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Problem Description 

Ultra-low Power Stack Based Processor for Energy Harvesting 

Systems 

One of the most recent trends in electronics is the Internet of Things. The 

transition to these systems is happening. The base for these systems will be 

multiple low–energy consuming nodes able to connect different devices 

between them.  A promising option to replacing the battery on systems is to use 

an energy harvesting system.  

Energy harvesting systems are battery-less systems powered by energy 

sources in the environment, such as heat gradients, light, or vibration. Due to 

the limited energy available, these systems often need a small programmable 

subsystem for basic control tasks, as well as processing and interpreting 

sensor data. This subsystem should be as small as possible to accomplish the 

required task while consuming as little as possible of the available energy. 

The assignment goal is to implement an ultra-low power stack-based CPU to 

be used in an energy harvesting system. The CPU should be integrated in a 

complete subsystem with a RAM and low-power peripherals. Basic example 

code typical for the application should be written. The stack processor will be 

used as a part of a bigger project; therefore it should be designed and 

implemented to be compatible with previous and future work. Compatibility will 

have a high priority in the project. The architecture should be simulated and 

tested. If time allows it, the performance and power consumption of the system 

should be compared when implemented with a regular standard cell library, as 

well as an ultra-low voltage library.  
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Abstract 

The fast evolution of the Internet of Things suggests an unavoidable transition 

to this infrastructure in the near future, and to achieve this multiple nodes need 

to interconnect and communicate efficiently. All nodes will need a power source 

to operate. Most of them will have very low power consumption requirements.  

Therefore, a possible solution would be to have an energy harvesting system 

for the nodes. 

The energy harvesting systems will need a CPU to control all operations and to 

manage the power consumption. The goal of this assignment is to create a 

base processor capable of controlling the system using ultra-low levels of 

power. 

The proposed approach for the assignment is to use a stack processor. Using 

the J1 processor as a reference, a new architecture was designed. The design 

process was done following the design flow tools used by Atmel and covered 

the simulation, testing, synthesis and place and route process.  

The end result of the assignment was a functional stack processor system with 

the capability to communicate with I/O modules using a Wishbone bus. A 

custom assembler was created using Arch C to simplify the testing of the 

architecture. The design was simulated, synthesized and routed using specific 

libraries from Atmel. 

The assignment completed a working design flow that will allow the realization 

of a proper power analysis in the next phase of development. The stack 

processor architecture shows high potential for ultra-low power operations. 

Further time and power analysis is needed to have a complete comparison with 

other processors.   
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1 Introduction 

The electronic revolution is a reality. Every day, more gadgets and appliances 

are given the capability to interconnect and communicate using the internet. To 

better understand the work done in this assignment, insight is needed into the 

actual trends and problems internet connected devices face.  

1.1 Internet of Things  

The internet of things is a fairly new concept, yet it has become rapidly popular 

in the last years. Even though an official definition for this term does not exist, 

for this assignment it is defined as the attempt to equip all gadgets, objects and 

appliances in the world with a way to connect and communicate between them 

and the internet.  To give a bit of perspective, refer to Figure 1-1, provided in a 

study by Cisco [1].  The number of connected devices has already surpassed 

the world population and bear in mind that 30 years ago, an internet connection 

was not commercially available to the general public. 

 

Figure 1-1: The Internet of Thing Evolution [1] 
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1.2 Motivation: Energy Harvesting 

The previous figure takes brings the next question: What are the consequences 

and problems that emerge when there are so many connected devices in terms 

of energy? All the connected devices need an energy source.  Some can have 

a wired connection and others can be outfitted with a battery. Yet, in many 

cases a wired connection is not possible and having a battery brings up the 

problem of maintenance. 

Changing batteries in some devices can be extremely hard or impossible. An 

example of this would be sensors used in the industry. These normally do not 

need to be active at all time. Usually, a very short duty cycle is used and 

therefore small amounts of energy should be enough to keep them operational. 

Energy harvesting is a possible solution for the previously mentioned problem. 

Energy harvesting uses ambient energy sources which are free most of the 

time; some examples are light, heat differentials, vibrating beams, or 

transmitted RF signals. As promising as it may sound, energy harvesting 

devices generate only small amounts of energy and they need a system to 

control their operation. To get a better insight some examples are shown [2]: 

 Small solar panels can produce 100s of mW/cm2 in direct sunlight and 

100s of µW/cm2. 

 Piezoelectric devices using compression or deflection can produce 100s 

of µW/cm2 depending on size and construction. 

 RF energy harvesting collecting antennas can produce 100s of pW/cm2. 

 Seebeck devices, using temperature gradients, can generate 10s of 

µW/cm2 working with body temperatures or 10s of mW/cm2 working with 

a furnace exhaust stack temperatures. 

Therefore to offer a working solution, the CPU controlling the energy harvesting 

needs to work with ultra-low power levels. Otherwise, all of the energy 

generated by the system would be used by the CPU controlling the system.  
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The solution proposed is to use a stack processor to achieve an efficient and 

ultra-low power consumption system. Stack processors are not new. They were 

developed in 1950 and are still being used, mainly due to their simplicity. Yet, 

using them to provide a solution to energy harvesting systems is something 

that has so far not received any deep research. Previous stack processor 

implementations give the advantage of having proper documentation that can 

help in the implementation process. 

1.3 Assignment Interpretation 

Following the assignment description and guidelines given by the tutors, the 

following main tasks were identified, all mandatory tasks were completed: 

Task 1: (mandatory) Design a stack processor system, including RAM, 

communication bus and I/O module. 

Task 2: (mandatory) Test and simulate the system. 

Task 3: (mandatory) Successfully synthesize the design. 

Task 4: (mandatory) Perform place and route of the design. 

Task 5: (optional) Perform power analysis.  

Task 6: (optional) Load the design to an FPGA board. 

Task 7: (optional) Perform energy consumption measurements and 

compare the results with other processors. 

The above task list was done by both the supervisors and the student after 

doing the initial contract; some differences may exist with the initial problem 

description, however, these were the final tasks approved by the supervisors. 

This assignment will set the foundations for the energy harvesting system; 

therefore, proper documentation and implementation of the stack processor are 

the highest priority.  

It is important to mention that all the work done in the assignment needs to be 

compatible with the design flow used at Atmel. Considerable time was needed 

to learn and become familiar with the design flow, though this was not part of 

the tasks listed for the assignment. The design flow helps the assignment to be 
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reusable and scalable. These two characteristics make the compatibility with 

the design flow a priority. Detailed theory and insight on both the Internet of 

Things and Energy Harvesting subjects are not within the scope of the 

assignment. 

1.4 Report Organization 

The organization of the report is divided into individual chapters that are briefly 

described for the reader’s convenience: 

 Chapter 1:Introduction gives an overview about the internet of things, 

the motivation for this assignment and the assignment tasks and 

limitations 

 Chapter 2: Background describes the basic knowledge needed to fully 

understand the assignment report, including: stack processors, the J1 

processor, Wishbone communication and the Atmel design flow.  

 Chapter 3: Implementation covers the methodology, tools and 

implementation, starting from each individual element’s point of view up 

to the complete unification of the system. 

 Chapter 4: Results shows the final design and the simulations used to 

verify the correct behavior of the system. 

 Chapter 5: Discussion & Future Work covers final thoughts on the 

assignment as well as possible optimizations of the design. 

 

 

  

  



 

5 

 

2 Background 

The goal of this section is to give a brief summary on the basic theory 

necessary for accomplishing the present assignment. The first and foremost 

point covered is the stack processor, as that is the base for the assignment. 

Next, the processor used as a reference, the J1 Processor, is discussed. An 

overview of the Wishbone communication protocol and the design flow used at 

Atmel are also covered. 

2.1 Stack Processors 

Stacks have been used for more than over 50 years in the computer 

environment. The first proposal for using a stack was made in 1946 in the 

computer design of Alan M. Turing as a tool for calling and returning from 

subroutines. Later, a formal proposal and a patent was obtained in 1957 by 

Klaus Samelson and Friedrich L. Bauer of Germany [3] [4] [5].  

It is important to understand that a stack simplified the ability to do recursion 

and loops. Their popularity followed a path of ups and downs as history moved 

forward. The introduction of Very Large Scale Integration (VLSI) and Complex 

Instruction Set Computers (CISC) caused processor design to drift away from 

the stack processor, due to the long and comprehensive instructions. However, 

with the growth in popularity of Reduced Instruction Set Computers (RISCs) 

that proposed a simple instruction set to achieve higher performance, stack 

processors became strong candidates for processor designs once again. 

2.1.1 What is a Stack? 

A stack is one of the simplest ways of storing temporal information. It is an area 

of computer memory with a fixed origin but variable size. The data structure 

follows the concept of Last-In-First-Out (LIFO). In a LIFO data structure, the 

last data that comes into the stack (top of stack) is the first to be removed. 
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Once a memory area is defined for the stack, a stack pointer is needed to point 

to the most recently referenced location on the stack. The stack pointer is 

normally implemented in the form of a hardware register [4].  

One of the advantages of working with a stack is that only two operations can 

be used to modify the stack: 

 Push: Data is introduced to the location pointed by the stack pointer, 

also known as the top of stack, and the stack pointer is updated 

depending on the size of the data introduced to the stack. 

 Pop: Data at the current location pointed by the stack pointer is removed 

from the stack, and the stack pointer is updated depending on the size of 

the data removed to the stack. 

It is important that the stack pointer always references the top of stack and is 

always updated properly. Failure to do so will lead to loss of information and 

faulty execution of the processor. 

For this assignment the data introduced or removed from stack will have the 

same size as the memory space. Therefore the update of the stack pointers will 

always consist of a unitary addition or subtraction. 

 

 

 

 

 

 
Figure 2-1:LIFO PUSH and POP Operations 
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Figure 2-1 depicts an example of using the push and pop instructions. In this 

instance, the value “12” is first pushed onto the stack and then later popped off 

of the stack. Notice how the stack pointer (“Top”) is always updated.  

2.1.2 Why Use a Stack Processor? 

A stack processor design was chosen for the assignment due to certain 

benefits it offers. Before explaining the benefits or characteristic in depth, an 

overview of a simple stack processor architecture is needed.  Figure 2-2 is an 

example of generic stack processor architecture from [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Generic Stack Processor Architecture [4] 

The previous figure shows some of the key elements of a stack processor: 

 Data stack (DS): memory in charge of managing all the operands for the 
arithmetic and logic operations. 
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 Return stack (RS): memory in charge of storing subroutine return 
addresses. 
 

 Top of stack (TOS): Last element pushed into the data stack. 

The other elements are common to most processors: the program memory, 

program counter (PC), memory address register (MA), arithmetic / logic unit 

(ALU) and data bus.   

Stacks enable benefits in two areas: Basic operand operations and subroutine 

calling. An example can explain basic operand operations. A simple addition is 

shown in Figure 2-3. The first step pushes the values that need to be added, 

the values 12 and 24. Once the values are stored in the data stack, the 

operand is sent. The processor takes the two values on the top of the data 

stack, adds them, and places the result on the top of the data stack.  

 

Figure 2-3: Add Operation on Stack Processor 

What benefits can we see from the previous example? The instructions PUSH 

and POP only have one argument. Basic arithmetic and logical operations will 

always use the values on the top of the stack. Therefore, the operation 

instructions do not require an argument. In a typical RISC processor, a similar 

instruction could be done in one instruction but it would need at least three 

arguments.   

Stack processors have the capability to call subroutines and exit them using the 

Return Stack, which follows the same principle as any stack. The only 
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difference is that it stores the subroutine return addresses instead of operands. 

Figure 2-4 shows an example in which the return stack is used. Assume the 

program counter (PC) increments by one after executing each operation. When 

the instruction CALL is executed, the address of the next instruction is stored in 

the Return Stack and the PC is updated to the subroutine address. Once the 

execution in the subroutine is finished using the EXIT instruction, the 

subroutine return address is taken from the Return Stack and is used to update 

the PC.  Finally the HALT instruction stops the program. 

 

Figure 2-4: Return Stack Example 

 

The previous example shows that with a simple instruction set, stack 

processors are able to manage subroutines in a very efficient manner.  This 

opens the possibility to more complex code structures like loops, conditional 

statements, etc.  From the previous examples we can summarize some points 

about stack processors: 

 Compact code: Even though operand loads need to be done separately 

and the total number of instructions needed for a program is higher than 

a normal RISC program, due to the reduced size of the instructions, the 

total code size in bytes is less for a stack processor than for a register 

file processor. 
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 Simple instruction set: the simplicity of the instructions allows a 

compiler to be built quickly, making the simulation and testing process 

faster and simpler.  

 Simple return stack: Enables recursion and subroutine execution. 

 Simple data stacks: Replaces a complex cache system. 

Remembering that everything has a downside, the stack processors have also 

some disadvantages. The stacks cannot be accessed randomly; therefore 

planning ahead is needed to obtain efficient code. Also the instruction set used 

by stack processors is not able to reference multiple registers, like RISCs 

instruction sets.  

2.2 The J1 Processor 

The J1 Processor is a very simple 16-Bit stack-based, single cycle processor 

created by James Bowman. The J1 is not a general purpose CPU, it was 

originally intended for FPGAs and to run the six Ethernet cameras in the Willow 

Garage PR2 robot [6].as The J1 uses a very compressed instruction set that 

makes it ideal for applications that need a high throughput, such as 

uncompressed video streaming. The J1’s simple design, light-weight code and 

capability for high throughput make it a great candidate to use as a starting 

point for the design of an ultra-low power stack processor.  

Figure 2-5 shows the basic architecture diagram of the J1, which consists of a 

data stack (D), return stack (R), random access memory unit (RAM), decoder 

unit and arithmetic unit [7]. The first three are shown twice to simplify graphical 

representation. 

The J1 was designed for programs written in Forth and implementation of Forth 

instructions like duplicate, swap, drop, etc. is simplified. To achieve this, the 

instruction decoding uses specific fields as flags for certain events, as Figure 

2-6 shows. Specific flags include modifying the data or return stack pointer, 

pushing or popping the top of the data or return stack, and more. For further 

information please refer to the J1 Paper [7].  
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Figure 2-5: J1 Architecture Diagram [7] 

 

 

Figure 2-6: J1 ALU Instruction Decoding [7] 
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2.3 Wishbone Bus 

The Wishbone bus was selected for this assignment to provide communication 

between the stack processor and any external I/O.  The following information 

was taken from the OpenCores Wishbone User Manual [8]. 

 

Figure 2-7: Master and Slave Wishbone's Interface [8] 

The Wishbone bus is a popular open source hardware computer bus, which 

makes it great to work with due to the many examples and documentation that 

exists. The aim of the Wishbone is to allow the connection between different 

components inside of a chip, which suits the assignment perfectly.  The 

Wishbone is a parallel bus and can work with different bus widths, including 8, 

16, 32, and 64 bits, and follows a master slave topology as shown in Figure 

2-7. This project will use the 16 bit width due to the fact that the J1 is a 16 bit 

processor.  

2.3.1 Wishbone Signals 

The communication is done based on a clock and multiple signals. The signal 

names are standardized and can be divided into three categories: signals 
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common for both slave and master interface, master interface signals and slave 

interface signals. Signals can be categorize in 3 types: Signals exclusive to the 

master, signals exclusive to the slave and signals that are common for both the 

master and the slave. Descriptions of master’s signals and the common signals 

follow. Slave signals are omitted due to the similarity they have with the master 

signals. For a more complete description of the signals, please refer to the User 

Manual [8].  

Common Signals for slave and master 

 CLK_I: Clock input from the system clock, used for synchronizing all 

activities done within the wishbone bus.  

 RST_I: Reset input signal from the system, causes wishbone interface to 

restart. 

 DAT_I(): Data input array used to pass binary data. 

 DAT_O(): Data output array used to pass binary data. 

 TGD_I(): Data tag type used to provide more information associated to 

DAT_I(). 

 TGD_O(): Data tag type used to provide more information associated to 

DAT_O(). 

Masters Signals 

 ACK_I: Acknowledgement input; assertion of this signal indicates 

termination of bus cycle. 

 ADR_O(): Address output array; used to pass a binary address. 

 CYC_O: Cycle bus output; assertion of this signal indicates that a valid 

bus cycle is in progress. 

 STALL_I: Pipeline stall signal indicates current slave cannot accept the 

transfer. Only used in pipeline mode. 

 ERR_I: Error input is used to identify an abnormal cycle termination. 

 LOCK_O: Lock output; when asserted will make the current bus cycle 

uninterruptable.  
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 RTY_I: Retry input indicates that interface is not ready to operate and 

cycle must be retried. 

 SEL_O(): Select output array is used to indicate where valid data is 

expected on DAT_I(). 

 STB_O: Strobe output indicates a valid data transfer cycle. 

 TGA_O(): Address tag type; provides extra information associated with 

ADR_O(). 

 TGC_O(): Cycle tag type provides extra information associated with bus 

cycle. 

 WE_O(): Write enable output; indicates if current cycle is read or write.  

2.3.2 Wishbone Operation 

The Wishbone bus has multiple operating modes. The present assignment will 

focus on the standard single read cycle (Figure 2-8) and write cycle (Figure 

2-9). It is also important to consider that the data sent or received at this time is 

the same width as the bus itself (16 Bits).  Both read and write will be explained 

using the relevant signals for the project [8]. 

2.3.2.1 Single Read Cycle 

The following description is a summary of the information found on the 

OpenCores Wishbone manual. It explains how the read cycle works on a 

Wishbone interface.  The explanation is separated by clock cycles for practical 

purposes. Figure 2-8 represents this bus transaction as well. 

Clock Edge 0  

 Master presents valid address on ADR_O. 

 Master negates WE_O to indicate read cycle. 

 Master asserts CYC_O to indicate the start of cycle. 

 Master asserts STB_O to indicate the start of phase. 

Clock Edge 1 
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 Slave presents valid data on DAT_I(). 

 Slave asserts ACK_I in response to STB_O to indicate valid data. 

 Master monitors ACK_I and prepares to latch data on DAT_I (). 

Clock Edge 2 

 Master latches data on DAT_I(). 

 Master negates STB_O and CYC_O to indicate end of cycle 

 Slave negates ACK_I in response to negated STB_O 

 

Figure 2-8: Single Read Cycle [8] 

2.3.2.2 Single Write Cycle 

The following explains how the write cycle works on a Wishbone interface.  The 

explanation is once again separated by clock cycles for practical purposes. 

Figure 2-9 represents this bus transaction as well. 

Clock Edge 0  

 Master presents valid address on ADR_O. 

 Master presents valid data on DAT_O. 
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 Master asserts WE_O to indicate write cycle. 

 Master asserts CYC_O to indicate the start of cycle. 

 Master asserts STB_O to indicate the start of phase. 

Clock Edge 1 

 Slave prepares to latch the data on DAT_O(). 

 Slave asserts ACK_I in response to STB_O to indicate latched data. 

 Master monitors ACK_I and prepares to terminate the cycle. 

Clock Edge 2 

 Slave latches data on DAT_O(). 

 Master negates STB_O and CYC_O to indicate end of cycle. 

 Slave negates ACK_I in response to negated STB_O. 

 

Figure 2-9: Single Write Cycle [8] 

Both of the previous descriptions assume the slave needs no waiting time to 

respond to the master. The actual project implementation has a stall that allows 

the slave to have a waiting time, more detail of this will be discussed on 

Section 3.2. 
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2.4 Design Flow 

Implementation, simulation and testing of a design can become a very time 

consuming process.  Therefore, a design flow is used to simplify the process. 

The goal of the design flow is to use high level language scripts to build all the 

tools needed to simulate, test and document the design. The design flow was a 

work in progress that took place in parallel to the assignment implementation. 

The ideal design is shown in Figure 2-10. 

 

Figure 2-10: Ideal Design Flow 

The first step of the design flow represented by section A on Figure 2-10, is to 

use docbook documents with xweb termination. These files will have the 

description of the architecture and instructions for the processor. These xweb 
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files will be used to generate the documentation PDF and, more importantly, 

multiple snippets of Python code. These small pieces of code then will be 

united to form the design template. 

Ideally, the design template will be the base to generate two sets of files: the 

Verilog files for the RTL design and the Arch C files for implementing the 

assembler language used by the design, represented by section B on Figure 

2-10. 

The design flow will also be in charge of installing the compilation tools for 

Verilog and Arch C if needed; finally the design flow will do the simulation of the 

previously generated Verilog file. The design flow is not the main focus of this 

assignment and is still a work in progress. Therefore, changes were applied 

continuously during the development of the assignment. The assignment 

focused on section B of the design flow, creating the RTL Files and the Arch C 

files. 

2.4.1 Arch C 

A brief introduction taken from the Arch C User Manual [9] will be given to 

provide an overall understanding of the process taking place when generating 

the stack processor assembler language.  

The solution to simplify the development and testing of a design in recent years 

has been the use of Architecture Description Languages (ADL). Due to the 

increasing complexity of modern designs and time-to-market restraints, 

designers are moving from hardware description languages to system level 

designs, where  automatic generation of a software toolkit (composed by 

assemblers, linkers, compiler and simulators ) is mandatory [10] [11] [9].   

Arch C is a language that follows the System C syntax style and is capable of 

describing a processor’s architecture and a memory hierarchy. The goal of 

Arch C is to provide information at the right abstraction level to provide 
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designers with the tools needed to explore and verify a new architecture 

automatically, like assemblers, simulators, linkers and debuggers [9]. 

An architecture description using Arch C is divided into two parts: 

 Instruction Set Architecture (AC_ISA): Includes the instruction 

formats, size and names, the information needed to decode instructions 

and their respective behavior. 

 Architecture Resources (AC_ARCH): Contains information about 

storage devices, pipeline structure and all the structure of the 

architecture.  

For the present assignment, both the AC_ISA and AC_ARCH files previously 

mentioned were created to generate an assembler language for the stack 

processor architecture. The resulting assembler language was used and 

simplified the testing phase of the project. For further details, consult the Arch 

C User manual [9]. 
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3 Implementation 

The implementation of a stack processor system was the main task of this 

assignment.  This chapter provides information on the steps taken to reach the 

final design, starting from the methodology, through the implementation of each 

individual element and finally the integration of the final system.   

3.1 Methodology  

The next section will focus on explain the steps taken to implement the design, 

as well as mentioning and justifying the tools used for the assignment.  

3.1.1 Development Basis and Organization 

The first step in the development of a stack processor was to decide whether to 

use an existing processor as basis or start a new design from scratch. Due to 

time constrains, the decision was made to start the project using an existing 

processor as a foundation.  The implementation was divided into four different 

sections, bearing in mind that implementation was not a linear process and 

multiple iterations and recursions were needed to complete corrections to the 

design.  The four sections were: 

1. Design Process: having a proper design was the basis for the 

implementation. The design used an existing processor as a base and 

reference. The goal of this step is to obtain a functional RTL design. 

2. Testing Process: the testing process was done throughout the 

complete implementation process. This section explains the evolution of 

the testing techniques and scripts used to simplify testing. This section 

describes the simulation part of the assignment. 

3. Synthesis Process: the synthesis process is explained, together with 

the scripts used. The alternative possibilities available when doing the 

design are also shown. 
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4. Place and Route Process: this was the last step of the implementation.  

This section explains the steps taken to obtain the final resulting 

architecture. 

 

It is important to mention that every 

step and element of the 

implementation was the result of 

several iterations of a process shown 

in Figure 3-1. Simulation, test 

benching and synthesis were used 

for testing every element of the 

design. The processor instructions 

used for testing consisted of the 

instructions a basic stack processor 

needs.  The instruction list can be 

found in Appendix 7.3.  

 

 

 

 

 

 

                                                                               

 

                                                                        

Figure 3-1: Design Process 
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3.1.2 Choice of Tools 

Once the implementation steps were defined, the tools to do them needed to 

be chosen. Considering that the  assignment requires a RTL design, the first 

step was to choose a hardware description language. For this assignment, 

Verilog was used.  The tools can be cataloged depending on what step of the 

assignment they were used. 

 Design Process: Due to the simplicity of the processor, a simple text 

editor could be used to write all of the Verilog code needed for the 

design and for this project GNU Emacs [12] and Notepad++ [13] were 

used. For the simulation of the design, the decision was made to work 

with Icarus Verilog [14], a free open source Verilog simulator and 

synthesis tool for Linux. Icarus Verilog has all the capabilities needed to 

implement and test the designs done for this assignment. Icarus Verilog 

relies on command line and has no graphic interface, making it a very 

light weight tool.  

 Testing Process: To view and analyze the wave forms generated by 

Icarus Verilog, GTKWave [15]was used.  GTKWave has made available 

a free wave viewer for Linux. 

 Synthesis Process: All the synthesis was done using the design flow of 

Atmel and Design Compiler from Synopsis [16]. 

 Place and Route: The design flow from Atmel was again used, along 

with Encounter from Cadence [17].  

3.2 Design Process 

The design process was divided into four tasks: 

a. Implement an existing processor: A stack processor with 

characteristics similar to the ones needed for the assignment was 

chosen and implemented.  The implementation needed to be simulated 

to view and verify the behavior of the processor. Correct operation of the 
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processor was needed to continue to the next step of the 

implementation.  

b. Design of the stack processor: Using the initial processor as a 

reference, a new design was designed and implemented. The new 

design was compared to the initial one to assure proper behavior. 

c. Design of Wishbone bus modules: Once the processor was 

implemented, the communication channel needed to be established. The 

Master and Slave modules of the Wishbone bus were implemented. 

d. Integration of the System: The final step took all the elements and 

integrated them into one complete system.  

As previously mentioned, the design process was done in parallel with the 

testing process to ensure a correct design throughout. The implementation of 

the final stack processor followed the methodology mentioned in the previous 

sections. Starting from the implementation of the J1 processor, followed by the 

implementation of every element and finally covering the integration of the final 

system.  

3.2.1 Implementation of the J1 Processor 

The J1 architecture is documented and the actual implementation was not time 

consuming. This step of the assignment had four main contributions: 

 Obtaining a more complete understanding of a stack processor 

architecture. 

 Familiarization with the tools used in the assignment. 

 Understanding of stack processor behavior. 

 Building a processor to compare the new future design behavior to. 

The J1 documentation includes a Verilog file which was used as a base to 

implement it (reference). The original J1 Verilog code was used to create a 

project that was able to be simulated within the design flow used in the project. 

The next step was to test the implementation using the five types of instructions 

available for the J1: Literal, jump, conditional jump, call and ALU operations. 
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The complete description of the test benching and debugging process used in 

the assignment will be described in Section 3.3.  

3.2.2 Design of the Stack Processor 

Once a working implementation of the J1 was completed, the J1 architecture 

was analyzed to identify any characteristics that could be used or removed in 

the new design. The characteristics that were used as a guideline for the new 

design that derived from this process were:  

 Two pipeline stages on a 16-bit processor: The new processor would 

have the same instruction length and have two pipeline stages instead of 

the single cycle that the J1 had. 

 Instruction Set: The new processor should be able to execute the same 

five instruction types as the J1: Literal, Jump, Conditional Jump, Call and 

ALU instructions. However, the instruction format would need to be 

modified due to the next point.  

 Removal of flag bits from instruction decoding:  The J1 processor 

uses bits from the instruction code to determine certain behaviors for 

each instruction Figure 2-6). The new design would not use any of these 

flag bits in the instruction decoding. All behavior would be determined by 

the opcode of each instruction. This would give the possibility to have a 

greater number of possible instructions or to even modify the instruction 

size in the future. 

 Redesign of instruction decoding logic: The new design would be 

modified to simplify the addition of new instructions. The new design 

instruction decoding logic would use multiplexers to gain a more 

organized architecture. 

 Hierarchy rearrangement: The new design would need to have a 

modular hierarchy to simplify the debugging process and integration into 

the data flow. 
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3.2.3 Instruction Set Description 

Once the guidelines for the processor were set, the next step was to explain 

the new instruction set structure. There were five possible instruction types:  

 Literal: Pushes a value directly to the top of stack; equivalent to PUSH 

Instruction. 

 Jump: Modify the program counter to a given value, moving to specific 

part of the program. 

 Conditional Jump: Performs as Jump instruction does if the top of the 

stack is equal to 0, otherwise the Jump is not performed. 

 Call: Saves the program counter to the return stack, and then modifies 

the program counter to point to a subroutine. 

 ALU: Covers all stack operations (duplicate, over, swap, etc.) and basic 

ALU operations (addition, logical or, negation, etc.). 

 

Figure 3-2: Instruction Decoding 
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All instructions were divided into three opcodes as shown in Figure 3-2. The 

first opcode was to specifically identify literal instructions. If opcode 1 had a 

value of 1, the remaining part of the instruction was taken as the value to be 

used by the literal instruction and opcode 2 and opcode 3 did not need to be 

decoded.  In the case opcode 1 was equal to 0, then opcode 2 was used to 

determine the instruction type. Finally, opcode 3 was only used in the case of 

an ALU instruction type.  Opcode 3 determined which specific ALU operation 

(addition, logical or, etc.) or Forth instruction (swap, duplicate, etc.) was to be 

used. 

3.2.4 Initial Architecture Design 

Once the design parameters instruction set description were finished, the 

architectural design could take place. The stack processor architecture is 

graphically represented in Figure 3-3 using a block diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Initial Architecture Diagram 
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Before explaining the behavior of the architectures, some quick notes regarding 

Figure BLA are needed: 

 The RAM, Data Stack, Return Stack and Regs modules are drawn twice 

for practical purposes, though they represent the same module. 

 The Regs module represents all registers used for the architecture. For a 

complete list of registers refer to cpu.v.  Some of the most relevant 

registers are: 

o Program Counter (PC) 

o Top of Data Stack  

o Next in Data Stack 

o Data Stack Pointer 

o Top of Return Stack 

o Return Stack Pointer 

 The Muxes module consists of several muxes: 

o Next PC Mux 

o Next Data Stack Pointer Mux 

o Next Top of Stack Mux 

o Next ALU A Operand Mux 

o Next ALU B Operand Mux 

o Next ALU Operation Mux 

o Next Return Stack Pointer Mux 

o Next Top of Return Stack Mux 

The previous excerpt was explained to simplify the block diagram. Even though 

this is a two cycle architecture, to simplify the behavior, the following is 

explained in the steps that were used: 

1. Reset and Start Signal: The system should start with a reset, setting all 

initial values to zero. To ensure the system will not be able to advance or 

update any variable before the reset is over, a start signal was 

implemented. The system will not start operating until the start signal is 

set. As long as the initial reset signal is set to 1, the start signal will be 
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set to 0. Only when the reset signal is set to 0, will the start signal be set 

to 1 and remain set to 1 as long as there is no reset. 

2. Instruction FETCH: Using the PC as the instruction address, the next 

instruction is read from the program memory in the RAM and passed to 

the processor. At this point all possible values for the Muxes are ready. 

3. Pipeline Second Stage: This is in charge of the instruction decoding, 

execute and write back. 

a. Instruction Decoding: The instruction is passed to the decoder. 

This decodes the instruction and outputs the corresponding select 

signals to each Mux. 

b. Execute: All of the Muxes output a valid value now. The ALU 

uses these values to calculate the needed result. 

c. Write Back: All updated values are ready to be passed to their 

respective registers. A clocked update takes place and all 

registers that need to be modified are updated.  

It is important to note which part of the behavior was sequential (clocked) and 

which was combinational (not clocked). The only sequential part of the process 

is the final update of the registers. All of the rest of the logic is combinational, 

and this allowed the architecture to be single cycled.  

The updating of the registers depended on the instruction being executed. A 

brief description of the behavior for every instruction can be found in Appendix 

7.3. The RAM used for the stack processor was a simple dual port RAM. The 

code can be also found in the Appendix 7.1. This first architecture design 

behavior was tested using the working J1 processor as a reference. The initial 

architecture design was able to correctly execute all the instructions listed on 

Appendix 7.3. The behavior was tested using a simulation and the respective 

waveforms, more details on Section 3.3. 

 



 

30 

 

3.2.5 The Wishbone Bus  

The implementation of the Wishbone bus needed two parts: The master 

interface and the slave interface. The goal for the communication bus 

implemented in this assignment was to perform standard single reads and 

standard single writes.  

Also consider that the processor was only able to send or read data 16 bits in 

length and the design works under the assumption that the user addresses 

valid memory locations and valid data. The design was to be as compact as 

possible. The tag signals used to provide extra information were not required 

for this assignment therefore were omitted. All other signals were added to the 

implementation for a potential change in future implementations. The complete 

codes named wb_m_16.v and wb_s_16.v can be found in the Appendix 7.1. 

 

Figure 3-4: Wishbone Bus Connection Diagram 
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Figure 3-4 shows a diagram of the connection between the Wishbone bus and 

the CPU. The CPU needed to pass three values: a valid address, the write 

enable signal and valid data. The write enable signal was used to determine if it 

was a write operation (write enable = 1) or a read operation (write enable = 0). 

The CPU only needed to pass valid data in the case of a write operation.  

The Wishbone received the information from the CPU and output the required 

signals depending on the operation, as shown in Figure 2-8 and Figure 2-9. 

The master requested or transferred the required information from/to the slave. 

Because both Wishbone interfaces had sequential logic, a minimum of one 

clock cycle delay was added to wait for the operation to finish. Therefore a stall 

was needed.  

A stall generator was added to the CPU and works in the next way. Whenever 

an instruction access an external module (I/O, RAM, etc.), a signal called 

io_access will go high to notify the external access. The notification of an 

external access set the stall signal to high. Because the decoding of the 

instruction was done using combinatorial logic, the stall was set to high before 

the update of the registers, stopping the execution and preventing 

advancement to the next instruction. The stall generation continuously 

monitored the Wishbone acknowledgement and strobe signal, waiting for the 

end of the bus cycle indicating that the communication exchange was finished.  

The Wishbone Bus can be used to access both the I/O Module and the RAM 

Module, the decoding to decide which module is address works by checking 

the 2 most significant bit of the address; if any bit is a 1 the address is meant 

for the I/O Module else is for the RAM, the remaining 14 bits will be used to 

address the respective module. The use of 2 bits allows future addition of 

different I/O Modules. 

3.2.6 System Integration 

The last step of the implementation was connecting the stack processor with a 

peripheral to test the correct communication using the Wishbone bus. Before 
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this point, the design was not organized with a proper hierarchy, therefore the 

next hierarchy was chosen. The purpose of this restructuring was to simplify 

the testing, debugging and integration to the design flow.  

 

Figure 3-5: Stack Processor Hierarchy 

Figure 3-5 shows the hierarchy organization used for the assignment. The goal 

of the hierarchy was to provide modularity and flexibility, allowing the project 

the opportunity to use a different RAM module or connect to a different 

peripheral in the future using the same code.  The CPU had both the Data 

Stack and the Return Stack each in an individual module separated from the 

logic of the processor.  

The peripheral shown in Figure 3-5 was implemented by adding a register file 

to the Wishbone Slave interface. A delay generator was also added to the slave 

interface, to generate scenarios in which the slaves needed to stall the CPU 

multiple clock cycles.  

Finally, all elements of the design were connected together, creating the final 

design for this assignment. All of the final code can be found in Appendix 7.1. 
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3.3 Testing Process 

The present chapter explains the testing used throughout the design process 

and the testing done in the final design. A simple overview can be seen in the 

Methodology section of Chapter 3.  

The base of all testing done in the assignment was the set of instructions 

shown in Appendix 7.3. If the expected behavior of an instruction was known, 

then the wave form of a design simulation could be compared to the expected 

behavior. If any discrepancies exist, then the modification needed to be 

inserted into the design. This process was done with every instruction, giving 

the basis for the final design obtained on this assignment. 

The initial testing used in the assignment was done by simply hardcoding in the 

Verilog memory files and simulating them using the RTL design. This process 

was slow and repetitive so the decision was made to create a test flow and a 

script to make the process more practical and less time consuming.  

The first step to do this was to develop custom assembly code for the 

processor using Arch C. This allowed easier reading of the code and simplified 

the testing overall. The resulting assembler instructions can be found in 

Appendix 7.3. 

Two types of files were needed to run the testing flow as shown in Figure 3-6. 

The RTL files which contained the design of the processor in Verilog code, and 

the assembly file which contained the instructions that needed to be executed 

along with the expected result of the processor registers. The assembly file was 

already written in the custom assembly implemented using Arch C.   

Next, the RTL files were compiled using Icarus Iverilog [14], creating an 

executable file. The assembly file was compiled to get a Verilog memory file 

(.vmem). Both the executable and the VMEM file were used to run the 

simulation.  
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Figure 3-6: Testing Flow Diagram 

The simulation created two files: a Log file and a Value Change Dumb file 

(VCD). The Log file contained the registers values at the end of the simulation. 

This file was compared with the initial assembly file to determine if the 

instruction execution finished as expected. If not, an error was indicated.  The 

VCD was used for debugging. It could be opened using the GTKwave and the 

waveforms could be analyzed to find any discrepancies or bugs.   

Every instruction was tested individually with a specific test. To make testing 

even faster, a script was made to run every instruction test with a single 

command. The resulting testing flow had the advantage of being automated in 
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a simple flow. On the down side, it did not cover the corner cases, was not 

exhaustive, nor was it randomized. 

3.4 Synthesis Process 

The synthesis let us move from the RTL code to a netlist of gates. This section 

first covers the synthesis flow used in the assignment. The RAM connection to 

the system can vary for different targets, such as for an FPGA or an ASIC.  The 

difference between these two synthesis possibilities and the original design are 

also discussed. 

The synthesis process used the tool Design Compiler by Synopsis. A TCL 

script was used to automate and simplify the process. As shown in Figure 3-7, 

Design Compiler needed at least three input documents to be able to generate 

the required outputs: 

 RTL Code: Verilog files (.v) that describe the processor architecture and 

the design overall.  

 Libraries: Consisting of a .lib file and a .db file; together they describe 

all the standard cells to be used for the synthesis and the information 

needed for the RAM and I/O modules if used.  

 Timing Constraints File: Define the timing requirements the system 

needs to fulfill. It also includes the definition of the clock and the clock 

period. 

The previous inputs were given to the Design Compiler tool and it was able to 

perform the synthesis. The result of the synthesis were three files: a report, the 

netlist and a constraints file (.sdc). The last two were used as arguments for the 

Place and Route process. The report had information about the synthesis and 

was used to verify a proper synthesis process was carried out. 
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Figure 3-7: Synthesis Flow 

The second part of this section focuses on the different possibilities in which 

the RAM could be connected, depending on the target of the synthesis. The 

original design had a single dual port RAM that was used for both Program and 

Data Memory, as shown in Figure 3-8.  For the ASIC implementation, the dual 

port RAM had to be replaced by two single port RAMs: one for the program 

memory and the other for the data memory.  

The needed modifications where made to the RTL code to create the possibility 

of toggling between the original design and the ASIC design. A third possibility 

was to implement an FPGA Design that used two dual port RAMs, separating 

Data and Program memory but using the second port in every RAM for 

debugging. This last possibility has not been implemented and will be 

discussed in Section 5. 
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Figure 3-8: Different RAM Connections 
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3.5 Place and Route Process 

To perform the last step in the implementation, the tool Encounter from 

Cadence was used. As with previous steps, a design flow and script were used 

to automate and simplify the process.  

 

Figure 3-9: Place and Route Flow 

The place and route flow used at Atmel is explained in the steps below using 

Figure 3-9 as a reference: 

1. Setup: The LIB file and LEF file are in charge of the setup. The LIB file 

provides the timing information of the cells. The Library Exchange 

Format (LEF) file contains the physical view, pin layout, metal layers and 

abstract information of the cells.  

2. Read Netlist: The netlist generated by the synthesis process is used as 

the input. 
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3. Floor Planning: The first distribution of the chip is made and the die 

size and core area are determined. Other blocks, like RAM or I/O 

Buffers, are also placed in this step. 

4. Power Supply Definition: Depending on the configuration the 

characteristics of the power supply are determined. For example, the 

decision between using rings or stripes for the power supply is made in 

this step. 

5. Timing Constraint Reading: The SDC file generated by the synthesis 

is used to determine timing limitations and rules. 

6. Placement: The first placement is done, driven by timing. 

7. Clock-Tree Building: This step uses the clock tree definition file as a 

reference. 

8. Optimization: An optional optimization step exists before the routing.   

9. Routing:  The process of routing cause changes, such as buffer 

insertion or timing modification. 

10. Optimization: This step will try to fix any timing problems generated by 

the Routing. 

11. Generate: The last step generates three files: 

a. Netlist 

b. Standard Parasitic Exchange Format (SPEF) File : File that 

contains timing information of the design 

c. Design Exchange Format (DEF) File: File representing the 

layout of the design. 

The last step generates the files needed to do a timing and power analysis, 

however, due to time constraints, these were not performed for this 

assignment. The process is discussed in Section 5.  





 

41 

 

4 Results 

The goal of this section is to show the final design of the assignment, the 

modifications to the original design and the results obtained with the final 

design. 

4.1 Final Design 

The final stack processor system was synthetized to target an ASIC module. 

The final system architecture diagram can be seen in Figure 4-1. 

 

 

Figure 4-1: Final Design Architecture 

The main change from the original design was the change of a Dual Port RAM 

for two Single Port RAMs that separate the Data Memory and the Program 

Memory. The separation of the Data Stack and Return Stack into separate 

modules was done in the design process. Originally, the stacks would be part 

of the CPU logic. 

Tasks 1 through 4 from Section 1.3 were completed successfully.  The stack 

processor system was implemented: designed, tested, simulated, synthetized 
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and place and route was performed. Even though not in the assignment tasks, 

a practical test flow was created for the system. 

The implemented stack processor is able to successfully execute all the 

instruction types mentioned in Section 3.2.3 and in the Appendix 7.3.  The 

system is capable of communicating with the implemented I/O modules using 

the Wishbone Bus using single read and write 16-bit operations; this will be 

demonstrated in Section 4.2. The system was designed to simplify the addition 

of new instructions. 

4.2 Simulations 

Some basic instruction execution is shown to demonstrate the proper behavior 

of the system. The first case consisted of pushing values to the stack using 

Literal type instructions and then doing an ALU addition instruction.  

Figure 4-2 shows the waveform resulting from the simulation of the addition 

test. Most signals are self-explanatory with the exception of _st0 (New Top of 

Stack), st0 (Top of Stack), st1 (Next After Top of Stack) and dsp (Data Stack 

Pointer).  

The first part of the simulation that needs to be noticed are the reset and start 

signals. Execution will not start until start_signal has been asserted. The 

instructions of the test are: 

lit  4 (0x8004) 
lit  1 (0x8001) 
lit   10 (08x00A) 
add   (0x6203) 
halt   (0x6010) 

Basically the values 4, 1 and 10 are pushed to stack and then the last two 

values are added. It is important to remember that whenever a value is pushed 

to the stack, it must to pass through the Top of Stack (st0) and Next After Top 

of Stack (st1), because only after going to these two registers will the value be 

stored on the stack.  As soon as the add instruction is read (0x6203) when the 
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program counter (pc) has a value of 3, the new top of stack is calculated( _st0), 

and in the next clock cycle the top of stack (st0) value is updated correctly. 

It is important to notice the data stack’s first two positions, data_stack_0 and 

data_stack_1, are filled with the value 0. This is due to the fact that whenever 

an instruction that will access the stack is executed, the data stack pointer 

(dsp) is increased and the value of next of stack (st1) is stored in the data stack 

location pointed by the data stack pointer.  

 

Figure 4-2: Add Simulation 

During the initialization, the value of st1 is 0 because no value has gone 

through the top of stack and therefore the first two locations on the data stack 

have value of 0. The first locations of the data stack that are filled with zeroes 

due to this behavior will still work properly and be used by the architecture. This 

will not affect the proper execution of instructions or the behavior of the 

processor. 

A hard coded solution could be made by using the drop instruction at the 

beginning of a program if starting from position 0 of the data stack is completely 

necessary.  
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All ALU instructions had similar satisfactory behaviors, so showing examples of 

each one of them is not shown. Instead an example of a CALL instruction is 

shown next, covering the proper capability of the processor to do address 

modifications. 

Figure 4-3 shows the wave form of the simulation of the CALL instruction test. 

The instructions of the test are: 

lit  4 (0x8004) 
call  5 (0x4005) 
halt   (0x6010) 
lit  6 (0x8006) 
lit  7 (0x8007) 
lit  8 (0x8008) 
lit  9 (0x8009) 
exit   (0x700C) 
lit  10 (0x800A) 
halt  15 (0x6010) 
 

 

Figure 4-3: Call Simulation 

The goal of the test is to use the CALL instruction to jump to a specific part of 

the code, and then return with the EXIT instruction. The CALL instruction stores 

the return address in the return registers. A behavior similar to the data stack 

takes place. The first location to be used in the return stack is not location zero 
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due to the updating of the Return Stack Pointer (rsp). By monitoring the signal 

of Top of Stack (st0) and the Program Counter (pc), it is possible to see  how 

the CALL instruction modifies the pc to jump to the respective program address 

and the previous address is stored in the return stack; the value is logically 

shifted left once before been store, therefore the value stored in return_stack_1 

is the value 4, which is 2 logically shifted left. The program returns to the 

original address after using the EXIT instruction. The instruction that pushes 

the values 6 and 7 are jumped and the instruction that pushes the value 10 is 

not executed, showing the program returning to the correct location in time.  

The JUMP and CONDITIONAL JUMP instruction types had similar successful 

behavior and their waveforms are not shown. 

The communication between the CPU and the peripheral using single read and 

write operations with the Wishbone was completed successfully in two cases: 

with delay from the slave and without delay from the slave. Figure 4-4 shows a 

case in which the communication between master and slaves has no delay. 

The test writes the value 4 to the first address register of the I/O module, after 

this the value from the first address register is read to verify that the content is 

correct. Remember the decoding used by the design uses the top 2 bits of the 

address to check which module is addressed, that’s why the value used is 

49152 (1100 0000 0000 in binary). The test instructions are the next: 

lit  4    (0x8004) 
lit  49152    (0xC000) 
mem_wr      (0x6123) 
lit  49152    (0xC000) 
mem_rd     (0x6C01) 
halt  15    (0x6010) 

 

Figure 4-4 signals can be divided in 3 categories from top to bottom: signals 

from the CPU, signals from the Wishbone Bus master module and signals from 

Wishbone Bus slave module; every segment starts with the modules clock. The 

simulation shows the same signal activity as seen in Figure 2-8 and Figure 2-9 

when doing a signal write and read operation. The strobe signal (stb_o) and 
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cycle signal (cyc_o) are set high at the start of an external access and will wait 

for the acknowledgement signal (ack_i). After receiving the first 

acknowledgment the value 4 is wrote in the register reg_f0. The value is then 

successfully read and wrote to top of stack (st0). 

 

Figure 4-4: Wishbone Bus Communication Example 
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4.3 Area Distribution and Layout 

Due to confidentiality reasons with Atmel, only the area distribution of the final 

design is shared, as seen in Figure 4-5. The area used for the CPU logic is 

minimal, in comparison to the rest of the system.  An image of the final place 

and route can be seen in Figure 4-6. 

Figure 4-5: Area Distribution 

 

It is important to remember that the present assignment needed to create a 

solid base for future projects and to enable the next user to continue work as 

easily as possible. It should be considered that not only was an architecture 

implementation made, but also the test flow, the custom assembler and the 

documentation needed to follow and repeat the process from step one all the 

way to Place and Route were created. 
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Figure 4-6: Place and Route 
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5 Discussion & Future Work 

This section discusses the results of the assignment as well as some topics for 

future work and optimization. The main tasks of the assignment were 

completed successfully. Due to time limitations, the power analysis was not 

covered in this assignment.  Working on this assignment included a learning 

curve adapting to the methodology used by the company. The design, testing, 

synthesis and place and route process had to be automated using scripts.  This 

assignment required the understanding of an elaborate design flow used by 

Atmel; learning to use the design flow and incorporating the final design to it 

took time.  

The original design evolved through the assignment and changed accordingly 

in response to the testing process. Overall, a successful implementation of the 

stack processor system was achieved. Some suggestions covering possibilities 

for future work and optimization of the final design follow. 

5.1 Power Analysis 

For a future proper power analysis several steps after the place and route 

process are required in order to get useful information. Figure 5-1 shows some 

of the steps that need to take place after the Place and Route. A back 

annotated simulation flow checks if any design changes or constraints are 

violated by changes done in the Place and Route and Synthesis process. The 

back annotated simulation would use the netlist of the Place and Route and the 

SPEF file with the timing constrains generated by the Place and Route. 

A power analysis should be done in parallel with a timing analysis using the 

same netlist and timing constraints. Finally, for a successful power analysis, 

correct stimulation is needed. This can be given using a Switching Activity 

Interchange Format (SAIF) file, which contains the toggling activity of all the 

signals in the system. Generating clock trees and clock gating configurations 

will have an important role in power analysis. This opens many possibilities for 
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testing and comparison.  For these reasons, it is considered that this could be 

part of another assignment and was not covered by this assignment. 

 

Figure 5-1: Post-Place and Route Flow 

5.2 Stack Merging 

A possibility was discussed at the end of the assignment to merge the Data 

Stack and the Return Stack. This possibility would enable a more compact 

architecture, but it would also have some new challenges: 

 Arbiter: A module in charge of arbitration should be implemented to 

avoid cases in which multiple stack accesses are made. 

 Pointers: The pointers for both stacks would need to be monitored or 

modified to not use illegal stack locations. 

 Delay: This modification would add a possible delay in cases that 

consecutive access to the stack is needed. 

As shown in Figure 5-2, the arbiter would need to determine which access is 

done to the stack and generate a stall if needed.  
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Figure 5-2: Stack Merging 

5.3 Wishbone Bus Extension 

Even though successful single read and write 16-bit operations are possible 

with the actual implementation, the Wishbone Bus could be extended further to 

be capable to do advance pipeline communication and burst communication. 

The actual Wishbone bus implementation only uses the required signals for 

simple communication, no signals providing information of the data transferred 

are used; this signals could also be implemented in future work. 

The design had specific problems when a back to back I/O access was done in 

which the first access tried to read and the second to write to the same location 

from an external I/O Module. Possible solutions for this corner case could be 

obtained by modifying the stall module in cpu.v or the signals from the 

Wishbone Bus modules.   

5.4 Pipeline Optimization 

The final design has two pipeline stages: the first one consists exclusively of 

the fetch stage and the second one consists of the decoding, execution and 
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write back stages of the common pipeline. One possible change that could 

improve the behavior of the stack processor system is to move a small part of 

the decoding process to the first stage of the pipeline. As shown in Figure 5-3, 

adding a small portion of the decoding to the first pipelining fetch could result in 

a faster processor and prevent errors from corner cases. 

 

Figure 5-3: Pipeline Modification 
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7 Appendix 

7.1 Final RTL Code 

The most relevant parts of codes will be shown in this part of the appendix, all the 

other code will be added in the digital appendix for practical purposes. 

7.1.1 CPU 

 module cpu (/*AUTOARG*/ 

  // Outputs 

  read_data, io_access,instr_addr, io_wr, io_addr,io_dout, 

   

  // Inputs 

  ram_addr, clk, cs, reset,io_din,instr,ramrd,ack_i,stb_i 

  

 ); 

 `include "stkpc_params.v" 

 

 input [4:0] ram_addr; //Ram_address 

 input  clk;  //Clock  

 input  reset; //Reset 

 input   cs;   //Chip select 

 input [STKPC_WORD_MSB:0]   io_din; //I/O Data in 

 input  [STKPC_WORD_MSB:0]  instr; //Instruction from Ram 

 input [STKPC_WORD_MSB:0]  ramrd;  //Ram read input 

 input  ack_i;  //Wishbone acknowledge signal  

 input  stb_i;  //Wishbone strobe to signal valid cycle 

 

 

 output [STKPC_INST_MSB:0]  read_data; //For test bench 

 output [STKPC_PC_MSB:0]    instr_addr;//Next instruction address 

 output io_wr;  // 1= IO Write 0= IO Read 

 output io_access; // Signal access to IO for WB 

 output [STKPC_WORD_MSB:0] io_addr; //Output address to IO/RAM  

 output [STKPC_WORD_MSB:0]  io_dout; //Output data to IO/RAM 

 

 //Signals for monitoring data and return stack 

  

 //ALU Regs////////////////////////////////////////////// 

 reg [STKPC_WORD_MSB:0]  alu_a; 

 reg [STKPC_WORD_MSB:0]  alu_b; 

 wire[STKPC_WORD_MSB:0]  alu_c; 

  

 //Data Stack Regs//////////////////////////////////////// 

 reg [STKPC_DSTACK_POINTER_MSB:0]  dsp;  //Data stack pointer 

 reg [STKPC_DSTACK_POINTER_MSB:0]  _dsp; //New data stack pointer 

 reg [STKPC_DSTACK_MSB:0]   st0; //Top of stack data (T) 
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 reg [STKPC_DSTACK_MSB:0]   _st0; //New top of stack data (T') 

 reg   dstkW;   //Data stack write enable Reg 

 wire  _dstkW;      //Data stack write enable 

 wire[STKPC_DSTACK_MSB:0]   st1 ; //Next of Stack 

  

 

 //Return Stack Regs////////////////////////////////////v 

 reg [STKPC_RSTACK_MSB:0]   rsp;  //Return stack pointer 

 reg [STKPC_RSTACK_MSB:0]   _rsp;  //New return stack pointer 

 reg       rstkW; //R stack write enable 

 reg [STKPC_RSTACK_MSB:0]   _rstkD;//Newest return stack data 

 wire[STKPC_RSTACK_MSB:0]   rst0;  //Top of Return stack 

  

 //General Regs//////////////////////////////////////// 

 reg [STKPC_PC_MSB:0]   pc;  //Program counter 

 reg [STKPC_PC_MSB:0]  _pc;  //New program counter 

 reg [STKPC_PC_MSB:0]   start_signal;//Start Signal 

 reg      stall;//Stall signal for IO/RAM Access 

 reg [STKPC_PC_MSB:0]   _instr_addr;//Next instruction address 

 reg     r_io_access; //IO Access Reg 

 reg     halt;   //Halt signal 

 reg     halt_r;  //Halt Reg 

 reg       ioWE;  //IO/RAM write enable Reg 

 wire      _io_access; //IO Access Signal 

 wire      _ioWE;  //IO/RAM write enable  

 wire [STKPC_PC_MSB:0] pc_plus_1; //PC+1 to fetch next instruction 

 wire [STKPC_WORD_MSB:0]  ramrd;  //Ram read input 

  

 //Assigns ////////////////////////////////////////////////// 

 assign  _ioWE =ioWE; 

 assign  _dstkW=dstkW; 

 assign  instr_addr =_instr_addr;//Pass addr of next instruction 

 assign _io_access=r_io_access; 

 assign  pc_plus_1 = pc + 1;       

 assign  io_wr = _ioWE;  //I/O and Ram write enable 

 assign  io_addr = st0;  //We use top of stack(T) as address 

 assign  io_dout = st1;  //We use next in stack(N) as data  

 assign  io_access = (_io_access& stall); //High if access to IO 

 assign  read_data = instr; //Every time a instr is taken from 

RAM, read_data is updated 

 

 //MUX SELECTS//////////////////////////////////////////////// 

 reg [STKPC_SEL_PC_MSB:0]    next_pc_mux_sel; 

 reg [STKPC_SEL_ALU_A_MSB:0]   alu_a_mux_sel; 

 reg [STKPC_SEL_ALU_B_MSB:0]   alu_b_mux_sel; 

 reg [STKPC_SEL_DSP_MSB:0]    dsp_mux_sel; 

 reg [STKPC_SEL_RSP_MSB:0]    rsp_mux_sel; 

 reg [STKPC_SEL_RSTACK_MSB :0]   rstack_mux_sel; 

 reg [STKPC_SEL_ST0_NEW_MSB:0]   _st0_mux_sel; 

 reg [STKPC_SEL_ALUOP_MSB:0]   alu_op_mux_sel; 

 reg [STKPC_FLOW_HALT_MSB:0]   halt_mux_sel; 

  

 

 //Stall Generator//////////////////////////////////////////////// 
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 always @(*) begin 

  if (reset==1)begin 

   stall <=0; 

  end 

  if (ack_i == 1 | _io_access == 0) begin 

   stall<=0; 

  end 

  else if ((stb_i ==1 | _io_access == 1) && ack_i == 0) begin 

   stall <= 1; 

  end  

 end 

  

 // If stall we stay in actual instruction  

 always @(*) begin 

  if (stall==1) begin 

   _instr_addr <= pc; 

  end 

  else begin 

   _instr_addr <= _pc; 

  end 

 end 

  

 //MUX for PC////////////////////////////////////////////// 

 always @(*) begin 

  if (start_signal ==0) begin  //We wait for start signal 

   _pc <= 0; 

  end  

  else begin 

   case(next_pc_mux_sel) 

    STKPC_SEL_PC_COND_JMP: begin // Conditional Jump 

if (st0==0) begin//If top of stack =0, jump 

      _pc <= instr[STKPC_ALU_TO_PC_MSB:0];      

     end  

     else begin 

      _pc <= pc_plus_1; 

     end 

    end 

    STKPC_SEL_PC_INC: begin  //PC increment  

     _pc <= pc_plus_1;         

    end 

    STKPC_SEL_PC_INSTR: begin //JMP or CALL   

     _pc <= instr[STKPC_ALU_TO_PC_MSB:0];         

    end 

    STKPC_SEL_PC_RSTACK: begin //EXIT of a routine 

    _pc <=rst0[STKPC_RSTACK_PC_MSB:STKPC_RSTACK_PC_LSB];         

    end 

    default: 

     _pc <= pc;         

   endcase 

  end 

 end 

    

 //MUX for ALU A//////////////////////////////////////VVVV 

 always @* begin 
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  if (start_signal ==0) begin //We wait for start signal 

   alu_a <= 0; 

  end 

  else begin  

   case(alu_a_mux_sel) 

    STKPC_SEL_ALU_A_ST0: begin  //Top of data stack 

     alu_a <= st0;          

    end 

    STKPC_SEL_ALU_A_ST1: begin //Next of data stack 

     alu_a <= st1;         

    end 

    STKPC_SEL_ALU_A_RST0: begin //Top of return stack  

     alu_a <= rst0;         

    end 

    STKPC_SEL_ALU_A_RSP: begin //Pointer to return                     

stack, for checking stack depth  

     alu_a <= _rsp << 8;  //Shift right to display 

rsp in high bits and dsp in low bits 

    end 

    default: 

     alu_a <= alu_a;         

   endcase 

  end 

 end 

    

 //MUX for ALU B//////////////////////////////////////// 

 always @* begin 

  if (start_signal ==0) begin //We wait for start signal   

   alu_b <= 0; 

  end 

  else begin  

   case(alu_b_mux_sel) 

    STKPC_SEL_ALU_B_ZERO: begin   //Zeros  

      alu_b <= STKPC_ZERO_16BITS ;         

    end 

    STKPC_SEL_ALU_B_ONES: begin  

     alu_b <= STKPC_ONES_16BITS; //Ones  

    end 

    STKPC_SEL_ALU_B_ST0: begin //Next of data stack 

     alu_b <= st0;         

    end 

    STKPC_SEL_ALU_B_DSP: begin //Data stack pointer 

     alu_b <= _dsp;         

    end 

    default: 

     alu_b <= alu_b;         

   endcase 

  end 

 end 

  //MUX for DSP////////////////////////////////////////////// 

 always @* begin 

  if (start_signal ==0) begin  //We wait for start signal 

   _dsp <= 0; 

  end 
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  else begin 

   case(dsp_mux_sel) 

    STKPC_SEL_DSP: begin 

     _dsp <= dsp;         

    end 

    STKPC_SEL_DSP_INC_1: begin 

     _dsp <= dsp + 1;          

    end 

    STKPC_SEL_DSP_INC_2: begin 

     _dsp <= dsp + 2;         

    end 

    STKPC_SEL_DSP_DEC_1: begin 

     _dsp <= dsp - 1;          

    end 

    default: 

     _dsp <= dsp;         

   endcase 

  end 

 end 

    

  //MUX for RSP////////////////////////////////////////////////// 

 always @* begin 

  if (start_signal ==0) begin  //We wait for start signal 

   _rsp <= 0; 

  end  

  else begin 

   case(rsp_mux_sel) 

    STKPC_SEL_RSP: begin 

     _rsp <= rsp;         

    end 

    STKPC_SEL_RSP_INC_1: begin 

     _rsp <= rsp + 1;          

    end 

    STKPC_SEL_RSP_INC_2: begin 

     _rsp <= rsp + 2;         

    end 

    STKPC_SEL_RSP_DEC_1: begin 

     _rsp <= rsp - 1;          

    end 

    default: 

     _rsp <= rsp;         

   endcase 

  end 

 end 

    

  //MUX for Return Stack////////////////////////////////////// 

 always @* begin 

  if (start_signal ==0) begin  //We wait for start signal 

   _rstkD <= 0; 

  end  

  else begin 

   case(rstack_mux_sel) 

    STKPC_SEL_RSTACK_PC: begin 

     _rstkD <= _pc;          
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    end 

    STKPC_SEL_RSTACK_ST0: begin 

     _rstkD <= st0;        

    end              

    STKPC_SEL_RSTACK_PC_PLUS_1: begin 

     _rstkD <= {pc_plus_1[STKPC_PC_MSB:0], 1'b0};        

    end 

    default: 

     _rstkD <= _pc;         

   endcase 

  end 

 end 

   

  //MUX for _ST0////////////////////////////////// 

 always @(*) begin 

  if (start_signal ==0) begin 

   _st0<=0; 

  end  

  else begin 

   case(_st0_mux_sel) 

    STKPC_SEL_ST0_NEW_ALU: begin 

     _st0 <= alu_c;          

    end 

    STKPC_SEL_ST0_NEW_RAM_IO: begin 

     _st0 <= |st0[15:14] ? io_din : ramrd;       

    end              

    STKPC_SEL_ST0_NEW_IMM: begin 

     _st0 <= { 1'b0, instr[STKPC_IMM_MSB:0] };        

    end 

    default: 

     _st0 <= st0;         

   endcase 

  end 

 end 

    

        // Halt instruction 

 always @* begin 

  case(halt_mux_sel) 

   STKPC_FLOW_HALT_YES: begin 

    halt = 1'b1;         

   end 

   STKPC_FLOW_HALT_NO: begin 

    halt = 1'b0;         

   end 

   default:  

   halt = 1'b0;         

  endcase  

 end 

 

   //Instruction Decoder 

 always @* begin 

 

      next_pc_mux_sel=0; 

   alu_a_mux_sel=0; 
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   alu_b_mux_sel=0; 

   alu_op_mux_sel=0; 

   dsp_mux_sel=0; 

   rsp_mux_sel=0; 

   rstack_mux_sel=0; 

   _st0_mux_sel=0; 

   halt_mux_sel = 0; 

   rstkW=0; 

   dstkW=0; 

   ioWE=0; 

   r_io_access=0; 

    

   casez(instr) 

    

   STKPC_OPCODES_LIT: begin 

    next_pc_mux_sel=STKPC_SEL_PC_INC; 

    alu_a_mux_sel=STKPC_SEL_ALU_A_ST0; 

    alu_b_mux_sel=STKPC_SEL_ALU_B_ZERO; 

    alu_op_mux_sel=STKPC_SEL_ALUOP_OR; 

    dsp_mux_sel=STKPC_SEL_DSP_INC_1; 

    rsp_mux_sel=STKPC_SEL_RSP; 

    rstack_mux_sel=STKPC_SEL_RSTACK_PC; 

    _st0_mux_sel=STKPC_SEL_ST0_NEW_IMM; 

    halt_mux_sel = STKPC_FLOW_HALT_NO; 

    rstkW=0; 

    dstkW=1; 

    ioWE=0; 

    r_io_access=0; 

 

    end  

   STKPC_OPCODES_JMP: begin 

    next_pc_mux_sel=STKPC_SEL_PC_INSTR; 

    alu_a_mux_sel=STKPC_SEL_ALU_A_ST0; 

    alu_b_mux_sel=STKPC_SEL_ALU_B_ZERO; 

    alu_op_mux_sel=STKPC_SEL_ALUOP_OR; 

    dsp_mux_sel=STKPC_SEL_DSP; 

    rsp_mux_sel=STKPC_SEL_RSP; 

    rstack_mux_sel=STKPC_SEL_RSTACK_PC; 

    _st0_mux_sel=STKPC_SEL_ST0_NEW_ALU; 

    halt_mux_sel = STKPC_FLOW_HALT_NO; 

    rstkW=0; 

    dstkW=0; 

    ioWE=0; 

    r_io_access=0; 

    end 

//all instructions were decoded as the previous 2 examples, for 

practical purposes other instructions will be removed from the 

written document, please refer to the digital appendix for th full 

list. 

  endcase 

 end 

   

   //Data Stack////////////////////////////////////// 

 data_stack DATA_STACK ( 
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    // Outputs 

    .data_out            (st1), 

    // Inputs 

    .data_in             (st0), 

    .addr_rd             (dsp), 

    .addr_wr             (_dsp), 

    .wr_en               (_dstkW), 

    .clk              (clk) 

 ); 

  

 //Return Stack//////////////////////////// 

 return_stack RETURN_STACK ( 

    // Outputs 

    .data_out          (rst0), 

    // Inputs 

    .data_in           (_rstkD), 

    .addr_rd           (rsp), 

    .addr_wr           (_rsp), 

    .wr_en             (rstkW), 

    .clk              (clk) 

 ); 

  

   

 //ALU//////////////////////////////////// 

 stkpc_alu STKPC_ALU ( 

    // Outputs 

    .c               (alu_c[STKPC_WORD_MSB:0]), 

    // Inputs 

    .a               (alu_a[STKPC_WORD_MSB:0]), 

    .b               (alu_b[STKPC_WORD_MSB:0]), 

    .op              (alu_op_mux_sel[STKPC_SEL_ALUOP_MSB:0]) 

 ); 

  

  

 //Update PC, pointers//////////////////////// 

 always @(posedge clk or posedge reset) begin 

  if (reset==1'b1) begin 

   pc <= 0; 

   dsp <= 0; 

   st0 <= 0; 

   rsp <= 0; 

   halt_r <=0; 

  end else if(stall==0) begin    

   dsp <= _dsp; 

   pc <= _pc; 

   st0 <= _st0; 

   rsp <= _rsp; 

   halt_r <= halt; 

 

  end 

 end 

 //start signal to initiate after initial reset    

 always @(posedge clk or posedge reset) begin 

  if (reset==1'b1) begin 
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   start_signal<=0; 

  end else begin  

   start_signal <=1; 

  end 

 end 

   endmodule //cpu 

7.1.2 Dual Port Ram 

 

module ram2ports (/*AUTOARG*/ 

// Outputs 

data_out_a,data_out_b, 

// Inputs 

clock, addr_a, addr_b, data_in_a,data_in_b, cs_a, we_a, cs_b, we_b 

); 

parameter WORD_WIDTH = 16; 

parameter ADDR_WIDTH = 8; 

parameter RAM_SIZE = 1<< ADDR_WIDTH; 

localparam WORD_MSB = WORD_WIDTH-1; 

localparam ADDR_MSB = ADDR_WIDTH-1; 

 

output [WORD_MSB:0] data_out_a; 

output [WORD_MSB:0] data_out_b; 

 

input clock; 

//Port A 

input [ADDR_MSB:0] addr_a; 

input [WORD_MSB:0] data_in_a; 

input              cs_a; 

input              we_a; 

//Port B 

input [ADDR_MSB:0] addr_b; 

input [WORD_MSB:0] data_in_b; 

input              cs_b; 

input              we_b; 

 

reg [WORD_MSB:0] data_out_a; 

reg [WORD_MSB:0] data_out_b; 

reg [WORD_MSB:0] mem0 [0:RAM_SIZE-1]; 

reg [ADDR_MSB:0] addr_a_latched; 

reg [ADDR_MSB:0] addr_b_latched; 

 

event dbg_addr_a; 

//Update of address latches 

always @(posedge clock) begin 

 if(cs_a) begin 

  addr_a_latched <= addr_a; 

 end 

 if(cs_b) begin 

  addr_b_latched <= addr_b; 

 end 

end 
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//Update of data out of port a 

always @(addr_a_latched) begin 

 -> dbg_addr_a;                                  

 data_out_a <= mem0[addr_a_latched[ADDR_MSB:0]];   

end 

//Update of data out of port a 

 

always @(addr_b_latched) begin 

 data_out_b <= mem0[addr_b_latched[ADDR_MSB:0]]; 

end 

// Write 

always @(posedge clock) begin 

 if(cs_a && we_a) begin 

  $display("Memory write A "); 

  mem0[addr_a] <= data_in_a; 

 end 

 if(cs_b && we_b) begin 

   $display("Memory write B"); 

   mem0[addr_b] <= data_in_b; 

 end 

end 

  

endmodule // ram2ports 

  

7.1.3 Data Stack 

module data_stack ( 

 // Outputs 

data_out,data_stack_0,data_stack_1,data_stack_2,data_stack_3,data_st

ack_4,data_stack_5,data_stack_6,data_stack_7,data_stack_8,       

// Inputs 

data_in,addr_rd,addr_wr,rd_en,wr_en,clk 

); 

 

`include "stkpc_params.v" 

 

//Outputs 

output[STKPC_WORD_MSB:0]        data_out; 

output  [STKPC_DSTACK_MSB:0] data_stack_0;  //Signals to monitor 

content of data stack, 7 more registers are used but omitted of the 

printed version for practical purposes. 

//Inputs 

input [STKPC_WORD_MSB:0]                data_in;  

input [STKPC_DSTACK_POINTER_MSB:0]      addr_rd; 

input [STKPC_DSTACK_POINTER_MSB:0]      addr_wr; 

input                                   rd_en; 

input                                   wr_en; 

input                                   clk; 

 

assign data_stack_0     = dstack[0];     

reg [STKPC_WORD_MSB:0]     data_out; 



 

65 

 

reg [STKPC_DSTACK_MSB:0]   dstack[0:STKPC_DSTACK_SIZE]; //Data stack 

 

//update of data and return stack, pushing the top of stack      

always @(posedge clk ) begin 

  if (wr_en) begin 

    dstack[addr_wr] = data_in; 

  end   

end   

 

always@(*) begin 

data_out<= dstack[addr_rd]; 

end 

endmodule  

7.1.4 Return Stack 

module return_stack ( 

// Outputs 

data_out,return_stack_0,return_stack_1,return_stack_2,       

// Inputs 

data_in,addr_rd,addr_wr,rd_en,wr_en,clk 

); 

`include "stkpc_params.v" 

 

//Outputs 

output[STKPC_WORD_MSB:0]        data_out; 

output  [STKPC_RSTACK_MSB:0]    return_stack_0; use to monitor stack 

output  [STKPC_RSTACK_MSB:0]    return_stack_1; 

output  [STKPC_RSTACK_MSB:0]    return_stack_2; 

//Inputs 

input [STKPC_WORD_MSB:0]        data_in;  

input [STKPC_WORD_MSB:0]        addr_rd; 

input [STKPC_WORD_MSB:0]        addr_wr; 

input                           rd_en; 

input                           wr_en; 

input                           clk; 

 

assign return_stack_0   = rstack[0]; 

assign return_stack_1   = rstack[1]; 

assign return_stack_2   = rstack[2]; 

 

reg [STKPC_WORD_MSB:0]    data_out; 

reg [STKPC_RSTACK_MSB:0]  rstack[0:STKPC_RSTACK_SIZE];//Return stack 

 

//update of data and return stack, pushing the top of stack      

always @(posedge clk) begin 

  if (wr_en) begin 

    rstack[addr_wr] = data_in; 

  end   

end   

 

always@(*) begin 
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data_out<= rstack[addr_rd]; 

end 

 

endmodule  

 

7.1.5 Wishbone Master Module 

module wb_m_16 ( 

    // Outputs 

    adr_o, dat_o, we_o, sel_o, stb_o, cyc_o,dat_i_cpu,       

    // Inputs 

    rst_i,clk_i,dat_i,ack_i,err_i,rty_i,dat_o_cpu,adr_o_cpu, 

we_i_cpu,cs,io_access 

); 

 

`include "stkpc_params.v" 

 

//Outputs                           //WB Signals 

output[WB_ADR_O_MSB:0]  adr_o;      //Address Out 

output[WB_DAT_O_MSB:0]  dat_o;      //Data Out 

output                  we_o;       //Write/Read Enable 

output[WB_SEL_O_MSB:0]  sel_o;      //Select Out 

output                  stb_o;      //Strobe Signal 

output                  cyc_o;      //Cycle Signal 

output[WB_DAT_O_MSB:0]  dat_i_cpu;  //Data send to CPU received from 

WB module 

 

//Inputs                                //WB Signals 

input                       rst_i;      //Reset 

input                       clk_i;      //Clock  

input   [WB_DAT_I_MSB:0]    dat_i;      //Data In 

input                       ack_i;      //Acknowledgement Out 

input                       err_i;      //Error Signal 

input                       rty_i;      //Retry Signal 

input   [WB_DAT_O_MSB:0]    dat_o_cpu;  //Data from CPU to WB Module 

input   [WB_ADR_O_MSB:0]    adr_o_cpu;  //Address from CPU to WB 

Module 

input                       we_i_cpu;   //Enable signal from CPU to 

WB Module 

input                       cs;         //Chip Select 

input                       io_access;  //IO_Access Signal 

 

 

reg [WB_ADR_O_MSB:0]    adr_o;  

reg [WB_DAT_O_MSB:0]    dat_o; 

reg                     we_o; 

reg[WB_SEL_O_MSB:0]     sel_o; 

reg                     stb_o; 

reg                     cyc_o; 

reg[WB_DAT_O_MSB:0]     dat_i_cpu; 
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wire                    _io_access; 

assign _io_access = io_access|stb_o; 

 

//Every IO Access we update the data out, the address and write 

enable 

 

always @ (*) begin 

    if (io_access ==1) begin 

    adr_o <= adr_o_cpu; 

    dat_o <= dat_o_cpu; 

 

    end 

end 

 

//The data from the WB bus is passed to the CPU 

always @(*) begin 

    dat_i_cpu<=dat_i; 

end 

 

always @ (*) begin 

    if (io_access ==1 && we_i_cpu ==1) begin 

        we_o <=we_i_cpu; 

    end else if(io_access ==1 && we_i_cpu ==0) begin 

        we_o <=we_i_cpu; 

    end 

end 

 

always @(posedge clk_i ) begin 

    if(rst_i==1'b1) begin 

        stb_o <= 0; 

        cyc_o <=0; 

    end  

    else begin       

        if (io_access==1 && ack_i==0) begin //If slave is free, 

cycle start 

            sel_o[0]<= 1; 

            cyc_o <= 1; 

            stb_o <=1; 

        end else if ( ack_i==1) begin //If slave is done finish 

cycle 

            stb_o <= 0; 

            cyc_o <= 0; 

        end            

    end 

end 

     

endmodule // wb_m_16 

 

7.1.6 Wishbone Slave Module 

module wb_s_16 (/*AUTOARG*/ 

// Outputs 



 

68 

 

dat_o,ack_o,err_o,rty_o,reg_f0,reg_f1,reg_f2,reg_f3,reg_f4,reg_f5, 

// Inputs 

rst_i,clk_i,dat_i,adr_i,cyc_i,we_i,stb_i,sel_i,cs 

 ); 

 `include "stkpc_params.v" 

 

//Outputs                       //WB Signals 

output[WB_DAT_O_MSB:0]  dat_o;  //Data out 

output                  ack_o;  //Acknowledgement out 

output                  rty_o;  //Ready out 

output                  err_o;  //Error out, not used for simple 

design 

output[WB_DAT_O_MSB:0]  reg_f0; //Outputs used to monitor the 

register file 

output[WB_DAT_O_MSB:0]  reg_f1; 

output[WB_DAT_O_MSB:0]  reg_f2; 

output[WB_DAT_O_MSB:0]  reg_f3; 

output[WB_DAT_O_MSB:0]  reg_f4; 

output[WB_DAT_O_MSB:0]  reg_f5; 

 

//Inputs                            //WB Signals 

input                       rst_i;  //Reset 

input                       clk_i;  //Clock 

input   [WB_DAT_O_MSB:0]    dat_i;  //Data in 

input   [WB_ADR_O_MSB:0]    adr_i;  //Address in 

input                       cyc_i;  //Cycle input, to notifies a 

cycle is in progress if high 

input                       we_i;   //Write enable 

input                       stb_i;  //Strobe in 

input   [WB_SEL_O_MSB:0]    sel_i;  //Select in 

input                       cs;     //Chip select 

 

reg [WB_DAT_O_MSB:0]        reg_file [0:GPIO_REG_FILE_MSB];     

//Register file to store data 

reg [WB_DAT_O_MSB:0]        dat_o; 

reg                         rty_o; 

reg                         err_o; 

reg [WB_DELAY_MSB:0]        temp_count;  //Temporal to count cycles 

reg                         ready;      //Signal to notify that 

slave finish its processing and can transmit back 

 

reg                         r_ack_o; 

wire                        _ack_o; 

//Used to monitor register file in simulation 

assign reg_f0 = reg_file[0];     

assign reg_f1 = reg_file[1]; 

assign reg_f2 = reg_file[2]; 

assign reg_f3 = reg_file[3]; 

assign reg_f4 = reg_file[4]; 

assign reg_f5 = reg_file[5]; 

assign _ack_o = r_ack_o; 

assign ack_o = _ack_o & stb_i; 
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wire  [WB_DELAY_MSB:0]       wcet; //Worst case execution time, max 

cycles of delay needed for slave operation 

 

assign wcet = 'd0; 

//Delay generator  

always @(posedge clk_i or posedge rst_i) begin 

    if(rst_i == 1'b1) begin 

      ready <= 0; 

      temp_count <= 0; 

    end  

    else begin 

        if (stb_i==1) begin 

            temp_count  <= temp_count+1; 

            if (temp_count == wcet) begin 

              ready <= 1;            

              temp_count <= 0; 

            end                     

        end                       

        else begin                 

            temp_count <= 0; 

            ready <= 0;  

        end            

    end              

end    

   

//Data in and out 

always @(posedge clk_i or posedge rst_i) begin 

if(rst_i==1'b1) begin 

  dat_o <= 0; 

  r_ack_o <= 0; 

  rty_o <= 0; 

  err_o <= 0; 

end else if(cs) begin   //If WB is the target 

    if(wcet==0) begin  

        if (we_i==0 && stb_i==1) begin  //Master is going to read  

            dat_o<=  reg_file[adr_i&255]; 

            r_ack_o<= 1; 

        end else if (we_i == 1 && stb_i == 1 ) begin //Write 

            reg_file[adr_i&255]<=  dat_i;                   

            r_ack_o<=  1;                                   

        end else begin //if we are reading and slave is ready 

            r_ack_o<=0;   

        end   

    end 

    else begin 

        if (we_i==0 && stb_i==1&& ready ==1) begin  //Read  

          dat_o<=  reg_file[adr_i&255];                  

          r_ack_o<= 1;                                    

        end else if (we_i == 1 && stb_i == 1 && ready == 1) begin   

//Master is going to write 

          reg_file[adr_i&255]<=  dat_i;   

          r_ack_o<=  1; 

        end else begin                      //if we are reading and 

slave is ready 



 

70 

 

          r_ack_o<=0;    

        end  

    end 

end 

end 

       

 endmodule //wb_s_16 

 

7.2 ArchC Files 

7.2.1 Stkpc.ac 

//@begin[arch_ac] 

AC_ARCH(stkpc) { 

 

  ac_mem   DM:5M; 

  ac_regbank RB:15; 

  ac_reg new_st0; 

  ac_reg st0; 

  ac_reg st1; 

  ac_reg rst0; 

  ac_wordsize 16; 

 

 ARCH_CTOR(stkpc) { 

    ac_isa("stkpc_isa.ac"); 

    set_endian("little"); 

 

  }; 

}; 

//@end[arch_ac] 

 

7.2.2 Stkpc_isa.ac 

AC_ISA(stkpc){ 

 

  //@begin[inst_format] 

 

ac_format Type_Lit = "%opcode1:1 %uk15:15 "; 

ac_format Type_Jmp = "%opcode1:1 %opcode2:2 %uk13:13 "; 

ac_format Type_Cond_Jmp = "%opcode1:1 %opcode2:2 %uk13:13 "; 

ac_format Type_Call = "%opcode1:1 %opcode2:2 %uk13:13 "; 

ac_format Type_Alu = "%opcode1:1 %opcode2:2 %opcode3:13 "; 

 

//@end[inst_format] 

//@begin[inst_list] 

ac_instr<Type_Lit> lit; 

ac_instr<Type_Jmp> jmp; 

ac_instr<Type_Cond_Jmp> cond_jmp; 

ac_instr<Type_Call> call; 
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ac_instr<Type_Alu> 

nop,halt,nip,exit,dup,rs_push,swap,over,drop,mem_wr,add,and,or,xor,i

nvert,n_eq_t,n_lt_t,n_sr_t,sub1,rs_pop,rs_cp,mem_rd,n_sl_t,stk_dep,n

_ult_t; 

  //@end[inst_list] 

 

 

  // gas MIPS specific register names 

  ac_asm_map reg { 

     "r"[0..14] = [0..14]; 

  } 

 

  //@begin[ac_isa_sreg] 

ac_asm_map sreg  { 

  "new_st0" = 8; 

  "st0" = 9; 

  "st1" = 10; 

  "rst0" = 0; 

} 

  //@end[ac_isa_sreg] 

 

  ISA_CTOR(stkpc){ 

    //@begin[ac_set_asm] 

    lit.set_asm("lit %exp", uk15); 

    lit.set_decoder(opcode1=1); 

     

    jmp.set_asm("jmp %exp", uk13); 

    jmp.set_decoder(opcode1=0,opcode2=0); 

     

    cond_jmp.set_asm("cond_jmp %exp", uk13); 

    cond_jmp.set_decoder(opcode1=0,opcode2=1); 

     

    call.set_asm("call %exp", uk13); 

    call.set_decoder(opcode1=0,opcode2=2); 

     

    nop.set_asm("nop"); 

    nop.set_decoder(opcode1=0,opcode2=3,opcode3=0); 

     

    halt.set_asm("halt"); 

    halt.set_decoder(opcode1=0,opcode2=3,opcode3=16); 

     

    nip.set_asm("nip"); 

    nip.set_decoder(opcode1=0,opcode2=3,opcode3=3); 

     

    exit.set_asm("exit"); 

    exit.set_decoder(opcode1=0,opcode2=3,opcode3=4108); 

     

    dup.set_asm("dup"); 

    dup.set_decoder(opcode1=0,opcode2=3,opcode3=129); 

     

    rs_push.set_asm("rs_push"); 

    rs_push.set_decoder(opcode1=0,opcode2=3,opcode3=327); 

     

    swap.set_asm("swap"); 
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    swap.set_decoder(opcode1=0,opcode2=3,opcode3=384); 

     

    over.set_asm("over"); 

    over.set_decoder(opcode1=0,opcode2=3,opcode3=385); 

     

    drop.set_asm("drop"); 

    drop.set_decoder(opcode1=0,opcode2=3,opcode3=259); 

     

    mem_wr.set_asm("mem_wr"); 

    mem_wr.set_decoder(opcode1=0,opcode2=3,opcode3=291); 

     

    add.set_asm("add"); 

    add.set_decoder(opcode1=0,opcode2=3,opcode3=515); 

     

    and.set_asm("and"); 

    and.set_decoder(opcode1=0,opcode2=3,opcode3=771); 

     

    or.set_asm("or"); 

    or.set_decoder(opcode1=0,opcode2=3,opcode3=1027); 

     

    xor.set_asm("xor"); 

    xor.set_decoder(opcode1=0,opcode2=3,opcode3=1283); 

     

    invert.set_asm("invert"); 

    invert.set_decoder(opcode1=0,opcode2=3,opcode3=1539); 

     

    n_eq_t.set_asm("n_eq_t"); 

    n_eq_t.set_decoder(opcode1=0,opcode2=3,opcode3=1795); 

     

    n_lt_t.set_asm("n_lt_t"); 

    n_lt_t.set_decoder(opcode1=0,opcode2=3,opcode3=2051); 

     

    n_sr_t.set_asm("n_sr_t"); 

    n_sr_t.set_decoder(opcode1=0,opcode2=3,opcode3=2307); 

     

    sub1.set_asm("sub1"); 

    sub1.set_decoder(opcode1=0,opcode2=3,opcode3=2563); 

     

    rs_pop.set_asm("rs_pop"); 

    rs_pop.set_decoder(opcode1=0,opcode2=3,opcode3=2957); 

     

    rs_cp.set_asm("rs_cp"); 

    rs_cp.set_decoder(opcode1=0,opcode2=3,opcode3=2945); 

     

    mem_rd.set_asm("mem_rd"); 

    mem_rd.set_decoder(opcode1=0,opcode2=3,opcode3=3073); 

     

    n_sl_t.set_asm("n_sl_t"); 

    n_sl_t.set_decoder(opcode1=0,opcode2=3,opcode3=3331); 

     

    stk_dep.set_asm("stk_dep"); 

    stk_dep.set_decoder(opcode1=0,opcode2=3,opcode3=3584); 

     

    n_ult_t.set_asm("n_ult_t"); 
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    n_ult_t.set_decoder(opcode1=0,opcode2=3,opcode3=3843);   

 }; 

}; 

7.3 Instruction Set Table 

For a complete description of each instruction and instruction type please refer to 

the digital Appendix. 

Name Assembler Instruction 

Type 

Description 

Literal 

Operation 

lit Literal Load 15 bit value to top of 
stack 

Jump jmp Jump Jump to given PC value 

Conditional 

Jump 

cond_jmp Conditional 

Jump 

Jumps to given PC value, if 
Top of stack equal zero 

Call call Call Jumps to given PC value 
and old PC value is saved 
in return stack 

Addition add ALU 16 bit addition of the 2 top 
values of data stack 

Logical And and ALU 16 bit and operation of the 
2 top values of data stack 

Logical Or or ALU 16 bit or operation of the 2 
top values of data stack 

Logical Xor xor ALU 16 bit xor operation of the 2 
top values of data stack 

Drop drop ALU Drops top value of the data 
stack 

Duplicate dup ALU Duplicate top value of the 
data stack 

Exit exit ALU Jumps to PC taken from 
the top of the return stack 

Invert invert ALU Bitwise logic invert of the 
top of stack 

Memory Read mem_rd ALU Read to external module 

Memory Write mem_wr ALU Write to an external module 

Equal 
comparator 

n_eq_t ALU Returns a 0 if 2 top values 
of data stack are different, 
else returns 0xFFFF 

No operation  nop ALU no operation 
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Less Than n_lt_t ALU Returns 0xFFFF if second 
of data stack is smaller 
than top of stack, else 
returns 0 

Logical Left 

Shift 

n_sl_t ALU Second of data stack is 
shifted left by value given 
by top of stack 

Logical Right 

Shift 

m_sr_t ALU Second of data stack is 
shifted right by value given 
by top of stack 

Unsigned 
Less Than 

n_ult_t ALU Returns 0xFFFF if second 
of data stack is smaller 
than top of stack, else 
returns 0. Uses unsigned 
values 

Over 
operation 

over ALU Value in second of data 
stack is copied to the top of 
stack. 

Return Stack 
Copy 

rs_cp ALU Copies the top of return 
stack to top of data stack 

Return Stack 
Push 

rs_push ALU Push value of top of data 
stack to return stack 

Return Stack 
Pop 

rs_pop ALU Drop top of return stack 

Stack Depth  stk_dep ALU Top of stack is given the 
value of the data stack 
pointer in the top 8 bits, 
and the value of the return 
stack pointer in the 8 lower 
bits 

Swap 
Operation 

swap ALU Swaps the second of data 
stack with the top of data 
stack 

Subtract One sub1 ALU Subtracts 1 of top of data 
stack. 

 

 

 

 


