A RC_H

The ArchC Architecture Description Language

v2.0

Reference Manual

The ArchC Team

http://www.archc.org

August 2007

Copyright (© 2007 The ArchC Team
Av. Albert Einstein, 1251 13084-971
PO Box 6176 - Campinas/SP - Brazil

Acknowledgments

This manual was developed by Sandro Rigo and Thiago Massariolli Sigrist. Please, if you
have any question about this document email it to archc@Isc.ic.unicamp.br.

ArchC is an open-source architecture description language that has been designed at
the Computer Systems Laboratory (LSC) of the Institute of Computing of the University
of Campinas (IC-UNICAMP). The ArchC Team:

e Guido Aratjo

e Rodolfo Jardim de Azevedo
e Paulo César Centoducatte
e Sandro Rigo

e Marcus Bartholomeu

e Bruno de Carvalho Albertini
e Marcio Rogério Juliato

e Alexandro Baldassin

e Thiago Massarioli Sigrist

e Marilia Felippe Chiozo

e Danilo Marcolin Caravana

e Luis Felipe Strano Moraes

ArchC also relies on the great work performed by our collaborators:

e Informatics Center of Federal University of Pernambuco (Cin-UFPE)

— Edna Natividade Barros
— Pablo Viana da Silva

— Cristiano Coelho de Aratjo

Tiago Sampaio Lins

— Silvio Veloso

Diogo Az

e Systems Design Automation Lab of Federal University of Santa Catarina (LAPS-
UFSC)
— Luiz Claidio Villar dos Santos
— Olinto J. V. Furtado
— Daniel Casaroto
— José Otavio Carlomagno Filho
— Leonardo Taglietti
— Max Schultz
— Alexandre Mendonga
— Felipe Carvalho
— Gabriel Renaldo Laureano
— Luiz Penkal

Contents

[1.1 Background and Related Workl
[L.1.1T SystemCl. o

|2 Describing Architecture Resources|
2.1 Structure of Architectural Resources Declarationl
2 Dedl - TodedEl R ATk X6 Tl

[2.3 Resources Declaration Examples|

|3 Describing the Instruction Set Architecture)
[3.1 Behavior Description in ArchC| 0 0oL,

13.1.1 Providing Format and Generic Instruction Behaviors|

[3.1.2 Providing Instruction Behavior|
[3.1.3 Utility Methods and Important Variables|

4__ArchC Tools
4.1 The ArchC Preprocessor|
4.2 The ArchC Simulator Generator],
[4.2.1 Command-line Options|

11
11
12
12
12
13
14

17
18
19
23

25
27
27
30
33

CONTENTS

4.4 The ArchC Compiled Simulator Generator]

4.5 'The ArchC Binary Utilities Generator|
4.6 Operating System Call Emulation]
4.7 GDB Support for Simulators|
4.7.1 Register Support|
4.7.2 Memory Support|

[> ArchC TLM Connectivity]|

|A Porting a model from ArchC 1.6 to 2.0|

List of Figures

|2.2 AC_ARCH Resource Declaration for a Cycle-accurate MIPS5 Model.|

3.1 MIPS ISA Description|
3.2 Intel 8051 ISA Description|.o

[3.3 Generic Instruction Behavior Description in a Functional Model|[.

[3.4 Generic Instruction Behavior Description in a Cycle-accurate Model|
[3.5 MIPS Type R Format Behavior Description|
3.6 MIPS Instruction Behavior Description in a Functional Model|.

13.7 Sparc-V8 Instruction Behavior Description in a Functional Model|.

[3.8 MIPS add Instruction Behavior Description in a Cycle-accurate Model| . . .

3.9 Delayed Assignment Example: MIPS beq Instruction Behavior Description|

4.2 Acsim Command-line Options|.

4.4 An ArchC Hexadecimal Application File]
4.5 Application Binary Intertace Functions for the MIPS Architecture]
4.6 Memory manipulation routines for GDB support|

|4.7 Register manipulation routines for GDB support|

24

List of Tables

[4.1 Supported System Calls|

Chapter 1

Introduction

This chapter presents some background information on Architecture Description Languages
(ADLs) and related work, followed by a proper introduction of the ArchC language and more
useful information on setting up ArchC and its toolkits on one of the supported platforms.
Finally, an overview of ArchC 2.0 follows, describing it most important new features and
changes.

1.1 Background and Related Work

Architecture description languages (ADL) have been introduced to help designers face the
development challenges that have arisen in the past few years, due to the rapidly increasing
complexity of modern architectures. These difficulties, that end up delaying the whole
design process and preventing designers of meeting their stringent time to market, have
forced hardware architects and software engineers to reconsider how designs are specified,
partitioned and verified. As a consequence, designers are starting to move from hardware
description languages (VHDL, Verilog) and also beyond the RTL level of abstraction toward
the so called system level design, where automatic generation of a software toolkit (composed
by assemblers, linkers, compilers and simulators) is mandatory. Such tools are commonly
based on an architecture description language.

Besides their application and well known suitability for designing and experimenting
with new architectures in the industry, architecture description languages can be very use-
ful for academic purposes, like teaching/researching computer architecture at undergraduate
and graduate level. On one hand, at the undergraduate level, models of well known archi-
tectures are appropriate to learn how a pipelined architecture works, including interlocking,
hazard detection and register forwarding. If allowed by the ADL, this model can be plugged
to different memory hierarchies in order to illustrate how the performance of a given appli-
cation can vary, depending on the choice made for cache size, policy, associativity, etc. On
the other hand, at the graduate level, researchers can use ADLs to model modern archi-
tectures and experiment with their ISA and structure with all the flexibility demanded in
research projects.

11

12 Chapter 1. Introduction

1.1.1 SystemC

SystemC [10,2,|12] is among a group of design languages and extensions being proposed to
raise the abstraction level for hardware design and verification. SystemC is entirely based
on C/C++ and the complete source code for the simulation kernel is freeware. SystemC
is composed by a set of C++ class libraries, that extends the language to allow hardware
and system-level modeling. Designers are allowed to model in low-levels of abstraction, like
RTL, using SystemC. However, SystemC’s main goal is not to replace HDLs (like VHDL
and Verilog), but to allow system-level design.

Though SystemC supports a wide range of computation models and abstraction levels,
it is not possible to extract from a generic SystemC processor description all necessary
information, in order to automatically generate tools to experiment and evaluate a new
Instruction Set Architecture (ISA).

1.1.2 GNU Binutils

The GNU Binutils [14] are a collection of binary tools such as an assembler, a linker and
object files inspectors. The package is used by GCC [15] (The GNU Compiler Collection)
to assemble and link the files generated by the compilers. It allows one to build binary
tools for a new architecture by rewriting the machine-dependent files, while still reusing the
machine-independent ones.

The current version of the ArchC toolkit contains a tool, acbingen, capable of generating
the machine-dependent files in order to retarget the GNU Binutils package to a machine
described in the ArchC language.

1.2 The ArchC Architecture Description Language

In this document, we introduce a SystemC-based architecture description language called
ArchC. ArchC is a simple language, capable of describing a processor architecture as well as
a memory hierarchy, that follows SystemC syntax style. Its main goal is to provide enough
information, at the right level of abstraction, in order to allow users to explore and verify
a new architecture by automatically generating software tools like assemblers, simulators,
linkers and debuggers.

An architecture description in ArchC is divided in two parts: the Instruction Set
Architecture (AC_ISA) description and the Architecture Resources (AC_ARCH) descrip-
tion. Into the AC_ISA description, the designer provides to ArchC details about instruction
formats, size and names combined with all information necessary to decoding and the be-
havior of each instruction. The AC_ARCH description informs ArchC about storage devices,
pipeline structure etc. Based on these two descriptions, ArchC can generate interpreted
simulators (using SystemC), compiled simulators and assemblers (using the Binutils frame-
work). The following chapters cover both of these descriptions in details.

Throughout this text, we are going to use examples extracted from our ArchC descrip-
tions of three architectures: MIPS (implementing the MIPS-I instruction set), SPARC-VS,

1.2. The ArchC Architecture Description Language 13

and Intel 8051. MIPS [3l[11] and SPARC [13| are both well-known RISC architectures with
five-stage pipelines. The Intel 8051 (i8051) microcontroller is one of the most used pro-
cessors for embedded control. This is a CISC architecture with multi-cycle instructions of
variable length. All these models are available at the ArchC website [5].

1.2.1 Download and Installation

The ArchC package can be found at the ArchC website [5], by following these links:
Language—Download. The package comprises a tree of C/C++ source files. You will
need a C/C++ compiler to build ArchC binaries. We suggest the use of the GNU Compiler
Collection (GCC) [4], version 3.3 or higher, running on a Linux system. ArchC has also
been reported to work in Windows, under the Cygwin environment [6].

ArchC may generate simulators using two different techniques: interpreted or compiled.
The interpreted simulators use SystemC as the simulation engine. So, if you plan to use
those kind of simulation it is mandatory to have a working SystemC installation in your
machine. On the other hand, the compiled simulators do not use SystemC and thus it
is not nescessary. All packages and information you need to install SystemC can be found
at [10]. Please, make sure you are installing SystemC version 2.1v1 or higher. The assembler
generator tool requires the GNU Binutils 2.15 [7] source distribution, or newer. Moreover,
ArchC also requires the following softwares:

e Bison (version 1.5 or higher)
e Flex (version 2.5.4 or higher)

e GCC (version 3.3 or higher)

Notice that newer versions are OK, but we do not recommend older versions. You can
install ArchC in any directory you want to. Root privileges are not necessary, just like it
happens to SystemC.

ArchC relies on a configuration file to get all system information needed to generate
the simulators. This file is located in the configuration directory under the installation
prefix (usually $PREFIX/etc). It is named archc.conf and is automatically created by the
make install command during installation. These are the variables contained into the
configuration file:

SYSTEMC_PATH :
It is the path for your SystemC installation that must be used together with ArchC.
This variable is also present in the makefiles generated for the examples distributed
with SystemC during its installation.

CC :
The name and/or path to the C++ compiler that must be used by ArchC tools. Its
normally set to g++.

14 Chapter 1. Introduction

OPT :
It is the optimization flags to be passed to gcc during model’s compilation.

DEBUG :
It is the debugging flags to be passed to gcc during model’s compilation. ArchC
normally uses the -g flag.

OTHER :
It is the remaining flags that the user wants to be passed to gcc during model’s
compilation. The default is to use -Wall and -Wno-deprecated.

TARGET_ARCH :

It must be set to the same value used by this variable in your SystemC installation.

ArchC tools also allow user-specific configuration: any of the above variables may be
overridden in the file $HOME/ .archc/archc.conf. This feature is useful for system-wide
installations of ArchC.

The ArchC source package is developed using the very popular GNU Autotools con-
figuration management system. Therefore, installation can be performed simply by invoking
the configure script, passing parameters like installation prefixes and CFLAGS, then running
make to compile all the source code and make install to install it.

The configure script for the ArchC source package uses three specific options, which
must be set in case the associated features are desired. These are the options, in detail:

--with-systemc=PATH :
Setting this option enables SystemC support, which is required for the interpreted sim-
ulator generator tool (acsim). Its value PATH must be set to the SystemC installation
prefix.

-—-with-t1m=PATH :
Setting this option enables SystemC TLM 1.0 support for interpreted simulators (gen-
erated with the acsim tool). The PATH value must be set to the SystemC TLM 1.0
library installation prefix.

--with-binutils=PATH :
Setting this option enables support for binary utilities generation, via the acbingen
tool. The PATH value must point to a directory containing the GNU Binutils source
files. More information about acbingen can be found on its separate manual.

For more details on ArchC tools and simulators, please see Chapter

1.3 Changes from ArchC 1.6

This version of ArchC, 2.0, introduces several significant changes since version 1.6. The
main difference of ArchC 2.0 is in the greater usability of functional interpreted simula-

1.8. Changes from ArchC 1.6 15

tors, allowing these simulators to be used as CPU/microprocessor modules in system-level
models.

Therefore, the functional interpreted simulators generated from an ArchC functional
architecture description have the following main advantages:

Self-containment. ArchC 2.0 simulators rely only on instance variables or members, in-
stead of depending on global variables or static members like in ArchC 1.6. Thus,
multiple instantiations of simulator modules are possible, enabling multiprocessor sys-
tem simulation.

TLM-based external communication. Simulator modules may have external commu-
nication ports, allowing them to read or write data to external devices or, likewise, to
be interrupted by such devices. The protocol for such communication is based on the
SystemC TLM 1.0 standard, therefore enabling integration of processor modules to a
system-level model.

Moreover, other changes to functional interpreted simulators include:

Extra speed. Functional interpreted simulators generated with the acsim tool of ArchC
2.0 are, on average, 30 times faster than the same simulators generated with ArchC
1.6 tools.

Cleaner compilation. In ArchC 1.6, library classes like those for the instruction decoder
(ac_decoder), storage elements (ac_storage) and so forth had their source (. cpp) files
copied to the model directory for in-place compilation, effectively being recompiled
at every simulator compilation. ArchC 2.0 solves the problem by compiling library
source files at the ArchC package compilation time, grouping the resulting object
files in a library which is effectively installed (instead of installing .cpp files). This
effectively reduces simulator compilation time and restricts only model-specific files
to the model directory, leading to a cleaner practice.

Other noteworthy changes include:

Separation of functional and timed simulators. ArchC 2 has two separate tools for
generating interpreted simulators: acsim, which generates functional simulators, and
actsim, responsible for timed (cycle-accurate) simulators. As of ArchC 2.0, the
actsim tool is not part of the core ArchC distribution, but is available separately
as a beta version.

Inclusion of acstone. The ArchC project’s own benchmark and test suite for processor
models, acstone, being a tool which use is highly recommended, is now part of the
ArchC core distribution.

The development of ArchC 2.0 also has taken into consideration the issue of forwards
compatibility, making sure models written for versions 1.6 and previous require as little

16 Chapter 1. Introduction

modification as possible to work under 2.0. A guide for migrating models to ArchC 2.0 is
provided on chapter.
However, ArchC 2.0 has the following known limitations:

accsin still at version 1.6. The ArchC compiled simulator generation tool, accsim, has
not yet been updated for ArchC 2.0, being available only on the ArchC 1.6 package.
The accsim tool is being revamped for ArchC 2 and will appear in the core distribution
on upcoming versions.

Chapter 2

Describing Architecture Resources

ArchC needs some structural information about the resources available in the architecture
in order to automatically generate software tools. The designer must provide such an
information in the AC_ARCH description.

The detail level used for this description will depend on the level of abstraction desired
for the model. For example, one may want to simulate the instruction set of the MIPS
architecture, but without concerning with pipelining. In fact, this is exactly how we advice
designers to start a new architecture model in ArchC, even if a cycle-accurate model is
necessary. A model without timing, or cycle-accuracy, or pipelining information is called
functional. Such a model simulates the behavior of an instruction set, executing all opera-
tions of a given instruction during a single SystemC delta cycle. By building a functional
model, the designer gathers enough knowledge about the ISA to further describe a more
detailed (refined) model, thus avoiding to propagate bugs that could have been fixed at
early design stages. An architecture description at the functional level demands very sim-
ple instruction behavior descriptions, as we are going to see in Chapter [3] but also demands
few structural information, like showed in Figure[2.1] This example illustrates the minimum
amount of architecture resource information needed to build a MIPS functional model. In
order to get a more detailed model, like a cycle-accurate model of a MIPS family processor,
the designer must provide more structural information. Figure shows our description
of the architecture resources for the R3000 processor, which is an implementation of the
MIPS-I architecture.

17

18 Chapter 2. Describing Architecture Resources

2.1 Structure of Architectural Resources Declaration

An ArchC architectural resources declaration (AC_ARCH) has a very simple structure, which
is delimited by the AC_ARCH statement, described below:

AC_ARCH

SYNOPSIS :
AC_ARCH (project_-name) {

// (...) resource declarations
b

DESCRIPTION
An architecture resources description always starts with this keyword, like in
the first line of Figure The designer is supposed to inform a name for the
project enclosed in parentheses (project-name), like it is usually done for modules
in SystemC.

project_name : Name for the project. Can be any name, but is commonly
a descriptor for the architecture (ISA) being described, possibly including
version numbers if necessary. Examples: mipsl, sparcv8. Timed (cycle-
accurate) models are usually named after specific processor models instead
of the ISA, since the timing information usually ties the ArchC description
to a specific implementation. Example: r3000. In case it’s appropriate for
both a functional and a cycle-accurate to share the same name, it’s common
practice to include a ‘_ca’ suffix in the cycle-accurate model project name.
A far more important convention refers to description file naming. The ar-
chitecture resource description file for a project called project should be
called project.ac. Likewise, the ISA declaration file (described on Chap-
ter |3) for this project should be called project_isa.ac. Despite not being
enforced by ArchC tools like acsim, this convention must be followed for two
extremely important reasons:

e Every other file comprising an ArchC model will have the project name
as a prefix, no matter whether generated by a tool or not. Therefore,
the two files with ac extension will be the only ones not following this
convention, which is confusing.

o Certain tools or frameworks (like ARP or Platform Designer?) that use
ArchC as clients might require this naming convention to be followed, as
it facilitates automation.

resource declarations : Declarations of all architecture resources of the pro-
cessor being modelled. These include: internal storage (memory), individual
registers, register banks, and so forth. A comprehensive list of every possible
resource declaration in the ArchC language is presented in the next section.

2.2. Declarations of Individual Resources and Architectural Characteristics 19

2.2 Declarations of Individual Resources and Architectural
Characteristics

In this section are presented all the ArchC keywords that may appear into an AC_ARCH
descriptions, presented in the same style as the main AC_ARCH declaration in the previous
section.

ac_wordsize

SYNOPSIS :
ac_wordsize wordsize;

DESCRIPTION :
Defines the architecture word size.
In ArchC, this is is the default size for:

e words fetched from instruction memory;

e words read from (or written into) data memories or ports;

e registers.
There is also a way to override the default size for each of those. To fetch
differently-sized words from instruction memory, use ac_fetchsize. Data mem-
ories and ports allow for reads and writes in bytes, half words, full words and
double words. Finally, both individual registers and register banks can be de-
clared with arbitrary register widths.

wordsize : Word size in bits. Can be either 8, 16, 32 or 64. ArchC currently

doesn’t allow for other word sizes, and it doesn’t allow for operations in
double words when word size is 64 bits.

ac_fetchsize

SYNOPSIS :
ac_fetchsize fetchsize;

DESCRIPTION :
Defines the size of words fetched from instruction memory.
Please note this is not the same as the size of an instruction word: it is the size
of a word fetched from instruction memory. Instruction words may be composed
of one or more of those fetched words.

fetchsize : Word size in bits. Can be either 8, 16, 32 or 64. ArchC currently
doesn’t allow for other word sizes, and it doesn’t allow for operations in
double words when word size is 64 bits.

20

Chapter 2. Describing Architecture Resources

ac_format

ac_mem

SYNOPSIS :

ac_format format_name = "(%ﬁeld,name:ﬁeld,size(:s)?) +";

DESCRIPTION :

Defines a format and its fields.

Formats defined inside an AC_ARCH description are meant to be used by formatted
and pipeline registers. Refer to the ac_reg keywords for more details on how to
assign a previously defined format to a register.

format_name : Name of the format being defined.

FORMAT STRING :

A format is defined with a double-quoted format string. In the synopsis, the
format string is concisely presented in a syntax similar to regular expressions.

A more detailed explanation goes as following: the string assigned to a format
represents its subdivision into fields, therefore, it is a sequence of one or more
fields (thus the + sign in the expression). Fields are separated from each other
by whitespace, and are declared with a leading percent (%) character, followed
by the field name, a colon (:) and the size of that field in bits. An optional suffix
“:s” means the field contains a signed value.

SYNOPSIS :

ac_mem mem-_name: mem,sz’ze;

DESCRIPTION :

Declares a storage object of type ac_mem.

This type of storage object, ac_mem, is meant to be used as an internal memory.
Internal memory objects are used in basically three situations:

e To model actual internal memories, such as those present in microcontroller

chips like 18051, PIC, Atmel AVR etc;

e To model memories local to a processor model. This is useful when you
don’t want to communicate via that particular memory over a bus (or other
TLM-modelled communication structure), for the sake of simplicity and per-
formance;

e To model main memory in a processor model meant to be used only as a
standalone ISA simulator. Even though this is a special case of the previ-
ous situation, it’s important to mention it since all official ArchC processor
models fall into this situation, since they were designed for use with ArchC
1.x, which allowed only standalone simulation.

mem_name : Name of the memory element being declared.

2.2. Declarations of Individual Resources and Architectural Characteristics 21

mem_size : Size of the memory element being declared, in bytes. Byte-multiple
units may be used: kilobytes (20 or 1024 bytes, suffix k or K), megabytes
(229 or 1048576 bytes, suffix m or M) or gigabytes (230 or 1073741824 bytes,
suffix g or G). Since the size is expressed as a number followed by an optional
unit, a regular expression for mem_size is: [0—9] + [kaMgG]?

ac_tlm port

SYNOPSIS :
ac_tlm_port port_name: port_size;

DESCRIPTION :
Declares an outbound TLM communication port.
Outbound TLM communication ports are often used to provide a means to con-
nect the processor simulator to TLM models of devices such as buses, external
memories and other TLM IPs.
port_name : Name of the TLM port being declared.

port_size : Size of the address space of the port being declared, in bytes. The
size specification is exactly the same as in ac_mem.

ac_tlm intr port

SYNOPSIS :
ac_tlm_intr_port port_name;

DESCRIPTION :
Declares a TLM interrupt port.
Interrupt ports are used in ArchC to model an ordinary interrupt port, into
which any write transaction causes the simulated processor to be interrupted.

port_name : Name of the TLM port being declared.
ac_regbank

SYNOPSIS :
ac,regbank(< reg,size>) ? regbank_name : num_regs;

DESCRIPTION
Declares a register bank.
regbank_name : Name of the register bank being declared.
num_regs : Number of registers that compose this register bank.

reg_size : Size of the registers that compose this register bank, specified in bits.
Can be 8, 16, 32 or 64. If not specified, the default word size (defined with
ac_wordsize) is used. The same caveat mentioned in ac_wordsize applies:
64-bit registers don’t allow for double-word operations.

ac_reg

Chapter 2. Describing Architecture Resources

22
SYNOPSIS :
ac,reg(<reg,size,o7:format>)? reg_name;
DESCRIPTION :
Declares a register.
reg_name : Name of the register being declared.
reg_size_or_format : Either the identifier of a format for the register (which
has to be previously defined with ac_format) or, for a non-formatted register,
the size of the register, specified in bits (like in ac_regbank, can be 8, 16, 32
or 64). If not specified, a simple, non-formatted register is created, and the
default word size (defined with ac_wordsize) is used for it.
ac_pipe
SYNOPSIS :
ac_pipe pipe_name = { stagel_name (,stageN,name)* }
DESCRIPTION
Declares a pipeline.
pipe_name : Name of the pipeline being declared.
stagel_name..stageN_name : A comma-separated sequence of pipeline stage
names for the pipeline being declared. Being a sequence, it is, naturally,
ordered, therefore the order provided by the user will be used in executing
instructions.
EXAMPLE :
See Figure for an example.
ARCH _CTOR

SYNOPSIS :
ARCH_CTOR (project_-name) {

// (...) model initialization
};
DESCRIPTION :
The AC_ARCH constructor declaration. It is the mandatory last declaration inside
an AC_ARCH block.

project_name : Project/architecture name. Must match the one declared in

the AC_ARCH statement.
model initialization : Statements initializing important parts of the model
description. Currently only two are supported, both of which mandatory:

ac_isa and set_endian.

ac_isa

2.8. Resources Declaration Examples 23

SYNOPSIS :
ac_isa("isa_file") ;

DESCRIPTION :
Informs the name of the ISA declaration file to the ArchC tools.

isa_file : Name of the file containing the AC_ISA declaration, which is the full
ISA declaration of the model.

set_endian

SYNOPSIS :
set_endian("endianness") ;

DESCRIPTION :
Sets endianness for the architecture.

endianness : Endianness for the architecture modelled. Can be either 1ittle
or big.

2.3 Resources Declaration Examples

In this section, examples will be presented for all of the most important keywords and
declarations/definitions that appear inside the AC_ARCH declaration body. To give users a
better picture of this first, extremely important, step in writing a new ArchC model, full
examples for both a functional and a cycle-accurate model (both based on MIPS) will be
provided.

AC_ARCH(mips){
ac_wordsize 32;

ac_mem MEM:256k;
ac_regbank RB:32;
ac_reg hi, lo;

ARCH_CTOR (mips) {

ac_isa("mips_isa.ac");
set_endian("big");
};
};

Figure 2.1: AC_ARCH Resource Declaration for a Functional MIPS Model.

24 Chapter 2. Describing Architecture Resources

AC_ARCH(mips){
ac_wordsize 32;

ac_mem MEM:256K;
ac_regbank RB:32;
ac_reg hi, lo;

ac_pipe pipe = {IF, ID, EX, MEM, WB};

ac_format Fmt_IF_ID = "%npc:32";
ac_format Fmt_ID_EX =
"%npc:32 Ydatal:32 Ydata2:32 %imm:32:s rs:5 jrt:5 Yrd:5
%regurite:1 Ymemread:1 Ymemwrite:1";
ac_format Fmt_EX_MEM =
"%halures:32 Ywdata:32 Yrdest:5 Yregwrite:1 /memread:1 Ymemwrite:1";
ac_format Fmt_MEM_WB = "Jwbdata:32 Jrdest:5 Jreguwrite:1";

ac_reg<Fmt_IF_ID> TIF_ID;
ac_reg<Fmt_ID_EX> ID_EX;
ac_reg<Fmt_EX_MEM> EX_MEM;
ac_reg<Fmt_MEM_WB> MEM_WB;

ARCH_CTOR (mips) {

ac_isa("mips_isa.ac");
set_endian("big");

};
};

Figure 2.2: AC_ARCH Resource Declaration for a Cycle-accurate MIPS Model.

Summarizing, the AC_ARCH description in Figure [2.1] gives all resource information we
need to develop a functional model of the MIPS-I architecture: a memory for data and in-
structions, the demanded 32-entry register bank, registers hi and lo (used in multiplication
and division operations) and the correct endianness.

However, more structural information is necessary in order to get a cycle-accurate model.
Figure illustrates how we declared the five-stage pipeline and the four pipeline registers,
IF_ID, ID_EX, EX_MEM and MEM_WB, associating a format to each one of them. This allows
the designer to assign to (and read from) each register field individually when describing
behaviors, as we are going to see in Chapter

Chapter 3

Describing the Instruction Set
Architecture

The AC_ISA description provides ArchC with all information it needs to automatically syn-
thesize a decoder, along with the behavior of each instruction in the architecture. This
description is divided in two files, one containing the instruction and format declarations
and another containing the instruction behaviors.

Figure shows an example of an AC_ISA description extracted from our MIPS model.
MIPS is a RISC architecture, so all instructions have the same size and takes the same
number of cycles to be executed. However, in architectures like CISC, DSPs and VLIW
machines, this may not be true. Figure is an excerpt of our Intel 8051 microcontroller
description, which is one of the most used processors for embedded control. This is a CISC
architecture with multi-cycle instructions of variable length. Based on these examples, let’s
analyze each ArchC keyword that may appear in an AC_ISA description:

AC_ISA
An ISA description always starts with this keyword. The designer is supposed to
inform a name for the project enclosed in parentheses, as it is done for AC_ARCH
descriptions (Chapter [2)).

ac_format

Declares a format and its fields. The syntax is similar to the one used in Chapter
when we presented the AC_ARCH description. The difference is that here formats will
be associated to instructions, not to registers. There is an aditional construct for
instructions formats that allows fields to overlap. It can be used to facilitate the
description of complex instruction-sets. A group of fields choices starts with a curly
brace (“[”) and additional groups are given after a vertical bar (“|”). Finally, after
all fields groups have been declared, use a closing curly brace (“]”). As an example,
we could define the following instruction format for the SPARC-V8 architecture:

ac_format Type_F3 = "Jop:2 %rd:5 %op3:6 %rsl:5 %is:1 [%asi:8 %rs2:5 | %simm13:13:s]";

25

26 Chapter 3. Describing the Instruction Set Architecture

ArchC decodes all fields for instructions defined with this format and they can be
acessed independently , but note that not all of them may be valid. The designer
would have to chose which group is valid by testing the value of some other field (the
“is” in this case). For the SPARC-V8, is=0 means only “asi” and “rs” fields are
valid, is=1 means only “simm” is valid.

ac_instr <fmt> :
Declares an instruction. Every instruction must have a previously declared format
associated to it. Formats are assigned to instructions using a syntax similar to C++
templates. In Figure format Type R is associated to instruction add.

ISA_CTOR
Initializes the AC_ISA constructor declaration.

ac_asm map : (assembler specific - check the acasm manual for details)
Specifies a mapping between assembly symbols and values. Example of Figure (3.1
defines the set of register names and values for the MIPS-I architecture.

set_asm : (assembler specific - check the acasm manual for details)

Associates an assembly syntax string and operand encoding to an instruction. The
syntax of this construct is similar to the printf familiy used in the C language.
Literal characters must be matched as it appears in the assembly source program,
while conversion specifiers (%) force the assembler to recognize ranges of values or
symbols for operands. For each operand, there must be an instruction field associated,
specifying the operand encoding. Example of Figure [3.1] with the add instruction,
uses three operands of type reg.

set_decoder

Initializes the instruction decoding sequence, which is a key element to the automatic
generation of an instruction decoder. The sequence is composed of pairs <field_-name
= wvalue>. In Figure [3.1] examine the example for add instruction. The call to
add.set_decoder method states that a bit stream coming from memory actually is
an add instruction if, and only if, fields op and func contain the values 0x00 and
0x20, respectively. Exactly the same steps are taken to the declaration of the load
instruction. Notice that load has a different format, and that is why just one field
has to be checked to decode it.

set_cycles

Provide the latency of a multi-cycle instruction (used only for cycle-accurate models
of multi-cycle architectures). The i8051 is a multi-cycle processor, which means that
instructions will take different number of cycles to be completed. Take a look at the
AC_ISA constructor declaration in Figure [3.2] where this value is initialized for the
two-cycle mov_r_iram instruction. Observe that the add_ar instruction does not have
a call to the set_cycles method, so ArchC assumes that it is an one-cycle instruction,
by default.

3.1. Behavior Description in ArchC 27

pseudo_instr : (assembler specific - check the acasm manual for details)
Creates a pseudo instruction based on previously created instructions. Example of
Figure declares the pseudo instruction 1i based on the previously declared in-
structions lui and ori (they are not show in this example).

3.1 Behavior Description in ArchC

The behavior description file is where the designer provides a description of which operations
are executed by each instruction in the architecture. By issuing both description files
introduced so far, AC_.ISA and AC_ARCH, to the ArchC simulator generator (acsim), the
designer gets a template of the behavior description file. This template is a skeleton of a
.cpp (C++/SystemC source) file where the designer is going to fill out the behavior method
of each instruction in the architecture. The template for the behavior description file is
named as project_name _isa.cpp.tmpl, by default.

One strong feature in ArchC is the capability of modeling behaviors in several levels
of abstraction. For example, at the very early stages of the design, cycle-accuracy may
not be important. Normally, the first model of a new architecture does not have timing
information. So, for this preliminary model, the behavior of a given instruction is just a
sequence of C++ statements representing the operations that this instruction would execute
in the hardware. As the design process moves forward, the model can be refined to express
operations in a cycle-accurate fashion.

In order to model complex instruction sets, it is very important to be able to share
operations among several instructions. Often, there are many instructions in a particular
architecture that execute exactly the same operations as part of their behavior. For instance,
in the i8051 microcontroller, an instruction that operates on registers has to check two bits
of the PSW register to discover which register bank it is going to use. As a consequence,
a piece of code to check that would have to be inserted in the behavior method of every
instruction in this class. In the MIPS processor, some tests have to be performed by several
instructions in order to determine data hazards and to do register forwarding.

The ArchC behavior hierarchy aims to solve this problem. Its goal is to factor out
operations that are executed by instructions of the same format, or even by all instructions.
So, the designer has three different kinds of behavior to describe in ArchC: the generic
instruction behavior, the format behavior, and the specific instruction behavior. When
executing an instruction, the simulator follows exactly this order, i.e., the behavior that is
common to all instructions executes first, followed by the correspondent format behavior,
and finally the behavior of the specific instruction is executed. We are going to analyze in
details each one of them in the following sections.

3.1.1 Providing Format and Generic Instruction Behaviors

Consider, as an example, our MIPS family models. A typical operation that is performed by
every single instruction is the program counter (PC) increment. In ArchC, the PC value is

28

Chapter 3. Describing the Instruction Set Architecture

AC_ISA(mips){

ac_format Type_R "%op:6 %rs:5 Y%rt:5 %rd:5 0x00:5 %func:6";
ac_format Type_I "%op:6 %rs:5 Y%rt:5 %imm:16:s";
ac_format Type_J = "Yop:6 %addr:26";

ac_instr<Type_R> add, addu, subu, multu, divu, sltu;
ac_instr<Type_I> lw, sw, beq, bne, addi, andi, ori, lui, slti;
ac_instr<Type_J> j, jal;

ac_asm_map reg {
"$"[0..31] = [0..31];

"$zero" = 0;

"$at" = 1’

"$kt"[0..1] = [26..27];
n$gp|| = 28;

"$Sp" = 29;

"$fP" = 30;

"$ra" = 31;

}
ISA_CTOR(mips){

lw.set_asm("1lw %reg, %imm(%reg)", rt, imm, rs);
lw.set_decoder (op=0x23) ;

sw.set_asm("sw Y%reg, %imm(%reg)", rt, imm, rs);
sw.set_decoder (op=0x2B) ;

add.set_asm("add Yreg, %reg, %reg", rd, rs, rt);
add.set_decoder (op=0x00, func=0x20);

addu.set_asm("addu %reg, %reg, %reg", rd, rs, rt);
addu.set_decoder (op=0x00, func=0x21);

pseudo_instr("1li Y%reg, %imm") {
"lui %0, \%hi(%1)";
"ori %0, %0, %1";

Figure 3.1: MIPS ISA Description

3.1. Behavior Description in ArchC 29

AC_ISA(i8051){

ac_format Type_3bytes = "Jop:8 ¥%byte2:8 byte3:8";
ac_format Type_2bytesReg = "Jop3:5 %reg2:3 %addr:8";
ac_format Type_OP_R = "Jopl:5 Yreg:3";

ac_instr<Type_2bytesReg> mov_r_iram;
ac_instr<Type_0OP_R> add_ar;

ISA_CTOR(i8051){
mov_r_iram.set_asm("mov %reg2, %addr");
mov_r_iram.set_decoder (op3=0x15) ;

mov_r_iram.set_cycles(2);

add_ar.set_asm("add A, Y%reg");
add_ar.set_decoder (op1=0x05) ;

Figure 3.2: Intel 8051 ISA Description

controlled by the variable ac_pc. Both functional and cycle-accurate models can make use
of the generic instruction behavior method to increment this value. Figure [3.3] shows how
simple it is to perform such an operation in a functional model: just increment the desired
variable. Figure shows a more complex example, that is used for cycle-accurate models.
The increment must be performed at the right pipeline stage, and its value must be copied
to a field into a pipeline register, in order to be propagated through the pipeline. ArchC
provides formatted registers, but the designer is responsible for storing values to fields and
copying values from one register to another. Moreover, this cycle-accurate example also
shows that the operations performed during the write-back stage may be codified in this
generic behavior method, avoiding useless code repetitions in specific instruction behaviors.

Often, all instructions with the same format also perform many operations in common.
ArchC provides the designer with the possibility of overloading the ac_behavior method so
that it can take an instruction format as argument. Take a look again at the MIPS processor,
all instructions that were declared with the format Type_R associated to it execute a couple
of tests, showed in Figure before running its own behavior, so that they can do register
forwarding for both instruction operands, rs and rt. The code in Figure happens to be
as simple and clear as it is presented in the Hennessy and Patterson’s classical architecture

30 Chapter 3. Describing the Instruction Set Architecture

void ac_behavior(instruction)
{

ac_pc += 4;
};

Figure 3.3: Generic Instruction Behavior Description in a Functional Model

book [3]. The same strategy can be used for coding data hazard detection.

3.1.2 Providing Instruction Behavior

Specific instruction behaviors follow exactly the same syntax and rules as explained above.
Now, the designer will provide operations that are unique to each instruction.

Let’s first see some examples of instruction behavior description in functional models.
Figure[3.6|shows the behavior of the add, 1oad word and store half word instructions for
the MIPS architecture. MIPS-I is a very simple instruction set, so many of its instructions
can be as easily described as these examples. It is important to notice that the storage
objects declared by the designer in the AC_ARCH description are accessed through read and
write methods in behavior descriptions. Memories and caches are always byte addressed
and these methods always return a word. But ArchC also provides methods for manipulat-
ing bytes and half-words from a memory address, which are: read byte/write_byte and
read word/write _word. The behavior of the sh (store half word) instruction in Figure
illustrates the use of one of these methods.

Figure [3.7] shows an example extracted from our SPARC-V8 functional description.
SPARC is also a RISC architecture, but has a more complex ISA when compared with MIPS-
I. We have to mention one important feature illustrated by this example: the possibility of
calling user defined functions from ArchC behavior methods. The behavior file is a regular
C++ (.cpp) source file. Into it, the designer is able to insert any extra code he/she likes
to. Sometimes, it is better to create auxiliary functions to perform some specific tasks.
For example, the SPARC architecture makes use of register windows. In order to simulate
this feature, the ArchC SPARC model designer decided to declare a register bank object
containing 256 registers. SPARC machines do not have so many registers. The 256 registers
are divided into 16 register windows. Take a close look at the example. Notice that the
designer does not access the register bank directly through its read or write methods, like it
is done in the MIPS model. Instead, new functions were created to accomplish this task, so
its is possible to handle register window specific details before doing the actual access. The
user defined functions readReg and writeReg are responsible for doing this job. Moreover,
the SPARC architecture also demands a more complicated scheme for computing the PC
increment, so this is also coded into a separate function, called update_pc. If the reader
wants more details on the code of our SPARC-V8 model, it is available at the ArchC
website [5].

Figure shows a cycle-accurate example. For the MIPS model, we need to declare a

3.1. Behavior Description in ArchC

31

void ac_behavior(instruction)
{
switch(stage) {
case IF:
ac_pc += 4;
IF_ID.npc = ac_pc;
break;
case WB:
/* Execute write back when allowed */
if (MEM_WB.regwrite == 1) {
// Register 0 is never written
if (MEM_WB.rdest != 0)
RB.write(MEM_WB.rdest.read(), MEM_WB.wbdata.read());
¥
break;
default:
break;
}
}

Figure 3.4: Generic Instruction Behavior Description in a Cycle-accurate Model

32

Chapter 3. Describing the Instruction Set Architecture

{
switch(stage) {

case _EX:

(EX_MEM.rdest ==

(MEM_WB.rdest
(MEM_WB.rdest
(EX_MEM.rdest

else

(MEM_WB.rdest
(MEM_WB.rdest
(EX_MEM.rdest

else

break;

void ac_behavior(Type_R)

/* Checking forwarding for the rs register */
if ((EX_MEM.regurite == 1) &&
(EX_MEM.rdest != 0) &%
ID_EX.rs))
operandl = EX_MEM.alures.read();
else if ((MEM_WB.regwrite == 1) &&
I=0) &&

operandl = MEM_WB.wbdata.read();
operandl = ID_EX.datal.read();

/* Checking forwarding for the rt register */
if ((EX_MEM.reguwrite == 1) &&
(EX_MEM.rdest != 0) &&
(EX_MEM.rdest == ID_EX.rt))
operand2 = EX_MEM.alures.read();
else if ((MEM_WB.regwrite == 1) &&

operand2 = MEM_WB.wbdata.read();

operand2 = ID_EX.data2.read();

ID_EX.rs) &&
ID_EX.rs))

0) &&
ID_EX.rt) &%
ID_EX.rt))

Figure 3.5: MIPS Type_R Format Behavior Description

3.1. Behavior Description in ArchC 33

//Instruction add behavior method.
void ac_behavior(add)
{
RB.write(rd, RB.read(rs) + RB.read(rt));
};

//Instruction load word behavior method.
void ac_behavior(1lw)
{

RB.write(rt, DM.read(RB.read(rs)+ imm));
};

//Instruction store half word behavior method.
void ac_behavior(sh)
{

unsigned short int half;

half = RB.read(rt) & OxFFFF;
MEM.write_half(RB.read(rs) + imm, half);

};

Figure 3.6: MIPS Instruction Behavior Description in a Functional Model

pipeline, along with its pipeline registers, in the AC_ARCH description (see Figure and
then divide the behavior of each instruction, telling ArchC what is done at each pipeline
stage. Figure [3.8] illustrates part of the add instruction behavior in a cycle-accurate fash-
ion. Notice that several operations that should be performed by an add instruction were
transfered to the format (Type R) and generic instruction behaviors, as they must also be
performed by other instructions.

3.1.3 Utility Methods and Important Variables

This section describes some methods provided by ArchC in order to help in behavior de-
scriptions. Its important to know that these methods may only be called from ac_behavior
methods, since they will not be available outside the ArchC simulator classes.

ac_stall (stage) :
Stalls a pipeline stage. Receives a stage name as argument. The instruction currently
being executed will remain in the same stage on the next simulation cycle, and a nop
will be inserted on the following stage.

ac_flush (stage) :
Flushes a pipeline stage. Receives a stage name as argument. The instruction being
executed on the stage is discarded.

delay(wvalue, cycles) :

34 Chapter 3. Describing the Instruction Set Architecture

///'Instruction addcc_reg behavior method.

void ac_behavior(addcc_reg)

{
dprintf ("addcc_reg rid,r’d,r%d\n", rsl, rs2, rd);
int dest = readReg(rsl) + readReg(rs2);

PSR_icc_n = dest >> 31;
PSR_icc_z = dest == 0;
PSR_icc_v = ((readReg(rsl) & readReg(rs2) & “dest & 0x80000000) |
("readReg(rsl) & “readReg(rs2) & dest & 0x80000000));
PSR_icc_c = ((readReg(rsl) & readReg(rs2) & 0x80000000) |
(“dest & (readReg(rsl) | readReg(rs2)) & 0x80000000));

writeReg(rd, dest);
dprintf ("Result = Ox%x\n", dest);
update_pc(0,0,0,0,0);

};

Figure 3.7: Sparc-V8 Instruction Behavior Description in a Functional Model

Delayed assignment method. The example on Figure shows how an assignment
to a storage device can be delayed for a given number of cycles. For example, it was
used to simulate the branch delay slots for the MIPS architecture, in an older version
of the mips1 ArchC model. The use of delay() is deprecated in ArchC 2.0, since it
severely slows down simulation.

get name () :
Provides the name of the current instruction.

get_size () :
Provides the size, in bits, of the current instruction.

get_cycles () :
Provides the latency, in cycles, of the current instruction. Available only for multi-
cycle instructions declared through the keyword set_cycles, in the AC_ISA descrip-
tion.

ac_annul () :
Annul the execution of the current instruction. May be called inside generic instruc-
tion and format behavior methods. It is available only for functional models. When
called from generic instruction behaviors this method annuls the execution of the for-
mat and specific behavior for the current instruction. Clearly, if it is called inside a
format behavior it is able to annul just the execution of the specific behavior.

ArchC has also a set of pre-defined variables that should be used to control some aspects
of the simulation. These variables are meant to be used inside processor behavior methods,

3.1. Behavior Description in ArchC 35

void ac_behavior(add, stage)
{
switch(stage) {
case IF:
break;

case ID:
break;

case EX:
EX_MEM.alu_result = ID_EX.rs + ID_EX.rt;

break;

case MEM:
MEM_WB.alu_result = EX_MEM.alu_result;
MEM_WB.rd = EX_MEM.rd;

break;
case WB:

RB.write(MEM_WB.rd, MEM_WB.alu_result);
default:

break;

}

};

Figure 3.8: MIPS add Instruction Behavior Description in a Cycle-accurate Model

especially ac_behavior methods.

ac_pc
The current program counter value. Must be explicitly updated by the user. See

Section for examples.

ac_cycle
The current cycle being executed for the running instruction. Must be explicitly
updated by the user. Only available when multi-cycle instructions were declared.

ac_instr_counter
The number of instructions already executed during the current simulation.

36 Chapter 3. Describing the Instruction Set Architecture

//'Instruction beq behavior method.
void ac_behavior(beq)
{
if (RB.read(rs) == RB.read(rt)){
ac_pc = delay(ac_pc + (imm<<2), 1);
}
35

Figure 3.9: Delayed Assignment Example: MIPS beq Instruction Behavior Description

Chapter 4

ArchC Tools

4.1 The ArchC Preprocessor

The ArchC Preprocessor (acpp) is the tool compiled as a library that takes an ArchC descrip-
tion, composed by an instruction set architecture description (AC_ISA) and an architecture
resource description (AC_ARCH), and extracts the information used in software tools gener-
ation. This preprocessor is not used directly by ArchC designers, but is internally called
by ArchC tools like the simulator and assembler generators. All information extracted by
acpp is stored in data structures in memory, that are available for the tool which invoked
it.

Acpp is composed by lexical and syntactical analyser (parser), which were built using
GNU Flex [9] and GNU Bison [8].

4.2 The ArchC Simulator Generator

The ArchC Simulator Generator (acsim) is composed by a simulator generator and a decoder
generator. It uses the acpp to extract the information from the model description files, in
order to create all C++ classes and/or SystemC modules necessary to build the architecture
simulator. The decoder generated by ArchC is capable of handling ISAs from simple RISC
machines till multi-word of variable length instructions, like in many DSPs. The process of
generating simulators from an ArchC description is illustrated by Figure 4.1

4.2.1 Command-line Options

The designer has some freedom to choose what features will be available in the simulator
generated by ArchC. It is true that the simulator runs faster with no additional options
turned on, but they may be very useful during the design exploration phase. Figure [4.2
shows the acsim help screen. The user can see this information by running acsim --help.
It is composed by a description of the syntax used to run acsim with/without options,
followed by a list, together with a brief description, of all command-line options available

37

38 Chapter 4. ArchC Tools

AC_ISA AC_ARCH
Description Description
ArchC
Simulator
Generator
SystemC
Model
Executable
Specification
GCC —) P

Figure 4.1: ArchC Simulator Generation Flow

in ArchC. All options have a full-name, which is easier to memorize, and an equivalent
short-name, like most options in GCC [4]. Options full-names and short-names are preceded
by -- and - respectively.

In order to generate a new simulator, acsim requires just one mandatory argument, that
is the name of the AC_ARCH description file. The options that can be passed to acsim by
command line are:

—-abi-included, -abi:
This option tells acsim that an application binary interface has been implemented to
the architecture. In this case, the model generated will be able to perform OS call
emulation.

--debug, -g:
This option turns on a debugging feature: execution traces. ArchC traces are dumps,
into a text file, of all PC values visited by the simulator.

--delay, -dy:
Enables delayed assignment to storage elements. This is necessary to model architec-
tures that make use of delay slots. The support for delayed assignment slows down
the simulation, so it is optional to not penalty models where it is not necessary.

-—-dumpdecoder, -dd:
When this option is turned on , acsim will dump to the screen the data structure

4.2. The ArchC Simulator Generator 39

built by the decoder. It is useful to debug the ArchC decoder generator, or to anyone
interested in to understand how it works.

--help, -h:
This option can be used by itself, i.e., it does not require the presence of a AC_ARCH
file name, and just display the help screen showed in Figure [£.2]

—--no-dec-cache, -ndc:
Disables the cache of decoded instructions. The simulator generated by ArchC usually
makes use of a cache of decoded instructions to speed-up simulation. But this may
not be suitable for architectures/applications which write to the program memory,
like self-modifying code.

--stats, -s:
ArchC is capable of collecting some statistics during simulation, like number of running
instructions, how many times each instruction was executed, how many accesses each
storage device has suffered, etc. This option turns this feature on and a statistics
report is output to stdout.

--verbose, -vb:
Displays update logs for storage devices during simulation. Used for simulation de-
bugging.

--version, -vrs:
This option can be used by itself, i.e., it does not require the presence of a AC_ARCH
file name, and just displays the ArchC version number to the user.

--gdb-integration, -gdb:
Enable suport for debugging programs using gdb remote target. Note that a GDB
port has to be configured for the generated simulator in order to wait for remote
conection. See Section [4.7] for details.

--no-wait, -nw:
Disables calls to SystemC wait () in the processor execution thread. Has the potential
of speeding up execution but makes multithreaded simulation impossible (ie, multi-
core/multiprocessor and system-level platform simulation) since the processor model
will own the SystemC execution context all of the time.

4.2.2 ArchC Simulators

The acsim will automatically generate a behavioral simulator written in SystemC from your
ArchC description files. ArchC generates interpreted simulators, which execute instruction
decoding, schedule and behavior dynamically. Since the decoding process is too costly in
terms of simulation performance, these interpreted simulators may use a cache for decoded

40 Chapter 4. ArchC Tools

This is the ArchC Simulator Generator version 2.0

Usage: acsim input_file [options]
Where input_file stands for your AC_ARCH description file.

Options:
--abi-included , —abi Indicate that an ABI for system call emulation was provided.
—--debug , “8 Enable simulation debug features: traces, update logs.
--delay , —dy Enable delayed assignments to storage elements.
—--dumpdecoder , —dd Dump the decoder data structure.
--help , ~h Display this help message.
--no-dec-cache , —ndc Disable cache of decoded instructions.
--stats , —S Enable statistics collection during simulation.
--verbose , —vb Display update logs for storage devices during simulation.
--version , ~Vrs Display ACSIM version.
--gdb-integration, -gdb Enable support for debbuging programs running on the simulator.
--no-wait , -nw Disable wait() at execution thread.

For more information please visit www.archc.org

Figure 4.2: Acsim Command-line Options

instructions in order to speed-up simulation. Similar techniques are applied in some well
known ISA simulators [1]. This technique can be disabled by command-line options passed
to acsim, like showed in Section

ArchC SystemC simulators may be used for design-space exploration. Depending on
command-line options that may be passed to acsim, the generated simulator can be instru-
mented with several features to help on architecture exploration, like simulation statistics
collection, trace generation, etc.

4.2.3 Building ArchC Simulators

Acsim automatically generates a Makefile for building the SystemC models generated by
ArchC. The Makefile is called Makefile.archc. The user may alter some variables in this
file, in order to customize flags passed to the compiler, or the path for the preferred SystemC
installation and compiler. Just as it is done for the SystemC models distributed as examples
inside regular SystemC source packages.

The SystemC module that contains the processor model generated by ArchC must be
instantiated in a sc_main function, another SystemC module etc. acsim creates a template
of a main.cpp file for the designer. In this file, the model is instantiated and some code
for setting debugging features is included. Notice that this code will only take effect if the
model was generated with the correspondent option turned on using acsim. If a main.cpp
file does not exist, the makefile will copy the main.cpp.tmpl file to main.cpp and will be
ready to build the model. There are users who experiment with ArchC models by connecting
them to other SystemC modules, or want to add extra modules to the model generated by
ArchC. In these cases they are free either to alter the main function to add code to set

4.2. The ArchC Simulator Generator 41

int sc_main(int ac, char *av[])

{
//Clock
sc_clock clk("clk",20,0.5,true);

//ISA simulator
sparcv8_arch SPARCV8("sparcv8");

SPARCV8(clk.signal());

#ifdef AC_DEBUG
ac_trace("sparcv8.trace");
#endif

ac_init (SPARCVS);

sc_start(-1);

#ifdef AC_STATS
SPARCV8.ac_sim_stats.time = sc_simulation_time();
SPARCV8.ac_sim_stats.print();

#endif

#ifdef AC_DEBUG
ac_close_trace();
#endif

return 0O;

}

Figure 4.3: Main function for the SPARC-V8 model

up their own extra features or instantiate the processor modules inside their own custom
modules and other SystemC code. Figure [4.3|shows a typical main function, generated by
acsim for our SPARC-V8 model. Names of the module and trace file may be altered at
designer’s will.

For building a simulator generated with acsim run: make -f Makefile.archc

This makefile may also receive one of the following three command-line arguments:

clean :
Erases all binary files for this model.

model_clean :
Erases all source files that are automatically generated by acsim.

sim_clean :
Erases both source and binary files. Source files that are hand-written by the designer,
like the .ac description files, are not erased.

distclean :

42 Chapter 4. ArchC Tools

Erases both source and binary files. Also deletes the main.cpp and Makefile.archc.
Use with care to not delete a modified main. cpp file.

If you already have generated a simulator in your current work directory, we strongly
recommend the use of a make -f Makefile.archc sim_clean command before generating a new
simulator through acsim. Specially if you are going to use different command-line options
to generate the new simulator. Otherwise, you can get some strange compilation errors due
to old binaries that were not rebuilt.

4.2.4 Loading and Running Applications

A compiler for the target architecture may or may not be available during model design. In
order to cover both situations, ArchC simulators are capable of loading applications using
two formats: hexadecimal and binary.

In order to load hexadecimal files into ArchC, the designer must respect a simple format
convention:

e The file may be divided into sections like .text, .data, .rawdata etc;

e Application code is stored in the .text section;

e If no section is declared, ArchC will assume that the file contains only code;
e The file only contains lines storing section names or data;

e Data is stored as: <addr> <datal> [<data2> ... <datan>], where addr is the
address where datal will be stored and the remaining data, in the same line, will be
stored into contiguous addresses, incremented by the target architecture’s word-size;

e Data is always in hexadecimal.

Figure shows a typical hexadecimal file in the ArchC format.
The ELF binary accepted by ArchC also has a format convention:

e ArchC start the simulation at address 0, so the program needs to begin at this address;

e The block of addresses from 0x40 (64) to OxFF (255) is reserved to the ABI emulation
feature. If this feature is active, any instructions in this block will be substituted to
internal functions for ABI/OS system call emulation. Please don’t use the reserved
addresses in your target program;

e The ArchC System Call Library should be linked with the application. This library
can be downloaded in the ArchC site following the menu links Models—Compilers;

The simulator loads applications through the command-line argument load:
mipsl.x -load=<ArchC hexa or ELF file> [argl] [arg2] ... [argn]

where argn’s represent optional arguments to be passed to the running application.
Notice that this is only possible for models with ABI (Section [4.6|) already implemented.

4.8. The ArchC Timed Simulator Generator 43

.text:

0000 3c1d0050 23bdfc00 3c1c0003 0c000020
0010 279cb348 00000000 3c1f0050 03e00008
0020 00000000 00000000 00000000 00000000
0030 00000000 00000000 00000000 00000000
0040 00000000 00000000 00000000 00000000
0050 00000000 00000000 00000000 00000000
0060 00000000 00000000 00000000 00000000
0070 00000000 00000000 00000000 00000000
0080 27bdffe0 24030003 afb00010 afbf0018
0090 afb10014 14830028 00a08021 8ca40004
00a0 0c0001ad 00000000 0c000642 00000000
00b0O 8e040008 3c080002 0c005748 25053348
00cO 3c070002 3c040002 24f14990 2485feb8
.data:

22370 6d706567 32656e63 6f646520 56312e32
22380 2c¢203936 2£30372f 31390000 28432920
22390 31393936 2c204d50 45472053 6£667477

Figure 4.4: An ArchC Hexadecimal Application File

4.3 The ArchC Timed Simulator Generator

Starting with version 2.0, ArchC has two separate tools for generating interpreted simula-
tors: acsim, covered on section Section [4.2] and actsim. The acsim tool generates only
functional simulators, whereas actsim generates only timed (ie, cycle-accurate with single
pipeline and multicycle) simulators.

Development of actsim isn’t yet finished, although a beta version of such tool is included
in version 2.0 of the core ArchC distribution. It still lacks some features, particularly TLM
conectivity.

The more important aspects of actsim, notably usage, command-line options and struc-
ture and usage of the generated simulators, follow closely those of acsim and were covered
on Section [4.2

4.4 The ArchC Compiled Simulator Generator

The ArchC Compiled Simulator Generator (accsim) is composed by a simulator generator
and a decoder generator. It uses the acpp to extract the information from the model
description files, in order to create all C++ classes necessary to build the architecture
simulator. The decoder generated by ArchC is capable of handling ISAs from simple RISC
machines till multi-word of variable length instructions, like in many DSPs.

The accsim tool, however, has not been updated for ArchC 2.0. Users interested in
accsim must use ArchC 1.6 for now. The accsim tool is, however, being revamped and will
be included in later versions of the core ArchC distribution.

44 Chapter 4. ArchC Tools

Group Function Host interaction
open
creat
close
read
write
isatty
Iseek
fstat
_exit
chmod
chown
Control | stat
getpid
kill
unlink

1/0

RSOSSN SN

time

times
gettimeofday
Memory | sbrk N4

Time

Table 4.1: Supported System Calls

4.5 The ArchC Binary Utilities Generator

Information regarding the ArchC binary utilities generator (acbingen) can be found in a
separate manual, available at [5]. Since this tool is a major addition to the ArchC language,
it is covered on its own manual with detailed information. Moreover, the binary utilities
features are not required if one does not plan to generate binary utilities.

4.6 Operating System Call Emulation

ArchC generate simulators capable of being instrumented with an OS call emulation mech-
anism, which enables ArchC models to simulate applications containing I/O operations.
This system enables calls to POSIX-compatible system routines in a simulated application,
without requiring any change to the application code. Since file I/O is performed trans-
parently, the input and output data for the application program are read/written directly
from/to the host file system, and all console operations are redirected to the host console.
Table show all system calls supported by ArchC simulators.

Due to incompatibilities between the host and target OS, not all routines need host
interaction. For example, a few programs in our benchmarks used time functions. These
functions contain structures that are incompatible between different architectures, due to
alignment problems in the structure fields (alignment for char and short types). We solved
this problem, for now, by returning a zeroed structure, so that programs run correctly,
but cannot count time. Another possible approach is to copy the structure field-by-field,

4.6. Operating System Call Emulation 45

correcting them as necessary. But this approach needs more user intervention than the
current one.

Designers of new ArchC models have to tell from which storage elements (memory,
register bank, etc) the arguments to system calls will come from. The way to do that is by
writing interface functions that provide the required information to the ArchC simulator.
Typical information that is required by most of the operating system calls are:

e How to get the first three arguments provided by a function call, and more than that,
how to distinguish the type of the arguments from integer numbers, pointers or strings
(note that in some cases an endianness conversion may be required);

e How to save the return value as an integer or pointer (may also need conversion);

e How to return from the system call. Usually, this is just a jump instruction that uses
the register which contains the return address;

e How to store strings so the command line arguments can be stored into memory before
simulation begins.

All operating system functionality is implemented as a new class in ArchC, named
ac_syscall, which has virtual methods that needs to be specialized for each new processor
to provide the correct ABI implementation for the architecture.

Functions that know how to get parameters from the target system calls are an example
of interface functions that must be implemented for each target architecture. Functions
in this group are normally very small, with less then five lines. The information required
to implement them is taken from the processor Application Binary Interface manual. As
an example, Figure [£.5] shows some functions for the MIPS architecture and how they are
encoded using ArchC to access the register file and memory. Notice from that example,
that the only information needed was the register numbers used by the architecture as
arguments, the return value, and the return instruction.

The methods presented in Figure [£.5] are just specialization of some methods of the base
ArchC system call class, called ac_syscall, which has 265 source code lines and do not
require any change between architectures. The MIPS I system call methods required only
51 code lines to implement the specialized methods. The SPARC V8 also required the same
number of extra lines since the difference between the MIPS-specific and SPARC-specific
files are only the register numbers. The small number of lines in the specific files show that
it is very easy to port this method to new architectures.

If designers are going to provide the ABI implementation, they need to run acsim
with the -abi command-line option to generate a simulator prepared to do OS emulation.
For examples of ABI implementation to be used with ArchC simulators, take a look at
the mips1_syscall.cpp and sparcv8_syscall.cpp files contained in the respective model
package at the ArchC website [5].

46 Chapter 4. ArchC Tools

void mipsl_syscall::get_buffer(int argn,
unsigned char* buf,
unsigned int size)
{
unsigned int addr = RB.read(4+argn);

for (unsigned int i = 0; i<size; i++, addr++) {
buf [i] = MEM.read_byte(addr);

}
}
int mipsi_syscall::get_int(int argn)
{
return RB.read(4+argn);
}
void mipsl_syscall::set_int(int argn, int val)
{
RB.write(2+argn, val);
}
void mipsl_syscall::return_from_syscall()
{
ac_pc = RB.read(31);
}

Figure 4.5: Application Binary Interface Functions for the MIPS Architecture

4.7 GDB Support for Simulators

Simulators built with ArchC can use the GDB protocol very easyly. Just implement a few
processor dependent methods for the interface and the simulator will be able to respond to
GDB, allowing users to debug software inside the simulator. This is a new functionality and
is implemented for simulators generated for functional models, it is not implemented
for cycle-accurate simulators yet. It cannot be used for simulators generated by accsim
at this time. The SPARC-V8 and MIPS-I models available at the ArchC Site [5] already
counts with the additional information to activate this functionality.

The developer should implement methods to interface the architecture and GDB, map-
ping registers and memory to the desired GDB format. These methods, explained in detail
below, should be implemented in a file named after your processor: PROC_gdb_funcs.cpp,
given your processor is implemented in PROC.ac. Then “make distclean” your simula-
tor, run acsim with —gdb, and make it again. Acsim with —gdb will make your simulator class
inherit from AC_GDB_Interface and use the functions defined in PROC_gdb_funcs.cpp.

When built, the simulator module will have the enable_gdb() method. It can be called,
after the module instantiation, to make the particular simulator module enable its GDB
support and listen to GDB connections in the port specified as the method’s first argument.

4.7. GDB Support for Simulators 47

If a port number is not specified, the default value is used, 5000.

4.7.1 Register Support

The designer must implement nRegs (), reg_read() and reg_write() from AC_GDB_Interface,
so the simulator can send the read and write register packets to GDB. You must check
GDB documentation to learn the order the registers should be provided, and map them
in reg_read() and regwrite(). Then define the number of registers GDB expects to
receive/send by using nRegs(). The order is defined by the REGISTER RAW SIZE and
REGISTER_NAME macros. Please read the “info gdb”, section “Remote Protocol”, nodes
“Packets” and “Register Packet Format” for more information.

Example: If you have one bank with general purpose registers (RB_GP), one with floating
point registers (RB_FP) and one with status register (RB_S). If GDB expects the packets in
the order: 32 general purpose registers, 32 floating point registers and 8 status register and
PC, your functions should be like those in Figure

4.7.2 Memory Support

The designer must implement mem read() and mem write() from AC_GDB_Interface to
inform how to read and write memory regions. Example: If you use just one memory bank
(no separated data and instruction memory), it’s easy as shown in Figure

unsigned char YOUR_CLASS::mem_read(unsigned int address) {
return ac_resources::IM—>read_byte(address);

}

void YOUR_CLASS: :mem_write(unsigned int address,
unsigned char byte) {
ac_resources: : IM->write_byte(address, byte);

}

Figure 4.6: Memory manipulation routines for GDB support

48

Chapter 4. ArchC Tools

int YOUR_CLASS::nRegs(void) {

}

ac_word YOUR_CLASS::reg_read(int reg) {

void YOUR_CLASS::reg_write(int reg, ac_word value) {

return 73;

// General Purpose
if ((reg>= 0) & (reg < 32))
return RB_GP.read(reg);

// Floating Point

else if ((reg >= 32) && (reg < 64))

return RB_FP.read(reg - 32);

// Status

else if ((reg >= 64) && (reg < 72))

return RB_SR.read(reg - 64);

// Program Counter
else if (reg == 72)
return ac_resources::ac_pcC;

return O; // unmaped register? return O

// General Purpose
if ((reg > 0) && (reg < 32))
RB_GP.write(reg, value);

// Floating Point

else if ((reg >= 32) && (reg < 64))

RB_FP.write(reg - 32, value);

// Status

else if ((reg >= 64) && (reg < 72))

RB_SR.write(reg - 64, value);

// Program Counter
else if (reg == 72)
ac_resources::ac_pc = value;

Figure 4.7: Register manipulation routines for GDB support

Chapter 5

ArchC TLM Connectivity

This appendix offers a brief overview on ArchC TLM and follows it with a detailed, step
by step tutorial on how to make full use of the ArchC TLM capabilities.

5.1 Introduction

Transaction-Level Modeling (TLM) is a series of hardware project techniques and method-
ologies which aim to raise as much as possible the abstraction level of the descriptions
and models used to develop, prototype and simulate both hardware and hardware /software
systems.

TLM achieves that by creating several standardized abstraction levels between pure
specifications and register transfer level (RTL) models. The fact that TLM specifies dis-
crete abstraction levels for computation and communication, means either of them can be
refined independently, considering a system-level model. Also, the fact abstraction levels
are standardized means that components (which can be models in several different of those
abstraction levels) can be shared and reused among projects.

OSCI offers a TLM library for SystemC. This header-only library defines a series of
standardized interfaces that provide the necessary separation between computation and
communication modeling, therefore enabling TLM in SystemC.

ArchC 2, among other benefits, has TLM support. This means simulators generated
by the acsim tool are independent SystemC modules and can communicate with other
user-created SystemC modules via SystemC TLM interfaces using the ArchC protocol.

For more on TLM and the SystemC TLM library, refer to the OSCI SystemC TLM
white paper. It is distributed with the SystemC TLM 1.0 library, and is required read for
the rest of this appendix.

5.2 ArchC TLM Basics

This section describes briefly the interfaces used for ArchC TLM and the ArchC TLM

protocol, which are of great importance to the user.

49

50 Chapter 5. ArchC TLM Connectivity

5.2.1 ArchC TLM Interfaces

ArchC TLM was developed so that designers can integrate acsim-generated simulator mod-
ules to their PV (Programmer’s View) system-level SystemC models. Having PV models
in mind, the interface chosen for ArchC TLM was the tlm_transport_if, since it’s bidi-
rectional and has requests and responses tightly coupled, exactly like in a method call,
therefore requiring the least effort of users.

5.2.2 ArchC TLM Protocol

The ArchC TLM protocol is defined in ac_tlm protocol.H. It consists in a pair of structs
modelling the request and response packets. Users are strongly encouraged to read this
source file. It really is that simple.

The request packet, ac_tlm req, has four fields:

type : Type of the transaction. It can be one of five values: READ, WRITE, LOCK (for locking
a device or bus), UNLOCK and REQUEST_COUNT (for debugging reasons, requests a count
of the transaction packets).

dev_id : Device ID. Every ArchC TLM initiator port gets automatically assigned a device
ID, which might be useful information for multiport devices like buses.

addr : Address.

data : Data sent.
The response packet, ac_tlm rsp, on the other hand, has only three fields:

status : Transaction status. Can be either ERROR or SUCCESS, indicating whether the
transaction was successful or not.

req_type : Type of the transaction.

data : Data received.

5.3 ArchC TLM How-to

This section contains a very detailed, step-by-step explanation on how to use ArchC TLM
ports and communication.

5.3.1 TLM Initiator Port

ArchC 2.0 provides a TLM initiator port to your processor, allowing it to communicate
with external modules. In order to create a TLM initiator port, you have to declare it on
the project_name . ac file. Here’s an example made with the mips1 model, replacing the DM
element from ac_cache to ac_tlm port:

5.3. ArchC TLM How-to 51

AC_ARCH(mips1){
//ac_mem DM:5M;
ac_tlm_port DM:bM;
ac_regbank RB:32;

/7. ..

We substituted the ac_mem (main memory) with an ac_tlm_port because we want to
use this model with an external TLM memory. Now all you have to do is run acsim and it
will generate the simulator code with the ac_tlm port already in place. Please note that a
range must be declared with the ac_tlm port, indicating the range of addresses (starting
on 0x0) that will be accessible via the port (in this case, 5 megabytes).

One important thing about ArchC 2.0 is that the processor access to either ac_t1lm_ports
or internal memories (elements of type ac_storage) is always made via an ac_memport. In
this case, the ac_memport correspondent to the ac_tlm port we’ve declared will be called
DM, and the port itself will be called DM_port. That is, the actlmport gets a ‘_port’ suffix
in its name.

Here’s a brief illustration of how this works: whenever you want to access the port
from the inside of the processor, that is, on instruction behaviors, for instance, you use the
ac_memport called DM, like this (in the project_name_isa.cpp file):

value = DM.read(address);

However, all access to this port from outside the processor will have to use the ac_t1lm_port
object, which in this case is called DM_port. The main use of this will be in binding the
port to an external module, like this:

proc_instance.DM_port (ext_memory) ;

Which is a binding of the port present in proc_instance to an external memory
ext_memory.

After that, the most important to know is what to implement in the external modules
so that communication is possible. And that is known as the ArchC TLM protocol. It
works like this: an ac_tlm port is-a (ie, extends) sc_port<ac_tlm_transport_if>, where
ac_tlm_transport_if is the same as tlm_transport_if<ac_tlm_req,ac_tlm_rsp>.

Basically this means that you can only bind an ac_tlm port to a module that extends
ac_tlm transport_if (which would be, technically, a channel) or to a
sc_export<ac_tlm transport_if> that is bound to such an object.

So the first requisite is that your external module responsible for communicating directly
with the processor must inherit from ac_tlm_transport_if.

That obliges this module ext _module to implement the:

ac_tlm_rsp ext_module::transport(const ac_tlm_req& req);

52 Chapter 5. ArchC TLM Connectivity

method that is declared by tlm_transport_if<>. This method will receive a reference
to an ArchC TLM transaction request packet (declared at the ac_tlm_protocol.H file), pro-
cess it accordingly, and return an ArchC TLM transaction response packet (also declared at
the ac_tlm protocol.H) informing the transaction requester (that is, our processor module)
of the transaction status, whether it failed or succeeded.

By doing this on the external slave module, everything is ready to work. Just bind the
port from the processor instance to the module or module export and you can already access
it via the read/write methods of the ac_memport DM, inside the instruction behaviors.

5.3.2 TLM Interrupt Port

ArchC 2.0 also features communication initiated from an external module, with the proces-
sor module as a slave, via its interrupt mechanism. To enable an interrupt mechanism on
your model, first you have to declare an ac_tlm_intr_port on the project_name.ac file. As
an example, you can add an interrupt port to our mips1 model just by doing this:

AC_ARCH(mips1){

ac_cache DM:5M;
ac_regbank RB:32;

ac_tlm_intr_port inta; // Add this line
//...

Now we have an interrupt port on our mips1 model, called inta. By running the acsim
tool on it, we’ll see that it generates some extra files related to interrupts. The one we’ll mod-
ify is project_name_intr_handlers.cpp. First, we’ll copy project_name_intr handlers.cpp.tmpl
to project_name_intr_handlers.cpp. Then we’ll edit the file.

When you open the file, you’ll see that it contains an ac_behavior definition, pretty
much in the same way as the project_name_isa.cpp file:

// Interrupt handler behavior for interrupt port inta.
void ac_behavior(inta, value) {

¥

Inside this ac_behavior, you can write pretty much standard behavior code, altering reg-
ister values, the program counter, writing or reading the memory etc. Basically, this behav-
ior code represents whatever the processor hardware does when it encounters an interrupt.
Note that it receives a value from the interrupt, which can be used on the interrupt handling,
and it’s your choice whether to use it or not. Another possibility is declaring more than one
ac_tlm intr_ports on the project_name.ac file, which will lead to each of them having its
separate interrupt handler method defined on this project_name_intr_handlers.cpp file.
So there are lots of options to implement interrupt behavior on your model. The ArchC
interrupt system is very flexible because we don’t want to hinder the developers’ options.

5.3. ArchC TLM How-to 53

Now that we know how interrupts work inside the processor, what we have to un-
derstand is how an external module interrupts the processor. First, whenever you de-
clare an ac_tlm_intr_port on your project-name.ac file it means that you will have an
ac_tlm intr_port as a member of your processor module.

This ac_tlm_intr_port will have the exact same name you declare on project_name.ac,
which in this case is inta. The ac_tlm intr port is-a (inherits from)
sc_export<ac_tlm transport_if>, and this export is bound to itself, because
ac_tlm_intr_port also implements the transport() method mentioned above, and this
method has a fixed implementation, which calls an interrupt handler that is bound to a
port (those are the ones you implement on the project_name_intr_handlers.cpp, one for
each port).

Then, to give an external module the ability to interrupt a processor, all you have to
do is binding an sc_port<ac_tlm_transport_if> of this module to the ac_tlm_intr_port
of the processor, like this:

ext_module.out_port(proc_module.inta);

and then have the external module call the transport () method via this port, passing
an ac_tlm req transaction request packet. Whatever value there is on the data field of
the packet will be passed as the 'value’ parameter of the interrupt handler. Ideally, direct
usage of the transport() function should be delegated to a user-layer method (with an
appropriate name like interrupt()), and this user-layer method the one invoked by the
module’s behavior or process methods.

Appendix A

Porting a model from ArchC 1.6 to
2.0

This appendix presents nine steps on how to port your ArchC model from version 1.6 to
2.0, presented in a straightforward yet thorough manner:

1. Change project_name-isa.cpp to project_name_isa.cpp.

2. Edit project.-name_isa.cpp so that it includes these headers:

#include "project_name_isa.H"
#include "project_name_isa_init.cpp"
#include "project_name_bhv_macros.H"

3. Add:
using namespace modelname_parms;

to your project_name_isa.cpp, project_name_gdb_funcs. cpp and
project_name_syscall.cpp files. This is necessary because all the processor-specific
types like ac_word and ac_Hword etc are now contained on a namespace relating them
to the processor model, avoiding type name clashes in projects including more than
one different processor models.

4. In your project_name_isa.cpp, project_name_gdb_funcs . cpp and
project_name_syscall.cpp files, there’s a chance that some architectural elements
from the model, like a data memory DM, are being accessed like this:

ac_resources: :DM.something () ;

55

Chapter A. Porting a model from ArchC 1.6 to 2.0

If this is the case, you can safely remove every occurrence of ac_resources:: from
your files because ArchC 2.0 was constructed so that every implementation of instruc-
tion behaviors, GDB functions or syscall helper functions have direct visibility of all
architectural elements. So the correct version of the DM example is much cleaner:

DM. something() ;

. Your project_name_isa.cpp, project_-name_gdb_funcs. cpp and
project_name_syscall.cpp files might be including "ac_resources.H". This will
cause a compilation error, because acsim no longer generates an ac_resources.H
file nor an ac_resources class. The architectural elements now appear as non-static
members of the project_name_arch class), so you must remove the:

#include "ac_resources.H"

line from all those files.

. In your project_-name_isa.cpp, project_name_gdb_funcs. cpp and
project_name_syscall. cpp files, replace every call to the ac_stop () function to stop().
There’s no need to change the parameters, it was a simple function renaming.

. If your project_.name_isa.cpp file has global functions, you might have to modify
them. Whatever element you want to access inside of them, that wasn’t passed as a
parameter, will be out of scope because architectural elements are not global anymore.
The easiest way of solving the problem of access to the architectural elements is
passing them by reference as a function parameter, and then changing all the calls to
the function to pass those extra parameters you just added (which is easily done via
the search-and-replace feature of your favourite editor). Let’s take a look at how this
was done on the SPARC V8 model:

We changed:

inline void update_pc(bool branch, bool taken, bool b_always, bool annul,
ac_word addr)

To add an extra ac_pc reference parameter:

inline void update_pc(bool branch, bool taken, bool b_always, bool annul,
ac_word addr, ac_reg<unsigned>& ac_pc)

And every occurrence of:

update_pc(a, b, c, d, e)

57

To pass the extra ac_pc parameter by reference:
update_pc(a, b, ¢, d, e, ac_pc)

To verify of what type those elements are (like, in this case, ac_pc, which is of
type ac_reg<unsigned>), take a look at ac_arch.H (an ArchC library include file)
or project_name_arch.H (generated by acsim), which contain the declarations for the
elements you want (the elements common to all processor models are members of the
ac_arch class, whether the specific ones, such as most of those you declared on the
AC file, are members of project_name_arch).

If you’re writing a new model from scratch, please remember that using global func-
tions with side-effects in methods of a class which will be instantiated more than once
is usually indicative of not-so-great programming. And it’s the fact why we're sup-
plying this step 7, which was entirely avoided in the porting of models that didn’t use
such global functions (like mips1, for example).

. In your project_name_isa.cpp, project_name_gdb_funcs.cpp and
project_name_syscall.cpp files, there’s a chance some of the instruction behavior or
helper methods declared on them might use variables or constants as extern. If those
are either architectural resources or constants from the parms file (which comprehend
all of the cases we’ve seen so far), you're absolutely free to remove the extern line
completely, because such variables or constants are already visible to those methods.

Here’s one example from our SPARC V8 model. In the file sparcv8_syscall.cpp,
we had the line:

extern const unsigned AC_RAM_END;

Inside the sparcv8_syscall::set_prog_args() method. We removed this extern
line completely because AC_RAM_END is already visible to the method, so there’s no
need for extern (which indicates cleaner coding, since using lots of externs is quite
inelegant).

. There’s a chance your model has global variables, most probably defined on
project_-name_isa.cpp (like in our SPARC V8 model: they're defined on
sparcv8_isa.cpp) or on one of the other cpp files. Now, global variables present
two serious problems. The first of them is that they’re usually bad programming
practice. They shouldn’t be used when they aren’t necessary. The second problem
is much more serious: they make it completely impossible to run more than a single
instance of your processor model.

Global variables alone won’t keep your model from compiling, but since they’re global,
there will always be only one instance of each of them, which will be a major problem

58

Chapter A. Porting a model from ArchC 1.6 to 2.0

if you want to use multiple instances of the simulator generated by acsim in, for
instance, an multiprocessor SoC model.

The solution we suggest is exactly the same we used in porting our SPARC V8
model: converting all those global variables to registers. As an example, in the
sparcv8_isa.cpp file we had those:

0xFO0; //Current window pointer
0x00; //Window invalid bit (points to the
//invalid reg window)

unsigned char CWP
unsigned char WIM

We removed those declarations from that file and added register declarations to
sparcv8.ac, like this:

ac_reg<8> CWP;
ac_reg<8> WIM;

With this modification, no other line of the sparcv8_isa.cpp had to be modified,
because those registers can be accessed or used in the exact same way the unsigned
char variables were. Also, notice that ac_regs now can have their width specified
inside angle brackets (which were previously used only to specify the format, when
you wanted to use a formated register). This is a new feature of ArchC 2.0, because
in 1.6.x every register you declared had the same width specified by ac_wordsize,
meaning you couldn’t declare a register with width different from the word size. But
now you can, in 2.0.

On a side note, if you had global variables of type bool, for flags or something like
that, and you want your ac_regs to behave exactly like the global variables they’re
substituting, you can do that, declaring them as ac_reg<1>.

Of course, the removal of global variables, converting them to registers, leads to the
need of three other collateral modifications.

The first of them is removing the stray externs: there’s a chance that variables
declared on one cpp file are being accessed on other file, so you’ll have to remove the
extern statements from those other files.

Another modification is needed when those global variables were initialized with a
value different from zero. Such is the case of the SPARC V8 CWP register shown
above. Since every ac_reg is initialized to zero at construction time, if you want
them to have another value when the processor starts running, you should put such
initialization at the begin ac_behavior. This is what we’ve done with the SPARC
V8 model:

void ac_behavior (begin)

59

dbg_printf ("Q0@ begin behavior @@Q\n");
REGS[0] = 0; //writeReg can’t initialize register O
npc = ac_pc + 4;

CWP

0xF0; // Added this line.

The third and perhaps more important modification is converting whatever global
function that modified global variables as their side-effect to receive those variables
(which have now became registers) as reference parameters. The procedure is exactly
the same as detailed on step 7, and it’s needed for pretty much the same reasons: what
once were global variables now are fields of an object, so you need their reference to
modify them.

For exemple, our SPARC V8 had an npc global variable that we modified to become
a register (which is much saner), and since the global function update_pc() modified
npc, we had to pass it as an extra reference parameter. So we essentially changed:

inline void update_pc(bool branch, bool taken, bool b_always, bool annul,
ac_word addr, ac_reg<unsigned>& ac_pc)

To include npc as one of the parameters:

inline void update_pc(bool branch, bool taken, bool b_always, bool annul,
ac_word addr, ac_reg<unsigned>& ac_pc,
ac_reg<ac_word>& npc)

Following this, we had to do a search-and-replace in the rest of the code to change
every occurrence of:

update_pc(a, b, ¢, d, e, ac_pc)
to pass the extra npc parameter:
update_pc(a, b, ¢, d, e, ac_pc, npc)

If you’ve made all the modifications detailed in these 9 steps, then congratulations, you
should have an ArchC 2.0 compliant model. Of course, some models are far easier to port
to 2.0 than others. The mips1 model, for instance, was incredibly easy to port, requiring
only 15 minutes at most, and being guided only by the compiler error messages, instead
of this guide. It didn’t require the steps 7 to 9, which would definitely make the process

60 Chapter A. Porting a model from ArchC 1.6 to 2.0

trickier. Another model, sparcv8, on the other hand, required all of those steps, but even
so was fast to port.

However, if you have thoroughly made all those modifications to your model and it
still doesn’t work in 2.0 (but it did in 1.6), feel free to contact us in the forums. If you
realize a more complicated compatibility problem between 1.6 and 2.0 is missing from this
walkthrough, please tell us so, as we’ll be delighted to know and therefore use the good
news to update this document.

Bibliography

[12]
[13]

[14]

[15]

Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execution
profiling. ACM SIGMETRICS Performance Evaluation Review, 22(1):128-137, May
1994.

Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan. System Desing with
SystemC. Kluwer Academic Publishers, 2002.

J.L. Hennessy and D.A. Patterson. Computer Organization € Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 1998.

http://gec.gnu.org. The GNU Compiler Collection Website.
http://www.archc.org. The ArchC Resource Center.
http://www.cygwin.com. The Cygwin Environment Website.
http://www.gnu.org/software/binutils. The GNU Binutils Website.
http://www.gnu.org/software/bison/. The Bison Parser Generator.
http://www.gnu.org/software/flex/. The Flex Lexical Analyser Generator.
http://www.systemc.org. SystemC homepage.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, New Jersey,
1992.

OSCI. SystemC Version 2.0 Language Reference Manual, 2003.

Richard P. Paul. SPARC Architecture, Assembly Language Programing, and C. Pren-
tice Hall, 2000.

Roland H. Pesch and Jeffrey M. Osier. The GNU binary utilities. Free Software
Foundation, Inc., May 1993. version 2.15.

Richard Stallman. Using the GNU compiler collection. Free Software Foundation, Inc.,
May 2004. For GCC version 3.4.3.

61

	Introduction
	Background and Related Work
	SystemC
	GNU Binutils

	The ArchC Architecture Description Language
	Download and Installation

	Changes from ArchC 1.6

	Describing Architecture Resources
	Structure of Architectural Resources Declaration
	Declarations of Individual Resources and Architectural Characteristics
	Resources Declaration Examples

	Describing the Instruction Set Architecture
	Behavior Description in ArchC
	Providing Format and Generic Instruction Behaviors
	Providing Instruction Behavior
	Utility Methods and Important Variables

	ArchC Tools
	The ArchC Preprocessor
	The ArchC Simulator Generator
	Command-line Options
	ArchC Simulators
	Building ArchC Simulators
	Loading and Running Applications

	The ArchC Timed Simulator Generator
	The ArchC Compiled Simulator Generator
	The ArchC Binary Utilities Generator
	Operating System Call Emulation
	GDB Support for Simulators
	Register Support
	Memory Support

	ArchC TLM Connectivity
	Introduction
	ArchC TLM Basics
	ArchC TLM Interfaces
	ArchC TLM Protocol

	ArchC TLM How-to
	TLM Initiator Port
	TLM Interrupt Port

	Porting a model from ArchC 1.6 to 2.0

