
Design of an 8x8 Intra Prediction Module

Kim Trønnes

Electronics System Design and Innovation

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Milica Orlandic, IET

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

Title: Design of an 8× 8 Intra Prediction Module
Student: Kim Trønnes

Problem description:

Based on an existing design of a 4× 4 luminance intra prediction module, an 8× 8
luminance intra prediction module shall be designed and tested. Additionally, the
design should be extended to an 8× 8 chrominance intra prediction module.

The design will be in VHDL as the existing design is. It should be tested for
FPGA implementation.

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Milica Orlandić, IET

Abstract

In this thesis, a proposed hardware architecture of an H.264/AVC 8× 8
luminance intra prediction module is designed and realized in VHDL to
be used on an FPGA. The module is a part of a MPEG-2 to H.264/AVC
transcoder and its implementation is based on an existing design of a
4× 4 luminance intra prediction module used in the same transcoder.

Intra prediction is characterized by high data dependency between
input video frames which makes it hard to achieve a high throughput. This
is solved by processing 16 image samples in parallel and by implementing
a partial pipeline to increase efficiency.

The design is implemented and synthesized on theKintex-7 XC7K325T
board with a maximum clock frequency of 129.34 MHz, which gives a
throughput of 456.32 Mpixels/s. This is enough to encode 2160p (4k
UHD) video frames at 30 frames per second in real time.

Sammendrag

Denne masteroppgaven viser en foreslått hardwarearkitektur for en
H.264/AVC 8× 8 intraprediksjonsmodul for luminans, skrevet i VHDL
og realisert på en FPGA. Modulen er en del av en MPEG-2-H.264/AVC-
transkoder, og implementasjonen er basert på et eksisterende design av
en 4×4 intraprediksjonsmodul for luminans som skal brukes i den samme
transkoderen.

Intraprediksjon kjennetegnes ved høy dataavhengighet mellom nærlig-
gende videorammer, noe som gjør at høy hastighet er vanskelig å oppnå
i implementasjonen. Dette er løst ved å prosessere 16 bildeelementer
samtidig og ved implementasjon av en pipeline for å øke effektiviteten.

Designet er implementert og syntetisert på en Kintex-7 XC7K325T -
FPGA med en maksimal klokkefrekvens på 129.34 MHz. Dette gjør at
systemet er i stand til å prosessere 456.32 megapiksler i sekundet, noe
som er nok til å kode video med en oppløsning på 2160p (4k UHD), med
en bildefrekvens på 30 Hz, i sanntid.

Preface

This master’s thesis was completed at the Department of Electronics
and Telecommunications at the Norwegian University of Science and
Technology during the spring of 2014. It was written as the final part
of the master program at NTNU and marks the end of a five year long
study period to achieve a Master of Science degree in Electronics System
Design and Innovation.

I would like to thank my supervisor Kjetil Svarstad for meetings on a
regular basis to provide helpful advice during this thesis. Special thanks
to my co-supervisor Milica Orlandic who works on the H.264 transcoder
in which this thesis’ design should be a part of, and who provided valuable
advice throughout the design process and provided me with the source
code of an already implemented 4× 4 intra prediction module, which the
work in theis thesis is based on.

Kim Trønnes
Trondheim, June 2014

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 This Thesis . 1

1.1.1 Specification and Guidelines 2
1.1.2 Contribution . 2

1.2 Outline . 2

2 Background 3
2.1 Video Encoding Basics . 3

2.1.1 Color Spaces . 4
2.2 Video Coding . 5
2.3 Video Codec Model . 6

2.3.1 Prediction Model . 6
2.3.2 Spatial Model . 9
2.3.3 Entropy Encoder . 10

2.4 H.264 Advanced Video Coding . 10
2.5 H.264 Intra Prediction . 11

2.5.1 Intra 8× 8 Prediction Modes 12

3 Hardware Architecture 15
3.1 System Overview . 15
3.2 Outer Module Overview . 16

3.2.1 Modelling Reconstruction Loop Behavior 17
3.3 Inner Module Overview . 18

3.3.1 Inputs and Outputs . 18
3.3.2 Predictions . 19
3.3.3 Differences . 20
3.3.4 Sum of Absolute Differences 20

4 Implementation 23

vii

4.1 Inner Module . 23
4.1.1 Finding the Minimal Prediction Mode 25
4.1.2 Pipeline Implementation . 25

4.2 Outer Module . 26
4.2.1 Delay Registers . 27
4.2.2 Counters . 28
4.2.3 Storage of Neighbor Pixels . 28

5 Results 33
5.1 Verification . 33

5.1.1 Simulation Results for the Inner Module 33
5.1.2 Simulation Results for the Whole System 36

5.2 Synthesis . 36

6 Discussion 41
6.1 Implementation of the Proposed Hardware Architecture 41

6.1.1 Pipelining . 41
6.1.2 The Bottleneck of the System 41

6.2 Verification . 42
6.3 Performance . 43
6.4 Scalability . 44

7 Conclusion 45
7.1 Future Work . 45

References 47

Appendices
A Abbreviations 49

B Prediction Mode Equations 51

C Output from MATLAB Scripts 55
C.1 Stimulus for Inner Prediction Module 55
C.2 Stimulus for Whole System Test 60

D Synthesis Reports 67
D.1 Excerpt from Whole System Synthesis Report 67
D.2 Excerpt from Inner Prediction Module Synthesis Report 76

List of Figures

2.1 Spatial and temporal sampling of a video sequence. [1] 3
2.2 Y , CR and CB components of an image. 5
2.3 Encoder decoder pair. [1] . 6
2.4 Video encoder block diagram. [1] . 7
2.5 Intra prediction: available samples and spatial extrapolation. [1] 8
2.6 8× 8 luminance intra prediction of an image. 8
2.7 2-D autocorrelation function of original image (left) and residual (right).

[1] . 9
2.8 Scope of video coding standardization. [2] 11
2.9 Illustration of nine 8x8 prediction modes. [3] 13
2.10 Angles of the prediction modes. 13

3.1 H.264/AVC encoder block diagram . 15
3.2 Block ordering within one MB, as 8 × 8 blocks (left) and 4 × 4 blocks

(right). 16
3.3 Block diagram of the 8× 8 intra prediction module. 17
3.4 Inner prediction module block diagram. 18
3.5 Neighboring pixels for an 8× 8 block. 19

4.1 Timing diagram for the implemented inner module. 24
4.2 Implementation of minimal SAD computation. 25
4.3 Output block matrix. 26
4.4 Synthesized delay register for a one-bit signal. 27
4.5 Neighbor pixels storage scheme. [4] . 29
4.6 Upper neighbors for the last 8× 8 block in a MB. 29
4.7 Left neighbor storage scheme. 30
4.8 Z value register source samples seen from a macroblock. 31

5.1 Inner module simulation results, input signals. 34
5.2 Inner module simulation results, internal and output signals. 35
5.3 Whole system simulation results, outer module signals. 37
5.4 Whole system simulation results, inner module signals. 38

ix

5.5 Graphical presentation of simulation results. 39

B.1 Visual explanation of prediction mode equations. 51

List of Tables

2.1 Intra prediction types. 12
2.2 Intra 8× 8 prediction modes. 12

3.1 Prediction modes in corner cases. 20

4.1 Changes to row and column counters based on current internal count. . 28

5.1 Synthesis results from Xilinx ISE. 39

6.1 Minimum frequency requirements at 30 frames per second. 43
6.2 Comparation of logic elements usage between 4 × 4 and 8 × 8 intra

prediction modules. 44

B.1 Intra prediction equations for the nine 8× 8 prediction modes. 52

xi

Chapter1Introduction

In recent years, the way we use digital media has begun to change. Motion Picture
Experts Group 2 (MPEG-2) is still a widely used video encoding format in broad-
casting. With a tendency of higher video resolution in recent media applications
with portable devices, more efficient solutions in video compression might be needed
to satisfy the increased bandwidth demands. The H.264 Advanced Video Coding
(AVC) standard had its inception in 2003 and is now widely used in video coding. It
offers higher efficiency in compression compared to earlier standards. [1]

1.1 This Thesis

This thesis focuses on the design and development of an 8 × 8 luminance intra
prediction module as a part of a MPEG-2 to H.264/AVC intra-frame transcoder. It
will be written in VHSIC Hardware Description Language (VHDL), and should be
synthesizable on a field-programmable gate array (FPGA). The implementation is
based on an already existing design of a 4 × 4 luminance intra prediction module
as seen in [5]. In addition, the design should be expanded to include an 8 × 8
chrominance intra prediction module.

The biggest challenge of designing an intra prediction module is the data depen-
dency between the current block being processed and the previous block due to a
reconstruction loop where output data from the current block must be processed
and used to make predictions for the next block. This is referred to as bubbles and
limits the throughput of the process because an increased amount of clock cycles are
needed to complete adjacent 8× 8 blocks.

The problem description given initially was changed throughout the development
and design process of the thesis work, in consultation with the supervisors of this
project. Because the chrominance intra prediction module is very different compared
to the luminance module, expansion into including a chrominance module was not

1

2 1. INTRODUCTION

explored. Instead, more time was allocated towards modelling and designing a
reconstruction loop to reduce the bubbles of the luminance intra prediction module.

1.1.1 Specification and Guidelines

The following requirements and specifications were provided as guidelines when
developing an 8× 8 luminance intra prediction module.

– Input size are one 4× 4 matrix per clock cycle (it will take four clock cycles to
get one 8× 8 block).

– Output size should be 16 pixels per clock cycle.

– System frequency should be above 100 MHz.

– Use as few logic elements as possible.

1.1.2 Contribution

This thesis contains a proposed hardware architecture and implementation of an 8×8
luminance intra prediction module. The module is reconfigurable, to allow changes
to input video frame resolutions, and supports the calculation of 16 input pixels in
parallel. A reconstruction loop is modelled and accounted for in the prediction module,
but the modules that are needed in a reconstruction loop are not implemented.

1.2 Outline

The thesis is organized as follows:

– Chapter 2 gives an introduction to necessary background theory such as video
encoding concepts and specifics in the H.264/AVC specification.

– Chapter 3 presents the hardware architecture of the designed 8× 8 luminance
intra prediction module.

– Chapter 4 describes how the design is implemented on an FPGA based on its
hardware architecture.

– Chapter 5 shows key results from the verification stage of the implemented
design. This includes testbench simulation and synthesis.

– Chapter 6 discusses the results and compares the performance of the imple-
mented design to its specification and hardware architecture.

– Chapter 7 contains concluding remarks of the design in addition to suggestions
to further improve the 8× 8 intra prediction module.

Chapter2Background

This chapter introduces necessary background theory about video encoding and the
H.264/AVC standard.

2.1 Video Encoding Basics

Where a natural visual scene is temporally and spatially continuous, a digital video
is temporally and spatially discrete. A digital video is a collection of 2-D images,
usually sampled in a rectangular matrix (spatially), and are sampled with a fixed
frequency (temporally). This is illustrated in Figure 2.1.

Figure 2.1: Spatial and temporal sampling of a video sequence. [1]

3

4 2. BACKGROUND

2.1.1 Color Spaces

The smallest unit in a digital video is the picture element (pixel), which is a spatio-
temporal image sample and are represented by numbers indicating brightness and
color. For a monochrome image, only one number is needed to represent the brightness
or luminance (luma) of each pixel. For color images, at least three numbers are
needed to indicate color. There are several different ways to do this, and the chosen
method of representing brightness and color is called a color space. [1]

RGB

In the RGB color space, three numbers are used and correspond to the proportions
of the three additive primary colors of light: red, green and blue. By changing the
combination of these proportions, any color can be made.

YCrCb

The luminance/red chrominance/blue chrominance (YCrCb) color space is widely
used in digital video because of its efficiency compared to the RGB color space. Here,
Y is the luma component given by a weighted average of red, green and blue:

Y = krR+ kgG+ kbB, (2.1)

where k are weighting factors.

CR and CB are color differences or chrominance (chroma), where they are the
red-difference and blue-difference to the luminance Y :

CR = R− Y
CB = B − Y

(2.2)

By looking at the RGB color space one would expect a green-difference component,
CG = G−Y , as well. Only two chroma components are needed because CR +CB +CG

is a constant and the third chroma component can therefore be calculated from the
other two.

The YCrCb color space has one advantage compared to the RGB color space in
that the chroma components (CR and CB) can be stored with lower resolution than
the luminance Y . This is because the human visual system (HVS) is less sensitive
to color than to brightness (luminance). By lowering the resolution of the chroma
components, the amount of data required to transmit YCrCb images are reduced
with little or no loss of observed visual quality. Figure 2.2 shows an image in its
original form (top-left), luminance (top-right), blue chroma (bottom-left) and red
chroma (bottom-right). The Y component looks like a grey-scale version of the image

2.2. VIDEO CODING 5

Figure 2.2: Y , CR and CB components of an image.

while the CR and CB elements are more blurry, and can be seen as an example of
why these components are downscaled in image compression due to the lack of details
compared to the luminance component.

2.2 Video Coding

Compression is a fundamental part of digital video coding, where the goal is to
process a digital video into a format used for storage or transmission while keeping
the number of bits low and the perceived quality high. Compression of a video
consists of a pair of systems: A compressor (encoder) and a decompressor (decoder).
Together, they are called a COder/DECoder pair (CODEC). This is illustrated in
Figure 2.3.

There are two types of data compression: Lossy and lossless. The former is based
on removing subjective redundancy, usually both in the spatial and temporal domain.
Lossy compression gives the highest amount of compression, but the decompressed
data will not be identical to the source data. Lossless compression are based on

6 2. BACKGROUND

Figure 2.3: Encoder decoder pair. [1]

removing statistical redundancy. Decompressed data from lossless compression will
be a perfect copy of the source data, but the amount of compression achieved will
normally be lower than lossy compression.

Many modern video coding methods use lossy compression because there is often
a high correlation between video frames that are close to each other in the temporal
domain, especially if the video is captured with a high frame rate. In addition,
there is often a high correlation between pixels in a frame that are nearby in the
spatial domain. There is usually a tradeoff between bitrate (level of compression)
and video quality. Methods to both lower the bitrate of compression and keeping a
high perceived quality to a certain degree exist, but those often come at the price of
increased computational complexity.

2.3 Video Codec Model

The H.264/AVC standard utilizes both lossy and lossless video coding methods to
achieve efficient compression results. By looking into other widely used video coding
formats such as MPEG-2, MPEG-4 and H.263, all of these are based on the video
CODEC model seen in Figure 2.4. They use prediction-based or block-based motion
compensation in a prediction model, a transform and quantization in a spatial model,
and entropy encoding to get a final compressed bitstream of a video. These three
processes will be looked into in greater detail in the following sections, where the
prediction model is the area of focus in this thesis.

2.3.1 Prediction Model

The prediction model is where current data samples from a video frame are input
and processed. This step exploits similarities between neighboring video frames
and neighboring pixels in the same video frame to reduce redundancy, and are
called temporal prediction and spatial prediction respectively. In both domains, the
formed prediction is being subtracted from the current video data to form a set of
residual (difference) samples, which is the output of the process. In addition, a set of
prediction parameters are output. These can indicate the prediction type used or

2.3. VIDEO CODEC MODEL 7

Figure 2.4: Video encoder block diagram. [1]

how motion was compensated. The more accurate the prediction is, the less amount
of energy is in the residual, which leads to a better compressed coded video. The
prediction model is a lossless step, where the residual that is encoded can be sent to
a decoder that will create an identical prediction to reconstruct the original video
frame. To make this possible, it is important that the encoder only uses data that is
available to the decoder: Data that is already coded and transmitted.

Inter Prediction

As mentioned, there are two approaches to a prediction model. Temporal prediction
is also called inter prediction and exploits the correlation between the current frame
and past or future frames in time (reference frames) to form a prediction. As a simple
example, a temporal prediction can be the result of using the previous frame as a
predictor of the current frame. A residual frame can then be formed by subtracting
the previous frame from the current one, to get the difference between them. This
method has a few problems since much of the energy stored in the residual can be
caused by movement between the frames, and this movement could be compensated
for to get a better prediction. Methods such as block-based motion estimation and
compensation exists to decrease the energy stored in the residual, but this is outside
the scope of this thesis.

Intra Prediction

Intra prediction is the spatial prediction where previously coded blocks in one frame
are used to predict a current block, utilizing a concept called spatial extrapolation.
This is illustrated in Figure 2.5 and is used in H.264/AVC with different block sizes
of 4 × 4, 8 × 8 and 16 × 16 pixels for the luminance component, and with a 8 × 8
block size for both chrominance components. [1]

Since adjacent pixels have the highest correlation between each other, only the
pixels at the top edge and left edge are being used to form a prediction block.
Similar to the inter prediction, the predicted block is then subtracted with the

8 2. BACKGROUND

Figure 2.5: Intra prediction: available samples and spatial extrapolation. [1]

current block to form a residual which is then encoded and transformed in the spatial
model. Figure 2.6 illustrates the predicted pixels and the residual from running
intra prediction on the luminance component of a color picture using a block size
of 8× 8 pixels. Mid-grey sections of the residual represents zero or low differences,
which indicates a small amount of energy. Light and dark grey sections represents
positive and negative differences respectively, which corresponds to more energy or
information stored in the residual. The compression rate of a frame is inversely
proportional to the amount of energy in the residual.

Figure 2.6: 8× 8 luminance intra prediction of an image.

2.3. VIDEO CODEC MODEL 9

2.3.2 Spatial Model

The spatial model as a part of a video codec model must not be confused with
the spatial prediction mentioned in the previous section. A natural image in its
original form can be difficult to compress due to high correlation between nearby
pixels. The residual as a result of prediction decreases the autocorrelation as seen
in Figure 2.7, where a 2-D autocorrelation function of an image and the residual
are shown. In the spatial model, the residual comes from the prediction model as
input, and a transform is applied with the goal of further decorrelate the residual in
order to increase the compression rate in the entropy coder afterwards. There are
normally three stages to a spatial model: A transform, quantization which reduces
the precision of transformed data, and reordering of the data to group significant
values together.

The output from the spatial model are quantized transform coefficients. In the
spatial model, the quantization step involves some loss to the perceptible quality of
the video due to the reduction of precision.

Figure 2.7: 2-D autocorrelation function of original image (left) and residual (right).
[1]

Transform Coding

The transform stage in the spatial model can be achieved by different transforms.
There are several criteria that could affect the choice of transform: [1]

1. The data in the transform domain should be decorrelated and compact.

10 2. BACKGROUND

2. The transform should be reversible.

3. The transform should be computationally feasible.

DCT

The discrete cosine transform (DCT) is an example of a widely used transform in
video coding. It is an operation performed on X, an N ×N block of input values,
to give Y , an N ×N block of coefficients. This is achieved using a transform matrix
A. The forward DCT of an N ×N sample is defined as:

Y = AXAT (2.3)

The inverse DCT (IDCT) is given by:

X = AT Y A (2.4)

The elements of the transform matrix A are:

Aij = Ci cos (2j + 1)iπ
2N where Ci =

√
1
N

(i = 0), Ci =
√

2
N

(i > 0) (2.5)

2.3.3 Entropy Encoder

Prediction parameters and the spatial model coefficients are compressed in the entropy
encoder. Statistical redundancy is removed here. The output are a compressed bit
stream of the video file. More details on the entropy encoder can be found in [1].

2.4 H.264 Advanced Video Coding

H.264/AVC is a standard for video coding, a format for encoded video and a toolset for
video compression. The standard is defined in a document, Recommendation H.264:
Advanced Video Coding, produced by ITU-T (International Telecommunication
Union) and ISO/IEC (International Organisation for Standardisation/International
Electrotechnical Commision) [6]. It defines the format and syntax for compressed
video and a method for decoding the syntax. Figure 2.8 illustrates the scope of the
H.264/AVC standard. The document does not mention how to encode the video,
which is left to the manufacturer.

The standard was first organized in three profiles: Baseline, Extended and Main.
The profiles are a way of defining which algorithms and coding tool sets that are used
to create the coded video. The profile choice depends on target media applications
and the first three profiles focused primarily on entertainment quality video. The
H.264/AVC standard was extended in 2004 with focus on high definition videos.
[7] It added the High profile, which included intra prediction with a block size of

2.5. H.264 INTRA PREDICTION 11

Figure 2.8: Scope of video coding standardization. [2]

8× 8 pixels which is the focus in this thesis, in addition to an 8× 8 integer DCT1

transform used in the spatial model of the codec.

2.5 H.264 Intra Prediction

In the H.264/AVC standard, an image frame is divided into macroblocks (MB),
each consisting of 16 × 16 pixels. The macroblocks can be further divided into
sub-blocks depending on the block size used (4× 4, 8× 8 or 16× 16) for luminance
intra prediction. An appropriate prediction block size is chosen by the encoder for
each macroblock, and is dependent on the resulting number of bits in the prediction
and the residual. Smaller block sizes give a more accurate prediction which yields a
smaller coded residual. If a 4× 4 block size is chosen, more bits are needed to code
the prediction choices since it will be 16 4× 4 sub-blocks in the macroblock. A larger
block size on the other hand, will often result in a less accurate prediction, but with
fewer bits required to store the prediction choice. Highly textured regions tend to
use low blocks size, while more smooth regions use a higher block size.

The predicted sub-blocks are based on neighboring pixels from earlier encoded
blocks, typically from the left edge, upper-left edge, upper-edge and upper-right edge
as seen in Figure 2.5. There are also a number of different prediction modes available
to each intra prediction type that varies with block size and if the block is a luma
or a chroma block. Table 2.1 gives an overview over the different intra prediction
types possible, and lists how many prediction modes there are for each type. The
prediction modes for 16× 16 luma and 8× 8 chroma are similar, and the 4× 4 luma
and 8× 8 luma use the same prediction modes. It should be noted that for chroma
intra prediction, a macroblock consists of one 8× 8 block for each chroma component
(CB for blue-difference and CR for red-difference), where the same prediction mode
is always used by both blocks.

1Integer DCT is an approximation of the transform shown in Section 2.3.2

12 2. BACKGROUND

Table 2.1: Intra prediction types.

Intra prediction Number of prediction Number of possible
block size blocks in a MB prediction modes
16x16 luma 1 4
8x8 luma 4 9
4x4 luma 16 9
8x8 chroma 1 4

Table 2.2: Intra 8× 8 prediction modes.

ID Name Angle
0 Vertical (V)
1 Horizontal (H)
2 Mean (DC)
3 Diagonal down-left (DDL) 45◦

4 Diagonal down-right (DDR) 45◦

5 Vertical-right (VR) 26.6◦ right of V
6 Horizontal-down (HD) 26.6◦ below H
7 Vertical-left (VL) 26.6◦ left of V
8 Horizontal-up (HU) 26.6◦ up from H

2.5.1 Intra 8× 8 Prediction Modes

There are nine prediction modes that are used to predict an 8 × 8 block from
neighboring pixels as shown in Figure 2.9. The modes used in 8× 8 intra prediction
are the same as for 4× 4 intra prediction, and are listed in Table 2.2. The angles of
the prediction modes are illustrated in Figure 2.10 where the IDs correspond to the
modes in Table 2.2. The vertical and horizontal modes copy the neighboring pixels
from their left side and upper side respectively. In the DC mode, all predicted pixels
are the average of the neighboring pixels from both the left and upper side. For the
diagonal modes (DDL, DDR, VR, HD, VL and HU) are the individual predicted
pixels a result of interpolation of two or three neighboring pixels.

2.5. H.264 INTRA PREDICTION 13

Figure 2.9: Illustration of nine 8x8 prediction modes. [3]

Figure 2.10: Angles of the prediction modes.

Chapter3Hardware Architecture

This chapter describes the hardware architecture of an 8×8 luminance intra prediction
module. It shows the functionality necessary for the system to work from a system
level perspective. The first section will show an overview of the chosen architecture,
with the following sections going into more detail of how the system is divided into
one inner and one outer module.

3.1 System Overview

The 8× 8 intra prediction module is a part of an H.264/AVC encoder as shown in
Figure 3.1. Data from the current frame are sent into the intra prediction module,

Figure 3.1: H.264/AVC encoder block diagram

and residuals are output before they are subtracted with the current frame data.
After being transformed and quantized in a reconstruction loop, the data is fed back
into the intra prediction module to be used as a reference frame for the next frame

15

16 3. HARDWARE ARCHITECTURE

to be processed. This data is reconstructed residuals. Because the residual data
must be reconstructed to be used in the next frame, the intra prediction module is
hard to implement while achieving high throughput. The system has to wait for the
completion of the reconstruction loop before it can process a new block.

The proposed 8× 8 intra prediction module computes predicted pixels for 8× 8
blocks, but the input size is 16 pixels and not 64 which would be the required amount
of input pixels needed to calculate all pixels in one clock cycle. Figure 3.2 shows
the ordering of input blocks within a macroblock, where the system is processing
macroblock by macroblock in a raster order1. The system is based on an existing
design of a 4× 4 luma intra prediction module where 16 pixels can be processed in
parallel. The same requirement applies in this design, because of how the rest of the
H.264/AVC encoder handles input values to the different intra prediction modules.

Figure 3.2: Block ordering within one MB, as 8× 8 blocks (left) and 4× 4 blocks
(right).

As an abstraction of functionality, the hardware architecture of the intra prediction
system can be seen as two modules. In the rest of this paper, the two modules
will be referenced to as an inner and an outer module. The inner module does the
intra prediction, and the outer module keeps track of timing and the signals used to
compute the predicted pixels and residuals.

3.2 Outer Module Overview

The outer module of the intra prediction design can be seen as an outer layer to
the calculation of the predicted pixels. This module gets pixels from the current
frame, sends this into an inner module that computes the predicted pixels, and stores
information from previous frames to keep track of neighbouring pixels which are used
in future frames. Figure 3.3 illustrates how the outer module is connected with the
inner prediction module. For consistency, the signal names used in the figure are the
same as in the design this system is based on.

There is one clock signal, clk, in the design, and one reset signal, rst, which is
active high. There are 16 input pixel signals for the current frame, ycbcr[0..15],
where each pixel is an 8 bit vector. The module utilizes a reference frame consisting

1Read row by row from top to bottom, where each row is read from left to right

3.2. OUTER MODULE OVERVIEW 17

Figure 3.3: Block diagram of the 8× 8 intra prediction module.

of 16 previously encoded pixels, ycbcr_pr[0..15]. These are reconstructed residuals
of 9 bit vectors (8 bits plus a sign bit) which are the difference between input pixels
and best mode predicted pixels. They are used to compute neighbouring pixels that
are used to make prediction of the current block based on earlier encoded blocks.
The output signals from the design are residuals, intra[0..15], that come directly
from the inner module and are then sent through a reconstruction loop with an 8× 8
integer DCT , quantization (Q), inverse quantization (IQ) and inverse discrete cosine
transform (IDCT).

3.2.1 Modelling Reconstruction Loop Behavior

Since the reconstruction loop is not implemented in the system, the correct behavior
is modelled by having reconstructed residuals as inputs to the outer module. The
reconstructed residuals and the best mode predicted pixels are added together and
stored as reconstructed original pixels (labeled ycbcr_prev) which are the basis for
computation of neighbor pixels. The amount of clock cycles needed for residuals to
go through reconstruction is important to know for the outer module. This is because
the predicted pixels output from the inner module must be stored in a register, and
are read at the same time the reconstructed residuals are ready.

In [8], DCT, Q, IQ and IDCT each takes one clock cycle to complete. This is
with 16 pixels per cycle, which is the same as in this design. However, the DCT
algorithm is different: this design may use an 8 × 8 sized transformation matrix,

18 3. HARDWARE ARCHITECTURE

while the 4× 4 intra prediction module uses a 4× 4 sized matrix for transformation.
A hardware implementation of a 2-D integer 8× 8 DCT is seen in [9], where 8 pixels
can be transformed in one clock cycle. By assuming that two such modules can be
run in parallel, with Q and IQ modules based on [8] and a IDCT module based on [9],
4 clock cycles to complete the reconstruction loop is possible in a best case scenario.
The outer module should be implemented with a best guess delay to synchronize the
residuals and the best mode prediction, which also should be easy to reconfigure.

3.3 Inner Module Overview

The intra prediction module of the design is tasked with calculating the best prediction
mode for an 8× 8 block of pixels based on neighbouring pixels, and returning the
residual and the predicted pixels of the 8× 8 block. A block diagram of the module
is illustrated in Figure 3.4. The following sections explain how each of the blocks in
the module works.

Figure 3.4: Inner prediction module block diagram.

3.3.1 Inputs and Outputs

The inner intra prediction module receives the 25 neighboring pixels of the 8 × 8
block as inputs from the outer module. They are labelled A to Z, and their placement
in relation to the 8× 8 block is illustrated in Figure 3.5.

Other inputs are 16 reference pixels, ycbcr, used to calculate the sum of absolute
differencess (SADs) that are used to find the best prediction mode. The prediction
mode with the lowest SAD is the best mode. Since the number of pixels input to the
module is 16 for each clock cycle, the module needs to buffer up and store these until

3.3. INNER MODULE OVERVIEW 19

Figure 3.5: Neighboring pixels for an 8× 8 block.

it has all 64 pixels required to calculate the SADs, which in turn return the residual
and predicted pixels out. The output size is limited to 16 residual and predicted
pixels each cycle as well.

The input signal rdy_in should be high when a new set of 4×4 blocks are coming
in. To fill an 8× 8 block with data, four 4× 4 blocks are needed. The input signal
quart is used to describe which 4 × 4 block that is input to the module (zero to
three).

3.3.2 Predictions

For each set of neighboring pixels input to the module, nine 8× 8 blocks of predicted
pixels will be computed (one for each of the nine different prediction modes). The
following equation is used:

PredM = (E +R)� S, (3.1)

where E is the equation based on neighboring pixels, R and S are constants repre-
senting the rounding of E and the number of left-shifts respectively. M represents
the prediction mode used. There are two kinds of equations used for E: A two-tap
filter or a three-tap filter equation. An example of the former is E = eAB = A+B

where A and B are the neighboring pixels used to calculate the predicted pixel and
eAB is the signal name for that particular equation. In this case, ReAB = 1 to round
the result up to the nearest integer and SeAB = 1 is used to divide by two (left shift
by one position). This makes the predicted pixel equal to the mean of pixels A and
B.

For a three-tap filter equation an example can be E = eABC = A + 2B + C.
Here, two 2-tap filter equations can be combined. To make eABC, eAB and eBC can
be added together. eAB + eBC = A+ 2B + C which gives

PredM = eAB+eBC+ReAB +ReBC � (SeAB +SeBC) = A+2B+C+2� 2 (3.2)

20 3. HARDWARE ARCHITECTURE

where both ReAB = ReBC = 1 and SeABC = 1 + 1 = 2 (divide by four).

A table showing all equations used for each pixel for each prediction mode can
be seen in Appendix B.

Corner Cases

For 8× 8 blocks that are in the first row or first column in a frame, there is a limited
amount of neighboring pixels available. The very first block (first row and first column)
has no neighboring pixels, so no predictions can be made. For the rest of the blocks in
the first row, only pixels Q~X are available. As a result, only the following prediction
modes can be used: Horizontal, horizontal-up, and DC(Q,R, S, T, U, V,W,X). For
the first column blocks, only prediction modes vertical, vertical-left, diagonal down-
left, and DC(A,B,C,D,E, F,G,H) can be used. This is shown in Table 3.1. The
modified DC mode values are calculated based on the eight available pixels.

Table 3.1: Prediction modes in corner cases.

First row blocks First column blocks
DC(Q,R, S, T, U, V,W,X) DC(A,B,C,D,E, F,G,H)
H V
HU DDL

VL

3.3.3 Differences

The differences are the same as residuals in this case, and are defined by the following
equation:

Diff(x, y) = Orig(x, y)− PredM (x, y) (3.3)

The differences will be calculated for all nine prediction modes and for all 64 pixels
in each 8× 8 block. The calcuated differences should be stored in registers, where
the set of differences corresponding to the best prediction mode will be output.

3.3.4 Sum of Absolute Differences

SADs are calculated to find the prediction mode with a minimal error, and are
defined as:

SAD(Orig,PredM) =
8∑

x=1

8∑
y=1
|Orig(x, y)− PredM (x, y)| (3.4)

3.3. INNER MODULE OVERVIEW 21

Or equivalently, based on already calculated differences:

SAD(Orig,PredM) =
8∑

x=1

8∑
y=1
|Diff(x, y)| (3.5)

When the nine SADs are computed, the best prediction mode is defined as the one
belonging to the minimal SAD. After the minimal SAD is found, the inner prediction
module can output the predicted 8× 8 block, and the residual corresponding to the
chosen prediction mode. This must be done over four clock cycles with the 16 pixel
input and output size.

Chapter4Implementation

The design is split into two modules implemented in VHDL. The main reason for
this is to make testing of the whole system easier, by keeping the intra prediction
calculations separated from the part of the intra prediction module that keeps track
of neighboring pixels and the timing logic needed to wait for data to come from the
reconstruction loop. A focus has been on keeping the maximum frequency of the
synthesized design high, in addition to limiting the use of excessive logic elements.

The source code for both implemented modules can be found in a zip-file dis-
tributed with this paper. For the inner module, the file pred.vhd consists of 5362
lines of code, and the outer module, intra.vhd, are 967 lines.

4.1 Inner Module

The inner prediction module were realized in VHDL based on the overview from
section 3.3. To maximize the throughput of the module, a pipeline is desired. The
ideal solution can manage a new set of 8×8 input blocks every fourth clock cycle. This
would create the need of storing intermediate results in registers so that overlapping
ongoing calculations are supported. A timing diagram was created, and is shown in
Figure 4.1. In this diagram, q1, q2, q3, and q4 (short for quarter) corresponds to the
four 4× 4 input blocks that represent a full 8× 8 input set of original pixels, while
s1, s2, and s3 (short for set) corresponds to data connected to three different 8× 8
input sets shown in the figure. It is estimated that seven clock cycles are needed
from the first 16 input pixels are read to the first set of outputs are ready.

The registers that store predictions and residuals needs to update at the right
time. This is implemented by having eleven 1-bit signals (rdy_in_X to indicate which
clock cycle each set of calculations are on, where X is a number between 1 and 11).
rdy_in_1 is set to the input signal rdy_in each clock cycle, rdy_in_2 is set to be
equal to rdy_in_1 the next cycle and so on. This way, all of the registers can be

23

24 4. IMPLEMENTATION

Figure 4.1: Timing diagram for the implemented inner module.

forced to update only at a specific clock cycle count after the first 4 × 4 block is
input to the module.

Making a pipeline work in the inner module proved to be the biggest challenge.
Other problems was knowing how much work that could be done each clock cycle
without limiting the synthesized max frequency considerably. A preliminary limit
was set to 18 8-bit additions in one clock cycle. This was close to the nested levels of
logic required by the DC prediction mode: DC = A+B +C +D+E +F +G+H +
Q+R+S+T +U +V +W +X + 8� 4. 17 additions and one shift operation. The
other prediction mode equations would require fewer levels of logic. 3-tap equations
are implemented as two 2-tap equations added together which gives 5 additions in
total.

By storing computed values in registers that updates each clock cycle, a work
chain was made where the next operation in the chain uses the value stored in the
corresponding register. This is an easy way of deciding how much work that should
be done each clock cycle. This increases the logic element count, where each one-bit
register are synthesized as a D-flip-flop.

The difference (diff) signals consist of one 9-bit subtraction per signal, and there

4.1. INNER MODULE 25

are 9 · 64 = 576 of them in the implemented design. The absolute value of each
of them is modelled with one adder in the worst case, using the two’s complement
method, where the bits are inverted and added with one if the first bit is 1. The
differences and their absolute values are computed in one clock cycle.

Computation of the SADs in one clock cycle might be a problem, since there are
64 8-bit numbers that should be added. To avoid getting a slow synthesized system,
SADs were instead calculated over two clock cycles where in the first cycle, four
intermediate sums was computed in parallel (named SAD_quarts), being 16 8-bit
additions. On the next clock cycle these four sums were added to give the final SAD
for each prediction mode. The calculation of the nine SADs can be done in parallel.

4.1.1 Finding the Minimal Prediction Mode

To choose the best prediction mode, the lowest of the nine SADs must be found.
The lowest one decides which of the 8 × 8 matrices containing predictions and
differences (residuals) are set to the output. This was implemented with four levels
of comparators as seen in Figure 4.2, using the same method as in [5]. The nine
input values in the figure represents the SADs for each prediction mode. Since the
nine SADs are 14 bit numbers, this could be the bottleneck of the inner module.

Figure 4.2: Implementation of minimal SAD computation.

4.1.2 Pipeline Implementation

To allow new 4× 4 blocks as input every clock cycle, a pipeline was implemented for
the inner module. This was done by storing predictions and differences in registers
that only updates its value at specific times. The registers are marked as pred_reg,
diff_reg, pred_reg_out and diff_reg_out in Figure 4.1, where it is shown that the
registers updates before a new set of inputs arrive. The update times are controlled
by one of the eleven rdy_in_X signals that keeps track of how many clock cycles
have passed since the last set of inputs arrived. The sizes of pred_reg and diff_reg
are 9 · 64 · 8 = 4608 bits and 9 · 64 · 9 = 5184 bits respectively (the diff signals have

26 4. IMPLEMENTATION

a sign bit). The two output registers are smaller, since at the time they are updated,
the minimal SAD is found. Therefore, only the best mode prediction and difference
values are stored. The values in pred_reg_out and diff_reg_out are then output
over four clock cycles.

Output Optimizations

For the output residuals and predictions from the inner prediction module, a choice
was made to make them 2× 8 matrices rather than 4× 4 blocks like the input blocks
are. With this approach the first two rows of the complete 8× 8 block are output at
the first instance, the third and fourth row at the second instance, and so on. There
are two main reasons for this: It could decrease the time needed in the reconstruction
loop since the integer DCT could begin processing of two complete rows immediately,
instead of waiting one extra clock cycle for four rows to be ready. Since the intra
prediction module might need to wait while residuals are being processed in the
reconstruction loop, reducing the number of clock cycles needed there is important
for the throughput of the system. The second main reason lies in how the outer
module reads and stores edge pixels used for processing the next data block. Only the
predicted pixels on the right side and pixels on the last row will ever be used by the
outer module. This corresponds to pixels 7-15 in Figure 4.3. This simplifies the logic
in the outer module and allows us to remove all signals that computes prediction
pixels 0-6, which in turn yields a lower logic element count in the synthesized module.

Figure 4.3: Output block matrix.

4.2 Outer Module

The outer module was implemented according to Figure 3.3. This module is not as
complex as the inner module, but the implementation was not without challenges.
One problem was how to synchronize the signals rdy_in, quart and the input pixels
ycbcr[0..15] sent to the inner module. Another challenge was how to implement
correct usage of the reconstructed residuals without having a reconstruction loop
implemented yet.

To support different video resolutions, the module was implemented with recon-
figurable constants, frame_width and frame_height. This was necessary for the
module to be able to detect when the frame boundaries are reached.

4.2. OUTER MODULE 27

4.2.1 Delay Registers

To ensure correctness and robustness of the inner prediction module when it is
connected to the outer module, some of the input values (ycbcr[0..15], quart and
rdy_in) cannot come at the same time as the clock signal goes high. If that is the
case, the intra prediction module will try to store the difference values, diff, into
a register before they are computed. Because of this, an extra clock cycle will be
needed as a delay. The outer module will calculate and send the input values to the
inner prediction module when the clock signal goes high, so this is a necessary fix. A
solution is to have a register that delays some of the input values before they are
sent to the intra prediction module.

All input signals except clock and reset signals will have to pass through a register
that stores the values when the clock signal is high, and outputs the values when the
clock signal goes low, a half clock period later. By doing this, all signals that enter
the inner prediction module are read at the same time, and the system will behave
as expected.

Figure 4.4 illustrates how this kind of register can be synthesized by using two
flip-flops for each signal that shall be delayed. The leftmost register reacts on a
positive clock edge and the rightmost updates values on negative clock edge. An
alternative here was to add this delay into a register inside the intra prediction
module, but this could require more work than to implement it into the outer module.

Figure 4.4: Synthesized delay register for a one-bit signal.

28 4. IMPLEMENTATION

4.2.2 Counters

To keep track of which 8 × 8 block is currently being processed, counters are
needed. The implemented design includes three counters: row_count, col_count
and internal_count, where the first two stores current row and column respectively
(measured in 8 × 8 blocks), and the latter keeps track of which 8 × 8 block in a
macroblock are being processed. This behavior corresponds to the numbering in
Figure 3.2. The counters for row and column enables an easy way to signal first_row
and first_col input signals to the inner prediction module, which controls the
behavior in corner cases.

The internal_count signal is used to set next_row and next_col signals that
updates the row and column counter as seen in Table 4.1. There is one exception
to this rule. That is when the current column is the last one in the video frame as
dictated by a constant called frame_width and internal_count = 3. In this case
the next_col is set to 0, and next_row is incremented.

Table 4.1: Changes to row and column counters based on current internal count.

internal_count next_row next_col
0 +0 +1
1 +1 −1
2 +0 +1
3 −1 +1

4.2.3 Storage of Neighbor Pixels

The implementation of neighbor pixel memory is based on the scheme used in [5] and
[4] for 4× 4 intra prediction. The idea is to store the all previously coded upper and
left-side neighbors in memory such that they are available to the next macroblock at
any time. An illustration can be seen in Figure 4.5. The storage of neighbors happens
in three different processes. One process for the left-side neighbors, upper-side
neighbors and upper-left-side neighbor (the Z value). All neighbor values (A-Z) are
updated before a new set of inputs arrives, and are based on the internal_count,
next_row and next_col signals. They can be updated before a new set of inputs
arrive because the inner module does not use these before the rdy_in signal goes
high.

Upper Neighbor Values

An array of registers was made to enable the storage of previous-frame pixels for the
entire row of the frame. Whenever a set of reconstructed pixels arrive, the bottom

4.2. OUTER MODULE 29

Figure 4.5: Neighbor pixels storage scheme. [4]

row (ycbcr_prev[8..15] from the fourth 4× 4 block) is stored at the position of
the array that corresponds to the current col_count.

A process updates neighbor values A~P, where the register array is read from
positions next_col and next_col+1. There is one exception to this, which is when
the next 8 × 8 block is the last one in the macroblock (internal_count=3). The
problem is illustrated in Figure 4.6, where the values I~P are not coded yet. These
values are then set to be equal to H, the right-most available neighbor value. The
same problem is evident at the right side frame boundary, and the same solution is
chosen.

Figure 4.6: Upper neighbors for the last 8× 8 block in a MB.

Left Neighbor Values

For the left side neighbor values, a register with room for 16 pixels was created.
When a set of reconstructed pixels arrive, the rightmost values (ycbcr_prev[7] and
ycbcr_prev[15]) are stored in either the upper or lower half of this register. It
depends on if the current 8×8 block is in in the upper or lower half of the macroblock

30 4. IMPLEMENTATION

respectively. The process that updates neighbor values Q~X, reads from the upper or
the lower half of the register, depending on if the next 8× 8 block is in the upper or
lower half of the MB respectively. This behavior is illustrated in Figure 4.7.

Figure 4.7: Left neighbor storage scheme.

The Z Value

Implementation of the upper-left-side neighbor (Z) was done with four 8-bit registers
z0, z1, z2 and z3. They store the values seen in Figure 4.8, with the following
criteria:

z0 = H when internal_count = 1
z1 = H when internal_count = 0
z2 = X when internal_count = 0
z3 = ycbcr_prev[15] when internal_count = 0 and quart_pr = 3

Only for the z3 register, are current reconstructed pixels used for future Z-values.
The rest of the registers copy the information from already coded neighbor pixels
used in an earlier frame.

The Z signal is set to be z1 when current internal_count is 0, z2 when current
internal_count is 1, and so on. This way, the correct value is stored for the next
8× 8 block. An exception is when the current 8× 8 block is the last column and the
last 8× 8 block in a MB. Then the Z value is set to 0.

4.2. OUTER MODULE 31

Figure 4.8: Z value register source samples seen from a macroblock.

Chapter5Results
This chapter presents key results from the verification stage and synthesis of the
design.

5.1 Verification

In order to verify the behavior of the implemented design, a MATLAB model of the
8× 8 luma intra prediction module was made. The script takes an image frame as
input and computes the best mode predictions and residuals. It also provides a way
of checking all internal variables used during the calculation. This was used to verify
testbench simulation results of the implemented design. The MATLAB code can be
found in the attachment distributed with this paper (intra8x8.m). All simulation
was done in Xilinx ISE Simulator (ISim) P.20131013 and the same picture was used
as a source of all input values (lena64.png).

5.1.1 Simulation Results for the Inner Module

By creating a testbench, the inner prediction module written in VHDL was tested for
correctness. To test the basic functionality, a modified MATLAB script was used to
generate samples for the testbench (see inner_intra8x8_test.m in the attachment).
This script creates testbench stimulus for one 8× 8 block and ignores if said block is
the first row or column. A first test was done for one 8× 8 block. All output results
was compared to those generated in the MATLAB script. Internal signals were also
compared, most notably the SADs for each prediction mode. Some errors in the
prediction equations were found and corrected this way.

To test the implemented pipeline, a test for one macroblock was conducted. The
modified MATLAB script was used to generate stimulus of four 8× 8 blocks from
the same picture. Figure 5.1 and 5.2 shows the results from the simulation. Key
values presented are the nine SADs (internal signals), output predicted pixels and

33

34 5. RESULTS

output residuals. Output from the MATLAB script for this test set can be seen in
Appendix C.1.

350 ns 400 ns 450 ns 500 ns 550 ns

Figure 5.1: Inner module simulation results, input signals.

5.1. VERIFICATION 35

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 5.2: Inner module simulation results, internal and output signals.

36 5. RESULTS

5.1.2 Simulation Results for the Whole System

Simulation of both the inner and outer module together was done in the same manner
as with the inner module alone. For this test, one macroblock was extracted from
the attached source picture using posistions 18 to 33 for the x-axis, and 29 to 44 for
the y-axis. Unlike in the simulation of the inner module, this test verifies correct
behavior regarding first_row and first_col. With four 8 × 8 blocks forming a
macroblock, the first 8× 8 block will be first row and first column, the second and
third block will be first row and first column respectively, and the last block will
be neither. This test shows how the outer module handles storage and sending of
the neighbouring pixels A to Z, in addition to the output residuals which should
match the values from the MATLAB script. Key results from the simulation can be
seen in Figure 5.3 and 5.4. A graphical presentation of the results generated by the
MATLAB script is shown in Figure 5.5. Output from the MATLAB script can be
seen in appendix C.2.

From the simulation results of the whole system, it is found that the number
of clock cycles needed to process one 8× 8 block is 18 cycles. This can be split up
into 7 cycles for the inner module to complete processing, 10 cycles before results
come back from the modelled reconstruction loop, and finally 1 cycle where the outer
module computes neighboring pixels. The number of cycles needed to complete one
macroblock is then 18 · 4 = 72 clock cycles.

5.2 Synthesis

Both the inner module and the outer module are synthesized using Xilinx ISE
Project Navigator (P.20131013) with the target FPGA being Kintex 704 XC7K325T
FFG900. Key results from the synthesis are presented in Table 5.1. More details on
the synthesis results can be seen in Appendix D, where excerpts of the simulation
reports for both modules are shown.

The synthesis of the whole system generated 0 errors, 0 warnings, and 931 info
messages where all of them are from the optimization stage. All of these are messages
about multiple registers in the inner prediction module being equivalent, and therefore
replaces equivalent registers with one register and multiplexers to save device area
usage. These registers are mainly from the inner prediction module where internal
registers are used for each predicted pixel in a 8× 8 matrix for each prediction mode.
An example is for the diagonal-down right (DDR) mode where all predicted pixels in
a diagonal line along the matrix are equivalent.

5.2. SYNTHESIS 37

ssssss ssssss ssssss ssssss

Figure 5.3: Whole system simulation results, outer module signals.

38 5. RESULTS

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

ss

1s1 1�

18s s�

1s1 1�

1ss 1�

8s 1�

1s5 1�

1ss 1�

11s 1�

11s 1�

11s 1�

11s 1�

11s 1�

11s 1�

11s 1�

11s 1�

1�

1s5 s

18s s

1ss s

s7 s

ss s

1s1 s

1s3 s

1s5 s

15s s

ssssss ssssss ssssss ssssss

Figure 5.4: Whole system simulation results, inner module signals.

5.2. SYNTHESIS 39

Figure 5.5: Graphical presentation of simulation results.

Table 5.1: Synthesis results from Xilinx ISE.

Module Slice Registers Slice LUTs Max. freq. [MHz]
Inner module 11968 25505 179.62
Whole system 12958 26109 129.34

Chapter6Discussion

6.1 Implementation of the Proposed Hardware Architecture

An alternative to using registers to store values could have been done with internal
built-in memory on the FPGA in some cases. Many registers used in the design are
not updated at every clock cycle, but at predefined times. This applies to neighbor
storage memory in particular, since these registers are not frequently read from or
written to. By using built-in memory, the number of flip-flops used in the design are
decreased, which affects the logic element usage of the entire H.264/AVC transcoder
in a positive way.

6.1.1 Pipelining

The implemented outer module does not utilize the pipeline that is implemented
in the inner module. Plans to support new input data sets while the outer module
is otherwise idle were made, but not implemented due to lack of time. Another
problem was the assumption of which order the input macroblocks comes in. With
the macroblocks coming in a raster order, pipelining of the whole system is impossible
since the next macroblock is dependent on data from a former macroblock to begin
processing.

Pipelining is only possible if the order of macroblocks are changed. This is decided
by a module in the H.264/AVC encoder outside the scope of this design. Whether
this is applicable or not is therefore not known at the time of writing this. Some
considerations to how pipelining can be done are shown in Section 7.1.

6.1.2 The Bottleneck of the System

More time could have been used to increase max clock frequency of the whole system.
Since there is a relatively big difference between the inner module and the whole
system when synthesized (179.62 MHz and 129.34 MHz respectively), there might

41

42 6. DISCUSSION

be a easy way to speed up the system. This notion is further increased by the fact
that the inner module is the most complex module of the two, both in terms of
size and functionality. By looking at the synthesis report for the whole system, the
critical path can be found. It is found to be between signals ycbcr_upper_64 and
Prediction/SAD63_DC_reg_7, which is from the register that stores neighbor pixels
A to P in the outer module and the stored absolute value of the difference between
predicted pixels in the DC mode and the original input pixels. This is 24 levels of
logic.

The bottleneck can be a result of not storing the neighboring pixel values in
registers before they are sent into the inner module. In the inner module, the last
4× 4 input block are not stored in a register before it is read directly to be used to
compute predictions, differences and their absolute value. This is a long chain of
operations, and by addressing this, the synthesized max frequency could be higher
for the whole system. An attempt to fix this was done, where the neighbor pixels
were stored in a delay register before they are output to the inner module. This is
similar to what is done to the input original pixels. The estimated clock frequency
with this approach was considerably lower, and an easy fix was not found.

Even though the synthesis estimate of the maximum clock frequency is above the
initial target from the specifications (100 MHz), the bottleneck indicates a weakness
in the implementation. A fix to this would require some changes to how the inner
module reads its input values. Ideally, all input values are read and stored in registers
before they are used in the module. By doing this for the inner module, the delay
registers in the outer module would not be needed because the robustness the delay
registers provide would be a part of the inner module already. This was however the
chosen method of implementation because it took considerably less time to implement
after the flaw was found.

6.2 Verification

In the verification process of the implemented 8× 8 intra prediction module, only
pixels from one picture was used to generate stimulus for testbenches. The tests
completed in the verification stage were small scale tests to verify the functionality
of the design. By not conducting more thorough testing, all cases leading to errors
might not be covered. An example of this is the computed Z-values, which in some
cases are stored and then used in a frame in the next row of macroblocks. The small
scale test of the outer module does only feature one macroblock (four 8× 8 blocks),
and use only one of the four Z-values stored.

A larger scale test was not included because of the number of signals that would
need to be verified in the design is very high. With the current MATLAB script

6.3. PERFORMANCE 43

and testbench it is not feasible to compare values from all important signals for
many input blocks of data. Given more time for testing, the testbench for the
whole system and the MATLAB script could be expanded to be more automatic in
verification. If the MATLAB script could create the stimulus in VHDL format, and
the testbench could compare results with a MATLAB-generated solution text file,
then the verification stage could include a much larger data set, preferably from a
video sequence. In addition, formal verification techniques could have been used to
further verify the functionality. This could reveal interactions between the inner and
outer module that might be hard to find by simulation.

6.3 Performance

To compute the throughput of the system, the following equation can be used:

Throughput = Maximum frequency ·Number of Samples
Number of cycles (6.1)

By using the synthesis estimate of the maximum frequency, 128.34 MHz, from
Table 5.1, and the number of clock cycles per macroblock (72), it is found that
the throughput of the proposed intra prediction module is 456.32 Mpixels/s. The
maximum frequency can also be used to figure out how well the system can perform
with various video resolutions and frame rates. The minimum frequency needed by
the system manage real time processing of a video with a given resolution and frame
rate is defined as:

Minimum frequency = Resolution · Frame rate ·Number of cycles
Number of samples (6.2)

Using a frame rate of 30 frames per second, Table 6.3 shows the minimum required
system frequency needed for various video format standards.

Table 6.1: Minimum frequency requirements at 30 frames per second.

Standard Resolution Min. freq. [MHz]
720p (HD) 1280× 720 7.8
1080p (Full HD) 1920× 1080 17.5
2160p (4K UHD) 3840× 2160 70.0
4320p (8K UHD) 7680× 4320 279.9

From these numbers, it is seen that the implemented 8× 8 luma intra prediction
module can process 720p, 1080p and 2160p video in real-time. Note that these
numbers are based on an estimated number of clock cycles needed to process one
macroblock. In addition, the maximum frequency obtained from the synthesis is an
estimate as well. As mentioned, the reconstruction loop is not implemented, so it is

44 6. DISCUSSION

currently not known if the reconstruction loop can be modelled with 6 clock cycles
to complete.

6.4 Scalability

The device area usage is presented with absolute numbers in Section 5.2, showing
how many LUTs and registers the implemented intra prediction module consumes on
the target FPGA. It could be interesting to see how the design scales compared to
the basis of this design, the 4× 4 intra prediction module from [5]. By synthesizing
the given source code, logic element usage is compared using the same metrics, and
are presented in Table 6.2.

Table 6.2: Comparation of logic elements usage between 4 × 4 and 8 × 8 intra
prediction modules.

Metric 4× 4 [5] 8× 8 (proposed) Difference [%]
Slice registers 7364 14440 196
Slice LUTs 11575 21964 190

Compared with its basis design, the proposed 8× 8 luma intra prediction module
is close to twice the size in logic element usage. This is achieved even with registers
in the inner module often being four times larger (4× 4 stores 16 pixels and 8× 8
stores 64 pixels). The comparison indicates sub-linear growth with regard to block
size, but there are some differences between the two modules that makes such a
direct comparison difficult. One such difference is the frame width and the frame
height the designs are synthesized with, which makes differently sized outer modules.
There are also differences in functionality between the two outer modules. The 4× 4
module includes a pipeline that allows four 4× 4 blocks to be processing at different
stages at the same time. The 8× 8 module does not include logic for more than one
input 8× 8 block.

Chapter7Conclusion

An 8 × 8 luminance intra prediction module is proposed as a part of an MPEG-2
to H.264/AVC transcoder. The block-based prediction module exploits similarities
between neighboring image samples in the same video frame to reduce redundancy
and compress the video. For a hardware implementation of an intra prediction
module, the throughput is limited by a high data dependency between input data
blocks.

High throughout is achieved by allowing 16 image samples to be processed at the
same time in 4× 4 blocks. The design is implemented in VHDL, and its functionality
is verified by simulation. The proposed hardware architecture is synthesized on a
Kintex-7 FPGA with a maximum clock frequency of 129.34 MHz, which translates
into a throughput of 456.32 Mpixels/s. This makes the 8 × 8 luminance intra
prediction module able to encode 2160p (4k UHD) video in real-time given a frame
rate of 30 fps.

7.1 Future Work

The throughput of the implementation can theoretically be improved. From how the
whole H.264/AVC transcoder is designed, the 8×8 luminance intra prediction module
must process macroblocks in a raster order. There is a possibility of extending the
implemented design to process multiple macroblocks at the same time, as much of
the processing time in the intra prediction module is used to wait for results to
come back from a reconstruction loop. Currently, only the prediction part of the
implemented design supports such a pipeline. Given that the rest of the H.264/AVC
encoder can reorder the macroblocks arriving to the 8× 8 intra prediction module
such that a new row of macroblocks can be processed before an earlier row is done,
the throughput can increase considerably.

45

References

[1] I. E. Richardson, The H.264 Advanced Video Compression Standard. Wiley, 2 ed.,
August 2010.

[2] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, pp. 560–576, July 2003.

[3] C. Tzu-Der, C. Yi-Hau, T. Chen-Han, C. Yu-Jen, and C. Liang-Gee, “Algorithm
and architecture design for intra prediction in H.264/AVC High profile,” SPE
Journal, vol. 9, no. 4, pp. 391–402, 2007.

[4] C. Diniz, A. Susin, and S. Bampi, “FPGA design of H.264/AVC intra-frame
prediction architecture for high resolution video encoding,” in Programmable
Logic (SPL), 2012 VIII Southern Conference on, pp. 1–6, March 2012.

[5] M. Orlandic and K. Svarstad, “A low complexity H.264/AVC 4x4 intra prediction
architecture with macroblock/block reordering,” in Reconfigurable Computing
and FPGAs (ReConFig), 2013 International Conference on, pp. 1–6, Dec 2013.

[6] “Draft ITU-T recommendation and final draft international standard of joint
video specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC).” Joint Video
Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, 2003.

[7] G. J. Sullivan, P. N. Topiwala, and A. Luthra, “The H.264/AVC advanced video
coding standard: overview and introduction to the fidelity range extensions,”
2004.

[8] M. Orlandic and K. Svarstad, “An area efficient hardware architecture design for
H.264/AVC intra prediction reconstruction path based on partial reconfiguration,”
in Design and Diagnostics of Electronic Circuits Systems (DDECS), 2013 IEEE
16th International Symposium on, pp. 86–91, April 2013.

[9] T. L. da Silva, C. M. Diniz, J. A. Vortmann, L. V. Agostini, A. A. Susin,
and S. Bampi, “A pipelined 8x8 2-D forward DCT hardware architecture for
H.264/AVC High profile encoder,” PSIVT, pp. 5–15, 2007.

47

AppendixAAbbreviations

AVC Advanced Video Coding

chroma chrominance

codec coder/decoder pair

DC mean (prediction mode)

DCT discrete cosine transform

DDL diagonal-down left (prediction mode)

DDR diagonal-down right (prediction mode)

FPGA field-programmable gate array

H horizontal (prediction mode)

H.264 H.264/MPEG-4 Part 10 AVC (Advanced Video Coding)

HD horizontal down (prediction mode)

HU horizontal up (prediction mode)

HVS human visual system

IDCT inverse discrete cosine transform

IQ inverse quantization

ISE Integrated Software Environment

ISO International Standards Organisation

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

49

50 A. ABBREVIATIONS

luma luminance

LUT look-up-table

MB macroblock

MPEG-2 Motion Picture Experts Group 2

Q quantization

RGB red/green/blue (color space)

SAD sum of absolute differences

V vertical (prediction mode)

VHDL VHSIC Hardware Description Language

VL vertical left (prediction mode)

VR vertical right (prediction mode)

YCrCb luminance/red chrominance/blue chrominance (color space)

AppendixBPrediction Mode Equations

As stated in section 3.3.2, the equation for a predicted pixel is Pred = (E +R)� S.
Table B.1 shows all intra prediction equations, E, for all 64 pixels in an 8x8 block, for
the nine prediction modes. To get the complete equations, values for the rounding
addition, R, and the shift operation, S must be added. For equations with three
taps, R = 2 and S = 2, and for equation with 2 taps, R = 1 and S = 1. The lower
case letters a to p represents the pixels in a 4 × 4 matrix as shown in figure B.1.
Equations in bold text in the table means it is the first ocurrence of that particular
equation, E.

Figure B.1: Visual explanation of prediction mode equations.

The Ω symbol means E = A+B + C +D +E + F +G+H +Q+R+ S + T +
U + V +W +X which is the case for all predicted pixels in the DC prediction mode.
Here, S = 4 (divide by 16) and R = 8.

51

52 B. PREDICTION MODE EQUATIONS

Table B.1: Intra prediction equations for the nine 8× 8 prediction modes.

First 4× 4 block
V H DC DDL DDR VR VL HD HU

a A Q Ω A+2B+C Q+2Z+A Z+A A+B Q+Z R+Q
b B Q Ω B+2C+D Z+2A+B A+B B+C Q+2Z+A S+2R+Q
c C Q Ω C+2D+E A+2B+C B+C C+D Z+2A+B S+R
d D Q Ω D+2E+F B+2C+D C+D D+E A+2B+C T+2S+R
e A R Ω B+2C+D R+2Q+Z Q+2Z+A A+2B+C R+Q S+R
f B R Ω C+2D+E Q+2Z+A Z+2A+B B+2C+D R+2Q+Z T+2S+R
g C R Ω D+2E+F Z+2A+B A+2B+C C+2D+E Q+Z T+S
h D R Ω E+2F+G A+2B+C B+2C+D D+2E+F Q+2Z+A U+2T+S
i A S Ω C+2D+E S+2R+Q R+2Q+Z B+C S+R T+S
j B S Ω D+2E+F R+2Q+Z Z+A C+D S+2R+Q U+2T+S
k C S Ω E+2F+G Q+2Z+A A+B D+E R+Q U+T
l D S Ω F+2G+H Z+2A+B B+C E+F R+2Q+Z V+2U+T
m A T Ω D+2E+F T+2S+R S+2R+Q B+2C+D T+S U+T
n B T Ω E+2F+G S+2R+Q Q+2Z+A C+2D+E T+2S+R V+2U+T
o C T Ω F+2G+H R+2Q+Z Z+2A+B D+2E+F S+R V+U
p D T Ω G+2H+I Q+2Z+A A+2B+C E+2F+G S+2R+Q W+2V+U

Second 4× 4 block
V H DC DDL DDR VR VL HD HU

a E Q Ω E+2F+G C+2D+E D+E E+F B+2C+D T+S
b F Q Ω F+2G+H D+2E+F E+F F+G C+2D+E U+2T+S
c G Q Ω G+2H+I E+2F+G F+G G+H D+2E+F U+T
d H Q Ω H+2I+J F+2G+H G+H H+I E+2F+G V+2U+T
e E R Ω F+2G+H B+2C+D C+2D+E E+2F+G Z+2A+B U+T
f F R Ω G+2H+I C+2D+E D+2E+F F+2G+H A+2B+C V+2U+T
g G R Ω H+2I+J D+2E+F E+2F+G G+2H+I B+2C+D V+U
h H R Ω I+2J+K E+2F+G F+2G+H H+2I+J C+2D+E W+2V+U
i E S Ω G+2H+I A+2B+C C+D F+G Q+Z V+U
j F S Ω H+2I+J B+2C+D D+E G+H Q+2Z+A W+2V+U
k G S Ω I+2J+K C+2D+E E+F H+I Z+2A+B W+V
l H S Ω J+2K+L D+2E+F F+G I+J A+2B+C X+2W+V
m E T Ω H+2I+J Z+2A+B B+2C+D F+2G+H R+Q W+V
n F T Ω I+2J+K A+2B+C C+2D+E G+2H+I R+2Q+Z X+2W+V
o G T Ω J+2K+L B+2C+D D+2E+F H+2I+J Q+Z X+W
p H T Ω K+2L+M C+2D+E E+2F+G I+2J+K Q+2Z+A 3X+W

53

Third 4× 4 block
V H DC DDL DDR VR VL HD HU

a A U Ω E+2F+G U+2T+S T+2S+R C+D U+T V+U
b B U Ω F+2G+H T+2S+R R+2Q+Z D+E U+2T+S W+2V+U
c C U Ω G+2H+I S+2R+Q Z+A E+F T+S W+V
d D U Ω H+2I+J R+2Q+Z A+B F+G T+2S+R X+2W+V
e A V Ω F+2G+H V+2U+T U+2T+S C+2D+E V+U W+V
f B V Ω G+2H+I U+2T+S S+2R+Q D+2E+F V+2U+T X+2W+V
g C V Ω H+2I+J T+2S+R Q+2Z+A E+2F+G U+T X+W
h D V Ω I+2J+K S+2R+Q Z+2A+B F+2G+H U+2T+S 3X+W
i A W Ω G+2H+I W+2V+U V+2U+T D+E W+V X+W
j B W Ω H+2I+J V+2U+T T+2S+R E+F W+2V+U 3X+W
k C W Ω I+2J+K U+2T+S R+2Q+Z F+G V+U X
l D W Ω J+2K+L T+2S+R Z+A G+H V+2U+T X
m A X Ω H+2I+J X+2W+V W+2V+U D+2E+F X+W X
n B X Ω I+2J+K W+2V+U U+2T+S E+2F+G X+2W+V X
o C X Ω J+2K+L V+2U+T S+2R+Q F+2G+H W+V X
p D X Ω K+2L+M U+2T+S Q+2Z+A G+2H+I W+2V+U X

Fourth 4× 4 block
V H DC DDL DDR VR VL HD HU

a E U Ω I+2J+K Q+2Z+A B+C G+H S+R X+W
b F U Ω J+2K+L Z+2A+B C+D H+I S+2R+Q 3X+W
c G U Ω K+2L+M A+2B+C D+E I+J R+Q X
d H U Ω L+2M+N B+2C+D E+F J+K R+2Q+Z X
e E V Ω J+2K+L R+2Q+Z A+2B+C G+2H+I T+S X
f F V Ω K+2L+M Q+2Z+A B+2C+D H+2I+J T+2S+R X
g G V Ω L+2M+N Z+2A+B C+2D+E I+2J+K S+R X
h H V Ω M+2N+O A+2B+C D+2E+F J+2K+L S+2R+Q X
i E W Ω K+2L+M S+2R+Q A+B H+I U+T X
j F W Ω L+2M+N R+2Q+Z B+C I+J U+2T+S X
k G W Ω M+2N+O Q+2Z+A C+D J+K T+S X
l H W Ω N+2O+P Z+2A+B D+E K+L T+2S+R X
m E X Ω L+2M+N T+2S+R Z+2A+B H+2I+J V+U X
n F X Ω M+2N+O S+2R+Q A+2B+C I+2J+K V+2U+T X
o G X Ω N+2O+P R+2Q+Z B+2C+D J+2K+L U+T X
p H X Ω O+3P Q+2Z+A C+2D+E K+2L+M U+2T+S X

AppendixCOutput from MATLAB Scripts

C.1 Stimulus for Inner Prediction Module

Generated from file inner_intra8x8_test.m: 16× 16 pixels from lena64.png. Data
should be compared to simulation results found in Figure 5.1 and 5.2.

Inputs and outputs for:
An 8x8 frame starting at position 2,2
A-Z:

Columns 1 through 8

104 89 158 204 163 138 121 113

Columns 9 through 16

105 106 109 110 117 121 119 114

Columns 17 through 24

103 100 98 98 98 97 98 98

Column 25

104

Input 8x8
102 91 161 201 164 146 133 123
101 88 164 196 167 155 141 133
97 86 169 192 167 155 141 138
93 90 182 193 174 155 147 137

55

56 C. OUTPUT FROM MATLAB SCRIPTS

91 90 190 198 182 167 153 147
91 85 190 204 184 167 157 152
91 85 187 204 191 177 150 143
94 81 169 207 199 185 146 122

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:3391 1005 2773 3116 2827 2246 3228 3114 3423
Predicted pixels:

104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113
104 89 158 204 163 138 121 113

Differences/Residuals:
-2 2 3 -3 1 8 12 10
-3 -1 6 -8 4 17 20 20
-7 -3 11 -12 4 17 20 25

-11 1 24 -11 11 17 26 24
-13 1 32 -6 19 29 32 34
-13 -4 32 0 21 29 36 39
-13 -4 29 0 28 39 29 30
-10 -8 11 3 36 47 25 9

Inputs and outputs for:
An 8x8 frame starting at position 2,10
A-Z:

Columns 1 through 8

105 106 109 110 117 121 119 114

Columns 9 through 16

139 148 142 145 132 138 149 153

Columns 17 through 24

C.1. STIMULUS FOR INNER PREDICTION MODULE 57

123 133 138 137 147 152 143 122

Column 25

113

Input 8x8
109 104 105 108 117 109 116 137
116 97 100 113 113 111 137 140
117 100 101 106 113 141 137 133
127 112 101 111 136 138 136 130
141 111 100 134 130 132 132 119
150 120 117 126 130 129 114 126
151 124 115 119 125 112 122 138
135 114 110 123 108 115 137 135

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:1153 803 771 826 963 735 1026 753 1097
Predicted pixels:

109 106 108 110 114 119 120 117
114 107 107 109 112 116 120 118
123 109 106 108 110 114 119 120
132 114 107 107 109 112 116 120
137 123 109 106 108 110 114 119
140 132 114 107 107 109 112 116
146 137 123 109 106 108 110 114
149 140 132 114 107 107 109 112

Differences/Residuals:
0 -2 -3 -2 3 -10 -4 20
2 -10 -7 4 1 -5 17 22

-6 -9 -5 -2 3 27 18 13
-5 -2 -6 4 27 26 20 10
4 -12 -9 28 22 22 18 0

10 -12 3 19 23 20 2 10
5 -13 -8 10 19 4 12 24

-14 -26 -22 9 1 8 28 23

Inputs and outputs for:
An 8x8 frame starting at position 10,2

58 C. OUTPUT FROM MATLAB SCRIPTS

A-Z:
Columns 1 through 8

94 81 169 207 199 185 146 122

Columns 9 through 16

135 114 110 123 108 115 137 135

Columns 17 through 24

95 95 98 98 99 103 103 101

Column 25

98

Input 8x8
95 76 143 215 202 192 143 118
97 84 115 208 201 192 148 130

100 91 87 192 200 193 173 139
102 99 80 159 209 198 177 167
104 104 91 106 205 207 170 176
105 106 102 85 147 212 189 182
106 110 109 96 97 196 202 191
107 112 109 102 91 187 215 199

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:3141 2205 2773 3248 2534 1189 3064 3555 3054
Predicted pixels:

96 88 125 188 203 192 166 134
96 92 106 157 196 198 179 150
96 96 88 125 188 203 192 166
96 96 92 106 157 196 198 179
97 96 96 88 125 188 203 192
98 96 96 92 106 157 196 198

100 97 96 96 88 125 188 203
102 98 96 96 92 106 157 196

Differences/Residuals:
-1 -12 18 27 -1 0 -23 -16

C.1. STIMULUS FOR INNER PREDICTION MODULE 59

1 -8 9 51 5 -6 -31 -20
4 -5 -1 67 12 -10 -19 -27
6 3 -12 53 52 2 -21 -12
7 8 -5 18 80 19 -33 -16
7 10 6 -7 41 55 -7 -16
6 13 13 0 9 71 14 -12
5 14 13 6 -1 81 58 3

An 8x8 frame starting at position 10,10
A-Z:

Columns 1 through 18

135 114 110 123 108 115 137 135

132 123 129 132 133 127 140 145

118 130

Columns 19 through 25

139 167 176 182 191 199 122

Input 8x8
142 130 119 106 112 133 138 134
147 143 112 107 128 135 134 122
145 131 107 125 136 130 115 120
150 110 118 134 136 115 115 125
145 109 130 131 119 115 128 123
144 124 128 126 116 127 131 128
142 125 116 111 125 130 118 117
147 120 117 115 123 119 123 133

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:2623 719 1083 650 1007 723 1565 737 3655
Predicted pixels:

118 114 116 114 119 131 135 131
114 116 114 119 131 135 131 127
116 114 119 131 135 131 127 128
114 119 131 135 131 127 128 132
119 131 135 131 127 128 132 131

60 C. OUTPUT FROM MATLAB SCRIPTS

131 135 131 127 128 132 131 132
135 131 127 128 132 131 132 138
131 127 128 132 131 132 138 144

Differences/Residuals:
24 16 3 -8 -7 2 3 3
33 27 -2 -12 -3 0 3 -5
29 17 -12 -6 1 -1 -12 -8
36 -9 -13 -1 5 -12 -13 -7
26 -22 -5 0 -8 -13 -4 -8
13 -11 -3 -1 -12 -5 0 -4
7 -6 -11 -17 -7 -1 -14 -21

16 -7 -11 -17 -8 -13 -15 -11

C.2 Stimulus for Whole System Test

Generated from file intra8x8.m: 16 × 16 pixels from lena64.png. Data should be
compared to simulation results found in Figure 5.3 and 5.4.

Inputs and outputs for:
An 8x8 frame starting at position 1,1
A-Z:

Columns 1 through 10

0 0 0 0 0 0 0 0 0 0

Columns 11 through 20

0 0 0 0 0 0 0 0 0 0

Columns 21 through 25

0 0 0 0 0

Input 8x8
54 105 83 50 46 40 31 72
53 72 107 66 44 24 69 131
82 62 91 36 27 54 132 132

100 76 103 46 42 127 135 167
70 48 80 74 110 131 155 174
75 47 33 112 128 150 163 161

C.2. STIMULUS FOR WHOLE SYSTEM TEST 61

69 40 75 112 139 172 166 157
52 55 122 131 175 179 176 154

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:0 0 0 0 0 0 0 0 0
Predicted pixels:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Differences/Residuals:
54 105 83 50 46 40 31 72
53 72 107 66 44 24 69 131
82 62 91 36 27 54 132 132

100 76 103 46 42 127 135 167
70 48 80 74 110 131 155 174
75 47 33 112 128 150 163 161
69 40 75 112 139 172 166 157
52 55 122 131 175 179 176 154

Inputs and outputs for:
An 8x8 frame starting at position 1,9
A-Z:

Columns 1 through 10

0 0 0 0 0 0 0 0 0 0

Columns 11 through 20

0 0 0 0 0 0 72 131 132 167

Columns 21 through 25

174 161 157 154 0

Input 8x8

62 C. OUTPUT FROM MATLAB SCRIPTS

105 109 139 167 184 184 188 175
125 165 143 161 181 189 183 166
170 171 149 157 174 187 174 169
181 173 160 158 180 193 171 167
183 188 159 147 189 183 159 157
181 187 170 161 185 162 156 159
178 189 185 175 144 142 158 165
181 198 181 122 94 105 108 116

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:1993 16384 7967 16384 16384 16384 16384 16384 1150
Predicted pixels:

102 117 132 141 150 160 171 169
132 141 150 160 171 169 168 163
150 160 171 169 168 163 159 157
171 169 168 163 159 157 156 155
168 163 159 157 156 155 154 154
159 157 156 155 154 154 154 154
156 155 154 154 154 154 154 154
154 154 154 154 154 154 154 154

Differences/Residuals:
3 -8 7 26 34 24 17 6

-7 24 -7 1 10 20 15 3
20 11 -22 -12 6 24 15 12
10 4 -8 -5 21 36 15 12
15 25 0 -10 33 28 5 3
22 30 14 6 31 8 2 5
22 34 31 21 -10 -12 4 11
27 44 27 -32 -60 -49 -46 -38

Inputs and outputs for:
An 8x8 frame starting at position 9,1
A-Z:

Columns 1 through 10

52 55 122 131 175 179 176 154 181 198

Columns 11 through 20

181 122 94 105 108 116 0 0 0 0

C.2. STIMULUS FOR WHOLE SYSTEM TEST 63

Columns 21 through 25

0 0 0 0 0

Input 8x8
36 113 131 167 177 191 166 165
78 133 164 175 190 190 161 192

123 150 177 181 199 188 189 146
141 177 173 189 199 196 144 67
162 175 179 198 205 160 85 60
166 170 193 204 169 112 114 101
169 192 205 162 113 120 134 143
180 205 163 102 123 136 139 145

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:16384 3408 6816 1001 16384 16384 16384 1874 16384
Predicted pixels:

71 108 140 165 177 171 166 179
108 140 165 177 171 166 179 190
140 165 177 171 166 179 190 171
165 177 171 166 179 190 171 130
177 171 166 179 190 171 130 104
171 166 179 190 171 130 104 103
166 179 190 171 130 104 103 109
179 190 171 130 104 103 109 114

Differences/Residuals:
-35 5 -9 2 0 20 0 -14
-30 -7 -1 -2 19 24 -18 2
-17 -15 0 10 33 9 -1 -25
-24 0 2 23 20 6 -27 -63
-15 4 13 19 15 -11 -45 -44
-5 4 14 14 -2 -18 10 -2
3 13 15 -9 -17 16 31 34
1 15 -8 -28 19 33 30 31

Inputs and outputs for:
An 8x8 frame starting at position 9,9
A-Z:

Columns 1 through 10

64 C. OUTPUT FROM MATLAB SCRIPTS

181 198 181 122 94 105 108 116 116 116

Columns 11 through 20

116 116 116 116 116 116 165 192 146 67

Columns 21 through 25

60 101 143 145 154

Input 8x8
196 176 134 138 147 144 117 82
162 113 114 127 105 132 124 109
78 71 67 57 49 59 47 54
51 47 47 43 46 100 106 40
43 72 70 57 59 137 209 131
61 83 104 75 85 177 216 181

115 96 117 123 155 191 192 168
143 137 122 115 131 130 138 163

Hor, Ver, DC, DDL, DDR, VR, HD, VL, HU
SADs:2792 3776 2722 2301 3329 3879 3508 2606 2277
Predicted pixels:

179 174 169 138 107 85 64 72
169 138 107 85 64 72 81 101
107 85 64 72 81 101 122 133
64 72 81 101 122 133 144 145
81 101 122 133 144 145 145 145

122 133 144 145 145 145 145 145
144 145 145 145 145 145 145 145
145 145 145 145 145 145 145 145

Differences/Residuals:
17 2 -35 0 40 59 53 10
-7 -25 7 42 41 60 43 8

-29 -14 3 -15 -32 -42 -75 -79
-13 -25 -34 -58 -76 -33 -38 -105
-38 -29 -52 -76 -85 -8 64 -14
-61 -50 -40 -70 -60 32 71 36
-29 -49 -28 -22 10 46 47 23

C.2. STIMULUS FOR WHOLE SYSTEM TEST 65

-2 -8 -23 -30 -14 -15 -7 18

>>

AppendixDSynthesis Reports

D.1 Excerpt from Whole System Synthesis Report

Release 14.7 - xst P.20131013 (nt64)
===
* Synthesis Options Summary *
===
---- Source Parameters
Input File Name : "intrawrap.prj"
Ignore Synthesis Constraint File : NO

---- Target Parameters
Output File Name : "intrawrap"
Output Format : NGC
Target Device : xc7k325t-2-ffg900

---- Source Options
Top Module Name : intrawrap
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No
FSM Style : LUT
RAM Extraction : Yes
RAM Style : Auto
ROM Extraction : Yes
Shift Register Extraction : YES
ROM Style : Auto
Resource Sharing : YES
Asynchronous To Synchronous : NO
Shift Register Minimum Size : 2

67

68 D. SYNTHESIS REPORTS

Use DSP Block : Auto
Automatic Register Balancing : No

---- Target Options
LUT Combining : Auto
Reduce Control Sets : Auto
Add IO Buffers : YES
Global Maximum Fanout : 100000
Add Generic Clock Buffer(BUFG) : 32
Register Duplication : YES
Optimize Instantiated Primitives : NO
Use Clock Enable : Auto
Use Synchronous Set : Auto
Use Synchronous Reset : Auto
Pack IO Registers into IOBs : Auto
Equivalent register Removal : YES

---- General Options
Optimization Goal : Speed
Optimization Effort : 1
Power Reduction : NO
Keep Hierarchy : No
Netlist Hierarchy : As_Optimized
RTL Output : Yes
Global Optimization : AllClockNets
Read Cores : YES
Write Timing Constraints : NO
Cross Clock Analysis : NO
Hierarchy Separator : /
Bus Delimiter : <>
Case Specifier : Maintain
Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
DSP48 Utilization Ratio : 100
Auto BRAM Packing : NO
Slice Utilization Ratio Delta : 5

===
HDL Synthesis Report

Macro Statistics

D.1. EXCERPT FROM WHOLE SYSTEM SYNTHESIS REPORT 69

Adders/Subtractors : 1830
1-bit adder : 1
10-bit adder : 27
12-bit adder : 557
14-bit adder : 27
2-bit adder : 6
2-bit subtractor : 2
8-bit adder : 585
9-bit adder : 57
9-bit subtractor : 568

Registers : 1783
1-bit register : 22
12-bit register : 36
128-bit register : 1
14-bit register : 11
2-bit register : 7
64-bit register : 2
8-bit register : 1064
9-bit register : 640

Comparators : 19
1-bit comparator greater : 2
14-bit comparator equal : 9
14-bit comparator lessequal : 8

Multiplexers : 2236
1-bit 2-to-1 multiplexer : 5
1-bit 4-to-1 multiplexer : 2
12-bit 2-to-1 multiplexer : 38
128-bit 2-to-1 multiplexer : 1
128-bit 4-to-1 multiplexer : 1
14-bit 2-to-1 multiplexer : 8
2-bit 2-to-1 multiplexer : 4
64-bit 2-to-1 multiplexer : 1
64-bit 3-to-1 multiplexer : 3
8-bit 2-to-1 multiplexer : 964
8-bit 4-to-1 multiplexer : 1
9-bit 2-to-1 multiplexer : 1208

===

===
* Advanced HDL Synthesis *

70 D. SYNTHESIS REPORTS

===

INFO:Xst:2261 - The FF/Latch <V_reg_40_0> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_0> <V_reg_24_0> <V_reg_56_0>
INFO:Xst:2261 - The FF/Latch <V_reg_40_1> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_1> <V_reg_24_1> <V_reg_56_1>
INFO:Xst:2261 - The FF/Latch <V_reg_40_2> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_2> <V_reg_24_2> <V_reg_56_2>
INFO:Xst:2261 - The FF/Latch <V_reg_40_3> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_3> <V_reg_24_3> <V_reg_56_3>
INFO:Xst:2261 - The FF/Latch <V_reg_40_4> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_4> <V_reg_24_4> <V_reg_56_4>
INFO:Xst:2261 - The FF/Latch <V_reg_40_5> in Unit <Prediction> is
equivalent to the following 3 FFs/Latches, which will be removed :
<V_reg_8_5> <V_reg_24_5> <V_reg_56_5>
...

===
Advanced HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1220
1-bit adder : 1
1-bit subtractor : 1
10-bit adder : 23
10-bit adder carry in : 2
12-bit adder : 2
2-bit adder : 4
2-bit subtractor : 1
8-bit adder : 585
9-bit adder : 9
9-bit adder carry in : 24
9-bit subtractor : 568

Adder Trees : 46
12-bit / 16-inputs adder tree : 37

D.1. EXCERPT FROM WHOLE SYSTEM SYNTHESIS REPORT 71

14-bit / 4-inputs adder tree : 9
Counters : 2
2-bit up counter : 2

Registers : 15146
Flip-Flops : 15146

Comparators : 19
1-bit comparator greater : 2
14-bit comparator equal : 9
14-bit comparator lessequal : 8

Multiplexers : 2247
1-bit 2-to-1 multiplexer : 19
1-bit 4-to-1 multiplexer : 2
12-bit 2-to-1 multiplexer : 38
128-bit 2-to-1 multiplexer : 1
128-bit 4-to-1 multiplexer : 1
14-bit 2-to-1 multiplexer : 7
2-bit 2-to-1 multiplexer : 2
64-bit 2-to-1 multiplexer : 1
64-bit 3-to-1 multiplexer : 3
8-bit 2-to-1 multiplexer : 964
8-bit 4-to-1 multiplexer : 1
9-bit 2-to-1 multiplexer : 1208

===
Final Register Report

Macro Statistics
Registers : 12810
Flip-Flops : 12810

Shift Registers : 72
5-bit shift register : 72

===

===
* Design Summary *
===

Top Level Output File Name : intrawrap.ngc

Primitive and Black Box Usage:

72 D. SYNTHESIS REPORTS

BELS : 44029
GND : 1
INV : 6
LUT1 : 7
LUT2 : 7259
LUT3 : 7488
LUT4 : 2430
LUT5 : 2770
LUT6 : 6077
MUXCY : 8657
MUXF7 : 25
VCC : 1
XORCY : 9308
FlipFlops/Latches : 12958
FDC : 5347
FDC_1 : 3
FDCE : 7400
FDCE_1 : 130
FDE : 72
FDPE : 6
Shift Registers : 72
SRLC16E : 72
Clock Buffers : 2
BUFG : 1
BUFGP : 1
IO Buffers : 357
IBUF : 212
OBUF : 145

Device utilization summary:

Selected Device : 7k325tffg900-2

Slice Logic Utilization:
Number of Slice Registers: 12958 out of 407600 3%
Number of Slice LUTs: 26109 out of 203800 12%

Number used as Logic: 26037 out of 203800 12%
Number used as Memory: 72 out of 64000 0%

D.1. EXCERPT FROM WHOLE SYSTEM SYNTHESIS REPORT 73

Number used as SRL: 72

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 27420

Number with an unused Flip Flop: 14462 out of 27420 52%
Number with an unused LUT: 1311 out of 27420 4%
Number of fully used LUT-FF pairs: 11647 out of 27420 42%
Number of unique control sets: 28

IO Utilization:
Number of IOs: 358
Number of bonded IOBs: 358 out of 500 71%

Specific Feature Utilization:
Number of BUFG/BUFGCTRLs: 2 out of 32 6%

===
Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
clk | IBUF+BUFG | 13030 |
-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:
--
No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -2

Minimum period: 7.731ns (Maximum Frequency: 129.341MHz)
Minimum input arrival time before clock: 2.100ns

74 D. SYNTHESIS REPORTS

Maximum output required time after clock: 1.844ns
Maximum combinational path delay: No path found

Timing Details:

All values displayed in nanoseconds (ns)

===
Timing constraint: Default period analysis for Clock ’clk’

Clock period: 7.731ns (frequency: 129.341MHz)
Total number of paths / destination ports: 1115108936 / 20226

Delay: 7.731ns (Levels of Logic = 24)

Source: ycbcr_upper_64 (FF)
Destination: Prediction/SAD63_DC_reg_7 (FF)
Source Clock: clk rising
Destination Clock: clk rising

Data Path: ycbcr_upper_64 to Prediction/SAD63_DC_reg_7
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
FDCE:C->Q 14 0.236 0.422 ycbcr_upper_64 (ycbcr_upper_64)
LUT2:I1->O 1 0.043 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:S->O 1 0.238 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:CI->O 1 0.014 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:CI->O 1 0.014 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:CI->O 1 0.014 0.000 Prediction/ADDERTREE_INTERNAL...
XORCY:CI->O 2 0.262 0.355 Prediction/ADDERTREE_INTERNAL...
LUT3:I2->O 1 0.043 0.350 Prediction/ADDERTREE_INTERNAL...
LUT4:I3->O 1 0.043 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:S->O 1 0.238 0.000 Prediction/ADDERTREE_INTERNAL...
XORCY:CI->O 1 0.262 0.405 Prediction/ADDERTREE_INTERNAL...
LUT2:I0->O 1 0.043 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:S->O 1 0.238 0.000 Prediction/ADDERTREE_INTERNAL...
XORCY:CI->O 2 0.262 0.355 Prediction/ADDERTREE_INTERNAL...
LUT3:I2->O 1 0.043 0.350 Prediction/ADDERTREE_INTERNAL...
LUT4:I3->O 1 0.043 0.000 Prediction/ADDERTREE_INTERNAL...
MUXCY:S->O 1 0.238 0.000 Prediction/ADDERTREE_INTERNAL...
XORCY:CI->O 7 0.262 0.439 Prediction/ADDERTREE_INTERNAL...
LUT4:I2->O 1 0.043 0.613 Prediction/Mmux_DC7_SW1 (N44)

D.1. EXCERPT FROM WHOLE SYSTEM SYNTHESIS REPORT 75

LUT6:I0->O 65 0.043 0.486 Prediction/Mmux_DC7 (Predicti...
LUT2:I1->O 1 0.043 0.000 Prediction/Msub_GND_7_o_GND_7...
MUXCY:S->O 1 0.238 0.000 Prediction/Msub_GND_7_o_GND_7...
XORCY:CI->O 1 0.262 0.350 Prediction/Msub_GND_7_o_GND_7...
LUT3:I2->O 2 0.043 0.355 Prediction/Mmux_Diff36_DC81...
LUT6:I5->O 1 0.043 0.000 Prediction/Mmux_SAD36_DC81...
FDC:D -0.000 Prediction/SAD36_DC_reg_7

--
Total 7.731ns (3.250ns logic, 4.482ns route)

(42.0% logic, 58.0% route)
Cross Clock Domains Report:

Clock to Setup on destination clock clk
---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clk | 7.731| 3.343| 1.135| |
---------------+---------+---------+---------+---------+

===

Total REAL time to Xst completion: 196.00 secs
Total CPU time to Xst completion: 196.23 secs

Total memory usage is 782368 kilobytes

Number of errors : 0 (0 filtered)
Number of warnings : 0 (0 filtered)
Number of infos : 913 (0 filtered)

76 D. SYNTHESIS REPORTS

D.2 Excerpt from Inner Prediction Module Synthesis
Report

===
* Design Summary *
===

Top Level Output File Name : intrapred.ngc

Primitive and Black Box Usage:

BELS : 43335
GND : 1
LUT1 : 7
LUT2 : 7118
LUT3 : 7461
LUT4 : 2384
LUT5 : 2794
LUT6 : 5741
MUXCY : 8585
MUXF7 : 16
VCC : 1
XORCY : 9227
FlipFlops/Latches : 11968
FDC : 5140
FDCE : 6828
Clock Buffers : 2
BUFGP : 2
IO Buffers : 550
IBUF : 333
OBUF : 217

Device utilization summary:

Selected Device : 7k325tffg900-2

Slice Logic Utilization:
Number of Slice Registers: 11968 out of 407600 2%
Number of Slice LUTs: 25505 out of 203800 12%

D.2. EXCERPT FROM INNER PREDICTION MODULE SYNTHESIS REPORT 77

Number used as Logic: 25505 out of 203800 12%

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 26802

Number with an unused Flip Flop: 14834 out of 26802 55%
Number with an unused LUT: 1297 out of 26802 4%
Number of fully used LUT-FF pairs: 10671 out of 26802 39%
Number of unique control sets: 8

IO Utilization:
Number of IOs: 552
Number of bonded IOBs: 552 out of 500 110% (*)

Specific Feature Utilization:
Number of BUFG/BUFGCTRLs: 2 out of 32 6%

WARNING:Xst:1336 - (*) More than 100% of Device resources are used

===
Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
clk | BUFGP | 11968 |
-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:
--
No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -2

78 D. SYNTHESIS REPORTS

Minimum period: 5.567ns (Maximum Frequency: 179.618MHz)
Minimum input arrival time before clock: 8.213ns
Maximum output required time after clock: 1.844ns
Maximum combinational path delay: No path found

-->

Total memory usage is 776224 kilobytes

Number of errors : 0 (0 filtered)
Number of warnings : 1 (0 filtered)
Number of infos : 488 (0 filtered)

	List of Figures
	List of Tables
	Introduction
	This Thesis
	Specification and Guidelines
	Contribution

	Outline

	Background
	Video Encoding Basics
	Color Spaces

	Video Coding
	Video Codec Model
	Prediction Model
	Spatial Model
	Entropy Encoder

	H.264 Advanced Video Coding
	H.264 Intra Prediction
	Intra 88 Prediction Modes

	Hardware Architecture
	System Overview
	Outer Module Overview
	Modelling Reconstruction Loop Behavior

	Inner Module Overview
	Inputs and Outputs
	Predictions
	Differences
	Sum of Absolute Differences

	Implementation
	Inner Module
	Finding the Minimal Prediction Mode
	Pipeline Implementation

	Outer Module
	Delay Registers
	Counters
	Storage of Neighbor Pixels

	Results
	Verification
	Simulation Results for the Inner Module
	Simulation Results for the Whole System

	Synthesis

	Discussion
	Implementation of the Proposed Hardware Architecture
	Pipelining
	The Bottleneck of the System

	Verification
	Performance
	Scalability

	Conclusion
	Future Work

	References
	Abbreviations
	Prediction Mode Equations
	Output from MATLAB Scripts
	Stimulus for Inner Prediction Module
	Stimulus for Whole System Test

	Synthesis Reports
	Excerpt from Whole System Synthesis Report
	Excerpt from Inner Prediction Module Synthesis Report

