The ArchC Language Support & Tools

for Automatic Generation of
Binary Ultilities

version 2.1

User Manual

The ArchC Team

http://www.archc.org

July 2011

Copyright(© 2005-2011 The ArchC Team
Av. Albert Einstein, 1251 13084-971
PO Box 6176 - Campinas/SP - Brazil

Contents

1 Introduction

1.1 OVEIVIEW o e e e e e e
1.2 QuickStart e e e
1.3 LatestChanges e
1.4 CurrentLimitations e e

2 Language Support
2.1 OVEIVIEW . . . o o e e e e
2.2 Assembly language symbols L
2.3 Assembly language syntax and instructionencoding
2.3.1 Assemblysyntax
2.3.2 Instructionencoding e
2.3.3 Modifiers
2.3.4 Listsofsymbols
235 Syntaxoverload.
2.4 SyntheticInstructions e e
2.5 CommentCharacters e

3 Binary Utility Generation
3.1 Generation Process i i e e e
3.1.1 Buildingthe ArchCpackage u..
3.1.2 Generating the binary utility sourcecode
3.1.3 Building the binary utilities
3.2 Thegeneratedtools e

4 Dynamic Linking Support
4.1 Specifying information for dynamiclinking
4.2 Thedynamiclinkerandloader
4.3 Relocation code conversiontool

Contents

Chapter 1

Introduction

This manual presents the ArchC language support and tadlsdgeneration of binary utilities, such as
assemblers, disassemblers, linkers and debuggers. Inttimductory chapter we give a brief overview
of the binary utilities generation process, present a gsiiakt guide and discuss current limitations.

1.1 Overview

Figure 1.1 shows the generation flow of binary utilities. tds&tart by describing the required infor-
mation at a high abstraction level using the ArchC architectescription language (step (a)). The
available constructs and support files used in this stepuea of Chapter 2. The generation tool
reads the target model and support files in order to creatéittay utilities (step (b)). Chapter 3
explains how to use and the command line options for the g#inartool. Starting with an assem-
bly source code, the assembler and linker produce the pameag executable object code (step (c)).
Disassemblers and debuggers can inspect object code gméirttehg bugs in the original program
(step (d)). Chapter 3 also explains how to use these genedoatisd

Assembly
Source Code

A 4

Y

Assembler
|

Support
Files
|
L4
Linker b= e —i Execgtable
Generation File

Tools

©

A 4

-z,
a b a4
() (b) Py
»| Disassembler (&~ /’
/. @
/

» Debugger

Figure 1.1: Generation Flow

1.2. Quick Start

1.2 Quick Start

This quick start guides you through the generation of bintag}s for the MIPS architecture. First,
create a directory namegui ckst art anywhere in your local home and download the following
items to that directory:

e Ar chC- ArchC language and toolssw. ar chc. or Q)
Name usedar chc-v2.1.tgz

¢ M PS— MIPS modelywwv. ar chc. or g)
Name usedm ps1l-v0.7.8.tgz

e Bi nuti| s — GNU Binutils source codeMwv. gnu. or g/ sof t war e/ bi nutil s/)
(latest version tested: 2.15)
Name usedbi nutil s-2. 15.tar. gz

e Gdb — The GNU Project Debugger source coder cewar e. or g/ gdb/)
(latest version tested: 6.4)
Name usedgdb- 6. 4. tar. gz

Note that the lines wittNanme used identify the package names we will use in this quick start.
You should replace them with the name of the packages youldaded.
Now unpack the packages inside th@ ckst art directory:

$ tar zxvf archc-v2.1.tgz

$ tar zxvf mpsl-v0.7.8.tgz

$ tar zxvf binutils-2.15.tar.gz
$ tar zxvf gdb-6.4.tar.gz

To compile the ArchC package, enter the ArchC directory yavehust unpacked and issue the
following command:

$./configure --with-binutils="pwd'/../binutils-2.15\
--wi th-gdb="pwd‘/../gdb-6.4 \
--prefix= pwd

$ make

$ make install

This will install the binary utility generation script intte bi n subdirectory. Now change to the
model directory and generate the binary tools:

$ cd ../ mps-v0.7.8/
$../archc-v2. 1/ bin/achingen.sh -ampsl -i‘pwd‘/../bin/ mpsl.ac

This process may take from several minutes to hours depgmdiryour host machine. The binary
utilities will be created and placed into the directonyi ckst art/ bi n.

6

1.3. Latest Changes

1.3 Latest Changes

New features in this version:

Improved parser generator
Now it is possible to describe an instruction syntax comt@rmultiples mnemonic suffixes.
This is important in assembly languages whose mnemonisgpte many variations, denoted by
a different suffix. Suffixes can be handled as any other pasmia fact, as a special one, with
no spaces between it and the mnemonic.

Better support for user defined maps
The user can now define distinct maps whose symbols nhames entnelsame. This enables
a powerful technique in describing languages, namely, ihefinullable symbols. By creating
a map containing the null (empty string) symbol, the usecifigs that these symbols may be
omitted. Previously, this still could be done, but only ireanap per model, since symbols with
the same name weren’t allowed in the same model.

Concatenated fields
There is no more limitation to the number of fields assigneal $pecific operand. The user may
concatenate any number of fields using the + operator.

Defining comment characters
There is no more need to change the assembler generateé §itainc order to define different
comment characters. Now there is a specific directive toifypassembler comment characters
directly in the model file.

Lists of symbols
The natural way of describing instructions syntax in an &chodel is using one operand iden-
tifier per instruction operand. This operand identifier mkéd to a particular translation method
(from assembly language source code to binary represemiatihe instruction field), and if the
operand identifier is specified by the user through user defimegps, uses the symbol-value list
provided by the map. Using this paradigm, it is not easy toneedi parameter that represents a
list (this usually occurs as variable-sized list of registeNow there is a specific mechanism to
describe lists as operands.

Dynamic linking support
The GNU libbfd generated backend now offers support foreghdibrary creation, as well as
linking a regular object file against a shared library. Thes wegchC simulator also supports
loading ELF executable which depends on a shared library.

1.4. Current Limitations

1.4 Current Limitations

The following limitations exist:

Output object file
by default, the generated assembler and companion todiardlie only ELF object files. Thus,
if you use the generated assembler to produce any binarguipeit object file format will be
ELF.

Chapter 2

Language Support

In this chapter we present the ArchC language constructswgubrt files required for the generation of
binary utilities. We show examples from several micropssoes to illustrate how each of the constructs
are used.

2.1 Overview

There is a total of 10 ArchC constructs related to the bindilities: set _endi an, ac_f or mat ,
ac_instr,set decoder,ac_asmmap,set _asmpseudo.i nstr,assenbl er. set conment,
assenbl er. set | i ne_conment andmap_t 0. While the first 4 of them are also used by the sim-
ulator generator tool, the last 6 are only used by the bing&lyyugenerator. For further information
aboutset _endi an, ac_format, ac_i nstr andset _decoder, please refer to the ArchC lan-
guage reference manual [].

In the rest of this chapter we present the constractasmmap, set _asm pseudo. nstr,
assenbl er. set _comment ,assenbl er. set | i ne_.comment andmap_t o which describe machine-
dependent aspects of binary utilities at a high abstradéieel. All of them must be described in the
AC_I SA part of an ArchC processor model. Some of them may requitbdudescription which is
done through support files, outside the ArchC model. Suppagstovided for processor-specific as-
sembly language symbols (such as register names), syntbapsmand encoding. The user can also
describe synthetic instructions.

2.2 Assembly language symbols

Assembly language-level symbols and their correspondalges are defined in ArchC through the
ac_asmmap construct. This construct groups a set of symbol-valuespander a common name,
which can be later used to specify the assembly languagasynt

The most common use @c_asmmap is to map processor’s register names to their encoding
values. For example, Figure 2.1 shows the MIPS-I registerasamapping. Line 1 declaregg as the
mapping identifier. Lines 2 to 9 define each symbol and theesponding encoding value. A symbol
is specified between quotation marks at the left side, fakbwy the equal sigr={, its value and a
semicolon {). It is possible to specify a range of values by using the sgbeackets notatior] {).

9

2.3. Assembly language syntax and instruction encoding

For instance, line 5 maps symbds0 andkt 1 to values26 and27, respectively. Note that it is also
possible to assign the same value to different symbols, lases 2 and 3$0 and$zer o map to0).

1 ac.asm_map reg {

2 "$"[0..31] = [0..31];
3 "$zero” = 0;

4 "$at” = 1;

5 "$kt”[0..1] = [26..27];
6 "$gp” = 28,;

7 "$sp” = 29;

8 "$fp” = 30;

9 "$ra” = 31,;

10 }

Figure 2.1: MIPS-I register names and encoding values

2.3 Assembly language syntax and instruction encoding

Every ArchC instruction (declared withc_i nst r) provides two properties to define its assembly
syntax and binary encoding.et _asmandset _decoder . The former specifies both assembly lan-
guage syntax and operand encoding, while the latter spe¢ifee opcode. For further information
aboutset _decoder, please refer to the ArchC language reference manual []. dWeentrate here in
describing theset _asmconstruct.

Figure 2.2 shows the general formsd#t _asm Here,i nsn is an ArchC instruction whose assem-
bly syntax and operand encoding are being defined. The cmhsrsplit into asyntax stringand an
optionaloperand list The syntax string'(hmo %opl, %©p2")is made up of literal charactensr{o,

,) and operand identifier8pl, %©p2). The set of characters up to the first white space conditute
the instruction mnemoniafio). Operand identifiers are specified with the special char&6and act

as placeholders for binary values assigned at assemblaigrdimking time. The place in the instruc-
tion where these values are encoded is specified in the apésanFor each operand identifier there
must be a corresponding operand field. In the given exantpdeyalue hold bypl will be placed in
instruction fieldf i el d1, while the value hold byp2 will be placed in instruction fieldi el d2.

2.3.1 Assembly syntax

The ArchC language specifies three types of operand idestifig)i mm used for immediate integer-
like operands; (2addr , used for symbolic operands; and €}p, used for expressions (a combination
of immediate and symbolic operands). Additional operampes$ycan be declared véa&c _asmnap, as
seen in section 2.2. Consider, for instance, the declasabawed in Figure 2.3. In this example we
are using the identifiareg as defined in Figure 2.1. Line 1 shows the syntax for instondtiw with

3 operands: aeg, ani nrmand another eg. They are bound to the instruction fields, i rmand

r s, respectively. Line 2 shows an instruction whose operanglglaregisters, whereas line 3 has an
operand of typexp.

10

2.3. Assembly language syntax and instruction encoding

operand operand
mnemonic identifiers fields

N /N N

insn.set_asm (“mno %opl, %op2“, fieldl, field2);

R v v

ArchC instruction syntax string operand list

Figure 2.2: Generation Flow

1 lw.set.asm ("lw %reg , %9mm(%reg)”, rt, imm, rs);
2 add .set.asm (”add %reg, %reg, %reg”, rd, rs, rt);
3 addi.set.asm(”addi %reg, %reg, %exp”, rt, rs, imm);

Figure 2.3: Describing the MIPS-I assembly language syntax

Theset _asmconstruct specifies how the generated assembler will parassembly source code
file and emit the binary code. If the definitions showed in IFgg2.3 are used, the generated assembler
will correctly recognize the instruction syntax showed igufe 2.4. Note that the syntax of the in-
structions match their definitions presented in Figure E@.instance, the last operand of instruction
addi (line 3) is an expression comprised of a pre-defined symisolgr t) and an integerl(0).

11w $3, 10($11)
2 add $sp, $gp, $0
3 addi $2, $30, _start + 10

Figure 2.4: Valid instruction syntaxes

Symbol disambiguation

While defining the operand list inet _asmeconstructs, it is possible to bind a field to a fixed value
(constant). This is presented in the code below.

1 add .set.asm(”add %reg %reg”, opl, op2, op3="r01");

Note that fieldop3 is not bound to any specifeedd operand, but to a constant. The constant can be
any number representing the value to be codified in this fmitican also be an user defined symbol.
This is the case in the presented codeya8 is assigned to the value of symbad)1.

Suppose the symbol01 exists in two different maps. Now, which valuero®1 will be chosen to
be codified into fielbp3? To avoid these situations, it is recommended to use#iet o construct:

11

2.3. Assembly language syntax and instruction encoding

1 add .set_.asm (”add %reg %reg”, opl, op2, op3=reg.mdp("r01"));

Using this codepp3 can only be assigned to the value of the symiil as described in the map
reg.

2.3.2 Instruction encoding

Consider now the instruction encoding. This process is pmed primarily by the assembler and
optionally by the linker (if relocation is present). To umskand the encoding behavior, first consider
one of the instruction formats of the MIPS-I showed in FigRre (commonly known as I-type). The
first 6 bits @p) comprise the instruction opcode field. The remaining 3 $éielce the operand fields,
namedr s, rt, andi nm respectively. This format is used to specify the operarncbdimg for the
instructiond wandaddi in Figure 2.3.

31 26 25 21 20 16 15 0

op rs rt Imm

6 bits 5 bits 5 bits 16 bits

Figure 2.5: MIPS-I instruction format (I-type)

To understand how the assembler emits binary code, congiddanstruction description in line
1 of Figure 2.3 and an instance of this instruction as showdohe 1 of Figure 2.4. The assembler
first recognizes théw instruction and attempts to encode its operands. The fiestapyl found is the
register$3 which has encoding valug& The assembler converts it to a 5-bit unsigned valwé1(1)
and place it into the t field (bits 6 to 10). In the same way, the second operanylgnd the third
operand $11) are placed into fields m»mmandr s, according to the encoding description in line 1 of
Figure 2.3. The final binary code emitted by the assembldraw/ed in Figure 2.6. Part (a) shows the
ArchC description, part (b) shows an instruction instantgctv matches the ArchC description, and
part (c) shows the corresponding binary code emitted byskerabler.

2.3.3 Modifiers

The encoding scheme presented in section 2.3.2 is the tlefaadding behavior. It handles the com-
mon case, but it may not suffice if a transformation is to bdiagpo an operand value before encoding
takes place. Such a case happens with pc-relative openahdss the encoding value is the result of
the subtraction of the instruction address (probably addech offset) from the symbol value. To deal
with non-conventional cases, ArchC introduces the notiomodifiers A modifier is a function that
transforms a given operand value. If a modifier is specifieel @ssembler and/or linker first executes
the modifier code using the original operand value as inptie Modifier output is then used as the
encoding value.

12

2.3. Assembly language syntax and instruction encoding

@ Iw.set_asm("lw %reg, %imm(%req)", rt, imm, rs);

:

(b) lw $3, 10($11)
31 26 25 21 20 16 15 0
(c) 100011 | 01011 [00011 | OOOO OO0O0O 0000 1010
op rs rt imm

Figure 2.6: Operand encoding: (a) ArchC description, (B)rirction instance, (c) emitted binary code

In ArchC, a modifier can be attached to any operand identifilrydu have to do is to specify a
modifier name and an optional addend after the operand fggrietween parentheses. For instance,
the following description:

1 ba.set_asm("ba %exp(pcrel)”, disp22, an=0);

specifies the SPARC instructidra (branch always) with an operand of typgp. A modifier named
pcr el is assigned to this operand, meaning that the operand valseba transformed by thgcr el
modifier. The modifier code is specified outside the ArchC made file namedrodi f i er s living

in the same directory as the ArchC source files. Two versieesino be specified: one for encoding
(used by the assembler and linker) and another for decodsegl(by the disassembler and debugger).
The code is described in the C language.

Figure 2.7 shows the description of ther el modifier. The keywordac _nodi fi er _.encode
andac _nodi fi er .decode are used to specify the encoding and decoding modifiersecésely.
The name of the modifier must follow the keywords inside ptreses (lines 1 and 6). At least 4
special variables are defined within the modifier contexteased through theel oc pointer:i nput
contains the operand valuagdr ess contains the instruction address at assembling or linking;t
addend contains an optional value defined as part of the modifier getl in the SPARC example);
andout put contains the modifier’s result. In line 3 of Figure 2.7 you cae the C code for the
encoding modifiepcr el . The encoding valuer €l oc- >out put) is computed by subtracting the
current instruction address €l oc- >addr ess) from the symbol valuer(el oc- >i nput). Since
the value is stored in words (4 bytes), an additional shith®right by 2 must be performed (line 3).
The decoding modifier is similarly defined in line 8.

To illustrate the use of addends, consider the pc-relatistuctions of the i8051 architecture. It is
somewhat similar to the SPARC instructions but they also addffset in the calculation expression.
Some instructions requires adding 2, others adding 3 orgkftting on the instruction size). Figure 2.8
shows how such instructions are described in ArchC. Noteelithat theocr el modifier is followed
by the number 2 and in line 2 by number 3. These addends carcbsesad later in the modifier code
by usingr el oc- >addend as illustrate in line 3 of Figure 2.9. The variable will autatically be
assigned to 2 or 3 according to the instruction being encoded

13

2.3. Assembly language syntax and instruction encoding

1 ac_modifier_encode(pcrel)

2 {

3 reloc—output = (reloc—input — reloc—address)>> 2;
4}

5

6 ac_modifier_decode(pcrel)

7 {

8 reloc—>output = (reloc>input << 2) + reloc—>address;

9 }

Figure 2.7: Modifier code (SPARC)

1 jc.set,asm(”"jc %addr(pcrel ,2)", byte2);
2 jb.set.asm(”jb %mm,%addr(pcrel ,3)”, byte2, byte3d);

Figure 2.8: Modifier addend (i8051)

Modifiers can represent complex encoding schemes. You canhalve direct access to the in-
struction formats and fields (declared wéh _f or mat) inside a modifier. This will come in handy if
multiple fields must have their values set, since a siogieput variable will not suffice. As an ex-
ample, consider the immediate data processing operantis 8RM architecture. One single operand
may have multiples encoding values and must be encodedwiatalifferent instruction fields. The
declaration of such an instruction will be as follows:

1 and3 set_.asm ("and %reg, %reg, #%imm(aimm)”, rd, rn, rotate+imm8);

Note that the third operand) is bound to the pre-defined fieldst at e andi nm8 (the symbol
+ is used here for field concatenation). The modiiermis attached to the operand identifier and its
code is presented in Figure 2.10. Note that variables anammnC structures such as loops (line 8)
can be used inside the modifier. Since the encoding affeceddsfia singleout put variable is not
sufficient. The code hence accesses the instruction formnat&ields directly (lines 10 and 11).

1 ac_modifier_encode(pcrel)

2 {

3 reloc—>output = (reloc—>input — (reloc—>address + reloe>addend));

4}

Figure 2.9: Using the addend (i8051)

14

2.3. Assembly language syntax and instruction encoding

1 ac_modifier_encode (aimm)

2 {

3 unsigned int a;

4 unsigned int i;

5

6 #define rotateleft(v, n) (v<< n | v>> (32 — n))
.

g for (i = 0; i < 32; i += 2)

9 if ((a = rotate_left (reloc—input, i)) <= Oxff) {
10 reloc—Type.DPI3.rotate = i>> 1;

11 reloc—>Type.DPI3.imm8 = a;

12 return;

13 }

14
15 reloc—error = 1;

16 }

Figure 2.10: Complex modifier code (ARM)

15

2.3. Assembly language syntax and instruction encoding

2.3.4 Lists of symbols

The natural way of describing instructions syntax in an Achodel is using one operand identifier per
instruction operand. This operand identifier is linked taétipular translation method (from assembly
language source code to binary representation in the oigirufield), and if the operand identifier is
specified by the user through user defined maps, uses the kyatbe list provided by the map. Using
this paradigm, it is not easy to define a parameter that reptes list (this usually occurs as variable-
sized list of registers). Now there is a specific mechanisdegzribe lists as operands. We first present
it in the following example:

1 Ildm.set_asm ("ldm%cond %reg , {%reg ...(listmodifier)}”, cond, regl, listreg);

This is a simplified syntax for ARM’s multiple data transfesiructions. They may be load or store
instructions, and are useful for saving or loading manystegs at once using the stack, as in functions
prologues and epilogues. As operands, these instrucaesatlist of registers subject to transfer (to or
from memory). The list is of arbitrary size, so the problers fite solution provided by our description
of lists of symbols.

The second operand of the&minstruction in our example uses the lists of symbols featuiee
modifiers, it uses a function’s name enclosed in parenthlestsadditionally has ellipsis (...) before
the first parenthesis, indicating there may be more than peeaad of the type eg. These elements
of typer eg are separated by commas. There may be also hyphen in ordepresent range. The
following instruction matches the syntax described by owmeple:

1ldm r1, {r0, r3, r5-r9}

Now, the assembler can parse such syntaxes. But how theselbshents will be codified into the
designated field (in our example, the list is bound to the fieldt r eg)? This is the purpose of the
modifier associated with the list (st nodi fi er in the example). This modifier must be capable
of walking through the list of elements and progressivelglifyothe field. To enable the user to write
such code, the user may access the list using the vanadlec- >l i st resul t s, and to extract
information of the list, these functions may be used (allh&nh uses theel oc->li st results

as parameter, by value or by reference, depending on thatopex

list results_has data (list_op_results |ist) usesits parameter by value. It returns
1 if there are still elements to be checked in this list, O nthse.

list results_next (list_op_results =|ist) usesits parameter by reference (you must
use the operator & to obtain the reference). It returns theevaf the current element as unsigned
int, and advances to the next.

list results get separator (list_op_results |ist) usesits parameter by value. It

returns the character (char) used to separate this elemmntthe next (remember it may be
comma or hyphen).

16

2.3. Assembly language syntax and instruction encoding

list resultsstore (list _op results *list, unsigned val ue) uses its parame-
ter by reference. It should be used to perform the reverseabtpe of reading, to create a list
based on a field value. This is usediio_nodi f i er _.decode constructs. It creates an element
into the list. This function is an exception, as it receivas additional parameter (unsigned int)
to specify the value of the element. Does not return any value

It is interesting to study the code presented in Figure 2l presents the complete list modifier

for the ARM model, which reads a list of registers, outputtiog 16-bit field. Each bit represents the
presence of a register in the listq in bit 0,r 1 in bit 1, etc...).

17

2.3. Assembly language syntax and instruction encoding

© 0 N O U b~ W N B

W oW W W W W WWWWRNDNNDNNDNNRNNDNERERIRRR R B P B
© ©® N 6O 008 W NP O © 0 N0 OO WNRP O © 0 N O 0 M WN R O

/x Multiple data transfer register list element codifies

x a register number into a bit in the register list.
x Uses the list operator to obtain list of registers parsed.
*/

ac_modifier_encode(listmodifier)

{

}

int init_range = —1;
unsigned i = 0;

while (list_.results has data(reloc>list_results))

{
char separator = listresults. get.separator(reloe>list_results);
unsigned int result = listresults.next(&(reloc—list_results));
if (init_range != -1)
{
for (i = init_range; i<= result; i++)
reloc—>output = reloc—>output | (1 << i);
}
else
reloc—>output = reloc>output | (1 << result);
init_range =-1;
if (separator == ")
init_-range = result;
}

ac_modifier_.decode(listmodifier)

{

—

unsigned i = 0;
unsigned val = reloe>input;
for (i = 0; i < 16; i++)
{
unsigned aux = val>> i;
if (aux & 1) {
list_results. store (&(reloc—list_results), i);

Figure 2.11: Modifier code for handling lists of symbols (ARM)

18

2.3. Assembly language syntax and instruction encoding

2.3.5 Syntax overload

Theset _asmconstruct also allows one to assign multiples syntaxesadedme ArchC instruction. It
is useful if an instruction has different syntaxes for ite@nds. Figure 2.12 shows an example taken
from the SPARC model. Lines 1 to 4 shows four different synéaassigned to the ArchC instruction
I di (SPARC load immediate). It is also possible, as showed indin® explicitly define operand
values. In that case, thies 1 field was given the default value &§0, and one of the operands between
the brackets was suppressed (the register one).

When two or more syntax definitions are ambiguous (a givemuosbn matches two or more
definitions), the assembler uses the definition specifidéear the source code. Therefore, the order
in which the definitions are specified in the source file is ingoat.

Idi.set.asm (”1d [%reg + \%lo(%expL10)], %reg”, rsl, simml3, rd);
Idi.set.asm(”Id [%reg + %mm], %reg”, rsl, simml3, rd);
Idi.set.asm(”ld [%imm + %reg], %reg”, simml3, rsl, rd);
Idi.set.asm(”ld [%imm], %reg”, simml3, rd, rs1="%g0");

addi.set_asm ("add %reg, \%lo(%expL10), %reg”, rsl, simml3, rd);
addi.set_.asm ("add %reg, %mm, %reg”, rsl, simml3, rd);

N o o b~ W N e

Figure 2.12: Syntax overloading (SPARC)

Simple pseudo instructions can also be defined througkeheasmconstruct. Figure 2.13 gives
an example of this use for some instructions of the SPARC-VAitature. Line 1 of Figure 2.13
shows the syntax of the instructiar , while lines 2 and 3 defines the pseudo instructiohs and
nov based on it. Lines 5, 6 and 7 show other examples of simpledpsaatruction declarations. They
are declared by explicitly setting some of the instructietdfio a default value. For example, timev
pseudo instruction of line 3 is ar instruction with the first register §1 field) set to the value 0.

1 or_reg.set.asm(”or %reg, %reg, %reg”, rsl, rs2, rd);

2 or_reg.setasm(”clr %reg”, rs1="%g0"”, rs2="%g0”, rd);

3 or_reg.set.asm("mov %reg, %reg”, rs1l="%g0", rs2, rd);

4

5 jmpl_reg .set_asm(”"jmpl %reg + %reg, %reg”, rsl, rs2, rd);
6 jmpl_reg .set_.asm ("jmp %reg + %reg”, rsl, rs2, rd="%g0");
7 jmpl_reg .set_asm (" call %reg + %reg”, rsl, rs2, rd="%o07");

Figure 2.13: Simple pseudo instruction definitions (SPARC)

Mnemonic suffixes

Section 2.3 on page 10 explains the mnemonic string as athcteas in the instruction syntax up to the
first white space. Albeit true, some assembly languagegptemstructions with the same mnemonic
but many variations, typically adding a suffix. In fact, abkmal ARM instructions (not Thumb or some

19

2.4. Synthetic Instructions

other special cases) have at least 16 different possilfi@esifone for each condition code. ARM uses
this mechanism which bounds the instruction execution itimmally to the environment status. Thus,
consider theadd instruction. ARM assembly language also recogniaddeq which is valid only
when the last successful comparison instruction returgedleoraddgt , addl e, and so on.

This condition code, in ARM, is codified into a 4-bit fietnd, and it is not necessary to write
one instruction syntax for each one of the 16 different seffighrough syntax overload). The user
may define a map (Section 2.2 on page 9) whose symbols nam#éseadéferent condition codes,
in isolation €q, ne, etc...) and values corresponding to its codification iotond field. When
writing the instruction assembly syntax, it is possible &fite an operand identifier even before any
white spaces, composing the mnemonic. Figure 2.14 illtestrinis concept through code. The code
will provide enough language parsing information to geteean assembler capable of recognizing
instructions like in Figure 2.15.

Figure 2.14 also shows a different form of defining operarehitiers, in brackets. Although
operand identifiers commonly may be perfectly describetiout brackets, its use is important when
it is necessary to isolate the operand identifier from otlaesipg strings, like the remainirggatadd’s
second syntax. This is done for illustrative purposes,iasthould be described as a second mnemonic
suffix, using a map with two symbols (striig" and empty string "). As the alert reader will already
have observed, this also illustrates an use of nullable sigrfempty string as symbol name in the map),
an interesting tool when applied to mnemonic suffixes.

1 ac.asm_map reg {

2 "r”[0..15] = [0..15];
3}

4 ac_asm_map cond {

5 "eq” = 0;

6 "ne” = 1;

7 "cs”, "hs” = 2;

8 "cc”, "lo” = 3;

9 I« continues ... x/
10 = 15;

11}

=
w N

ISA_CTOR (example) {
add .set_asm (”add%cond %reg %reg %reg”, cond, opl, op2, op3, s=0);
add .set_asm ("add%[cond]s %reg %reg %reg”, cond, opl, op2, op3, s=1);
add .set_decoder ();

}

S
N o o b~

Figure 2.14: Example of mnemonic suffixes specificatiort,ljks any other regular instruction operand

2.4 Synthetic Instructions

Synthetic instructions (aka pseudo instructions) aretetelbased on another previously defined native
instructions. ArchC provides theseudo_i nst r construct for the definition of pseudo instructions.

20

2.4. Synthetic Instructions

addeq r1, r0O, r5
addcc rl15, r4, r5
add rO, rl1, r3
addlos r0, r0, r2

A w N P

Figure 2.15: Example of instructions recognized by geeerassembler of Figure 2.14

The first step in describing a synthetic instruction is tolalecits syntax. Note that only the syntax
string is necessary. The operand field is not specified shme@teudo instruction does not haeal
fields. Following the syntax string, a list of native insttioas (those defined withet _asmn) is spec-
ified. Parameters from the pseudo instruction syntax carsed by the native ones by employing the
%character and a number indicating which parameter from $kegio must be replaced (similar to the
macr o construct used by GNU assemblers).

Figure 2.16 shows two definitions of synthetic instructiossd in the MIPS model. The first one,
lines 1 to 4, creates the pseudo instructibre which uses 3 operands. Itis defined based on two native
instructions (lines 2 and 3k! t andbeq. The characte¥sindicates a substitution of parameters. For
example, the instructiosl t in line 2 uses the litergat as the first operand, the secodd] is the
string associated with the seco¥deqg in the pseudo instruction definition, and the third oper&s@) (
is associated with the first pseudo instruction operand.

pseudo_instr(”"ble %reg, %reg, %exp”){
"slt $at, %1, %07
"beq $at, $zero, %27

}

pseudo_instr ("mul %reg, %reg, %mm”) {
"addiu $at, $zero, %27
"mult %1, $at”;
"mflo %0";

}

© 00 N O g b~ W N P

=
o

Figure 2.16: Defining synthetic instructions (MIPS)

The second synthetic instruction definition, lines 6 to 18ates the instructiamul with 3 operands.
When an instruction such amul $2, $3, 10 is found by the generated assembiler, it will be ex-
panded into the following three:

1 addiu $at, $zero, 10
2 mult $3, $at
3 mflo $2

21

2.5. Comment Characters

2.5 Comment Characters

There are two sets of characters representing specialatBesan the assembly source code. They are
comment characters delimiters (anything after this chiardo the end of the line is ignored) and line
comment characters (when put at the beginning of the lirewthole line is ignored).

If not specified, the generated assembler will gsend! as comment characters a#das line
comment character. As an example, consider the ARM asseniitdronly its comment character
is different, but using? will corrupt the assembler, since any immediate operandt inegrefixed
with #. In fact, # may be used as comment character in ARM assembly source dmdesnly at
the beginning of a line (ignoring the whole line). To spegifyur own comment character sets, use
assenbl er. set _conmment andassenbl er. set | i ne_.conment constructs. They are used
underl SA_ CTORscope, likeset _asmandset _decoder . To complete our example, see how this is
done in the ARM model:

1 ISA.CTOR(xscale) {

2 I+ Defining assemblerspecific constraintssx/

3 assemblerset_.comment("@");

4 assemblerset_line_.comment ("@#");

5

6 [/x Instructions syntax descriptions goes next .x/
;

8 }

Figure 2.17: Defining assembler comment character setge iARM model

22

Chapter 3

Binary Utility Generation

This chapter describes the binary utilities generatiort@se and how to use the generated tools. The
binary utility generator originally runs on a GNU/Linux cpatible system (successful installation
on Cygwin system has also been reported). Before startinge male to have at least the following
packages and their corresponding versions installed onsy@tiem:

e Bison2.1
Flex2.5.4

GCC3.4.6

GNU Binutils 2.15 source code

GNU Gdb 6.4 source code

3.1 Generation Process

There are three main steps required to generate the binditiesit assuming a processor model is
already finished:

1. Build the ArchC package;
2. Generate the binary tools source code through the biridity generator tool;

3. Build the binary utility tools.

3.1.1 Building the ArchC package

First get the latest version of the ArchC package on our wel§siwv. ar chc. or g) and the source
code for the binutils and gdb (if you intend to generate dgeus). Unpack the packages on a directory
of your choice. To ease the explanation, let's say the faliguwshell variablesi{fash) have being
defined:

Bl NUTI LSDI R- directory where the binutils source code has been unpacked

23

3.1. Generation Process

GDBDI R - directory where the gdb source code has been unpackedqggtional);
DESTDI R— directory where the binary tools should be generated;

ACDI R - directory where the ArchC source code has been unpacked.
To define a shell variable dmash, use theexport command. For instance:
$ export BI NUTILSDI R=/ home/ myuser/binutils

will define theBI NUTI LSDI Rvariable to béd home/ myuser/ bi nutil s.
The ArchC package uses the well-known GNU autotools framlew®o compile it, you need to
issue the following commands:

$ $ACDI R/ configure --with-binutils=$BI NUTILSDIR --w t h-gdb=$GDBDI R
$ make
$ make install

This will install the ArchC package ohusr /1 ocal by default. To change the target directory
you can use the- pr ef i x command of theonf i gur e utility. Inside the target directory there will
be a subdirectory namédm n where the generator tools will be placed. Make sure to ireltdn your
path so that the binary files can be used in the next steps.

3.1.2 Generating the binary utility source code

This process will use the binary utility generator to creée binary utilities source code and insert
them into the binutils source tree where they can be compilad script which automates this process
is namedachi ngen. sh and is installed by the ArchC package as described in se8tibf.

Figure 3.1 shows the command line arguments forabbi ngen. sh script, showed if option
- his used. The only required argument is the ArchC main sounde €ile name. You can give the
architecture a specific name with tha option. Note that the architecture name must be unique. If
the name is already used inside the binutils package thet suitl show a warning message and ask
for permission before proceeding with the installatione¥h option can be used to force the script
to build the binary tools. If it is not used, you need to do itrmally as explained in section 3.1.3.
With the- ¢ option, the script only generates the source files, but doeattempt to copy them to the
binutils tree and compile. This option is mainly used foragpurposes.

3.1.3 Building the binary utilities

If the option- i was not used in thacbi ngen. sh script as explained in section 3.1.2, you still need
to build the binary tools. This process is similar to builgliany other binary tools from the binutils
package, meaning that will use the autotools framework. fidr¢ commands perform the required
action:

$ $BI NUTI LSDI R/ confi gure --prefix=$DESTDIR - -t ar get =<ar ch- nane>
$ make
$ make install

24

3.2. The generated tools

Usage: acbingen.sh [optionsimodel-file >

Create binary utilities source files and optionally buildiem.

Options:
—a<nhame> sets the architecture name (if omitted, it defaults to
<model-file > without the extension)

—i<dir> build and install the binary utilities in directorydir>
NOTE: <dir> —MUST- be an absolute path

—C only create the files, do not copy to binutils tree

—h print this help

-V print version number

Report bugs and patches to ArchC Team.

Figure 3.1:acbi ngen. sh command line options

Note thatar ch- nane is the name you gave to the architecture. This can either éé&tbhC

model name or a specific name passed through gheption to the generator script. The same process
must be repeated for the gdb if its generation is required.

3.2 The generated tools

The tools generated by ArchC are standard binutils and galls.tal'his means that the machine in-
dependent command line options supported by conventiondd are still supported by the generated
tools. The generated assembler also extends the commaraplilons with the following:

-i,--insensitive-syns
the assembler considers symbolic names as being caseiiiveens

-S,--sensitive-mmo
the assembler considers mnemonic strings as being castvgens

These options changes the default behavior of conventinnatils assembler. There is a third

command line option called- ar chc which displays the ArchC version used to generate the tabl an
the architecture name.

25

3.2. The generated tools

26

Chapter 4
Dynamic Linking Support

The ArchC generated binary tools includelynamic linkingenabled linker, that is, capable of pro-
ducing shared libraries. Because this is still considereddsanced feature for embedded platforms,
the processor model do not need to specify extra informatguired for dynamic linking. If these
information are not specified, ArchC will not complain andlstill generate a linker, although this
linker will fail to produce shared libraries if the necessaformation is absent.

Note that dynamic linking support is often not needed. If ywa building an ArchC processor
model, you may safely skip this information. Shared litearare necessary, however, if you use the
linker to compile the dynamic version of glibc targeting yguocessor.

4.1 Specifying information for dynamic linking

In order to produce a correct dynamic linking capable linikeu need to add two files to your processor
model. The first onejynam c_i nf 0. ac, contains regular C array declarations and definitions used
by the linker when performing dynamic linking related tasks

/* The name of the dynamic interpreter. This is put in the .interp
section. */
#defi ne ELF_DYNAM C | NTERPRETER “/fusr/lib/ld. so.1"

#def i ne PLT_HEADER SI ZE 16

[+ The size in bytes of an entry in the procedure |inkage table. */
#define PLT_ENTRY_SI ZE 16

[+ The first entry in a procedure |linkage table |ooks |ike
this. It is set up so that any shared |ibrary function that is
call ed before the relocation has been set up calls the dynamc
l'inker first. «/
ac_pltO_entry (PLT_HEADER SIZE / 4) =
{
0xe52de004, /* str lr, [sp, #-4]! =x/
Oxe59f e010, /= I dr lr, [pc, #16] =/

27

4.1. Specifying information for dynamic linking

0Oxe08f e00e, / * add lr, pc, Ir * [
Oxe5bef 008,/ |dr pc, [Ir, #8]! «/

b

/* Subsequent entries in a procedure |inkage table | ook |ike
this. =*/

ac_plt_entry (PLT_ENTRY_SIZE /| 4) =
{

Oxe28f c600, / * add I p, pc, #NN */

Oxe28ccal00,/* add ip, ip, #NN */

Oxe5bcf 000,/ Idr pc, [ip, #NN]! =/

0x00000000, / * unused =*/

'
#define ac_nodel can_patch_plt

The example above was extracted from the ARM model. In this yitel need to specify the
dynamic loader (typically a path to the systémd. so), although the ArchC simulator ELF loader
itself ignores this information, as described later. Thigg is used only if the produced software is
intended to be deployed on a real platform, running the Lioyperating system.

Also, you need to specify the contents of the PLT table, wlaiah completely target dependent.
Note that we specify the size in bytes, and the contents asanaf words, which codifies instructions.
You may not represent the table directly in assembly syraaa(inotated in the comment area) because
at this stage, the assembler is not yet available. You mayyse-existent assembler to codify the
necessary instructions and then ob¢ dunp, available in théi nut i | s package, to dump the object
file contents and discover the hexadecimal code for theucistms.

It is important that you study how the PLT is assembled in yolatform. This information is
described in the processor ABI.

The second file is theynam c_pat ch. ac, and contains C function definitions, including C
code, that instructs the linker specifically how the PLT dtidae patched in your architecture. This
information also is target dependent, and each ABI definegafgpway of patching a PLT entry in
order to encode the position of the related GOT entry. Belalwasxample of the ARM ABI.

/* ARM Model - Dynam c |inking hel per functions x/

/* lnput: got_displacenent, plt_address */
ac_patch_pltO_entry()

{
[+ Cal cul ate the displacenent between the PLT slot and
&GOT[0] . =/
got _di spl acenent -= 16;

/= The di spl acenent val ue goes in the otherw se-unused | ast word
of the second entry. =/

28

4.2. The dynamic linker and loader

/+* 32 bits, location to wite, value to wite */
ac_patch_bits (32, plt_address + 28, got _displacenent);
}

/* lnput: got _displacenent, plt_offset, plt_address */
ac_patch_plt_entry()

{
unsigned int entry copy[PLT _ENTRY_SI ZE / 4];

/ = got _di spl acenent has the displacenent between this PLT entry
and its related GOT entry x/
got displacenent -=8; /+~ W’Ill| use it PCrelative, and ARM
pc-relative is PC + 8 */

/* Get a copy of the plt entry instructions already stored there */
entry_copy| 0] (unsigned int) ac_get_bits(32, plt_address

+ plt_offset + 0);
(unsigned int) ac_get bits(32, plt_address

+ plt_offset + 4);
(unsigned int) ac_get_bits(32, plt_address

+ plt_offset + 8);

entry_copy|[1]

entry_copy| 2]

/* Rel ocate these plt entry instructions using ARMrotation
nmechanismto store large i medi ates */

entry _copy[O] |= ((got_displacenent & 0xO0ff00000) >> 20);
entry _copy[1l] |= ((got _displacenent & 0x000ff000) >> 12);
entry _copy[2] |= (got_displacenent & 0x00000fff);

/[~ Wite back the result =/

ac_patch_bits(32, plt_address + plt_offset + 0, entry_copy[0]);
ac_patch _bits(32, plt_address + plt_offset + 4, entry _copy[1]);
ac_patch _bits(32, plt_address + plt_offset + 8, entry _copy[2]);

Please note that you must calculate the target GOT addriessthie input parametegot _di spl acenent
plt of fset andpl t _addr ess. In order to retrieve the codified instructions from the Phablé,
use the C functioac _get _bi t s() as in the example. When writing back the patched instroctith
the calculated address, use the C functenpat ch_bi t s().

4.2 The dynamic linker and loader

When shared libraries and code linked against them are useduar simulator is not sufficient to
load this special code and begin platform simulation. Tores<his problem, the ArchC interpreted

29

4.3. Relocation code conversion tool

This file contains a one-to-one mappi hg between ARM ABI rel ocation
codes and ArchC s generated |inker relocation codes. Its intended
use is to performa conversion using the acrel convert tool.

R_ARM RELATI VE
23 = 1

R_ARM COPY

20 = 2

R_ARM JUWPSLOT
22 = 3

R_ARM GLOBDAT
21 = 4

R_ARM ABS32

2 =7

R_ARM REL32

3 = 10

End of file

Figure 4.1: aatld.relmap file used in the ARM model.

simulator loader was enhanced to load ELF executables, tsnshared libraries dependencies and
resolve all symbol references (i.e., when the executable adibrary function and the address must
be resolved depending on the shared library load positiBagause of all these activities involved in
the loading of a dynamically linked executable, the compbnesponsible for them is calletynamic
linker and loader since it is not just a regular loader.

If the shared libraries were produced by a third party linkiee relocation codes used may not
be compliant with the relocation codes used by the ArchCelinkn order to support loading these
libraries, you can write a model addend caléexdr t | d. r el map (the relocation map for ArchC run-
time linker and loader). This is a simple text file with direelations converting target ABI relocation
codes to ArchC’s version. Figure 4.1 shows the ARM example.@ndft there are ARM ABI relo-
cation codes, while on the right there are ArchC linker ratmmn codes, and the equal sign express the
equivalence between them.

4.3 Relocation code conversion tool

When necessary, you may also wser el convert, a simple tool that reads a map (in the form
presented in Figure 4.1, but no restricted to a specific filmeg)aand converts relocation codes from
object files.

30

