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recent RSSI estimate. This results in a 1 dBm precision in the stored value. As
shown in Figure 4.2, the RSSI measurements were fluctuating between each packet,
at times quite heavily. The figure shows the RSSI estimates at base station A for
measuring points 1 through 10.
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Figure 4.2: The RSSI measurements at base station A for measuring point 1
through 10 and their deviations. The red dashed line show how a weighted average

can reduce the impact of weak outlier values.

As discussed in Chapter 2.4.1, the received signal power may experience sudden
drops due to channel fading. Figure 4.2 shows that the RSSI for the third mea-
surement point ranges from −94 dBm to −108 dBm. This means that the lowest
measured signal strength is 14 dB lower than the strongest measurement for that
point, a reduction by more than 95%.

One way of dealing with adverse multi-path effects as this one is to utilize some
form of diversity. Spatial diversity means having multiple antennas at the receiver
or transmitter separated by at least a half wave length, ensuring that if one antenna
is in a deep fade zone due to interference, at least one other will be unaffected. This
was not attempted in the experiment for practical reasons.
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Another form of diversity is temporal diversity, which in the case of this experiment
amounts to transmitting the same packet several times, in the hope that negative
circumstances affecting one measurement will not last long enough to ruin the other
nine. In this experiment, the packets were transmitted at an interval of 300 ms,
meaning the last RSSI estimate was made 3 seconds after the first. This amounts
to a form of repetition coding, see [15, chap. 3].

To mitigate fading errors, the five lowest values for the RSSI estimate were discarded.
The average of the remaining five values was computed and used for the distance
estimation. The red dashed line in Figure 4.2 represents these weighted averages.
All averaging is done on values in watts, and then converted back to dBm. Not doing
this will lead to artificially low average values because of the logarithmic nature of
the dBm unit.

With reference in Friis’ free space transmission equation (2.30), the relationship
between distance and measured RSSI may be simplified as shown in [19, chap.4] to
the following:

RSSI = −10n log(R) + A⇔ R = 10A−RSSI
10n (4.1)

Where the different quantities are:

n [unitless] : path loss exponent

R [m] : distance between transmitter and receiver

A [dBm] : RSSI measured at R = 1 m

Recalling Friis’ equation, rearranging terms of (2.30) and isolating for Pr,dBm yields:

Pr,dBm = 20 log
(
λ

4π

)
− 20 log(R) + Pt,dBm +Gt,dB +Gr,dB (4.2)

Comparing this with (4.1), the following relationship emerges:

n = 2

A = 20 log
(
λ

4π

)
+ Pt,dBm +Gt,dB +Gr,dB (4.3)

Measuring A in the environment that is used for testing eliminates the need to deter-
mine transmitter and receiver gain, as well as transmitter power. It also eliminates
the need to calibrate the RSSI offset in the receiver, see Section 3.1. The path loss
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exponent n may then be determined by isolating for it in equation (4.1) and solving
it based on RSSI measurements done at known distances.

4.1.1 The 1-metre reference value A

The value for A is dependent on the settings and hardware that is being used,
including carrier frequency, transmitter power, antenna directionality and polariza-
tion, amplifier gain and impedance mismatch losses. To measure A, the transmitter
was placed at a distance of 1 metre from the base station. Ideally, the antennas
should be completely isotropic, but to ensure omni-directionality the reference value
was measured several times rotating the base station through a full revolution.

The resulting average value for the one-metre reference is A = −45 dBm. Note
that because no calibration of the CC1120 was done beforehand, this value does not
represent the actual received power, but this offset is cancelled out in the A−RSSI
term in (4.1).

4.1.2 The path loss exponent n

The exponent n describes how quickly the received signal power at the base station
decreases as distance to the transmitter increases. For free space propagation, n = 2
as shown by Friis’ transmission equation (2.30). In complex environments such as
forests, this value is expected to be quite a bit higher as a result of propagation losses
and signal interference; experiments in [20] show values ranging from 1.4 indoors to
5.5 in a dense forest. Figure 4.3 shows RSSI as given by the formula in equation
(4.1) for a few different values of n.

To determine a value for n for this experiment, an approach was taken using linear
regression (linear least-squares). As shown in Figure 4.3, there is no linear rela-
tionship between the distance and RSSI because of the logarithmic function. Still,
if log(R) is used as a variable in place of R, equation (4.1) becomes a linear func-
tion with intercept A and slope −10n. Using all 15 measurements for all 3 base
stations in the experiment gives n = 45 data points to perform the regression on.
Let xi, yi (i = 1, 2, ..., n) denote distance between transmitter and receiver and the
measured RSSI, respectively, for data point i. Ordinary least squares linear regres-
sion may then be performed using the method described in [21, Chap. 11] by the
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Figure 4.3: Expected RSSI vs. distance for 4 different values of n.

formula:

β =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 (4.4)

α = ȳ − βx̄ (4.5)

Where α, β are the intercept and slope of the linear approximation, and x̄, ȳ are
the average distance and RSSI value, respectively. Figure 4.4 shows the data points
along with the linear approximation. The calculated slope of the line is β ≈ −25.9,
corresponding to a path loss exponent of n = 2.59.

The use of ordinary least-squares approximation in the estimation of n may prove
too sensitive to outlier samples in data sets with extreme outlier values. A more
robust approach is to use the Theil-Sen estimator as defined by Henri Theil in [22].

Using an open-source MATLAB script2 to calculate an alternative slope by the Theil-
Sen estimator resulted in a value of n = 2.53, which is the one used throughout the

2Credit goes to A. Tilgenkamp for the Theil_Sen_Regress function, which may be found at
http://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator

http://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator
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remainder of this experiment.
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Figure 4.4: All the RSSI measurement vs the distance from their respective base
stations.

4.2 Map projection

To calculate the true distances between base stations and measuring points based on
the latitude/longitude coordinates obtained by GPS, the inverse haversine formula
is used. It is a formula for calculating the great-circle distance d between two points
on a sphere given by:

d = 2r arcsin

√√√√sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

) (4.6)
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Where:

φ1, φ2 [rad] : Latitudes of point 1 and 2.

λ1, λ2 [rad] : Longitudes of point 1 and 2.

d [m] : Great-circle distance on the sphere between point 1 and 2.

r [m] : Radius of the sphere.

These distance calculations are based on a spherical earth model with a radius of
r = 6371.009 km, which is the mean radius based on the oblate spheroid defined
under the WGS84 geodetic system, the reference frame used in the GPS system.3

Because the earth’s radius of curvature is about 1% greater at the poles than at the
equator, the great-circle distance as given by (4.6) is only accurate to within 0.5%
when using the mean radius.

To project the spherical coordinates of the base stations and measuring points into
a Cartesian coordinate system, the origin was placed at 63.4265◦N, 10.4120◦E, an
arbitrary point selected in the south west corner of the Kristiansten park where
the experiment was performed. The coordinate system was oriented so that the
x-axis (abscissa) lies along the east/west direction and the y-axis (ordinate) along
the north/south direction. The longitudes were then mapped to x-values, and the
latitudes to y-values using the inverse haversine formula (4.6).

This very simple projection is a flattening of the surface of the sphere, and leads to
a slight overestimation of distances along any direction that is non-parallel to either
axis. Calculating the great-circle distance d(φ1, λ1, φ2, λ2) between two points in the
general area where the experiment took place, for example p1 = 63.40 ◦N, 10.40 ◦E
and p2 = 63.41 ◦N, 10.41 ◦E using (4.6) results in:

d(63.40, 10.40, 63.41, 10.41) ≈ 1218.29m (4.7)

The Euclidean distance between the same two points in the (x, y) coordinate system
is given by:

√
d(63.40, 10.40, 63.40, 10.41)2 + d(63.40, 10.40, 63.41, 10.40)2 ≈ 1218.32m (4.8)

3The WGS84 standard is defined by the World Geodetic Standard and Geomatics Focus Group
(WGSG-FG) at the National Geospatial Intelligence Agency, on behalf of the U.S. Department of
Defense. The standard’s identifier is MIL-STD-2401 and may be downloaded at https://nsgreg.
nga.mil/doc/view?i=2058

https://nsgreg.nga.mil/doc/view?i=2058
https://nsgreg.nga.mil/doc/view?i=2058
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The difference between the two is 3 cm, which is deemed negligible for all purposes
of this experiment.

4.3 One-dimensional results

In terms of pure ranging, i.e. estimation of the distance between the base station and
the transmitter, the second variant of equation (4.1) is used.The values for A and
n are found through measurements and least squares approximation as detailed in
Sections 4.1.1 and 4.1.2. Figures 4.5 through 4.7 show the estimated range alongside
the true range for all three base stations.

Figure 4.8 shows the distribution of the error made by all of the distance estimates.
The majority of errors are negative, i.e. the estimated distance is shorter than the
true distance. This means the received signal is stronger than what was to be ex-
pected for that distance using the current propagation model. Possible reasons for
this include reflections causing constructive interference, most likely ground reflec-
tions, the estimated path loss exponent n being too large, or the 1-metre reference
value A being too small.

The figure shows that almost 50% of the errors are in the range -40 m to 0 m.
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Figure 4.5: The estimated distance and the true distance from base station A
to each measuring point.
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Figure 4.6: The estimated distance and the true distance from base station B
to each measuring point.
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Figure 4.7: The estimated distance and the true distance from base station C
to each measuring point.
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Figure 4.8: The difference between true distance and estimated distance for all
45 estimations.
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4.4 Two-dimensional results

Using the distance estimates from the previous section, location can be performed
using the trilateration techniques discussed in Section 2.4.1.2. When the range
estimates are very accurate, the exact position can be found by using three base
stations and solving the two resultant equations of (2.6). As shown in Figure 4.9
this is not always the case; the range estimates are far from accurate, and there is
no single point of intersection of the LoPs. In effect the position that is found by
solving the linearised equation system (2.6) contains an error. This error may be
minimized by including estimates from more than three base stations. This turns
(2.6) into an over-determined system, and an approximate solution may be found by
applying a linear or non-linear least squares approximation technique, as described
in section 2.2.2 and 2.2.3, respectively.
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Figure 4.9: The base stations and their respective LoPs according to the es-
timated ranges for measuring point no. 2. Note that there is no clear point of

intersection.
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In this experiment, only three base stations were available at all times. That means
that the linearised equation set (2.6) is fully determined, and a least squares position
estimate may be calculated using (2.7).

Alternatively, using the non-linear distance equations directly, a least squares so-
lution can be found using the iterative Gauss-Newton algorithm described in sec-
tion 2.2.3. The linear least squares approximation will be used as the initial position
for the algorithm. Then the algorithm is set run until the step length falls below
0.1m or a maximum of 10 steps is reached, whichever comes first.

Solving for x and y based on the range estimates presented in section 4.3 yields the
position estimates shown in Figure 4.10. The errors in the position estimates are
shown in Figure 4.11. As shown, in most cases the Gauss-Newton algorithm gives
an estimate that is about the same as the direct solution of the linearised problem.
For measuring point 14 the non-linear least squares (NLSQ) estimate is significantly
more accurate, reducing the error from 235m to 55m.

The improvement of the NLSQ estimates over the linearised solution is expected to
increase when more than 3 base stations are included. Additionally, range estimates
based on base stations far away may be given lower weight than the closer ones in
the calculation.

Based on the discussion around the geometrical dilution of precision (GDoP) in
Section 2.4.1.2, the position estimates that form an aspect angle of 90◦ with any
two base stations are expected to be the most accurate. For the various measuring
points in this assignment, points 4–7,14 and 15 are the ones closest to fulfilling
this property. Conversely, points 1,10,11 and 13 have aspect angles that are more
acute or obtuse than what is optimal. However, looking at the positioning errors
in Figure 4.11, the error seems to be more prone by random variations than GDoP,
most probably due to propagation effects.

The numerical values for the positions and their estimates, as well as the one-
dimensional ranges and their estimates from the previous section may be found
in Appendix A.
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Chapter 5

Discussion and conclusion

This chapter will discuss the results from the previous sections further with respect
to their significance to the sheep tracking system. A few suggestions for future
improvements are given, as well as the final conclusions to this thesis work.

5.1 The method of location

Out of the four different methods of radio location presented in Chapter 2, the two
that got selected for further analysis were the

• Hyperbolic trilateration using TDoA estimates: This method was preferred
because it requires the least amount of communication per location. With
this solution, the sheep’s transmitter may wake up at a regular interval or
according to a predefined schedule, do a clear-channel assessment and transmit
a single packet. The packet is picked up by any base stations in range, which
would in turn estimate the TDoAs with reference to the GPS-synchronised
time standards in each base station. There is no need for the transmitter in
the sheep’s collar to keep accurate time, and only one transmission is required
per location.

• Circular trilateration based on RSSI measurements: This method was chosen
for its simplicity. Similar to the TDoA method only one transmission from
the sheep’s radio is required per location. Because this method estimates the
absolute range from each base station to the transmitter, there is no need for

69
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accurate time synchronisation between the base stations. However, due to a
lot of time-varying factors affecting the signal propagation model, the range
estimates are very rough, even under the near-ideal conditions in the RSSI
trilateration experiment described in Chapter 4.

The remaining two methods that were not analysed further was:

• Circular trilateration using ToF estimates: This requires a query from the
base station followed by a reply from the sheep’s transmitter to estimate the
absolute distance between the two. Since at least three distance estimates are
needed, a total of six separate transmissions has to take place per location,
compared to the single one required for a TDoA. The accuracy depends on
the time taken by the sheep’s transmitter to decode the query, and with a
fixed and known or negligible delay transmit its reply. The base station needs
to measure the time between sending the first packet and receiving the reply.
A considerable benefit of using this method is that it does not require the
base stations to have a synchronised clock. Yet, because of the six-fold in-
crease in channel use compared to the hyperbolic method and the need for the
sheep’s transmitter to regularly listen for the queries from the base stations,
this method is discarded to save transmission time and energy.

• Triangulation using direction-of-arrival estimates: This method was not anal-
ysed past the theoretical stage either, firstly because of the added complexity
at the base stations; one would need an antenna array as well as a system
for accurately detecting phase shifts and subsequently applying a DoA estima-
tion algorithm. Secondly, the expected location error of such a system would,
even for highly accurate DoA estimates, grow linearly with the distance be-
tween base station and transmitter, an unwanted property in a real-life grazing
environment.

5.1.1 Accuracy using TDoA hyperbolic trilateration

As shown in Sections 3.2.1 through 3.2.3, using the CC1120’s built-in functionality
to determine the time of arrival for a signal did not prove very successful. Of the
various signals that were measured, the best results showed an accuracy of about
4 times the symbol rate being used. Under the regulations imposed on location
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systems by the Norwegian Post and Telecommunications Authority, the maximum
bandwidth for such a system operating in the 169MHz band is 50 kHz. This limits
the symbol rate to 25 ksps, leading to a best-case TDoA accuracy of 10 µs for a pair
of base stations. This corresponds to a distance difference of:

∆r = 10 µs× 3× 108 ms−1 = 3000m (5.1)

This uncertainty is too large to enable any form of useful location, which is why the
TDoA hyperbolic trilateration based solely on the CC1120 had to be ruled out after
this initial testing.

However, the CC1120 has the option to output a bit stream directly from its analog-
digital converter (ADC). The ADC process in the CC1120 takes place at the interme-
diate frequency (IF) stage, at a sampling rate of 16MHz. Therefore, if the sampled
data could be stored directly from the ADC as described in section 3.2.4, the time-
delay between two such bit streams from two different base stations should have
a time resolution of 1

16 MHz = 62.5 ns. Assuming that the bit streams can be time-
stamped by clocks in each base station that are synchronized by GPS to within 10 ns
as discussed in Section 3.3, the best case accuracy in each TDoA estimate is 72.5 ns,
corresponding to a distance resolution of:

∆r = 72.5 ns× 3× 108 ms−1 = 21.75m (5.2)

Unfortunately, developing an FPGA solution set up to decode the 64MHz LVDS
serial bit stream from the CC1120 and store it in buffers, as well as performing
cross correlation whenever a signal from the sheep’s transmitter is detected, went
beyond the scope of this thesis work. A practical test of the TDoA hyperbolic
trilateration capabilities of the CC1120 could therefore not be performed, but the
solution remains interesting for future work.

Given an error in the TDoA estimate uniformly distributed on (−72.5 ns, 72.5 ns),
the error e in the calculated difference of distances will be uniformly distributed
and defined by the probability density function fE(e) = 1

21.75−(−21.75) , for e ∈
(−21.75m, 21.75m). The mean square error of the difference of distance estimates
is given by:

σ2 =
∫ 21.75

−21.75
e2fE(e) de = 21.752

3 ≈ 158 (5.3)
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The root mean square (RMS) error is then σ =
√

158 ≈ 12.6m and the resultant
RMS error in the position estimates, given the best possible geometry between the
base stations and the transmitter is given by equation (2.56):

√
R2

min =
√

2σ2

3 ≈ 10m (5.4)

This is a promising result that would be accurate enough to locate sheep on the
open range. Although GDoP will affect this accuracy, judging by Figure 2.14 the
error will not be greater than twice this number inside the perimeter established by
the three base stations.

El Gemayel et al.[23] performed a TDoA trilateration experiment using software-
defined radios (USRPs) synchronised by means of GPS receivers. At a sampling
rate of 5MHz they achieved a root mean square positioning error of about 23m for
2000 estimates of a stationary transmitter. Applying a Extended Kalman filter to
the position estimates the error was reduced to 10m. Their TDoA estimates were
affected by changing the signal bandwidth and/or the length of the sequences in the
cross-correlation. Effects of using other sampling rates are not mentioned.

5.1.2 Accuracy using RSSI circular trilateration

Using the received signal strength as an estimator for the distance between the
transmitter and the base station relies heavily on the parameters of the propaga-
tion model that is being used. In free space, the signal strength will be inversely
proportional to the square of the distance, but in a real-world application many
other factors will also apply. For line-of-sight situations, a reasonably reliable esti-
mator for near-ground propagation may be found by taking sample values at known
ranges and using e.g. the Theil-Sen approximation to determine the correct path
loss exponent as detailed in Section 4.1.2.

Optimizing the propagation model to the actual environment improves the distance
estimates. In a real-world system one could use a range of calibration positions
throughout the base station network to generate different path loss exponents for
the different situations, varying according to for instance:

• Location: differences due to if the base station is in dense forest or on an open
plain, on a hilltop or a valley floor, and so on.
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• Season: snow on the ground and on trees would affect the signal propagation,
as would foliage that changes with the seasons.

• Polarization: the antennas on the base station are fixed, while the ones mounted
to the radio collars will be moved about, resulting in a polarization mis-
match. Using dipole or monopole antennas, this will influence the received
signal strength considerably.

• Reflection, diffraction and absorption: depending on the surrounding topog-
raphy the received signal will include any of these, contributing positively or
negatively to the signal strength.

A calibration using values from different known positions throughout the area may
also aid a form of "fingerprinting"; a technique frequently used in systems for indoors
location where, instead of solving the trilateration problem mathematically, a simple
table lookup of the set of RSSI values is performed against a wide set of calibration
values (fingerprints). This is especially effective indoors if the required precision is
limited to determining the room which the transmitter is in.[24]

5.2 The RSSI trilateration experiment

A location experiment was set up in the Kristiansten park in Trondheim to test the
RSSI trilateration method. The base station positions and various measuring points
are shown in Figure 4.1, and the estimated distances and positions are presented in
Chapter 4.

Most of the distance estimates were accurate to within approximately 60% of the
actual range as shown by Figure 5.1. The mean relative error is ≈ 36%.

Using these distance estimates, 2-dimensional position estimates were calculated
using the Gauss-Newton algorithm, an iterative algorithm for minimization of the
squared position error. This resulted in position estimates that were mostly accurate
to within about 60m as shown in Figure 4.11. The average position of all the position
estimates was 55.8m, and the RMS error was found to be 64.2m.

As discussed in Section 2.4.1, the distance estimation error is expected to increase
proportionally with distance. This means that in the full scale system, where
transmitter-base station distances will be up to 5 km, the mean error of 36% in
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Figure 5.1: The distribution of the distance estimation errors relative to the
actual range.

the distance estimates means absolute errors of 1.8 km on average. The expected
accuracy of the position estimates would then be, at optimal GDoP conditions given
by equation (2.43),

√
2× 1.8 km ≈ 2.55 km. This renders the system unsuitable for

locating sheep, especially considering that this estimate is only an up-scaling of the
results from the RSSI trilateration experiment, which was performed under near
ideal conditions, i.e. most measurements were done having lines of sight to all three
base stations and the terrain was open and nearly flat.

The range estimates may be improved to some extent by utilizing diversity schemes
such as:

• Temporal diversity: In the experiment, 10 packets were sent with an interval
of 300ms. By using more than 10 packets or longer intervals, the final RSSI
estimate is based on more data and less vulnerable to time-dependent changes
in the propagation environment.
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• Spatial diversity: Using RSSI measurements taken with the transmitter in
slightly modified positions may help to mitigate errors stemming from multi-
path effects. In a real-world system, the sheep would be moving, so temporal
spacing of the measurements also results in a spatial separation.

• Frequency diversity: The RSSI measurements can be taken consecutively using
a series of different carrier frequencies. This changes the wavelength between
measurements, and helps reduce problems with multi-path interference.

While any of the above-mentioned techniques may improve the 1-dimensional dis-
tance estimates, the final estimate for the 2-dimensional position may also be im-
proved by including measurements from more than three base stations, giving the
non-linear least squares approximation algorithm more data to work with. In addi-
tion it is possible to construct an underlying dynamic model for the sheep’s move-
ment. Then, by applying recursive algorithms such as the Kalman filter[25], a more
accurate position estimate may be produced based on the previous positions and
the dynamic model, as well as the newest data.

That being said, the RSSI measurements are extremely prone to slight variations in
the propagation environment, rendering this method of location highly inaccurate
when used outdoors and at kilometre-ranges.

5.3 Conclusions and future work

Based on the analysis and experiments in this thesis, the CC1120 proves itself as a
easy-to-handle transceiver that performs well in the Sub-GHz band. Its broad selec-
tion of integrated features enables the user to test different transmission parameters
and modulation schemes without many more peripherals than a micro-controller.
For these reasons it is a suitable transceiver choice for both the base stations and
the radio collars, especially at an early development stage where the design param-
eters will change often.

However, the CC1120 cannot facilitate accurate radio location on its own. Experi-
ments using the built-in RSSI functionality to estimate distances proved this method
far too inaccurate, with a mean relative error for the distance estimates of 36%. This
resulted in position estimates with an RMS error of 64.2m with the base stations
being set no further apart than about 200m.
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An alternative option is to use the time difference of arrival (TDoA) for pairs of
base stations receiving the signal from the radio collar and perform hyperbolic tri-
lateration. Measurements performed on a variety of signals the CC1120 can output
that could be used to determine the time of arrival of a signal showed that these
are clocked at four times the symbol rate, which gives a best case time resolution
of 10 µs for the TDoAs. The resulting uncertainty in position is > 3 km, which is
nowhere near the precision needed to locate sheep.

However, a proposed solution using an FPGA to decode the bit stream output of
the CC1120’s AD-converter directly is expected to yield a time resolution of as
little as 62.5 ns. Using GPS receivers at the base stations to provide a synchronised
clock, a TDoA accurate to within 72.5 ns could be calculated using cross-correlation
between two bit streams from different base stations. Performing the hyperbolic
trilateration using TDoA estimates with this accuracy would lead to a position
accuracy of approximately 20m inside the perimeter of the base station network.
This is deemed accurate enough to locate sheep on the open range.

Future work should be directed into developing an FPGA-based solution to decode
and buffer the bitstream from the CC1120. When this is in place, more accurate
TDoA estimates will be available, and the system should be tested on a larger scale
to verify the above results.



Appendix A

Numerical results for the RSSI
trilateration experiment.

Measuring point Base station A Base station B Base station C
True [m] Est [m] True [m] Est [m] True [m] Est [m]

1 14.6 13.0 162.4 121.6 213.8 103.0
2 29.6 26.4 147.9 130.7 207.6 133.2
3 49.3 112.8 127.9 67.9 195.2 221.5
4 69.2 38.0 107.9 58.7 184.0 221.5
5 82.2 49.7 95.1 119.3 180.8 71.9
6 104.6 78.7 73.1 37.9 175.0 177.7
7 117.4 128.3 59.5 34.0 165.4 84.5
8 133.5 78.7 43.4 15.3 159.9 78.7
9 149.2 163.0 27.9 16.7 161.9 126.1
10 161.8 171.7 15.1 10.8 156.7 179.9
11 101.2 225.5 84.8 119.3 142.7 70.5
12 139.5 172.2 91.5 44.7 94.2 56.6
13 178.9 159.7 106.7 103.0 56.7 24.1
14 227.9 362.2 96.9 77.2 84.5 75.7
15 143.4 133.2 152.1 89.2 85.5 115.2

Table A.1: Numerical data for all the distance estimates from each base station
in the RSSI trilateration experiment as well as the true distances.
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78 Appendix A. Numerical results for the RSSI experiments
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Appendix B

MATLAB script: Chan’s method
for hyperbolic trilateration

% 15.10.2013 by Snorre H. Olsen

% Linearization of TDoA lateration equations for 3 transmitters .

% Using Chan ’s method as detailed in "A Simple and Efficient Estimator for

% Hyperbolic Location " by Y. Chan and K. Ho.

%% Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; close all;

v0 = 3*10^8; % Propagation speed of signal

% Base stations ( base (: ,1)=X- coords , base (: ,2)=Y- coords )

base = [ -1000 , -100;3000 ,0;1500 ,2000];

N = length (base );

% Signal source

% The sheep ’s position as related to the first base station .

source = [3245 ,1658]; % Unknown in reality

%% Calculation of TDoA values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Distances between sheep and each base station

dist = sqrt (( source (1) - base (: ,1)).^2+( source (2) - base (: ,2)).^2);

% Equivalent propagation times :

T = dist ./ v0; % Unknown in reality

% Time difference (as referred to the first base station

tau = T-T(1); % TDoA measurements , measured in reality

% tau = tau +100e -9* randn (1, length (tau )); % Adding timing inaccuracy

%% Trilateration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% r: Distance difference r(i) = Ri - R1 according to TDoA measurements .

r = v0 .* tau;

% K: Squared distance from base to origin .

K = base (: ,1).^2 + base (: ,2).^2;

% A: Coefficient matrix for linearised problem Ax=b

A = -1*[ base (2 ,1) - base (1 ,1) , base (2 ,2) - base (1 ,2);...

base (3 ,1) - base (1 ,1) , base (3 ,2) - base (1 ,2)];

Ai = inv(A);

% Solution of eq. set in terms of R1 , x = S*R1+T,y = U*R1+V
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80 Appendix B. Matlab script: Chan’s method

S = Ai (1 ,1)*r(2) + Ai (1 ,2)*r(3);

T = 0.5*( Ai (1 ,1)*(r(2)^2 -K(2)+K(1)) + Ai (1 ,2)*(r(3)^2 -K(3)+K(1)) );

U = Ai (2 ,1)*r(2)+ Ai (2 ,2)*r(3);

V = 0.5*( Ai (2 ,1)*(r(2)^2 -K(2)+K(1)) + Ai (2 ,2)*(r(3)^2 -K(3)+K(1)) );

% Quadratic equation in R1: a*R1 ^2+ b*R1+c = 0 as a result of inserting

% above solution into expanded equation for R1 ^2.

a = 1-S^2-U^2;

b = 2*( base (1 ,1)*S + base (1 ,2)*U - S*T - U*V);

c = 2* base (1 ,1)*T + 2* base (1 ,2)*V - T^2 - V^2 - K(1);

% Solving for R1 using the quadratic formula .

% R1: Distance from transmitter to receiver 1.

R1pos = ( -1*b+sqrt(b^2 -4*a*c ))/(2* a);

R1neg = ( -1*b-sqrt(b^2 -4*a*c ))/(2* a);

% Select positive solution . If both posistive set R1 = 0. ( ambiguity error )

R1 = ( R1pos *( R1pos >0)+ R1neg *( R1neg >0))*(( R1pos <0)||( R1neg <0))

% Insert solution for R1 back into equations for x and y;

x = S*R1 + T % Calculated x coordinate

y = U*R1 + V % Calculated y coordinate



Appendix C

MATLAB script: The
Gauss-Newton minimization
algorithm

function [ pos , history ] = newtonPos2D ( bs , rEst , init , steps , thr)

% NEWTONPOS2D Uses Newton ’s iterative method to approximate a solution to

% the trilateration problem in 2 dimensions .

% Input :

% bs: Base station positions . One row [x y] for each base station .

% r: Range estimates , one row for each base station .

% init : Initial position estimate [x y]

% steps : Max no. of iteration steps

% thr : Threshold for stopping the iteration

% Output :

% R: Estimated position [x y]

%

% Given a set of base station coordinates , range estimates to the unknown

% transmitter and a initial position estimate , this iterative algorithm

% will work to find a non - linear least squares approximation until either

% the maximum number of steps or the minimum step length for each

% iteration is reached .

% By Snorre H. Olsen , 20.05.2014

pos = init; % Initial guess for position .

del = thr; % Dummy step length to start iteration

k=1; % Iteration counter

while (del >= thr && k <= steps )

r = sqrt (( pos (1) - bs (: ,1)).^2+( pos (2) - bs (: ,2)).^2);

% JtJ is transpose of J times J where J is the Jacobian for the

% function f_i = r_i - rEst_i :

JtJ = [...

sum (( pos (1) - bs (: ,1)).^2./ r.^2) , sum (( pos (1) - bs (: ,1)).*( pos (2) - bs (: ,2))./r.^2) ;...

sum (( pos (1) - bs (: ,1)).*( pos (2) - bs (: ,2))./r.^2) , sum (( pos (2) - bs (: ,2)).^2./ r .^2)];

% Jtf is the transpose of J times f where f is a column vector

% containing f_i = r_i - rEst_i for this iteration step :
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82 Appendix C. Matlab script: The Gauss-Newton algorithm

Jtf = [...

sum ((r-rEst ).*( pos (1) - bs (: ,1))./r );...

sum ((r-rEst ).*( pos (2) - bs (: ,2))./r)];

% Iteration : the next estimate is calculated :

posNext = pos - (JtJ\Jtf )’;

del = sqrt(sum ((pos - posNext ).^2)); % Step length in this iteration .

history (k ,:) = posNext ; % Logging iterations for plotting .

pos = posNext ;

k=k+1;

end

end



Appendix D

Key Characteristics of the CC1120
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