
The ArchC Language Support & Tools
for Automatic Generation of

Binary Utilities

version 2.1

User Manual

The ArchC Team
http://www.archc.org

July 2011

Copyright c© 2005-2011 The ArchC Team
Av. Albert Einstein, 1251 13084-971
PO Box 6176 - Campinas/SP - Brazil

Contents

1 Introduction 5
1.1 Overview .. 5
1.2 Quick Start .. . 6
1.3 Latest Changes .. . 7
1.4 Current Limitations 8

2 Language Support 9
2.1 Overview .. 9
2.2 Assembly language symbols 9
2.3 Assembly language syntax and instruction encoding 10

2.3.1 Assembly syntax .. 10
2.3.2 Instruction encoding 12
2.3.3 Modifiers . 12
2.3.4 Lists of symbols .. 16
2.3.5 Syntax overload .. . 19

2.4 Synthetic Instructions 20
2.5 Comment Characters .. . 22

3 Binary Utility Generation 23
3.1 Generation Process 23

3.1.1 Building the ArchC package 23
3.1.2 Generating the binary utility source code 24
3.1.3 Building the binary utilities 24

3.2 The generated tools 25

4 Dynamic Linking Support 27
4.1 Specifying information for dynamic linking 27
4.2 The dynamic linker and loader 29
4.3 Relocation code conversion tool 30

3

Contents

4

Chapter 1

Introduction

This manual presents the ArchC language support and tools for the generation of binary utilities, such as
assemblers, disassemblers, linkers and debuggers. In thisintroductory chapter we give a brief overview
of the binary utilities generation process, present a quickstart guide and discuss current limitations.

1.1 Overview

Figure 1.1 shows the generation flow of binary utilities. Users start by describing the required infor-
mation at a high abstraction level using the ArchC architecture description language (step (a)). The
available constructs and support files used in this step are subject of Chapter 2. The generation tool
reads the target model and support files in order to create thebinary utilities (step (b)). Chapter 3
explains how to use and the command line options for the generation tool. Starting with an assem-
bly source code, the assembler and linker produce the corresponding executable object code (step (c)).
Disassemblers and debuggers can inspect object code and help finding bugs in the original program
(step (d)). Chapter 3 also explains how to use these generatedtools.

Generation

Tools

Assembler

Disassembler

Linker

Debugger

ArchC

Model

Support

Files

Assembly

Source Code

Executable

File

(a)
 (b)

(c)

(d)

Figure 1.1: Generation Flow

5

1.2. Quick Start

1.2 Quick Start

This quick start guides you through the generation of binarytools for the MIPS architecture. First,
create a directory namedquickstart anywhere in your local home and download the following
items to that directory:

• ArchC – ArchC language and tools (www.archc.org)
Name used:archc-v2.1.tgz

• MIPS – MIPS model (www.archc.org)
Name used:mips1-v0.7.8.tgz

• Binutils – GNU Binutils source code (www.gnu.org/software/binutils/)
(latest version tested: 2.15)
Name used:binutils-2.15.tar.gz

• Gdb – The GNU Project Debugger source code (sourceware.org/gdb/)
(latest version tested: 6.4)
Name used:gdb-6.4.tar.gz

Note that the lines withName used identify the package names we will use in this quick start.
You should replace them with the name of the packages you downloaded.

Now unpack the packages inside thequickstart directory:

$ tar zxvf archc-v2.1.tgz
$ tar zxvf mips1-v0.7.8.tgz
$ tar zxvf binutils-2.15.tar.gz
$ tar zxvf gdb-6.4.tar.gz

To compile the ArchC package, enter the ArchC directory you have just unpacked and issue the
following command:

$./configure --with-binutils=‘pwd‘/../binutils-2.15 \
--with-gdb=‘pwd‘/../gdb-6.4 \
--prefix=‘pwd‘

$ make
$ make install

This will install the binary utility generation script intothebin subdirectory. Now change to the
model directory and generate the binary tools:

$ cd ../mips-v0.7.8/
$../archc-v2.1/bin/acbingen.sh -amips1 -i‘pwd‘/../bin/ mips1.ac

This process may take from several minutes to hours depending on your host machine. The binary
utilities will be created and placed into the directoryquickstart/bin.

6

1.3. Latest Changes

1.3 Latest Changes

New features in this version:

Improved parser generator
Now it is possible to describe an instruction syntax containing multiples mnemonic suffixes.
This is important in assembly languages whose mnemonics presents many variations, denoted by
a different suffix. Suffixes can be handled as any other parameter. In fact, as a special one, with
no spaces between it and the mnemonic.

Better support for user defined maps
The user can now define distinct maps whose symbols names may be the same. This enables
a powerful technique in describing languages, namely, defining nullable symbols. By creating
a map containing the null (empty string) symbol, the user specifies that these symbols may be
omitted. Previously, this still could be done, but only in one map per model, since symbols with
the same name weren’t allowed in the same model.

Concatenated fields
There is no more limitation to the number of fields assigned toa specific operand. The user may
concatenate any number of fields using the + operator.

Defining comment characters
There is no more need to change the assembler generated source file in order to define different
comment characters. Now there is a specific directive to specify assembler comment characters
directly in the model file.

Lists of symbols
The natural way of describing instructions syntax in an ArchC model is using one operand iden-
tifier per instruction operand. This operand identifier is linked to a particular translation method
(from assembly language source code to binary representation in the instruction field), and if the
operand identifier is specified by the user through user defined maps, uses the symbol-value list
provided by the map. Using this paradigm, it is not easy to define a parameter that represents a
list (this usually occurs as variable-sized list of registers). Now there is a specific mechanism to
describe lists as operands.

Dynamic linking support
The GNU libbfd generated backend now offers support for shared library creation, as well as
linking a regular object file against a shared library. The new ArchC simulator also supports
loading ELF executable which depends on a shared library.

7

1.4. Current Limitations

1.4 Current Limitations

The following limitations exist:

Output object file
by default, the generated assembler and companion tools allhandle only ELF object files. Thus,
if you use the generated assembler to produce any binary, theoutput object file format will be
ELF.

8

Chapter 2

Language Support

In this chapter we present the ArchC language constructs andsupport files required for the generation of
binary utilities. We show examples from several microprocessors to illustrate how each of the constructs
are used.

2.1 Overview

There is a total of 10 ArchC constructs related to the binary utilities: set endian, ac format,
ac instr,set decoder,ac asm map,set asm,pseudo instr,assembler.set comment,
assembler.set line comment andmap to. While the first 4 of them are also used by the sim-
ulator generator tool, the last 6 are only used by the binary utility generator. For further information
aboutset endian, ac format, ac instr andset decoder, please refer to the ArchC lan-
guage reference manual [].

In the rest of this chapter we present the constructsac asm map, set asm, pseudo instr,
assembler.set comment,assembler.set line comment andmap towhich describe machine-
dependent aspects of binary utilities at a high abstractionlevel. All of them must be described in the
AC ISA part of an ArchC processor model. Some of them may require further description which is
done through support files, outside the ArchC model. Supportis provided for processor-specific as-
sembly language symbols (such as register names), syntax and operand encoding. The user can also
describe synthetic instructions.

2.2 Assembly language symbols

Assembly language-level symbols and their corresponding values are defined in ArchC through the
ac asm map construct. This construct groups a set of symbol-value pairs under a common name,
which can be later used to specify the assembly language syntax.

The most common use ofac asm map is to map processor’s register names to their encoding
values. For example, Figure 2.1 shows the MIPS-I register names mapping. Line 1 declaresreg as the
mapping identifier. Lines 2 to 9 define each symbol and the corresponding encoding value. A symbol
is specified between quotation marks at the left side, followed by the equal sign (=), its value and a
semicolon (;). It is possible to specify a range of values by using the square brackets notation ([]).

9

2.3. Assembly language syntax and instruction encoding

For instance, line 5 maps symbolskt0 andkt1 to values26 and27, respectively. Note that it is also
possible to assign the same value to different symbols, as inlines 2 and 3 ($0 and$zero map to0).

1 ac asm map reg {
2 ”$ ” [0 . . 3 1] = [0 . . 3 1] ;
3 ” $ze ro ” = 0 ;
4 ” $ a t ” = 1 ;
5 ” $k t ” [0 . . 1] = [2 6 . . 2 7] ;
6 ” $gp ” = 28 ;
7 ” $sp ” = 29 ;
8 ” $ fp ” = 30 ;
9 ” $ ra ” = 31 ;

10 }

Figure 2.1: MIPS-I register names and encoding values

2.3 Assembly language syntax and instruction encoding

Every ArchC instruction (declared withac instr) provides two properties to define its assembly
syntax and binary encoding:set asm andset decoder. The former specifies both assembly lan-
guage syntax and operand encoding, while the latter specifies the opcode. For further information
aboutset decoder, please refer to the ArchC language reference manual []. We concentrate here in
describing theset asm construct.

Figure 2.2 shows the general form ofset asm. Here,insn is an ArchC instruction whose assem-
bly syntax and operand encoding are being defined. The construct is split into asyntax stringand an
optionaloperand list. The syntax string ("mno %op1, %op2") is made up of literal characters (mno,
,) and operand identifiers (%op1, %op2). The set of characters up to the first white space constitutes
the instruction mnemonic (mno). Operand identifiers are specified with the special character% and act
as placeholders for binary values assigned at assembling and/or linking time. The place in the instruc-
tion where these values are encoded is specified in the operand list. For each operand identifier there
must be a corresponding operand field. In the given example, the value hold byop1 will be placed in
instruction fieldfield1, while the value hold byop2 will be placed in instruction fieldfield2.

2.3.1 Assembly syntax

The ArchC language specifies three types of operand identifiers: (1)imm, used for immediate integer-
like operands; (2)addr, used for symbolic operands; and (3)exp, used for expressions (a combination
of immediate and symbolic operands). Additional operand types can be declared viaac asm map, as
seen in section 2.2. Consider, for instance, the declarations showed in Figure 2.3. In this example we
are using the identifierreg as defined in Figure 2.1. Line 1 shows the syntax for instructionlw with
3 operands: areg, animm and anotherreg. They are bound to the instruction fieldsrt, imm and
rs, respectively. Line 2 shows an instruction whose operands are all registers, whereas line 3 has an
operand of typeexp.

10

2.3. Assembly language syntax and instruction encoding

insn.
set_asm
(“mno %op1, %op2“, field1, field2
);

syntax string
 operand list
ArchC instruction

operand

identifiers

operand

fields
mnemonic

Figure 2.2: Generation Flow

1 lw . set asm (” lw %reg , %imm(% reg) ” , r t , imm , r s) ;
2 add .set asm (” add %reg , %reg , %reg ” , rd , rs , r t) ;
3 add i .set asm (” add i %reg , %reg , %exp ” , r t , rs , imm) ;

Figure 2.3: Describing the MIPS-I assembly language syntax

Theset asm construct specifies how the generated assembler will parse an assembly source code
file and emit the binary code. If the definitions showed in Figure 2.3 are used, the generated assembler
will correctly recognize the instruction syntax showed in Figure 2.4. Note that the syntax of the in-
structions match their definitions presented in Figure 2.3.For instance, the last operand of instruction
addi (line 3) is an expression comprised of a pre-defined symbol (start) and an integer (10).

1 lw $3 , 10($11)
2 add $sp , $gp , $0
3 add i $2 , $30 , s t a r t + 10

Figure 2.4: Valid instruction syntaxes

Symbol disambiguation

While defining the operand list inset asm constructs, it is possible to bind a field to a fixed value
(constant). This is presented in the code below.

1 add .set asm (” add %reg %reg ” , op1 , op2 , op3 =” r01 ”) ;

Note that fieldop3 is not bound to any specificadd operand, but to a constant. The constant can be
any number representing the value to be codified in this field,but can also be an user defined symbol.
This is the case in the presented code, asop3 is assigned to the value of symbolr01.

Suppose the symbolr01 exists in two different maps. Now, which value ofr01 will be chosen to
be codified into fieldop3? To avoid these situations, it is recommended to use themap to construct:

11

2.3. Assembly language syntax and instruction encoding

1 add .set asm (” add %reg %reg ” , op1 , op2 , op3= reg . mapto (” r01 ”)) ;

Using this code,op3 can only be assigned to the value of the symbolr01 as described in the map
reg.

2.3.2 Instruction encoding

Consider now the instruction encoding. This process is performed primarily by the assembler and
optionally by the linker (if relocation is present). To understand the encoding behavior, first consider
one of the instruction formats of the MIPS-I showed in Figure2.5 (commonly known as I-type). The
first 6 bits (op) comprise the instruction opcode field. The remaining 3 fields are the operand fields,
namedrs, rt, andimm, respectively. This format is used to specify the operand encoding for the
instructionslw andaddi in Figure 2.3.

imm
rt
rs
op

0
15
16
20
21
25
26
31

16 bits
5 bits
5 bits
6 bits

Figure 2.5: MIPS-I instruction format (I-type)

To understand how the assembler emits binary code, considerthe instruction description in line
1 of Figure 2.3 and an instance of this instruction as showed in line 1 of Figure 2.4. The assembler
first recognizes thelw instruction and attempts to encode its operands. The first operand found is the
register$3 which has encoding value3. The assembler converts it to a 5-bit unsigned value (00011)
and place it into thert field (bits 6 to 10). In the same way, the second operand (10) and the third
operand ($11) are placed into fieldsimm andrs, according to the encoding description in line 1 of
Figure 2.3. The final binary code emitted by the assembler is showed in Figure 2.6. Part (a) shows the
ArchC description, part (b) shows an instruction instance which matches the ArchC description, and
part (c) shows the corresponding binary code emitted by the assembler.

2.3.3 Modifiers

The encoding scheme presented in section 2.3.2 is the default encoding behavior. It handles the com-
mon case, but it may not suffice if a transformation is to be applied to an operand value before encoding
takes place. Such a case happens with pc-relative operands,where the encoding value is the result of
the subtraction of the instruction address (probably addedto an offset) from the symbol value. To deal
with non-conventional cases, ArchC introduces the notion of modifiers. A modifier is a function that
transforms a given operand value. If a modifier is specified, the assembler and/or linker first executes
the modifier code using the original operand value as input. The modifier output is then used as the
encoding value.

12

2.3. Assembly language syntax and instruction encoding

lw.
set_asm
("lw %reg, %imm(%reg)", rt, imm, rs);
(a)

(b)

(c)

lw $3, 10($11)

0000 0000 0000 1010
00011
01011
100011

0
15
16
20
21
25
26
31

imm
rt
rs
op

Figure 2.6: Operand encoding: (a) ArchC description, (b) instruction instance, (c) emitted binary code

In ArchC, a modifier can be attached to any operand identifier. All you have to do is to specify a
modifier name and an optional addend after the operand identifier between parentheses. For instance,
the following description:

1 ba .set asm (” ba %exp (p c r e l) ” , d isp22 , an = 0) ;

specifies the SPARC instructionba (branch always) with an operand of typeexp. A modifier named
pcrel is assigned to this operand, meaning that the operand value must be transformed by thepcrel
modifier. The modifier code is specified outside the ArchC model, in a file namedmodifiers living
in the same directory as the ArchC source files. Two versions need to be specified: one for encoding
(used by the assembler and linker) and another for decoding (used by the disassembler and debugger).
The code is described in the C language.

Figure 2.7 shows the description of thepcrel modifier. The keywordsac modifier encode
andac modifier decode are used to specify the encoding and decoding modifiers, respectively.
The name of the modifier must follow the keywords inside parentheses (lines 1 and 6). At least 4
special variables are defined within the modifier context, accessed through thereloc pointer:input
contains the operand value;address contains the instruction address at assembling or linking time;
addend contains an optional value defined as part of the modifier (notused in the SPARC example);
andoutput contains the modifier’s result. In line 3 of Figure 2.7 you cansee the C code for the
encoding modifierpcrel. The encoding value (reloc->output) is computed by subtracting the
current instruction address (reloc->address) from the symbol value (reloc->input). Since
the value is stored in words (4 bytes), an additional shift tothe right by 2 must be performed (line 3).
The decoding modifier is similarly defined in line 8.

To illustrate the use of addends, consider the pc-relative instructions of the i8051 architecture. It is
somewhat similar to the SPARC instructions but they also add an offset in the calculation expression.
Some instructions requires adding 2, others adding 3 or 4 (depending on the instruction size). Figure 2.8
shows how such instructions are described in ArchC. Note in line 1 that thepcrelmodifier is followed
by the number 2 and in line 2 by number 3. These addends can be accessed later in the modifier code
by usingreloc->addend as illustrate in line 3 of Figure 2.9. The variable will automatically be
assigned to 2 or 3 according to the instruction being encoded.

13

2.3. Assembly language syntax and instruction encoding

1 ac modifier encode (p c r e l)
2 {
3 r e l o c−>o u t p u t = (r e l o c−> i n p u t − r e l o c−>a d d r e s s)>> 2 ;
4 }
5

6 ac modifier decode (p c r e l)
7 {
8 r e l o c−>o u t p u t = (r e l o c−> i n p u t << 2) + r e l o c−>a d d r e s s ;
9 }

Figure 2.7: Modifier code (SPARC)

1 j c . set asm (” j c %addr (p c r e l , 2) ” , by te2) ;
2 j b . set asm (” j b %imm,% addr (p c r e l , 3) ” , byte2 , by te3) ;

Figure 2.8: Modifier addend (i8051)

Modifiers can represent complex encoding schemes. You can also have direct access to the in-
struction formats and fields (declared withac format) inside a modifier. This will come in handy if
multiple fields must have their values set, since a singleoutput variable will not suffice. As an ex-
ample, consider the immediate data processing operands of the ARM architecture. One single operand
may have multiples encoding values and must be encoded into two different instruction fields. The
declaration of such an instruction will be as follows:

1 and3 .set asm (” and %reg , %reg , #%imm(aimm) ” , rd , rn , r o t a t e +imm8) ;

Note that the third operand (imm) is bound to the pre-defined fieldsrotate andimm8 (the symbol
+ is used here for field concatenation). The modifieraimm is attached to the operand identifier and its
code is presented in Figure 2.10. Note that variables and common C structures such as loops (line 8)
can be used inside the modifier. Since the encoding affects 2 fields, a singleoutput variable is not
sufficient. The code hence accesses the instruction formatsand fields directly (lines 10 and 11).

1 ac modifier encode (p c r e l)
2 {
3 r e l o c−>o u t p u t = (r e l o c−> i n p u t − (r e l o c−>a d d r e s s + r e l o c−>addend)) ;
4 }

Figure 2.9: Using the addend (i8051)

14

2.3. Assembly language syntax and instruction encoding

1 ac modifier encode (aimm)
2 {
3 uns igned i n t a ;
4 uns igned i n t i ;
5

6 # d e f i n e r o t a t e l e f t (v , n) (v << n | v >> (32 − n))
7

8 f o r (i = 0 ; i < 32 ; i += 2)
9 i f ((a = r o t a t e l e f t (r e l o c−>i npu t , i)) <= 0 x f f) {

10 r e l o c−>Type DPI3 . r o t a t e = i >> 1 ;
11 r e l o c−>Type DPI3 . imm8 = a ;
12 r e t u r n ;
13 }
14

15 r e l o c−>e r r o r = 1 ;
16 }

Figure 2.10: Complex modifier code (ARM)

15

2.3. Assembly language syntax and instruction encoding

2.3.4 Lists of symbols

The natural way of describing instructions syntax in an ArchC model is using one operand identifier per
instruction operand. This operand identifier is linked to a particular translation method (from assembly
language source code to binary representation in the instruction field), and if the operand identifier is
specified by the user through user defined maps, uses the symbol-value list provided by the map. Using
this paradigm, it is not easy to define a parameter that represents a list (this usually occurs as variable-
sized list of registers). Now there is a specific mechanism todescribe lists as operands. We first present
it in the following example:

1 ldm . set asm (” ldm%cond %reg , {%reg . . . (l i s t m o d i f i e r)} ” , cond , reg1 , l i s t r e g) ;

This is a simplified syntax for ARM’s multiple data transfer instructions. They may be load or store
instructions, and are useful for saving or loading many registers at once using the stack, as in functions
prologues and epilogues. As operands, these instructions take a list of registers subject to transfer (to or
from memory). The list is of arbitrary size, so the problem fits the solution provided by our description
of lists of symbols.

The second operand of theldm instruction in our example uses the lists of symbols feature. Like
modifiers, it uses a function’s name enclosed in parenthesis, but additionally has ellipsis (. . .) before
the first parenthesis, indicating there may be more than one operand of the typereg. These elements
of typereg are separated by commas. There may be also hyphen in order to represent range. The
following instruction matches the syntax described by our example:

1 ldm r1 , { r0 , r3 , r5−r9}

Now, the assembler can parse such syntaxes. But how these lists elements will be codified into the
designated field (in our example, the list is bound to the fieldlistreg)? This is the purpose of the
modifier associated with the list (listmodifier in the example). This modifier must be capable
of walking through the list of elements and progressively codify the field. To enable the user to write
such code, the user may access the list using the variablereloc->list results, and to extract
information of the list, these functions may be used (all of them uses thereloc->list results
as parameter, by value or by reference, depending on the operation):

list results has data (list_op_results list) uses its parameter by value. It returns
1 if there are still elements to be checked in this list, 0 otherwise.

list results next (list_op_results *list) uses its parameter by reference (you must
use the operator & to obtain the reference). It returns the value of the current element as unsigned
int, and advances to the next.

list results get separator (list_op_results list) uses its parameter by value. It
returns the character (char) used to separate this element from the next (remember it may be
comma or hyphen).

16

2.3. Assembly language syntax and instruction encoding

list results store (list_op_results *list, unsigned value) uses its parame-
ter by reference. It should be used to perform the reverse operation of reading, to create a list
based on a field value. This is used inac modifier decode constructs. It creates an element
into the list. This function is an exception, as it receives one additional parameter (unsigned int)
to specify the value of the element. Does not return any value.

It is interesting to study the code presented in Figure 2.11.It presents the complete list modifier
for the ARM model, which reads a list of registers, outputtingto a 16-bit field. Each bit represents the
presence of a register in the list (r0 in bit 0,r1 in bit 1, etc. . .).

17

2.3. Assembly language syntax and instruction encoding

1 /∗ M u l t i p l e d a t a t r a n s f e r r e g i s t e r l i s t e lemen t− c o d i f i e s
2 ∗ a r e g i s t e r number i n t o a b i t i n t h e r e g i s t e r l i s t .
3 ∗ Uses t h e l i s t o p e r a t o r t o o b t a i n l i s t o f r e g i s t e r s p a r s e d .
4 ∗ /
5 ac modifier encode (l i s t m o d i f i e r)
6 {
7 i n t i n i t r a n g e = −1;
8 uns igned i = 0 ;
9

10 wh i le (l i s t r e s u l t s h a s d a t a (r e l o c−> l i s t r e s u l t s))
11 {
12 cha r s e p a r a t o r = l i s tr e s u l t s g e t s e p a r a t o r (r e l o c−> l i s t r e s u l t s) ;
13 uns igned i n t r e s u l t = l i s t r e s u l t s n e x t (&(r e l o c−> l i s t r e s u l t s)) ;
14 i f (i n i t r a n g e != −1)
15 {
16 f o r (i = i n i t r a n g e ; i <= r e s u l t ; i ++)
17 r e l o c−>o u t p u t = r e l o c−>o u t p u t | (1 << i) ;
18 }
19 e l s e
20 r e l o c−>o u t p u t = r e l o c−>o u t p u t | (1 << r e s u l t) ;
21 i n i t r a n g e = −1;
22 i f (s e p a r a t o r == ’− ’)
23 i n i t r a n g e = r e s u l t ;
24 }
25 }
26

27 ac modifier decode (l i s t m o d i f i e r)
28 {
29 uns igned i = 0 ;
30 uns igned v a l = r e l o c−> i n p u t ;
31

32 f o r (i = 0 ; i < 16 ; i ++)
33 {
34 uns igned aux = v a l>> i ;
35 i f (aux & 1) {
36 l i s t r e s u l t s s t o r e (&(r e l o c−> l i s t r e s u l t s) , i) ;
37 }
38 }
39 }

Figure 2.11: Modifier code for handling lists of symbols (ARM)

18

2.3. Assembly language syntax and instruction encoding

2.3.5 Syntax overload

Theset asm construct also allows one to assign multiples syntaxes to the same ArchC instruction. It
is useful if an instruction has different syntaxes for its operands. Figure 2.12 shows an example taken
from the SPARC model. Lines 1 to 4 shows four different syntaxes assigned to the ArchC instruction
ldi (SPARC load immediate). It is also possible, as showed in line4, to explicitly define operand
values. In that case, thers1 field was given the default value of%g0, and one of the operands between
the brackets was suppressed (the register one).

When two or more syntax definitions are ambiguous (a given instruction matches two or more
definitions), the assembler uses the definition specified earlier in the source code. Therefore, the order
in which the definitions are specified in the source file is important.

1 l d i . set asm (” l d [% reg + \%l o (%expL10)] , %reg ” , rs1 , simm13 , rd) ;
2 l d i . set asm (” l d [% reg + %imm] , %reg ” , rs1 , simm13 , rd) ;
3 l d i . set asm (” l d [%imm + %reg] , %reg ” , simm13 , rs1 , rd) ;
4 l d i . set asm (” l d [%imm] , %reg ” , simm13 , rd , r s 1=”%g0 ”) ;
5

6 add i .set asm (” add %reg , \%l o (%expL10) , %reg ” , rs1 , simm13 , rd) ;
7 add i .set asm (” add %reg , %imm , %reg ” , rs1 , simm13 , rd) ;

Figure 2.12: Syntax overloading (SPARC)

Simple pseudo instructions can also be defined through theset asm construct. Figure 2.13 gives
an example of this use for some instructions of the SPARC-V8 architecture. Line 1 of Figure 2.13
shows the syntax of the instructionor, while lines 2 and 3 defines the pseudo instructionsclr and
mov based on it. Lines 5, 6 and 7 show other examples of simple pseudo instruction declarations. They
are declared by explicitly setting some of the instruction field to a default value. For example, themov
pseudo instruction of line 3 is anor instruction with the first register (rs1 field) set to the value 0.

1 o r r e g .set asm (” o r %reg , %reg , %reg ” , rs1 , rs2 , rd) ;
2 o r r e g .set asm (” c l r %reg ” , r s 1=”%g0 ” , r s 2=”%g0 ” , rd) ;
3 o r r e g .set asm (” mov %reg , %reg ” , r s 1=”%g0 ” , rs2 , rd) ;
4

5 j m p l r e g .set asm (” jmpl %reg + %reg , %reg ” , rs1 , rs2 , rd) ;
6 j m p l r e g .set asm (” jmp %reg + %reg ” , rs1 , rs2 , rd=”%g0 ”) ;
7 j m p l r e g .set asm (” c a l l %reg + %reg ” , rs1 , rs2 , rd=”%o7 ”) ;

Figure 2.13: Simple pseudo instruction definitions (SPARC)

Mnemonic suffixes

Section 2.3 on page 10 explains the mnemonic string as all characters in the instruction syntax up to the
first white space. Albeit true, some assembly languages presents instructions with the same mnemonic
but many variations, typically adding a suffix. In fact, all normal ARM instructions (not Thumb or some

19

2.4. Synthetic Instructions

other special cases) have at least 16 different possible suffixes, one for each condition code. ARM uses
this mechanism which bounds the instruction execution conditionally to the environment status. Thus,
consider theadd instruction. ARM assembly language also recognizesaddeq which is valid only
when the last successful comparison instruction returned equal, oraddgt, addle, and so on.

This condition code, in ARM, is codified into a 4-bit fieldcond, and it is not necessary to write
one instruction syntax for each one of the 16 different suffixes (through syntax overload). The user
may define a map (Section 2.2 on page 9) whose symbols names arethe different condition codes,
in isolation (eq, ne, etc. . .) and values corresponding to its codification intocond field. When
writing the instruction assembly syntax, it is possible to define an operand identifier even before any
white spaces, composing the mnemonic. Figure 2.14 illustrates this concept through code. The code
will provide enough language parsing information to generate an assembler capable of recognizing
instructions like in Figure 2.15.

Figure 2.14 also shows a different form of defining operand identifiers, in brackets. Although
operand identifiers commonly may be perfectly described without brackets, its use is important when
it is necessary to isolate the operand identifier from other parsing strings, like the remainings atadd’s
second syntax. This is done for illustrative purposes, as thiss could be described as a second mnemonic
suffix, using a map with two symbols (string"s" and empty string""). As the alert reader will already
have observed, this also illustrates an use of nullable symbols (empty string as symbol name in the map),
an interesting tool when applied to mnemonic suffixes.

1 ac asm map reg {
2 ” r ” [0 . . 1 5] = [0 . . 1 5] ;
3 }
4 ac asm map cond {
5 ” eq ” = 0 ;
6 ” ne ” = 1 ;
7 ” cs ” , ” hs ” = 2 ;
8 ” cc ” , ” l o ” = 3 ;
9 /∗ c o n t i n u e s . . . ∗ /

10 ” ” = 15 ;
11 }
12

13 ISA CTOR (example) {
14 add .set asm (” add%cond %reg %reg %reg ” , cond , op1 , op2 , op3 , s = 0) ;
15 add .set asm (” add%[cond] s %reg %reg %reg ” , cond , op1 , op2 , op3 , s = 1) ;
16 add .set decoder () ;
17 }

Figure 2.14: Example of mnemonic suffixes specification, just like any other regular instruction operand

2.4 Synthetic Instructions

Synthetic instructions (aka pseudo instructions) are created based on another previously defined native
instructions. ArchC provides thepseudo instr construct for the definition of pseudo instructions.

20

2.4. Synthetic Instructions

1 addeq r1 , r0 , r5
2 addcc r15 , r4 , r5
3 add r0 , r1 , r3
4 a d d l o s r0 , r0 , r2

Figure 2.15: Example of instructions recognized by generated assembler of Figure 2.14

The first step in describing a synthetic instruction is to declare its syntax. Note that only the syntax
string is necessary. The operand field is not specified since the pseudo instruction does not havereal
fields. Following the syntax string, a list of native instructions (those defined withset asm) is spec-
ified. Parameters from the pseudo instruction syntax can be used by the native ones by employing the
% character and a number indicating which parameter from the pseudo must be replaced (similar to the
macro construct used by GNU assemblers).

Figure 2.16 shows two definitions of synthetic instructionsused in the MIPS model. The first one,
lines 1 to 4, creates the pseudo instructionble which uses 3 operands. It is defined based on two native
instructions (lines 2 and 3):slt andbeq. The character% indicates a substitution of parameters. For
example, the instructionslt in line 2 uses the literal$at as the first operand, the second (%1) is the
string associated with the second%reg in the pseudo instruction definition, and the third operand (%0)
is associated with the first pseudo instruction operand.

1 pseudo instr (” b l e %reg , %reg , %exp ”) {
2 ” s l t $at , %1, %0”;
3 ” beq $at , $zero , %2”;
4 }
5

6 pseudo instr (” mul %reg , %reg , %imm”) {
7 ” add iu $at , $zero , %2”;
8 ” mul t %1, $ a t ” ;
9 ” mf lo %0”;

10 }

Figure 2.16: Defining synthetic instructions (MIPS)

The second synthetic instruction definition, lines 6 to 10, creates the instructionmulwith 3 operands.
When an instruction such asmul $2, $3, 10 is found by the generated assembler, it will be ex-
panded into the following three:

1 add iu $at , $zero , 10
2 mul t $3 , $ a t
3 mflo $2

21

2.5. Comment Characters

2.5 Comment Characters

There are two sets of characters representing special characters in the assembly source code. They are
comment characters delimiters (anything after this character to the end of the line is ignored) and line
comment characters (when put at the beginning of the line, the whole line is ignored).

If not specified, the generated assembler will use# and! as comment characters and# as line
comment character. As an example, consider the ARM assembler. Not only its comment character
is different, but using# will corrupt the assembler, since any immediate operand must be prefixed
with #. In fact, # may be used as comment character in ARM assembly source codes,but only at
the beginning of a line (ignoring the whole line). To specifyyour own comment character sets, use
assembler.set comment andassembler.set line comment constructs. They are used
underISA CTOR scope, likeset asm andset decoder. To complete our example, see how this is
done in the ARM model:

1 ISA CTOR (x s c a l e) {
2 /∗ De f i n i ng assemb le r−s p e c i f i c c o n s t r a i n t s ∗ /
3 a s s e m b l e r .set comment (”@”) ;
4 a s s e m b l e r .set line comment (”@# ”) ;
5

6 /∗ I n s t r u c t i o n s s y n t a x d e s c r i p t i o n s goes nex t . . .∗ /
7 . . .
8 }

Figure 2.17: Defining assembler comment character sets in the ARM model

22

Chapter 3

Binary Utility Generation

This chapter describes the binary utilities generation process and how to use the generated tools. The
binary utility generator originally runs on a GNU/Linux compatible system (successful installation
on Cygwin system has also been reported). Before starting, make sure to have at least the following
packages and their corresponding versions installed on your system:

• Bison 2.1

• Flex 2.5.4

• GCC 3.4.6

• GNU Binutils 2.15 source code

• GNU Gdb 6.4 source code

3.1 Generation Process

There are three main steps required to generate the binary utilities, assuming a processor model is
already finished:

1. Build the ArchC package;

2. Generate the binary tools source code through the binary utility generator tool;

3. Build the binary utility tools.

3.1.1 Building the ArchC package

First get the latest version of the ArchC package on our website (www.archc.org) and the source
code for the binutils and gdb (if you intend to generate debuggers). Unpack the packages on a directory
of your choice. To ease the explanation, let’s say the following shell variables (bash) have being
defined:

BINUTILSDIR – directory where the binutils source code has been unpacked;

23

3.1. Generation Process

GDBDIR – directory where the gdb source code has been unpacked (gdb is optional);

DESTDIR – directory where the binary tools should be generated;

ACDIR – directory where the ArchC source code has been unpacked.

To define a shell variable onbash, use theexport command. For instance:

$ export BINUTILSDIR=/home/myuser/binutils

will define theBINUTILSDIR variable to be/home/myuser/binutils.
The ArchC package uses the well-known GNU autotools framework. To compile it, you need to

issue the following commands:

$ $ACDIR/configure --with-binutils=$BINUTILSDIR --with-gdb=$GDBDIR
$ make
$ make install

This will install the ArchC package on/usr/local by default. To change the target directory
you can use the--prefix command of theconfigure utility. Inside the target directory there will
be a subdirectory namedbin where the generator tools will be placed. Make sure to include it on your
path so that the binary files can be used in the next steps.

3.1.2 Generating the binary utility source code

This process will use the binary utility generator to createthe binary utilities source code and insert
them into the binutils source tree where they can be compiled. The script which automates this process
is namedacbingen.sh and is installed by the ArchC package as described in section3.1.1.

Figure 3.1 shows the command line arguments for theacbingen.sh script, showed if option
-h is used. The only required argument is the ArchC main source code file name. You can give the
architecture a specific name with the-a option. Note that the architecture name must be unique. If
the name is already used inside the binutils package the script will show a warning message and ask
for permission before proceeding with the installation. The -i option can be used to force the script
to build the binary tools. If it is not used, you need to do it manually as explained in section 3.1.3.
With the-c option, the script only generates the source files, but does not attempt to copy them to the
binutils tree and compile. This option is mainly used for debug purposes.

3.1.3 Building the binary utilities

If the option-i was not used in theacbingen.sh script as explained in section 3.1.2, you still need
to build the binary tools. This process is similar to building any other binary tools from the binutils
package, meaning that will use the autotools framework. Thenext commands perform the required
action:

$ $BINUTILSDIR/configure --prefix=$DESTDIR --target=<arch-name>
$ make
$ make install

24

3.2. The generated tools

Usage : acb ingen . sh [o p t i o n s]<model− f i l e >

C r e a t e b i n a r y u t i l i t i e s s o u r c e f i l e s and o p t i o n a l l y b u i l d them .

Opt ions :
−a<name> s e t s t h e a r c h i t e c t u r e name (i f omi t ted , i t d e f a u l t s t o

<model− f i l e > w i t h o u t t h e e x t e n s i o n)
−i<d i r> b u i l d and i n s t a l l t h e b i n a r y u t i l i t i e s i n d i r e c t o r y<d i r>

NOTE: <d i r> −MUST− be an a b s o l u t e pa th
−c on ly c r e a t e t h e f i l e s , do no t copy t o b i n u t i l s t r e e
−h p r i n t t h i s he lp
−v p r i n t v e r s i o n number

Repor t bugs and p a t c h e s t o ArchC Team .

Figure 3.1:acbingen.sh command line options

Note thatarch-name is the name you gave to the architecture. This can either be the ArchC
model name or a specific name passed through the-a option to the generator script. The same process
must be repeated for the gdb if its generation is required.

3.2 The generated tools

The tools generated by ArchC are standard binutils and gdb tools. This means that the machine in-
dependent command line options supported by conventional tools are still supported by the generated
tools. The generated assembler also extends the command line options with the following:

-i, --insensitive-syms
the assembler considers symbolic names as being case insensitive;

-s, --sensitive-mno
the assembler considers mnemonic strings as being case sensitive.

These options changes the default behavior of conventionalbinutils assembler. There is a third
command line option called--archc which displays the ArchC version used to generate the tool and
the architecture name.

25

3.2. The generated tools

26

Chapter 4

Dynamic Linking Support

The ArchC generated binary tools include adynamic linkingenabled linker, that is, capable of pro-
ducing shared libraries. Because this is still considered anadvanced feature for embedded platforms,
the processor model do not need to specify extra informationrequired for dynamic linking. If these
information are not specified, ArchC will not complain and will still generate a linker, although this
linker will fail to produce shared libraries if the necessary information is absent.

Note that dynamic linking support is often not needed. If youare building an ArchC processor
model, you may safely skip this information. Shared libraries are necessary, however, if you use the
linker to compile the dynamic version of glibc targeting your processor.

4.1 Specifying information for dynamic linking

In order to produce a correct dynamic linking capable linker, you need to add two files to your processor
model. The first one,dynamic info.ac, contains regular C array declarations and definitions used
by the linker when performing dynamic linking related tasks.

/* The name of the dynamic interpreter. This is put in the .interp
section. */

#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"

#define PLT_HEADER_SIZE 16

/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 16

/* The first entry in a procedure linkage table looks like
this. It is set up so that any shared library function that is
called before the relocation has been set up calls the dynamic
linker first. */

ac_plt0_entry (PLT_HEADER_SIZE / 4) =
{

0xe52de004,/* str lr, [sp, #-4]! */
0xe59fe010,/* ldr lr, [pc, #16] */

27

4.1. Specifying information for dynamic linking

0xe08fe00e,/* add lr, pc, lr */
0xe5bef008,/* ldr pc, [lr, #8]! */

};

/* Subsequent entries in a procedure linkage table look like
this. */

ac_plt_entry (PLT_ENTRY_SIZE / 4) =
{

0xe28fc600,/* add ip, pc, #NN */
0xe28cca00,/* add ip, ip, #NN */
0xe5bcf000,/* ldr pc, [ip, #NN]! */
0x00000000,/* unused */

};

#define ac_model_can_patch_plt

The example above was extracted from the ARM model. In this file, you need to specify the
dynamic loader (typically a path to the systemld.so), although the ArchC simulator ELF loader
itself ignores this information, as described later. This string is used only if the produced software is
intended to be deployed on a real platform, running the Linuxoperating system.

Also, you need to specify the contents of the PLT table, whichare completely target dependent.
Note that we specify the size in bytes, and the contents as an array of words, which codifies instructions.
You may not represent the table directly in assembly syntax (as annotated in the comment area) because
at this stage, the assembler is not yet available. You may usea pre-existent assembler to codify the
necessary instructions and then useobjdump, available in thebinutils package, to dump the object
file contents and discover the hexadecimal code for the instructions.

It is important that you study how the PLT is assembled in yourplatform. This information is
described in the processor ABI.

The second file is thedynamic patch.ac, and contains C function definitions, including C
code, that instructs the linker specifically how the PLT should be patched in your architecture. This
information also is target dependent, and each ABI defines a specific way of patching a PLT entry in
order to encode the position of the related GOT entry. Below isthe example of the ARM ABI.

/* ARM Model - Dynamic linking helper functions */

/* Input: got_displacement, plt_address */
ac_patch_plt0_entry()
{

/* Calculate the displacement between the PLT slot and
&GOT[0]. */

got_displacement -= 16;

/* The displacement value goes in the otherwise-unused last word
of the second entry. */

28

4.2. The dynamic linker and loader

/* 32 bits, location to write, value to write */
ac_patch_bits (32, plt_address + 28, got_displacement);

}

/* Input: got_displacement, plt_offset, plt_address */
ac_patch_plt_entry()
{

unsigned int entry_copy[PLT_ENTRY_SIZE / 4];

/* got_displacement has the displacement between this PLT entry
and its related GOT entry */

got_displacement -= 8; /* We’ll use it PC relative, and ARM
pc-relative is PC + 8 */

/* Get a copy of the plt entry instructions already stored there */
entry_copy[0] = (unsigned int) ac_get_bits(32, plt_address

+ plt_offset + 0);
entry_copy[1] = (unsigned int) ac_get_bits(32, plt_address

+ plt_offset + 4);
entry_copy[2] = (unsigned int) ac_get_bits(32, plt_address

+ plt_offset + 8);

/* Relocate these plt entry instructions using ARM rotation
mechanism to store large immediates */

entry_copy[0] |= ((got_displacement & 0x0ff00000) >> 20);
entry_copy[1] |= ((got_displacement & 0x000ff000) >> 12);
entry_copy[2] |= (got_displacement & 0x00000fff);

/* Write back the result */

ac_patch_bits(32, plt_address + plt_offset + 0, entry_copy[0]);
ac_patch_bits(32, plt_address + plt_offset + 4, entry_copy[1]);
ac_patch_bits(32, plt_address + plt_offset + 8, entry_copy[2]);

}

Please note that you must calculate the target GOT address using the input parametersgot displacement,
plt offset andplt address. In order to retrieve the codified instructions from the PLT table,
use the C functionac get bits() as in the example. When writing back the patched instruction with
the calculated address, use the C functionac patch bits().

4.2 The dynamic linker and loader

When shared libraries and code linked against them are used, aregular simulator is not sufficient to
load this special code and begin platform simulation. To address this problem, the ArchC interpreted

29

4.3. Relocation code conversion tool

This file contains a one-to-one mapping between ARM ABI relocation
codes and ArchC’s generated linker relocation codes. Its intended
use is to perform a conversion using the acrelconvert tool.

R_ARM_RELATIVE
23 = 1
R_ARM_COPY
20 = 2
R_ARM_JUMPSLOT
22 = 3
R_ARM_GLOBDAT
21 = 4
R_ARM_ABS32
2 = 7
R_ARM_REL32
3 = 10

End of file

Figure 4.1: acrtld.relmap file used in the ARM model.

simulator loader was enhanced to load ELF executables, find its shared libraries dependencies and
resolve all symbol references (i.e., when the executable calls a library function and the address must
be resolved depending on the shared library load position).Because of all these activities involved in
the loading of a dynamically linked executable, the component responsible for them is calleddynamic
linker and loader, since it is not just a regular loader.

If the shared libraries were produced by a third party linker, the relocation codes used may not
be compliant with the relocation codes used by the ArchC linker. In order to support loading these
libraries, you can write a model addend calledac rtld.relmap (the relocation map for ArchC run-
time linker and loader). This is a simple text file with directrelations converting target ABI relocation
codes to ArchC’s version. Figure 4.1 shows the ARM example. On the left there are ARM ABI relo-
cation codes, while on the right there are ArchC linker relocation codes, and the equal sign express the
equivalence between them.

4.3 Relocation code conversion tool

When necessary, you may also useacrelconvert, a simple tool that reads a map (in the form
presented in Figure 4.1, but no restricted to a specific file name) and converts relocation codes from
object files.

30

