
Ultra-low Power Stack-based Processor
for Energy Harvesting Systems

Allan Green

Embedded Computing Systems

Supervisor: Snorre Aunet, IET

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

i

Problem Description

Ultra-low Power Stack Based Processor for Energy Harvesting

Systems

One of the most recent trends in electronics is the Internet of Things. The

transition to these systems is happening. The base for these systems will be

multiple low–energy consuming nodes able to connect different devices

between them. A promising option to replacing the battery on systems is to use

an energy harvesting system.

Energy harvesting systems are battery-less systems powered by energy

sources in the environment, such as heat gradients, light, or vibration. Due to

the limited energy available, these systems often need a small programmable

subsystem for basic control tasks, as well as processing and interpreting

sensor data. This subsystem should be as small as possible to accomplish the

required task while consuming as little as possible of the available energy.

The assignment goal is to implement an ultra-low power stack-based CPU to

be used in an energy harvesting system. The CPU should be integrated in a

complete subsystem with a RAM and low-power peripherals. Basic example

code typical for the application should be written. The stack processor will be

used as a part of a bigger project; therefore it should be designed and

implemented to be compatible with previous and future work. Compatibility will

have a high priority in the project. The architecture should be simulated and

tested. If time allows it, the performance and power consumption of the system

should be compared when implemented with a regular standard cell library, as

well as an ultra-low voltage library.

iii

Abstract

The fast evolution of the Internet of Things suggests an unavoidable transition

to this infrastructure in the near future, and to achieve this multiple nodes need

to interconnect and communicate efficiently. All nodes will need a power source

to operate. Most of them will have very low power consumption requirements.

Therefore, a possible solution would be to have an energy harvesting system

for the nodes.

The energy harvesting systems will need a CPU to control all operations and to

manage the power consumption. The goal of this assignment is to create a

base processor capable of controlling the system using ultra-low levels of

power.

The proposed approach for the assignment is to use a stack processor. Using

the J1 processor as a reference, a new architecture was designed. The design

process was done following the design flow tools used by Atmel and covered

the simulation, testing, synthesis and place and route process.

The end result of the assignment was a functional stack processor system with

the capability to communicate with I/O modules using a Wishbone bus. A

custom assembler was created using Arch C to simplify the testing of the

architecture. The design was simulated, synthesized and routed using specific

libraries from Atmel.

The assignment completed a working design flow that will allow the realization

of a proper power analysis in the next phase of development. The stack

processor architecture shows high potential for ultra-low power operations.

Further time and power analysis is needed to have a complete comparison with

other processors.

v

Preface

This thesis is submitted to the Norwegian University of Science and

Technology in cooperation with Atmel Corporation as a requirement for the

fulfillment of the European Master in Embedded Computer Systems (EMECS)

degree.

This work has been performed at the Atmel office in Trondheim, Norway under

the supervision of Ronan Barzic, and in association with the Department of

Electronics and Telecommunications at NTNU, with Prof. Snorre Aunet as the

university supervisor.

Acknowledgements

I would like to extend my gratitude to my supervisors Ronan Barzic and Prof.

Snore Aunet for their guidance and support through the entire process, to all of

the staff, instructors and my friends in the Erasmus Mundus Embedded

Computing Systems program, and finally to my family and girlfriend for all their

love and unconditional support.

vi

vii

Table of Contents

Problem Description ... i

Abstract .. iii

Preface ... v

Acknowledgements ... v

Table of Contents .. vii

Table of Figures ... xi

1 Introduction .. 1

1.1 Internet of Things .. 1

1.2 Motivation: Energy Harvesting .. 2

1.3 Assignment Interpretation ... 3

1.4 Report Organization .. 4

2 Background .. 5

2.1 Stack Processors .. 5

2.1.1 What is a Stack? .. 5

2.1.2 Why Use a Stack Processor? .. 7

2.2 The J1 Processor .. 10

2.3 Wishbone Bus ... 12

2.3.1 Wishbone Signals .. 12

viii

2.3.2 Wishbone Operation .. 14

2.3.2.1 Single Read Cycle .. 14

2.3.2.2 Single Write Cycle .. 15

2.4 Design Flow .. 17

2.4.1 Arch C .. 18

3 Implementation .. 21

3.1 Methodology ... 21

3.1.1 Development Basis and Organization ... 21

3.1.2 Choice of Tools .. 23

3.2 Design Process ... 23

3.2.1 Implementation of the J1 Processor .. 24

3.2.2 Design of the Stack Processor .. 25

3.2.3 Instruction Set Description ... 26

3.2.4 Initial Architecture Design .. 27

3.2.5 The Wishbone Bus .. 30

3.2.6 System Integration ... 31

3.3 Testing Process .. 33

3.4 Synthesis Process .. 35

3.5 Place and Route Process ... 38

4 Results ... 41

ix

4.1 Final Design .. 41

4.2 Simulations ... 42

4.3 Area Distribution and Layout ... 47

5 Discussion & Future Work .. 49

5.1 Power Analysis ... 49

5.2 Stack Merging ... 50

5.3 Wishbone Bus Extension .. 51

5.4 Pipeline Optimization .. 51

6 References ... 53

7 Appendix .. 55

7.1 Final RTL Code ... 55

7.1.1 CPU ... 55

7.1.2 Dual Port Ram ... 63

7.1.3 Data Stack ... 64

7.1.4 Return Stack .. 65

7.1.5 Wishbone Master Module .. 66

7.1.6 Wishbone Slave Module .. 67

7.2 ArchC Files ... 70

7.2.1 Stkpc.ac ... 70

7.2.2 Stkpc_isa.ac .. 70

x

7.3 Instruction Set Table ... 73

xi

Table of Figures

Figure 1-1: The Internet of Thing Evolution [1] ... 1

Figure 2-1:LIFO PUSH and POP Operations ... 6

Figure 2-2: Generic Stack Processor Architecture [4] .. 7

Figure 2-3: Add Operation on Stack Processor .. 8

Figure 2-4: Return Stack Example ... 9

Figure 2-5: J1 Architecture Diagram [7] .. 11

Figure 2-6: J1 ALU Instruction Decoding [7] ... 11

Figure 2-7: Master and Slave Wishbone's Interface [8] .. 12

Figure 2-8: Single Read Cycle [8] .. 15

Figure 2-9: Single Write Cycle [8] ... 16

Figure 2-10: Ideal Design Flow .. 17

Figure 3-1: Design Process .. 22

Figure 3-2: Instruction Decoding .. 26

Figure 3-3: Initial Architecture Diagram .. 27

Figure 3-4: Wishbone Bus Connection Diagram .. 30

Figure 3-5: Stack Processor Hierarchy ... 32

Figure 3-6: Testing Flow Diagram .. 34

Figure 3-7: Synthesis Flow ... 36

file:///C:/Users/user/Desktop/Thesis%20Draft%20Allan%20Green%20not%20fucked%20up.docx%23_Toc390181734

xii

Figure 3-8: Different RAM Connections .. 37

Figure 3-9: Place and Route Flow .. 38

Figure 4-1: Final Design Architecture ... 41

Figure 4-2: Add Simulation ... 43

Figure 4-3: Call Simulation ... 44

Figure 4-4: Wishbone Bus Communication Example ... 46

Figure 4-5: Area Distribution .. 47

Figure 4-6: Place and Route .. 48

Figure 5-1: Post-Place and Route Flow .. 50

Figure 5-2: Stack Merging .. 51

Figure 5-3: Pipeline Modification .. 52

1

1 Introduction

The electronic revolution is a reality. Every day, more gadgets and appliances

are given the capability to interconnect and communicate using the internet. To

better understand the work done in this assignment, insight is needed into the

actual trends and problems internet connected devices face.

1.1 Internet of Things

The internet of things is a fairly new concept, yet it has become rapidly popular

in the last years. Even though an official definition for this term does not exist,

for this assignment it is defined as the attempt to equip all gadgets, objects and

appliances in the world with a way to connect and communicate between them

and the internet. To give a bit of perspective, refer to Figure 1-1, provided in a

study by Cisco [1]. The number of connected devices has already surpassed

the world population and bear in mind that 30 years ago, an internet connection

was not commercially available to the general public.

Figure 1-1: The Internet of Thing Evolution [1]

2

1.2 Motivation: Energy Harvesting

The previous figure takes brings the next question: What are the consequences

and problems that emerge when there are so many connected devices in terms

of energy? All the connected devices need an energy source. Some can have

a wired connection and others can be outfitted with a battery. Yet, in many

cases a wired connection is not possible and having a battery brings up the

problem of maintenance.

Changing batteries in some devices can be extremely hard or impossible. An

example of this would be sensors used in the industry. These normally do not

need to be active at all time. Usually, a very short duty cycle is used and

therefore small amounts of energy should be enough to keep them operational.

Energy harvesting is a possible solution for the previously mentioned problem.

Energy harvesting uses ambient energy sources which are free most of the

time; some examples are light, heat differentials, vibrating beams, or

transmitted RF signals. As promising as it may sound, energy harvesting

devices generate only small amounts of energy and they need a system to

control their operation. To get a better insight some examples are shown [2]:

 Small solar panels can produce 100s of mW/cm2 in direct sunlight and

100s of µW/cm2.

 Piezoelectric devices using compression or deflection can produce 100s

of µW/cm2 depending on size and construction.

 RF energy harvesting collecting antennas can produce 100s of pW/cm2.

 Seebeck devices, using temperature gradients, can generate 10s of

µW/cm2 working with body temperatures or 10s of mW/cm2 working with

a furnace exhaust stack temperatures.

Therefore to offer a working solution, the CPU controlling the energy harvesting

needs to work with ultra-low power levels. Otherwise, all of the energy

generated by the system would be used by the CPU controlling the system.

3

The solution proposed is to use a stack processor to achieve an efficient and

ultra-low power consumption system. Stack processors are not new. They were

developed in 1950 and are still being used, mainly due to their simplicity. Yet,

using them to provide a solution to energy harvesting systems is something

that has so far not received any deep research. Previous stack processor

implementations give the advantage of having proper documentation that can

help in the implementation process.

1.3 Assignment Interpretation

Following the assignment description and guidelines given by the tutors, the

following main tasks were identified, all mandatory tasks were completed:

Task 1: (mandatory) Design a stack processor system, including RAM,

communication bus and I/O module.

Task 2: (mandatory) Test and simulate the system.

Task 3: (mandatory) Successfully synthesize the design.

Task 4: (mandatory) Perform place and route of the design.

Task 5: (optional) Perform power analysis.

Task 6: (optional) Load the design to an FPGA board.

Task 7: (optional) Perform energy consumption measurements and

compare the results with other processors.

The above task list was done by both the supervisors and the student after

doing the initial contract; some differences may exist with the initial problem

description, however, these were the final tasks approved by the supervisors.

This assignment will set the foundations for the energy harvesting system;

therefore, proper documentation and implementation of the stack processor are

the highest priority.

It is important to mention that all the work done in the assignment needs to be

compatible with the design flow used at Atmel. Considerable time was needed

to learn and become familiar with the design flow, though this was not part of

the tasks listed for the assignment. The design flow helps the assignment to be

4

reusable and scalable. These two characteristics make the compatibility with

the design flow a priority. Detailed theory and insight on both the Internet of

Things and Energy Harvesting subjects are not within the scope of the

assignment.

1.4 Report Organization

The organization of the report is divided into individual chapters that are briefly

described for the reader’s convenience:

 Chapter 1:Introduction gives an overview about the internet of things,

the motivation for this assignment and the assignment tasks and

limitations

 Chapter 2: Background describes the basic knowledge needed to fully

understand the assignment report, including: stack processors, the J1

processor, Wishbone communication and the Atmel design flow.

 Chapter 3: Implementation covers the methodology, tools and

implementation, starting from each individual element’s point of view up

to the complete unification of the system.

 Chapter 4: Results shows the final design and the simulations used to

verify the correct behavior of the system.

 Chapter 5: Discussion & Future Work covers final thoughts on the

assignment as well as possible optimizations of the design.

5

2 Background

The goal of this section is to give a brief summary on the basic theory

necessary for accomplishing the present assignment. The first and foremost

point covered is the stack processor, as that is the base for the assignment.

Next, the processor used as a reference, the J1 Processor, is discussed. An

overview of the Wishbone communication protocol and the design flow used at

Atmel are also covered.

2.1 Stack Processors

Stacks have been used for more than over 50 years in the computer

environment. The first proposal for using a stack was made in 1946 in the

computer design of Alan M. Turing as a tool for calling and returning from

subroutines. Later, a formal proposal and a patent was obtained in 1957 by

Klaus Samelson and Friedrich L. Bauer of Germany [3] [4] [5].

It is important to understand that a stack simplified the ability to do recursion

and loops. Their popularity followed a path of ups and downs as history moved

forward. The introduction of Very Large Scale Integration (VLSI) and Complex

Instruction Set Computers (CISC) caused processor design to drift away from

the stack processor, due to the long and comprehensive instructions. However,

with the growth in popularity of Reduced Instruction Set Computers (RISCs)

that proposed a simple instruction set to achieve higher performance, stack

processors became strong candidates for processor designs once again.

2.1.1 What is a Stack?

A stack is one of the simplest ways of storing temporal information. It is an area

of computer memory with a fixed origin but variable size. The data structure

follows the concept of Last-In-First-Out (LIFO). In a LIFO data structure, the

last data that comes into the stack (top of stack) is the first to be removed.

6

Once a memory area is defined for the stack, a stack pointer is needed to point

to the most recently referenced location on the stack. The stack pointer is

normally implemented in the form of a hardware register [4].

One of the advantages of working with a stack is that only two operations can

be used to modify the stack:

 Push: Data is introduced to the location pointed by the stack pointer,

also known as the top of stack, and the stack pointer is updated

depending on the size of the data introduced to the stack.

 Pop: Data at the current location pointed by the stack pointer is removed

from the stack, and the stack pointer is updated depending on the size of

the data removed to the stack.

It is important that the stack pointer always references the top of stack and is

always updated properly. Failure to do so will lead to loss of information and

faulty execution of the processor.

For this assignment the data introduced or removed from stack will have the

same size as the memory space. Therefore the update of the stack pointers will

always consist of a unitary addition or subtraction.

Figure 2-1:LIFO PUSH and POP Operations

7

Figure 2-1 depicts an example of using the push and pop instructions. In this

instance, the value “12” is first pushed onto the stack and then later popped off

of the stack. Notice how the stack pointer (“Top”) is always updated.

2.1.2 Why Use a Stack Processor?

A stack processor design was chosen for the assignment due to certain

benefits it offers. Before explaining the benefits or characteristic in depth, an

overview of a simple stack processor architecture is needed. Figure 2-2 is an

example of generic stack processor architecture from [4].

Figure 2-2: Generic Stack Processor Architecture [4]

The previous figure shows some of the key elements of a stack processor:

 Data stack (DS): memory in charge of managing all the operands for the
arithmetic and logic operations.

8

 Return stack (RS): memory in charge of storing subroutine return
addresses.

 Top of stack (TOS): Last element pushed into the data stack.

The other elements are common to most processors: the program memory,

program counter (PC), memory address register (MA), arithmetic / logic unit

(ALU) and data bus.

Stacks enable benefits in two areas: Basic operand operations and subroutine

calling. An example can explain basic operand operations. A simple addition is

shown in Figure 2-3. The first step pushes the values that need to be added,

the values 12 and 24. Once the values are stored in the data stack, the

operand is sent. The processor takes the two values on the top of the data

stack, adds them, and places the result on the top of the data stack.

Figure 2-3: Add Operation on Stack Processor

What benefits can we see from the previous example? The instructions PUSH

and POP only have one argument. Basic arithmetic and logical operations will

always use the values on the top of the stack. Therefore, the operation

instructions do not require an argument. In a typical RISC processor, a similar

instruction could be done in one instruction but it would need at least three

arguments.

Stack processors have the capability to call subroutines and exit them using the

Return Stack, which follows the same principle as any stack. The only

9

difference is that it stores the subroutine return addresses instead of operands.

Figure 2-4 shows an example in which the return stack is used. Assume the

program counter (PC) increments by one after executing each operation. When

the instruction CALL is executed, the address of the next instruction is stored in

the Return Stack and the PC is updated to the subroutine address. Once the

execution in the subroutine is finished using the EXIT instruction, the

subroutine return address is taken from the Return Stack and is used to update

the PC. Finally the HALT instruction stops the program.

Figure 2-4: Return Stack Example

The previous example shows that with a simple instruction set, stack

processors are able to manage subroutines in a very efficient manner. This

opens the possibility to more complex code structures like loops, conditional

statements, etc. From the previous examples we can summarize some points

about stack processors:

 Compact code: Even though operand loads need to be done separately

and the total number of instructions needed for a program is higher than

a normal RISC program, due to the reduced size of the instructions, the

total code size in bytes is less for a stack processor than for a register

file processor.

10

 Simple instruction set: the simplicity of the instructions allows a

compiler to be built quickly, making the simulation and testing process

faster and simpler.

 Simple return stack: Enables recursion and subroutine execution.

 Simple data stacks: Replaces a complex cache system.

Remembering that everything has a downside, the stack processors have also

some disadvantages. The stacks cannot be accessed randomly; therefore

planning ahead is needed to obtain efficient code. Also the instruction set used

by stack processors is not able to reference multiple registers, like RISCs

instruction sets.

2.2 The J1 Processor

The J1 Processor is a very simple 16-Bit stack-based, single cycle processor

created by James Bowman. The J1 is not a general purpose CPU, it was

originally intended for FPGAs and to run the six Ethernet cameras in the Willow

Garage PR2 robot [6].as The J1 uses a very compressed instruction set that

makes it ideal for applications that need a high throughput, such as

uncompressed video streaming. The J1’s simple design, light-weight code and

capability for high throughput make it a great candidate to use as a starting

point for the design of an ultra-low power stack processor.

Figure 2-5 shows the basic architecture diagram of the J1, which consists of a

data stack (D), return stack (R), random access memory unit (RAM), decoder

unit and arithmetic unit [7]. The first three are shown twice to simplify graphical

representation.

The J1 was designed for programs written in Forth and implementation of Forth

instructions like duplicate, swap, drop, etc. is simplified. To achieve this, the

instruction decoding uses specific fields as flags for certain events, as Figure

2-6 shows. Specific flags include modifying the data or return stack pointer,

pushing or popping the top of the data or return stack, and more. For further

information please refer to the J1 Paper [7].

11

Figure 2-5: J1 Architecture Diagram [7]

Figure 2-6: J1 ALU Instruction Decoding [7]

12

2.3 Wishbone Bus

The Wishbone bus was selected for this assignment to provide communication

between the stack processor and any external I/O. The following information

was taken from the OpenCores Wishbone User Manual [8].

Figure 2-7: Master and Slave Wishbone's Interface [8]

The Wishbone bus is a popular open source hardware computer bus, which

makes it great to work with due to the many examples and documentation that

exists. The aim of the Wishbone is to allow the connection between different

components inside of a chip, which suits the assignment perfectly. The

Wishbone is a parallel bus and can work with different bus widths, including 8,

16, 32, and 64 bits, and follows a master slave topology as shown in Figure

2-7. This project will use the 16 bit width due to the fact that the J1 is a 16 bit

processor.

2.3.1 Wishbone Signals

The communication is done based on a clock and multiple signals. The signal

names are standardized and can be divided into three categories: signals

13

common for both slave and master interface, master interface signals and slave

interface signals. Signals can be categorize in 3 types: Signals exclusive to the

master, signals exclusive to the slave and signals that are common for both the

master and the slave. Descriptions of master’s signals and the common signals

follow. Slave signals are omitted due to the similarity they have with the master

signals. For a more complete description of the signals, please refer to the User

Manual [8].

Common Signals for slave and master

 CLK_I: Clock input from the system clock, used for synchronizing all

activities done within the wishbone bus.

 RST_I: Reset input signal from the system, causes wishbone interface to

restart.

 DAT_I(): Data input array used to pass binary data.

 DAT_O(): Data output array used to pass binary data.

 TGD_I(): Data tag type used to provide more information associated to

DAT_I().

 TGD_O(): Data tag type used to provide more information associated to

DAT_O().

Masters Signals

 ACK_I: Acknowledgement input; assertion of this signal indicates

termination of bus cycle.

 ADR_O(): Address output array; used to pass a binary address.

 CYC_O: Cycle bus output; assertion of this signal indicates that a valid

bus cycle is in progress.

 STALL_I: Pipeline stall signal indicates current slave cannot accept the

transfer. Only used in pipeline mode.

 ERR_I: Error input is used to identify an abnormal cycle termination.

 LOCK_O: Lock output; when asserted will make the current bus cycle

uninterruptable.

14

 RTY_I: Retry input indicates that interface is not ready to operate and

cycle must be retried.

 SEL_O(): Select output array is used to indicate where valid data is

expected on DAT_I().

 STB_O: Strobe output indicates a valid data transfer cycle.

 TGA_O(): Address tag type; provides extra information associated with

ADR_O().

 TGC_O(): Cycle tag type provides extra information associated with bus

cycle.

 WE_O(): Write enable output; indicates if current cycle is read or write.

2.3.2 Wishbone Operation

The Wishbone bus has multiple operating modes. The present assignment will

focus on the standard single read cycle (Figure 2-8) and write cycle (Figure

2-9). It is also important to consider that the data sent or received at this time is

the same width as the bus itself (16 Bits). Both read and write will be explained

using the relevant signals for the project [8].

2.3.2.1 Single Read Cycle

The following description is a summary of the information found on the

OpenCores Wishbone manual. It explains how the read cycle works on a

Wishbone interface. The explanation is separated by clock cycles for practical

purposes. Figure 2-8 represents this bus transaction as well.

Clock Edge 0

 Master presents valid address on ADR_O.

 Master negates WE_O to indicate read cycle.

 Master asserts CYC_O to indicate the start of cycle.

 Master asserts STB_O to indicate the start of phase.

Clock Edge 1

15

 Slave presents valid data on DAT_I().

 Slave asserts ACK_I in response to STB_O to indicate valid data.

 Master monitors ACK_I and prepares to latch data on DAT_I ().

Clock Edge 2

 Master latches data on DAT_I().

 Master negates STB_O and CYC_O to indicate end of cycle

 Slave negates ACK_I in response to negated STB_O

Figure 2-8: Single Read Cycle [8]

2.3.2.2 Single Write Cycle

The following explains how the write cycle works on a Wishbone interface. The

explanation is once again separated by clock cycles for practical purposes.

Figure 2-9 represents this bus transaction as well.

Clock Edge 0

 Master presents valid address on ADR_O.

 Master presents valid data on DAT_O.

16

 Master asserts WE_O to indicate write cycle.

 Master asserts CYC_O to indicate the start of cycle.

 Master asserts STB_O to indicate the start of phase.

Clock Edge 1

 Slave prepares to latch the data on DAT_O().

 Slave asserts ACK_I in response to STB_O to indicate latched data.

 Master monitors ACK_I and prepares to terminate the cycle.

Clock Edge 2

 Slave latches data on DAT_O().

 Master negates STB_O and CYC_O to indicate end of cycle.

 Slave negates ACK_I in response to negated STB_O.

Figure 2-9: Single Write Cycle [8]

Both of the previous descriptions assume the slave needs no waiting time to

respond to the master. The actual project implementation has a stall that allows

the slave to have a waiting time, more detail of this will be discussed on

Section 3.2.

17

2.4 Design Flow

Implementation, simulation and testing of a design can become a very time

consuming process. Therefore, a design flow is used to simplify the process.

The goal of the design flow is to use high level language scripts to build all the

tools needed to simulate, test and document the design. The design flow was a

work in progress that took place in parallel to the assignment implementation.

The ideal design is shown in Figure 2-10.

Figure 2-10: Ideal Design Flow

The first step of the design flow represented by section A on Figure 2-10, is to

use docbook documents with xweb termination. These files will have the

description of the architecture and instructions for the processor. These xweb

18

files will be used to generate the documentation PDF and, more importantly,

multiple snippets of Python code. These small pieces of code then will be

united to form the design template.

Ideally, the design template will be the base to generate two sets of files: the

Verilog files for the RTL design and the Arch C files for implementing the

assembler language used by the design, represented by section B on Figure

2-10.

The design flow will also be in charge of installing the compilation tools for

Verilog and Arch C if needed; finally the design flow will do the simulation of the

previously generated Verilog file. The design flow is not the main focus of this

assignment and is still a work in progress. Therefore, changes were applied

continuously during the development of the assignment. The assignment

focused on section B of the design flow, creating the RTL Files and the Arch C

files.

2.4.1 Arch C

A brief introduction taken from the Arch C User Manual [9] will be given to

provide an overall understanding of the process taking place when generating

the stack processor assembler language.

The solution to simplify the development and testing of a design in recent years

has been the use of Architecture Description Languages (ADL). Due to the

increasing complexity of modern designs and time-to-market restraints,

designers are moving from hardware description languages to system level

designs, where automatic generation of a software toolkit (composed by

assemblers, linkers, compiler and simulators) is mandatory [10] [11] [9].

Arch C is a language that follows the System C syntax style and is capable of

describing a processor’s architecture and a memory hierarchy. The goal of

Arch C is to provide information at the right abstraction level to provide

19

designers with the tools needed to explore and verify a new architecture

automatically, like assemblers, simulators, linkers and debuggers [9].

An architecture description using Arch C is divided into two parts:

 Instruction Set Architecture (AC_ISA): Includes the instruction

formats, size and names, the information needed to decode instructions

and their respective behavior.

 Architecture Resources (AC_ARCH): Contains information about

storage devices, pipeline structure and all the structure of the

architecture.

For the present assignment, both the AC_ISA and AC_ARCH files previously

mentioned were created to generate an assembler language for the stack

processor architecture. The resulting assembler language was used and

simplified the testing phase of the project. For further details, consult the Arch

C User manual [9].

21

3 Implementation

The implementation of a stack processor system was the main task of this

assignment. This chapter provides information on the steps taken to reach the

final design, starting from the methodology, through the implementation of each

individual element and finally the integration of the final system.

3.1 Methodology

The next section will focus on explain the steps taken to implement the design,

as well as mentioning and justifying the tools used for the assignment.

3.1.1 Development Basis and Organization

The first step in the development of a stack processor was to decide whether to

use an existing processor as basis or start a new design from scratch. Due to

time constrains, the decision was made to start the project using an existing

processor as a foundation. The implementation was divided into four different

sections, bearing in mind that implementation was not a linear process and

multiple iterations and recursions were needed to complete corrections to the

design. The four sections were:

1. Design Process: having a proper design was the basis for the

implementation. The design used an existing processor as a base and

reference. The goal of this step is to obtain a functional RTL design.

2. Testing Process: the testing process was done throughout the

complete implementation process. This section explains the evolution of

the testing techniques and scripts used to simplify testing. This section

describes the simulation part of the assignment.

3. Synthesis Process: the synthesis process is explained, together with

the scripts used. The alternative possibilities available when doing the

design are also shown.

22

4. Place and Route Process: this was the last step of the implementation.

This section explains the steps taken to obtain the final resulting

architecture.

It is important to mention that every

step and element of the

implementation was the result of

several iterations of a process shown

in Figure 3-1. Simulation, test

benching and synthesis were used

for testing every element of the

design. The processor instructions

used for testing consisted of the

instructions a basic stack processor

needs. The instruction list can be

found in Appendix 7.3.

Figure 3-1: Design Process

23

3.1.2 Choice of Tools

Once the implementation steps were defined, the tools to do them needed to

be chosen. Considering that the assignment requires a RTL design, the first

step was to choose a hardware description language. For this assignment,

Verilog was used. The tools can be cataloged depending on what step of the

assignment they were used.

 Design Process: Due to the simplicity of the processor, a simple text

editor could be used to write all of the Verilog code needed for the

design and for this project GNU Emacs [12] and Notepad++ [13] were

used. For the simulation of the design, the decision was made to work

with Icarus Verilog [14], a free open source Verilog simulator and

synthesis tool for Linux. Icarus Verilog has all the capabilities needed to

implement and test the designs done for this assignment. Icarus Verilog

relies on command line and has no graphic interface, making it a very

light weight tool.

 Testing Process: To view and analyze the wave forms generated by

Icarus Verilog, GTKWave [15]was used. GTKWave has made available

a free wave viewer for Linux.

 Synthesis Process: All the synthesis was done using the design flow of

Atmel and Design Compiler from Synopsis [16].

 Place and Route: The design flow from Atmel was again used, along

with Encounter from Cadence [17].

3.2 Design Process

The design process was divided into four tasks:

a. Implement an existing processor: A stack processor with

characteristics similar to the ones needed for the assignment was

chosen and implemented. The implementation needed to be simulated

to view and verify the behavior of the processor. Correct operation of the

24

processor was needed to continue to the next step of the

implementation.

b. Design of the stack processor: Using the initial processor as a

reference, a new design was designed and implemented. The new

design was compared to the initial one to assure proper behavior.

c. Design of Wishbone bus modules: Once the processor was

implemented, the communication channel needed to be established. The

Master and Slave modules of the Wishbone bus were implemented.

d. Integration of the System: The final step took all the elements and

integrated them into one complete system.

As previously mentioned, the design process was done in parallel with the

testing process to ensure a correct design throughout. The implementation of

the final stack processor followed the methodology mentioned in the previous

sections. Starting from the implementation of the J1 processor, followed by the

implementation of every element and finally covering the integration of the final

system.

3.2.1 Implementation of the J1 Processor

The J1 architecture is documented and the actual implementation was not time

consuming. This step of the assignment had four main contributions:

 Obtaining a more complete understanding of a stack processor

architecture.

 Familiarization with the tools used in the assignment.

 Understanding of stack processor behavior.

 Building a processor to compare the new future design behavior to.

The J1 documentation includes a Verilog file which was used as a base to

implement it (reference). The original J1 Verilog code was used to create a

project that was able to be simulated within the design flow used in the project.

The next step was to test the implementation using the five types of instructions

available for the J1: Literal, jump, conditional jump, call and ALU operations.

25

The complete description of the test benching and debugging process used in

the assignment will be described in Section 3.3.

3.2.2 Design of the Stack Processor

Once a working implementation of the J1 was completed, the J1 architecture

was analyzed to identify any characteristics that could be used or removed in

the new design. The characteristics that were used as a guideline for the new

design that derived from this process were:

 Two pipeline stages on a 16-bit processor: The new processor would

have the same instruction length and have two pipeline stages instead of

the single cycle that the J1 had.

 Instruction Set: The new processor should be able to execute the same

five instruction types as the J1: Literal, Jump, Conditional Jump, Call and

ALU instructions. However, the instruction format would need to be

modified due to the next point.

 Removal of flag bits from instruction decoding: The J1 processor

uses bits from the instruction code to determine certain behaviors for

each instruction Figure 2-6). The new design would not use any of these

flag bits in the instruction decoding. All behavior would be determined by

the opcode of each instruction. This would give the possibility to have a

greater number of possible instructions or to even modify the instruction

size in the future.

 Redesign of instruction decoding logic: The new design would be

modified to simplify the addition of new instructions. The new design

instruction decoding logic would use multiplexers to gain a more

organized architecture.

 Hierarchy rearrangement: The new design would need to have a

modular hierarchy to simplify the debugging process and integration into

the data flow.

26

3.2.3 Instruction Set Description

Once the guidelines for the processor were set, the next step was to explain

the new instruction set structure. There were five possible instruction types:

 Literal: Pushes a value directly to the top of stack; equivalent to PUSH

Instruction.

 Jump: Modify the program counter to a given value, moving to specific

part of the program.

 Conditional Jump: Performs as Jump instruction does if the top of the

stack is equal to 0, otherwise the Jump is not performed.

 Call: Saves the program counter to the return stack, and then modifies

the program counter to point to a subroutine.

 ALU: Covers all stack operations (duplicate, over, swap, etc.) and basic

ALU operations (addition, logical or, negation, etc.).

Figure 3-2: Instruction Decoding

27

All instructions were divided into three opcodes as shown in Figure 3-2. The

first opcode was to specifically identify literal instructions. If opcode 1 had a

value of 1, the remaining part of the instruction was taken as the value to be

used by the literal instruction and opcode 2 and opcode 3 did not need to be

decoded. In the case opcode 1 was equal to 0, then opcode 2 was used to

determine the instruction type. Finally, opcode 3 was only used in the case of

an ALU instruction type. Opcode 3 determined which specific ALU operation

(addition, logical or, etc.) or Forth instruction (swap, duplicate, etc.) was to be

used.

3.2.4 Initial Architecture Design

Once the design parameters instruction set description were finished, the

architectural design could take place. The stack processor architecture is

graphically represented in Figure 3-3 using a block diagram.

Figure 3-3: Initial Architecture Diagram

28

Before explaining the behavior of the architectures, some quick notes regarding

Figure BLA are needed:

 The RAM, Data Stack, Return Stack and Regs modules are drawn twice

for practical purposes, though they represent the same module.

 The Regs module represents all registers used for the architecture. For a

complete list of registers refer to cpu.v. Some of the most relevant

registers are:

o Program Counter (PC)

o Top of Data Stack

o Next in Data Stack

o Data Stack Pointer

o Top of Return Stack

o Return Stack Pointer

 The Muxes module consists of several muxes:

o Next PC Mux

o Next Data Stack Pointer Mux

o Next Top of Stack Mux

o Next ALU A Operand Mux

o Next ALU B Operand Mux

o Next ALU Operation Mux

o Next Return Stack Pointer Mux

o Next Top of Return Stack Mux

The previous excerpt was explained to simplify the block diagram. Even though

this is a two cycle architecture, to simplify the behavior, the following is

explained in the steps that were used:

1. Reset and Start Signal: The system should start with a reset, setting all

initial values to zero. To ensure the system will not be able to advance or

update any variable before the reset is over, a start signal was

implemented. The system will not start operating until the start signal is

set. As long as the initial reset signal is set to 1, the start signal will be

29

set to 0. Only when the reset signal is set to 0, will the start signal be set

to 1 and remain set to 1 as long as there is no reset.

2. Instruction FETCH: Using the PC as the instruction address, the next

instruction is read from the program memory in the RAM and passed to

the processor. At this point all possible values for the Muxes are ready.

3. Pipeline Second Stage: This is in charge of the instruction decoding,

execute and write back.

a. Instruction Decoding: The instruction is passed to the decoder.

This decodes the instruction and outputs the corresponding select

signals to each Mux.

b. Execute: All of the Muxes output a valid value now. The ALU

uses these values to calculate the needed result.

c. Write Back: All updated values are ready to be passed to their

respective registers. A clocked update takes place and all

registers that need to be modified are updated.

It is important to note which part of the behavior was sequential (clocked) and

which was combinational (not clocked). The only sequential part of the process

is the final update of the registers. All of the rest of the logic is combinational,

and this allowed the architecture to be single cycled.

The updating of the registers depended on the instruction being executed. A

brief description of the behavior for every instruction can be found in Appendix

7.3. The RAM used for the stack processor was a simple dual port RAM. The

code can be also found in the Appendix 7.1. This first architecture design

behavior was tested using the working J1 processor as a reference. The initial

architecture design was able to correctly execute all the instructions listed on

Appendix 7.3. The behavior was tested using a simulation and the respective

waveforms, more details on Section 3.3.

30

3.2.5 The Wishbone Bus

The implementation of the Wishbone bus needed two parts: The master

interface and the slave interface. The goal for the communication bus

implemented in this assignment was to perform standard single reads and

standard single writes.

Also consider that the processor was only able to send or read data 16 bits in

length and the design works under the assumption that the user addresses

valid memory locations and valid data. The design was to be as compact as

possible. The tag signals used to provide extra information were not required

for this assignment therefore were omitted. All other signals were added to the

implementation for a potential change in future implementations. The complete

codes named wb_m_16.v and wb_s_16.v can be found in the Appendix 7.1.

Figure 3-4: Wishbone Bus Connection Diagram

31

Figure 3-4 shows a diagram of the connection between the Wishbone bus and

the CPU. The CPU needed to pass three values: a valid address, the write

enable signal and valid data. The write enable signal was used to determine if it

was a write operation (write enable = 1) or a read operation (write enable = 0).

The CPU only needed to pass valid data in the case of a write operation.

The Wishbone received the information from the CPU and output the required

signals depending on the operation, as shown in Figure 2-8 and Figure 2-9.

The master requested or transferred the required information from/to the slave.

Because both Wishbone interfaces had sequential logic, a minimum of one

clock cycle delay was added to wait for the operation to finish. Therefore a stall

was needed.

A stall generator was added to the CPU and works in the next way. Whenever

an instruction access an external module (I/O, RAM, etc.), a signal called

io_access will go high to notify the external access. The notification of an

external access set the stall signal to high. Because the decoding of the

instruction was done using combinatorial logic, the stall was set to high before

the update of the registers, stopping the execution and preventing

advancement to the next instruction. The stall generation continuously

monitored the Wishbone acknowledgement and strobe signal, waiting for the

end of the bus cycle indicating that the communication exchange was finished.

The Wishbone Bus can be used to access both the I/O Module and the RAM

Module, the decoding to decide which module is address works by checking

the 2 most significant bit of the address; if any bit is a 1 the address is meant

for the I/O Module else is for the RAM, the remaining 14 bits will be used to

address the respective module. The use of 2 bits allows future addition of

different I/O Modules.

3.2.6 System Integration

The last step of the implementation was connecting the stack processor with a

peripheral to test the correct communication using the Wishbone bus. Before

32

this point, the design was not organized with a proper hierarchy, therefore the

next hierarchy was chosen. The purpose of this restructuring was to simplify

the testing, debugging and integration to the design flow.

Figure 3-5: Stack Processor Hierarchy

Figure 3-5 shows the hierarchy organization used for the assignment. The goal

of the hierarchy was to provide modularity and flexibility, allowing the project

the opportunity to use a different RAM module or connect to a different

peripheral in the future using the same code. The CPU had both the Data

Stack and the Return Stack each in an individual module separated from the

logic of the processor.

The peripheral shown in Figure 3-5 was implemented by adding a register file

to the Wishbone Slave interface. A delay generator was also added to the slave

interface, to generate scenarios in which the slaves needed to stall the CPU

multiple clock cycles.

Finally, all elements of the design were connected together, creating the final

design for this assignment. All of the final code can be found in Appendix 7.1.

33

3.3 Testing Process

The present chapter explains the testing used throughout the design process

and the testing done in the final design. A simple overview can be seen in the

Methodology section of Chapter 3.

The base of all testing done in the assignment was the set of instructions

shown in Appendix 7.3. If the expected behavior of an instruction was known,

then the wave form of a design simulation could be compared to the expected

behavior. If any discrepancies exist, then the modification needed to be

inserted into the design. This process was done with every instruction, giving

the basis for the final design obtained on this assignment.

The initial testing used in the assignment was done by simply hardcoding in the

Verilog memory files and simulating them using the RTL design. This process

was slow and repetitive so the decision was made to create a test flow and a

script to make the process more practical and less time consuming.

The first step to do this was to develop custom assembly code for the

processor using Arch C. This allowed easier reading of the code and simplified

the testing overall. The resulting assembler instructions can be found in

Appendix 7.3.

Two types of files were needed to run the testing flow as shown in Figure 3-6.

The RTL files which contained the design of the processor in Verilog code, and

the assembly file which contained the instructions that needed to be executed

along with the expected result of the processor registers. The assembly file was

already written in the custom assembly implemented using Arch C.

Next, the RTL files were compiled using Icarus Iverilog [14], creating an

executable file. The assembly file was compiled to get a Verilog memory file

(.vmem). Both the executable and the VMEM file were used to run the

simulation.

34

Figure 3-6: Testing Flow Diagram

The simulation created two files: a Log file and a Value Change Dumb file

(VCD). The Log file contained the registers values at the end of the simulation.

This file was compared with the initial assembly file to determine if the

instruction execution finished as expected. If not, an error was indicated. The

VCD was used for debugging. It could be opened using the GTKwave and the

waveforms could be analyzed to find any discrepancies or bugs.

Every instruction was tested individually with a specific test. To make testing

even faster, a script was made to run every instruction test with a single

command. The resulting testing flow had the advantage of being automated in

35

a simple flow. On the down side, it did not cover the corner cases, was not

exhaustive, nor was it randomized.

3.4 Synthesis Process

The synthesis let us move from the RTL code to a netlist of gates. This section

first covers the synthesis flow used in the assignment. The RAM connection to

the system can vary for different targets, such as for an FPGA or an ASIC. The

difference between these two synthesis possibilities and the original design are

also discussed.

The synthesis process used the tool Design Compiler by Synopsis. A TCL

script was used to automate and simplify the process. As shown in Figure 3-7,

Design Compiler needed at least three input documents to be able to generate

the required outputs:

 RTL Code: Verilog files (.v) that describe the processor architecture and

the design overall.

 Libraries: Consisting of a .lib file and a .db file; together they describe

all the standard cells to be used for the synthesis and the information

needed for the RAM and I/O modules if used.

 Timing Constraints File: Define the timing requirements the system

needs to fulfill. It also includes the definition of the clock and the clock

period.

The previous inputs were given to the Design Compiler tool and it was able to

perform the synthesis. The result of the synthesis were three files: a report, the

netlist and a constraints file (.sdc). The last two were used as arguments for the

Place and Route process. The report had information about the synthesis and

was used to verify a proper synthesis process was carried out.

36

Figure 3-7: Synthesis Flow

The second part of this section focuses on the different possibilities in which

the RAM could be connected, depending on the target of the synthesis. The

original design had a single dual port RAM that was used for both Program and

Data Memory, as shown in Figure 3-8. For the ASIC implementation, the dual

port RAM had to be replaced by two single port RAMs: one for the program

memory and the other for the data memory.

The needed modifications where made to the RTL code to create the possibility

of toggling between the original design and the ASIC design. A third possibility

was to implement an FPGA Design that used two dual port RAMs, separating

Data and Program memory but using the second port in every RAM for

debugging. This last possibility has not been implemented and will be

discussed in Section 5.

37

Figure 3-8: Different RAM Connections

38

3.5 Place and Route Process

To perform the last step in the implementation, the tool Encounter from

Cadence was used. As with previous steps, a design flow and script were used

to automate and simplify the process.

Figure 3-9: Place and Route Flow

The place and route flow used at Atmel is explained in the steps below using

Figure 3-9 as a reference:

1. Setup: The LIB file and LEF file are in charge of the setup. The LIB file

provides the timing information of the cells. The Library Exchange

Format (LEF) file contains the physical view, pin layout, metal layers and

abstract information of the cells.

2. Read Netlist: The netlist generated by the synthesis process is used as

the input.

39

3. Floor Planning: The first distribution of the chip is made and the die

size and core area are determined. Other blocks, like RAM or I/O

Buffers, are also placed in this step.

4. Power Supply Definition: Depending on the configuration the

characteristics of the power supply are determined. For example, the

decision between using rings or stripes for the power supply is made in

this step.

5. Timing Constraint Reading: The SDC file generated by the synthesis

is used to determine timing limitations and rules.

6. Placement: The first placement is done, driven by timing.

7. Clock-Tree Building: This step uses the clock tree definition file as a

reference.

8. Optimization: An optional optimization step exists before the routing.

9. Routing: The process of routing cause changes, such as buffer

insertion or timing modification.

10. Optimization: This step will try to fix any timing problems generated by

the Routing.

11. Generate: The last step generates three files:

a. Netlist

b. Standard Parasitic Exchange Format (SPEF) File : File that

contains timing information of the design

c. Design Exchange Format (DEF) File: File representing the

layout of the design.

The last step generates the files needed to do a timing and power analysis,

however, due to time constraints, these were not performed for this

assignment. The process is discussed in Section 5.

41

4 Results

The goal of this section is to show the final design of the assignment, the

modifications to the original design and the results obtained with the final

design.

4.1 Final Design

The final stack processor system was synthetized to target an ASIC module.

The final system architecture diagram can be seen in Figure 4-1.

Figure 4-1: Final Design Architecture

The main change from the original design was the change of a Dual Port RAM

for two Single Port RAMs that separate the Data Memory and the Program

Memory. The separation of the Data Stack and Return Stack into separate

modules was done in the design process. Originally, the stacks would be part

of the CPU logic.

Tasks 1 through 4 from Section 1.3 were completed successfully. The stack

processor system was implemented: designed, tested, simulated, synthetized

42

and place and route was performed. Even though not in the assignment tasks,

a practical test flow was created for the system.

The implemented stack processor is able to successfully execute all the

instruction types mentioned in Section 3.2.3 and in the Appendix 7.3. The

system is capable of communicating with the implemented I/O modules using

the Wishbone Bus using single read and write 16-bit operations; this will be

demonstrated in Section 4.2. The system was designed to simplify the addition

of new instructions.

4.2 Simulations

Some basic instruction execution is shown to demonstrate the proper behavior

of the system. The first case consisted of pushing values to the stack using

Literal type instructions and then doing an ALU addition instruction.

Figure 4-2 shows the waveform resulting from the simulation of the addition

test. Most signals are self-explanatory with the exception of _st0 (New Top of

Stack), st0 (Top of Stack), st1 (Next After Top of Stack) and dsp (Data Stack

Pointer).

The first part of the simulation that needs to be noticed are the reset and start

signals. Execution will not start until start_signal has been asserted. The

instructions of the test are:

lit 4 (0x8004)
lit 1 (0x8001)
lit 10 (08x00A)
add (0x6203)
halt (0x6010)

Basically the values 4, 1 and 10 are pushed to stack and then the last two

values are added. It is important to remember that whenever a value is pushed

to the stack, it must to pass through the Top of Stack (st0) and Next After Top

of Stack (st1), because only after going to these two registers will the value be

stored on the stack. As soon as the add instruction is read (0x6203) when the

43

program counter (pc) has a value of 3, the new top of stack is calculated(_st0),

and in the next clock cycle the top of stack (st0) value is updated correctly.

It is important to notice the data stack’s first two positions, data_stack_0 and

data_stack_1, are filled with the value 0. This is due to the fact that whenever

an instruction that will access the stack is executed, the data stack pointer

(dsp) is increased and the value of next of stack (st1) is stored in the data stack

location pointed by the data stack pointer.

Figure 4-2: Add Simulation

During the initialization, the value of st1 is 0 because no value has gone

through the top of stack and therefore the first two locations on the data stack

have value of 0. The first locations of the data stack that are filled with zeroes

due to this behavior will still work properly and be used by the architecture. This

will not affect the proper execution of instructions or the behavior of the

processor.

A hard coded solution could be made by using the drop instruction at the

beginning of a program if starting from position 0 of the data stack is completely

necessary.

44

All ALU instructions had similar satisfactory behaviors, so showing examples of

each one of them is not shown. Instead an example of a CALL instruction is

shown next, covering the proper capability of the processor to do address

modifications.

Figure 4-3 shows the wave form of the simulation of the CALL instruction test.

The instructions of the test are:

lit 4 (0x8004)
call 5 (0x4005)
halt (0x6010)
lit 6 (0x8006)
lit 7 (0x8007)
lit 8 (0x8008)
lit 9 (0x8009)
exit (0x700C)
lit 10 (0x800A)
halt 15 (0x6010)

Figure 4-3: Call Simulation

The goal of the test is to use the CALL instruction to jump to a specific part of

the code, and then return with the EXIT instruction. The CALL instruction stores

the return address in the return registers. A behavior similar to the data stack

takes place. The first location to be used in the return stack is not location zero

45

due to the updating of the Return Stack Pointer (rsp). By monitoring the signal

of Top of Stack (st0) and the Program Counter (pc), it is possible to see how

the CALL instruction modifies the pc to jump to the respective program address

and the previous address is stored in the return stack; the value is logically

shifted left once before been store, therefore the value stored in return_stack_1

is the value 4, which is 2 logically shifted left. The program returns to the

original address after using the EXIT instruction. The instruction that pushes

the values 6 and 7 are jumped and the instruction that pushes the value 10 is

not executed, showing the program returning to the correct location in time.

The JUMP and CONDITIONAL JUMP instruction types had similar successful

behavior and their waveforms are not shown.

The communication between the CPU and the peripheral using single read and

write operations with the Wishbone was completed successfully in two cases:

with delay from the slave and without delay from the slave. Figure 4-4 shows a

case in which the communication between master and slaves has no delay.

The test writes the value 4 to the first address register of the I/O module, after

this the value from the first address register is read to verify that the content is

correct. Remember the decoding used by the design uses the top 2 bits of the

address to check which module is addressed, that’s why the value used is

49152 (1100 0000 0000 in binary). The test instructions are the next:

lit 4 (0x8004)
lit 49152 (0xC000)
mem_wr (0x6123)
lit 49152 (0xC000)
mem_rd (0x6C01)
halt 15 (0x6010)

Figure 4-4 signals can be divided in 3 categories from top to bottom: signals

from the CPU, signals from the Wishbone Bus master module and signals from

Wishbone Bus slave module; every segment starts with the modules clock. The

simulation shows the same signal activity as seen in Figure 2-8 and Figure 2-9

when doing a signal write and read operation. The strobe signal (stb_o) and

46

cycle signal (cyc_o) are set high at the start of an external access and will wait

for the acknowledgement signal (ack_i). After receiving the first

acknowledgment the value 4 is wrote in the register reg_f0. The value is then

successfully read and wrote to top of stack (st0).

Figure 4-4: Wishbone Bus Communication Example

47

Data Stack
5%

Return Stack
5%

Data RAM
41%

Program RAM
42%

Peripheral
5%

CPU
2%

Area Distribution

4.3 Area Distribution and Layout

Due to confidentiality reasons with Atmel, only the area distribution of the final

design is shared, as seen in Figure 4-5. The area used for the CPU logic is

minimal, in comparison to the rest of the system. An image of the final place

and route can be seen in Figure 4-6.

Figure 4-5: Area Distribution

It is important to remember that the present assignment needed to create a

solid base for future projects and to enable the next user to continue work as

easily as possible. It should be considered that not only was an architecture

implementation made, but also the test flow, the custom assembler and the

documentation needed to follow and repeat the process from step one all the

way to Place and Route were created.

48

Figure 4-6: Place and Route

49

5 Discussion & Future Work

This section discusses the results of the assignment as well as some topics for

future work and optimization. The main tasks of the assignment were

completed successfully. Due to time limitations, the power analysis was not

covered in this assignment. Working on this assignment included a learning

curve adapting to the methodology used by the company. The design, testing,

synthesis and place and route process had to be automated using scripts. This

assignment required the understanding of an elaborate design flow used by

Atmel; learning to use the design flow and incorporating the final design to it

took time.

The original design evolved through the assignment and changed accordingly

in response to the testing process. Overall, a successful implementation of the

stack processor system was achieved. Some suggestions covering possibilities

for future work and optimization of the final design follow.

5.1 Power Analysis

For a future proper power analysis several steps after the place and route

process are required in order to get useful information. Figure 5-1 shows some

of the steps that need to take place after the Place and Route. A back

annotated simulation flow checks if any design changes or constraints are

violated by changes done in the Place and Route and Synthesis process. The

back annotated simulation would use the netlist of the Place and Route and the

SPEF file with the timing constrains generated by the Place and Route.

A power analysis should be done in parallel with a timing analysis using the

same netlist and timing constraints. Finally, for a successful power analysis,

correct stimulation is needed. This can be given using a Switching Activity

Interchange Format (SAIF) file, which contains the toggling activity of all the

signals in the system. Generating clock trees and clock gating configurations

will have an important role in power analysis. This opens many possibilities for

50

testing and comparison. For these reasons, it is considered that this could be

part of another assignment and was not covered by this assignment.

Figure 5-1: Post-Place and Route Flow

5.2 Stack Merging

A possibility was discussed at the end of the assignment to merge the Data

Stack and the Return Stack. This possibility would enable a more compact

architecture, but it would also have some new challenges:

 Arbiter: A module in charge of arbitration should be implemented to

avoid cases in which multiple stack accesses are made.

 Pointers: The pointers for both stacks would need to be monitored or

modified to not use illegal stack locations.

 Delay: This modification would add a possible delay in cases that

consecutive access to the stack is needed.

As shown in Figure 5-2, the arbiter would need to determine which access is

done to the stack and generate a stall if needed.

51

Figure 5-2: Stack Merging

5.3 Wishbone Bus Extension

Even though successful single read and write 16-bit operations are possible

with the actual implementation, the Wishbone Bus could be extended further to

be capable to do advance pipeline communication and burst communication.

The actual Wishbone bus implementation only uses the required signals for

simple communication, no signals providing information of the data transferred

are used; this signals could also be implemented in future work.

The design had specific problems when a back to back I/O access was done in

which the first access tried to read and the second to write to the same location

from an external I/O Module. Possible solutions for this corner case could be

obtained by modifying the stall module in cpu.v or the signals from the

Wishbone Bus modules.

5.4 Pipeline Optimization

The final design has two pipeline stages: the first one consists exclusively of

the fetch stage and the second one consists of the decoding, execution and

52

write back stages of the common pipeline. One possible change that could

improve the behavior of the stack processor system is to move a small part of

the decoding process to the first stage of the pipeline. As shown in Figure 5-3,

adding a small portion of the decoding to the first pipelining fetch could result in

a faster processor and prevent errors from corner cases.

Figure 5-3: Pipeline Modification

53

6 References

[1] Dave Evans, "The Internet of Things: How the Next Evolution of the

Internet Is Changing Everythin," CISCO IBSG, Apr. 2011. [Online].

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411

FINAL.pdf

[2] Jim Drew, "Energy Harvesting Produces Power from Local

Enviroment, Eliminating Batteries in Wireless Sensors," Linear

Technology, Design Notes 2010.[Online]

http://cds.linear.com/docs/en/design-note/DN483.pdf

[3] Charles Eric LaForest, "Second-Generation Stack Computer

Architecture," University of Waterloo, Waterloo, 2007. [Online]

Available:http://www.eecg.utoronto.ca/~laforest/Second-

Generation_Stack_Computer_Architecture.pdf

[4] Jr. Philip J. Koopman, Stack Computers: the new wave. Pittsburgh,

USA: Ellis Horwood, 1989.

[5] Dr. Klaus Samelson Dr. Friedrich Ludwig Bauer, "Verfahren zur

automatischen Verarbeitung von kodierten Daten und

Rechenmaschine zur Ausübung des Verfahrens ," Munich, 1957.

[Online]

http://worldwide.espacenet.com/publicationDetails/originalDocume

nt?CC=DE&NR=1094019&KC=&FT=E

[6] James Bowman. (2009) The J1 Forth CPU. [Online].

http://www.excamera.com/sphinx/fpga-j1.html

[7] James Bowman. (2010) www.excamera.com. [Online].

http://www.excamera.com/files/j1.pdf

[8] OpenCores. (2010) www.opencores.org. [Online].

http://cdn.opencores.org/downloads/wbspec_b4.pdf

[9] The ArchC Team, "The ArchC Architecture Description Language

v2.0 ," The ArchC Team, Campinas, Brazil, Reference Manual

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://cds.linear.com/docs/en/design-note/DN483.pdf
http://www.eecg.utoronto.ca/~laforest/Second-Generation_Stack_Computer_Architecture.pdf
http://www.eecg.utoronto.ca/~laforest/Second-Generation_Stack_Computer_Architecture.pdf
http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=DE&NR=1094019&KC=&FT=E
http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=DE&NR=1094019&KC=&FT=E
http://www.excamera.com/sphinx/fpga-j1.html
http://www.excamera.com/files/j1.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

54

2007. [Online] http://archc.sourceforge.net/doc.html

[10] The ArchC Team, "the ArchC Language Suppirt & Tools for

Automatic Generation of Binary Utilities v2.1 ," The ArchC Team,

User Manual 2011. [Online] http://archc.sourceforge.net/doc.html

[11] The ArchC Team. (2008) Arch C. [Online].

http://archc.sourceforge.net/

[12] Free Software Fundation. (1998) GNU Operating System. [Online].

http://www.gnu.org/software/emacs/

[13] Don Ho. (2011) Notepad++. [Online]. http://notepad-plus-plus.org/

[14] Stephen Williams. (2005) Icarus Verilog. [Online].

http://iverilog.icarus.com/

[15] sourceforge.net. (2014) Welcome toGTKWave. [Online].

http://gtkwave.sourceforge.net/

[16] Synopsys. (2014) Design Compiler 2010. [Online].

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Des

ignCompiler/Pages/default.aspx

[17] Cadence Design Systems. (2014) Encounter RTL Compiler.

[Online].

http://www.cadence.com/products/ld/rtl_compiler/pages/default.asp

x

[18] Chris Bailey Mark Shannon, "Global Stack Allocation," University of

York, 2006. [Online]

http://www.complang.tuwien.ac.at/anton/euroforth2006/papers/sha

nnon.pdf

http://archc.sourceforge.net/doc.html
http://archc.sourceforge.net/doc.html
http://archc.sourceforge.net/
http://www.gnu.org/software/emacs/
http://notepad-plus-plus.org/
http://iverilog.icarus.com/
http://gtkwave.sourceforge.net/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
http://www.complang.tuwien.ac.at/anton/euroforth2006/papers/shannon.pdf
http://www.complang.tuwien.ac.at/anton/euroforth2006/papers/shannon.pdf

55

7 Appendix

7.1 Final RTL Code

The most relevant parts of codes will be shown in this part of the appendix, all the

other code will be added in the digital appendix for practical purposes.

7.1.1 CPU

 module cpu (/*AUTOARG*/

 // Outputs

 read_data, io_access,instr_addr, io_wr, io_addr,io_dout,

 // Inputs

 ram_addr, clk, cs, reset,io_din,instr,ramrd,ack_i,stb_i

);

 `include "stkpc_params.v"

 input [4:0] ram_addr; //Ram_address

 input clk; //Clock

 input reset; //Reset

 input cs; //Chip select

 input [STKPC_WORD_MSB:0] io_din; //I/O Data in

 input [STKPC_WORD_MSB:0] instr; //Instruction from Ram

 input [STKPC_WORD_MSB:0] ramrd; //Ram read input

 input ack_i; //Wishbone acknowledge signal

 input stb_i; //Wishbone strobe to signal valid cycle

 output [STKPC_INST_MSB:0] read_data; //For test bench

 output [STKPC_PC_MSB:0] instr_addr;//Next instruction address

 output io_wr; // 1= IO Write 0= IO Read

 output io_access; // Signal access to IO for WB

 output [STKPC_WORD_MSB:0] io_addr; //Output address to IO/RAM

 output [STKPC_WORD_MSB:0] io_dout; //Output data to IO/RAM

 //Signals for monitoring data and return stack

 //ALU Regs//

 reg [STKPC_WORD_MSB:0] alu_a;

 reg [STKPC_WORD_MSB:0] alu_b;

 wire[STKPC_WORD_MSB:0] alu_c;

 //Data Stack Regs//

 reg [STKPC_DSTACK_POINTER_MSB:0] dsp; //Data stack pointer

 reg [STKPC_DSTACK_POINTER_MSB:0] _dsp; //New data stack pointer

 reg [STKPC_DSTACK_MSB:0] st0; //Top of stack data (T)

56

 reg [STKPC_DSTACK_MSB:0] _st0; //New top of stack data (T')

 reg dstkW; //Data stack write enable Reg

 wire _dstkW; //Data stack write enable

 wire[STKPC_DSTACK_MSB:0] st1 ; //Next of Stack

 //Return Stack Regs////////////////////////////////////v

 reg [STKPC_RSTACK_MSB:0] rsp; //Return stack pointer

 reg [STKPC_RSTACK_MSB:0] _rsp; //New return stack pointer

 reg rstkW; //R stack write enable

 reg [STKPC_RSTACK_MSB:0] _rstkD;//Newest return stack data

 wire[STKPC_RSTACK_MSB:0] rst0; //Top of Return stack

 //General Regs//

 reg [STKPC_PC_MSB:0] pc; //Program counter

 reg [STKPC_PC_MSB:0] _pc; //New program counter

 reg [STKPC_PC_MSB:0] start_signal;//Start Signal

 reg stall;//Stall signal for IO/RAM Access

 reg [STKPC_PC_MSB:0] _instr_addr;//Next instruction address

 reg r_io_access; //IO Access Reg

 reg halt; //Halt signal

 reg halt_r; //Halt Reg

 reg ioWE; //IO/RAM write enable Reg

 wire _io_access; //IO Access Signal

 wire _ioWE; //IO/RAM write enable

 wire [STKPC_PC_MSB:0] pc_plus_1; //PC+1 to fetch next instruction

 wire [STKPC_WORD_MSB:0] ramrd; //Ram read input

 //Assigns //

 assign _ioWE =ioWE;

 assign _dstkW=dstkW;

 assign instr_addr =_instr_addr;//Pass addr of next instruction

 assign _io_access=r_io_access;

 assign pc_plus_1 = pc + 1;

 assign io_wr = _ioWE; //I/O and Ram write enable

 assign io_addr = st0; //We use top of stack(T) as address

 assign io_dout = st1; //We use next in stack(N) as data

 assign io_access = (_io_access& stall); //High if access to IO

 assign read_data = instr; //Every time a instr is taken from

RAM, read_data is updated

 //MUX SELECTS//

 reg [STKPC_SEL_PC_MSB:0] next_pc_mux_sel;

 reg [STKPC_SEL_ALU_A_MSB:0] alu_a_mux_sel;

 reg [STKPC_SEL_ALU_B_MSB:0] alu_b_mux_sel;

 reg [STKPC_SEL_DSP_MSB:0] dsp_mux_sel;

 reg [STKPC_SEL_RSP_MSB:0] rsp_mux_sel;

 reg [STKPC_SEL_RSTACK_MSB :0] rstack_mux_sel;

 reg [STKPC_SEL_ST0_NEW_MSB:0] _st0_mux_sel;

 reg [STKPC_SEL_ALUOP_MSB:0] alu_op_mux_sel;

 reg [STKPC_FLOW_HALT_MSB:0] halt_mux_sel;

 //Stall Generator//

57

 always @(*) begin

 if (reset==1)begin

 stall <=0;

 end

 if (ack_i == 1 | _io_access == 0) begin

 stall<=0;

 end

 else if ((stb_i ==1 | _io_access == 1) && ack_i == 0) begin

 stall <= 1;

 end

 end

 // If stall we stay in actual instruction

 always @(*) begin

 if (stall==1) begin

 _instr_addr <= pc;

 end

 else begin

 _instr_addr <= _pc;

 end

 end

 //MUX for PC//

 always @(*) begin

 if (start_signal ==0) begin //We wait for start signal

 _pc <= 0;

 end

 else begin

 case(next_pc_mux_sel)

 STKPC_SEL_PC_COND_JMP: begin // Conditional Jump

if (st0==0) begin//If top of stack =0, jump

 _pc <= instr[STKPC_ALU_TO_PC_MSB:0];

 end

 else begin

 _pc <= pc_plus_1;

 end

 end

 STKPC_SEL_PC_INC: begin //PC increment

 _pc <= pc_plus_1;

 end

 STKPC_SEL_PC_INSTR: begin //JMP or CALL

 _pc <= instr[STKPC_ALU_TO_PC_MSB:0];

 end

 STKPC_SEL_PC_RSTACK: begin //EXIT of a routine

 _pc <=rst0[STKPC_RSTACK_PC_MSB:STKPC_RSTACK_PC_LSB];

 end

 default:

 _pc <= pc;

 endcase

 end

 end

 //MUX for ALU A//////////////////////////////////////VVVV

 always @* begin

58

 if (start_signal ==0) begin //We wait for start signal

 alu_a <= 0;

 end

 else begin

 case(alu_a_mux_sel)

 STKPC_SEL_ALU_A_ST0: begin //Top of data stack

 alu_a <= st0;

 end

 STKPC_SEL_ALU_A_ST1: begin //Next of data stack

 alu_a <= st1;

 end

 STKPC_SEL_ALU_A_RST0: begin //Top of return stack

 alu_a <= rst0;

 end

 STKPC_SEL_ALU_A_RSP: begin //Pointer to return

stack, for checking stack depth

 alu_a <= _rsp << 8; //Shift right to display

rsp in high bits and dsp in low bits

 end

 default:

 alu_a <= alu_a;

 endcase

 end

 end

 //MUX for ALU B//

 always @* begin

 if (start_signal ==0) begin //We wait for start signal

 alu_b <= 0;

 end

 else begin

 case(alu_b_mux_sel)

 STKPC_SEL_ALU_B_ZERO: begin //Zeros

 alu_b <= STKPC_ZERO_16BITS ;

 end

 STKPC_SEL_ALU_B_ONES: begin

 alu_b <= STKPC_ONES_16BITS; //Ones

 end

 STKPC_SEL_ALU_B_ST0: begin //Next of data stack

 alu_b <= st0;

 end

 STKPC_SEL_ALU_B_DSP: begin //Data stack pointer

 alu_b <= _dsp;

 end

 default:

 alu_b <= alu_b;

 endcase

 end

 end

 //MUX for DSP//

 always @* begin

 if (start_signal ==0) begin //We wait for start signal

 _dsp <= 0;

 end

59

 else begin

 case(dsp_mux_sel)

 STKPC_SEL_DSP: begin

 _dsp <= dsp;

 end

 STKPC_SEL_DSP_INC_1: begin

 _dsp <= dsp + 1;

 end

 STKPC_SEL_DSP_INC_2: begin

 _dsp <= dsp + 2;

 end

 STKPC_SEL_DSP_DEC_1: begin

 _dsp <= dsp - 1;

 end

 default:

 _dsp <= dsp;

 endcase

 end

 end

 //MUX for RSP//

 always @* begin

 if (start_signal ==0) begin //We wait for start signal

 _rsp <= 0;

 end

 else begin

 case(rsp_mux_sel)

 STKPC_SEL_RSP: begin

 _rsp <= rsp;

 end

 STKPC_SEL_RSP_INC_1: begin

 _rsp <= rsp + 1;

 end

 STKPC_SEL_RSP_INC_2: begin

 _rsp <= rsp + 2;

 end

 STKPC_SEL_RSP_DEC_1: begin

 _rsp <= rsp - 1;

 end

 default:

 _rsp <= rsp;

 endcase

 end

 end

 //MUX for Return Stack//////////////////////////////////////

 always @* begin

 if (start_signal ==0) begin //We wait for start signal

 _rstkD <= 0;

 end

 else begin

 case(rstack_mux_sel)

 STKPC_SEL_RSTACK_PC: begin

 _rstkD <= _pc;

60

 end

 STKPC_SEL_RSTACK_ST0: begin

 _rstkD <= st0;

 end

 STKPC_SEL_RSTACK_PC_PLUS_1: begin

 _rstkD <= {pc_plus_1[STKPC_PC_MSB:0], 1'b0};

 end

 default:

 _rstkD <= _pc;

 endcase

 end

 end

 //MUX for _ST0//////////////////////////////////

 always @(*) begin

 if (start_signal ==0) begin

 _st0<=0;

 end

 else begin

 case(_st0_mux_sel)

 STKPC_SEL_ST0_NEW_ALU: begin

 _st0 <= alu_c;

 end

 STKPC_SEL_ST0_NEW_RAM_IO: begin

 _st0 <= |st0[15:14] ? io_din : ramrd;

 end

 STKPC_SEL_ST0_NEW_IMM: begin

 _st0 <= { 1'b0, instr[STKPC_IMM_MSB:0] };

 end

 default:

 _st0 <= st0;

 endcase

 end

 end

 // Halt instruction

 always @* begin

 case(halt_mux_sel)

 STKPC_FLOW_HALT_YES: begin

 halt = 1'b1;

 end

 STKPC_FLOW_HALT_NO: begin

 halt = 1'b0;

 end

 default:

 halt = 1'b0;

 endcase

 end

 //Instruction Decoder

 always @* begin

 next_pc_mux_sel=0;

 alu_a_mux_sel=0;

61

 alu_b_mux_sel=0;

 alu_op_mux_sel=0;

 dsp_mux_sel=0;

 rsp_mux_sel=0;

 rstack_mux_sel=0;

 _st0_mux_sel=0;

 halt_mux_sel = 0;

 rstkW=0;

 dstkW=0;

 ioWE=0;

 r_io_access=0;

 casez(instr)

 STKPC_OPCODES_LIT: begin

 next_pc_mux_sel=STKPC_SEL_PC_INC;

 alu_a_mux_sel=STKPC_SEL_ALU_A_ST0;

 alu_b_mux_sel=STKPC_SEL_ALU_B_ZERO;

 alu_op_mux_sel=STKPC_SEL_ALUOP_OR;

 dsp_mux_sel=STKPC_SEL_DSP_INC_1;

 rsp_mux_sel=STKPC_SEL_RSP;

 rstack_mux_sel=STKPC_SEL_RSTACK_PC;

 _st0_mux_sel=STKPC_SEL_ST0_NEW_IMM;

 halt_mux_sel = STKPC_FLOW_HALT_NO;

 rstkW=0;

 dstkW=1;

 ioWE=0;

 r_io_access=0;

 end

 STKPC_OPCODES_JMP: begin

 next_pc_mux_sel=STKPC_SEL_PC_INSTR;

 alu_a_mux_sel=STKPC_SEL_ALU_A_ST0;

 alu_b_mux_sel=STKPC_SEL_ALU_B_ZERO;

 alu_op_mux_sel=STKPC_SEL_ALUOP_OR;

 dsp_mux_sel=STKPC_SEL_DSP;

 rsp_mux_sel=STKPC_SEL_RSP;

 rstack_mux_sel=STKPC_SEL_RSTACK_PC;

 _st0_mux_sel=STKPC_SEL_ST0_NEW_ALU;

 halt_mux_sel = STKPC_FLOW_HALT_NO;

 rstkW=0;

 dstkW=0;

 ioWE=0;

 r_io_access=0;

 end

//all instructions were decoded as the previous 2 examples, for

practical purposes other instructions will be removed from the

written document, please refer to the digital appendix for th full

list.

 endcase

 end

 //Data Stack//////////////////////////////////////

 data_stack DATA_STACK (

62

 // Outputs

 .data_out (st1),

 // Inputs

 .data_in (st0),

 .addr_rd (dsp),

 .addr_wr (_dsp),

 .wr_en (_dstkW),

 .clk (clk)

);

 //Return Stack////////////////////////////

 return_stack RETURN_STACK (

 // Outputs

 .data_out (rst0),

 // Inputs

 .data_in (_rstkD),

 .addr_rd (rsp),

 .addr_wr (_rsp),

 .wr_en (rstkW),

 .clk (clk)

);

 //ALU////////////////////////////////////

 stkpc_alu STKPC_ALU (

 // Outputs

 .c (alu_c[STKPC_WORD_MSB:0]),

 // Inputs

 .a (alu_a[STKPC_WORD_MSB:0]),

 .b (alu_b[STKPC_WORD_MSB:0]),

 .op (alu_op_mux_sel[STKPC_SEL_ALUOP_MSB:0])

);

 //Update PC, pointers////////////////////////

 always @(posedge clk or posedge reset) begin

 if (reset==1'b1) begin

 pc <= 0;

 dsp <= 0;

 st0 <= 0;

 rsp <= 0;

 halt_r <=0;

 end else if(stall==0) begin

 dsp <= _dsp;

 pc <= _pc;

 st0 <= _st0;

 rsp <= _rsp;

 halt_r <= halt;

 end

 end

 //start signal to initiate after initial reset

 always @(posedge clk or posedge reset) begin

 if (reset==1'b1) begin

63

 start_signal<=0;

 end else begin

 start_signal <=1;

 end

 end

 endmodule //cpu

7.1.2 Dual Port Ram

module ram2ports (/*AUTOARG*/

// Outputs

data_out_a,data_out_b,

// Inputs

clock, addr_a, addr_b, data_in_a,data_in_b, cs_a, we_a, cs_b, we_b

);

parameter WORD_WIDTH = 16;

parameter ADDR_WIDTH = 8;

parameter RAM_SIZE = 1<< ADDR_WIDTH;

localparam WORD_MSB = WORD_WIDTH-1;

localparam ADDR_MSB = ADDR_WIDTH-1;

output [WORD_MSB:0] data_out_a;

output [WORD_MSB:0] data_out_b;

input clock;

//Port A

input [ADDR_MSB:0] addr_a;

input [WORD_MSB:0] data_in_a;

input cs_a;

input we_a;

//Port B

input [ADDR_MSB:0] addr_b;

input [WORD_MSB:0] data_in_b;

input cs_b;

input we_b;

reg [WORD_MSB:0] data_out_a;

reg [WORD_MSB:0] data_out_b;

reg [WORD_MSB:0] mem0 [0:RAM_SIZE-1];

reg [ADDR_MSB:0] addr_a_latched;

reg [ADDR_MSB:0] addr_b_latched;

event dbg_addr_a;

//Update of address latches

always @(posedge clock) begin

 if(cs_a) begin

 addr_a_latched <= addr_a;

 end

 if(cs_b) begin

 addr_b_latched <= addr_b;

 end

end

64

//Update of data out of port a

always @(addr_a_latched) begin

 -> dbg_addr_a;

 data_out_a <= mem0[addr_a_latched[ADDR_MSB:0]];

end

//Update of data out of port a

always @(addr_b_latched) begin

 data_out_b <= mem0[addr_b_latched[ADDR_MSB:0]];

end

// Write

always @(posedge clock) begin

 if(cs_a && we_a) begin

 $display("Memory write A ");

 mem0[addr_a] <= data_in_a;

 end

 if(cs_b && we_b) begin

 $display("Memory write B");

 mem0[addr_b] <= data_in_b;

 end

end

endmodule // ram2ports

7.1.3 Data Stack

module data_stack (

 // Outputs

data_out,data_stack_0,data_stack_1,data_stack_2,data_stack_3,data_st

ack_4,data_stack_5,data_stack_6,data_stack_7,data_stack_8,

// Inputs

data_in,addr_rd,addr_wr,rd_en,wr_en,clk

);

`include "stkpc_params.v"

//Outputs

output[STKPC_WORD_MSB:0] data_out;

output [STKPC_DSTACK_MSB:0] data_stack_0; //Signals to monitor

content of data stack, 7 more registers are used but omitted of the

printed version for practical purposes.

//Inputs

input [STKPC_WORD_MSB:0] data_in;

input [STKPC_DSTACK_POINTER_MSB:0] addr_rd;

input [STKPC_DSTACK_POINTER_MSB:0] addr_wr;

input rd_en;

input wr_en;

input clk;

assign data_stack_0 = dstack[0];

reg [STKPC_WORD_MSB:0] data_out;

65

reg [STKPC_DSTACK_MSB:0] dstack[0:STKPC_DSTACK_SIZE]; //Data stack

//update of data and return stack, pushing the top of stack

always @(posedge clk) begin

 if (wr_en) begin

 dstack[addr_wr] = data_in;

 end

end

always@(*) begin

data_out<= dstack[addr_rd];

end

endmodule

7.1.4 Return Stack

module return_stack (

// Outputs

data_out,return_stack_0,return_stack_1,return_stack_2,

// Inputs

data_in,addr_rd,addr_wr,rd_en,wr_en,clk

);

`include "stkpc_params.v"

//Outputs

output[STKPC_WORD_MSB:0] data_out;

output [STKPC_RSTACK_MSB:0] return_stack_0; use to monitor stack

output [STKPC_RSTACK_MSB:0] return_stack_1;

output [STKPC_RSTACK_MSB:0] return_stack_2;

//Inputs

input [STKPC_WORD_MSB:0] data_in;

input [STKPC_WORD_MSB:0] addr_rd;

input [STKPC_WORD_MSB:0] addr_wr;

input rd_en;

input wr_en;

input clk;

assign return_stack_0 = rstack[0];

assign return_stack_1 = rstack[1];

assign return_stack_2 = rstack[2];

reg [STKPC_WORD_MSB:0] data_out;

reg [STKPC_RSTACK_MSB:0] rstack[0:STKPC_RSTACK_SIZE];//Return stack

//update of data and return stack, pushing the top of stack

always @(posedge clk) begin

 if (wr_en) begin

 rstack[addr_wr] = data_in;

 end

end

always@(*) begin

66

data_out<= rstack[addr_rd];

end

endmodule

7.1.5 Wishbone Master Module

module wb_m_16 (

 // Outputs

 adr_o, dat_o, we_o, sel_o, stb_o, cyc_o,dat_i_cpu,

 // Inputs

 rst_i,clk_i,dat_i,ack_i,err_i,rty_i,dat_o_cpu,adr_o_cpu,

we_i_cpu,cs,io_access

);

`include "stkpc_params.v"

//Outputs //WB Signals

output[WB_ADR_O_MSB:0] adr_o; //Address Out

output[WB_DAT_O_MSB:0] dat_o; //Data Out

output we_o; //Write/Read Enable

output[WB_SEL_O_MSB:0] sel_o; //Select Out

output stb_o; //Strobe Signal

output cyc_o; //Cycle Signal

output[WB_DAT_O_MSB:0] dat_i_cpu; //Data send to CPU received from

WB module

//Inputs //WB Signals

input rst_i; //Reset

input clk_i; //Clock

input [WB_DAT_I_MSB:0] dat_i; //Data In

input ack_i; //Acknowledgement Out

input err_i; //Error Signal

input rty_i; //Retry Signal

input [WB_DAT_O_MSB:0] dat_o_cpu; //Data from CPU to WB Module

input [WB_ADR_O_MSB:0] adr_o_cpu; //Address from CPU to WB

Module

input we_i_cpu; //Enable signal from CPU to

WB Module

input cs; //Chip Select

input io_access; //IO_Access Signal

reg [WB_ADR_O_MSB:0] adr_o;

reg [WB_DAT_O_MSB:0] dat_o;

reg we_o;

reg[WB_SEL_O_MSB:0] sel_o;

reg stb_o;

reg cyc_o;

reg[WB_DAT_O_MSB:0] dat_i_cpu;

67

wire _io_access;

assign _io_access = io_access|stb_o;

//Every IO Access we update the data out, the address and write

enable

always @ (*) begin

 if (io_access ==1) begin

 adr_o <= adr_o_cpu;

 dat_o <= dat_o_cpu;

 end

end

//The data from the WB bus is passed to the CPU

always @(*) begin

 dat_i_cpu<=dat_i;

end

always @ (*) begin

 if (io_access ==1 && we_i_cpu ==1) begin

 we_o <=we_i_cpu;

 end else if(io_access ==1 && we_i_cpu ==0) begin

 we_o <=we_i_cpu;

 end

end

always @(posedge clk_i) begin

 if(rst_i==1'b1) begin

 stb_o <= 0;

 cyc_o <=0;

 end

 else begin

 if (io_access==1 && ack_i==0) begin //If slave is free,

cycle start

 sel_o[0]<= 1;

 cyc_o <= 1;

 stb_o <=1;

 end else if (ack_i==1) begin //If slave is done finish

cycle

 stb_o <= 0;

 cyc_o <= 0;

 end

 end

end

endmodule // wb_m_16

7.1.6 Wishbone Slave Module

module wb_s_16 (/*AUTOARG*/

// Outputs

68

dat_o,ack_o,err_o,rty_o,reg_f0,reg_f1,reg_f2,reg_f3,reg_f4,reg_f5,

// Inputs

rst_i,clk_i,dat_i,adr_i,cyc_i,we_i,stb_i,sel_i,cs

);

 `include "stkpc_params.v"

//Outputs //WB Signals

output[WB_DAT_O_MSB:0] dat_o; //Data out

output ack_o; //Acknowledgement out

output rty_o; //Ready out

output err_o; //Error out, not used for simple

design

output[WB_DAT_O_MSB:0] reg_f0; //Outputs used to monitor the

register file

output[WB_DAT_O_MSB:0] reg_f1;

output[WB_DAT_O_MSB:0] reg_f2;

output[WB_DAT_O_MSB:0] reg_f3;

output[WB_DAT_O_MSB:0] reg_f4;

output[WB_DAT_O_MSB:0] reg_f5;

//Inputs //WB Signals

input rst_i; //Reset

input clk_i; //Clock

input [WB_DAT_O_MSB:0] dat_i; //Data in

input [WB_ADR_O_MSB:0] adr_i; //Address in

input cyc_i; //Cycle input, to notifies a

cycle is in progress if high

input we_i; //Write enable

input stb_i; //Strobe in

input [WB_SEL_O_MSB:0] sel_i; //Select in

input cs; //Chip select

reg [WB_DAT_O_MSB:0] reg_file [0:GPIO_REG_FILE_MSB];

//Register file to store data

reg [WB_DAT_O_MSB:0] dat_o;

reg rty_o;

reg err_o;

reg [WB_DELAY_MSB:0] temp_count; //Temporal to count cycles

reg ready; //Signal to notify that

slave finish its processing and can transmit back

reg r_ack_o;

wire _ack_o;

//Used to monitor register file in simulation

assign reg_f0 = reg_file[0];

assign reg_f1 = reg_file[1];

assign reg_f2 = reg_file[2];

assign reg_f3 = reg_file[3];

assign reg_f4 = reg_file[4];

assign reg_f5 = reg_file[5];

assign _ack_o = r_ack_o;

assign ack_o = _ack_o & stb_i;

69

wire [WB_DELAY_MSB:0] wcet; //Worst case execution time, max

cycles of delay needed for slave operation

assign wcet = 'd0;

//Delay generator

always @(posedge clk_i or posedge rst_i) begin

 if(rst_i == 1'b1) begin

 ready <= 0;

 temp_count <= 0;

 end

 else begin

 if (stb_i==1) begin

 temp_count <= temp_count+1;

 if (temp_count == wcet) begin

 ready <= 1;

 temp_count <= 0;

 end

 end

 else begin

 temp_count <= 0;

 ready <= 0;

 end

 end

end

//Data in and out

always @(posedge clk_i or posedge rst_i) begin

if(rst_i==1'b1) begin

 dat_o <= 0;

 r_ack_o <= 0;

 rty_o <= 0;

 err_o <= 0;

end else if(cs) begin //If WB is the target

 if(wcet==0) begin

 if (we_i==0 && stb_i==1) begin //Master is going to read

 dat_o<= reg_file[adr_i&255];

 r_ack_o<= 1;

 end else if (we_i == 1 && stb_i == 1) begin //Write

 reg_file[adr_i&255]<= dat_i;

 r_ack_o<= 1;

 end else begin //if we are reading and slave is ready

 r_ack_o<=0;

 end

 end

 else begin

 if (we_i==0 && stb_i==1&& ready ==1) begin //Read

 dat_o<= reg_file[adr_i&255];

 r_ack_o<= 1;

 end else if (we_i == 1 && stb_i == 1 && ready == 1) begin

//Master is going to write

 reg_file[adr_i&255]<= dat_i;

 r_ack_o<= 1;

 end else begin //if we are reading and

slave is ready

70

 r_ack_o<=0;

 end

 end

end

end

 endmodule //wb_s_16

7.2 ArchC Files

7.2.1 Stkpc.ac

//@begin[arch_ac]

AC_ARCH(stkpc) {

 ac_mem DM:5M;

 ac_regbank RB:15;

 ac_reg new_st0;

 ac_reg st0;

 ac_reg st1;

 ac_reg rst0;

 ac_wordsize 16;

 ARCH_CTOR(stkpc) {

 ac_isa("stkpc_isa.ac");

 set_endian("little");

 };

};

//@end[arch_ac]

7.2.2 Stkpc_isa.ac

AC_ISA(stkpc){

 //@begin[inst_format]

ac_format Type_Lit = "%opcode1:1 %uk15:15 ";

ac_format Type_Jmp = "%opcode1:1 %opcode2:2 %uk13:13 ";

ac_format Type_Cond_Jmp = "%opcode1:1 %opcode2:2 %uk13:13 ";

ac_format Type_Call = "%opcode1:1 %opcode2:2 %uk13:13 ";

ac_format Type_Alu = "%opcode1:1 %opcode2:2 %opcode3:13 ";

//@end[inst_format]

//@begin[inst_list]

ac_instr<Type_Lit> lit;

ac_instr<Type_Jmp> jmp;

ac_instr<Type_Cond_Jmp> cond_jmp;

ac_instr<Type_Call> call;

71

ac_instr<Type_Alu>

nop,halt,nip,exit,dup,rs_push,swap,over,drop,mem_wr,add,and,or,xor,i

nvert,n_eq_t,n_lt_t,n_sr_t,sub1,rs_pop,rs_cp,mem_rd,n_sl_t,stk_dep,n

_ult_t;

 //@end[inst_list]

 // gas MIPS specific register names

 ac_asm_map reg {

 "r"[0..14] = [0..14];

 }

 //@begin[ac_isa_sreg]

ac_asm_map sreg {

 "new_st0" = 8;

 "st0" = 9;

 "st1" = 10;

 "rst0" = 0;

}

 //@end[ac_isa_sreg]

 ISA_CTOR(stkpc){

 //@begin[ac_set_asm]

 lit.set_asm("lit %exp", uk15);

 lit.set_decoder(opcode1=1);

 jmp.set_asm("jmp %exp", uk13);

 jmp.set_decoder(opcode1=0,opcode2=0);

 cond_jmp.set_asm("cond_jmp %exp", uk13);

 cond_jmp.set_decoder(opcode1=0,opcode2=1);

 call.set_asm("call %exp", uk13);

 call.set_decoder(opcode1=0,opcode2=2);

 nop.set_asm("nop");

 nop.set_decoder(opcode1=0,opcode2=3,opcode3=0);

 halt.set_asm("halt");

 halt.set_decoder(opcode1=0,opcode2=3,opcode3=16);

 nip.set_asm("nip");

 nip.set_decoder(opcode1=0,opcode2=3,opcode3=3);

 exit.set_asm("exit");

 exit.set_decoder(opcode1=0,opcode2=3,opcode3=4108);

 dup.set_asm("dup");

 dup.set_decoder(opcode1=0,opcode2=3,opcode3=129);

 rs_push.set_asm("rs_push");

 rs_push.set_decoder(opcode1=0,opcode2=3,opcode3=327);

 swap.set_asm("swap");

72

 swap.set_decoder(opcode1=0,opcode2=3,opcode3=384);

 over.set_asm("over");

 over.set_decoder(opcode1=0,opcode2=3,opcode3=385);

 drop.set_asm("drop");

 drop.set_decoder(opcode1=0,opcode2=3,opcode3=259);

 mem_wr.set_asm("mem_wr");

 mem_wr.set_decoder(opcode1=0,opcode2=3,opcode3=291);

 add.set_asm("add");

 add.set_decoder(opcode1=0,opcode2=3,opcode3=515);

 and.set_asm("and");

 and.set_decoder(opcode1=0,opcode2=3,opcode3=771);

 or.set_asm("or");

 or.set_decoder(opcode1=0,opcode2=3,opcode3=1027);

 xor.set_asm("xor");

 xor.set_decoder(opcode1=0,opcode2=3,opcode3=1283);

 invert.set_asm("invert");

 invert.set_decoder(opcode1=0,opcode2=3,opcode3=1539);

 n_eq_t.set_asm("n_eq_t");

 n_eq_t.set_decoder(opcode1=0,opcode2=3,opcode3=1795);

 n_lt_t.set_asm("n_lt_t");

 n_lt_t.set_decoder(opcode1=0,opcode2=3,opcode3=2051);

 n_sr_t.set_asm("n_sr_t");

 n_sr_t.set_decoder(opcode1=0,opcode2=3,opcode3=2307);

 sub1.set_asm("sub1");

 sub1.set_decoder(opcode1=0,opcode2=3,opcode3=2563);

 rs_pop.set_asm("rs_pop");

 rs_pop.set_decoder(opcode1=0,opcode2=3,opcode3=2957);

 rs_cp.set_asm("rs_cp");

 rs_cp.set_decoder(opcode1=0,opcode2=3,opcode3=2945);

 mem_rd.set_asm("mem_rd");

 mem_rd.set_decoder(opcode1=0,opcode2=3,opcode3=3073);

 n_sl_t.set_asm("n_sl_t");

 n_sl_t.set_decoder(opcode1=0,opcode2=3,opcode3=3331);

 stk_dep.set_asm("stk_dep");

 stk_dep.set_decoder(opcode1=0,opcode2=3,opcode3=3584);

 n_ult_t.set_asm("n_ult_t");

73

 n_ult_t.set_decoder(opcode1=0,opcode2=3,opcode3=3843);

 };

};

7.3 Instruction Set Table

For a complete description of each instruction and instruction type please refer to

the digital Appendix.

Name Assembler Instruction

Type

Description

Literal

Operation

lit Literal Load 15 bit value to top of
stack

Jump jmp Jump Jump to given PC value

Conditional

Jump

cond_jmp Conditional

Jump

Jumps to given PC value, if
Top of stack equal zero

Call call Call Jumps to given PC value
and old PC value is saved
in return stack

Addition add ALU 16 bit addition of the 2 top
values of data stack

Logical And and ALU 16 bit and operation of the
2 top values of data stack

Logical Or or ALU 16 bit or operation of the 2
top values of data stack

Logical Xor xor ALU 16 bit xor operation of the 2
top values of data stack

Drop drop ALU Drops top value of the data
stack

Duplicate dup ALU Duplicate top value of the
data stack

Exit exit ALU Jumps to PC taken from
the top of the return stack

Invert invert ALU Bitwise logic invert of the
top of stack

Memory Read mem_rd ALU Read to external module

Memory Write mem_wr ALU Write to an external module

Equal
comparator

n_eq_t ALU Returns a 0 if 2 top values
of data stack are different,
else returns 0xFFFF

No operation nop ALU no operation

74

Less Than n_lt_t ALU Returns 0xFFFF if second
of data stack is smaller
than top of stack, else
returns 0

Logical Left

Shift

n_sl_t ALU Second of data stack is
shifted left by value given
by top of stack

Logical Right

Shift

m_sr_t ALU Second of data stack is
shifted right by value given
by top of stack

Unsigned
Less Than

n_ult_t ALU Returns 0xFFFF if second
of data stack is smaller
than top of stack, else
returns 0. Uses unsigned
values

Over
operation

over ALU Value in second of data
stack is copied to the top of
stack.

Return Stack
Copy

rs_cp ALU Copies the top of return
stack to top of data stack

Return Stack
Push

rs_push ALU Push value of top of data
stack to return stack

Return Stack
Pop

rs_pop ALU Drop top of return stack

Stack Depth stk_dep ALU Top of stack is given the
value of the data stack
pointer in the top 8 bits,
and the value of the return
stack pointer in the 8 lower
bits

Swap
Operation

swap ALU Swaps the second of data
stack with the top of data
stack

Subtract One sub1 ALU Subtracts 1 of top of data
stack.

