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level marked by the red line, except occasional spikes which are likely caused by

the clipping.

The results con�rm that the MAP-estimator produces a much higher rate of con-

vergence than the constant step size. Figures ?? and ?? show that the standard

algorithm reaches a steady MSE after approximately n = 2 · 108 1
M

samples. The

MAP estimator reaches the same level of MSE after approximately n = 5 · 107 1
M

samples. This �ts nicely with the theoretical values in Table 2.4.





Chapter 3

Gain Calibration by Using a

Training Sequence

3.1 Calibration Algorithm

This chapter considers a set of interleaved ADCs which multiply the sampled

signal by a corresponding set of unknown Gain factors Gi, i ∈ [1,M ]. A technique

presented in Fu et al. [1998] is somewhat similar to the O�set calibration method

in Chapter 2. By adding a known random binary sequence w2[m] attenuated by

a constant value k to the input signal before sampling, each of the ADC outputs

yi[m] can be described by Equation (3.1) where GD is the Gain factor of the DAC

used to convert the sequence w2[m] to an analog signal.

yi[m] = GA · x((M ·m+ i)Ts) +GDGA · kw2[m], i ∈ 1..M (3.1)

It is worth noting that the sequence w2[m], as with chopping, merely needs to

change at a frequency Fs
M
. The random training sequencek · w2[m] can be iden-

tical for each subchannel signal yi[m], as long as the sequence embedded in each

individual subchannel remains uncorrelated.

19
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Once the random binary training sequence is embedded in the input signal, the

Gain factor of each ADC can be independently determined by means of the error

signals εi[m] given by Equation (3.2).

εi[m] = (yi[m] · Ĝi[m]− k · w2[m])w2[m] (3.2)

Some trace of w2[m] will be present in εi[m] if the corresponding Gain estimate

Ĝi[m] is not properly estimated. This error signal can be used by a simple LMS

algorithm, see J. G. Proakis [2008], where the values Ĝi[m] are updated according

to Equation (3.3) with µG denoting the step size.

Ĝi[m+ 1] = Ĝi[m]− εi[m] · µG (3.3)

The algorithm is easily implemented as shown in Figure 3.1, and can be applied

independently to each ADC output.

x(t)
ADC

Gi

−

x̂i[Mm+ i]

1bit DAC

GD

sign(·)

k · w2[m]
−µG

Ĝi[m]

z−1

yi[m]

εi[m]

Figure 3.1: Gain calibration loop using random training sequence
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3.2 Convergence Analysis

In order to further study the behavior of the Gain calibration system, Equations

(3.1), (3.2) and (3.3) are combined to produce Equation (3.4) which includes all

the variables the estimates Ĝi[m] are dependent on.

Ĝi[m+ 1] = µG · k− x[Mm+ i]µGw2[m]Gi · Ĝi[m] + (1−µGkGDGi) · Ĝi[m] (3.4)

The expected value E(Ĝi[m]) determines how Ĝi[m] converges with the inverse

gain factor (GiGD)−1. E(Ĝi[m]) is found by recursively expanding Equation (3.4),

producing a geometric series which ultimately yields Equation (3.5).

E(Ĝi[m]) =
1

GiGD

−
(

1

GiGD

− Ĝi[0]

)
· (1− µGkGDGi)

m (3.5)

As in Chapter 2, the expression in Equation (3.6) for the calibration time is found

by using Equation (3.5) and de�ning |(GDGA)−1 − E(Ĝ[m])| < ∆G as a require-

ment for convergence.

mconv >
log(∆G)− log((GDGi)

−1 − Ĝ[0])

log(1− µGkGDGi)
(3.6)

Similarly, Equations (3.4) and (3.5) are used to acquire Equation (3.7) describing

estimator variance when the estimate is in steady state.

lim
m→∞

(V ar(Ĝi[m])) =
µGσ

2
x

2GDGA − µGk2G2
DG

2
A

(3.7)

As with the O�set estimation in Chapter 2, there is a signi�cant tradeo� be-

tween estimate certainty and the number of samples required for the estimates to

converge.
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3.3 Prior Knowledge Estimation

Assuming the Gain factors have a Gaussian PDF with variance V ar(Gi) = σ2
G, a

MAP Estimator for the Gain factors GiGD can be found by using the error signal

given by Equation (3.2). Given a chopped input signal, the average of the error

signal ε̄(n) can be assumed to have a Gaussian probability distribution described

by Equation (6).

P (ε̄(n)|GDGA) ∼ N (GDGA − 1,
σ2
x√
n

) (3.8)

V ar(GAGD) = 2σ2
G + σ4

G (3.9)

Bayes' Theorem and Equations (6) and (7) combined produce a MAP estimator

for the gain factor GDGi given by equation (8)

Ĝi[m] = max(P ((GiGD)|ε̄i(m))) =
ε̄(n) · n

σ2
x

2σ2
G+σ4

G
+m · k

+ 1 (3.10)

As shown in Appendix A, an approximation to the MAP estomator can be imple-

mented by applying a gradually decreasing step factor

µG[m] =
1

σ2
x

2σ2
G+σ4

G
+m · k

(3.11)

and setting the initial Gain estimates Ĝi[0] = 1. This approximation does not

result in any signi�cant deviation from the actual MAP estimator for the vast

majority of possible Gain mismatches.
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3.4 Quantization

For the purpose of gain calibration, the gain estimate should be in the range

0 ≤ Ĝi[m] = 2. Apart from this deviation from the setup in Chapter 2, �xed-

point values are handled in the same manner. That is to say, yi[m] represented

with by bits, and the Gain estimates are represented with at least by − log2(µG)

bits where log2(µG) ∈ Z.

Assuming the value k deciding the amplitude of the training sequence can be rep-

resented using by bits with �xed point representation, there will be three instances

of added quantization noise. Firstly, sampling the signal x(t) with �nite preci-

sion adds the quantization error νi1[m]. Multiplying the sampled signals yi[m]

with the current Gain estimates will introduce the quantization error νi2[m], and

trunctating the Gain estimates Ĝi[m] to by bits introduces the error νi3[m].

The various sources of quantization error are included in a diagram of the system

in Figure 3.2. For the moment, distortion introduced by O�set calibration which

occurs before Gain calibration is not taken into account.

νi1[m] νi2[m]

x(t)
ADC

Gi

−

x̂i[Mm+ i]

1bit DAC

GD

sign(·)

νi3[m] k · w[m] −µG

Ĝi[m]

z−1

yi[m]

εi[m]

Figure 3.2: Gain calibration loop using random training sequence

The quantization errors νi1[m] and νi2[m] will be white and uncorrelated, with a

uniform PDF P = U(−∆q

2
, ∆q

2
). Since the Gain estimates are also in principle
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found using a very narrowband lowpass �lter, these error sequences will have

minimal e�ect on the Gain estimates.

νi3[m] on the other hand cannot be as easily ignored. While it will still have a

uniform PDF P = U(−∆q

2
, ∆q

2
) initially, it is produced by trunctating the Gain es-

timate, which is far from uncorrelated. Therefore, νi3[m] may cause some deviation

in the Gain estimates.

It is possible to estimate the Gain mismatch because a Gain mismatch produces

an o�set value (GDGi − 1) · k in the signal εi[m]. A limitation to this calibration

method is the minimal o�set which can be registered using by bits to sample the

signal. This limitation is presented by Equation (3.12), which makes it clear that

the precision of the estimate depends not only on the number of bits per sample,

but also the amplitude of the training sequence.

1− ∆q

2k
< GDGiĜi(n) < 1 +

∆q

2k
(3.12)

Because there is such a limitation to the calibration system's sensitivity, it is in-

teresting to �nd a theoretical lower limit for µG where further reduction will have

negligible e�ect on the quality of the reconstructed signal x̂[n]. Based on the limi-

tations described by Equation (3.12) having Gain estimates with signi�cantly less

variance than hypothetical uniformy distributed noise with PDF P ∼ U(−∆q

2k
, ∆q

2k
)

should be unnecessary. Based on this observation, a reasonable range for estimator

variance would be
1

2
· 2−2by

3k2
< E(V ar(Ĝi[m])) <

2−2by

3k2
(3.13)

where E(V ar(Ĝi[m])) ≈ µGσ
2
x

2
is approximately the expected value of Equation

(3.7). By rewriting Equation (3.13) and assuming σ2
x = 0.5 to be a reasonable

maximum signal variance, a suitable value for the step factor µG is described as

2 · 2−2by

3k2
< µG <

4 · 2−2by

3k2
. (3.14)
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3.5 Numerical Simulations

The calibration system is tested multiple times using randomly generated Gain

values. O�set standard deviation is set to σG = 0.05V , and simulations are con-

ducted assuming M = 4 interleaved ADCs. Estimator convergence is tested using

both Additive White Gaussian Noise (AWGN) and sinusoidal signals as input,

and AWGN input is used to �nd more extensive data concerning the Mean Square

Error(MSE) of the estimator given sample number m. A training sequence of

amplitude k = 0.125 was used to test both algorithms.

The approximate MSE sequences are considered in relation to the minimum ob-

tainable MSE according to theory E(Jmin[m]) = 2 · ∆2
q

12
. Multiple di�erent sample

resolutions are used.

Figure 3.3: Mean square error for MAP and �xed step size estimator with

by = 12 and σx = 0.2 with AWGN input
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3.6 Discussion

3.6.1 Stability

This calibration method relies on a known sequence not present in the actual input

signal to calibrate the gain mismatch. In addition, the sequences εi[m]w2[m] used

to update Ĝi([m] will be white and uncorrelated due to the random nature of the

training sequence k ·w2(n). As a result, the algorithm will produce a stable output

regardless of the input signal.

The results in Section 3.5 indicate the algorithm reacts similarly to Gaussian noise

input and sinusoidal input. There are no signs of estimator instability present.

3.6.2 Performance

Figure 3.3 shows the average square error over 50 di�erent and independent sim-

ulations. The average square error is not far removed from the ideal distortion

level marked by the red line, except occasional spikes which are likely caused by

the clipping.

The results con�rm that the MAP-estimator produces a much higher rate of con-

vergence than the constant step size. Figure 3.3 shows that the standard algorithm

reaches a steady MSE after approximately n = 0.6 · 108 samples. The MAP esti-

mator reaches the same level of MSE after approximately n = 0.2 · 108 samples.

3.6.3 Scaling

This algorithm can be applied independently to multiple ADC outputs, and the

calibration loops for each ADC can all use the same training signal so only one

DAC will ever be necessary.

An arrangement where one calibration corrects the mismatch between two ADCs

is suggested in Fu et al. [1998] in order to minimize the required resources, but
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adding more ADCs involves arranging the calibration loops in a cascade which

reduces the overall convergence rate. For large numbers of ADCs, the bene�t to

the reduced amount of arithmetic operations will be minimal.





Chapter 4

Gain Calibration by Comparing

Subchannel Power

4.1 Calibration Algorithm

While embedding a known calibration sequence in the received signal does present

a reliable basis for estimating the Gain mismatches regardless of the input signal,

it does come at a cost. For one, the available sampling range will need to be

reduced in order to accommodate for the calibration sequence. More importantly

however, it completely ignores any information concerning the Gain mismatches

contained within the sampled signal itself.

One approach to calibrating Gain mismatch solely by using the input signal is pre-

sented in Jamal et al. [2002], which applies toM = 2 interleaved ADCs. The main

principle is to �nd the average sample power for each subchannel, and gradually

adjust the amplitude of one until the two power estimates are matched.

With a few modi�cations, the algorithm can be adapted to calibrate gain mismatch

between any arbitrary number M of interleaved ADCs, by using one subchannel

as reference for the other M − 1 subchannels. If we the subchannel signals yi[m]

29
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are as de�ned as

yi[m] = Gi · x((M · n+ i)Ts), i = 1..M , (4.1)

y1[m] can be used as the reference signal, and each of the other signals yi[m], i =

2..M need to be scaled in order to match y1[m].

This can be done for instance by analyzing the M − 1 error sequences de�ned by

Equation (4.2). The mean of each error sequence will present an indication of the

mismatch between G1 and each of the values G2..M . This property can be utilized

to calibrate the gain mismatch by means of the algorithm in Equation (4.3), where

µG is a su�ciently small step size to ensure the estimate will converge with the

desired value. An indication of the mismatch between G1 and each of the Gain

factors Gi, i ∈ 2..M can be given by

εi[m] = y2
1[m]− (yi[m] · Ĝi[m])2, i = 2..M . (4.2)

While εi[m] can vary greatly, the expected value of εi[m] will be proportional to

G2
1−G2

i ·Ĝ2
i [m], i ∈ 2..M . Thus, updating the estimates Ĝi[m], i ∈ 2..M according

to the function

Ĝi[m+ 1] = Ĝ[m] + µG · εi[m], i = 2..M (4.3)

will over time produce a stable set of estimates, assuming the step size µG is

su�ciently small.

Ideally, each estimate Ĝi[m] should converge with G1

Gi
, resulting in all subchannels

being uniformly scaled to match G1 as the number of samples n available becomes

su�ciently large. As the estimates Ĝi[m] approach the ideal values, the expected

value of εi[m] in Equation (4.2) will approach zero.

As a point of interest, the main principle of the calibration algorithm should not

be altered if the sequence εi[m] is instead given as

εi[m] = |y1[m]| − |yi[m]| · Ĝi[m], i ∈ 2..M . (4.4)
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The expected values of εi[m] will now be proportional to G1−Gi · Ĝi[m], i ∈ 2..M ,

which ultimately results in the same general behavior for the calibration algo-

rithm. Because squaring the values of yi[m] is a much more demanding arithmetic

operation than simply taking the absolute value, substituting Equation (4.2) with

Equation (4.4) may be desirable.

Figure 4.1 shows an implementation of the calibration algorithm in Equation 4.3

with the addition of a set of �lters not previously discussed. The �lters H(ω) are

needed in order to remove unwanted signal components prior to calibration.

y1[m]
H(ω)

v1[m]
(·)2 or | · |

y2[m]
H(ω)

v2[m]
(·)2 or | · |

+

−
µG

Ĝ2[m]
z−1

yM [m]
H(ω)

vM [m]
(·)2 or | · |

+

−
µG

ĜM [m]
z−1

Figure 4.1: Calibration loop comparing subchannel average power

4.2 Harmful signal components

Because the signals yi[m] ∈ [1,M ] are undersampled versions of the continuous

signal x(nTs), aliasing will be present. This is generally not a problem except
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in the cases where any signal yi[m] contains a signal component with normalized

frequency f = 0 or f = 1
2
. In a system composing of M interleaved ADCs this

applies to the entire set of frequencies described by Equation (4.5).

fk =
k

2M
, k ∈ [0,M ] (4.5)

Given a input signal x(t) = cos(2π · Fs · (f + ∆t)), f ∈ fi, the error sequences in

Equation 4.2 can be described by Equation 4.6.

εi[m] = A2G2
1 · cos2 (πkm+ 2π∆t)

− A2G2
i · cos2

(
πk

(
m+

i− 1

M

)
+ 2π∆t

)
, i ∈ [2,M ]

= A2G2
1 ·
(

1

2
+

1

2
cos(4π∆t)

)
− A2G2

i ·
(

1

2
+

1

2
cos

(
πk
i− 1

M
+ 4π∆t

))
, i ∈ [2,M ] (4.6)

Seeing as the sequences εi[m] in Equation (4.6) may be constant at any value be-

tween A2G2
1 and −A2G2

i regardless of m, it is a extremely poor basis for estimating

the Gain mismatch.

To avoid this problem, all the signals yi[m] should be �ltered to remove any signal

component of normalized frequency given by Equation f = 0 or f = 1
2
. A second

order FIR-�lter H(z) = 0.5 − 0.5z−2 is su�cient, but [Jamal et al., 2002] do

mention the possible bene�t of a notch �lter with a steeper slope of descent.

Since the aforementioned second order FIR �lter has a total cumulative magnitude

response of 1
2
, a lot of potentially useful signal energy will be lost to a varying

degree. To that end it may be worthwhile to consider a more complex IIR-�lter.

A relatively simple �lter with transfer function given by Equation (4.7) has zeros

in z = ±1 and poles in z = ±
√
r, and has a magnitude response as given by

Equation (4.8).
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H(z) =
1 + r

2
· 1− z−2

1− r · z−2
, 0 ≤ r < 1 (4.7)

|H(ω)|2 =
(1 + r)2

4
· 2− 2 cos(2ω)

1 + r2 − 2r · cos(2ω)
≤ 1 (4.8)

By using MATLAB to �nd an approximation to
∫ 2π

0
|H(ω)|2dω for a large number

of di�erent values r, the total cumulative magnitude response of H(z) is found

to be consistent with Equation 4.9. Figure 4.2 shows the magnitude response of

H(z) for di�erent values r.

∫ 2π

0

|H(ω)|2dω =
1

2
+
r

2
(4.9)

Figure 4.2: Magnitude Response of Various Notch Filters

4.3 Convergence Analysis

Finding a de�nitive function describing the convergence is di�cult, because re-

cursively expanding Equation (4.3) quickly becomes an immensely complicated
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expression. However, the expected value E(Ĝi[m]) does o�er some indication as

to what factors e�ect the rate of convergence, as well as proof that the estimate

Ĝi[m] does converge. If the input signal is wide-sense stationary (WSS) and the

notch �lter H(ω) is temporarily disregarded, E(Ĝ[m]) will be given by Equation

(4.10).

E(Ĝi[m+ 1]) = µGσ
2
x · (G2

1 −G2
i · Ĝ2

i [m]) + Ĝ[m] (4.10)

Each iteration will on average modify Ĝi[m] by a amount proportional to the step

size µG, the remaining uncalibrated mismatches, and the signal power σ2
x until

Ĝi[m] converges with G1

Gi
. This suggests that the convergence rate is dependent on

the signal power σ2
x.

On the other hand, recursively expanding the expected value of Equation (4.3)

when εi[m] is given by Equation (4.4) produces a geometric series. Thus, the ex-

pected Gain estimate for a number of available samples m when using the absolute

value of yi[m] will be given by

E(Ĝi[m]) =
G1

Gi

−
(
G1

Gi

− Ĝi[0]

)
(1− µGGiE(|x(t)|))m . (4.11)

In order to conduct a more comprehensive comparison between the system per-

formance with εi[m] given by Equation (4.2) and Equation (4.6) it is desirable to

study the statistical properties of the two di�erent εi[m] sequences.

Seeing as a sine wave with power σ2
x = 1

2
is the most powerful input signal which

can be reasonably expected, choosing parameters according to such an input signal

should ensure

As an example, if the input signal x(t) uncorrelated white uniformly distributed

noise, Figure Something shows the expected Gain estimates for the Estimator in

equation this and that.

By squaring the signals yi[m], a decrease in the power of x(t) will
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4.4 Quantization

The �xed point values in the current Gain calibration method are represented in

the same manner as in Chapter 3. However, both �ltering and squaring the signal

will cause a degree of quantization error.

One added complication to squaring the input signal becomes evident when the

product is truncated to by bits. The output from a multiplier will ideally be 2by

bits, meaning any signal value vi[m] ≤ 2−0.5·by will be rounded o� to zero once

the product is truncated. For weak input signals, this may hinder the estimation

process.

All told, the calibration loops will include six or four cases of rounding, depending

on whether the calibration system is based on squaring or taking the absolute

value of the signal respectively. A diagram showing all the potential instances of

added quantization noise is shown in Figure 4.3.

ν11[m] ν12[m] ν13[m]
y1[m]

H(ω) (·)2 or | · | µG

y2[m]
H(ω) (·)2 or | · |

+

−

ν24[m]
ν21[m] ν22[m] ν23[m]

Ĝ2[m]
z−1

µG

yM [m]
H(ω) (·)2 or | · |

+

−

νM1[m] νM2[m] νM3[m]

ĜM [m]
z−1

Figure 4.3: Calibration loop comparing subchannel average power
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All of the sequences νij[m], i ∈ [1,M ], j 6= 4 can be assumed to be white, uncor-

related and have a uniform PDF P (ν) = U(−∆q

2
, ∆q

2
). νi4[m], i ∈ [2,M ] will be

correlated because the Gain estimate is highly correlated. Initially however, the

PDF of νi4 will also be uniform P (νi4) = U(−∆q

2
, ∆q

2
).

Since calculating the estimator variance is exceptionally di�cult in this case, it

is challenging to �nd the theoretical step size which produces a close to minimal

signal distortion. Hence a suitable value for µG can potentially be found by means

of simulation testing.

4.5 Numerical Simulations

The calibration system is tested multiple times using randomly generated Gain

values. O�set standard deviation is set to σG = 0.05V , and simulations are con-

ducted assuming M = 4 interleaved ADCs. Estimator convergence is tested using

both AWGN and sinusoidal signals as input, and AWGN input is used to �nd

more extensive data concerning the Mean Square Error(MSE) of the estimator

given sample number m.

The approximate MSE sequences are considered in relation to the minimum ob-

tainable MSE according to theory E(Jmin[m]) = 2 · ∆2
q

12
= E((νi1[m] + νi2[m])2).

Multiple di�erent sample resolutions are used, and thus, multiple di�erent step

factors µG.

All the possible permutations of suggested modi�cations are tested, in order to

illustrate their signi�cance. That is to say, estimation based on squaring the

sampled signal and averaging absolute value are both tested with and without

notch �lters.
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4.6 Discussion

4.6.1 Stability

All four possible approaches appear to produce stable estimates Ĝi[m], albeit with

di�erent rates and certainty. The exception is of course when the input signal is

one of the frequencies described by Equation (4.5), in which case the estimates

will remain completely stationary.

4.6.2 Performance

Figures 4.5 and 4.6 illustrate the problem of the convergence rate being dependent

on signal energy. When the input signal is close to f = 0.25 in this case, the

system without a notch �lter will have much less signal power available to

As seen in Figure 4.4, the system does approach the theoretical lower limit for

distortion. There are a few spikes present in the MSE plots, but they are probably

the result of occasional clipping. The advantage to using a notch �lter is also

clearly evident, as it nearly halves the calibration time for the estimate based on

signal power.

4.6.3 Concurrency

Any remaining O�set still present in the signal when this algorithm is used to

estimate Gain mismatch will a�ect the estimate. If the input signal is chopped in

order to safely estimate O�set, any residue O�set will not be removed from the

signal by means of the notch �lters. Therefore, errors in O�set calibration will

directly translate to errors in Gain calibration.
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Figure 4.4: The average MSE of all four versions of the calibration system

over 50 iterations, with σx = 0.2 and AWGN input signal. All the signals are

sampled with by = 12 bits.
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Figure 4.5: Convergence of Absolute value algorithm without notch �lter for

f = 0.24

Figure 4.6: Convergence of Absolute value algorithm with notch �lter for

f = 0.24





Chapter 5

Gain Calibration by Oversampling

Input Signal

A semi-blind more complicated calibration method is presented in Huang and Levy

[2006], and further explored in Huang and Levy [2007]. If the input signal x(t) is

slightly oversampled, there will be some added redundancy to the set of sampled

subchannel signals yi[m], i ∈ 1..M . This redundancy can be exploited in order

to calibrate Gain mismatch, even though Huang and Levy [2006] and [Huang and

Levy, 2007] use it mainly as a tool for calibrating the Timing o�set.

5.1 Spectral Analysis of Sampled Signal

x[n] G1 · ejω
yM y1[m]

G2 · ej2ω
yM y2[m]

GM · ejMω
yM yM [m]

Figure 5.1: Filterbank equivalent of interleaved ADCs

41
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A frequency analysis of the sampled signal is necessary in order to present the

calibration method. If X(ω) is the DTFT of the ideally sampled signal x(nTs),

the vector X(ω) as given by Equation (5.1) consists of the M di�erent aliases

present when x(nTs) is downsampled by a factor M . Additionally, the vector

Y (ω) in Equation (5.2) consists of the DTFT of the set of M subchannel signals

yi[m], i ∈ 1..M .

X(ω) =
[
X( ω

M
) X( ω

M
+ 2π

M
) . . . X( ω

M
+ (M − 1)2π

M
)
]T

(5.1)

Y (ω) =
[
Y1(ω) Y2(ω) . . . YM(ω)

]T
(5.2)

Sampling with interleaved ADCs can be equated to �ltering the discrete-time signal

x[n] through a �lterbank of M allpass �lters with the response Gi · ej(i−1)ω, i ∈

1 . . .M followed by interpolation by a factor M . As such, the vector Y (ω) can be

given by X(ω) as described by Equation (5.3) where the matrix W (ω) is given

by Equation (5.4).

Y (ω) =
1

M
W (ω) ·X(ω) (5.3)

W (ω) =


G1 G1 . . . G1

G2e
j ω
M G2e

j ω+2π
M . . . G2e

j
ω+(M−1)2π

M

...
...

. . .
...

GMe
j(M−1) ω

M GMe
j(M−1)ω+2π

M . . . GMe
j(M−1)

ω+(M−1)2π
M

 (5.4)

To conclude, each subchannel signal yi(n) is the sum of M components each rep-

resenting a fraction of the signal spectrum π
M

wide. Since X(ω) is unknown, it is

not possible to calculate the Gain values.

5.2 Oversampling

Given an unknown input signal x(t) with bandwidth B = (1− α)Fs
2
, the sampled

signal x(nTs) will contain a band |ω| > (1− α)π where spectral energy should be
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zero. Assuming α < 1
M

and M is even, lowpass �ltering each subchannel signal

y(n) with the ideal �lter in Equation (5.5) will produce a signal withM−1 aliases.

HLP (ω) =

 1 , |ω| < α ·Mπ

0 , |ω| > α ·Mπ
(5.5)

V (ω) =


HLP (ω) 0 . . . 0

0 HLP (ω)e−j
ω
M . . . 0

...
...

. . .
...

0 0 . . . HLP (ω)e−j
(M−1)ω

M

Y (ω) (5.6)

Because V (ω) is given by Equation (5.6) and HLP (ω)X( ω
M

+π) = 0 when X(ω) =

0, |ω| > (1 − α)π, the vector V (ω) can be given by Equation (5.7). G is the

diagonal M xM Gain matrix in Equation (5.8), D is the M x (M − 1) pangular

delay matrix in Equation (5.9) and XLP (ω) is the vector of (M − 1) existing alias

components in Equation (5.10).

V (ω) =
1

M
G D XLP (ω) (5.7)

G =


G1 . . . 0
...

. . .
...

0 . . . GM

 (5.8)

D =


1 1 . . . 1

ej
−M+2
M

π ej
−M+4
M

π . . . ej
M−2
M

π

...
...

. . .
...

ej(M−1)−M+2
M

π ej(M−1)−M+4
M

π . . . ej(M−1)M−2
M

π

 (5.9)

XLP (ω) =


HLP (ω)X( ω

M
+ −M+2

M
π)

HLP (ω)X( ω
M

+ −M+4
M

π)
...

HLP (ω)X( ω
M

+ M−2
M

π)

 (5.10)
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The advantage to XLP (ω) consisting of (M − 1) elements is there exists now a

vector c(G) which ful�lls the requirement V T (ω) c = 0. This is possible because

cT ·GD ·1 can be formulated as a set of (M−1) equations with (M−1) unknown

variables.

In cite solving this set of equations is a complicated procedure necessitating the

use of Cramer's rule. However, when calculating the Gain mismatch the prob-

lem becomes much simpler, because every column in D except column M
2
will

always contain the negative of any other value in the column interspersed by

an odd number. Because of the absence of a column in D with the sequence[
1 ejπ . . . ej(M−1)π

]
Equation (5.11) can be deemed valid.

[
1 −1 . . . (−1)M−1

]
D =

[
0 0 . . . 0

]
(5.11)

Taking this into account, the vector c(G) can be any vector consistent with Equa-

tion (5.12), where k is a real constant with any value.

c(G) = k


1
G1

−1
G2

...

(−1)M−1

GM

 (5.12)

5.3 Calibration

By using Gain estimates to �nd an estimate of c(G) an error sequence can be

generated for use in a LMS algorithm. ĉ(Ĝ[m]) is given by Equation (5.13) where

the optimal value of each Gain mismatch estimate is opt(Ĝi[m]) = G1

Gi
, i ∈ 2..M .

ĉ(Ĝ[m]) =
[
1 Ĝ2[m] . . . ĜM [m]

]T
(5.13)

ε[m] = ĉ(Ĝ[m])T V [m] (5.14)
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Using the error signal in Equation (5.14) the Gain mismatch estimates Ĝi[m], i ∈

2..M can be found by updating estimates according to the algorithm in Equation

(5.15), where the step size µG is governs how quickly the Gain mismatch estimates

converge with the actual Gain mismatch.

Ĝi[m+ 1] = Ĝi[m] + (−1)i · vi[m] · ε[m] · µG (5.15)

An implementation of the system is shown in Figure 5.2. The �lters which make up

the �lter bank HLP (ω)e−j
2iπ
M , i ∈ 0..(M−1) can be implemented using fractional

delay FIR �lters, which are explained in [Laakso et al., 1996].

y1(n) y2(n) yM(n)

µG

H
L
P

(ω
)

H
L
P

(ω
)e −

j
ωM

H
L
P

(ω
)e −

j
(M
−

1
)ω

M

(−1)2 (−1)M

z−1 z−1

Ĝ2(n)
c2(Ĝ)

ĜM(n)
cM(Ĝ)

ε(n)

Figure 5.2: Calibration system based on a bandlimited input signal
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5.4 Convergence Analysis

A prerequisite for the calibration system in Figure 5.2 is the presence of signal

power in the subchannel signals yi[m], i ∈ [1,M ] in the band 0 < f < M · α.

Otherwise, the elements in V (ω) will not contain spectral power at all, resulting

in a absence of information that can be used to estimate Gain mismatches.

The frequency bands of the oversampled input signal which are not blocked by the

�lters HLP once it has been downsampled by a factor M , are given by Equation

(5.16).

f ∈



|f | < α

2
M
− α < |f | < 2

M
+ α

...

M−2
M
− α < |f | < M−2

M
+ α

(5.16)

The frequency band 1−α < f < 1 is reserved for signal images resulting from Gain

mismatch, the presence of which is the basis of estimating the Gain mismatches.

Once M > 2 however, there are instances where certain Gain mismatches may

avoid detection.

If the spectral power of x[n] is contained within only one of the bands given in

Equation (5.16), Gain mismatches of a certain form can cause images of the signal

to manifest in a number of the other bands in Equation (5.16) but not in the band

1− α < f < 14. The consequence such an input signal is that di�erent subsets of

the M subchannels can be calibrated independently of each other.

To take an example; if M = 4 and x(t) is a sine wave with 1
2
− α < 2Fx

Fs
< 1

2
+ α,

Gain mismatch can be expected to cause images of x[n] with f = 2Fx
Fs

+ i
2
, i ∈ [1, 3].

However, if Gain mismatch is only partially calibrated so G1 = G3 · Ĝ3[m] and

G2 · Ĝ2[m] = G4 · Ĝ4[m], there will only be a signal image for f = 2Fx
Fs

+ 1. As

a result, there are now two subsets of Gain estimates which are calibrated within

each subset, but not between the subsets.
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To conclude, in order to guarantee that all Gain estimates are matched with the

same reference value, the input signal x[n] should have components within all the

frequency bands described by Equation (5.16).

5.5 Quantization

Fixed point representation of the various signal values is done in a similar fashion

to Chapters 3 and 4. The signals yi[m] and ε[m] are represented using by bits,

while the estimates Ĝi[m] should be represented using a larger number of bits.

The order of operations in Figure 5.2 will have to be modi�ed somewhat, so the

product of multiplying by the step factor µG is represented in higher precision

than by bits allow.

Assuming truncation does not occur within the fractional delay �lters themselves,

white uncorrelated uniformly distributed noise with PDF P = U(−∆q

2
, ∆q

2
) will be

added to the signals after �ltering, and after multiplying by the vector ĉ(Ĝ[m]).

All these are approximately added together, since the elements in ĉ(Ĝ[m]) re

relatively close to 1. As a consequence, the error signal used for calibration will

be distorted by a noise signal νε[m] with variance given by Equation (5.17).

V ar(νε[m]) ≈ (2M − 1)
∆2
q

12
(5.17)

Seeing as ε[m] forms the basis for all the Gain estimates, it seems prudent to ensure

that νε[m] has minimal e�ect on the Gain estimates. If the quantization errors

added after �ltering is temporarily assumed to not be altered by multiplying by

the vector ĉ(Ĝ[m]), then the e�ect of quantization error on the Gain estimate can

be compared to the signal νG[m] in Equation (5.18).

νG[m] = νε[m] ∗ hG[m] (5.18)



Chapter 5. Oversampling Input Signal 48

hG[m] in Equation (5.18) is the IIR �lter given by Equation (5.19).

hG[m] = µG · (1− µG)m (5.19)

The variance of νG will in this case be given as

V ar(νG[m]) = (2M − 1)
µG∆2

q

24
(5.20)

once the �lter is in steady state. This gives an indication of what value µG must

have for νG[m] to be eclipsed by the quantization error which occurs when the

estimates Ĝi[m] are truncated to by bits. By setting the condition V ar(νG[m]) <
∆2
q

12
, the upper limit for the step size µG is found to be

µG <
2

2M − 1
≈ 1

M
(5.21)

5.6 Numerical Simulations

The calibration system is tested multiple times using randomly generated Gain

values. O�set standard deviation is set to σG = 0.05V , and simulations are con-

ducted assuming M = 4 interleaved ADCs. Estimator convergence is tested using

both AWGN and sinusoidal signals as input, and AWGN input is used to �nd

more extensive data concerning the Mean Square Error(MSE) of the estimator

given sample number m.

The approximate MSE sequences are considered in relation to the minimum ob-

tainable MSE according to theory E(Jmin[m]) = 2 · ∆2
q

12
= E((νi1[m] + νi2[m])2).

Multiple di�erent sample resolutions are used.

The calibration system is implemented using α = 1
2M

denoting the unused fre-

quency band. The fractional �lters are chosen to be 48-tap �lters set to have a

transition band 0.3 < f < 0.5, so the stopband covers all the entire band where

all aliases are present. The fractional delay �lters are found using FIR �lters from
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the firls function in MATLAB, and converting them to fractional delay �lters as

described in Laakso et al. [1996] using no window function.

The system is also tested using input signals with components in only one of the

necessary frequency bands described by Equation (5.16) in order to illustrate the

e�ect this will have on the calibration system.
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Figure 5.3: Average error sequence ε[m] for a AWGN input signal σx = 0.3

Figure 5.4: Convergence of Gain estimates for AWGN input signal σx = 0.3
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Figure 5.5: Convergence of Gain estimates for single sine component f = 0.24,
σ2
x = 0.01.

5.7 Discussion

There is one notable di�erence between the calibration system in Figure 5.2 and

the ones presented in Chapter 3 and 4. The previous calibration systems rely

on generating a error sequence which has an average of zero once Gain mismatch

has been correctly estimated. In contrast, this system generates a error sequence

consequently equal to zero if the Gain estimates are correct.

Ideally, the only distortion present to cause deviation in the error sequence would

be caused by quantization. However, the fractional delay �lters implemented will

not be ideal and deviations in passband ripple as well as nonzero stopband atten-

uation will each add distortion to the error sequence.

The level of deviation in the error sequence will still be very small, permitting a

step size µG many orders of magnitude larger than in previous calibration systems.

As a result, the convergence time of this system will in theory be signi�cantly

reduced.
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As seen in Figure 5.5, the Gain estimates seem to be calibrated halfway. Ĝ3[m]

reaches the correct value, while Ĝ2[m] and Ĝ4[m] reach a correct distance between

each other, but the pair of estimates are skewed. To conclude, complete calibration

will require signal components in all the frequency bands used for calibration.



Chapter 6

Concluding Remarks

6.1 Conclusion

A selection of existing Gain and O�set calibration algorithms have been studied.

These consist of a simple averaging algorithm for O�set calibration, and three

separate Gain calibration algorithms. One Gain calibration algorithm utilizes

a training signal, and a potentially bene�cial modi�cation incorporating prior

knowledge has been suggested. Another algorithm which compares the average

power of two ADC outputs has been studied using multiple possible approaches.

A third algorithm is based on adding redundancy through oversampling the input

signal.

The received signal is assumed to be sampled using �xed-point precision, using any

of a variety of relevant sampling resolutions. Testing of the calibration systems

is done numerically using a variety of input signals consisting of white Gaussian

noise and sinusoidal sequences.

The O�set calibration method is found to perform consistently for all chopped

input signals. Utilizing prior knowledge is shown to improve it's rate of convergence

considerably.

53
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The Gain calibration method utilizing a training sequence is shown to have a

consistent convergence rate regardless of input, but is found to be relatively inef-

�cient as it does not make use of the input signal in any way. Incorporating prior

knowledge estimation did improve the rate of convergence to some extent.

Comparing subchannel power, despite being ine�cient for low-power input signals

can be said to be the most convenient approach studied. It places no restrictions on

the input signal, and though certain input signals components can cause instability,

the absence of these components can be guaranteed using simple low order �lters.

Applying this calibration method to an arbitrary number of interleaved ADCs is

relatively simple, and will not increase the system's degree of complexity.

The system also permits various changes to be made, which can increase per-

formance with a few added arithmetic operations. Most interestingly, using a

relatively simple IIR notch �lter, rather than the FIR �lter initially suggested,

results in a considerably wider frequency band where useful signal components

are used to their full potential. Additionally, by comparing the average absolute

value rather than signal power the convergence rate is less a�ected by input signal

power.

The added redundancy from oversampling the signal when combined with sig-

nals with the necessary spectral content is proven to be incredibly e�cient. It

has a convergence rate many orders of magnitude faster than the two other algo-

rithms. Filter design is crucial for this algorithm however, and a stable output

in all circumstances may require higher order FIR �lters than what is preferable.

While this calibration system can be used to calibrate Gain mismatch for any even

number of interleaved ADCs, reliable estimation is rather dependent on the input

signal ful�lling a number of requirements increasing with the number of ADCs to

be calibrated.

All of the calibration systems have been analyzed with the goal of �nding close to

ideal tuning. The theoretical tuning has been tested extensively using a number of

di�erent sampling resolutions. The tuned calibration systems are shown to achieve
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distortion levels relatively close to the minimal distortion levels theoretically ob-

tainable, while still maintaining a reasonable tracking speed.

6.2 Further Work

The most important subject for further investigation should be how the calibration

system will react to real-world data, not just mathematically generated signals.

The simulations conducted during the course of this thesis are all generated dig-

itally, based on theoretical ADC properties. Whether or not the algorithms will

work su�ciently with received samples from a set of real ADCs remains to be seen.

One property of such digital calibration systems which has not been measured

is the number of logical operations required for each iteration of the adaptive

systems. Since the methods debated are intended for use in small electronic com-

ponents operating at very high clock frequencies, minimizing the amount of logical

operations will be of great concern.
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Study of variable step size

.1 O�set Calibration

In the case where the intent is to estimate O�set in a noisy signal, the basic

calibration algorithm is given as

Â(n+ 1) = y(n) · µA + (1− µA) · Â(n). (1)

µA(n) =
β

α + βn
(2)

Substituting the constant step size µA in Equation (1) with a variable step size

µA(n) given by Equation (2) presents a O�set estimate given by Equation (3a).

By expanding the series, the estimate in Equation (3g) presents itself, which is

identical to that of a MAP estimator.
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Â(n+ 1) = y(n) · β

α + βn
+
(
1− β

α + βn

)
· Â(n) (3a)

= y(n) · β

α + βn
+ y(n− 1) · α + β(n− 1)

α + βn
· β

α + β(n− 1)

+
α + β(n− 1)

α + βn
· α + β(n− 2)

α + β(n− 1)
· Â(n− 1) (3b)

=
n∑
k=1

y(k) · β
α + βk

n∏
i=k+1

α + β(i− 1)

α + βi
+

n∏
i=1

α + β(i− 1)

α + βi
· Â(0) (3c)

n∏
i=k

α + β(i− 1)

α + βi
=
α + β(n− 1)

α + βn

α + β(n− 2)

α + β(n− 1)
· · · α + β(k − 1)

α + β(k)
(3d)

=
α + β(k − 1)

α + βn
(3e)

Â(n+ 1) =
n∑
k=1

y(k) · β
α + βk

· α + βk

α + βn
+

α

α + βn
· Â(0) (3f)

=
n∑
k=1

y(k) · β

α + βn
+ Â(0) · α

α + βn
(3g)

By replacing α and β in Equation (??) with σ2
y and σ

2
A respectively, the calibration

algorithm will produce the MAP estimate of the O�set A. The only problem is

that the signal energy σ2
y is unknown.

If the estimator in Equation (2.9) is assigned a upper bound for σ2
y, it will not

always produce the most likely estimate. On the other hand, it will be stable and

will still converge with the value A a lot faster than Equation (2.3).

.2 Gain Calibration

Equations (3.6) and (3.7) indicate a gradually decreasing step size may be bene-

�cial for this algorithm. As in Chapter 2, we suggest the use of a variable step

size scaled by a factor k−2, given by Equation (4). By using Equation (3.4), the

expected value can be found as given by Equation (5). This equation can not be

simpli�ed to the form of a recognizable estimator, but the deviation from a desired

output can still be found for speci�c values of α and β.
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µG(n) =
1

k2

α

α + βn
(4)

E(Ĝ(n)) =
n∑
i=1

(
β

α + βn

n∏
j=i+1

(
α + β(j −GAGD)

α + βj

))

+ Ĝ(0)
n∏
i=1

(
α + β(i−GAGD)

α + βi

)
(5)

Assuming the Gain factors have a Gaussian PDF with variance V ar(G) = σ2
G, a

MAP Estimator for the Gain factor GAGD can be found by using the error signal

given by Equation (3.2). Given a chopped input signal, the average of the error

signal ε̄(n) can be assumed to have a Gaussian probability distribution described

by Equation (6).

P (ε̄(n)|GDGA) ∼ N (GDGA − 1,
σ2
x√
n

) (6)

V ar(GAGD) = 2σ2
G + σ4

G (7)

Bayes' Theorem and Equations (6) and (7) combined produce a MAP estimator

for the gain factor GDGA given by equation (8)

max(P ((GAGD)|ε̄(n))) =
ε̄(n) · n

σ2
x

2σ2
G+σ4

G
+ n · k2

+ 1 (8)

As in Chapter 2, σ2
x = 0.5 is a reasonable worst-case value which will still produce

an acceptable estimator. It is of interest to compare Equation (8) to Equation (5)

with variable step factor given by Equation (9).

µG(n) =
1

max(σ2
x)

2σ2
G+σ4

G
+ k2 · n

(9)
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Assuming σG = 0.05 1 for bothGA andGD, the standard deviation of the total gain

factor GAGD is equal to σprod =
√

2σ2
G + σ4 ≈ 0.071. Figure 1 shows the output

of Equations (5) and (8) for extreme values of gain mismatch. Figure 2 shows

the maximum deviation of the two functions given the total Gain factor GAGD.

Using Figure 2 and the Gaussian distribution function, we �nd the probability of

a deviation larger than 0.01 to be approximately 5.27 · 10−5.

Figure 1: Convergence of both estimates with GAGD = 1± 4 · σprod

To summarize, it is safe to assume that for the overwhelming majority of possible

Gain factor values, using the variable step factor in Equation (9) will produce a

reliable estimate of GDGA.

1Speci�ed by project co-supervisor
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Figure 2: Peak deviation between the estimates


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	


	
	
	



















