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Abstract

PCI Express(PCIe) is a packet-based, serial, interconnect standard that is widely
deployed within servers and workstations for it’s attractive performance capa-
bilities. A platform that has a PCIe architecture also includes a PCIe Root Com-
plex(RC) for linking the PCIe device-tree to the host CPU and memory.

During the design-phase of a PCIe endpoint-device it is highly desired to
conduct computer aided simulations of the device in a relevant environment.
Having a simulation software that can be applied early and iteratively in the
design-phase enables engineers to tweak the product without realization of hard-
ware. Causing a great reduction in the number of physical prototypes required
before mass production.

In this thesis a transaction level model(TLM) of a PCIe RC was assembled
using SystemC, with a focus on latency and jitter as performance parameters.
The model gives the Application Specific Integrated Circuit(ASIC) developers at
Oracle a timing accurate alternative to the existing processor emulator(QEMU)
that is used for the same purpose. To correlate the RC TLM with real hardware,
a PCIe protocol analyzer from LeCroy was utilized. Traffic between a first gener-
ation PCIe endpoint-device and a SUN FIRE X4170 M3 server was traced.

The RC TLM was made in a modular manner allowing support for other
micro-architectures through insertions of trace files. The recorded traces be-
tween requests and completions were processed and inserted directly into a de-
lay database within the RC model, to ensure high correlation between the RC
TLM and the real hardware. A simple model of a PCIe endpoint-device was im-
plemented to serve as a suitable test-environment.

The functionality and the hardware realisticness of the RC model was suc-
cessfully tested with targeted transaction scenarios. A simulated latency distri-
bution of 15000 packets, proved to fit the latency distribution that was randomly
drawn in the RC TLM. Only a small amount of negligible delay anomalies from
imperative switch cycles were found.

The PCIe RC TLM is close to optimal for modeling latency and jitter using a
database of targeted trace calbrations. The principle of modeling delays in an
RC TLM using latency databases, was found to be a favorable alternative to the
constant delay nature of the QEMU test-environment.
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CHAPTER1
Introduction

1.1 Motivation

Figure 1.1: MSI Z77 requiring Intel Ivy Bridge for PCIe gen 3 support[38]

Today’s industry shows an increasing trend towards large data-centers and
databases. Internet traffic is expected to increase exponentially as the introduc-
tion of Internet Protocol version 6(IPv6) allows the Internet of Everything(IoE)
to be created. Cisco estimated that around 50 billion devices will be connected
to the Internet in 2020 as a result of ipv6 and the IoE [7]. All these devices gen-
erate massive amounts of data that requires processing, communication and
storage. Organizations manage more data, with greater speed and from more
sources than ever before.

Larger IT-based companies desire to ease the job of the average IT-technician
by acquiring hardware and software solutions that are able to virtually tie ma-
chines together. They want to fuse many sparse databases into few virtual ones
that are easily manageable. This demand creates a market for virtual, secure and
high performance database solutions. Oracle’s ASIC-department at Skullerud in
Oslo works to satisfy the need for quicker transfer of data between devices. They

1



2 CHAPTER 1

are part of Oracle’s global R&D team with a focus on communication between
the internal processing units of server systems. The ASICs utilize communica-
tion protocols such as PCI Express(PCIe) and Infiniband to move data from one
processing unit to another due to their attractive transfer rates.

PCIe is a packet-based, serial, interconnect standard. It is widely deployed
and has a bright future as a communication infrastructure for peripheral units
in computers. Figure 1.1 shows a MSI Z77 motherboard, incorporating a third
generation PCIe slot. PCIe devices communicate with other devices, in a switch
based tree structure. A common PCIe topology contains a root complex(RC),
several Endpoints(EPs) and optional switches. The RC is the logic structure that
interconnects the CPU, the memory and the PCIe Tree containing the system
I/O. The EPs are I/O devices that are connected to the branches of the PCIe tree,
an example would typically be a graphics controller. The switches allow data
transactions between devices by applying packet switching on behalf of the RC
or EPs in the PCIe tree.

It is crucial to map system performance when developing PCIe hardware,
both during the design process, and afterwards for marketing purposes. Tele-
dyne Lecroy and Agilent deliver solutions for protocol analyzation of PCIe Hard-
ware. Physical test instruments are able to interpose PCIe Traffic and to record
detailed packet information that can be used to analyze performance of real-
ized PCIe EPs. However, it is also desired to simulate device performance dur-
ing the design-phase of a PCIe device, prior to hardware manufacturing. Sim-
ulations allow tweaking of hardware in front of realization, which is valuable
with respect to design-cost and performance due to a reduction of prototype-
iterations. Computer aided simulations are easily configured and allows for
optimization of parameters such as buffer sizes, algorithms and other system
variables. The result is that latency, jitter and packet congestion are reduced,
maximizing the bandwidth and the quality of service(QoS) of the final product.

To perform software simulations of PCIe express EPs, a model of the RC, and
models of the EPs are required. Oracle’s ASIC-branch in Oslo and in California
have until now been using QEMU for environment modeling during hardware
simulations. QEMU is a generic open source machine emulator and virtualizer,
that includes an emulated CPU with an RC and a memory system. Some prob-
lems with QEMU as a RC simulator is that it is not cycle accurate, propagation
delays are not included in round-time latencies and there is no model for jitter
included in the round-time latencies. Another factor is that it contains a lot of
excess functionality that is not necessary from a PCIe-ASIC developer’s point of
view. There is a need for a new tool that fills these gaps.

This thesis involves the creation of an accurate and purpose specific alterna-
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tive to the already existing PCIe simulation environment QEMU. A transaction
level model(TLM) of a PCIe RC is to be created. Accuracy of the model should be
ensured by correlating it to real PCIe hardware through protocol analyzations of
a relevant server platform.

1.2 Thesis Overview

The successive chapters delve into and analyze the creation of a transaction
layer model of a PCIe RC. Each chapter is marked with a black rectangle in the
upper right corner of the page. On the very same page an illustration is given
describing the contents of the chapter’s child sections. An overview of the pa-
per, chapter by chapter, is given below:

Chapter 2 provides background information on theory regarding terms and
concepts that will come in handy throughout the paper. The chapter begins
with a detailed overview of PCI Express protocol. In-depth knowledge of PCIe
is required to understand the nature of a PCIe RC. PCIe related performance
metrics are also explained. Theoretical performance-limits of a PCIe system are
seldom achieved, the actual performance of the system is dependent on a wide
specter of system variables. Terms such as bit-rate, net bit-rate, peak bit-rate,
bandwidth, throughput and latency are elucidated. The chapter then moves
on to describing the QEMU software. Basic knowledge of the transaction-level
modeling language, SystemC, is summarized to ease the understanding of the
implementation. The benefits of using SystemC compared to other modeling
languages are also explained. The Final section of the theoretical background
chapter covers PCIe protocol analyzing. Both software and hardware compo-
nents of the trace instruments are introduced to draw a picture of the packet
tracing process.

Chapter 3 covers the methodology of this thesis, that is basically the work-
flow for the entire design process of designing an RC TLM. The first section
covers the decision phase of the structural architecture of the RC model. The
following section describe the selection of a modeling language for implemen-
tation of the model. The workflow of the software implementation is described,
including the design of internal modules, classes and functions used within the
TLM. This chapter also describes the process of obtaining traffic information
from recording traffic on real, first generation PCIe hardware. The data achieved
from the protocol analyzer is merged with the RC’s delay model to create a real-
istic delay model of the root complex. The latter sections of chapter 3 presents
the implementation of a compatible TLM of a PCIe EP, test and verification of
the RC model are also outlined.

Chapter 4 presents illustrations of the results from the PCIe traffic record-
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ings from the LeCroy protocol analyzer. The remaining section of this chapter
will list the test-results achieved from testing the software model, both with re-
spect to functionality and timing accuracy. The result chapter will consist of
several windows containing exported text-files from test-runs of the model. It
could be advantageous to read this chapter electronically as text out-puts are
more easily interpreted with search functions.

Chapter 5 brings out the discussion of the results. The created software
model of the PCIe Root complex is analyzed to map whether the model is an
adequate option to simulation using QEMU. Requirements for use are also dis-
cussed, these are; compatible implementation of an EP TLM in SystemC and
instantiation of all the components in the complete simulation environment.
The chapter covers several topics, all attempting to answer the question: Is the
RC TLM’s functionality better than that of the QEMU emulator with respect to
hardware realisticness? Topics that are covered are: functional adequacy, sim-
plifications of the software implementation, future work of the model and chal-
lenges faced during implementation.

Chapter 6 is the conclusion chapter, it contains answers to the questions
discussed throughout this thesis. Will the work carried out in this thesis benefit
Oracle in the form of a platform that has the potential to reduce development
costs and improve the final performance of their PCIe ASICs?

Acronyms used in this thesis are listed in appendix ??. For readers who find
the implementation of an RC TLM interesting, the appendixes can provide es-
sential details for the software made for this assignment. Some basic examples
of program output from the RC system-model are attached in the appendix. The
c++ script for converting exported files and the python script for plotting latency
distributions are to be found. The trace files them selves are not included as they
are in the gigabyte size-range, however summaries of them are attached. The
Code itself for the RC TLM, can be found on Git-Hub at the location specified in
[10].



CHAPTER2
Theoretical Background

Figure 2.1: Overview of the theory sections in this thesis

The purpose of this chapter is to introduce several important concepts and
terms that are used in the modeling approach of the RC and in the discussions
throughout this thesis. Figure 2.1 shows the outline of this chapter. The PCI
Express section is the most weighted one in this chapter, this section gives a
detailed overview of the transaction layer nature of the PCIe Architecture. PCI
Express relevant performance metrics are also discussed in this chapter to rea-
son for the modeling approach of the Root Complex. A section is dedicated to
explain the Quick EMUlator software currently used by Oracle. The event driven
nature of the SystemC modeling language is covered in its own section to ease
reading of the model and to ease the understanding of the diagrams found in
the methodology chapter. Finally, the hardware that is used for recording of PCI
Express traffic is clarified to ensure a hardware-realistic TLM model of the PCI
Express Root Complex.

5
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2.1 PCI Express

Figure 2.2: The PCIe logo by the PCI-SIG [26]

The Peripheral Component Interconnect Express standard is officially ab-
breviated PCIe. It is a serialized, point to point, connection-standard developed
by the Peripheral Component Interconnect-Special Interest Group (PCI-SIG).
It is a packet-based interconnect that allows peripherals to communicate with
other devices by the use of differential signaling. The peripherals that are inter-
connected in a third generation PCIe system are achieving transfer rates of up to
8(GT/s) billion transfers per second, per lane, per direction. This corresponds
to a raw bit rate total of 16(GB/s) billion bytes per second, per direction, for a
16-lane PCIe slot. These terms and metrics are described in detail later in this
chapter.

PCIe is applied in technologies such as personal computers, servers, em-
bedded computing and communication platforms. The most commonly known
field of application for PCIe architectures is as interconnections between CPUs
and graphics cards within personal computers. The system host writes data to
the memory that is adjacent to the graphic accelerator. Once the data trans-
fer is complete, the host issues a kernel call to provide the graphics processing
unit(GPU) with data processing instructions. A completed outsourced compu-
tation is written back to the host once it is complete. Whenever graphics cards
desire to fetch data from CPU-adjacent memory, or write data to it, they have to
consult with the PCIe controller first, also known as the Root Complex(RC).

2.1.1 The PCIe Evolution

In the early computer-days around 1970, before the old PCI standard was in-
vented, data was transfered using serial connections. Computers assembled
data-packets and sent them serially from device to device, one packet at a time.
As time went by, serial connections proved to be slow despite their reliable and
robust nature. To cope with the steep speedup of computers, scientists began
to develop parallel structures for communication, oblivious to the fact that they
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Figure 2.3: The evolution of the PCI and PCIe generations from 1992 until now

were stepping into a design-architecture with less potential for performance.
This increasing trend gave birth to the PCI bus which was introduced 1992 as
shown in the time line in figure 2.3. For years the 32 bit PCI bus was the most
convenient manner to connect sound, video and network cards to a mother-
board.

Bus Type Clock Frequency Peak Bandwidth #Card Slots

PCI 32-bit 33 MHz 133 MBytes/sec 4-5
PCI 32-bit 66 MHz 266 MBytes/sec 1-2
PCI-X 32-bit 66 MHz 266 MBytes/sec 4
PCI-X 32-bit 133MHz 533 MBytes/sec 1-2
PCI-X 32-bit 266 MHz effective 1066 MBytes/sec 1
PCI-X 32-bit 266 MHz effective 2131 MBytes/sec 1

Table 2.1: Paralell bus structures, frequencies, transfer rates and io ports [3]

Incremental improvements of bus transfer speeds were achieved by increas-
ing bus clock frequencies. The PCI theoretically support 32 devices connected
to each bus. Increasing the bus frequency in parallel bus architectures turned
out to drastically reduce the number of feasible electrical loads. This is because
the method for detecting bus devices rely on the reflection of a driven test sig-
nal to locate the termination of the bus. The more devices connected to the bus,
the longer it takes for the signal to be reflected. The total time it takes from the
signal is set to the reflection arrives must be less than the clock period to for the
signal to reach a device before bus evaluation.

Higher requirements to data-transfer rates together with the electrical load
barrier was why PCI-X was introduced. The multi-drop parallel bus began to
replace the PCI, however it was only a temporarily solution as computers grew
more and more powerful. Table 2.1 reflects this phenomenon, increasing the
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frequency for a given architecture implies reducing the number of card slots per
bus, both for PCI and PCI-X. The electrical load barrier created yet again a need
for a new, revolutionary design approach. Computer scientists were forced to
re-think fundamental concepts as they were facing a physical barrier.

Research advancements in the field of dividing, labeling and re-assembling
packets as well as improvements in electrical hardware components for dif-
ferential signaling, re-introduced the trend of serial data transfers. Intercon-
nect research had again turned towards high speed serial communication which
gave birth to PCIe, a serialized packet-based communication protocol. PCIe 1.0
was introduced in 2002 as a third generation I/O bus. Today, high speed in-
terconnects such as USB and Firewire and PCIe are all built on the serial data
transfer principle. PCIe kept the strong features of PCI, and improved the weak
ones, the serial transfer approach, makes it technically speaking, not a bus. The
predecessors of PCIe are referred to as true buses, they are constructed with
physically adjacent rails for parallel data transfer. PCIe on the other hand side,
has a structure that resembles a serial network connection. It mimics PCI even
though it communicates using a packet based protocol. The resemblance to PCI
ease the task of migrating PCI devices to PCIe, create bridges between the two,
and removes the need to change software during a migration.

The PCIe bus is said to be categorized as a third generation bus out of three
generations:

• The first generation of buses consists of multiple purpose specific bus-
standards, all with dedicated tasks to be assembled into a larger system.
One bus for is dedicated for memory, one for peripherals and so. Many
smaller systems are built together to create a larger computer system. Ex-
amples of first generation buses are: ISA, EISA, VESA and Micro channel
buses.

• The second generation of buses are known for using two layers of connec-
tion. The CPU and the memory are connected to the north-bridge, and
the peripheral devices are connected to the south-bridge, the two mod-
ules are interconnected with an internal bus structure. Examples of sec-
ond generation bus standards are: PCI, AGP, PCI-X.

• Third generation buses are flexible with respect to the number of physical
connected devices to the system. This makes them suitable for use in-
ternally in computer systems connecting computing nodes together. The
third generation of buses behave like networks rather than bus standards.
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Figure 2.4: Two PCIe devices communicating with TLPs and DLLPs

2.1.2 The PCIe System Architecture

PCIe Units of Transaction

This section covers the system architecture of PCIe, starting from the bottom up
with the units of transactions first, then the device layers and finally the coarse
grained system topology. PCIe is as mentioned above a packet based communi-
cation protocol. There are two packet types flowing on the links between PCIe
devices. These are the transaction layer packets(TLPs) and the data link layer
packets(DLLPs) shown in figure 2.4. The DLLPs are used for Link management
functions, for transferring data between devices that help maintain connection
statuses and to provide information about reception of TLPs. Examples of such
functions are ACK/NAK handshakes, exchange of flow control details and power
management features. The TLPs are the larger communication units that are
used for the transactions themselves. That includes memory actions, io actions,
configuration of PCI devices and for messaging and event reporting. The TLPs
are explained in detail below as these are essential for the creation of an RC TLM.

The Transaction Layer Packet
The 15 transaction layer PCIe transactions are listed in table 2.2 in 5 categories.

Category TLP Types Acronym Posted or Non-Posted

Memory Memory Read Request MRd Non-Posted
Memory Read Lock Request MRdLk Non-Posted
Memory Write Request MWr Posted

IO IO Read Request IORd Non-Posted
IO Write Request IOWr Non-Posted

Configuration Config Type 0 Read Request CfgRd0 Non-Posted
Config Type 0 Write Request CfgWr0 Non-Posted
Config Type 1 Read Request CfgRd1 Non-Posted
Config Type 1 Write Request CfgWr1 Non-Posted

Message Message Request Msg Posted
Message Request W/Data MsgD Posted

Completion Completion Cpl -
Completion W/Data CpID -
Completion-Locked CplLk -
Completion-Locked W/Data CplDLk -

Table 2.2: The PCIe Transaction types
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The requests can be split into two types, posted transactions and non-posted
transactions. The non-posted transactions are those that expect TLP answers
in return of a request, typically memory read requests that expect a completion
TLP containing the requested data. The posted transactions are those that do
not expect a reply such as memory write requests. Writes are satisfied once the
data is written to the specified system memory address. Non-Posted requests
are handled as a split transactions, freeing the bus while waiting for an answer.
This is an automatic feature as a result of the packet based nature of PCIe.

Figure 2.5: The TLP and it’s layer-targeted segments

The TLP is consists of the 7 main segments shown in figure 2.5. The header
of the TLP is assembled in the transaction layer of the sender, and disassem-
bled in the transaction layer of the receiver. The transaction layer section of the
TLP is encapsulated with sequence numbers, error checks and start-stop indi-
cations on its way down towards the egress port. These encapsulations are upon
reception of the packet, peeled off like onion-shells in their respective abstrac-
tion layers. When the packet arrives at the software layer of it’s destination, only
the payload and the header remains.

Figure 2.6: The generic TLP header

The header segment of the TLP shown in figure 2.5, consists of 3 or 4 Double
Words(DW). The data payload is up to 1024 DW data payload and the optionally
ECRC segment is 1 DW . The 15 various types of TLPs listed in table 2.2 are dis-
tinguished from each-other by differences in the byte-fields within the header
of the packet. The structure of the header varies for the different TLP types,
which is represented with the white fields in figure 2.6. The light blue fields are
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Header field Explanation

Reserved (R) The reserved fields are all reserved for header recognition, they are
all set to 0’s during TLP construction. Recent patches to the PCIe
structure use some of the reserved fields for extra attributes such as
extended tags, and TLP hints [18] [40].

Format (Fmt) The format of the TLPFmt are used to tell whether a data payload is
present in the TLP or not, it is also used for information about the
length of the header itself, if it is 3 DWs or if it is 4 DWs.

Traffic Class(TC) The Traffic class is the priority of the TLP, it tells what priority based
virtual channel buffer it is to be put in at forwarding and handel-
ing. The higher the number the higher is the priority, TC can be a
number from 0 to 7.

TLP Digest (TD) TLP digest tells whether the 1DW optional ECRC section of the TLP
is present or not, the receiver of the packet must check the ECRC
field if it is.

Poisoned Data (EP) If this bit is high, the TLP is consdered to be invalid. The transaction
is allowed to complete normally.

Attributes (Attr) The attributes of the header tells whether to Relax Ordering (RO)
or to use strict ordering when transfering the packet. The attributes
also tell whether to set No Snooping (NS) for the transaction, mean-
ing that no cache coherency issues exist regarding this TLP. The sys-
tem is allowed to skip snooping to ensure cache coherency thus in-
creasing the system performance.

Length The Length field indicates the size of the data payload in given in
DW, maximum payload size is 1024DW as the field is 10 bits long.

Table 2.3: The generic header fields of the TLP, explained

generic, they are common for nearly all packet types. Each generic type field is
explained further in detail in table 2.3.

The header types for memory requests packets and completion packets are
explained in this paper as these are vital for an RC TLM. The type specific fields
for MRd an MWr are shown in figure 2.7. Equally, Cpl and CplD header fields are
described in figure 2.8. Explanations for the memory request packets are found
in table 2.4 and completion header explanations are given in table 2.5. The
gray rectangle next to the memory request header represents 32bit addressing
vs 64 bit addressing in system memory, the 3 dw memory request header can
only access the darker shade of gray, the bottom 4 GB of PCIe system memory.
Please refer to the PCI e system manual [3] for explanation of the remaining
header types for the packets listed in 2.2

To further understand the packet structures and the intention behind the
packet types, a deeper look into the layered structure of the PCIe protocol is
necessary as the DLLPs originate in the data link layer, and the TLPs originate in
the transaction layer of PCIe devices.
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Figure 2.7: The memory request header 3DW & 4DW

Memory Header
field

Explanation

Last DW Byte En-
able

Last DW Byte Enables consist of four bits that indicate what bytes
that are included in the last DW of the payload, this field is needed
as the address field is DW alligned.

First DW Byte En-
able

First DW Byte Enables works in a similar fashion to Last DW BE, it
tells what bytes to include in the first DW of the data payload.

Requester ID The requester ID tells the completer of the memory request who the
requester is, so that a completion packet may be returned. The re-
quester ID is the device ID of the requester, described by a bus num-
ber from 0 to 255, a device number from 0 to 31, and a function
number from 0 to 7. Completion packets for memory requests are
returned using ID routing

Tag The Tag of the memory request is a water-stamp that is put on a non-
posted request packet to ID outstanding requests that are issued
by a requester. By default a device may only have 32 outbound re-
quests at a time. The completion packet to the request is also water-
stamped with the same tag, so that the request can be removed from
the outbound buffer in the transaction layer of the receiver. Recent
changes to this parameter is explained in [40], the change is called
extended tags, allowing 256 outbound requests.

Address The address field of the memory request header provides the sys-
tem memory address for the requested memory action. The entire
PCIe system is given different segments of the 64 bit available sys-
tem memory address space, this allows for address routing to be
used when routing packets between PCIe devices. The address field
is either 1 DW or 2 DWs, depending on the addressing type indi-
cated in the format of the header. If the header is 3 DW in total, only
the lower 4 GB might be addressed. The lowest 4 bits of the address
forces the memory to be double word aligned, creating the need for
the byte enable fields.

Table 2.4: The memory-request header specific fields, explained

The Data Link Layer Packet
The DLLPs originate in the data link layer of a transmitter and are terminated in
the data link layer of a receiver. The DLLPs are used for management of the PCIe
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Figure 2.8: The completion header

Figure 2.9: The structure of the data link layer packet

links by sending ACK/NAK packets, power management information, and to ex-
change credits that are used for flow control of virtual channel buffers. ACKs
and NAKs are the DLLPs that are used for acknowledging successful receptions
of TLPs, and for reporting faults in transactions. When a DLLP is sent down to
the physical layer, extra sections marking the start and the end of the packet to
be transmitted are added. This is illustrated in figure 2.9, note that the outer
segments are equal to the outer physical segments of the TLP. The DLLP is not
explained in detail here as the RC TLM is to be made in a higher abstraction
level.

PCIe Device Layers

Figure 2.10 shows a PCIe device and its device layers put together in a lego-like
structure to form the PCIe Protocol stack. Each layer is described below with
extra effort is put into the the higher abstraction layers. The importance of the
paragraphs are reflected in their lengths.

Software Layer

The software layer is where the device’s system logic lies. It is the software
application running on hardware on top of the PCIe protocol stack. For an RC
TLM this would be the root complex core logic, and for an endpoint this would
be the endpoint core logic. The top section of figure 2.10 shows that the all lay-
ers are divided into a transmit side and a receive side, even the software layer is
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Completion
Header field

Explanation

Completer ID The completer ID tells the receiver of the completion package, who
sent it, this has no purpose for routing the packet, however it might
come in handy when debugging packet traffic.

Competion Status The Completion status in the header marks whether the completion
package is the result of a successfull completion or not.

Byte Count Modi-
fied (BCM)

The BCM field is only set to 1 by PCI-x completers, it indicates
whether the Byte Count field tells the receiver of the packet the
number of bytes in the first transfer payload rather than the remain-
ing payload.

Byte Count The Byte Count reflects the remaining number of bytes until the re-
quest that was the origin of the completion is satisfied, this counter
includes the payload of the current completion packet. The field is
usefull when multiple completion packets are returned to one re-
quest.

Requester ID The Requester ID field in the completion packet represents the de-
vice ID of the requester that originated the completion packet, the
request field is used for routing the completion packet back to the
correct requester by using ID Routing.

Tag The Tag of the completion packet is equal to the tag of the corre-
sponding request packet, the tag is used by the receiver of the com-
pletion packet to remove the request from the outbound request
buffer to prevent further re-playing if requests.

Lower Address The Lower address of the completion header represents the lower
7 bits of the address for the first byte of data returned that was re-
turned to a reader. The lower address is used for determining the
next legal Read completion boundary for large read requests as a
precaution to cache line alignments.

Table 2.5: The completion-header specific fields, explained

slightly divided. Whenever the device core decides to send a packet on the PCIe
link, the transmit side of the software layer sends the necessary information to
build that packet, down to the transaction layer. The information needed to
build a TLP includes TLP-type, address, data, amount of data to be transfered,
traffic class and more. The receive side of the device core is responsible for re-
ceiving data that has made its way up to the transaction layer, this data includes
most data in the normal TLP core except from the ECRC field which is removed
by the transaction layer.

The Transaction Layer

The transaction layer is responsible for generating outbound traffic and for
decoding inbound TLP traffic. The transaction layer is as shown in figure 2.12
also bipartite like the software layer. One part is transmitting, it generates the
outbound TLP headers and assembles the TLP cores on behalf of the software



THEORY 15

Figure 2.10: The layered structure of the PCIe protocol stack

Figure 2.11: The software layer of the PCIe Protocol

Figure 2.12: The transaction layer of the PCIe Protocol

layer, data payload is encapsulated within the header and an end-to-end cyclic
redundancy check field (ECRC). The packets created are then placed in transmit-
buffers to be forwarded down to the data link layer. The receiving part of the
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transaction layer receives packets from the data link layer and places them in
receive buffers for handling. When TLPs are picked out for handling they are
first checked for CRC errors based on the optional ECRC section of the TLP, if
there are none, the packets are stripped for their ECRC field and the resulting
information is forwarded to the software-layer together with the data payloads
of the transactions.

The transmit and receive buffers in the transaction layer are known as vir-
tual channel buffers(VCBs). There is one transmit and one receive buffer for
each traffic class. The 8 VCBs are shown in figure 2.12. All TLPs are marked
with a traffic class, a number between 0 and 7, as explained in section 2.1.2.
The traffic class is the priority number of the packet, and depending on what
TC number the packet has, the packet is put into different buffers with different
priorities. The higher the traffic class the higher is the priority of the buffer ar-
bitration. The buffers with higher priorities are cleared at quicker rates than the
buffers with low priorities. Quality of Service (QoS) is also ensured by having a
credit based flow control to avoid buffer overflow for the VCBs. A virtual channel
send buffer is not allowed to be handled unless the credit-status of that specific
virtual channel buffer says so. A TLP will only be transmitted if the transmit-
ter knows for sure that the receiver has buffer space to accept the transmitted
TLP. The credits represents buffer-space, and they are updated through data link
level packets that are sent periodically between devices. The DLLPs are respon-
sible for updating the credit information.

Whenever the transaction layer receives a completion TLP from another de-
vice, the tag of the TLP is associated with the tags of previously sent non-posted
requests that are stored in an outbound request buffer. The packet is rejected if
tag is nowhere to be found in the outbound request buffer. The request stored
in the outbound request buffer is removed whenever a completion is received
that matches the tag of the stored request. If the request is lost, the packet is
replayed after a specified time out period.

Configuration is only covered partly in this assignment as a performance
based device simulation targets an already configured PCIe System. A device’s
configuration registers are associated with the transaction layer of the each de-
vice function, a device may have up to 8 functions. Each device function im-
plements a set of configuration registers. The registers are configurable and are
used to store system settings such as address maps, device IDs, link capabili-
ties and other system information that needs to be accessed in runtime. Each
PCIe device has a set of Configuration registers that are initialized during system
boot up by the RC in runtime software. The transaction layer and the software
layer access the configuration registers in runtime when sending and receiving
packets. The configuration registers are set during system configuration with
configuration packets from the PCIe RC.

As figure 2.13 shows, the PCIe device’s configuration register contains a 256
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Figure 2.13: Type 1 and type 0 configuration register headers[3]

byte PCI compatible fraction that includes device ID, base addresses and such.
The remaining 3840 bytes of the configuration register is dedicated to PCIe con-
figurations, they includes virtual channel capabilities to support QoS and other
optional PCIe specific extended capability registers. PCI does not support QoS
in the same degree as PCIe does.

There are two different configuration spaces, these are the type 0 and type
1 headers shown in figure 2.13. All devices that require system memory, IO, or
memory mapped IO target addresses implements Base Address registers (BARs).
Type 0 registers have 6 BARs and are the non-bridge/non-switch format, mean-
ing that endpoints use type 0 configuration registers. Type 1 configuration reg-
isters have 2 bars and are used for forwarding packets in switches and bridges.
These registers contain unique segments of the system memory address space.
The device that owns the BARs, also owns the segment in the system memory
and is allowed to respond as a completer whenever requests that are address
routed, target an address in this segment. 2 adjacent base address registers may
be used to create the support for 64 bit addressing.
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Transaction Layer rules for building and decoding TLPs. 6 Important rules
for assembling data from the software layer into transaction layer packets and
dissembling TLPs that are recieved form the data link layer are given below:

• Completions may be broken into multiple packets, however the total pay-
load has to be equal to the size of the original request and each com-
pletion have to be returned in an increasing address-order. Completions
from multiple requests are on the other hand not allowed to be merged
such that several requests give one large completion.

• The read completion boundary (RCB) ensures that single memory read re-
quest results in several completions. Each intermediate transaction must
end with naturally aligned 64 or 128 bytes address boundaries. Only the
Root complex is able to have a read completion boundary on 64 bytes or
128 bytes, all other PCIe devices have an RCB equal to 128 bytes. The RCB
is a direct result of the cache line size used in memory systems. PCIe per-
formance is thus related to cache-lines. An example containing multiple
completions as a result of one memory read request for 192 bytes from
address nr. 0x10030 is given here:

1. 0x10030 -> 0x1003F (0x10 bytes)(16bytes, resulting address pointer is dividable by
rcb = 0x40 (64)

2. 0x10040 -> 0x1007F (0x40 bytes)(64bytes) resulting address pointer is dividable by
rcb = 0x40 (64)

3. 0x10080 -> 0x100BF (0x40 bytes)(64bytes) resulting address pointer is dividable by
rcb = 0x40 (64)

4. 0x100C0 -> 0x100EF (0x30 bytes)(48 bytes)resulting address pointer is not dividable
by rcb = 0x40(64)

• Multiple completions as the results of RCB splitting of a single request are
allowed to be combined into one completion if the completions that ar-
rived at the egress port queue first have to await sending due to port arbi-
tration delays. If multiple completions are ready for sending, they might
as well be combined into one TLP embodiment as long as they satisfy the
maximum payload size [8].

• Any completion with a completion status other than “successfull com-
pletion” will terminate the transaction. A completion without any corre-
sponding request in the outbound request buffer will be handled as an
error as they are not expected.

• The maximum payload per TLP is for requests, limited by the value of
the Max_Payload_size register located in the device’s control register. If
it crosses this upper limit, then it is considered a malformed TLP, and is
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rejected by the receiver. A large max_payload size allows for system com-
munication with less overhead. But it also has its disadvantages of more
packet congestion due to full buffers, a detailed description for setting
the optimal maximum payload value is given in [25]. The total PCIe sys-
tem is limited by its weakest components, if a system has a component
with a maximum payload of 128 bytes while all other components have
256 bytes, the entire system will be configured by the RC to use 128 bytes.

• Header lengths and ECRC lengths are not included in the length-fields
of headers, only data payload is included in this information. Receivers
must check that the length field corresponds to the data that is trans-
ferred, if it does not match, then the TLP is considered to be malformed.
The length field has a double word resolution, byte resolution on reads
and writes is achieved with the last and first dw-byte enable bits.

The Data Link Layer

Figure 2.14: The data link layer of the PCIe Protocol

The main function of the data link layer is to ensure data integrity in packets
when transmitting and receiving TLPs. The DLLPs are assembled and dissem-
bled in the data link layer. If TLP-CRC errors are detected in a receiver’s data link
layer, then a NAK DLLP is sent back to the transmitter of the TLP to let it know
that an error has occurred and the packet-sending needs to be replayed. The
ACK-NAK protocol together with the automatic replay functionality of the data
link layer provides a very high probability that the TLP will make it to its final
destination unscrambled. Such a feature is ideal for server systems that require
low error rate and high availability.

Flow control of the system is ensured using DLLPs. The status of the virtual
channel buffers of the transaction layer is updated by periodically sending VC
credit information between interconnected devices.

In addition to sending separate data link layer packets, the data link layer
also concatenates a sequence ID and a LCRC field to each TLP received from
the transaction level for further forwarding. The sequence id is used to identify
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packets in the replay buffer with incoming ACK/NAK DLLPs, and the LCRC field
is used for deciding whether to return an ACK or a NAK DLLP to the sender.

The Physical Layer

Figure 2.15: The physical layer of the PCIe Protocol

The layer that has direct contact with other PCIe devices is called the physi-
cal layer. This is the final layer that the packet has to pass through for it to leave
the PCIe device, or the first layer that an incoming packet will face. The physical
layer forwards both DLLPs and TLPs, to which it adds start of packet and end of
packet indicators. There are two levels in the physical layer, one is the logical
part and one is the electrical part of the layer. The first one processes the pack-
ets before sending them, to or from the physical electrical part, depending on
the traffic direction. The physical electrical part is the analog interface for the
physical layer to the link.

The packets leaving the Physical layer towards the egress port are converted
to a serial bit-stream before they are sent out on the wire lanes. All PCIe packets
are encoded using a 8/10 bit encoding, meaning that 2 extra bits are added per
8 bits of TLP or DLLP data. These 2 redundant bits are used for embedding a
clock into the serial bit stream, removing the need for a clock tree.

A PCIe link between two devices that deploys the PCIe architecture is either
of type 1x, 2x, 4x, 8x, 16x or 32x. The type number denote the number of two-
directional lanes that exists in the connection link between the two devices. The
more lanes implemented on a link, the faster a packet is transmitted, thus the
greater the bandwidth of the link. A lane consists of four signal-wire pairs, two
wires for each transfer-direction. Each of these signal-wire pairs use differential
signaling to achieve transfer rates of up to 2.5 GT/s for PCIe gen1, 5 GT/s for PCIe
gen2, 8 GT/s for PCIe gen 3, and an announced transfer rate of 16 GT/s for the
future PCIe gen 4. One wire in the pair represents a positive differential termi-
nal, and the other wire represents the negative terminal. Whenever the voltage
difference between the two terminals is positive a logical 1 is interpreted by the
receiver, and whenever the difference is negative a logical 0 is received. The dif-
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ferential pair is in its high-impedance tristate condition or idle-state whenever
the voltage difference is 0. A signal event is triggered whenever the peak to peak
voltage difference is between 800mV and 1200 mV.
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2.1.3 The PCIe Topology

Figure 2.16: Topology of a typical PCIe system

Figure 2.16 shows the component structure of a typical PCIe system. End-
point devices and switches are connected to the memory and the CPU via the
module known as the Root Complex. Whenever the CPU desires to commu-
nicate with peripherals, it performs transactions via the RC. Same goes for the
endpoints, whenever they want to access data that is located in the subsystem
memory next to the CPU, they have to send request TLPs to the root node in the
PCIe tree for handling.

The Root Complex (RC)

The RC interconnects the CPU and the memory to the PCIe switch fabric. It is
similar to the host bridge for PCI. The RC is a critical component in the PCIe
topology as it serves as the root node for the hierarchical PCIe tree, connecting
the tree to the host CPU and Memory. An RC includes multiple components
such as a memory interface and a processor interface for single CPUs or mul-
tiple CPUs. The CPU and the memory are connected to the RC using local bus
architectures in a manner that allows the root complex to send transaction re-
quests to PCIe devices on behalf of the CPU. The RC is also able to perform DMA,
freeing the CPU as an intermediary, accessing the host memory directly.

The buses that connects the PCIe tree to the CPU are company specific be-
cause the RC is built into the chip-set for the CPU. Intel CPUs have been using
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Figure 2.17: The PCIe multiport RC

the bus architecture known as the front side bus (FSB) for a couple of decades.
The FSB in Xeon and Itanium was replaced by the QuickPath Interconnect (QPI)
[16] [28] for newer Intel micro-architectures such as Nehalem, Westmere and
Xeon arriving after Xeon Bloomfield, starting in 2008-2009. The QPI is displayed
in figure 2.17. It is a point to point packet based interconnect located within the
Root complex, interconnecting the I/O Hub and the Uncore [12] [31] of recent
Intel architectures.

The root complex is in addition to serving as a bridge between peripherals
and core logic, also responsible for controlling hot plug of new PCIe devices,
configuration, power management, interrupts involving the CPU, error detec-
tion and for reporting system messages. As explained earlier, each PCIe device
contains configuration registers, these configuration registers are set by the root
complex during system initialization and hot plug using configuration packets.
The configuration registers contain data required to route packets to their ap-
propriate destination. All PCIe devices in a system are initialized with device
IDs consisting of bus numbers, device number and function numbers. The de-
vice IDs are used for ID routing by marking the packets with the corresponding
sender or receiver.

There is only one RC in a PCIe network, and it is always initialized with the
device ID; bus nr: 0, device nr: 0 and function nr 0. It can have one or several
PCIe devices connected to it, either directly or indirectly via switches. Several
connections directly to the RC requires that a switch is implemented as an inter-
nal submodule. All PCIe packet-traffic heading towards the RC is considered to
move upstream, and all traffic moving away from the RC is considered to move
downstream.

Multi-port PCIe RCs have the same requirements as a switch with respect
to arbitration and timing requirements. Arbitration algorithms, and timing re-
quirements are not defined in detail in PCIe RC specs, so these are vendor spe-
cific.However, a PCIe RC realization must satisfy all the paragraphs in the check-
list given in [35] in order to be a valid PCIe RC. For this thesis however, only a
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delay-based model is to be provided, so the checklist is only relevant as theoret-
ical background information.

Snooping A phenomenon called snooping plays an important role on RC per-
formance, and thus the PCIe system performance. All memory accesses to a
PCIe system memory complex are considered cache-able by the host at any
time. This means that the CPU continuously stores copies of system memory
in its caches. An EP requesting memory access to a system memory segment
will experience a wait period for the RC to search in processor caches for copies
of the memory segment. The CPU might have modified local copies with the
intention to update the memory location. If this is the case, then the request-
ing EP will have to await the memory update before it is allowed to access the
memory. The RC’s cache check, filters out violations of cache coherency. Cache
coherency is crucial, yet time consuming. The time it takes to snoop the CPU
cache is bounded below a maximum limit, but it is still not predictable, largely
influencing the Jitter of the MRd-CplD completion delay. [22]

A way to prevent system jitter from snooping is to dedicate uncacheable ar-
eas of system memory. In this way the CPU will avoid caching those areas. A
second way is to have the software layer to set the "No Snoop" attribute in the
TLP as described in 2.1.2. This causes the host to skip snooping regardless of
its previous instructions, it can only be done when the software guarantees that
the memory segment is nowhere to be found in the CPU cache. The requester
knows that this will not cause any conflicts. For high priority virtual channels
that requires isochronous paths, jitter can be avoided by setting configuring the
RC to reject all incoming Snooping transactions on that channel. All packets
that does not have the "No Snoop" attribute set might be rejected.

Relaxed Ordering A phenomenon called Ordering also plays an important
role on RC performance. It is often beneficiary to have a strict ordering of pack-
ets that have data dependencies or memory location dependencies. A typical
example would be a movie stream, you want packets to arrive in the order of the
movie. However, a strict ordering of packets is not always needed. Successive
transactions that do not have dependencies between each-other might allow a
relaxed ordering of the transfers. Forcing ordering of packets that are indepen-
dent can cause large loss of bandwidth, packets may clump up waiting for their
predecessor to be sent. Instead the packets are allowed to jump the queues, and
to be sent once they are ready. Relaxed ordering is set by setting the attribute in
the TLP Header called "Relaxed Ordering" as described in 2.1.2.

TLP Hints, Direct Cache Transfer A new feature for PCIe Generation 3 is the
phenomenon of TLP Hints. It turns out play an important role on RC perfor-



THEORY 25

mance, using caching to handle inbound memory transactions. One of the re-
dundant bits in the generic TLP header fields in 2.1.2 is swapped out with a TH
bit. If set correctly, the bit provides the system with an idea of how to handle the
TLP in an optimal fashion to reduce latency and congestion [22]. When set, it
means that a packet from an EP to the host memory is to be added to a cache in
the RC with the intention of being read by the CPU as fast as possible. Instead of
wasting time on writing to the memory and then having the CPU reading it from
the memory again, the RC writes to the Cache. Software or interruptions notify
the CPU that it has a "mail". TLP hints leads to faster access time and reduced
traffic targeting the system memory.

Endpoint (EP)

Figure 2.18: The PCIe Endpoint

A PCIe interconnected network can have several concurrently connected
endpoints as illustrated in figure 2.16. A PCIe endpoint can either be a requester
or a completer. It can initiate a transaction as a requester and it can also an-
swer a request with a completion transaction. There are two types of endpoints,
legacy endpoints and normal endpoints. Legacy endpoints are endpoints that
were designed for an other architecture, typically PCI-X and was redesigned to
fit that of PCIe, keeping the device core. Legacy endpoints are allowed to use
I/O transactions, and are free to choose at design time whether they want to
support a 64-bit address space or not. Normal PCIe endpoints do not have to
support IO or locked transactions. They do however have to support 64 bit ad-
dressing. Endpoints are allways configured with the device number 0 on a bus.

Switch

A PCIe switch is similar to most network switches in LANs, the switches inter-
connect n packet-based PCIe devices and forwards packets in between them.
The PCIe switch has as shown in figure 3.7 an internal bus with its own bus
number used for forwarding packets to the appropriate PCItoPCI ports. The
PCIe switch reacts differently to the various routing methods earmarked in the
header of the incoming packet. There are three different routing methods, these
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Figure 2.19: A packet switch with VCB and Port arbitration

are: Address routing, ID routing and implicit routing, switches have to support
forwarding of these three. For Address routing: The switch firstly checks if the
switch itself is the rightful receiver of the packet, if not, then the packet is for-
warded appropriate port based on the port data located in BARs in the switch’s
type 1 register header. The switch has one configuration space header for each
port. In order to create a multi-port RC a switch might be implemented into the
RC. Multi-port switches also have the possibility of priority differentiation us-
ing VC buffers, this is made possible by having a common VCB system for each
egress port. Packets are forwarded to the rightful ports, and then placed in a VC
arbitration buffer for that port.

2.1.4 PCIe Packet Sending Example

Now that the basic building-blocks of the PCIe architecture are explained, a sim-
ple complete example of a packet transfer can be given. This example shown in
figure 2.20, demonstrates the EP as a requester and the RC as a completer. The
EP issues a MRd to system memory and receives a CplD. Details of the example
is further explained in the bullets below, the numbers correspond to the num-
bers in the figure:

1. The software device core of the PCIe device, issues a request for service
to the PCIe transaction layer. The exact data that is issued to the trans-
action layer is device-specific, however it would typically include: com-
mand type, start address, transaction type, size of the data payload if any,
traffic class for the packet to be sent, and attributes; NoSnoop and Relaxed
ordering. The transaction type in this case is MRd.
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Figure 2.20: Example of a memory read transaction on a PCIe topology

2. The transaction layer constructs the TLP header and adds it to the VCB
that corresponds to the TC in the packet header. A copy of the packet is
also stored in the Transaction layer’s outbound request buffer The packet
is sent down to the data link layer once the VCB arbitrator empties the
buffer.

3. Sequence number and link layer CRC is added to the TLP in the data link
layer and a copy is stored in the replay buffer. The packet is sent directly
down to the physical layer where a start and an end sequence is added to
the packet. The packet is then serialized and sent on the link on a speci-
fied number of lanes.

4. The switch receives the wrapped up TLP, the tlp is stored in port buffers
awaiting port buffer arbitration. Once chosen by the port buffer arbiter,
and the incoming VCB arbiter. The switch performs various low level er-
ror checks and checks the address field of the packet versus its own BARs
in its type 1 configuration register. It finds out that it is not the rightful re-
ceiver and forwards the packet the TLP is then added to the egress VCB on
the port that fits the status of the configuration register. The TLP is sent
further upstream towards the RC once the egress VCB arbiter handles it.

5. The receive part of the RC works in the opposite direction of the send part
of the EP. Once the request reaches the device core, memory is read and
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the data is returned back to the transaction layer again for building of a
completion packet. The request ID in the memory read request is added
to the completion packet, so is the outbound request tag and the data
payload is encapsulated.

6. The packet is sent to the switch which uses ID routing to forward the com-
pletion packet back to the requesting endpoint.

7. Upon reception the inverse approach as that of sending the request is
performed, and once in the transaction layer, after VCB receive arbitra-
tion, the packet tag is matched to its outbound request and the outbound
request is removed. The data payload is sent to the endpoint’s software
layer.

2.2 PCIe Related Performance Metrics

PCIe system performance is a hot topic of discussion in the following chapters
since the goal of this thesis is to create a model to be used performance simu-
lation of a PCIe EP. Parameters that describe PCIe performance are: Bandwidth,
latency, cost/power, Quality of service(QoS) and Error protection[25]. This sec-
tion is dedicated to clarification of the performance parameters in PCIe that are
most relevant for this thesis, PCIe bandwidth and latency.

2.2.1 Bit Rate / Bandwidth

Bit rate or bandwidth is the number of bits or data processed per unit of time.
There might be several interpretations of what to include in the bit rate of a
system, some of these are explained below.

Gross bit rate/ raw bit rate/ gross data transfer rate/uncoded transmission
rate

Are all names for the physical data bit rate that is transfered per second over a
communication connection. This performance metric includes redundant data
as well as the data of interest. Using PCIe as an example, baud rate includes the
bits used for error checks in the TLP. [bit/second]

Symbol rate/baud rate/modulation rate

Baud rate, symbol rate or modulation rate is the number of symbols transferred
per second. Depending on what the symbol size is is, the baud(Bd) rate might
vary from the bit rate. The baud rate is only equal to the bit rate when the symbol
size is equal to one bit. The symbol size might also be less than one bit, this often
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occurs in low speed encrypted channels, or in communication channels with a
high amount of error-check redundancy, (like PCI-e). [symbols/second]

Net bitrate / information rate/ useful bit rate/payload rate / net data transfer
rate / coded transmission rate / effective data rate / wire speed

Net bit-rate has many synonyms, they all refer to the capacity of a communica-
tion channel excluding the physical layer protocol overhead, redundant error-
check-codes, and general channel encoding. Net bit-rate always satisfy the in-
equality net bit-rate <= gross bit-rate. [bits/second]

Peak Bit-rate /Max Bandwidth

It is the peak potential number of bits per seconds that a communication chan-
nel can obtain. There is high risk of confusion when dealing with peak bit-rate,
whether the communication-potential is listed in gross, or net bit-rate. This
paper talks of peak bit-rate as maximum net bit-rate communicated unless oth-
erwise is stated. [bits/second]

2.2.2 Latency and Jitter/Packet Delay Variation(PDV)

Latency

Latency is the delay it takes from the start of an action to the completion of
the same action. For a PCIe switch, the latency is the time it takes from the
start of packet (SoP) on an input-pin to the SoP on the output-pin on another
switch-port [17]. When talking about latency involving several communicating
devices, one can differ between one-way delay and round-trip delay. One way
delay is the latency it takes for a communication unit to travel from one device to
another. Round-trip delay is the time it takes from when something was spoken
by one device until the response from the device that was spoken to is returned.

When observing latency from a requesting PCIe-EP’s point of view, the la-
tency would typically include the round-trip delay of forwarding the request
to the RC, handling the request and also routing it back again to the endpoint.
The latency is composed of wire propagation-delays, switching-delays, priority-
based delays, routing-delays, request handling delays and if the request is non-
posted, the latency will also include the corresponding delays for routing the
completion packet back to the requester. This occurrence is illustrated in figure
2.21, all delays can be modeled by a total MRd-CplD delay. The intention of this
figure is to show that there are several layers of delay-details that can be merged
and included in a more coarse grained model Z(mrd-cpld total) represented by
only one value. This course grained delay value is adequate for modeling system
delays.
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Figure 2.21: MRd-CplD delays, decomposed

Jitter/Packet Delay Variation

Figure 2.22: Jitter demonstrated, jitter equal to zero vs jitter equal to 1

When talking about jitter in computer networks, one refers to the deviation
from exact periodicity in latency. A simple example of jitter is given in figure
2.22 A theoretical network where the latency is constant implies that the net-
work has no jitter. This means the uncertainty of latency, or how stretched the
distribution of arrival latency is, seen from a statistical point of view. Stretch-
ing of distributions is called statistical dispersion. Jitter is a term with multiple
meanings, a better term to use for oscillations in packet arrival delay is Packet
Delay Variation(PDV)[9]. PDV is defined as the difference in end to end delay
excluding lost packets. Instantaneous packet delay variation (IPDV) is the delay
variation between two successive packets. If PCIe packets are transmitted every
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200ns in a system and a packet is received 300 ns after the previous packet was
received,IPDV=-100ns, and dispersion is said to have occurred. As a contrast,
whenever IPDV is positive, clumping is said to have occurred. An example of
clumping would be a packet arriving 100 ns after its prior in the previous PCIe
Example. Clumping might lead to buffer overflow and packet loss which has to
be avoided in order to ensure QoS in the system. One way of solving clumping
is to increase receiver buffer-space in a system.

Typical causes of jitter are:

• Large networks, many plausible causes of jitter. In a PCIe system this
might be many switches between an endpoint and the RC.

• Priority stalls

• Variable processing delays

• Buffer bloat, some equipment have been designed with over-sized buffers
that can be filled up when packet congestion occurs.

Representing Latency and PDV

Figure 2.23: Packet arrival time, normally distributed

Latency and jitter can be represented by Latency distributions. A common
way to represent the jitter variable in packet based networks such as PCIe is
by the use of the normal distribution. The average latency is µ while the jit-
ter is represented by a number of standard deviations, σ, as the variance of the
normal distribution. An example of a jitter-latency distribution is illustrated in
figure 2.23. The communication latency is represented by x variations and the
probability for the given communication latency on the y axis. No packets are
returned immediately, this is due to the absolute minimum wire delay it takes to
transfer data physical communication systems. In packet based systems more
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realistic PDV-latency distributions are often more long-tailed, fitting the Pois-
son distribution. Long tailed distribution are also known as heavy tailed distri-
butions. There are only empirical evidence for the reasons behind Long tailed
distributions in packet traffic. There are three main observed reasons for these
skews [29] in packet based communication channels, these are:

• Variations in application layer in the form of distributions of file sizes to
be transferred and so on.

• The transaction layer in the PCIe layer implements flow control. Conges-
tion avoidance leads to delayed transfers for a small fraction of the packet
majority.

• Also in the transaction layer of the PCIe, a critical packet creation rate
might lead to pink noise on the channel and congestion.

The request-completion latency for packet based protocols that all requesters
have to face in order to receive completion packets, is highly dependent on the
channel-traffic, the load situation of the system, as well as the request itself. Re-
quests might be semi-starved in priority buffers, they might also be forced to
wait for memory availability and so on. This variable nature gives a more long-
tailed latency distribution. The long tailed request-completion delay is shown
in the sketched graph in figure 2.24.

Figure 2.24: Packet arrival time, heavy-tailed distributed

A few request packets are quickly completed because of low system load
or high packet priority or both. These requests are referred to in this thesis as
“early completers”. Most requests are completed within latency segment B, the
requests in this segment will experience some wait-time in buffers due to ei-
ther medium packet-priority or varying queue depths in VCBs, these requests
are refered to in this thesis as “average completers”. Some non-posted requests
are completed late, segment C in the figure represents the "late-completers".
The late completers are often the result of low priority queue starvation which
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can be caused by heavy traffic in the higher priority queues. For PCIe, the arbi-
tration algorithm depends on the actual implementation in the system, so this
can be avoided, or at-least drastically reduced by implementing larger buffers,
or smarter arbitration algorithms. The last segment are packets that are never
completed. Segment D represents the packet loss due to packet congestion and
thus over-flooded, packet loss might also be caused by bit flips in the physical
layer. These are referred to in this thesis as “Never completers” or simply "lost
packets". The never completers are like any other PCIe request stored in the
outbound request buffer. This means that after a specified outbound request
delay, the request is refreshed. And if the circumstances reasonable, the request
will be answered within the normal completer-delay.

Multiple probability distributions can be super-positioned into one by using
the principle of mixture distributions[21]. This can be done by weighting each
sub-distribution according to their respective portion of the total sample num-
ber and then adding all distributions together. This sums up to a weight equal
to one as shown in the following formula. P i is the i’th of n probability distribu-
tions and w i is its corresponding weight on the total system distribution.

ftot al (...) =
∑n

i=0pi (...) wi

Figure 2.25: Weighted mixture of probability distributions

2.3 Root Complex Emulation with QEMU

QEMU is short for Quick Emulator and is a free, open-source software made in
Japan. It is a hosted hypervisor that creates a virtual computer hardware plat-
form. QEMU is short for “Quick EMUlator”, which describes what it does. It
emulates CPUs, translating one instruction set into another via binary machine
code. This method is known as dynamic binary translation. In addition to em-
ulating CPUs QEMU also provides a set of device models that enables it to run
operating systems on top of the emulated hardware without modifying the OSs.

This platform has the ability to emulate hardware and to run different hardware-
specific operating systems on top of this emulated hardware. QEMU proves to
be a useful tool when testing software applications, testing hardware perfor-
mance, trying out operating systems and when running tasks that are unable to
execute on a target platform.

Recently a new chipset was introduced as a launch option for the QEMU
emulator. I440FX, the old chipset, is out of date and does not use PCI-express
as well as other important features, instead it only supports the PCI bus. Q35
is the model-name of the new chipset from intel that is implemented in QEMU
to support PCI-E pass-through, that is, to allow guests to have exlusive access
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Figure 2.26: Intel’s I440fx supports PCI and utilize ISA, available in QEMU

Figure 2.27: Intel’s ich9 supports PCIe, now available in QEMU

to PCI-e devices for a range of tasks. PCI-E devices are allowed to appear and
behave as if they were physically connected to the emulator. The Q35 chipset
was released in 2007 and is thus not exactly new, however it was chosen because
it is well established, it has PCIe support, as well as usb, sound, ahci and bridges.
Once Q35 is added as a HW option, adding new chipsets will be easier as the
code surrounding the old I440FX is rewritten in a more flexible manner. The
Q35 consists of a north bridge, MCH and a south bridge ICH9, the ICH9 contains
an integrated advanced host controller. The pictures in figure 2.26 and 2.27
show that by changing from i440fx to the Q35 PCIe is unlocked in the simulation
environment.

The QEMU emulator is developed using git and is available for download on
QEMU’s webpage [36]. The emulator welcomes contributions either for fixing
existing bugs or for adding new functionality. The software contributions have
to created following the set of rules given in [37], it should then be issued to a
QEMU mailing list for approval. The open-source feature of the emulator opens
up the possibility of customization for simulation purposes.
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2.4 SystemC

This chapter is not meant to be a complete description of the SystemC library,
just a basic introduction for understanding the implementation approach of the
root complex model.

SystemC is a coding framework that provides a discrete-time and event-
driven simulation environment. SystemC is implemented as a library exten-
sion of C++, with macros and classes describing the discrete notion of time,
module communication and a concurrent process functionality. Its wide range
of abstraction-level-possibilities allows design-engineers to use it for hardware
and software co-design. The fact that SystemC is a C++ library, makes it a su-
perset of C++, all C++ code works with SystemC code, and you are actually writ-
ing C++ code when you are describing the module processes in SystemC. The
SystemC library includes a simulation kernel that allows evaluation of system
behavior. SystemC is ideal for transaction level modeling of systems(TLM) be-
cause of its great range of expression through object-oriented design partition-
ing and templates. VHDL and Verlilog are better as detailed hardware descrip-
tive languages(HDL) due to SystemC’s syntactical C++ overhead.

#include "systemc . h"

SC_MODULE (DFlipFlop ) {
sc_in<bool> d_in ;
sc_in<bool>clock ;
sc_out<bool>d_out ;
void DFlipFlopAction ( ) {

d_out=d_in ;
}
SC_CTOR (DFlipFlop ) {

SC_METHOD (DFlipFlopAction ) ;
sensitive_pos << ←-

clock_signal ;
}

} ;

.

(a) SystemC DFF Module

#include "systemc . h"
#include " d f l i p f l i p . h"

i n t sc_main ( i n t argc , char * argv [ ] ) {
DFlipFlop * dff= new DFlipFlop ;
sc_signal<bool> clock , d_in , ←-

d_out ;
dff−>clock=clock ;
dff−>d_in=d_in ;
dff−>d_out=d_out ;

clock=0;
d_in=0;

sc_start ( 1 ,SC_NS ) ;
cout<<d_out<<endl ;

d_in=1;
clock=!clock ;

sc_start ( 1 ,SC_NS ) ;
cout<<d_out<<endl ;

delete DFlipFlop ;
return 0 ;

}

(b) SystemC Main Function

Figure 2.28: A SystemC D-FlipFlop example
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The basic building blocks of SystemC are modules. An example of a SystemC
module is the D flip-flop module given in the code snippet in figure 2.28(a). Sys-
temC modules have IO-ports described with internal methods and attributes
sc_port derivatives such as: sc_in and sc_out templates. Modules are macros
containing the class-structure of C++, they are allowed to have member attributes
and methods just like the average c++ class. IO ports and signals in SystemC
are implemented using templates to provide flexibility on the data type that is
carried by the port or signal. Even user defined data types are allowed on the
IO ports. This eases the communication between modules in a well-presented
manner. Whenever ports are created to carry user-defined structures, the user-
defined structure needs to implement certain functionalities that is required for
sending, recieving and monitoring the port-signal. The functions that has to
be implemented for a user-defined signal-unit are sc_trace function for writing
trace-waveforms, the assignment operator, the comparison operator and finally
the ostream operator.

A module’s member functions may be declared as internal concurrent pro-
cesses through the constructor-call of either SC_METHOD, SC_THREAD or
SC_CTHREAD. The SC_METHOD in 2.28(a) works as a listener, executing the
function specified within it once it is triggered by the clock in its sensitive-list.
A SystemC process can be made sensitive to signals, events or local variables.
SC_THREAD processes runs continuously with while loops and wait that holds
the thread until certain events occur. The SC_CTHREAD processes are described
in the constructor of the module with a clock in addition to the function, the
clock triggers the wait statement within the process.

SystemC’s main function, sc_main wraps around the main function in C++
and is the entry point of the program. The difference between sc_main and
main.cpp is that a call to the sc_main function also ensures initialization of
the simulation kernel, and structures that enables the simulation-nature of Sys-
temC. The command-line arguments argc and argv may be used in a similar
fashion as those of the main.cpp function. Before starting the simulation-timer,
an instance of the module to simulate has to be instantiated, and its signals
has to be tied to outer layer sc_signals. The discrete notion of time in SystemC
is based on 64 bits unsigned integers. Time is implemented in the data type
sc_time(double, sc_time_unit). Each object of sc_time contains information
of the time resolution in the form of sc_time_unit as well as a amount of time
quantums. A variable amount of simulation time can be elapsed once sc_start
is called with the specified simulation-step and the time quantum.

The model created in this thesis, has been created using SystemC version
2.3.0, and the c++ version from 2011. Any C++ compiler can be used for com-
piling SystemC code, however the SystemC library has to be downloaded, com-
piled and linked to correctly. To have SystemC harmonizing with Valgrind to
prevent false positived of memory loss, the SystemC library needs to be com-
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piled with the -pthreads flag before usage. For the model represented in this
thesis gcc version 4.8.1 was used for compiling both the SystemC library and
the RC model. More information about the SystemC library can be found in [14]
[1] [27].
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2.5 The LeCroy PCIe Gen. 1 Trace System

(a) PETracer

(b) Interposer

Figure 2.29: Trace hardware from LeCroy and CATC[20]

To gather trace data from a PCIe system, a trace solution from Teledyne
Lecroy can applied. The trace solution described here allows tracing of a PCIe
system with a PCIe card, acting as an endpoint and a motherboard containing
the RC and the PCIe interconnect. Teledyne Lecroy is a company that delivers
oscilloscopes, protocol analyzers and other measurement equipment that as-
sists a wide range of industries in designing and testing electronic devices of
all types. Teledyne Lecroy bought the company CATC in 2004 to obtain CATC’s
PCIe solutions and other electronics-analyzer tools.

Lecroy’s solution for PCIe packet tracing consists of an interposer that is
connected to a PCIe Multi-Lane Protocol Analyzer, these are shown in the fig-
ures 2.29. The analyzer is called PETracer EML, two of these are docked in-
side of Lecroy’s Universal Protocol Analyzer System (UPAS), and they both uti-
lize the CATC Trace software that allows users to control the process from a PC-
workstation.

Using CATC PETrace, real-time triggering and filtering options can be set
through a GUI in the windows operating system. The Analyzer feeds live data
from the PETracer EML to the PC for real time statistics and recordings. Recorded
trace data can be processed and displayed in a systematic manner where one
can perform hiding of packet-header fields and collapsing of data payloads and
so forth. A snippet of the work-station application is shown in figure 2.30 The
packet-log in recorded trace-files that include system timestamps for all pack-
ets recorded. The timestamps can be used to find delays between requests and
completions. The maximum trace-recording size is limited to 4 Gb in each di-
rection due to the buffer size of the PETracer EML. PCIe generations 1.1, 1.0a
and 1.0 are supported using their full speed at 2.5 GHz transfer bit-rate per lane.
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Figure 2.30: PETracer software snippet[20]

Equipment that is used for tracing PCIe traffic with this approach is:

• Universial Protocol Analyzer System.

• 2x CATC, PCIe Analyzers PE-EMLTracer (one for each data direction).

• InterPoser.

• Interposer cables

• Workstation for controlling and recording traces

• PCIe endpoint and a PCIe motherboard to dock the interposer in, typically
a server.

Figure 2.31: A hardware setup for the protocol analyzer

Figure 2.31 shows the hardware-setup of a PCIe trace-scenario. The host
system runs a PETracer software that is used both for controlling the data trac-
ing and for analyzing packet data. A USB cable serves as the interface between
the analyzing hardware and the analyzing software on host system. The USB
cable connects directly to the UPAS system that contains two EML modules for
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analyzing bidirectional traffic. One EML module analyzes data that moves up-
stream towards the RC and one EML module analyzes data that flows down-
stream, this information is copied and transferred via 16x cables from the inter-
poser to each EML module. The interposer is a male to female PCIe card that is
serially connected in between the PCIe server and the PCIe endpoint, giving the
EP the illusion that it is directly connected to the RC while eavesdropping on the
traffic.

For further details about how the PETracer EML Analyzers work together
with the UPAS 100k module, please refer to the PETracer manual [20].
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Methodology

Figure 3.1: Outline of the project workflow

Figure 3.1 maps this chapter’s sections to the project workflow. The 5 mile-
stones that are executed towards a working implementation of a high-level model
of a PCIe RC are shown in the illustration. Step 1 describes the decision of a
systematical approach for modeling an RC. The level of abstraction provided a
natural pointer towards selecting the implementation language to be SystemC.

The first milestone unlocked the implementation of the RC TLM itself and
also tracing of PCIe traffic. Implementation of the RC could not be completed
without the insertion of delay-data from the hardware tracer. Linking of recorded
traffic-data to the RC model resulted in a TLM of the PCIe RC that is realistic with
respect to MRd-CplD packet timing.

After creating a model of the PCIe RC, a suitable test environment was im-
plemented for evaluation of the RC TLM. The environment consisted of an PCIe
EP and switches. The EP model created in section 3.4 can be used as a blueprint
for creating a TLM of the EP to be performance evaluated through simulations.
Section 4.5 describes the verification process of the RC TLM.

41
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3.1 Decision of Approach

3.1.1 Deciding on the Architectural Structure of the PCIe RC Model

Pre-studies of the QEMU software, and the PCIe system architecture user man-
ual [3] were necessary to find a suitable approach towards modeling the en-
tity that ties the PCIe system together with the CPU and memory. In addi-
tion, thoughts had to be given towards the user-friendliness and accuracy of
the model structure. The RC model needs to be statistically accurate and to cor-
rectly test performance of PCIe EPs.

The RC emulator that is currently utilized by Oracle for performance mea-
surements, the QEMU emulator, is a multi-purpose CPU-emulator. QEMU does
not provide timing accuracy because of its structure as a processor emulator
that runs on top of other hardware platforms. The emulated instructions are not
executed on the target architecture, instead, they are simply mapped into local
bare-metal instructions that consume hardware-dependent execution times. The
QEMU emulator is described in more detail in section 2.3.

Figure 3.2: Structural overview of the RC TLM

A natural architecture of choice was found to be a software model that is
interconnect-able with a functional-level software-model of the PCIe EP, the de-
vice under performance testing. The software model is illustrated in figure 3.2.
The software model architecture was decided to be targeted solely towards its
purpose, accuracy and intuitiveness of the model architecture were areas of fo-
cus. The RC model was designed to be able to build memory request packets
on behalf of a simulated CPU and send them to connected devices, the result-
ing completion packets should be handled upon reception. The RC should also
be able to receive incoming memory request packets and handle them either
by simply writing to the simulated local subsystem memory or by reading from
the simulated local subsystem memory and then build completion packets to
return the resulting data.
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To create a tool that is both simple, task specific and timing correct, it was
decided that the model should be located in the PCIe transaction layer and in
higher levels of abstraction. It should respond to requests after a delay that is
statistically correct. The model architecture was chosen to have a pre-compile-
time configuration, leaving out the complexity for setting up the system as well
as support for hot-plug and similar functionalities. DLLPs, configuration pack-
ets, messages and IO transactions are not required for measurements of perfor-
mance and was therefore not included in the architecture of choice, however
they can be added later without any major changes in the software structure
due to the modularity of the system.

SystemC was chosen as the modeling language because of its TLM abilities,
further argumentation for the choice of modeling language are discussed in sec-
tion 5.2.1.

3.1.2 Model Approach for Delay Correctness

Figure 3.3: A realistic delay model

The delay-correctness of the RC model is ensured by using real hardware
traffic traces from the Teledyne LeCroy tracer described in the theory section.
Two model implementation variants of the RC delay-module were considered,
both utilizing the wait statement in SystemC. The latency model that was cho-
sen was the one that is statistically correct because it deploys the actual data
from hardware traces for delay modeling. Request packets are answered with
completion packets after a randomly drawn sample delay from a database of
real hardware traces. The structure of the delay model is displayed in figure 3.3.
The nature of the SystemC wait-statement makes the structure of the latency
model quite simple.
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3.2 Implementation of the RC model

Figure 3.4: Modules, classes and functions of the RC TLM

To model an RC with the system architecture given in figure 3.2, the follow-
ing SystemC and C++ specific module that are listed in 3.4 are needed.

• A C++ class for the TLP.

• A SC_MODULE socket used for packet-decoding/encoding.

• A SC_MODULE switch, being a sub-module of the RC to enable multiple
ports.

• A SC_MODULE that represents the local system memory.

• And, finally a c++ function handling the modeled request delay.

Details of these modules are further explained below in the following subsec-
tions in illustrative class diagrams. The Code is also available at github [10]
and can be reviewed there. For the class and module diagrams, their respective
names are given at the top of each diagram, attributes are given in the middle
field and methods are given at the bottom. The methods that are concurrent
processes include a comment next to them with either SC_THREAD,
SC_CTHREAD or SC_METHOD. In addition, the modules that contain other
submodules are also illustrated with submodules inside of them.

Generally, all classes and modules are implemented with respect to the “rule
of three” principle in c++ programming [19]. It claims that if a class defines
either a destructor, copy-constructor or an copy-assignment operator, then all
three of them should be implemented. This is especially important when data-
types include pointers to objects and when typecasting is performed. STL con-
tainers are used as frequently as possible for implementing buffers and queues.
The code related to this thesis is written using Google’s coding style for c++ [34].

3.2.1 Implementing the TLP C++ class

The TLP class is implemented with a header-pointer, a data payload vector and
an optional ECRC vector.
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Figure 3.5: A class diagram of the TLP and its header structure

The five types of headers for TLPs; the IO requests, memory requests, con-
figuration requests, completions and message requests introduced in section
2.1.2 have a set of attributes or header-fields in common. These parameters are
added as member variables in a generic TLP header, a parent-struct. This is
done together with the use of header-typecasting to have only one TLP - data-
type that is transferred through SystemC ports. Instead of having 10 io-ports be-
tween PCIe-devices one can have two ports carrying TLPs with member point-
ers to the type sc_in <GenericTlpHeader> and sc_out <GenericTlpHeader>. Type-
casting based on the generic type-field is done on reception of the TLP with the
generic TLP-header on the other side of the communication-channel.

The TLP and its subclasses are are implemented as structs with attributes
and methods according to the the diagram in figure 3.5. Only the memory re-
quest header and the completion header are implemented because the other
header-types are not of significance for performance simulations of EPs.

Note that the classes and structs in the diagram all have overloaded opera-
tors for equality checks, assignment operators, ostream operators and also over-
loaded sc_trace() functions. These are overloaded in order to support SystemC
port-specific behavior.

The header child-types employ a workaround for inheriting the ostream op-
erator since friend-functions can not be declared as virtual. Instead of overwrit-
ing the ostream function in the child data-types, the overloaded operator in the
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parent type calls a virtual non-friend function called PrintMyself that is declared
virtual.
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3.2.2 Implementing the PCIe Encoder/Decoder Socket Module

Figure 3.6: A module diagram of the PCIe protocol stack

The PCIe Socket module is responsible for decoding incoming packets and
for encoding packets to be sent that originates in the software layer of the cor-
responding device. The PCIe socket was made as a separate sub-module within
the RC for reuse outside of the root-complex as a simple PCIe protocol stack
for EPs. Figure 3.6 lists the most relevant members of the PCIe protocol de-
coder/encoder. The socket is the owner of the type 0 configuration register,
containing information like BARs and device-IDs. The socket module is meant
to be used as a submodule for basic EP and the RC. The socket was designed to
have the 7 concurrent threads that are explained here.

• SendAction() thread is responsible for the entire process of encoding the
data that arrives from the device core. This includes building the TLP
based on the incoming data, adding ECRC and data. The packet is also
added outbound request buffer if the software layer initiates a request. All
packets that are built are sent to the virtual channel buffer corresponding
to the traffic class of the packet for priority arbitration before the packet
is sent.

• SendVCBHandlingNotifyer() is a thread that assists to periodically notify
the virtual channel buffer handler to check whether the queue is empty or
not.

• SendVCBHandler() is the process that is responsible for performing pri-
ority buffer arbitration to empty the VCBs. Packets with a higher TC in-
dicated in the header are prioritized for sending. And the buffer that is
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emptied is collapsed for further handling of elements. Credits of VCBs are
not taken into account here as the DLL is not part of the model. Buffers
are assumed to be infinite.

• The OutboundRequestHandler() is responsible for surveiling all non-posted
requests that are outbound, if a timer gives the handler a timeout notifi-
cation, then the corresponding requests needs to be replayed.

• RecieveAction() listens to the PCIe channel and adds the incoming TLPs
to the accompanying incoming VCBs for further handling.

• RecieveVCBHandlingNotifyer() works in the same way as the notifier for
the sendVCB, it periodically notifies the receiveVCB to perform arbitra-
tions for handling the TLPs until the buffers are empty.

• RecieveVCBHandeling() performs arbitration of the incoming VCB, col-
lapses the incoming VCB and then handles the TLP to be handled directly.
The TLP is decoded, its optional ECRC field is checked for errors and is re-
moved if the TLP is error free. The header and the data payload are then
sent to the software layer on the from_socket_to_devcore port.

3.2.3 Implementing the PcieSwitch Module

Figure 3.7: A module diagram of the PCIe packet switch

The PCIe switch located within the RC enables it to function as a multi-port
device. The switch was made as a SC_MODULE for reuse outside of the root-
complex as a simple PCIe packet switch for EPs. The module is the owner of a
simplified version of the type 1 configuration register, containing information
like BARs and deviceIDs in addition to system-memory information for each
output port to allow address routing of packets flowing through the switch. A
dynamic amount input and output ports are implemented to allow a more flex-
ible test-setup, this is accomplished with the sc_vector datatype. The switch



METHODOLOGY 49

was designed to have the 5 concurrent threads and methods that are explained
in the list below.

• ReceiveFromLowerLevelAction() is the SC_METHOD that is run once for
every delta-cycle when changes occurs on the vector of input ports from
PCIe devices connected, that is when traffic is moving upstream. A sim-
plification is done to the switch module, it is assumed that no PCIe EPs
talk other PCIe devices than the RC. Hence all traffic arriving from a lower
level can be forwarded directly upstreams towards the RC. Packets are al-
lowed to arrive from multiple devices simultaneously per delta-cycle. This
process inserts all the incoming packets into incoming port buffers.

• ReceiveFromLowerPortBufferHandler() handles the buffers that are filled
up by the previously explained thread. Each packet arriving on the
from_lower_lvl_in_vector is eventually inserted into a VCB for priority ar-
bitration on the upstream port. First they have to be selected through
input buffer arbitration, which is implemented with a fair round-robin
selection scheme. Ports are in order allowed to forward their packets to
the virtual channel buffer at the upstream port. A small delta-cycle delay
is introduced for every packet that is routed from the input buffers to the
egress port.

• SendToUpperLvlVCBHandeling() continuously tries to empty the buffer
whenever packets are inserted into it, this is done with the same algorithm
as the VCB handling threads in the Socket module.

• SendToUpperLvlVCBHandlingNotifyer() periodically notifies the VCB han-
dler to make sure that no packets are starved there.

• RecieveFromUpperLvlAction() works under the assumption that only one
packet can arrive from a higher level of the switch per delta cycle. No VCB
buffers or port buffers are needed as the packet can be directly forwarded
to the correct port. The thread first checks the type-field in the generic
packet header, if the header is a CplD, or a Cpl header, then the indicated
Requester ID of the header is checked towards the Dev-ID to port num-
ber map located in the typ1 configuration register. The packet is directly
forward the packet to an egress port that is indicated in the ID-to-port-
map. If either MRd or MWr is indicated, then the switch has to compare
the address field located in the packet towards its arrays of base and limit
addresses for each port. The packet is also directly forwarded during the
same delta cycle as the arrival of the packet, because of the assumption
that all from a downstream ingress port have to be forwarded upstreams,
and the fact that there is only one upstream port.
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3.2.4 Implementing the Subsystem Memory Module

Figure 3.8: A module diagram of the host memory

The memory module is implemented as an array made out of integer values
located within a SystemC module. The structure of the memory module is low
level but also quite simple having only one process. The module is implemented
to allow easy manipulation of the test-setup. One can set the the data resolution
to either:

• Being byte-sized, returning one int that represents a byte for every delta
cycle simulated.

• The entire amount of requested data can be either written or read during
one delta cycle.

This setting is done by flipping the external global variable
use_byte_resolution. The data buses on the module that are implemented us-
ing the sc_vector<sc_in<int» or the sc_vector<sc_out<int» template are enabled
by default with the boolean being false. The byte resolution approach is set by
setting the boolean high before commencing simulation. The bold iosignals in
figure 3.8 are used to transfer the entire amount of requested data at once.

The MemoryAction() process is implemented as an SC_METHOD, it is exe-
cuted once whenever there is action on either of the signals in the sensitivity list
that is given in figure 3.8. The memory is manipulated in whatever manner is
indicated by the inputs. If the memory_write bit is set ,then the memory mod-
ule will write memory, the data that is given on the input, and if the write bit is
low, then the module will read the indicated data and return it to the RC. The
write_confirmation bit is used during simulation of writing to memory during
the byte-sized simulation of memory to let the RC know when it can send yet an-
other write request. The all_data_length input is used for indicating the length
of the read or the write whenever use_byte_resolution is low.
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3.2.5 Implementing the RC Module.

Figure 3.9: A module diagram of the RC TLM

RC attributes, io definitions, member functions as well as the memory in-
terface of the RC module are shown in figure 3.9. The RC module consists of
one instance of the Socket module and one instance of the switch module, the
memory module is not per definition a sub-module, it is connected to the RC
on a system-level. The Memory-module is connected to the RC’s IO ports. That
are marked on the outer edge of the RC. The bottom IO ports are connected di-
rectly to the switch sub-module. the switch might also be used outside of the
RC module. Internal sub-modules are interconnected using SystemC signals
(sc_signals).

The socket within the RC is responsible for all actions related to building
TLPs, decoding incoming TLPs, prioritizing sends, and keeping track of out-
bound requests, hence these actions are not implemented directly in the RC, but
indirectly through submodule-instantiation. In addition to including the func-
tionalities of the submodules, the RC also consists of a large amount of member
functions, the ones that are declared as processes are displayed in the figure and
explained here:

• RootComplexInitiateSendAction() is implemented to periodically send a
userdefined number of requests to the socket for building and sending to
a completer. The function is implemented in a manner that is easy to edit
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and modify to change the sending,period, the amount of data to request,
the request type and so on. The number of requests sent can also be 0.
The data that is sent is a user-defined data format called SoftwareData, it
is put into a queue for sending down to the socket module.

• SendQueueHandling() the queue for sending to the socket module is con-
tinuously handled by this thread, once every deltacycle to prevent clump-
ing.

• InsertTlpInQueue() inserts any incoming TLP from the Socket module in
the queue for handling, it also notifies the RecieveQueueHandling through
a SystemC event.

• RecieveQueueHandling() continiously empties the incoming buffer when-
ever it gets filled up. An event is notified to tell the RootComplexRecieve-
Action() to handle the first element in the queue.

• RootComplexRecieveAction() reads the first packet from the incoming queue,
the packet type is directly read from the generic header attribute “type”
and a switch-case handles the packet differently for different packet-types.
The resulting case dynamically casts the generic header located within the
packet to the corresponding packet data-type. The corresponding action
to the incoming request is performed.

• WriteMemoryConfirmationWatcher() lets the RC know when data has been
written to the memory during the byte-resolution memory simulation.

• ReplyMultitaskingQueueHandling() is optional for the RC simulation, it
enables multitasking. It checks the reply to mrd time vector every delta
cycle, if a packet is to be sent during that cycle, then it sends the packet
that corresponds to the location of the timestamp within the reply to mrd
multitasking vector by checking. The two vectors are linked, each element
corresponds to the element at the same address in the other vector.

WaitModeledRandomSample() the final function that is listed in the figure
in bold is the delay model of the RC. The model of the request-to-completion
delay is imperative considering hardware-realistic accuracy of the RC model.
The concept of the delay model function is quite simple. Whenever the Recieve-
QueueHandling() gets a non-posted request, the RC performs whatever action
it is told to do by the request on one delta-cycle. And then, before sending the
completion back to the requester, the RC calls WaitModeledRandomSample().
The function draws a delay sample from the
mrd_delay_samples_vector that is filled up with delay samples on construction
of the RC. The vector is marked with bold-phase in figure 3.9. The function then
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waits for the time specified at the random location of the vector. Once the wait-
ing is complete, the RC sends the completion packet back to the requester. In
this way the completion will be returned after a statistically correct amount of
simulated nano-seconds.

Optionally support for memory write modeling could also be implemented,
delay data should be gathered from another approach than the Lecroy protocol
analyzer, because writes are non-posted. Whenever the RC receives a posted
request, such as a memory write request, the WaitModeledRandomSample()
function is called in advance of performing the requested task. The function
should be called on a different sample-vector, the mwr_delay_samples_vector
once delay samples are available.
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3.3 Performing traces on relevant HardWare

3.3.1 Setting up the Trace Hardware and the Trace Software

(a) PETracer (b) Interposer

Figure 3.10: Trace setup at Oracle’s test lab

To generate text-files consisting of columns of delay-deltas, traces from real
hardware had to be sampled and formatted. A setup including a PCIe gen 1
tracer was available at Oracle’s office in Oslo, the equipment that was used for
tracing the PCIe traffic is listed below and was connected in a similar manner to
the setup shown in figure 2.31 in the theory section.

• Catc UPAS model 100k.

• 2x CATC, PCIe X16 Analyzer PE-EMLTracer (one for each data direction),
Model PE008MA.

• PE16x InterPoser

• 16x Interposer Cables

• Workstation for controlling and recording traces, dell laptop with LeCroy
PETracer’ analyzer, version 5.71.

• PCIe Endpoint made by Oracle

• A SUN FIRE X4170 M2 Server having two Intel Xeon E5-2600 CPUs.[23][15]

The Catc Protocol analyzer system model 100k filled with two CATC Model
PE008MA PCIe X16 Analyzer PE-EMLTracer - cards. A PCIe generation 1 card
made by Oracle was docked into PCIe interposer system serving as the PCIe EP,
details about the application running on it aswell as information about the card
itself remains unrevealed to preserve the partial disclosure agreement with Ora-
cle.The interposer was again docked into a PCIe slot in a SUN-server with a Xeon
architecture. The two cables connected to the interposer were then connected
to each of the PETracers located within the UPAS. The whole setup resembles
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that of a normal ampere-meter, connecting serially into the PCIe-connection to
sniff on the information flowing in the interconnect between the PCIe EP and
the PCIe RC. The 100k is connected to an xp-machine via USB to transfer the
wanted trace-data.

Only one set of trace-hardware was available at the time of tracing, that is
why only PCIe-gen1 tracing was performed. Future completion of the RC-model
requires tracing with PCIe gen-2 PCIe gen-3, depending on the architecture of
the EPs to be performance-tested.

Setting Status Upstream settings : Status

Recording Mode Event trigger Inhibit Channel : No
Save As Multisegment Trace: Disabled Reverse Lines : No
Buffer Size 768 MB Invert Lane Polarity : Autodetect
Post-trigger position 96%
Use External Reference Clock : Yes Downstream settings:
Base filename data.pex Inhibit Channel : No
Save External Signals No Reverse Lines : No
Use External Reference Clock : Yes Invert Lane Polarity : Autodetect
Base Spec 1.0 Capability Mode : No
Descrambling : On
Link Width : x16

Table 3.1: The settings used for a trace recording

Table 3.1 shows the set-up extraction of the PETracer-software on the xp-
machine. Event triggering is used, to enable recording once the desired event
occurs on the PCIe bus. Buffer size is set to 768 MB this is the recording buffer
size per direction. The Trigger position is set to 96% post-triggering which allo-
cates 4% to pre-triggering recording and 96% to post-triggering recording. For
this purpose 100% post-triggering might as well have been used, as the only
purpose is to provide detailed information on read-requests, writes and com-
pletions which thanks to the application are quite a few and chronologically
sparse located. The Trigger options are set to Memory Read and Memory Write
requests to start recording once one of these packets occur. The recorded trace-
data was stored in a pex file called data.pex. Link width for the tracing was set
to 16x. No special settings were used for links or lane polarities and an external
reference clock was used because of spread-spectrum clocking of the PCIe link
under analysis.

3.3.2 Performing the Tracing

The command shown in figure 3.11 was used to execute a "RDMA Send/Receive
ud_bw UD streaming one way bandwidth" test. It is explained in detail in [39].
The application was executed on the EP to create a flow of packet traffic between
the EP and the RC. The test is run in loopback mode, initiating DMA operations



56 CHAPTER 3

qperf localhost −li sif0 : 1 −ri sif0 : 1 −lca 2 −rca 3 −vv −uu −mt 256 −m 256 −n 5 ←-
ud_bw

Figure 3.11: OFED comand for executing an application on the PCIe EP

with MRd 32-bit from host memory, data that is recieved in completions are
run in a loopback path in the EP, then it is written back to the RC and the host
memmory using MWr32.

The application running on the EP used traffic class 0 only, to give a simple
starting-point for the model. Recording of packets were started via the PEtracer
SW. 5 GBs of traces were recorded over 3 trace iterations, providing trace-data
from around 50 million packets whereas 16 million were TLPs. A high number of
packets ensures that the delay distribution makes is correct due to the statistical
law of many.

3.3.3 Converting the Trace Data to Text Delay Coloumns

The generated .pex files had to be converted into a readable format for the RC
model.

Figure 3.12: Snippet of raw packet flow between the PCIe EP and the RC

Figure 3.12 shows a snapshot of one of the generated pex-files in the PE-
Tracer software without any hiding of packets activated. The first packet is a
TLP memory read request sent from the EP to the RC, followed by a DLLP who’s
purpose is to acknowledge the reception of the memory read request. The SKIP
packet in purple is a symbol sequence used for compensation of different fre-
quencies of bit-rate that a packet is transmitted with amongst different lanes. In
a multi-lane environment SKIP sequences are transmitted simultaneously on
all lanes. Packet number 469492 is a DLLP who’s task is to update the credit-
status of the RC’s virtual channel buffers. The following packet is the one we are
interested in, it is the completion of the memory read request. By subtracting its
time-stamp from the time-stamp of its corresponding memory read request, we
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can find the time it takes from a request sent by the EP until it receives a packet
containing the data that it requested. All other packets in Figure 3.12 except
from the MRd and the CplD can be ignored for MRd-Cpl latency extraction.

Figure 3.13: Snippet of TLP-only flow between the PCIe EP and the RC

Figure 3.13 shows the same view, only with the redundant packets removed.
All other packets are hidden, this step was done to reduce the size of the text-
files when exporting the data for further analysis. Text-files from the data-trace
files are generated with the simple file->export->to_text function.

The text box in figure 3.14 shows the exact same snippet of packets as in fig-
ure 3.13. Text is however a lot easier to analyze with self-made computer-tools.
A program was written in c++ to read a text-file and extract the delta delays. The
program is added to this thesis as appendix B. The delays are written back to a
new text-file with one delta-delay given in nano seconds per row. An example
of the final format is given in figure 3.15.

3.3.4 Linking the Delay Model and the Trace Data

Linking the data in the text-files together with the RC was a fairly simple task.
The text-files were added directly to the folder containing the RC-model exe-
cutable. The files were programmed to be opened RC constructor, casted to in-
teger values and pushed to the delay-vector of the RC. Whenever a delay-sample
is needed, the random-delay function of the RC generates a random address and
withdraws its corresponding delay for use in the wait statement.
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Pkt(469489) Upstream TLP(3078) Mem MRd(32) (000:00000) MRd(32) (000:00000)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag(31) Address (FFFC5880 ) LCRC(0xE3FDF2B6 )
_______ | Time Stamp(0006 . 033 900 520 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469493) Downstream TLP(3788) Cpl CplD(010:01010) CplD(010:01010)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag(31) CompleterID ( 0 0 0 : 3 1 : 7 ) Data(32 dwords )
_______ | LCRC(0x7D02835B ) Time Stamp(0006 . 033 900 872 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469560) Upstream TLP(3079) Mem MWr(32) (010:00000) MWr(32) (010:00000)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag ( 0 ) Address (FFFA1620 ) Data(8 dwords )
_______ | LCRC(0xA7AA9E44 ) Time Stamp(0006 . 033 966 328 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469573) Upstream TLP(3080) Mem MWr(32) (010:00000) MWr(32) (010:00000)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag ( 0 ) Address (FFF1F3C0 ) Data(16 dwords )
_______ | LCRC(0x012BFB10 ) Time Stamp(0006 . 033 976 792 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469579) Upstream TLP(3081) Mem MWr(32) (010:00000) MWr(32) (010:00000)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag ( 0 ) Address (FEE00218 ) Data(1 dword )
_______ | LCRC(0x0BBBEABA ) Time Stamp(0006 . 033 981 456 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469671) Downstream TLP(3789) Mem MWr(64) (011:00000) MWr(64) (011:00000)
_______ | RequesterID ( 0 0 0 : 0 0 : 0 ) Tag ( 1 ) Address(00003C1F : F8100040 ) Data(2 dwords )
_______ | LCRC(0xB6C7075E ) Time Stamp(0006 . 034 066 320 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469715) Upstream TLP(3082) Mem MRd(32) (000:00000) MRd(32) (000:00000)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag(30) Address (FFFC5900 ) LCRC(0xDC25B713 )
_______ | Time Stamp(0006 . 034 107 520 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469719) Downstream TLP(3790) Cpl CplD(010:01010) CplD(010:01010)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag(30) CompleterID ( 0 0 0 : 0 0 : 0 ) Data(16 dwords )
_______ | LCRC(0x3D81FF40 ) Time Stamp(0006 . 034 107 784 s ) UnkwnField
_______ | _______________________________________________________________________
Pkt(469720) Downstream TLP(3791) Cpl CplD(010:01010) CplD(010:01010)
_______ | RequesterID ( 1 6 0 : 0 0 : 0 ) Tag(30) CompleterID ( 0 0 0 : 0 0 : 0 ) Data(16 dwords )
_______ | LCRC(0x9A126F1D ) Time Stamp(0006 . 034 107 808 s ) UnkwnField
_______ | _______________________________________________________________________

Figure 3.14: Example of TLP Traffic extracted to Text

<mrd−cpl delta 1>
<mrd−cpl delta 2>
<mrd−cpl delta 3>
. . .
. . .
. . .

<mrd−cpl delta n>

Figure 3.15: The Text Format Required by the RC Delay Model
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3.4 Creating a test-environment for the RC

The functionality of the SystemC modeled RC had to be tested. This requires
a system to do performance-measurements on. Because no design-stage EP
model was provided, a SystemC model of an EP also had to be created to pro-
vide a realistic test-bench of the software. In this section the construction of
a flexible PCIe EP module is described. The EP is combined together with the
other modules that are created. The interconnecting process of a complete PCIe
system, including memory, RC, switches and EPs is described in this section.
Modules are interconnected with the sc_signal data type within a complete sys-
tem module.

3.4.1 Constructing the PCIe endpoint model

Figure 3.16: A module diagram of the PCIe EP TLM

Figure 3.16 shows the module structure of the PCIe EP module with an in-
ternal instance of the PCIe socket module. The functions and attributes that
are listed are only a small fraction of the total module. The EP is designed as a
SystemC module to allow multiple simultaneous EP instances for testing of the
RC functionality in extreme environments. The module was designed to send
a burst if requests to the RC, and to wait for it’s replies. The EP module is also
designed to be able to answer requests that originates in the RC. The request de-
tails and the type 0 EP configuration registers are easily set through the module
constructor.

The endpoint module is built using three concurrent processes:

• SendRequestAction() is implemented as a SC_THREAD, it was designed
to be responsible for sending request data down to the socket module for
further packet construction and forwarding to the RC. The functionality
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of this process was manipulated a couple of times during the RC model
testing to provide different request scenarios to the RC. The process adds
all requests to the internal software-layer send queue for further forward-
ing to the socket.

• SendQueueHandling() is designed as a SC_THREAD. The process contin-
uously sends a data load to the socket every delta-cycle, whenever there is
data to be sent. If the data to be sent is a CplD packet that originates from
a MRd request, then an arbitrary delay can be set.

• RecievePacketAction() is a SC_METHOD that is run whenever packets ar-
rive from the socket, similar to the receive function of the RC. The method
answers request packets by reading from the internally simplified mem-
ory array and adding a completion packet to the send queue.

3.4.2 Interconnecting modules creating a complete system

Figure 3.17: A module diagram of the complete test system

A complete system including 3 EPs, one switch and an instance of the PCIe
RC makes up the test set-up for the RC. The modules were instantiated within
an outer shell SystemC-module. The complete system was interconnected as
shown in figure 3.17. EP 3 is connected directly to one of the root-complex’s
multi-ports while EP 1 and EP 2 are connected to a switch that switches packets
upstream towards the RC. Having multiple devices connected to the RC, allows
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testing of scenarios with multiple requesters. When several devices simultane-
ous sends requests, a few delta-cycles of extra packet delay is introduced due
to switching and buffer arbitration. This is not the case when only one device
is requesting as the packet is allowed full bus allocation, the only delay that is
experienced is the modeled delay in the RC. The system shown in the figure
provides a flexible model without having to change the code for every differ-
ent test scenario. However the system can be easily modified within the com-
plete_system.h file by deleting or instantiating modules.

3.4.3 Creating the Program Interface in sc_main.cpp

The complete system is instantiated in sc_main.cpp before execution of the
simulation kernel. The program itself is called from the terminal with settings
given as command-line options. The flags that the programs are executed with
are analyzed and used to set global variables describing EP and RC behavior
through constructors. By executing the simulation program together with its
parameters instead of taking inputs in runtime, the program is easily piped to
unix functionalities such as grep. Having command line arguments also eases
the use memory check tools such as Valgrind.

A dynamic setup of the program using extern global variables in together
with command line arguments, allows the tester to control system variables.
The global variables are used within the constructors of the system modules,
as well as directly to describe output-options. Examples of variables that are
controlled using the command line options are:

• The number of requests that each of the PCIe modules initiates.

• Type of requests that each of the PCIe modules initiates.

• The period between each request for all the PCIe modules given in nanosec-
onds. Having a lower request-period than the highest delay sample might
lead to packet clumping. Sending packets b2b ideal for testing the clump-
ing of the EPs.

• The total SystemC simulation time.

• The traffic class that each module delivers requests with. This feature al-
lows the tester to check priority algorithms within the PCIe devices.

The sc_main.cpp file is designed with these variables to make the testing-job
easier.

The program was designed to be executed with a format such as the snip-
pet in figure 3.18. The first 6 command-line parameters are dedicated to setting
the number of packets to be sent, together with the type of packets to be sent
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. / PCIeSystem . out [#EP1−requests ] [ #EP2−requests ] [ #EP3−requests ] [ EPs−req−type ] [#RC−←-
requests ] [ RC−req−type ] [Request−size−all ] [ Simulation−time−ns ] [Output−detail−←-
flag ] [ Write−output−to−textfile−flag ] [ plot−traced−vs−RCsimulated−vs−←-
EPexperienced−latency−distribution−flag ]

Figure 3.18: The command-line syntax for executing a simulation

from each PCIe device in the system. The simulation time to execute the simula-
tion kernel with is with the 7th argument. The final parameters are dedicated to
visualizing the output of the simulation. The view-parameter allows the simu-
lation output to be summarized and increased with respect to details. The write
to console parameter allows the simulation output to be written to a text file.
Finally the the plot option runs a python script in the terminal that plots the
logged memory read to completion delays that are simulated by the complete
system. Many more options are available for setting up the system, to enable
these as command-line arguments, the program has to be slightly modified and
the system then needs to be recompiled.

3.5 Testing the PCIe RC Model

The system was implemented using a bottom up approach, hence the submod-
ules have been tested once they have been completed. The focus of this testing
section is functionality testing of the RC module as a system.

3.5.1 System functionality

The packet history in each simulation is monitored by all the individual mod-
ules using counters and SystemC time-stamp buffers. The data stored during
simulation is visualized in various ways in the terminal and with plots when the
modules are destructed. The representation of the packet history depends on
system settings at program execution time.
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Test-scenarios for the RC

Multiple test scenarios were proposed and implemented in the software layers
of the RC and EP modules. The following tests were conducted on the system to
test the basic functionality of the RC:
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The Root Complex as a completer:

• Answering single Requests per simulation:

– Answering a MRd with a CplD that contains memory data from the system
memory located locally with the RC.

Figure 3.19: Testing a single MRd from EP:002 to the RC

– Answering a MWr by writing data to the system memory located locally
with the RC. No packets are returned as Ack-Nak is a DLLP.

Figure 3.20: Testing a single MWr from EP:002 to the RC’s system memory
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• Answering a large MRd with multiple CplD due to the RCB. The example
from the theory section.

Figure 3.21: Testing a single MRd from EP:002 to the RC, RCB exceeded

• Answering multiple Requests per simulation:

– Answering 2 requests, one from the EP behind the switch and one from the
EP that is directly connected to the RC. The two requests are sent simulta-
neously and has the same traffic class. The small delay in the switch will
influence the vcb receive handling.

Figure 3.22: Testing 2 simultaneous requests, switching cycles are illustrated
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– Answering a total of 3 MRd sent simultaneously from the 3 EPs. All EPs
were configured to send packets with different traffic classes. This tests
the packet priority arbitration of virtual channel buffers. The delta delay
of the switch is also expected to have an impact on the arrival time of the
requests.

Figure 3.23: Testing the virtual channel buffer arbitration

– Answering multiple B2B requests to find Clumping vulnerabilities upstream.
Strict ordering is used along with no pipelining of requests meaning that
average MRd-cpl delay will add up for every additional packet sent, and
the packets will be returned in order.

Figure 3.24: Testing rapidly sent requests
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– Answering multiple B2B requests to in a similar fashion to the test ap-
proach described in the previous approach, however the ordering is re-
laxed and pipelining is ideally simulated the average MRd-CplD delay is
expected to remain unchanged from single requests-completions.

Figure 3.25: Testing rapidly sent requests, RC relaxed ordering
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The Root Complex as a Requester:

• Sending a single request per simulation:

– 1 MRd TLP was sent with a memory address that resides within EP 0:0:2.
Address routing is tested downstream. Correctness of the basic system
memory read functionality was ensured by checking that the RC actually
receives a packet containing the data that it requested from system mem-
ory. All fields in the packet-header were checked for correctness.

Figure 3.26: Testing RC’s ability to issue requests, in this case a simple MRd

– 1 MWr TLP, correctness of the basic system memory write functionality
was ensured through observation of the subsystem memory-location. The
packet had to make its way all the way through the PCIe system fabric
based on the location of the system memory address.

Figure 3.27: Testing RC’s ability to issue a simple MWr request
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– 1 request that times out, tests the replay functionality in the socket module.
The EP module is reprogrammed to simply loose a package. The outbound
buffer’s replay functionality is tested within the RC, a timeout should be
received issuing a new request.

Figure 3.28: Testing the RC’s ability renew lost requests

– 1 MWr with a large payload is issued to to the transaction layer of the RC.
The RC’s ability to divide the single request into multiple request due to the
Max_Payload_size restriction is tested.

Figure 3.29: Testing the maximum payload size restriction with a memory write
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Every PCIe device requests:

• 1 MRd was sent from every EP and from the RC simultaneously. Bidirectional
PCIe read requests are tested.

Figure 3.30: Testing bidirectional MRd traffic

• 1 MWr was sent from every EP and from the RC simultaneously. Bidirectional
PCIe write requests are tested.

Figure 3.31: Testing bidirectional MWr traffic
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A Realistic Test-Scenario

• The entire system at focus, the n’th digit of is calculated on the n’th delta cycle
and is written to the RC memory every cycle. A realistic traffic scenario was also
simulated on the system as a whole. Computational tasks are outsourced to the
EP, the EP continiously calculates the nth digit of π using Bellards algorithm and
writes this digit to the RC system memory. This makes sense because calculating
the n’th digit of pi with Bellard’s formula takes O(n2) time, it scales at the deci-
mal point moves further and further to the left. The CPU will be able to continue
with other tasks as its PCIe EP continuously writes a new digit of pi to the RC sub-
system memory once it is calculated. The simulation was done for 900 decimals
of π that were sequentially written to the memory. To simplify the example, the
computational time of pi is simulated to be constant.

Figure 3.32: A realistic PCIe scenario, computation is outsourced to the EP

During all the above tests, the complete system was indirectly tested for cor-
rectness on displaying packet traffic statistics.

3.5.2 Valgrind Memory Leak Check for Runability

The complete system was debugged with the Valgrind memory check tool. The
Valgrind check was performed in order to ensure error-free simulation in the
long-run. Performance testings are often done over a long period of time, a
small leak might cause a test-server to run out of memory and crash.

valgrind −−leak−check=full −−log−file=" valgrind−log " [ . / PCIeSystem . out [normal−←-
args ] ]

Figure 3.33: The command-line syntax for a Valgrind execution
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The program was run with various options testing the different modules to-
gether with the Valgrind command shown in figure 3.33:



CHAPTER4
Results

Figure 4.1: Overview of the result sections in this chapter

The results discovered in this project are described in this chapter in a chrono-
logical manner. Data extracted from trace summaries of the LeCroy PCIe Trac-
ings are given in subsection 4.1.1. The following subsection illustrates the ex-
tracted MRd-CplD latencies with graphs of latency distributions. Results prov-
ing the functional correctness of the RC TLM are shown in the form of simula-
tion outputs in section 4.2.1. The final section in this chapter includes compar-
ison graphs between simulated and sampled latency distributions to prove the
TLM’s latency accuracy.

4.1 Packet Tracing

4.1.1 The PETracer Recordings

The results from the 3 iterations of traffic-recording were summarized in the
PETracer software as html files. These were exported to PDFs and attached to
appendix D. The total amount of traffic for the different TLP types of the 3 trace
iterations of the same EP-application are shown in table 4.1.

73



74 CHAPTER 4

Packet Type Upstream Downstream: Total
Memory Read (32 bit) 5812015 5812015
Memory Write (32 bit) 3153216 3153216
Memory Write (64 bit) 418303 418303
Completion with Data 6657073 6657073

8965231 7075376 16040607

Table 4.1: TLP-type trace statistics summary for all 3 trace iterations

4.1.2 The Generated Delay File for the RC Model

Figure 4.2: A histogram of the total amount of traced delays

The graph in figure 4.2 is a histogram of the MRd-CplD delays that were ex-
tracted from text trace files such as those shown in the methodology chapter in
figure 3.14 using the C++ script in appendix B. The plot represents the MRd-
CplD latency distribution of the PCIe RC in the SUN FIRE X4170 M3 server. It is
important to note that all traffic used to generate this plot had the same packet
priority, used strict ordering and snooping. The plot is generated using the same
script as the one used in the PCIe System Model, using Python’s matplotlib li-
brary.

Metric Delay [ns]
Minimum MRd-CplD delay 184 ns
Maximum MRd-CplD delay 15768 ns
Average MRd-CplD delay 393 ns

Table 4.2: General statistics for the recorded traces
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Table 4.2 describes the key values of the generated delay file. The minimum,
maximum and the average MRd-Cpl latency for the traces are given in nano
seconds.

Figure 4.3: The first sub distribution in figure 4.2, heavy-tailed

Figure 4.4: Fitting a probability distribution to the first sub distribution

The graph in figure 4.3 is a histogram of the MRd-CplD delay file plotting
the first group/collection of delays. This group is the most heavily weighted
one with 3659394 MRd-CplD combinations. It can be seen from the graph that
this delay collection can be modeled using a long tailed probability distribution.
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Matlab was used to find the most appropriate probability distribution to model
this section, this is shown in figure 4.4.

Figure 4.5: The last sub distribution in figure 4.2, bell shape

Figure 4.6: Fitting a probability distribution to the last sub distribution

The graph in figure 4.5 is a histogram of the MRd-CplD delay file plotting the
latter group/collection of delays. The graph structure resembles that of a bell-
curve with a mean of around 8000ns. This group is the lease heavily weighted
one with only 13696 MRd-CplD combinations between 6000ns and 10000 ns.
Matlab was used to find the most appropriate probability distribution to model
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this section of the total latency distribution, this is shown in figure 4.6.

4.2 Functionality Test-Results of the RC

The simulation summaries displayed in this section were generated by logging
terminal outputs of simulations using the C++ freopen command. The plots are
automatically plotted using systemcalls to run python’s matplotlib on the log-
files.

4.2.1 Functional Accuracy

This section reveals the results from the system tests that were conducted and
introduced in section 3.5. Program outputs were converted to text and the text
files were snipped, summarize them for readability and added here. For an ex-
ample of a full simulation output text file see the single MRd-CplD example that
is attached in appendix E.1. All other examples are summarized with the de-
structor outputs only. Special features are turned off unless otherwise stated.
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The Simulation Results for the RC Acting as a Completer

• Answering single Requests per simulation:

– Answering a MRd with a CplD that contains memory data from RC’s system
memory fraction:

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 1 0 0 MRd 0 MRd 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <1/1>
Requests received time stamps :

6 ns
Completions sent time stamps :

328 ns
−−Switch : 000 Destructor−−

Packet Statistics : <1/1> <1/1>
−−Socket Destructor−−

Packet Statistics : <1/1>

−−EndPoint : 200 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent time stamps :
0 s

Completions received time stamps :
328 ns
Average MRd−CplD time is :

328000 ps
Data received is :

1 2 3 4 5
6 7 8 9 10

−−Socket Destructor−−
Packet Statistics : <1/1>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <1/1>

− − − The PCIe System has been destroyed − − −

Figure 4.7: The summary of the output.txt file generated by a single simulated MRd
request from EP 2:0:0
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– Answering a MWr by writing data to the system memory located locally
with the root complex. No packets are returned as Ack-Nak is done in the
data link layer:

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 1 0 0 MWr 0 MWr 10000 −show_full_and_memory 1 −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <1/0>
Requests received time stamps :

6 ns
−−Switch : 000 Destructor−−

Packet Statistics : <1/1> <0/0>
−−Socket Destructor−−

Packet Statistics : <0/1>
−−RC Memory Destructor−−
− − −Printing RC PCIe Subsystem_Memory− − −

1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−−EndPoint : 200 Destructor−−
Packet Statistics : <1/0> <0/0>

Requests sent with traffic class 5 time stamps :
0 s

−−Socket Destructor−−
Packet Statistics : <1/0>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <0/0>

− − − The PCIe System has been destroyed − − −

Figure 4.8: The summary of the output.txt file generated by a single simulated MWr
request from EP 2:0:0
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– Answering a large MRd with multiple CplD due to the RCB. 192 bytes is
requested from address 48. Note that this results in a transaction that con-
sists of 4 CplDs just like the RCB example given in subsection 2.1.2:

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 1 0 0 MRd 0 MRd 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <1/4>
Requests received time stamps :

6 ns
Completions sent time stamps :

454 ns 519 ns 584 ns 633 ns
−−Switch : 000 Destructor−−

Packet Statistics : <1/1> <4/4>
−−Socket Destructor−−

Packet Statistics : <4/1>

−−EndPoint : 200 Destructor−−
Packet Statistics : <1/4> <0/0>

Requests sent with traffic class 5 time stamps :
0 s

Completions received time stamps :
454 ns 519 ns 584 ns 633 ns

Average MRd−CplD time is :
633000 ps

−−Socket Destructor−−
Packet Statistics : <1/4>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <4/4>

− − − The PCIe System has been destroyed − − −

Figure 4.9: The summary of a large MRd request, prooving the RCB functionality
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• Answering multiple Requests per simulation:

– Answering 2 TLPs coming from EP 4:0:0 and EP 3:0:0 where the latter EP
is behind an additional packet switch. The same traffic class is used to
illustrate the imperative delta-cycle consumption in the switch module.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 1 1 MRd 0 MWr 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <2/2>
Requests received time stamps :

2 ns 10 ns
Completions sent time stamps :

452 ns 694 ns
−−Switch : 000 Destructor−−

Packet Statistics : <2/2> <2/2>
−−Socket Destructor−−

Packet Statistics : <2/2>

−−EndPoint : 300 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent with traffic class 6 time stamps :
0 s

Completions received time stamps :
694 ns
Average MRd−CplD time is :

694000 ps
−−Socket Destructor−−

Packet Statistics : <1/1>

−−EndPoint : 400 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent with traffic class 6 time stamps :
0 s

Completions received time stamps :
452 ns
Average MRd−CplD time is :

452000 ps
−−Socket Destructor−−

Packet Statistics : <1/1>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <1/1>

− − − The PCIe System has been destroyed − − −

Figure 4.10: Simulation log file that illustrates the imperative delta delay consumed by
switch modules
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– Answering a total of 3 MRd sent simultaneously from the 3 EPs. All end-
points were configured to send packets with different traffic classes. This
tests the packet priority arbitration of the system system.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 1 1 1 MRd 0 MRd 10000 −show_full 1 −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <3/3>
Requests received time stamps :

4 ns 10 ns 11 ns
Completions sent time stamps :

317 ns 701 ns 1157 ns
−−Switch : 000 Destructor−−

Packet Statistics : <3/3> <3/3>
−−Socket Destructor−−

Packet Statistics : <3/3>

−−EndPoint : 200 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent with traffic class 5 time stamps :
0 s

Completions received time stamps :
1157 ns
Average MRd−CplD time is :

1.157e+06 ps
−−Socket Destructor−−

Packet Statistics : <1/1>

−−EndPoint : 300 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent with traffic class 6 time stamps :
0 s

Completions received time stamps :
701 ns
Average MRd−CplD time is :

701000 ps
−−Socket Destructor−−

Packet Statistics : <1/1>

−−EndPoint : 400 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent with traffic class 4 time stamps :
0 s

Completions received time stamps :
317 ns
Average MRd−CplD time is :

317000 ps
−−Socket Destructor−−

Packet Statistics : <1/1>

−−Switch : 100 Destructor−−
Packet Statistics : <2/2> <2/2>

− − − The PCIe System has been destroyed − − −

Figure 4.11: Simulation log file that illustrates the packet priority of the system, EP 4:0:0
is handled first because of the delta delay in the switch
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– Answering multiple b2b requests from one endpoint without relaxing or-
dering of packets. Clumping is experienced in the RC, as packets experi-
ence different delays and are locked in a send order.

_________________________ SIMULATION COMPLETE __________________________

_________________________ @10 us _________________________

_________________________________SUMMARY________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 10 0 0 MRd 0 MRd 10000 −show_full 1 −out . txt

________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <10/10>
Requests received time stamps :

6 ns 16 ns 26 ns 36 ns 46 ns
56 ns 66 ns 76 ns 86 ns 96 ns

Completions sent time stamps :
448 ns 802 ns 1124 ns 1486 ns 2048 ns
2402 ns 2756 ns 3214 ns 3544 ns 3754 ns

−−Switch : 000 Destructor−−
Packet Statistics : <10/10> <10/10>

−−Socket Destructor−−
Packet Statistics : <10/10>

−−EndPoint : 200 Destructor−−
Packet Statistics : <10/10> <0/0>

Requests sent with traffic class 5 time stamps :
0 s 10 ns 20 ns 30 ns 40 ns
50 ns 60 ns 70 ns 80 ns 90 ns

Completions received time stamps :
448 ns 802 ns 1124 ns 1486 ns 2048 ns
2402 ns 2756 ns 3214 ns 3544 ns 3754 ns
Average MRd−CplD time is :

2.1128e+06 ps

−−Socket Destructor−−
Packet Statistics : <10/10>

−−Switch : 100 Destructor−−
Packet Statistics : <10/10> <10/10>

− − − The PCIe System has been destroyed − − −

Figure 4.12: Simulation log file from a simulation with multiple MRd requests sent with
low periodicity, illustrates clumping in the RC
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– Answering multiple b2b requests from one endpoint with relaxing ordering
of packets. Clumping is not experienced as packets are allowed to enter a
wait-storage.

_________________________ SIMULATION COMPLETE __________________________

_________________________ @10 us _________________________

_________________________________SUMMARY________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 10 0 0 MRd 0 MRd 10000 −show_full 1 −out . txt −plot

_________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

_________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <10/10>
Requests received time stamps :

6 ns 16 ns 26 ns 36 ns 46 ns
56 ns 66 ns 76 ns 86 ns 96 ns

Completions sent time stamps :
239 ns 269 ns 301 ns 331 ns 375 ns
377 ns 393 ns 395 ns 489 ns 495 ns

−−Switch : 000 Destructor−−
Packet Statistics : <10/10> <10/10>

−−Socket Destructor−−
Packet Statistics : <10/10>

−−EndPoint : 200 Destructor−−
Packet Statistics : <10/10> <0/0>

Requests sent with traffic class 5 time stamps :
0 s 10 ns 20 ns 30 ns 40 ns
50 ns 60 ns 70 ns 80 ns 90 ns

Completions received time stamps :
239 ns 269 ns 301 ns 331 ns 375 ns
377 ns 393 ns 395 ns 489 ns 495 ns
Average MRd−CplD time is :

321400 ps

−−Socket Destructor−−
Packet Statistics : <10/10>

−−Switch : 100 Destructor−−
Packet Statistics : <10/10> <10/10>

− − − The PCIe System has been destroyed − − −

Figure 4.13: Simulation log file from a simulation with multiple MRd requests sent
rapidly, multitasking in the RC resolves the clumping
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The Simulation Results for the RC Acting as a Requester

• 1 MRd TLP was sent with a memory address that resides within EP 2:0:0. Cor-
rectness of the basic system memory read functionality was ensured by checking
that the root complex actually receives a packet containing the data that it re-
quested from system memory. All fields in the packet-header were checked for
correctness. The delay modeled in the EP is just set to 800 NS between each CplD
returned, in order to check the system functionality.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 0 0 MRd 1 MRd 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/1> <0/0>
Requests sent time stamps :

1 ns
Completions received time stamps :

815 ns
Average MRd−CplD time is :

814000 ps
Data received is :

1 2 3 4 5
6 7 8 9 10

−−Switch : 000 Destructor−−
Packet Statistics : <1/1> <1/1>

−−Socket Destructor−−
Packet Statistics : <1/1>

−−EndPoint : 200 Destructor−−
Packet Statistics : <0/0> <1/1>

Requests received time stamps :
1 ns

Completions sent time stamps :
801 ns

−−Socket Destructor−−
Packet Statistics : <1/1>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <1/1>

− − − The PCIe System has been destroyed − − −

Figure 4.14: Simulation log of the Root Complex using address routing to route a single
MRd package downstream to its reciever
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• 1 MWr TLP, correctness of the basic system memory write functionality was en-
sured through observation of the subsystem memory-location written to after
simulation termination. The packet had to make its way all the way through the
PCIe system fabric based on the location of the system memory address.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 0 0 MWr 1 MWr 10000 −show_full_and_memory 1 −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/0> <0/0>
Requests sent with traffic class 1 time stamps :

1 ns
−−Switch : 000 Destructor−−

Packet Statistics : <0/0> <1/1>
−−Socket Destructor−−

Packet Statistics : <1/0>

−−EndPoint : 200 Destructor−−
Packet Statistics : <0/0> <1/0>

Requests received time stamps :
1 ns

− − −Printing PCIe Endpoint Subsystem Memory− − −
1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−−Socket Destructor−−
Packet Statistics : <0/1>

−−Switch : 100 Destructor−−
Packet Statistics : <0/0> <1/1>

− − − The PCIe System has been destroyed − − −

Figure 4.15: Simulation log of the Root Complex using address routing to route a single
MWr package downstream to its reciever
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• 1 MRd, a non posted request from the RC is forced to not be handled in the end-
point module by hard-programming. This results in a request time out, and the
outbound buffer’s timer located within the PCIe socket module in the RC replays
the request.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 0 0 MRd 1 MRd 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/1> <0/0>
Requests sent with traffic class 1 time stamps :

1 ns
Completions received time stamps :

6815 ns
Average MRd−CplD time is :

6.814e+06 ps
−−Switch : 000 Destructor−−

Packet Statistics : <1/1> <2/2>
−−Socket Destructor−−

Packet Statistics : <2/1>

−−EndPoint : 200 Destructor−−
Packet Statistics : <0/0> <2/1>

Requests received time stamps :
1 ns
6001 ns

Completions sent time stamps :
6801 ns

−−Socket Destructor−−
Packet Statistics : <1/2>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <2/2>

− − − The PCIe System has been destroyed − − −

Figure 4.16: Simulation log of the Root Complex using address routing to route a single
MRd package downstream to its reciever
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• 1 MWr, a large write request. The packet is split into multiple packets by the
transaction layer within the socket module to satisfy the max_payload_size at-
tribute for the PCIe bus. A write request for 256 bytes, which is 1 byte over the
max_payload_size results in 2 request TLPs.

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 0 0 MWr 1 MWr 10000 −show_full_and_memory 256 −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/0> <0/0>
Requests sent with traffic class 1 time stamps :

1 ns
−−Switch : 000 Destructor−−

Packet Statistics : <0/0> <2/2>
−−Socket Destructor−−

Packet Statistics : <2/0>

−−EndPoint : 200 Destructor−−
Packet Statistics : <0/0> <2/0>

Requests received time stamps :
1 ns 401ns

−−Socket Destructor−−
Packet Statistics : <0/2>

−−Switch : 100 Destructor−−
Packet Statistics : <0/0> <2/2>

− − − The PCIe System has been destroyed − − −

Figure 4.17: Simulation log of the Root Complex sending a single MWr request for a
large amount of data, being limited by the max payload attribute
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The Simulation Results for the RC Acting as Both a Completer and a Requester
During the Same Simulation

• 1 MRd TLP was sent from each device in the system. Upstream and downstream
Traffic meets on the middle. EPs sends to the RC and the RC sends to EP 002 as a
result of system memory address routing.

__________________________ SIMULATION COMPLETE ___________________________
__________________________ @10 us ___________________________
__________________________________SUMMARY_________________________________
Program was executed with the following parameters :

. / PCIeSystem . out 1 1 1 MRd 1 MRd 10000 −show_full −out . txt
__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/1> <3/3>
Requests sent with traffic class : 1 Time stamps :

1 ns
Completions received time stamps :

815 ns
Requests received time stamps :

1 ns 10 ns 11 ns
Completions sent time stamps :

395 ns 629 ns 1079 ns
−−Switch : 000 Destructor−−

Packet Statistics : <4/4> <4/4>
−−Socket Destructor−−

Packet Statistics : <4/4>
−−EndPoint : 200 Destructor−−

Packet Statistics : <1/1> <1/1>
Requests sent with traffic class : 5 Time stamps :

0 s
Completions received time stamps :

1079 ns
Requests received time stamps :

1 ns
Completions sent time stamps :

801 ns
−−Socket Destructor−−

Packet Statistics : <2/2>
−−EndPoint : 300 Destructor−−

Packet Statistics : <1/1> <0/0>
Requests sent with traffic class : 6 Time stamps :

0 s
Completions received time stamps :

629 ns
−−Socket Destructor−−

Packet Statistics : <1/1>
−−EndPoint : 400 Destructor−−

Packet Statistics : <1/1> <0/0>
Requests sent with traffic class : 7 Time stamps :

0 s
Completions received time stamps :

395 ns
−−Socket Destructor−−

Packet Statistics : <1/1>
−−Switch : 100 Destructor−−

Packet Statistics : <3/3> <3/3>
− − − The PCIe System has been destroyed − − −

Figure 4.18: Simulation log of a simulation where all devices are requesters and poten-
tially completers
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• 1 MWr was sent from every device. Upstream and downstream traffic meets in
the middle. EPs sends to RC and the RC sends to EP 002 as a result of system
memory address routing.

__________________________ SIMULATION COMPLETE ___________________________
__________________________ @10 us ___________________________
__________________________________________________________________________
Program was executed with the following parameters :

. / PCIeSystem . out 1 1 1 MWr 1 MWr 10000 −show_full_and_memory −out . txt
__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <1/0> <3/0>
Requests sent with traffic class : 1 Time stamps :

1 ns
Could not print avg MRd−CplD response delay , number of packets are different

Requests received time stamps :
1 ns 10 ns 11 ns

−−Switch : 000 Destructor−−
Packet Statistics : <3/3> <1/1>

−−Socket Destructor−−
Packet Statistics : <1/3>

−−RC Memory Destructor−−
− − −Printing RC PCIe Subsystem_Memory− − −

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−−EndPoint : 200 Destructor−−

Packet Statistics : <1/0> <1/0>
Requests sent with traffic class : 5 Time stamps :

0 s
Requests received time stamps :

1 ns
− − −Printing PCIe Endpoint Subsystem Memory− − −

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−−Socket Destructor−−

Packet Statistics : <1/1>
−−EndPoint : 300 Destructor−−

Packet Statistics : <1/0> <0/0>
Requests sent with traffic class : 6 Time stamps :

0 s
−−Socket Destructor−−

Packet Statistics : <1/0>
−−EndPoint : 400 Destructor−−

Packet Statistics : <1/0> <0/0>
Requests sent with traffic class : 7 Time stamps :

0 s
−−Socket Destructor−−

Packet Statistics : <1/0>
−−Switch : 100 Destructor−−

Packet Statistics : <2/2> <1/1>
− − − The PCIe System has been destroyed − − −

Figure 4.19: Simulation log of a simulation where all devices requests memory writes
to the other devices
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The Simulation Results for the Test Where Computation of the n’th digit of π
is Outsourced to the EP

Figure 4.20 shows a simulation summary where the n’th digit of pi is calculated
using Bellard’s algorithm and sent to the RC every delta cycle. Computational
power is simulated to be outsourced.

__________________________ SIMULATION COMPLETE ___________________________
__________________________ @1 ms ___________________________
__________________________________SUMMARY_________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 900 900 0 MWr 0 MRd 1000000 −show_full_and_memory −out . txt
__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <900/0>
First packet received @ 4 ns

Last packet received @ 359604 ns
−−Switch : 000 Destructor−−

Packet Statistics : <900/900> <0/0>

−−Socket Destructor−−
Packet Statistics : <0/900>

−−EndPoint : 200 Destructor−−
Packet Statistics : <900/0> <0/0>

First packet received @ 4 ns

Last packet sent @ 359600 ns
−−Socket Destructor−−

Packet Statistics : <900/0>

−−RC Memory Destructor−−
− − −Printing RC PCIe Subsystem_Memory− − −
( 1 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
( 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 5 9 2 6 5 3 5 8 9

(30) 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1
0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1
4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−−Switch : 100 Destructor−−
Packet Statistics : <900/900> <0/0>

− − − The PCIe System has been destroyed − − −

Figure 4.20: Simulation log of a realistic PCIe system scenario

During all these tests, the system was also indirectly tested for correctness
on displaying packet traffic statistics.



92 CHAPTER 4

4.2.2 Delay Model Accuracy

• The plots in figure 4.22 shows the sampled latency distribution from figure 4.2
versus the generated latency distribution from the simulation from log 4.21. The
graphs provide a good illustration of the MRd-CplD delay accuracy of the RC.
The middle graph in figure shows the samples that are randomly drawn from the
delay file in the Root Complex module upon reception of MRd requests from the
endpoint. The graph at the bottom represents the delays that are experienced for
a simulated endpoint module. The experienced delays for the endpoints are cal-
culated using time stamps with key-vectors in t. TLP simulation tags in the TLP
class are used to correlate the incoming CplDs with the requests in the software
layer as the outbound buffer is located in the transaction layer.

_________________________ SIMULATION COMPLETE __________________________
_________________________ @1 ms __________________________
__________________________________SUMMARY_______________________________

Program was executed with the following parameters :
. / PCIeSystem . out 0 15000 0 MRd 0 MRd 1000000 −show_full 1 −out . txt −plot

________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

________________________________________________________________________
−−RootComplex Destructor−−

Packet Statistics : <0/0> <15000/15000>
−−Switch : 000 Destructor−−

Packet Statistics : <15000/15000> <15000/15000>
−−Socket Destructor−−

Packet Statistics : <15000/15000>
−−EndPoint : 300 Destructor−−

Packet Statistics : <15000/15000> <0/0>
Average MRd−CplD time is :

394492 ps
−−Socket Destructor−−

Packet Statistics : <15000/15000>
−−Switch : 100 Destructor−−

Packet Statistics : <15000/15000> <15000/15000>
− − − The PCIe System has been destroyed − − −

Figure 4.21: Simulation log of 15000 packets over 1 ms
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Figure 4.22: Correlation between sampled and simulated latency distributions
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CHAPTER5
Discussion

Figure 5.1: Topics of discussion and their sections in this chapter

This chapter discusses the obtained results from the PCIe traffic traces, as
well as their relevance to the general RC TLM. The following section also in-
vestigates the decisions that were taken and the simplifications that were made
during the implementation of the RC TLM, their impacts on the statistical re-
alisticness of the model are evaluated. A description is given in section 5.3 of
how to utilize the RC TLM as a system environment to do performance simula-
tions of PCIe EPs. Finally, the work that remains to be done on the RC model is
itemized.

5.1 Analyzing the PCIe Trace Recordings

The application that was executing on Oracle’s in-house made EP during the
PCIe traffic tracing had a heavy read and heavy write nature. A total of 5 GB
worth of .pex files were gathered during the recording. These were analyzed
and converted into around 14MB of MRd-CplD delta delays. Such a large data
sample satisfies the law of many and is therefor a realistic representation of the
delay data specificly for the SUN PCIe RC running the Qperf DMA test. The EP

95
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and the RC utilized traffic class 0 only, with snooping and with strict ordering.
A constant traffic scenario restricts the area in which the RC TLM can be uti-
lized for performance simulations. Further recording of PCIe traffic is needed to
complete the TLM of the SUN FIRE X4170 PCIe RC, to make it more flexible for
different load scenarios. Variations in the traffic class, the snooping attribute,
the relaxed ordering attribute and for newer PCIe architectures; TLP hints and
extended tags, are expected to deeply influence the performance of a PCIe sys-
tem. The Latency distribution of MRd-CplD traffic from the samples as well as
limitations of extraction approach are discussed below.

5.1.1 The Recorded MRd-CplD Latency Distribution

The latency distribution that was extracted from PETrace exports is shown in
figure 4.2 in section 4.1.2. A logarithmic y-axis in the histogram reveals that the
latency distribution consists of two major sub-distributions. The packets that
arrives between the minimal arrival time of 184 ns, and 1000 ns create the heavy
tailed distributed as expected from routing theory. A quick run of a Matlab func-
tion called ALLDISTFIT with the 3659394 MRd-CplD deltas as argument, reveals
that the Nakagami distribution is the parametric probability distribution that
best fits the dataset, if the set were to be modeled with a statistical model.

The 13696 packets that arrive between 6000ns and 10000ns make up a small
normally distributed sub-section. Running Matlab’s ALLDISTFIT, reveals that
the generalized extreme value distribution distribution is the parametric prob-
ability distribution that best fits the sub data set.

The MRd-CplD samples include payloads of multiple sizes, the payload fluc-
tuations are delay-modeled indirectly through the delta delay file which is ade-
quate for a TLM. Same goes for:

• Flow control halts.

• Cache snooping halts.

• Strict ordering halts.

• Violations to the read completion boundary.

• Violations to the maximum payload size.

They all introduce jitter in the transactions that results in the latency distribu-
tion iin the histogram in figure 4.2. So by including the sampled delay file, all
these are indirectly modelled from a transaction latency perspective.

5.1.2 The Delta Delay Extraction tool

The C++ script that was written to generate delta delay files from PETrace out-
put is attached in appendix B. It converts already exported text files from the
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PETrace software to a format that contains 1 delta delay per column using a
simple terminal execution. Its output files are easily inserted into the RC TLM
by adding it to a relative folder and by reading it into the model during the con-
struction phase of the PCIe system. The software is specialized on extracting
simple MRd-CPlD delta delays. Handling of more complex traffic scenarios, i.e
when multiple completions are returned, is not yet implemented in this extrac-
tion software.

5.2 Analyzing the RC TLM

This section reasons for the decisions that were made during the implementa-
tion of the PCIe TLM. The test results are also analyzed to ensure correctness of
the RC TLM with respect to functionality and to timing accuracy.

5.2.1 Implementing the RC TLM

The selection of a realistic delay is discussed in this subsection, so is the choos-
ing of SystemC as a programming language, reasoning behind implementation
of the RC adjacent memory as a dedicated module and finally simplifications
that were made to create a PCIe RC model with a high abstraction level.

Choosing the delay modeling approach

A rational request-to-completion delay model is imperative considering the hardware-
realistic accuracy of the RC model. The delay-correctness for MRd-CplD for the
RC model was ensured by using real hardware traffic traces from the Teledyne
Lecroy tracer. Two implementation variants of the RC delay-module were con-
sidered, both utilizing the wait statement in SystemC. The models that were
considered were:

• A trace based delay model that is statistically correct because it deploys
the actual data from hardware traces for delay modeling. Request pack-
ets are answered with completion packets after a randomly drawn sample
delay from a database of real hardware traces.

• A mathematical delay model that provides delay-samples drawn from an
estimated delay distribution, typically a long-tailed distribution. A super-
position of a long-tailed distribution together with a normal distribution
was also an option to include a model for the sub distribution shown in
the spike between 6000ns and 10000ns in the sampled latency distribu-
tion shown in figure 4.2. The statistical model was to be correlated and
calibrated with real hardware through PCIe traffic traces. Request packets



98 CHAPTER 5

are answered with completion packets after a delay given by a statistical
model of the completion delay.

The first of the two was chosen as the delay model method mainly for its accu-
racy, but also because of its simple structure compared to the statistical com-
plexity that would have arisen for the latter approach. Statistical modeling of
the delay samples might come in useful if an expansion of the model with de-
lay data for traffic classes and such turns out to create too large data storage
demands.

The observations of sub-distributions discussed in section 5.1.1supports the
approach given in the second bullet above, of delay modeling using probability
distributions instead of trace samples directly. Matlab provides alongside with
the best fitting probability distributions, parameters for correctly modeling the
data that it takes in using the listed probability distributions. These parame-
ters can be inserted in the Nakagami and the GEV probability density functions.
Finally the two delay models can be fused by weighting each probability and
adding them together using the formula from section 2.2.2.

ftot al (...) =pN akag ami (...) wN akag ami + pGEV (...) wGEV

Figure 5.2: Mixture probability distribution function of the MRd-CplD delays

Figure 5.2 shows a the alternative to the direct sample delay modeling. Ad-
vantages with a TLM using statistical models instead of brute forced data sam-
ples are mostly related to less memory consumption. The delays in the RC are
calculated upon recemption for each completion instead of being read from
constructor loaded vectors of samples, in this way both simulation initialization
time as well as execution time consumption could be saved by implementing
this statistical model. These benefits are not significant enough when compar-
ing it to the advantages of the brute-force approach with a brute-forced nature
of details. Nanosecond accuracy is achieved by fetching MRd-CplD latencies
from the sampled delta delay files, this mimics hardware ideally with the preci-
sion of the hardware tracer serving as the only bottleneck for timing accuracy.

Choosing SystemC as the modelling language

The objective of the model was to be suitable for performance measurements
in the transaction layer domain. Details of PCIe protocol in lower abstraction
levels was to be ignored in order to create a quick functional RC model that is
accurate with respect to delay modeling and general functionality. The mod-
eling language that was to be selected had to provide a simulation engine with
an efficient and robust notion of time. The language also had to be flexible in
terms of connecting the resulting RC model to already existing testing software.
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Object orientation was desired since inheritance was found useful for dealing
with verious types of packet-headers that derives from a generic unit.

Languages like VHDL and Verilog were considered to be way too low level
oriented, and were found to have poor performance compared to higher level
languages such as java and pure C++ for simulation. High level languages do
not provide simulation kernels and thus have no notion of time when it comes
to simulation. SystemC on the other hand is as described in section 2.4 ideal
for modeling hardware using TLM. Multiple arguments were found for using
SystemC to model the RC, some of these are listed here:

• SystemC is well structured with the module macro. Internal module pro-
cesses are encapsulated within their respective modules and creating sub-
modules and reusing modules is a trivial task.

• The degree of C++ in the SystemC model can be chosen after what is ben-
eficiary since SystemC is a superset of C++.

• The SystemC model can easily be interpreted by software coders at Ora-
cle because of its resemblance to pure C++ and other non-modelling lan-
guages.

• SystemC as a c++ framework provides a high level of abstraction, its ob-
ject orientation is useful for dealing with inheritance from generic TLP-
headers.

• True random extraction of delay data is easily done with C++’s srand and
text file manipulation.

• SystemC is publicly available, there is no need for licenses or royalties. It
is both low cost, and easy to use. A normal C++ compiler can be used to
generate executables.

• SystemC is accepted as a modeling language in the industry.

• Memory leaks and thus run-ability can be checked using the Valgrind
mem-check tool

Separating RC’s Memory in a Dedicated Module

A model for the RC subsystem memory was implemented as a separate mod-
ule to uncover memory-related causes of performance degradations, such as
RCB, max payload size and so on. By having a dedicated module representing
the memory instead of including the memory as an array within the RC itself,
one can model the delay of the actual memory transfer per byte in a more fine
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grained manner. For larger reads it is more convenient to model the RC subsys-
tem memory as an array directly within the RC model itself because of access
cycles. Both approaches are implemented and toggling between the two mem-
ory modeling systems is easily done with boolean program settings.

Simplifications

The internal complexity of the RC model has been simplified in order to reach
the deadline of this assignment:

• The memory-model connected to the RC is a simple array containing inte-
gers that represent bytes, addressing the module is done in a byte aligned
manner. The degree of detail in the transaction level RC model has been a
repeated question throughout this thesis. Intel’s Quick Path Interconnect
was originally intended to be modeled in detail within the RC model, the
QPI protocol is used between memory, CPU and the RC itself. With such
an approach, the RC would have been a bridge from one packet based
protocol to another, allowing fine grained performance modeling of the
entire system resulting in a more flexible tool for performance simula-
tions. However, since the only available protocol analyzer was the Lecroy
tracer, this system complexity was abstracted away from the model whose
only task is to provide hardware realistic feedback to the EP.

• System configuration was made abstract in the RC model. The system is
configured in an outter SystemC module, configuration registers are set
through module constructors, removing the need for configuration re-
quests. All devices are constructed with device ID’s and BARs. Perfor-
mance testing is done on an already configured system. Hot-plugging of
PCIe devices is also a functionality that is not needed for modelling of an
RC with respect to transaction performance.

• TLPs are the only type of packets that are supported, DLLPs are ignored
as the goal of this thesis is modeling of an RC in the transaction domain.
This means that posted requests are not delay-modeled because the chain
is broken within the RC, and no completion packets are returned. Flow
control is also not modeled in this thesis, VCB are implemented with vec-
tors, and have unlimited restrictions. However since flow control is such
an important metric to surveill for monitoring system performance, it can
be easily implemented using help variables or directly readable VCBs in
the system.

• The RC’s TLP compatibility implemented so far is restricted to memory
read requests, completions and memory write requests. The data types
of these packets are structs that are derived from the generic TLP class.
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Other TLP types with different values indicated within the header type-
field, that are sent to the RC, will be ignored in the RC’s handling thread.
Support for new TLP types can easily be added by creating new children
of the generic header. Handling of these can also easily be added in the
switch-case statement within the RC.

• The size of the RC’s system memory fraction is reduced to lower program
memory-consumption. If one were to allocate an array that is the size
of 64 bit of addressable memory without using stored files representing
memory, one would need a large amount of random access memory on
the simulation hardware. This simplification however should not affect
the RC’s ability to perform as a PCIe environment for performance rea-
sons as the data that is stored in the simulated memory is of little impor-
tance. One can loop through the small amount of memory several times
instead, in a barrel roll fashion.

5.2.2 Testing The Functionality

The results from testing the PCIe-system described in section 3.17 with 3 EPs,
a switch instance and the RC module gave the results described in section 4.2.
The implications from these results are described in this section, demonstrating
the functionality correctness of the RC TLM.

The RC as a Completer

The first few tests that were run, tested the basic functionalities of the RC as a
completer.

RC Answering Single Requests Figure 4.7 shows a simulation summary of a
simple memory read request that was sent from EP 2:0:0 to the RC and its corre-
sponding completion packet. All the counters that are implemented within the
modules were printed out in each module’s destructor, describing the amount
of packets sent received or forwarded by the respective modules. The send/re-
ceive/forward statistics was used together with verification of the data that was
received in the EP to conclude that the memory read request functionality is
adequate from an EPs point of view. The packet sent and the packet received
time-stamp from the EP time-stamp vectors was used to calculate the average
MRd-CplD time consumption. For this specific simulation consisting of only 1
MRd-CplD of 0 and 328 ns the average read to completion latency was 328 ns,
which is within reasonable boundaries of the total sample average MRd-CplD
of 393 ns as shown in table 4.2. In short, the memory read request functionality
is correctly answered by the RC TLM.
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Figure 4.8 lists the simulation summary of a simple memory write request
sent from EP 2:0:0 to the RC, this summary proves the general correctness of the
RC as a completer of memory write requests. A small fraction of the RC adja-
cent memory was printed to observe that the changes made to the RC memory
during the simulation were correct. The 10 bytes that were written to the RC
memory using 1 MWr request correspons to the requested data payload, the en-
tire RC memory was originally constructed to be all 0s. Detailed information of
the write request data output log is not showed in this summary, however stud-
ies of the entire program output reveals this fact. In short, the correct actions
are taken by the RC TLM from a memory write request.

Figure 4.9 lists the simulation summary of a memory read request for a large
amount of memory sent from EP 2:0:0 to the RC, this summary proves the gen-
eral correctness of the RC as a completer of large memory read requests. 192
bytes of data were requested from address 48 of the RC memory, the data re-
ceived in the EP is not shown in the summary for formatting reasons. It can be
observed that EP 2:0:0 sends 1 request, and yet receives 4 completion packets.
This is due to the read completion boundary at 64 bytes. The CplD was split
up in the software layer of the RC, first packet from address 48, turned out to
contain 16 bytes, the two next ones were 64 bytes each, and the last one was 48
bytes, resulting in a total of 192 bytes with packets aligned at the 64 byte RCB.
The functionality of the RCB completion-splitting proves to be correct as the
result matches the example given in the theory section 2.1.2, the timing on
the other hand is not yet implemented in a hardware realistic fashion as fur-
ther packet tracing is needed. At this point the first packet is returned after a
correctly drawn random sample, however the distance between the successive
packets in nano seconds, is not yet modeled. Neither is completion combining
during VCB stalls.

RC Answering Multiple Requests The simulation summary in figure 4.10 lists
the result of EP 3:0:0 and 4:0:0 both requesting a memory read simultaneously.
The switch in between EP 3:0:0 and the RC consumes a few additional delta
cycles for routing, because of this extra travel latency, EP 4:0:0 is guaranteed to
be served first by the RC no matter what its TC is. This is when strict ordering is
used, and no multitasking in the RC is enabled.

Figure 4.11 shows the simulation summary of the simulation where all three
EPs were simultaneously issuing a MRd each at 0ns. EP 2:0:0 use TC 5, EP 3:0:0
use TC 6 and EP 4:0:0 which is connected directly to the RC use TC 4. The inter-
esting fact to note about this simulation result is that packet priority is correctly
demonstrated within the first switch. The MRd packet from EP 2:0:0 and from
EP 3:0:0 arrives simultaneously at switch 1:0:0 at 0 ns, the packet from EP 3:0:0 is
forwarded first while the packet from EP 2:0:0 is stored in virtual channel buffer
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5. This can be observed from the chronological order of the completion arrival
times as strict ordering and no multitasking is used in the RC module. Even
though EP 4:0:0 utilize the lowest traffic class, the delta cycles used for handling
in the switch between EP 2:0:0 and EP 3:0:0 causes its request to be handled and
returned first. Priority inversion is experienced in the RC application layer as
neither preemption nor multitasking is enabled in the RC. The MRd-CplD la-
tencies were stacking for the requests that were stuck in virtual channel buffers
while the RC was handling the packet from EP 4:0:0 and then EP 3:0:0. EP 2:0:0
experienced a MRd-CplD latency about 3 times greater than of EP 4:0:0.

The next two test results further investigates the phenomenon of RC request
ordering and clumping of requests experienced in the previous paragraph. Fig-
ure 4.12 in the result chapter lists the summary of a simulation where EP 2:0:0
sent multiple MRd requests back to back, only 10 ns passed before successive
requests were issued. With a minimum sampled MRd-CplD of 184 ns, all 10 re-
quests were guaranteed to be issued before a single completion was returned.
It is important to note the high accumulated completion times for the last re-
quests. The first request is answered after 448 ns, the second after 790, and the
last request is answered after 3754 ns, 3664 ns after its issued request. No multi-
tasking in the RC and request clumping, causes the average MRd-CplD time to
become 2.11 µs.

To allow for a more dynamic RC model, multitasking was implemented as a
TLM setting within the RC, figure 4.13 shows the simulation summary of a simu-
lation performed with multitasking enabled. The same request scenario is sent
from EP 2:0:0 as that of the previous test scenario, 10 requests are sent every 10
ns for the first 90 ns of the simulation time. Each request is received in the same
order by the RC, once each request enters the handling queue in the application
layer of the RC, data is gathered from the memory and a corresponding com-
pletion packet is built in the same cycle as the receive VCB selection. Once the
packet has been built, a return time stamp is calculated using the delay sam-
ple database, and added to a vector of timestamps to perform packet sending.
The completion packet is also added to a vector with a key that maps directly to
that of the send time stamp vector. A dedicated thread for answering requests is
activated once every delta cycle to check if the current delta cycle has a packet
to return, that packet is then added to the send queue. The result in figure 4.13
shows that the average simulated MRd-CplD time represents that of the aver-
age sampled MRd-CplD delay, giving the RC model a functional extra-feature
for performance simulation of EPs that are rapid requesters.

The RC as a Requester

The RC’s basic functionality of initiating requests both reads and writes on be-
half of the CPU are shown in figures 4.14 and 4.15. These simulation logs
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demonstrate the switches ability to utilize their configuration registers and per-
form address routing based on BARs towards correct EPs. Memory located in
EP 2:0:0 was successfully read in the first summary, this can be seen by com-
paring the data that was returned with the construction of the EP memory. The
MRd-CplD latency is modeled with the arbitrary value of 800 ns, as this thesis
involves the construction of an RC TLM and not an EP TLM. The memory was
also successfully written to judging from the sent payload compared to the re-
sulting memory after a write to a memory that is constructed to all 0s.

The simulation log of figure 4.16 proves the functionality correctness of the
outbound request buffer in the PCIe socket of the RC model. A non-posted
memory read request was issued from the RC towards EP 2:0:0. The EP module
was reprogrammed to discard the completion of the first request, forcing the
request in the outbound to be replayed after an arbitrary timeout period which
was set to 6000 ns. The new request was answered right away resulting in an av-
erage MRd-CplD delay of 6814ns. Further tracing of target platform’s RC traffic
is required to fill inn a realistic timeout constant to complete the TLM model of
the RC.

Figure 4.17 shows the packet trace summary of a simulation where 256 bytes
of data was requested to be written with a single write initiation from the RC
application layer. It can be observed from the result that the function of the
max_payload_size parameter of 255 bytes is activated within in the PCIe proto-
col stack module, the packets sent counter of the socket destructor is equal to 2
while the packets received from the RC device core is 1. The maximum payload
size parameter has a large influence on the performance of PCIe devices, over-
head of the entire sending is increased with the size of the header and the ECRC
field. Generally the packet should be sent right away after VCB arbitration since
the packet splitting is initiated in the transaction layer.

The RC as Both a Requester and a Completer

Finally the RC’s functional accuracy was ensured by observing the resulting sim-
ulation summaries of traffic scenarios where requests move both upstream and
downstream. Firstly all EPs including the RC was simulated as requesters for
memory reads, 1 MRd per device, the simulation summary in figure 4.18 shows
the resulting traffic load on the system. The switches performed priority arbi-
tration upstream and address routing downstream, which resulted in the arrival
of the request from the RC at EP 2:0:0 first of all as the downstream routing takes
0 ns due to no buffer arbitration. EP: 4:0:0’s request arrives first of the EP’s re-
quests, the request from EP 3:0:0 second and the request from EP 2:0:0 due to
traffic classes and switch delta cycles. Similar is the traffic scenario of the trace
summary where all devices are requesters for memory writes, this is shown in
figure 4.19. It can be concluded from these two output log summaries that the
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RC performs as expected when both answering and issuing requests in the same
simulation.

A Realistic System Scenario

The realistic test scenario of the PCIe system consisted of an EP continuously
calculates the n’th digit of pi using Bellard’s algorithm. The data is written to
the host memory once it is calculated every cycle. This test was meant for il-
lustrative purposes of the system capabilities. The host CPU is freed from com-
putational loads and can use it’s resources for other tasks. The resulting output
summary is shown in figure 4.20. The result shows that the RC’s memory is
successfully written two with 900 decimals of PI.

Simulated MRd-CplD Latency Accuracy

The terminal output of the simulation with 15000 MRd-CplDs in figure 4.21 to-
gether with the auto generated plot in figure 4.22, proves the correctness of this
TLM approach. This result is probably the most important to note throughout
this thesis. Both the heavy tailed fraction and the bell shaped distributions are
represented in both the RC’s drawn samples, as well as in the EP-s experienced
MRd-CplD latencies. Slight differences can be observed between the simulated
delays in the RC’s and the simulated experienced delays of the EP, because of
accumulated delta cycles for switch arbitration. These small differences are so
insignificant that they are negligible when considering the delay accuracy of the
RC TLM. The small delays accumulated within switches for arbitration prove to
be irrelevant to achieve realistic latency modeling. All in all, the MRd-CplD La-
tency accuracy perfectly replicates that of the gen. 1. RC within the traced sun
server.

Support for other RC architectures would include new MRd-CplD trace col-
lections, since traced latencies are hardware specific. Each RC architecture per-
forms differently just like PCIe EPs are expected to do during performance sim-
ulation. The degree in which the MRd-CplD delays vary for various RCs remains
to be unknown, the delta delays recorded on the SUN server might still provide
a decent pointer for performance simulations.

5.3 Using the RC model for performance testing of EPs

To unlock design-phase performance testing of PCIe EPs the EP’s needs to be
modeled in a manner that is compatible to the RC TLM. Typically, this would
be in the shape of SystemC modules like the one that was created for functional
verification of the RC TLM.
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5.3.1 Deciding on the PCIe performance criteria

The performance of a PCIe device depends on multiple variables, both within
the device itself and from its switch based system-environment. The variables of
interest for performance measurements should be fixed in advance of the Sys-
temC implementation of the EP module. The device under test can be checked
for its performance as a completer, a receiver, or both a completer and a re-
ceiver. The system performance criteria for the simulation can be inbound reads,
inbound writes, outbound reads, outbound writes, receive latency, transmit la-
tency or round-trip latency. One should also map whether the performance
testing targets testing of the application running on the EP or simply PCIe proto-
col that is implemented on the EP. Bandwidth simulations should indicate sus-
tainable values, not peak to peak performance. The module can be significantly
simplified with respect to the areas of interest of the performance simulation
that is to be executed.

5.3.2 Implementing a TLM of the EP

The model of the EP should be made as a dedicated SystemC module in the
transaction domain. If the performance test targets the EP application, then
the socket module within the RC TLM might be re-used to simplify the EP TLM
implementation. The SystemC TLM of the PCIe EP should be created to fit the
template in figure 5.3.

The code in figure 5.3 is a template for implementing a TLM of the EP under
test. The figure shows a stripped version of the EP module that was used to test
the RC functionality. Aspects worth noting for the EP implementation and for
setting up the PCIe system are given in the following bullets:

• The EP module needs to support one in-port and one out-port, both for
carrying TLP objects in a similar manner to the RC, these are displayed in
figure 5.3.

• The EP should be designed as a transaction layer model. System
workarounds are crucial for functionality that relies on abstraction-layers
lower than the transaction layer.

• The EP should mimic the actual functional design of the EP to allow pa-
rameter tweaking.

Following the EP TLM template given in this section allows direct connec-
tion to the RC TLM using SystemC specific information carriers of the TLP type.
Single or multiple instances of the EPs are allowed to be connected to the RC.
The EP module and the outer module interconnecting all the PCIe devices should
include functionalities and variables for monitoring performance and to differ
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/* * _________________

* | PCIe−EP |

* | FUNCTIONALITY |

* | ______v___^_____ |

* | PCIe Socket −|−> Upstream

* | _______________−|−< Downstream

*/SC_MODULE (PcieEndPoint ) {
PcieSocket * socket ;
sc_in<TLP> incoming_tlp_to_socket ; // in
sc_out<TLP> outgoing_tlp_from_socket ; //Out
sc_signal<SoftwareData> to_socket_from_dev_core ; // i nte r na l
sc_signal<TLP> from_socket_to_dev_core ; // i nte r na l

//Endpoint s p e c i f i c functions
void EndPointFunctionality ( ) ;
void ReceivePacketAction ( ) ;

//EP Memory
i n t endpoint_memory [ENDPOINT_MEMORY_SIZE ] ;

SC_HAS_PROCESS ( PcieEndPoint ) ;
PcieEndPoint (sc_module_name name_ , [ conf−reg param . . . ] ) : sc_module (name_ ) {

// Generic PCIe Socket
socket = new PcieSocket ( "EP_1" , [ conf−reg parameters . . . ] ) ;
// Basic EP Threads
SC_THREAD (EndPointFunctionality ) ;
SC_METHOD (ReceivePacketAction ) ;
sensitive << from_socket_to_dev_core ;

}
~PcieEndPoint ( ) {

// Analyze simulated data
delete socket ;

}
} ;

Figure 5.3: A blue print of a generic EP TLM to ensure RC TLM compatibility

between the actual total payload and the amount of bytes received to calculate
the net bit-rate instead of the gross bit rate. Typical examples of such variables
are time-stamp vectors for storing the timestamps for all traffic that is simu-
lated, packet counters, payload counters, memory surveillance and so on.

5.3.3 Running the Performance Simulations

Simulation is executed using the sc_start function after having instantiated all
desired modules in a system and interconnected them. Simulation examples
are demonstrated in the main file of the test setup. The RC was tested for mem-
ory leaks using Valgrind, see appendix F for a screen-shot of the memory check
summary. A model that is free from memory leaks enables long lasting perfor-
mance simulations using the RC module. Measuring memory leaks on the Sys-
temC library was found to require that the SystemC library is compiled with the
p-threads flag, false positives on memory leaks were originally discovered be-



108 CHAPTER 5

fore this fix. The definitively lost memory counter was 0 for the system after the
p-threads fix, the other parameters experienced false positives due to Valgrinds
limited support for SystemC, they should in reality be equal to 0. Simulations
of up to the arbitrary value of 15000 MRd-CplD packets over 1 milliseconds of
simulation time have been executed successfully using the RC TLM.

5.3.4 Evaluation of the RC TLM as a Tool for Performance Testing

A realistic simulation environment for a PCIe EP performance contributes to
locating optimal system solutions that lower silicon size, power consumption,
and development and verification costs [25]. An example is finding a minimum
size of a buffer by maximizing performance for a selected system performance
metric. Reducing buffer sizes to the minimum point where system functional-
ity still remains unaffected, reduces the number of redundant buffer cells, thus
reducing chip size, which again reduces power consumption. A good simula-
tion tool removes the need for numerous hardware prototypes thus reducing
development and verification costs.

Performance simulation of a PCIe EP TLM using the RC TLM developed in
this thesis has the potential to reveal causes of performance degradations re-
lated to the following PCIe parameters:

• Parameters affecting bandwidth

– Maximum Payload Size

– Maximum Read Request Size

– Completion Combining in the RC

• Parameters affecting packet transfer rate directly

– Header Credits. Receive buffer size for header.

– Data Credits, Receive buffer size for data payload .

– Tag space limitations

The RC model created in this thesis is found to be statistically equal to a
hardware version with respect to read transaction round-trip latency. This is
very useful for evaluating EP read request size since the size of the outbound
buffer size decides the maximum number of plausible outbound memory read
requests. The size of the outbound request buffer should be larger for systems
that have large MRd-CplD latencies. This is specially useful for the extended
tag feature of the third generation PCIe with 256 being the roof of outbound
requests instead of 32 for first generation PCIe systems.

The implemented model for the RC does not model completion combin-
ing directly, however this is indirectly in-cooperated in trace variations in MRd-
CplD latencies as discussed in section 5.1.1. A traced completion that is the



DISCUSSION 109

result of completion combining appears to have a slightly longer MRd-CplD la-
tency. The second section of the MRd-CplD distribution is expected to partially
consist of latency samples from packets that have experienced RCB splitting and
then read completion combining.

Some workarounds should be implemented for having a TLM that excludes
the data link layer. Header credits and payload credits could be necessary to
monitor. These could be implemented as integers in the module level of the
RC and the EP TLMs. Once this is implemented, sending of packets can be re-
stricted by header and data credits. Optimal queue depths of VCBs can also be
found.

To sum up, the RC provides an accurate delay module. Help- variables such
as time-stamp vectors and packet counters can be used to monitor and later
improve the net bit rate, the latency round-time and the jitter of the PCIe EP.

5.4 Future Work

The bullets below summarize the discussion with respect to what remains to be
done on the model in future work.

• More details in the functionality aspect. Engineers at Oracle are now developing
third generation ASICs for EPs, header should be modified to include extended
tags(ET) and TLP processing hints(TPH) which are new for third generation PCIe
architectures. Extensions of the RC TLM should also include support for steering
tags(ST), address translation services(ATS). Another functional extension that is
useful in virtual database modeling would be single root I/O virtualization (SR-
IOV), it allows a single endpoint to be virutalized to appear as multiple separate
physical PCIe devices.

• Further Modularity of the System. For a more detailed simulation, accumulative
delays from various performance degradations should be modeled. The memory
structure of host should be modeled in detail. The RC TLM would then typically
include a PCIe to QPI bridge. And details about memory cache-lines and dw
aligned memory.

• EP to EP communication. Currently the switch modules are only able to switch
traffic from EPs upstreams, and from the RC downstream. The EPs are not able to
communicate with each-other. If this is desired for the performance simulations,
then such a functionality can easily be implemented by slightly modifying the
switch module.

• Support for exchange of buffer credits. The lower abstraction levels contain im-
portant features for overall performance. These can be modeled in a high-level
manner with for instance; simple integers representing credit flow with DLLPs.

• Record more traffic. Round-trip latency distributions vary for different archi-
tectures and traffic scenarios. Latencies should be mapped and added to the RC
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TLM for all TCs for the expected simulation scenario. The exact traffic load cur-
rently used for performance measurements with QEMU should be sampled on a
relevant server architecture.

• Optional Future Work

– Prediction models to save memory consumption. An option for future
work is to record large amounts of traffic and create prediction models
from traffic patterns that correlate parameters such as traffic class, system
traffic load and payload length variations, all for transfer latency. The RC
model then calculates the round-delay for insertion by using the prediction
model. Generally more research is needed for covering variation in traffic
scenarios with the RC TLM.

– Patch QEMU with the delay model An option for future work is to patch
QEMU with a realistic delay model, based on the very principle described
in this thesis to avoid verification of the RC TLM tool implemented in this
thesis. The ich9 chip-set is already emulated with detailed functionalities.
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Conclusion

Having a realistic simulation environment for PCIe endpoints(EPs) is favorable
as a PCIe design engineer. In this thesis such an environment was created con-
sisting of a transaction level model(TLM) of a PCIe root complex(RC).

Modeling a PCIe device in detail is cumbersome due to the immense nature
of the layered architecture. The model was simplified to target the transaction
layer domain, lower protocol layers were abstracted away from the model.

The implementation of the TLM focused on statistical correctness of trans-
action latencies. It was implemented with the C++ interface, SystemC, making
the model easy to understand and to modify for both software and hardware
engineers. The SystemC TLM is able to model delays with high accuracy having
the user-defined SystemC simulation time-quantum as a maximum value for
timing error.

The communication infrastructure of the TLM was made for basic transac-
tions of transaction layer packets(TLPs). The TLPs can be routed to indicated
destinations, prioritized and treated with respect to their header descriptions.

The RC TLM imitates real PCIe RCs by incorporating both the timing aspect
and the functionality aspect of a PCIe RC. A realistic delay principle was imple-
mented. It that randomly draws samples from a latency database whenever the
TLM simulates a delay between a request and it’s corresponding completion(MRd-
CplD). The database consist of traffic samples from existing RC hardware. Sup-
port for a specific target server platforms may be achieved by recording PCIe
traffic on the target architecture and including the resulting data in the TLM.

By having a realistic variation of delay samples instead of a constant delay
value for each transaction, system jitter is also modeled. The uniformly dis-
tributed probability of the random number function in C++ ensures that com-
pletely random samples are drawn which prevents distortion of the sampled
latency distribution.

111
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The RC TLM supports interconnection of PCIe TLMs with I/O ports of the
TLP data type. Endpoints may be connect directly to the RC’s multi-ports, acting
as requesters or completers, or both during a single simulation.

A LeCroy protocol analyzer was used to sample PCIe traffic between an EP
and a SUN FIRE x4170 m2 server with two Xeon processors. The sampled traf-
fic was exported and processed into the format supported by the RC TLM delay
model. The delay database was created with approximately 4000000 delay sam-
ples, distributed in a heavy-tailed fashion.

The results from the functionality test-runs prove the correctness of the mod-
eled transaction system architecture. The RC TLM responds correctly to re-
quests as a completer. It is also able to issue requests as a requester and com-
bine received completions with outbound requests. The results demonstrate
the correctness of all sub-modules in the root complex TLM, including the PCIe
protocol stack and the switch module.

The basic transaction functionality allows packets to be routed to and from
the RC within few delta cycles which is negligible to the simulated system la-
tency. The results from test-runs focusing on timing, prove that this is the case.
The simulations revealed that the MRd-CplD latency distribution achieved by
simulating 15000 MRd requests to the RC, fits that of the sampled data. The ide-
ally drawn latency samples modeled by the RC TLM are approximately equal to
the MRd-CplD delays that are experienced by endpoints. Slight changes in the
nano-second scale are caused by imperative switch arbitration cycles.

Introduction of system jitter caused by The RC TLM include jitter that is in-
troduced by multiple performance degrading traffic scenarios. Some of these
are:

• Flow control halts.

• Cache snooping halts.

• Strict ordering halts.

• Violations to the read completion boundary.

• Violations to the maximum payload size.

The traced PCIe system experience all these performance degrading events while
running normal applications. Jitter variations with respect to the items above
are thus automatically included in the traced MRd-CplD delays of the RC TLM.

The principle of modeling delays in an RC TLM using latency databases, was
found to be a good alternative to the constant delay nature of the QEMU test-
environment. The PCIe RC TLM will, with the appropriate trace calibrations,
perform optimal with respect to modeled latency and jitter in a simulation en-
vironment. The implemented transaction level model of the PCIe root complex
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enables PCIe ASIC designers to pinpoint optimal system parameters faster and
more accurately than before, leading to a reduction in development cost, silicon
area and power consumption.

Features such as credit flow control, TLP hints, and ways to simulate details
of transaction scenarios in a more fine grained manner, remains to be imple-
mented. Including these features in the RC TLM will improve the model’s ability
of QoS and error based performance simulations. Being able to draw a picture
of QoS and functional correctness of a device is of great importance for PCIe.
These model additions deserve to be investigated further in future work.
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APPENDIXA
Acronyms

ACK Acknowledged - Packet for acknowledging data transfers
AGP Accelerated Graphics Port- Graphics card p2p channel
ASIC Application Specific Integrated Circuit - Circuit chip
B2B Back to Back - Burst sending of packets
BAR Base Address Register - Storing function configuration info
CPU Central Processing Unit- Computing component
CRC Cyclic Redundancy Check- Error Check
Cpl Completion - Packet type, respons to a request
CplD Completion with Data - Packet type, respons with data to a request
DLLP Data Link Layer Packet - Unit of data transfer for PCIe
DMA Direct Memory Access - Data Accessing
DW Double Word - Unit of 32 bits
ECRC End-To-End CRC - Error Check
EISA Extended ISA - Extention of the established ISA
FIFO First in First Out - Data accessing
FMT Format - Packet description
FSB Front Side Bus - Interconnect between north bridge and CPU
GT/s Giga Transfers per second- Measurement of transfer rate
Gen Generation - Used for PCIe hardware release specification.
HW Hardware - The tangible logic in a electronic system
ISA Industry Standard Architecture - Old bus standard by IBM
IOH I/O Hub - An Intel chipset architecture.
MPS Maximum Payload Size - The limit for packet payload in a system
MRD Memory Read - Packet request for reading data
MWr Memory Write - Packet request type for writing data
NAK Negative Acknowledgment - Packet for acknowledging data transfers
QEMU Quick EMUlator - SW for emulating CPUs
QoS Quality of Service - Deterministic latency and bandwidth
QPI Quick Path Interconnect - Intel’s replacement for the FSB
P2P PCI to PCI bridge - Bridge between two PCI interconnects
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PCI Peripheral Component Interconnect - Connection standard
PCIe Peripheral Component Interconnect Express - Connection standard
RC Root Complex - Root node of the PCIe Tree
RCB Read Completion Boundary - Boundary MRd-CplD payload size
SW Software - The non-tangible logic in an electronic system
TLM Transaction Level Modelling - High level model approach
TLP Transaction Layer Packet - Unit of data transfer for PCIe



APPENDIXB
C++ Tool for Converting Exported

Trace Files

#include <iostream >
#include <fstream >
#include <str ing >
#include <algorithm >
#include <iomanip>

using namespace std ;

i n t main ( ) {
char input_file_name [255] = " pextotext3 . t x t " ;
char output_deltadelay_file_name [255] = " pextotext3_delta . t x t " ;
std : : ifstream read_from_pex_file (input_file_name ) ; // " pex_to_text_1 . t x t " ) ;

remove (output_deltadelay_file_name ) ;
std : : ofstream write_deltas_to_file (output_deltadelay_file_name ) ;

std : : string line_string ;
std : : string file_contents ;

i f (write_deltas_to_file . is_open ( ) && read_from_pex_file . is_open ( ) ) {
//Help variables , middle_calc_registers
double mrd_time_stamp_s = 0 ;
double cpl_time_stamp_s = 0 ;
double mrd_cpl_delta = 0 ;
double mrd_cpl_delta_ns = 0 ;
string mrd_time_stamp ;
string cpl_time_stamp ;
string tag_mrd ;
string tag_cpl ;
string time_stamp_string = "Time Stamp( " ;
i n t index = 0 ;
i n t index2 = 0 ;
i n t index3 = 0 ;
i n t mrd_counter_solutib = 0 ;
i n t delta_counter = 0 ;
bool get_next_mrd_tag= f a l s e ;
bool get_next_mrd_time_stamp= f a l s e ;
bool get_next_cpl_tag= f a l s e ;
bool get_next_cpl_time_stamp= f a l s e ;
std : : vector<double> temp_mrds_vector ;
std : : vector<int > temp_tags_vector ;
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while (std : : getline (read_from_pex_file , line_string ) ) {
i f (line_string . find ( "MRd" ) ! = std : : string : : npos ) { //Check for MRd

get_next_mrd_tag=true ;
mrd_counter_solutib++;

} e lse i f (line_string . find ( "Tag ( " ) ! = std : : string : : npos && ←-
get_next_mrd_tag ) {

get_next_mrd_time_stamp=true ;
//Add tag to mrd_tag_vector
tag_mrd . clear ( ) ;
index3 = line_string . find ( "Tag ( " ) ; // Find s t a r t location of ←-

timestamp in l i n e
for ( i n t i = index3 + 5 ; i < index3 + 7 ; i++) {

tag_mrd = tag_mrd + line_string [i ] ;
}
temp_tags_vector . push_back (atoi (tag_mrd . c_str ( ) ) ) ; //ADD to vector
get_next_mrd_tag= f a l s e ;

} e lse i f (line_string . find ( "Time Stamp( " ) != std : : string : : npos && ←-
get_next_mrd_time_stamp ) {

// INIT vars every i t t e r a t i o n
mrd_time_stamp . clear ( ) ;
index = line_string . find (time_stamp_string ) ; //9
index2 = line_string . find ( " s ) " ) ;
for ( i n t i = index + time_stamp_string . length ( ) ; i < (index2 ) ; i←-

++) {
mrd_time_stamp = mrd_time_stamp + line_string [i ] ;

}
mrd_time_stamp . erase (std : : remove_if (mrd_time_stamp . begin ( ) ,←-

mrd_time_stamp . end ( ) , : : isspace ) ,mrd_time_stamp . end ( ) ) ; //←-
remove whitespaces

sscanf (mrd_time_stamp . c_str ( ) , "%l f " , &mrd_time_stamp_s ) ; //←-
convert to double

temp_mrds_vector . push_back (mrd_time_stamp_s ) ; //ADD to vector
get_next_mrd_time_stamp= f a l s e ;

} e lse i f ( ( line_string . find ( "Cpl" ) ! = std : : string : : npos ) && ! ( ←-
temp_mrds_vector . empty ( ) ) ) { //Check for Cpl i f MRd vector i s not←-

empty
get_next_cpl_tag=true ;

} e lse i f ( ( line_string . find ( "Tag ( " ) ! = std : : string : : npos ) && ←-
get_next_cpl_tag ) {

get_next_cpl_time_stamp=true ;
tag_cpl . clear ( ) ;
index3 = line_string . find ( "Tag ( " ) ; // Find s t a r t location of ←-

timestamp in l i n e
for ( i n t i = index3 + 5 ; i < index3 + 7 ; i++) {

tag_cpl = tag_cpl + line_string [i ] ;
}
get_next_cpl_tag= f a l s e ;

} e lse i f ( ( line_string . find ( "Time Stamp( " ) != std : : string : : npos ) && ←-
get_next_cpl_time_stamp ) {

cpl_time_stamp . clear ( ) ;
index = line_string . find (time_stamp_string ) ; // Find s t a r t location←-

of timestamp in l i n e
index2 = line_string . find ( " s ) " ) ; // Find end location of←-

timestamp in l i n e
for ( i n t i = index + time_stamp_string . length ( ) ; i< (index2 ) ; i++)←-

{
cpl_time_stamp = cpl_time_stamp + line_string [i ] ;

}
cpl_time_stamp . erase (std : : remove_if (cpl_time_stamp . begin ( ) , ←-

cpl_time_stamp . end ( ) , : : isspace ) ,cpl_time_stamp . end ( ) ) ; //←-
remove whitespaces
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sscanf (cpl_time_stamp . c_str ( ) , "%l f " , &cpl_time_stamp_s ) ; //←-
convert to double

//Check what timestamp to compare with , in the vector of ←-
timestamps

// Write delta to f i l e and remove
for ( unsigned i = 0 ; i < temp_tags_vector . size ( ) ; i++) {

i f (temp_tags_vector [i ] == atoi (tag_cpl . c_str ( ) ) ) { // Current ←-
cpl tag i s equal to t a g _ i

// Calculate delta
// write delta to f i l e and rese t
mrd_cpl_delta = cpl_time_stamp_s − temp_mrds_vector [i ] ;
mrd_cpl_delta_ns = mrd_cpl_delta * (1000000000) ; //←-

convert to nanoseconds
write_deltas_to_file << mrd_cpl_delta_ns << endl ; //←-

Write to f i l e
delta_counter++;
//Remove from temps
temp_tags_vector . erase (temp_tags_vector . begin ( ) + i ) ;
temp_mrds_vector . erase (temp_mrds_vector . begin ( ) + i ) ;
break ;

}
}
get_next_cpl_time_stamp= f a l s e ;

}
}
cout << " Mrd_correct : " << mrd_counter_solutib << endl ;
cout << " t o t a l delta i s : " << delta_counter << endl ;
cout << " tags vlength " << temp_tags_vector . size ( ) << endl ;
cout << "Mrds vlength " << temp_mrds_vector . size ( ) << endl ;

} e lse {
cout << "Unable to open f i l e s " ;

}
read_from_pex_file . close ( ) ;
write_deltas_to_file . close ( ) ;

//Read them in again and sort them in a vector
std : : ifstream read_deltas_from_file (output_deltadelay_file_name ) ;
std : : vector<int > numbers ;
while (std : : getline (read_deltas_from_file , line_string ) ) {

numbers . push_back (atoi (line_string . c_str ( ) ) ) ;
}
cout << numbers [ 0 ] << endl ;
std : : sort (numbers . begin ( ) , numbers . end ( ) ) ;
cout << numbers [ 0 ] << endl ;
read_deltas_from_file . close ( ) ;
// Write them back to f i l e sorted
std : : ofstream write_sorted_deltas_to_file (output_deltadelay_file_name ) ;
// calculate median and mean also
i n t sample_number = i n t (numbers . size ( ) ) ;
bool even_sample_number = f a l s e ;
i n t median = numbers [ 0 ] ; // i n i t median
i n t mean = 0 ;
i n t sum_all = 0 ;
i f (sample_number % 2 == 0) {

even_sample_number = true ;
}
for ( i n t i = 0 ; i < sample_number ; i++) {

sum_all += numbers [i ] ;

i f (even_sample_number ) {
i f (i == (sample_number / 2) ) {

median = (numbers [i ] + numbers [i + 1 ] ) / 2 ;
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}
} e lse {

i f (i == ( ( sample_number − 1) / 2) ) {
median = (numbers [i ] ) ;

}
}
write_sorted_deltas_to_file << numbers [i ] << endl ;

}
mean = sum_all / sample_number ;
cout << "Median i s equal to : " << median << endl ;
cout << "Mean i s equal to : " << mean << endl ;
write_sorted_deltas_to_file . close ( ) ;

}



APPENDIXC
Python Script for Plotting of

Latency Distributions

import numpy as NP
from matplotlib import pyplot as PLT
import time

with open ( ' trace_data / delay_traces . t x t ' ) as f0 :
v0 = NP . loadtxt (f0 , delimiter=" , " , dtype= ' i n t ' , comments="#" , skiprows=0 , ←-

usecols=None )
with open ( ' generated_logs / ep_mrd_cpl_deltas . t x t ' ) as f :

v = NP . loadtxt (f , delimiter=" , " , dtype= ' i n t ' , comments="#" , skiprows=0 , ←-
usecols=None )

with open ( ' generated_logs / rc_rand_drawn_deltas . t x t ' ) as f2 :
v2 = NP . loadtxt (f2 , delimiter=" , " , dtype= ' i n t ' , comments="#" , skiprows=0 , ←-

usecols=None )

v0_hist= NP . ravel (v0 )
v0_hist . sort ( )
v_hist= NP . ravel (v )
v_hist . sort ( )
v2_hist=NP . ravel (v2 )
v2_hist . sort ( )

fig = PLT . figure (num=None , figsize=(16 , 9) , dpi=80 , facecolor= 'w' , edgecolor= ' k ' )

ax = fig . add_subplot(111 , axisbg= 'w' )
ax0 = fig . add_subplot(311)
ax1 = fig . add_subplot(312)
ax2 = fig . add_subplot(313)
ax . spines [ ' top ' ] . set_color ( 'none ' )
ax . spines [ 'bottom ' ] . set_color ( 'none ' )
ax . spines [ ' l e f t ' ] . set_color ( 'none ' )
ax . spines [ ' r i g h t ' ] . set_color ( 'none ' )

ax . tick_params (labelcolor= 'w' , top= ' o f f ' , bottom= ' o f f ' , left= ' o f f ' , right= ' o f f ' )

ax0 . set_yscale ( ' log ' )
ax1 . set_yscale ( ' log ' )
ax2 . set_yscale ( ' log ' )

fig . suptitle ( ' Simulated MRd−CplD latency d i s t r i b u t i o n ' , fontsize=20)

ax0 . set_title ( 'Sampled MRd−CPlD latency d i s t r i b u t i o n ' )
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ax1 . set_title ( ' Latency d i s t r i b u t i o n experienced by EP ' )
ax2 . set_title ( ' Latency d i s t r i b u t i o n modelled by RC ' )

ax . set_xlabel ( ' Delay ( ns ) ' , fontsize=18)
ax . set_ylabel ( ' Log scaled sample−number ' , fontsize=16)

n , bins , patches = ax0 . hist (v0_hist , bins = range(0 ,10000 ,10) , facecolor= ' green ' )
n , bins , patches = ax1 . hist (v_hist , bins = range(0 ,10000 ,10) , facecolor= ' green ' )
n , bins , patches = ax2 . hist (v2_hist , bins = range(0 ,10000 ,10) , facecolor= ' green ' )

fig . savefig ( ' generated_logs / out_deltas . jpg ' , dpi=fig . dpi )
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Gen 1, x16
  Type    Total  

  Packets    13603679  

  Link Transactions    4178147  

  Split Transactions    1530402  

Packets
  Type    Upstream    Downstream    Total  

  TLP    2354116    1824031    4178147  

  DLLP    1283464    5777294    7060758  

  TS1 Ordered Set    0    0    0  

  TS2 Ordered Set    0    0    0  

  Fast Training Sequence    0    0    0  

  Electrical Idle Ordered Set    0    0    0  

  SKP Ordered Set    1137389    1227385    2364774  

  Compliance Pattern    0    0    0  

  Electrical Idle Exit Ordered Set    0    0    0  

  Link Event    0    0    0  

  Start Data Stream Ordered Set    0    0    0  

  End Bad Framing Token    0    0    0  

  End Data Stream Framing Token    0    0    0  

  Invalid    0    0    0  

              13603679  

Packets.TLP
  Type    Upstream    Downstream    Total  

  Invalid TLP encoding    0    0    0  

  Memory Read (32 bit)    1530402    0    1530402  

  Memory Read (32 bit) - Locked    0    0    0  

  Memory Write (32 bit)    823714    0    823714  

  Memory Read (64 bit)    0    0    0  

  Memory Read (64 bit) - Locked    0    0    0  

  Memory Write (64 bit)    0    106610    106610  

  I/O Read Request    0    0    0  

  I/O Write Request    0    0    0  

  Configuration Read Type 0    0    0    0  

  Configuration Write Type 0    0    0    0  

  Configuration Read Type 1    0    0    0  

  Configuration Write Type 1    0    0    0  

  Message    0    0    0  

  Message with Data    0    0    0  

  Message for Advanced Switching    0    0    0  

  Message for Advanced Switching with Data    0    0    0  

  Completion    0    0    0  

  Completion with Data    0    1717421    1717421  

  Completion for Locked Memory Read    0    0    0  

  Completion for Locked Memory Read with Data    0    0    0  

  AtomicOp Fetch and Add (32 bit)    0    0    0  

  AtomicOp Fetch and Add (64 bit)    0    0    0  

  AtomicOp Unconditional Swap (32 bit)    0    0    0  

  AtomicOp Unconditional Swap (64 bit)    0    0    0  

  AtomicOp Compare and Swap (32 bit)    0    0    0  

  AtomicOp Compare and Swap (64 bit)    0    0    0  

              4178147  

Packets.DLLP
  Type    Upstream    Downstream    Total  

  Ack    821638    1232440    2054078  

  Nak    0    0    0  

D.1 Summary of Trace Iteration 1
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  PM    0    0    0  

  Vendor    0    0    0  

  InitFC1-P    0    0    0  

  InitFC1-NP    0    0    0  

  InitFC1-Cpl    0    0    0  

  UpdateFC-P    284005    2241270    2525275  

  UpdateFC-NP    177821    2303584    2481405  

  UpdateFC-Cpl    0    0    0  

  MRIOV    0    0    0  

  InitFC2-P    0    0    0  

  InitFC2-NP    0    0    0  

  InitFC2-Cpl    0    0    0  

  Invalid DLLP encoding    0    0    0  

              7060758  

Link Transactions
  Link acknowledge    Total  

  Implicit    2124064  

  Explicit    2054078  

  Incomplete    5  

      4178147  

Split Transactions
  Completion Type    Total  

  Successful Completion    1530399  

  Unsupported Request    0  

  Cfg Request Retry    0  

  Completer Abort    0  

  Incomplete    3  

      1530402  

Packets.TLP.Requesters
  Requester ID    Upstream    Downstream    Total  

  000:00:0    0    106610    106610  

  160:00:0    2354116    1717421    4071537  

Packets.TLP.Completers
  Completer ID    Upstream    Downstream    Total  

  000:00:0    0    512612    512612  

  000:31:7    0    1204809    1204809  

Packets.TLP.Traffic Class
  Traffic Class    Upstream    Downstream    Total  

  0    2354116    1824031    4178147  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Link Transactions.VC ID
  Virtual Channel    Upstream    Downstream    Total  

  0    2354116    1824031    4178147  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  
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  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Packets.DLLP.Flow Control
  Virtual Channel    Upstream    Downstream    Total  

  0    461826    4544854    5006680  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Split Transactions.Split Trans. Performance
  Requester ->

Completer  
  Total  

  # LinkTras
(Min)  

  # LinkTras
(Av rg)  

  # LinkTras
(Max)  

  Resp. time
(Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  160:00:0 ->

000:31:7  
  1018930    2    2.18    5    296.000 ns    733.790 ns    10.156 us  

  160:00:0 ->

000:00:0  
  511472    2    2.00    3    208.000 ns    353.220 ns    9.684 us  

      1530402                          

Split Transactions.Split Trans. Performance.Read Requests

  Requester ->
Completer, Reads  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt
MB/s

(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time

(Min)  

  Resp.
time

(Av rg)  

  Resp.
time

(Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

  160:00:0 ->

000:31:7, Mem

TC0  

  1018930    0.189    77.387    663.426  
  296.000

ns  

  733.790

ns  

  10.156

us  

  272.000

ns  

  404.440

ns  

  9.688

us  

  160:00:0 ->

000:00:0, Mem

TC0  

  511472    3.216    95.909    508.626  
  208.000

ns  

  353.220

ns  
  9.684 us  

  184.000

ns  

  326.880

ns  

  9.464

us  

      1530402                                      

Split Transactions.Split Trans. Performance.Write Requests

  Requester ->
Completer, Writes  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp.
time (Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

      0                                      

Link Transactions.Link Trans. Performance

  Transaction
Type  

  Total  
  #

Packets
(Min)  

  # Packets
(Av rg)  

  # Packets
(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  Pld.
Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

  MWr(64)    106610    1    2.00    2    8.000 ns  
  545.730

ns  

  612.000

ns  
  8    9.15    64  

  MRd(32)    1530402    1    1.60    2    8.000 ns  
  108.850

ns  

  248.000

ns  
  0    0.00    0  

  CplD    1717416    1    1.42    2    8.000 ns  
  196.110

ns  

  624.000

ns  
  2    32.79    256  

  MWr(32)    823714    1    1.38    2    8.000 ns    89.540 ns  
  264.000

ns  
  4    52.99    256  

      4178142                                      

Link Transactions.Link Trans. Performance.Memory Writes

  Requester,
TC  

  Total  
  Resp.

time (Min)  
  Resp. time

(Av rg)  
  Resp. time

(Max)  

  Pld.
Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

  Thrpt
MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt MB/s
(Max)  

  000:00:0,

TC0  
  106610    8.000 ns  

  545.730

ns  

  612.000

ns  
  8    9.15    64    12.466    20.603    2543.132  

  160:00:0,

TC0  
  823714    8.000 ns    89.540 ns  

  264.000

ns  
  4    52.99    256    16.731    1141.907    3390.842  
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      930324                                      

AHCI Transactions

Errors.AHCI

Errors
  Type    Upstream    Downstream    Total  

  Invalid Code    0    0    0  

  Running Disparity Error    0    0    0  

  Unexpected K/D Code    0    0    0  

  Idle Data Error (not D0.0)    0    0    0  

  Skip Late    0    0    0  

  Skew Error    0    0    0  

  Bad Packet Length    0    0    0  

  Ordered Set Format Error    0    0    0  

  Delimiter Error    0    0    0  

  Alignment Error    0    0    0  

  DLLP: Invalid Encoding    0    0    0  

  DLLP: Bad CRC16    0    0    0  

  DLLP: Reserved Field not 0    0    0    0  

  DLLP: FC Initialization Error    0    0    0  

  TLP: Invalid Encoding    0    0    0  

  TLP: Bad LCRC    0    0    0  

  TLP: Bad ECRC    0    0    0  

  TLP: Reserved Field not 0    0    0    0  

  TLP: Payload/Length Error    0    0    0  

  TLP: Length Error (not 1)    0    0    0  

  TLP: TC Error (not 0)    0    0    0  

  TLP: Attr Error (not 0)    0    0    0  

  TLP: AT Error (not 0)    0    0    0  

  TLP: Byte Enables Violation    0    0    0  

  Memory TLP: Address/Length Crosses 4K    0    0    0  

  Mem64 TLP: Used Incorrectly    0    0    0  

  Cfg TLP: Register Error    0    0    0  

  Msg TLP: Invalid Routing    0    0    0  

  Gen3 TLP: Bad Len CRC/Parity    0    0    0  

  Invalid Packet    0    0    0  

  FC: Invalid Advertisement    0    0    0  

  FC: Insufficient Credits    0    0    0  

  Training Sequence Format Error    0    0    0  

  Training Sequence Parity Error    0    0    0  
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Gen 1, x16
  Type    Total  

  Packets    14334128  

  Link Transactions    5937842  

  Split Transactions    2143197  

Packets
  Type    Upstream    Downstream    Total  

  TLP    3308019    2629823    5937842  

  DLLP    1531476    5435865    6967341  

  TS1 Ordered Set    0    0    0  

  TS2 Ordered Set    0    0    0  

  Fast Training Sequence    0    0    0  

  Electrical Idle Ordered Set    0    0    0  

  SKP Ordered Set    687282    741663    1428945  

  Compliance Pattern    0    0    0  

  Electrical Idle Exit Ordered Set    0    0    0  

  Link Event    0    0    0  

  Start Data Stream Ordered Set    0    0    0  

  End Bad Framing Token    0    0    0  

  End Data Stream Framing Token    0    0    0  

  Invalid    0    0    0  

              14334128  

Packets.TLP
  Type    Upstream    Downstream    Total  

  Invalid TLP encoding    0    0    0  

  Memory Read (32 bit)    2143197    0    2143197  

  Memory Read (32 bit) - Locked    0    0    0  

  Memory Write (32 bit)    1164822    0    1164822  

  Memory Read (64 bit)    0    0    0  

  Memory Read (64 bit) - Locked    0    0    0  

  Memory Write (64 bit)    0    155455    155455  

  I/O Read Request    0    0    0  

  I/O Write Request    0    0    0  

  Configuration Read Type 0    0    0    0  

  Configuration Write Type 0    0    0    0  

  Configuration Read Type 1    0    0    0  

  Configuration Write Type 1    0    0    0  

  Message    0    0    0  

  Message with Data    0    0    0  

  Message for Advanced Switching    0    0    0  

  Message for Advanced Switching with Data    0    0    0  

  Completion    0    0    0  

  Completion with Data    0    2474368    2474368  

  Completion for Locked Memory Read    0    0    0  

  Completion for Locked Memory Read with Data    0    0    0  

  AtomicOp Fetch and Add (32 bit)    0    0    0  

  AtomicOp Fetch and Add (64 bit)    0    0    0  

  AtomicOp Unconditional Swap (32 bit)    0    0    0  

  AtomicOp Unconditional Swap (64 bit)    0    0    0  

  AtomicOp Compare and Swap (32 bit)    0    0    0  

  AtomicOp Compare and Swap (64 bit)    0    0    0  

              5937842  

Packets.DLLP
  Type    Upstream    Downstream    Total  

  Ack    1161780    1737056    2898836  

  Nak    0    0    0  

D.2 Summary of Trace Iteration 2
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  PM    0    0    0  

  Vendor    0    0    0  

  InitFC1-P    0    0    0  

  InitFC1-NP    0    0    0  

  InitFC1-Cpl    0    0    0  

  UpdateFC-P    262246    1777804    2040050  

  UpdateFC-NP    107450    1921005    2028455  

  UpdateFC-Cpl    0    0    0  

  MRIOV    0    0    0  

  InitFC2-P    0    0    0  

  InitFC2-NP    0    0    0  

  InitFC2-Cpl    0    0    0  

  Invalid DLLP encoding    0    0    0  

              6967341  

Link Transactions
  Link acknowledge    Total  

  Implicit    3039007  

  Explicit    2898835  

  Incomplete    0  

      5937842  

Split Transactions
  Completion Type    Total  

  Successful Completion    2143195  

  Unsupported Request    0  

  Cfg Request Retry    0  

  Completer Abort    0  

  Incomplete    2  

      2143197  

Packets.TLP.Requesters
  Requester ID    Upstream    Downstream    Total  

  000:00:0    0    155455    155455  

  160:00:0    3308019    2474368    5782387  

Packets.TLP.Completers
  Completer ID    Upstream    Downstream    Total  

  000:00:0    0    721908    721908  

  000:31:1    0    470097    470097  

  000:31:7    0    1282363    1282363  

Packets.TLP.Traffic Class
  Traffic Class    Upstream    Downstream    Total  

  0    3308019    2629823    5937842  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Link Transactions.VC ID
  Virtual Channel    Upstream    Downstream    Total  

  0    3308019    2629823    5937842  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  
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  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Packets.DLLP.Flow Control
  Virtual Channel    Upstream    Downstream    Total  

  0    369696    3698809    4068505  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Split Transactions.Split Trans. Performance
  Requester ->

Completer  
  Total  

  # LinkTras
(Min)  

  # LinkTras
(Av rg)  

  # LinkTras
(Max)  

  Resp. time
(Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  160:00:0 ->

000:31:7  
  1282324    2    2.00    3    288.000 ns    760.360 ns    16.172 us  

  160:00:0 ->

000:00:0  
  718514    2    2.00    3    200.000 ns    366.220 ns    15.680 us  

  160:00:0 ->

000:31:1  
  142357    2    4.30    5    392.000 ns    642.510 ns    14.860 us  

      2143195                          

Split Transactions.Split Trans. Performance.Read Requests

  Requester ->
Completer, Reads  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt
MB/s

(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time

(Min)  

  Resp.
time

(Av rg)  

  Resp.
time

(Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

  160:00:0 ->

000:31:7, Mem

TC0  

  1282324    0.118    32.302    331.713  
  288.000

ns  

  760.360

ns  

  16.172

us  

  264.000

ns  

  420.330

ns  

  15.760

us  

  160:00:0 ->

000:00:0, Mem

TC0  

  718514    1.946    99.434    526.165  
  200.000

ns  

  366.220

ns  

  15.680

us  

  176.000

ns  

  337.510

ns  

  15.656

us  

  160:00:0 ->

000:31:1, Mem

TC0  

  142357    16.429    435.569    622.808  
  392.000

ns  

  642.510

ns  

  14.860

us  

  296.000

ns  

  393.230

ns  

  14.384

us  

      2143195                                      

Split Transactions.Split Trans. Performance.Write Requests

  Requester ->
Completer, Writes  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp.
time (Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

      0                                      

Link Transactions.Link Trans. Performance

  Transaction
Type  

  Total  
  #

Packets
(Min)  

  # Packets
(Av rg)  

  # Packets
(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  Pld.
Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

  MRd(32)    2143197    1    1.60    2    8.000 ns  
  108.810

ns  

  248.000

ns  
  0    0.00    0  

  MWr(32)    1164822    1    1.38    2    8.000 ns    90.280 ns  
  264.000

ns  
  4    52.85    256  

  CplD    2474368    1    1.41    2    8.000 ns  
  192.110

ns  

  640.000

ns  
  2    31.98    256  

  MWr(64)    155455    1    1.99    2    8.000 ns  
  544.100

ns  

  640.000

ns  
  8    10.32    64  

      5937842                                      

Link Transactions.Link Trans. Performance.Memory Writes
  Pld.   Thrpt
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  Requester,
TC  

  Total    Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp.
time (Max)  

Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt MB/s
(Max)  

  160:00:0,

TC0  
  1164822    8.000 ns    90.280 ns  

  264.000

ns  
  4    52.85    256    16.731    1136.014    3390.842  

  000:00:0,

TC0  
  155455    8.000 ns  

  544.100

ns  

  640.000

ns  
  8    10.32    64    11.921    27.963    2543.132  

      1320277                                      

AHCI Transactions

Errors.AHCI

Errors
  Type    Upstream    Downstream    Total  

  Invalid Code    0    0    0  

  Running Disparity Error    0    0    0  

  Unexpected K/D Code    0    0    0  

  Idle Data Error (not D0.0)    0    0    0  

  Skip Late    0    0    0  

  Skew Error    0    0    0  

  Bad Packet Length    0    0    0  

  Ordered Set Format Error    0    0    0  

  Delimiter Error    0    0    0  

  Alignment Error    0    0    0  

  DLLP: Invalid Encoding    0    0    0  

  DLLP: Bad CRC16    0    0    0  

  DLLP: Reserved Field not 0    0    0    0  

  DLLP: FC Initialization Error    0    0    0  

  TLP: Invalid Encoding    0    0    0  

  TLP: Bad LCRC    0    0    0  

  TLP: Bad ECRC    0    0    0  

  TLP: Reserved Field not 0    0    0    0  

  TLP: Payload/Length Error    0    0    0  

  TLP: Length Error (not 1)    0    0    0  

  TLP: TC Error (not 0)    0    0    0  

  TLP: Attr Error (not 0)    0    0    0  

  TLP: AT Error (not 0)    0    0    0  

  TLP: Byte Enables Violation    0    0    0  

  Memory TLP: Address/Length Crosses 4K    0    0    0  

  Mem64 TLP: Used Incorrectly    0    0    0  

  Cfg TLP: Register Error    0    0    0  

  Msg TLP: Invalid Routing    0    0    0  

  Gen3 TLP: Bad Len CRC/Parity    0    0    0  

  Invalid Packet    0    0    0  

  FC: Invalid Advertisement    0    0    0  

  FC: Insufficient Credits    0    0    0  

  Training Sequence Format Error    0    0    0  

  Training Sequence Parity Error    0    0    0  
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Gen 1, x16
  Type    Total  

  Packets    14308891  

  Link Transactions    5924618  

  Split Transactions    2138416  

Packets
  Type    Upstream    Downstream    Total  

  TLP    3303096    2621522    5924618  

  DLLP    1526990    5448663    6975653  

  TS1 Ordered Set    0    0    0  

  TS2 Ordered Set    0    0    0  

  Fast Training Sequence    0    0    0  

  Electrical Idle Ordered Set    0    0    0  

  SKP Ordered Set    677506    731114    1408620  

  Compliance Pattern    0    0    0  

  Electrical Idle Exit Ordered Set    0    0    0  

  Link Event    0    0    0  

  Start Data Stream Ordered Set    0    0    0  

  End Bad Framing Token    0    0    0  

  End Data Stream Framing Token    0    0    0  

  Invalid    0    0    0  

              14308891  

Packets.TLP
  Type    Upstream    Downstream    Total  

  Invalid TLP encoding    0    0    0  

  Memory Read (32 bit)    2138416    0    2138416  

  Memory Read (32 bit) - Locked    0    0    0  

  Memory Write (32 bit)    1164680    0    1164680  

  Memory Read (64 bit)    0    0    0  

  Memory Read (64 bit) - Locked    0    0    0  

  Memory Write (64 bit)    0    156238    156238  

  I/O Read Request    0    0    0  

  I/O Write Request    0    0    0  

  Configuration Read Type 0    0    0    0  

  Configuration Write Type 0    0    0    0  

  Configuration Read Type 1    0    0    0  

  Configuration Write Type 1    0    0    0  

  Message    0    0    0  

  Message with Data    0    0    0  

  Message for Advanced Switching    0    0    0  

  Message for Advanced Switching with Data    0    0    0  

  Completion    0    0    0  

  Completion with Data    0    2465284    2465284  

  Completion for Locked Memory Read    0    0    0  

  Completion for Locked Memory Read with Data    0    0    0  

  AtomicOp Fetch and Add (32 bit)    0    0    0  

  AtomicOp Fetch and Add (64 bit)    0    0    0  

  AtomicOp Unconditional Swap (32 bit)    0    0    0  

  AtomicOp Unconditional Swap (64 bit)    0    0    0  

  AtomicOp Compare and Swap (32 bit)    0    0    0  

  AtomicOp Compare and Swap (64 bit)    0    0    0  

              5924618  

Packets.DLLP
  Type    Upstream    Downstream    Total  

  Ack    1159615    1736206    2895821  

  Nak    0    0    0  

D.3 Summary of Trace Iteration 3
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  PM    0    0    0  

  Vendor    0    0    0  

  InitFC1-P    0    0    0  

  InitFC1-NP    0    0    0  

  InitFC1-Cpl    0    0    0  

  UpdateFC-P    261453    1813820    2075273  

  UpdateFC-NP    105922    1898637    2004559  

  UpdateFC-Cpl    0    0    0  

  MRIOV    0    0    0  

  InitFC2-P    0    0    0  

  InitFC2-NP    0    0    0  

  InitFC2-Cpl    0    0    0  

  Invalid DLLP encoding    0    0    0  

              6975653  

Link Transactions
  Link acknowledge    Total  

  Implicit    3028796  

  Explicit    2895821  

  Incomplete    1  

      5924618  

Split Transactions
  Completion Type    Total  

  Successful Completion    2138415  

  Unsupported Request    0  

  Cfg Request Retry    0  

  Completer Abort    0  

  Incomplete    1  

      2138416  

Packets.TLP.Requesters
  Requester ID    Upstream    Downstream    Total  

  000:00:0    0    156238    156238  

  160:00:0    3303096    2465284    5768380  

Packets.TLP.Completers
  Completer ID    Upstream    Downstream    Total  

  000:00:0    0    720999    720999  

  000:31:1    0    465235    465235  

  000:31:7    0    1279050    1279050  

Packets.TLP.Traffic Class
  Traffic Class    Upstream    Downstream    Total  

  0    3303096    2621522    5924618  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Link Transactions.VC ID
  Virtual Channel    Upstream    Downstream    Total  

  0    3303096    2621522    5924618  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  
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  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Packets.DLLP.Flow Control
  Virtual Channel    Upstream    Downstream    Total  

  0    367375    3712457    4079832  

  1    0    0    0  

  2    0    0    0  

  3    0    0    0  

  4    0    0    0  

  5    0    0    0  

  6    0    0    0  

  7    0    0    0  

Split Transactions.Split Trans. Performance
  Requester ->

Completer  
  Total  

  # LinkTras
(Min)  

  # LinkTras
(Av rg)  

  # LinkTras
(Max)  

  Resp. time
(Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  160:00:0 ->

000:00:0  
  717354    2    2.01    3    200.000 ns    390.380 ns    9.988 us  

  160:00:0 ->

000:31:7  
  1279050    2    2.00    2    288.000 ns    786.430 ns    10.428 us  

  160:00:0 ->

000:31:1  
  142012    2    4.28    5    408.000 ns    618.350 ns    10.092 us  

      2138416                          

Split Transactions.Split Trans. Performance.Read Requests

  Requester ->
Completer, Reads  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt
MB/s

(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time

(Min)  

  Resp.
time

(Av rg)  

  Resp.
time

(Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

  160:00:0 ->

000:00:0, Mem

TC0  

  717354    3.127    95.673    508.626  
  200.000

ns  

  390.380

ns  
  9.988 us  

  176.000

ns  

  361.160

ns  

  9.864

us  

  160:00:0 ->

000:31:7, Mem

TC0  

  1279050    0.183    31.726    190.735  
  288.000

ns  

  786.430

ns  

  10.428

us  

  272.000

ns  

  441.800

ns  

  9.880

us  

  160:00:0 ->

000:31:1, Mem

TC0  

  142012    24.192    467.052    598.384  
  408.000

ns  

  618.350

ns  

  10.092

us  

  304.000

ns  

  415.290

ns  

  9.632

us  

      2138416                                      

Split Transactions.Split Trans. Performance.Write Requests

  Requester ->
Completer, Writes  

  Total  
  Thrpt
MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt
MB/s

(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp.
time (Max)  

  Latency
(Min)  

  Latency
(Av rg)  

  Latency
(Max)  

      0                                      

Link Transactions.Link Trans. Performance

  Transaction
Type  

  Total  
  #

Packets
(Min)  

  # Packets
(Av rg)  

  # Packets
(Max)  

  Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp. time
(Max)  

  Pld.
Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

  MRd(32)    2138416    1    1.60    2    8.000 ns  
  109.020

ns  

  248.000

ns  
  0    0.00    0  

  CplD    2465283    1    1.41    2    8.000 ns  
  192.180

ns  

  640.000

ns  
  2    32.05    256  

  MWr(64)    156238    1    1.99    2    8.000 ns  
  543.680

ns  

  624.000

ns  
  8    10.57    64  

  MWr(32)    1164680    1    1.39    2    8.000 ns    90.540 ns  
  248.000

ns  
  4    52.83    256  

      5924617                                      

Link Transactions.Link Trans. Performance.Memory Writes
  Pld.   Thrpt
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  Requester,
TC  

  Total    Resp.
time (Min)  

  Resp. time
(Av rg)  

  Resp.
time (Max)  

Bytes
(Min)  

  Pld. Bytes
(Av rg)  

  Pld. Bytes
(Max)  

MB/s
(Min)  

  Thrpt MB/s
(Av rg)  

  Thrpt MB/s
(Max)  

  000:00:0,

TC0  
  156238    8.000 ns  

  543.680

ns  

  624.000

ns  
  8    10.57    64    12.227    29.601    2543.132  

  160:00:0,

TC0  
  1164680    8.000 ns    90.540 ns  

  248.000

ns  
  4    52.83    256    16.731    1133.936    3390.842  

      1320918                                      

AHCI Transactions

Errors.AHCI

Errors
  Type    Upstream    Downstream    Total  

  Invalid Code    0    0    0  

  Running Disparity Error    0    0    0  

  Unexpected K/D Code    0    0    0  

  Idle Data Error (not D0.0)    0    0    0  

  Skip Late    0    0    0  

  Skew Error    0    0    0  

  Bad Packet Length    0    0    0  

  Ordered Set Format Error    0    0    0  

  Delimiter Error    0    0    0  

  Alignment Error    0    0    0  

  DLLP: Invalid Encoding    0    0    0  

  DLLP: Bad CRC16    0    0    0  

  DLLP: Reserved Field not 0    0    0    0  

  DLLP: FC Initialization Error    0    0    0  

  TLP: Invalid Encoding    0    0    0  

  TLP: Bad LCRC    0    0    0  

  TLP: Bad ECRC    0    0    0  

  TLP: Reserved Field not 0    0    0    0  

  TLP: Payload/Length Error    0    0    0  

  TLP: Length Error (not 1)    0    0    0  

  TLP: TC Error (not 0)    0    0    0  

  TLP: Attr Error (not 0)    0    0    0  

  TLP: AT Error (not 0)    0    0    0  

  TLP: Byte Enables Violation    0    0    0  

  Memory TLP: Address/Length Crosses 4K    0    0    0  

  Mem64 TLP: Used Incorrectly    0    0    0  

  Cfg TLP: Register Error    0    0    0  

  Msg TLP: Invalid Routing    0    0    0  

  Gen3 TLP: Bad Len CRC/Parity    0    0    0  

  Invalid Packet    0    0    0  

  FC: Invalid Advertisement    0    0    0  

  FC: Insufficient Credits    0    0    0  

  Training Sequence Format Error    0    0    0  

  Training Sequence Parity Error    0    0    0  
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APPENDIXE
Simulation Output Format

E.1 Root Complex Completes a MRd Request

__________________________ INITIATING SIMULATION _________________________

_______________________________SENDING_TLP________________________________
| PCIdevice ID 200 is sending a TLP @ 0 s |
| ______________________________TLP_______________________________________ |
| ___________________________MemReqHEADER_________________________________ |
| | (Fmt=0 , Type=0 , TC=5 , TD=0 , EP=0 , Attr=11 , length=10) | |
| | (RequesterID=200 , Tag=0 , firstDWBE=1111 , lastDWBE=0001) | |
| | (Address1=25)
| | (Address2=−1) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________SWITCHING_TLP_UPSTREAM_____________________
| PciSwitch ID 100 is recieving a TLP @ 3 ns
| ______________________________TLP_______________________________________ |
| ___________________________MemReqHEADER_________________________________ |
| | (Fmt=0 , Type=0 , TC=5 , TD=0 , EP=0 , Attr=11 , length=10) | |
| | (RequesterID=200 , Tag=0 , firstDWBE=1111 , lastDWBE=0001) | |
| | (Address1=25)
| | (Address2=−1) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________SWITCHING_TLP_UPSTREAM_____________________
| PciSwitch ID 000 is recieving a TLP @ 6 ns
| ______________________________TLP_______________________________________ |
| ___________________________MemReqHEADER_________________________________ |
| | (Fmt=0 , Type=0 , TC=5 , TD=0 , EP=0 , Attr=11 , length=10) | |
| | (RequesterID=200 , Tag=0 , firstDWBE=1111 , lastDWBE=0001) | |
| | (Address1=25)
| | (Address2=−1) | |
| | ______________________________________________________________________ | |
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| [ TLP Data = < > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________RECIEVING_TLP______________________________
| ROOT COMPLEX is recieving a TLP @ 6 ns |
| ______________________________TLP_______________________________________ |
| ___________________________MemReqHEADER_________________________________ |
| | (Fmt=0 , Type=0 , TC=5 , TD=0 , EP=0 , Attr=11 , length=10) | |
| | (RequesterID=200 , Tag=0 , firstDWBE=1111 , lastDWBE=0001) | |
| | (Address1=25)
| | (Address2=−1) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

// //////////////////// COMMENCING MEMORYREADING //////////////////////////
−−−DW at address : 2 5 , that is : 25. Is available on the DATAFromMemory bus
−−−DW at address : 2 6 , that is : 26. Is available on the DATAFromMemory bus
−−−DW at address : 2 7 , that is : 27. Is available on the DATAFromMemory bus
−−−DW at address : 2 8 , that is : 28. Is available on the DATAFromMemory bus
−−−DW at address : 2 9 , that is : 29. Is available on the DATAFromMemory bus
−−−DW at address : 3 0 , that is : 30. Is available on the DATAFromMemory bus
−−−DW at address : 3 1 , that is : 31. Is available on the DATAFromMemory bus
−−−DW at address : 3 2 , that is : 32. Is available on the DATAFromMemory bus
−−−DW at address : 3 3 , that is : 33. Is available on the DATAFromMemory bus
−−−DW at address : 3 4 , that is : 34. Is available on the DATAFromMemory bus
// /////////////////// DONE WITH MEMORYREADING //////////////////////////

_______________________________SENDING_TLP________________________________
| ROOT COMPLEX is sending a TLP @ 328 ns
| ______________________________TLP_______________________________________ |
| ___________________________CplHEADER____________________________________ |
| | (Fmt=0 , Type=12 , TC=5 , TD=0 , EP=0 , Attr=00 , length=10) | |
| | (Completer ID=000 , ComplStatus=0 , BCM=0 , byteCount=0) | |
| | (Requester ID=200 , Tag=0 , LowerAddress=0) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < 25 26 27 28 29 30 31 32 33 34 > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________SWITCHING_TLP_DOWNSTREAM___________________
| PciSwitch ID 000 forwards a packet to bus nr : 2 @ 328 ns
| ______________________________TLP_______________________________________ |
| ___________________________CplHEADER____________________________________ |
| | (Fmt=0 , Type=12 , TC=5 , TD=0 , EP=0 , Attr=00 , length=10) | |
| | (Completer ID=000 , ComplStatus=0 , BCM=0 , byteCount=0) | |
| | (Requester ID=200 , Tag=0 , LowerAddress=0) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < 25 26 27 28 29 30 31 32 33 34 > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________SWITCHING_TLP_DOWNSTREAM___________________
| PciSwitch ID 100 forwards a packet to bus nr : 2 @ 328 ns
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| ______________________________TLP_______________________________________ |
| ___________________________CplHEADER____________________________________ |
| | (Fmt=0 , Type=12 , TC=5 , TD=0 , EP=0 , Attr=00 , length=10) | |
| | (Completer ID=000 , ComplStatus=0 , BCM=0 , byteCount=0) | |
| | (Requester ID=200 , Tag=0 , LowerAddress=0) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < 25 26 27 28 29 30 31 32 33 34 > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

_______________________________RECIEVING_TLP______________________________
| PCIdevice ID 200 is recieving a TLP @ 328 ns
| ______________________________TLP_______________________________________ |
| ___________________________CplHEADER____________________________________ |
| | (Fmt=0 , Type=12 , TC=5 , TD=0 , EP=0 , Attr=00 , length=10) | |
| | (Completer ID=000 , ComplStatus=0 , BCM=0 , byteCount=0) | |
| | (Requester ID=200 , Tag=0 , LowerAddress=0) | |
| | ______________________________________________________________________ | |
| [ TLP Data = < 25 26 27 28 29 30 31 32 33 34 > ]
| [ TLP ECRC = < > ] |
| ________________________________________________________________________ |

PCI−Socket : Removing outbound request @328 ns
−−ENDPOINT 200 receives : EP has now a total of 1 Packets @ 328 ns

__________________________ SIMULATION COMPLETE ___________________________

__________________________ @10 us ___________________________

__________________________________________________________________________

Program was executed with the following parameters :
. / PCIeSystem . out 1 0 0 MRd 0 MRd 10000 −show_full −out . txt

__________________________________________________________________________
Simulation statistics :

Format : EPs and RC <req_sent/cpl_rec><req_rec/cpl_sent>
Sockets : <sent/received> , Switches , <rec_ds/fwd_us><rec_us/fwd_ds>

__________________________________________________________________________
Packet Statistics : <0/0> <1/1>

Requests received time stamps :
6 ns

Completions sent time stamps :
328 ns

−−Switch : 000 Destructor−−
Packet Statistics : <1/1> <1/1>

−−Socket Destructor−−
Packet Statistics : <1/1>

−−EndPoint : 200 Destructor−−
Packet Statistics : <1/1> <0/0>

Requests sent time stamps :
0 s

Completions received time stamps :
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328 ns

Average MRd−CplD time is :
328000 ps

Data received is :
25 26 27 28 29
30 31 32 33 34

−−Socket Destructor−−
Packet Statistics : <1/1>

−−Switch : 100 Destructor−−
Packet Statistics : <1/1> <1/1>

− − − The PCIe System has been destroyed − − −



APPENDIXF
Valgrind Test for Program

Runability

It was discovered during Valgrind memory checks that the Valgrind tool does
not support the standard compiled SystemC library. Valgrind reports a high
amounts of definitely lost memory due to the way the concurrent threads are
defined in the SystemC library. In order to fix this problem for a correct memory-
check run, the SystemC library had to be recompiled using the pthreads flag.

Figure F.1: Summary log for a valgrind run, no definitely lost memory

The definitely lost section of the Valgrind was greatly reduced with the workaround
consisting of compiling SystemC with the Pthreads flag. The remaining leaks
were located and corrected, these were mostly fixed by correcting destructor to
include destruction of objects being pointed to.
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