2 622 394 26 224 2 596 170 340 912
700 2 606 279 26 062 2 580 217 416 974
800 2 595 402 25 954 2 569 447 467 161
900 2 578 936 25 789 2 553 147 541 553

1 000 2 568 912 25 689 2 543 223 590 828
1 250 2 532 474 25 324 2 507 149 759 712
1 500 2 503 994 25 040 2 478 954 901 410
1 750 2 472 094 24 721 2 447 373 1 038 276
2 000 2 443 194 24 432 2 418 762 1 172 730
2 250 2 480 673 5 2 480 672 1 240 300
2 331 2 485 594 0 2 485 593 1 242 785
2 332 2 483 124 0 2 483 123 1 241 550
2 500 2 483 124 0 2 483 123 1 241 550
3 000 2 483 124 0 2 483 123 1 241 550

No TMU 2 483 124 0 2 483 123 1 241 550

D.4. PROCESSOR UTILISATION RESULTS XXXIII

Table D.5: Processor utilisation results, Task 1, 0.1% failure rate, Or1ksim

Task 1
Compare Started Exception Completed For-loop

50 505 811 1 012 153 2 0
61 506 018 1 012 056 34 0
62 866 301 868 350 58 0
67 497 621 995 200 497 078 0
80 842 795 842 998 841 916 0
100 842 839 842 874 841 867 842
120 842 903 842 903 841 986 842
130 842 843 842 843 842 001 1 684
134 842 810 842 810 841 968 1 684
135 2 751 997 4 054 2 749 245 5 489
140 2 793 997 3 560 2 791 203 5 412
150 2 569 169 3 013 2 566 600 5 864
175 2 874 997 3 130 2 872 063 7 878
200 2 659 348 2 876 2 656 534 8 523
250 2 502 864 2 841 2 500 356 14 975
270 2 990 997 3 290 2 988 006 12 535
290 2 759 147 2 892 2 756 388 16 433
300 2 734 220 2 907 2 731 486 16 583
325 2 748 997 2 749 2 746 248 19 233
350 2 748 997 2 749 2 746 248 19 232
400 2 749 485 2 749 2 746 735 21 972
500 2 744 858 2 744 2 742 114 30 227
600 2 746 440 2 746 2 743 694 35 672
700 2 739 824 2 739 2 737 085 43 951
800 2 739 412 2 739 2 736 673 49 410
900 2 741 806 2 741 2 739 065 57 513

1 000 2 765 398 2 765 2 762 633 62 399
1 250 2 734 997 2 735 2 732 262 82 044
1 500 2 735 826 2 735 2 733 091 98 167
1 750 2 729 997 2 730 2 727 267 114 450
2 000 2 710 519 2 710 2 707 809 131 424
2 250 2 729 114 0 2 729 114 136 450
2 331 2 729 114 0 2 729 114 136 450
2 332 2 729 114 0 2 729 114 136 450
2 500 2 729 114 0 2 729 114 136 450
3 000 2 729 114 0 2 729 114 136 450

No TMU 2 729 114 0 2 729 114 136 450

XXXIV APPENDIX D. OR1KSIM TESTING

Table D.6: Processor utilisation results, Task 2, 0.1% failure rate, Or1ksim

Task 2
Compare Started Exception Completed For-loop

50 505 816 1 012 179 9 0
61 506 040 1 012 102 32 0
62 866 539 868 494 49 0
67 497 412 994 693 496 676 0
80 843 014 843 025 842 163 0
100 842 978 842 988 842 047 842
120 842 942 842 942 842 060 842
130 842 885 842 885 842 043 1 684
134 842 918 842 918 842 076 1 684
135 2 745 839 4 049 2 743 094 5 489
140 2 706 276 3 469 2 703 570 5 412
150 2 932 742 3 296 2 929 810 5 864
175 2 626 324 2 909 2 623 661 7 878
200 2 841 994 3 168 2 838 846 8 523
250 2 995 994 3 209 2 992 987 14 975
270 2 507 865 2 757 2 505 358 12 535
290 2 738 994 2 938 2 736 255 16 433
300 2 763 994 2 891 2 761 230 16 583
325 2 748 660 2 748 2 745 912 19 233
350 2 748 691 2 748 2 745 943 19 232
400 2 746 994 2 747 2 744 247 21 972
500 2 747 994 2 748 2 745 246 30 227
600 2 743 994 2 744 2 741 250 35 672
700 2 746 994 2 747 2 744 247 43 951
800 2 744 994 2 745 2 742 249 49 410
900 2 738 994 2 739 2 736 255 57 513

1 000 2 712 994 2 713 2 710 281 62 399
1 250 2 734 994 2 734 2 732 259 82 044
1 500 2 726 994 2 727 2 724 267 98 167
1 750 2 725 659 2 725 2 722 934 114 450
2 000 2 737 994 2 738 2 735 256 131 424
2 250 2 729 176 0 2 729 176 136 450
2 331 2 729 176 0 2 729 176 136 450
2 332 2 729 176 0 2 729 176 136 450
2 500 2 729 176 0 2 729 176 136 450
3 000 2 729 176 0 2 729 176 136 450

No TMU 2 729 176 0 2 729 176 136 450

D.4. PROCESSOR UTILISATION RESULTS XXXV

Table D.7: Processor utilisation results, Task 1, 1% failure rate, FPGA

Task 1
Compare Started Exception Completed For-loop

100 49 580 299 517 0 0
200 130 517 263 362 2 0
300 219 711 222 961 8 0
312 212 721 215 822 210 336 1
325 212 752 215 789 210 370 0
350 214 771 214 911 212 433 0
400 213 107 215 361 210 959 2 131
500 214 273 214 275 212 090 2 142
550 214 116 214 116 211 964 4 278
575 214 106 214 106 211 964 4 276
578 214 790 214 790 212 183 460
579 621 497 7 440 615 282 12 603
580 627 497 7 477 621 222 12 484
586 616 597 7 422 610 431 12 637
590 617 197 7 426 611 025 12 688
600 618 937 7 435 612 748 12 655
700 620 990 6 502 614 779 12 698
800 625 897 6 506 619 575 18 812
900 636 799 6 594 630 284 24 511

1 000 629 697 6 505 623 297 24 820
1 100 622 397 6 477 616 150 31 223
1 158 624 166 6 451 617 925 31 102
1 172 619 606 6 444 613 410 31 201
1 250 624 619 6 395 618 373 37 203
1 400 622 728 6 227 616 500 37 355
1 500 621 297 6 213 615 084 43 473
1 548 621 263 6 212 615 051 43 504
2 000 617 197 6 172 611 025 61 719
3 000 610 994 6 109 604 885 91 537
4 000 602 596 6 025 596 571 126 605
5 000 595 842 5 958 589 883 160 414
6 000 588 774 5 887 582 887 188 437
7 000 581 697 5 816 575 880 220 895
8 000 574 597 5 746 568 851 252 497
9 000 567 997 5 680 562 317 278 844
9 250 567 597 5 676 567 505 283 444
9 500 577 805 99 577 803 288 338
9 750 577 997 3 577 995 288 448
10 000 577 450 3 577 450 288 700
11 000 577 442 0 577 442 288 700
12 000 577 442 0 577 442 288 700

No TMU 577 442 0 577 442 288 700

XXXVI APPENDIX D. OR1KSIM TESTING

Table D.8: Processor utilisation results, Task 2, 1% failure rate, FPGA

Task 2
Compare Started Exception Completed For-loop

100 49 603 299 583 0 0
200 130 532 263 372 2 0
300 219 973 223 061 9 0
312 212 800 215 840 210 400 1
325 212 871 215 822 210 463 0
350 214 711 214 781 212 240 0
400 213 172 215 411 211 024 2 131
500 214 274 214 274 212 065 2 142
550 214 104 214 104 211 928 4 278
575 214 112 214 112 211 971 4 276
578 214 772 214 772 212 148 460
579 630 647 7 485 624 341 12 603
580 624 620 7 462 618 374 12 484
586 632 294 7 517 625 971 12 637
590 634 951 7 497 628 602 12 688
600 633 094 7 515 626 763 12 655
700 634 894 6 542 628 543 12 698
774 617 129 6 484 612 870 18 557
800 627 202 6 509 620 873 18 812
900 613 294 6 484 606 864 24 511

1 000 620 685 6 446 614 345 24 820
1 100 625 038 6 492 618 782 31 223
1 158 623 394 6 489 617 160 31 102
1 172 624 794 6 448 618 546 31 201
1 250 620 394 6 369 614 190 37 203
1 400 622 894 6 229 616 665 37 355
1 500 621 633 6 216 615 417 43 473
1 548 621 594 6 216 615 378 43 504
2 000 617 529 6 175 611 354 61 719
3 000 610 294 6 103 604 191 91 537
4 000 602 894 6 029 596 865 126 605
5 000 594 394 5 944 588 450 160 414
6 000 588 894 5 889 583 005 188 437
7 000 581 394 5 814 575 580 220 895
8 000 574 190 5 741 568 448 252 497
9 000 569 168 5 691 563 476 278 844
9 250 566 971 5 669 566 884 283 444
9 500 576 763 102 576 757 288 338
9 750 576 920 5 576 917 288 448
10 000 577 470 3 577 469 288 700
11 000 577 490 0 577 490 288 700
12 000 577 490 0 577 490 288 700

No TMU 577 490 0 577 490 288 700

	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Main contributions
	Outline of the report

	Background
	Operating system
	Real-time operating systems
	Scheduling
	Processes
	Exceptions and interrupts

	OR1200
	Overview
	CPU
	Caches and memory management
	Registers
	Functional operation
	Exception handling
	External communication

	Design and implementation of the TMU
	General description of a TMU
	Previous work with a TMU
	On-Line Execution time limiting, 2005
	A TMU for real-time systems, 2008
	Functional specification for a TMU, 2010
	Hardware implementation of a TMU, 2010

	Design of the TMU
	Possible implementations placements
	Chosen design
	Requirements

	Implementation
	Required signals for the TMU
	HDL design
	The internals of the TMU
	TMU register details
	Operation

	TMU testbench
	Results of TMU testbench
	Discussion of the results

	Integrating the TMU in OR1200
	Integration into the OR1200 processor
	Modifications to the SPRS module
	Modifications to exception module
	Modifications to the configuration module
	Modifications to top level modules
	Additions to the configuration file

	Setting up the complete system
	Setting up simulation
	OR1200 tests
	Full TMU test

	Results of the OR1200 tests
	Discussion of the results

	Using the TMU
	Task time counting
	Counting interrupts

	Or1ksim
	Or1ksim description
	Downloading, installing and running
	Modules
	Running Or1ksim as debug server
	Orksim structures
	Or1ksim behavior
	Exceptions in Or1ksim

	Or1ksim changes
	Exception handling
	SPR
	Programmable interrupt controller
	Time management module
	Interrupt generator

	TMU driver
	Verifying Or1ksim
	TMU driver
	TMU behavior

	Discussion

	FreeRTOS
	FreeRTOS description
	Introduction
	Memory layout
	Naming conventions in FreeRTOS
	Task
	Exceptions and interrupts
	Scheduler
	Context switch

	FreeRTOS modifications
	Context layout
	xTMUStruct
	Task control block
	Task creation
	TMU exception handling
	Critical sections

	Setting up FreeRTOS to use the TMU
	Verifying FreeRTOS
	Discussion

	Testing the full system
	Equipment
	Resource usage
	TMU functionality test
	Test setup
	Results

	Overhead
	Testing TMU overhead
	Overhead test results

	Processor utilization
	Expected results

	Discussion
	TMU implementation and integration
	Functionality test
	Overhead test results
	Processor utilisation
	Real-time effects

	Conclusion
	Further work

	Bibliography
	Appendix
	TMU verilog code
	Folder layout
	Test results
	Hardware files
	Or1ksim files
	Software files

	Full system setup
	Simulation
	Tools
	TMU testbench
	Full system tests

	Compiling for FPGA
	Uploading and running programs on the system
	Building and running Or1ksim
	Test tutorial FreeRTOS and Or1ksim

	Or1ksim testing
	TMU test
	FreeRTOS test
	Processor utilisation Figures
	Processor utilisation results

