litixml: A source extractor PPV
for lightweight literate Dew Mexico Tech
programming

John W. Shipman
2011-04-12 19:15

Abstract

Describes a script that extracts the source code from a program presented in lightweight literate
programming form, using the DocBook documentation toolchain, the Python programming
language, and the 1xml module for XML processing.

This publication is available in Web form' and also as a PDF document”. Please forward any
comments to tcc-doc@nmt. edu.

Table of Contents

Lo INEPOAUCHION . oeiinitiii e e ettt e e e et e e e ans 1
2. Encoding the literate programccooiiiiiiiiiiii 2
3. Operation of the litIXMI scriptccooooo 3
3.1. Suggested MaKeTile rulescc.cooiiiiiiiiiiiiii 4
4. Literate exposition of the litlxml program itselfccccciiiiiiiiiiiiiiiiiii 4
4.1, DeSIZIN TMOLES ..evvviiiiiiiiiiiiii e 4
4.2. The PIOIOZUE «...ueii 5
4.3. ModUles TeqUIreduuuiuiiiiiiiiiiiiiiiiiii i 5
4.4, Global deClarationsouviuiiniinii et 5
4.5. Verification fUNCHONSuivniiiiiie et ans 6
4.6. The Main PIOZTAIIuuiiiiiiiiiiiiiiiiii bbb easeeaaeeeeas 6
4.7.processFile(): Process one input filecccccommmiiiiiiiiiieiiimiiiiiiiieeeinniiieeeeeee e 7
4.8. processDOC(): Process one dOCUMENt TrEEeeviiineeiiiiieeeiiiieeeeiiieeeeeiireeeeeieeeeaaenns 8
49. processELt(): Process one literate elementccoeeeeeeiiiiiiiiiiieeeeeeiiiiiiiiee e e eeeeevieeens 10
4.10. EPIlOgUE ...ovviiiiiii 11

1. Introduction

Programs must be written for people to read, and only incidentally for machines to

execute.
— Structure and interpretation of computer programs, Harold Abelson and Gerald Jay
Sussman, p. xvii

1 http:/ /www.nmt.edu/tcc/help/lang/python/examples/litlxml/
2 http:/ /www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.pdf

New Mexico Tech Computer Center litixml: A literate source extractor 1

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.pdf
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.pdf

By literate programming, we mean programs that are intended to be readable. The idea comes from Dr.
Donald E. Knuth and has a long history. For background, see the Literate Programming web site’.

Knuth's cweb system interwove narrative about the program with the actual source code of the program.
One then runs a tool named ctangle to generate the source code an a different tool named cweave
to generate the online documentation.

The present effort was inspired by similar efforts of Dr. Allan M. Stavely4, who suggested using DocBook
as a general framework for literate programming. Refer to Writing documentation with DocBook-XML 4.3
for more information on DocBook.

Stavely's idea was to use DocBook's existing programlisting element to hold the program fragments,
adding a role="executable' attribute to that element to distinguish executable source code from
other uses of the programlisting element. This means that the regular processing of DocBook into
HTML and PDF forms is the equivalent of Knuth's cweave step.

The remaining half of the problem, the extraction of the executable code from the DocBook source file,
is the subject of this document.

The litlxml script is embedded in this document. Relevant online files include:
¢ The litlxml script itself.®
e The DocBook source for this document.”

See also the author's literate programming site® for more discussion of the practice and several dozen
examples in assorted languages and sizes.

2. Encoding the literate program

One limitation of Stavely's approach was that it assembled all the executable code fragments into a
single file for execution. But the literate exposition of a C program, for example, might require the dis-
cussion of two source files, a header file named f00.h and a code file named foo. c. We get around
this problem by using the role attribute of the programlisting element in a more flexible way.

The general form of a literate program source is a valid DocBook-XML file, except that each fragment
of executable code is wrapped in a programlisting element with this general format:

<programlisting role='outFile:F'>
(source text)
</programlisting>

where F is the name of the output file to which that source text should be written.

We can then handle the above example by using a role="outFile:foo.h' attribute on fragments
of the header fileand a role="outFile: foo.c" attribute on fragments of the code file. For example:

<programlisting role='outFile:foo.h'>
(stuff to be written to foo.h)
</programlisting>

<programlisting role='outFile:foo.c'>

8 http:/ /www.literateprogramming.com/

4 http:/ /www.nmt.edu/~al/

5 http:/ /www.nmt.edu/tcc/help/pubs/docbook43 /

6 http:/ /www.nmt.edu/tcc/help/lang/python/examples /litlxml/litlxml

7 http:/ /www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.xml
8 http:/ /www.nmt.edu/~shipman/soft/litprog/

2 litixml: A literate source extractor New Mexico Tech Computer Center

http://www.literateprogramming.com/
http://www.nmt.edu/~al/
http://www.nmt.edu/tcc/help/pubs/docbook43/
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.xml
http://www.nmt.edu/~shipman/soft/litprog/
http://www.literateprogramming.com/
http://www.nmt.edu/~al/
http://www.nmt.edu/tcc/help/pubs/docbook43/
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/litlxml.xml
http://www.nmt.edu/~shipman/soft/litprog/

(stuff to be written to foo.c)
</programlisting>

Of course, either of those files can be broken into many fragments spread throughout the document.
They can even be intermingled.

There are two important refinements to mention:

* You can use a CDATA section to enclose the source fragment. This XML convention uses special de-
limiters to tell processing programs not to mess with anything between “<! [CDATA[” and “]]>".
This is especially convenient for enclosing XML fragments, because you can use “<” and “>" characters
without having to escape them.

* If your text is not enclosed in a CDATA section, you can use DocBook tags inside the programlisting
element.

For example, you can enclose a function call inside a Link element that links to the definition of that
function. In both the HTML and PDF generated from the DocBook file, that function name will then
be clickable.

Another element you might want to use inside a code fragment is the 0 element, to label lines of the
code with callouts that are defined later inside DocBook callout elements.

Here's an example of the use of callouts, as it would be encoded in the DocBook source. This is from
the exposition of a schema using Relax NG Compact Format (RNC)’.

<programlisting role='outFile:trails.rnc'>
park = element park

{ attribute name { text }?, <co id='park.name'>
trail* <co id='park.trail'>
}
</programlisting>
<calloutlist>
<callout arearefs='park.name'>
<para>
This optional attribute contains the name of the park.
</para>
</callout>
<callout arearefs='park.trail'>
<para>

The content of a <code>park</code> element
consists of one or more <code>trail</code>
elements.
</para>
</callout>
</calloutlist>

3. Operation of the litlxml script

A script in the Python language extracts the various output files from DocBook source files. Command
line arguments are:

? http:/ /www.nmt.edu/tcc/help/pubs/rnc/

New Mexico Tech Computer Center litlxml: A literate source extractor 3

http://www.nmt.edu/tcc/help/pubs/rnc/
http://www.nmt.edu/tcc/help/pubs/rnc/

litlxml file ...

Each DocBook-XML source file named on the command line is read, and all the programlisting
elements with the correct role attribute are assembled and written to the corresponding files.

3.1. Suggested Makefile rules

If you are using the Unix make utility to build your document and source files, you can add lines to
your Makefile to take care of building the program source files.

The exact rules depend on whether your literate programs are executable or not. We'll assume that both
executable and non-executable programs are produced, and that the variable BASENAME is the name of
your DocBook file minus its “. xml” extension. below.

First, define three variables like this:

MODULES
EXECUTABLES
CODE_TARGETS

ml m2 ...
el e2 ...
$ (EXECUTABLES) $(MODULES)

where m1, m2, and so forth are the names of non-executable files, and €1, €2, and so on are the names
of your executable files.

Then, in the rules part of your Makefile, change the first (default) target to read like this:

all: web pdf code

Add these rules:

code: $(CODE_TARGETS)

$(CODE_TARGETS) : $(BASENAME) . xml
Titlxml $<; \
chmod +x $(EXECUTABLES)

If no executables are produced, change the latter rule to:

$(CODE_TARGETS) : $(BASENAME) .xml
litlxml $<

A model Makefile is included in Writing documentation with DocBook-XML 4.3%.

4. Literate exposition of the litlxml program itself

The litixml program is worth study as an example not only of literate programming but also of how easy
it is to process XML files in Python.

4.1. Design notes

This program has gone through several rewrites as techniques for XML processing in Python have
evolved.

10 http:/ /www.nmt.edu/tcc/help/pubs/docbook43/make-lit.html

4 litixml: A literate source extractor New Mexico Tech Computer Center

http://www.nmt.edu/tcc/help/pubs/docbook43/make-lit.html
http://www.nmt.edu/tcc/help/pubs/docbook43/make-lit.html

The current version uses the Lxm1 package. For more details, see the Python processing with Ixml™. This
package yields much higher performance than earlier approaches.

This program was written using the Cleanroom or zero-defect methodology. The best introduction to
the method is given in Stavely, Allan M., Toward Zero-defect Programming, Addison-Wesley, 1999, ISBN
0-201-38595-3. Also see the author's Cleanroom pages12 for a discussion of methods and dozens of ex-
amples

4.2.The prologue

The script starts with the usual Python prologue. The first line makes the script self-executing. This is
followed by minimal comments pointing to the online form of the literate programming document, and
the Cleanroom intended function for the program as a whole.

litlxml

#!/usr/bin/env python

litlxml: Extract code from literate-programming source files.
Do not edit this file. It is extracted automatically from
the documentation:
http://www.nmt.edu/tcc/help/lang/python/examples/litlxml/
Overall intended function:
[output files named in input files given on the command line
:= code fragments designated for those files
sys.stderr +:= error messages if any]

HoHoHH R HHHHHK

4.3. Modules required

Aside from the standard Python sys module that gives programs access to their standard I/O streams

and command line arguments, the program needs the etree library from the Lxml module.
litlxml

import sys
from lxml import etree

4.4. Global declarations

These manifest constants are defined globally.

PROG_ELT
The element for the programlisting element.
litlxml

H= —
Manifest constants

B o o o e e e o o e e e e e e e e e e e e e e e eeedaoo-
PROG_ELT = "programlisting"

1 http:/ /www.nmt.edu/tcc/help/pubs/pylxml/
12 http:/ /www.nmt.edu/~shipman/soft/clean/

New Mexico Tech Computer Center litlxml: A literate source extractor 5

http://www.nmt.edu/tcc/help/pubs/pylxml/
http://www.nmt.edu/~shipman/soft/clean/
http://www.nmt.edu/tcc/help/pubs/pylxml/
http://www.nmt.edu/~shipman/soft/clean/

ROLE_ATTR

The name of the role attribute.
litlxml

ROLE_ATTR = "role"

ROLE_PREFIX
The prefix of the role attribute that identifies this programlisting element as a code fragment.
litlxml

ROLE PREFIX = "outFile:"

4.5. Verification functions

In the Cleanroom methodology, a verification function is a shorthand notation for describing various
program entities. The author's preference is to use names for these functions that contain a hyphen
(“-"), so that it is clear that these are not Python functions.

Our first verification function is L1it-elt: an XML element that contains literate code.
litlxml

4
It

Verification functions

lit-elt == an XML element whose GID is PROG ELT, and which
has an attribute ROLE ATTR whose value starts with
ROLE PREFIX

Next is the 1it-dest function. This describes the destination file to which a literate fragment is to be

written.
litlxml
o o o o e o e e o o e o e e e e e e e e e e e meeee o
lit-dest(elt) == the part of the ROLE ATTR value after
ROLE PREFIX in a lit-elt

The 1it-content verification function describes the text inside the literate fragment. Note that literate
code can contain XML tags: in some of the author's source code, the DocBook 1ink tag is used so that
the name of a called function or method is a link to the definition of that function or method. However,
the source text should not include any tags.

litlxml

o m e mmmmmm e -
lit-content(elt) == The text content of element (elt) and

any descendants

4¢ __

4.6.The main program

The only thing the main does is iterate over the list of files given as command line arguments, processing
each one in turn by calling Section 4.7, “ processFile(): Process one input file ” (p. 7).
litlxml

- - - - - main

def main():
"""Main program for litlxml."""

6 litixml: A literate source extractor New Mexico Tech Computer Center

#-- 1 --
for inFileName in sys.argv[l:]:
#-- 1 body --
[if inFileName names a readable, valid DocBook XML file ->
output files named in that file := code fragments
designated for those files
sys.stderr +:= error messages from processing that file,
if any
else ->
sys.stderr +:= error message]
processFile (inFileName)

4.7. processFile(): Process one input file

This function handles all the processing for one DocBook source file.
litlxml

- - - processFile

def processFile (fileName):
"""Process one input file.

[inFileName is a string ->
if inFileName names a readable, valid DocBook XML file ->
output files named in lit-elts from that file :=
lit-content of those lit-elts

sys.stderr +:= error messages from processing that file,
if any
else ->
sys.stderr +:= error message |

The fragments in a given file may be directed to several different output files. To keep track of the output
files we have seen so far, we'll use a dictionary named fileMap, whose keys are file names, and each
corresponding value is an open, writeable file handle for that file. We'll write the text to each file as it

is encountered, and leave all the files open until the end, at which point we'll close them all.
litlxml

#-- 1 --
fileMap = {}

Next we call the et ree package to parse the XML file and make it into an element tree. This may raise
either of two exceptions:

¢ If the file can't even be opened, it will raise an IOError exception.
¢ If the file is not well-formed XML, the et ree package will raise its XMLSyntaxError exception.

litlxml

#-- 2 --

[if fileName names a readable, valid XML file ->
doc := an ElementTree representing that file
else ->

sys.stderr +:= error message(s)

New Mexico Tech Computer Center litixml: A literate source extractor 7

return]
try:
doc = etree.parse (fileName)
except IOError, detail:
print >>sys.stderr, ("*** I/0 error opening 'S%s': %s" %
(fileName, detail))
return
except etree.XMLSyntaxError, detail:
print >>sys.stderr, ("*** Syntax error opening '%s': %s" %
(fileName, detail))

return

Now that doc contains the document tree, send it off for processing to Section 4.8, “processDoc():

Process one document tree” (p. 8).
litlxml

#-- 3 --
[(doc is an etree Document) and

(fileMap is a dictionary whose keys are file names and

each corresponding value is a writeable file handle

for that file) ->

fileMap := fileMap with new file names added from

lit-dests in doc

file handles in fileMap := 1lit-content of those files
sys.stderr +:= error messages from processing doc,

if any]

processDoc (fileMap, doc)

Finally, we close all the output files that are values in the fileMap dictionary.
litlxml

Foo) oo
[fileMap is a dictionary whose values are file objects ->
those values := those values, closed]

for outFile in fileMap.values():
outFile.close()

4.8. processDoc(): Process one document tree

Given a document tree, this function finds all the literate program elements, attempts to open output
files for them if they are not already open, and writes the code fragments to those files.
litlxml

- - - process Doc

def processDoc (fileMap, doc):
"""Process one document tree

[(fileMap is a dictionary whose keys are file names and
each corresponding value is a writeable file handle
for that file) and
(doc is an etree.ElementTree) ->

fileMap := fileMap with new output files added from
lit-elts in doc whose lit-dests can be opened anew
files named in fileMap := 1lit-content of those files

8 litixml: A literate source extractor New Mexico Tech Computer Center

sys.stderr +:= error messages for lit-dests that
cannot be opened for output, if any]

To find the root element of doc, we use its .getroot () method. Then we use an XPath expression to

find all the PROG_ELT elements. The XPath expression "//programlisting" means to find all pro-

gramlisting elements no matter where they are in the tree; it returns a list of matching elements.
litlxml

#-- 1 --

[eltList := a list of all the PROG _ELT elements in doc,
in document order]

root = doc.getroot()

eltList = root.xpath ("//" + PROG_ELT)

For each potentially literate element, we look to see if it has a ROLE_ATTR attribute, and if so, whether
that attribute's value starts with ROLE PREFIX. If so, it is a literate element, and is sent for processing
to Section 4.9, “processELt (): Process one literate element” (p. 10).

litlxml

#-- 2 --
[fileMap := fileMap with new file names added from lit-dests
in eltList whose lit-dest files could be opened
files named in fileMap := 1lit-content of those files
sys.stderr +:= error messages from failures to open
those files, if any]
or elt in eltlList:
#-- 2 body --
[if (elt is a lit-elt) and
(lit-dest(elt) is a key in fileMap) ->
that value from fileMap +:= T1lit-content(elt)
else if (elt is a lit-elt) and
(lit-dest(elt) is not a key in fileMap) and
(a new file named lit-dest(elt) can be opened for
writing) ->
fileMap[lit-dest(elt)] := that new file
that new file +:= 1lit-content(elt)
else if (elt is a lit-elt) and
(lit-dest(elt) is not a key in fileMap) and
(a new file named lit-dest(elt) cannot be opened for
writing) ->
sys.stderr +:= error message
else -> 1]

— H H H

HHEHHHH IR HR

Several conditions must be met for a literate element. There must be a ROLE_ATTR attribute; if not,
trying to extract the element's .attrib dictionary's value will raise KeyError. If there is such an at-
tribute, it must start with ROLE_PREFIX; if it does, the output file name is the rest of the attribute after

that prefix.
litlxml
try:
attrValue = elt.attrib[ROLE ATTR]
if attrValue.startswith (ROLE PREFIX):
outName = attrValue[len(ROLE PREFIX):]

processElt (fileMap, outName, elt)

New Mexico Tech Computer Center litixml: A literate source extractor 9

except KeyError:
pass

4.9. processELlt(): Process one literate element

This function takes three arguments:

1. The fileMap is the dictionary whose keys are the names of output files we've already seen, and each
corresponding value is a writeable file handle for that file.

2. The outName is the name of the output file.
3. The elt is the actual literate element, as an etree.Element instance.

litlxml

- - - processELlt

def processElt (fileMap, outName, elt):
"""Process one element that may be literate.

[(fileMap is a dictionary whose keys are file names and
each corresponding value is a writeable file handle
for that file) and
(outName is a file name as a string) and
(elt is an etree.Element) ->

if fileMap has a key (outName) ->
fileMap[outName] +:= text of elt
else if outName can be opened new for writing ->

fileMap[outName] := that file, so opened
that file := text of elt

else ->
sys.stderr +:= error message(s)]

First we check to see if this is a new output file. If so, we try to open it for writing. This can fail, in which
case we'll need to send an error message to the standard error stream, and return prematurely.
litlxml

#-- 1 --
[if outName is a key of fileMap ->
I
else if outName can be opened new for writing ->
fileMap[outName] := that file, so opened
else ->
sys.stderr +:= error message(s)
return]
if not fileMap.has key(outName):
try:
fileMap[outName] = open (outName, "w")
except IOError, detail:
print >>sys.stderr, ("*** Can't open '%s': %s" %
(outName, detail))
return

10

litixml: A literate source extractor New Mexico Tech Computer Center

At this point we have a destination file handle, fileMap[outName]. We use another XPath expression
to find all the text descendants of elt. In this expression, the “descendant-or-self::” partis an
axis specifier that selects elt, its children, its children's children, and so forth all the way to the leaves
of the document tree. The XPath “text()” function selects only text nodes (as opposed to element

nodes).
litlxml
#-- 2 --
[textList := a list of all text descendants of elt]
textList = elt.xpath ("descendant-or-self::text()")
#-- 3 --
[fileMap[outName] +:= elements of textList, concatenated]
fileMap[outName].write ("".join (textList))
4.10. Epilogue

Rather than placing the main at the end of the script, we defined it above (Section 4.6, “The main pro-

gram” (p. 6)) as a function main () so that the code can be presented in top-down order.

The lines below cause main () to be called, assuming that litlxml is the main script. Python sets global

variable name__ tothestring ' main__ ' for the outermost script.

litlxml

#- - - - - epilogue - - - - -

if name == ' main _

main()

New Mexico Tech Computer Center litixml: A literate source extractor

11

12

litixml: A literate source extractor

New Mexico Tech Computer Center

