
Scalable FPGA fabric for parallelising 
2D-surface trajectory cost calculations
Design and Evaluation of Application and 

Hardware

Dibyajyoti Jana

Embedded Computing Systems

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Geir Åge Noven, Kongsberg Defence Systems

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology



 



Project Assignment

Candidate Name:
Dibyajyoti Jana

Assignment Title:
Scalable  Fabric  for  parallelizing  2D  Trajectory  Cost  Calculations  –  Design  and  Evaluation  of 
Application and Hardware

Assignment Text:
Many practical applications need to evaluate the quality of many trajectories on a two dimensional 
map, based on some static or slowly changing cost functions, e.g. topographic elevation, or weather 
conditions. Such applications would benefit from a hardware accelerator, that can parallelize and 
perform these cost computations efficiently. The present work proposes a scalable hardware design 
for such an accelerator, that is amenable to FPGA implementation.

The present work is the continuation of the work done in the previous semester (autumn 2013), 
where a SystemC model was developed for the proposed design. The tasks in the present semester 
(spring 2014) are to aim at developing on that model in two directions – one towards a higher level 
of  abstraction  involving  development  of  an  application  to  utilize  the  proposed accelerator  and 
evaluate the effectiveness of the design. The other direction of development was to use the SystemC 
model  as  a  reference  to  define  detailed  hardware  and  software  architecture  of  the  design  and 
implement them. However, the time available would not be sufficient to complete all of these tasks. 
So, the target would be to finish the higher-level system evaluation and demonstration including an 
application and incorporate the findings in the detailed design, and to finish a significant part of the 
implementation task and qualifying it, while drawing up plans and directions for the future work, 
necessary to finish them. 

Assignment Proposer/Co-supervisor:
Geir Åge Noven, Kongsberg Gruppen
ggnoven@gmail.com

Supervisor:
Prof. Kjetil Svarstad, IET, NTNU

i



Abstract

One way of simplifying two dimensional trajectory cost computation is to partition the 2D domain 
(i.e. the “map”) into a grid of unit squares, and approximate the cost functions by constants within 
these sub-domains (called “map segments”), and similarly replace the trajectory by a piece-wise 
linear approximation, and accumulate the contribution of each map segment by using the constant 
cost functions of that segment and the length (and possibly direction) of the trajectory there, which 
are also easily computed because of the piece-wise linear approximation.

In hardware,  the map segments can be naturally  mapped onto a  2D array of  processing nodes 
connected  by  a  network-on-chip  (NoC),  where  each  node  contains  the  cost  data  for  the 
corresponding map segment, and can compute its local cost-contribution and add that into a data 
field of a packet, representing a trajectory, and pass it on to a neighbor, so that the packet traverses a 
path in the NoC that matches the trajectory, it represents. If the packet starts its journey through the  
network with a properly initialized data-field (unually 0), then after it finishes its journey and the 
final processing node adds its contribution to the field, it contains the cost of that trajectory. This 
architecture is scalable, and provides parallelization of computation, but has its draw-backs.

Because the communications between the nodes must occur in all possible directions (to model all 
possible directions of the trajectory), deadlocks are a real possibility. One way of detecting probable 
deadlocks  is  by detecting no progress within a timeout interval.  They can then be resolved by 
dropping a waiting packet. But it is important to communicate the packet dropping to the external  
application. An auxiliary low band-width NoC, called the injection-ejection network (IENW), is 
planned to be used for this  purpose,  along with the main network,  called computation network 
(CNW). IENW is also designed to be used to carry the packets into the correct start-point and carry 
out from the end-points in the processing array, reducing the CNW loading. Another problem is that 
the size of the hardware processing array is now connected to the map divisions, which makes reuse 
of hardware difficult. It may also be hard for applications to exploit the hardware optimally when it 
is too highly parallel, because then the application will have to produce packets at a high through-
put. These problems are solved by letting more than one map segment be mapped onto the same 
processing node, using a structured approach introduced in Section 1.3.1.

In the previous semester a SystemC design was developed to model this hardware accelerator. In the 
present semester, a high level C model incorporating an external application and a high level model 
of the accelerator was developed to study its performance at the highest possible level in order to 
demonstrate the effectiveness of the design as well as to provide design guidelines for application 
development,  e.g.  how  to  ensure  the  best  utilization  of  the  hardware  from  the  application 
perspective,  how to  accommodate  the  property  of  packet-dropping in  the  accelerator,  etc.  This 
activity successfully demonstrates the existence of practical applications that can benefit from this 
design, thereby demonstrating its utility.

In the present semester, a detailed micro-architecture of the communication infrastructure involving 
the CNW and IENW was developed and implemented in Verilog RTL. This was used for synthesis 
and timing, targeting a Xilinx Virtex7 FPGA. The results showed that a practical processing array of 
size 8x8 processing nodes can be comfortably accommodated, at a clock speed of about 245 MHz. 
These findings provide another level of confirmation of the feasibility of the design. The accelerator 
would also contain processors and the software running on these processors in order to implement 
the cost computation algorithm, packet routing, etc. These could not be implemented due to lack of 
time, but some guidelines for their development have been worked out. During the synthesis, the 
processors  were replaced by a  standard Microblaze micro-controller  system for area estimation 
[15], assuming that they would have similar area. Thus the feasibility and utility of the design have 
been convincingly demonstrated, and its development has been placed on a clearly defined track.
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Chapter 1

1. Introduction and Motivation
Many practical problems involve calculating costs of trajectories on a two-dimensional (2-D) map. 
The map may be a usual geographical map, or some other problem may be transformed into an 
equivalent form for easier visualization and solution. The cost may also be of different kinds. The 
simplest of them is the length of the trajectory. However, many more complicated costs may be 
defined,  e.g.  the  distance  traversed  along  a  trajectory  on  a  geographical  terrain  (with  uneven 
topographic elevations), or  to  accumulate  all  positive differences  in  altitude in  the direction of 
motion along the trajectory and to discard the negative ones. This is generally difficult to solve 
analytically, but to a cyclist, this would be a measurement of the effort she would require to spend 
to traverse this trajectory. Costs may also be a linear combination of different factors, e.g. weather 
situations at different locations on the map, or threat from enemy positions in case of a military 
application, etc. It is, however, often possible to reduce all such contributing factors into one scalar 
(e.g. weather condition) and one vector (e.g. terrain gradient) component, as long as the operations 
performed on them are linearly combinable. The present work proposes a way to perform such 
trajectory cost computations efficiently, and develops a hardware that implements this approach. 
This hardware then may be used as a hardware accelerator for any application that needs to perform 
such 2-D trajectory cost computations efficiently.

1.1 Problem Description
Trajectory costs, as described above, can normally be represented as line integrals (or sums of line 
integrals) of some cost function along piecewise differentiable trajectories. As mentioned above, 
one simple example would be to calculate the length, L, of a trajectory, T, on a 2D map. This can 
clearly be evaluated as the line-integral, L=∫

T

1. dt , where the cost-function is a constant scalar, 

1. Another such scalar cost function, f(x,y) defined for Cartesian co-ordinates, could be the inverse 
of the velocity attained by an all-terrain vehicle (ATV) at different locations on a geographic plane, 
depending on the nature of the soil there, e.g. whether it is firm, loose, sandy, muddy, etc. In such a 
case,  the  line-integral, ∫

T

f ( x , y)dt evaluates  the  time  taken  by  the  vehicle  to  traverse  the 

trajectory, and this will be its cost. 

However,  it  is possible to also have vector cost functions. Let ∇⃗ (x , y )  be defined to be the 
gradient  at  the  co-ordinates  (x,y)  on  a  topographical  map  of  a  geographical  region.  The  line-
integral, Δh=∫

T

∇⃗ ( x , y) . d t⃗ in this case computes the difference in elevation of the start and end 

points of the trajectory, and may be defined as the cost of this trajectory, though there may exist 
easier ways of computing this quantity than by evaluating a line integral.

Some other trajectory costs may be harder to express as line integrals, e.g. the problem, mentioned 
at the beginning, of estimating a cyclist's effort to traverse a trajectory in a topographically uneven 
area. This can be evaluated only as a summation of line-integrals along segments of the trajectory. 
In order to solve this problem, the trajectory has to be divided into two sets of segments, say Su, the 
uphill set and Sd, the downhill set, where Su = {T1, T2, …, Tn}, such that at every point on each of 
these  segments,  the  condition (∇⃗ .e⃗T )>0 ,  where e⃗T is  the  unit  tangent  vector  along  the 
direction of the trajectory at that point (assuming a piecewise differentiable trajectory), is satisfied. 
All other segments of the trajectory make up the set Sd. Then, the estimate of the cyclist's effort may 
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be  represented  as  E c=∑
p=1

n

∫
T p

∇⃗ ( x , y) . d t⃗ .  The  gradient  may  still  be  regarded  as  the  cost-

function, though with constrained applicability.

Another  cost,  relatively difficult  to  formulate,  is  the  distance traversed  along a trajectory  on a 
geographical terrain with uneven topographical elevations. The x-component of the gradient, say

∇ x is the rate of change of elevation at a location in the x direction. If we define g x=√1+∇ x
2

it provides the local ratio of actual distance traversed on the topographical map to the displacement 
along  the  x-direction.  Similarly,  the  y-component  of  gradient, ∇ y may  be  used  to  define

g y=√1+∇ y
2 . Now, defining a vector function on the 2D map, g⃗ ( x , y)=g x . i +g y . j , where i 

and  j are  respectively  the  unit  vectors  along  the  x  and  y  directions,  the  line-integral,
d=∫

T

g⃗ ( x , y) .d t⃗ yields the actual distance traversed on the local geographical topography by 

following a trajectory, T,  directed only towards positive x and y directions at every point (if it is 
differentiable at that point) on it. Similar expressions can be formulated for other orientations of the 
trajectory. Just like in the case of the cyclist's effort, a general trajectory can then be divided into 
segments, each of which lends itself to application of one of these formulae, and the results of these 
line-integrals can then be summed up to derive the total  distance traversed on the geographical 
terrain following the trajectory.

It is possible to also have costs which do not involve line-integrals, but are defined by extrema of a  
cost-function along it.  Using the previous examples of topographic maps, it  may be the highest 
elevation of a point on the trajectory, or the steepest gradient along it. It is also possible to define 
the overall cost of a trajectory to be a (linear) combination of the basic costs of the types explained 
above. A road-builder, for example, would define the overall cost of the proposed lay-out of a road 
(represented  as  a  trajectory  for  our  purpose)  depending  on  its  length,  its  maximum steepness, 
maximum curvature, how long a vehicle would take to traverse it, etc.

As this discussion shows, the computation of trajectory costs may often be quite complicated, even 
though required in many applications. Hence it was felt that an efficient way to perform this task 
would be quite beneficial. Therefore, the aim was to define an efficient algorithm for estimating 
such trajectory costs, and develop a hardware system that can implement it efficiently at a high 
through-put,  which  would  require  parallelization.  In  order  to  enable  rapid  prototyping  and 
deployment, an FPGA implementation is expected to be ideal. In order to exploit the full flexibility 
offered by FPGA's, the design is required to be scalable, so that it can be easily adapted to changing 
system requirements, whether involving change in complexity of the problem, or the throughput 
requirements.

1.2 Proposed Algorithm
As explained above, the cost of a trajectory can often be modeled as the line integral of a cost-
function, or a linear combination of the line integrals of multiple cost-functions. In order to estimate 
the line-integral, the map is proposed to be divided up into an SxS unit square grid, and the cost-
function(s) is/are assumed to be constant over each square, called a “map segment”. The trajectory 
is similarly represented by a piece-wise linear approximation defined by the end-points (termed 
“via-points”) of each of these linear segments in their proper order, as shown on Figure 1. The 
contribution of each map segment to the overall trajectory cost can then be computed as the product 
of the length of the part of the trajectory in that map segment and the value of the cost-function(s) 
(evaluated  along  the  direction  of  the  trajectory  in  case  of  a  vector  cost-function)  in  that  map 
segment. As explained above, the cost-functions are assumed to be constant over the whole map 
segment, but in case of a vector cost-function, its value along the direction of the trajectory may 
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change if a via-point is encountered inside a map segment, and the trajectory direction changes at 
that  point.  This  has  also to  be  taken care  of  during  the  cost  computation.  The total  cost  of  a  
trajectory can then be estimated by summing up the cost contributions of all map segments, that the 
trajectory passes through.

An analogous approach can be utilized to evaluate the costs which are defined as extrema along the 
trajectory. In this case, instead of adding up the contributions from the various map segments that 
the trajectory passes through, they can be compared and the require minimum or maximum can be 
accepted as the cost.  Because the extremum-type and the line-integral-type problems both have 
naturally analogous solutions, and because most of the useful costs are expected to be of the line-
integral type, the discussion will henceforth primarily refer only to that. However, the analogous 
operations for the extremum-type cost can always be derived easily from it.

This algorithm is also effective at tackling the cost computations that involve segmentation of the 
trajectory, as was required for the last to examples in Section 1.1, because trajectory-segmentation 
is used as one of its basic steps.

1.3 Proposed System Design
In order to perform the above-mentioned computations efficiently, one natural solution envisioned 
was to use an SxS 2-D array of processing nodes connected with each other through a network-on-
chip (NoC) of mesh topology, where the 2-D processing array maps directly onto the 2-D “map 
segment” grid described above with 1-to-1 mapping between the processing arrays and the map 
segments, each processing node containing the (locally constant approximate) values of the cost-
function(s) in the corresponding map segment, and capable of computing the contribution of the 
local map segment to the total cost of a trajectory. When computing the cost of a trajectory, the 
trajectory can be defined as an ordered list of via-points, as described above, encased in a packet, 
which can be passed inside the NoC from processing node to processing node along a path that 
maps to the trajectory concerned, while each processing node encountered on the path adds its cost 
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Trajectory on a Map
P1, P2, …, Pn are “via points”



contribution to a data field in the packet. The routing decision at each processing node can be taken 
based on the via-list. The data field in the packet is initialized to 0 before it starts its journey in the 
NoC, and it contains the computed cost of the trajectory when the packet reaches its destination 
processing node, and the destination has added its cost contribution to the said data field.

Being a NoC-centric design, the system is easily scalable (i.e. more nodes can be added easily). 
Also, it is easy to see that all communications are local between neighboring processing nodes, as 
the trajectories are continuous. Still it is a problem that the processing array size is determined by 
the size and the granularity of division of the target map, thus limiting the scope of usage of the 
hardware  for  widely  varying  maps.  This  design  may  also  struggle  to  maintain  good hardware 
loading. The loading of a processing node is defined as the proportion of time it is “active”, i.e. it 
spends performing useful calculations on a packet, e.g. routing or cost computation, and the over-all 
hardware loading is defined as the average loading of all the processing nodes. Defining Pn to be the 
n-th processing node, and the total number of nodes in the processing array to be N, let us define:

An( t) = 0 if Pnis inactive at time t
= 1 if Pnis activeat time t

From this, the hardware loading (HL), as defined above, can be formulated as:

HL=
1
N
∑
n=0

N

(
1
T
∫
0

T

An( t) . dt)

where T = the period of use of the hardware. This expression may be alternatively written as:

HL=
1
T
∫
0

T

(
1
N
∑
n=0

N

An( t)) . dt

which  can  be  interpreted  as  the  average  proportion  of  the  “active”  processing  nodes  in  the 
processing array.

In order to make a rough estimation of the HL, let us assume that every packet under processing 
inside the processing array is always active, i.e. being processed by one node or another, and that 
each processing node can process only one packet at  a time. Then, HL is also the ratio of the 
average number of active packets to total number of processing nodes in the array. If, the average 
latency of a packet inside the hardware (i.e. the time required to complete its cost computation) be 
Tl, and one new packet is assumed to be launched for computation at an interval of T t, then in the 
first Tl interval of the execution, the hardware receives (Tl/Tt) packets, but likely does not produce 
any output packet. But, after that in every Tt time interval it receives a new packet and produces one 
new output on average, thus reaching a stochastic steady-state. In this steady-state, then, the number 
of active packets inside the hardware can be estimated as (Tl/Tt). If the map is divided into an SxS 
grid, and accordingly a processing array of size SxS is used, then N=S2, and HL=T l /(S 2 . T t) .

Assuming that the map area is selected near-optimally, i.e. the map-area chosen contains very little 
area beyond what is required to represent the trajectories, the smallest length of a trajectory would 
be close to S. On the other hand, the maximum length possible for a straight-line trajectory is √2S. 
So, if the trajectories under consideration are relatively well-behaved, i.e. not with too many bends, 
their length will also be in the order of S (say, below 3S or 4S). Thus, it is clear that the average  
trajectory  length  is  of  the  order  of  S,  and  the  packet  computation  latency  is  expected  to  be 
proportional to the trajectory length. Hence, it is reasonable to assume that Tl =  αS, where  α is a 
constant. This may be used to rewrite  HL=α/(S.T t) . This means that with increasingly finer 
division of the map (i.e. increasing S), in order to maintain constant HL, the Tt has to be reduced 
proportionately. It also means, of course, adding more processing nodes into the hardware, which is 
a problem in itself. Even the required reduction of Tt is expected to be a problem, as the application 
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that would use the proposed hardware for accelerating its trajectory cost calculation, would ideally 
prefer to not have to change its own throughput with the changes in map division granularity, which 
may be required for proper accuracy of the cost computation.

The afore-mentioned two problems (modifying hardware and modifying application throughput) 
associated with the proposed hardware structure can be solved by allowing multiple map segments 
to be mapped onto the same processing node. An intelligent and simple way of achieving this, while 
maintaining the desirable quality of keeping all communications local, is by introducing the concept 
of logically folding the map, as explained below.

1.3.1 Map Folding
The idea is to define a “logical folding” of the map along each axis as shown on Figure 2 when 
defining  the  mapping  of  map  segments  to  the  processing  nodes.  In  this  scheme,  all  the  map 
segments that end up coinciding after the folding, are mapped on to the same processing node. For 
example, if there are 12 map segments (0...11) along the X-axis, and if only 2 folding layers are 
used  along  this  axis,  then  the  map  segments  (0...5)  coincide  on  (11...6)  respectively,  and  the 
processing array requires only 6 nodes along the X-axis, where node 0 processes map segments 0 
and 11, node 1 processes map segments 1 and 10, etc. The same map may be folded along the X-
axis using 3 folding layers, and then, map segments (0...3), (7...4) and (8...11) coincide respectively. 
It requires a processing array of 4 nodes along the X-axis, where node 0 processes map segments 0, 
7 and 8; node 1 processes map segments 1, 6 and 9, and so on. The same idea is applicable also  
along the Y-axis. Thus, a 12x12 map after folding with 3x3 layers (i.e. 3 layers due to folding along 
X-axis and 3 layers due to folding along Y-axis, yielding total 9 layers) will have map segments 
(0,0), (0,7), (0,8), (7,0), (7,7), (7,8), (8,0), (8,7) and (8,8) coinciding and being processed by the 
processing node (0,0) in a processing array of size 4x4. The folding does not change the logical 
representation of the map, map data or the trajectories. It only modifies the mapping of the map 
segments onto the processing nodes, the mapping thus becoming many-to-one.

This mapping mechanism ensures that different map resolutions and map sizes may be computed 
using the same processing array. It also ensures that the map segments which are neighbors on the 
map, are mapped either onto the same or neighboring processing nodes, preserving the property that 
all communications in the hardware are local. This also ensures that increasing map resolution (i.e. 
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along both axes – the green map segments all map to the same processing node. 



allowing finer division) would increase the packet latency in the hardware, allowing the application 
to increase the interval between the packets it launches to the hardware in order to maintain the 
same level of loading. This relaxes the timing requirements on the application and should be easier 
to implement. If the application needs to be made oblivious of the resolution change, that may also 
be achieved by using a hardware “packet launching” mechanism, that can take care of this, instead 
of the application. But this has to be decided on the basis of specific system requirements on a case 
by case basis, and is thus not considered further in this work.

1.3.2 Processing Nodes
As explained  before,  the  NoC fabric  connects  the  processing  nodes,  that  perform at  least  two 
important tasks – the cost computation, as well as routing calculation, determining in which of the 
four possible directions each packet has to be routed from the present node. The routing calculation 
algorithm is expected to be fixed, allowing a packet to follow a path in the processing array, that 
traces  the  trajectory  in  the  map  specified  by  the  packet's  via-list.  Thus  it  can  possibly  be 
implemented as a hardware component. However, the cost computation must be reconfigurable, 
with many different kinds of possible operations, including but not limited to the ones explained in 
the Section 1.1. In order to ensure the best reconfigurability, the cost computation algorithm is best 
implemented as a software running on a small microprocessor. These calculations also require the 
length, and possibly the direction of the trajectory in the present map segment. These data can be 
computed as byproducts of the routing calculation. Hence, the cost computation and the routing 
computation are expected to be quite closely related. So, it is decided, as an initial design decision  
to implement both of them in software running in the present processing node. Therefore, every 
processing  node  may  be  thought  of  consisting  of  a  communication  node,  that  handles  the 
communication requirements of the NoC, and a microprocessor, which performs the routing and 
cost computations.

1.4 Methodology
The outline of the basic concepts described so far was available as a part of the project proposal,  
including the key algorithmic concept of map folding. The ultimate aim of the work was to study 
the  proposed  hardware  solution  in  further  detail,  and  implement  it.  The  work  would  have  a 
hardware design in RTL, and possibly a prototype in FPGA as its final result. Additionally, it would 
be useful to develop an example application, that can use this hardware as a hardware accelerator to 
accelerate  its  trajectory cost  computations  while  exploiting the hardware optimally,  in  order  to 
evaluate and demonstrate the efficacy of the design.

In order to smoothen the design of the “hardware accelerator”, i.e. the hardware processing node 
array connected through a NoC as described above, the hardware-software co-design approach was 
followed,  in  which  the  accelerator  system  was  first  modeled  in  SystemC  including  both  the 
hardware structure as well as the software to be run on the microprocessor in each processing node. 
The data gathered from the simulations of this model would be used in two ways. Firstly, an even 
higher level design would be developed in C-language that models a system comprising an external 
application and the hardware accelerator. This design can be simulated to understand the mutual 
influences  between  the  application  and  the  accelerator  designs,  whereby  constraints  can  be 
formulated  for  future  application  designs  and  requirements  can  be  generated  for  the  hardware 
design.  Secondly,  the  micro-architecture  of  the  hardware  accelerator,  consisting  of  the 
communication infrastructure (NoC and communication nodes) and the algorithm to compute both 
cost and routing, implemented as a software running on a processor, as described in Section 1.3.2,  
would be worked out, and both hardware and the software components of it would be designed and 
implemented.  Each  of  these  tasks  again  involve  further  partitioning  and  micro-architecture 
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definition,  implementation,  verification  and  performance  evaluation.  The  designs  are  different 
levels of abstraction are also mutually interdependent. Simulations of the higher level models help 
evaluate architecture level decisions, while data received from the evaluation of the lower level 
models help to fine-tune the higher-level models. Thus, the whole design involves intimated feed-
back between the three levels of abstraction used (high-level C model, SystemC model, HW/SW 
implementation), and may potentially involve some iterations because of that. The whole scope of 
the work can be described in a graphical format as on Figure 3.

1.5 Present Contributions
The previous section describes the different stages of the whole project. In the previous semester 
(Autumn 2013), the main activity was to define and simulate the SystemC model (marked in green 
on Figure 3) to evaluate the hardware accelerator. The relevant findings from this work will be 
summarized in Chapter 2. The main activities in the present semester (Spring 2014) have been:

1. the development  of  the high level  C-model  consisting of  an example application  and a 
model of the hardware accelerator and simulating it to evaluate the system, and
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Figure 3: Scope of work in the whole project from system definition to HW/SW. The fields in blue 
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2. the development and implementation of the communication infrastructure in RTL.

These have been marked in blue on Figure 3. The details of the contributions made in the present 
semester will be described in the Chapters 3-8, as listed below:

• Chapter  3  describes  the  motivation  and preparation behind the choice of  the high level 
application, supported by extensive literature survey.

• Chapter  4  describes  the  development  of  the  high  level  C  model,  including  both  an 
application and a model of the hardware accelerator.

• Chapter 5 describes the evaluation of the system, both through simulating the high level C 
model, as well as the SystemC model developed last semester and described in Chapter 2.

• Chapter 6 describes the hardware architecture of the accelerator, clearly distinguishing the 
communication infrastructure from the processor, and then describes the micro-architecture 
of the communication infrastructure in detail. This has been implemented in Verilog RTL.

• Chapter 7 outlines the verification strategy of the hardware. All the described test-cases have 
been implemented in Verilog testbenches and used to unit-test the design. However, only 
completely directed testing was used, and thus the coverage is expected to be low. But it 
provides a comprehensive description of the various functional requirements to be satisfied, 
and guidelines for  testcases  to  test  them. This  can be easily  developed to execute fully 
fledged verification.

• Chapter 8 describes the performance analysis of the design through synthesis and timing.

Thus, in this semester, on one hand, the high level C model has developed and simulated, and on the 
other the complete hardware for the communication infrastructure has been implemented in Verilog 
and evaluated for performance, and unit-tested to ensure that it is free of obvious bugs. But it cannot 
yet be certified as completely bug-free as the verification was not comprehensive.

The next chapters summarize and discuss the findings from the previous chapters (Chapter 9) and 
discuss the possible direction of future work (Chapter 10) to finish the project by completing the 
verification  of  the  hardware  implemented  this  semester,  by  designing  and  implementing  the 
processor  (if  not  using  a  standard  processor  off-the-shelf),  by  implementing  the  software,  and 
finally  by prototyping the  whole  HW/SW of the  accelerator  on an FPGA. These could  not  be 
attempted in this semester due to paucity of time, though Section 6.3 does provide a brief guideline 
for the software development, and synthesizable RTL for the communication infrastructure has been 
developed, and is ready to be used in prototyping.
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Chapter 2

2. Previous Work
As preparation for implementing the hardware accelerator proposed in Chapter 1, a top level system 
architecture was first worked out and modeled in SystemC and simulated in order to evaluate its 
feasibility  and  quality  in  terms  of  various  system  performance  parameters.  This  activity  was 
executed during the autumn semester 2013, and [11] is the project report for it. Some of the work in 
the present  semester  (spring 2014),  to  be described in  the present  document,  uses  the findings 
reported in [11] as its starting point and design constraints. Hence, the relevant findings and design 
decisions described in [11] are being summarized and catalogued with proper references in this 
chapter, so as to place the present activity in its proper context.

2.1 Communication Infrastructure
As  described  in  Chapter  1,  the  hardware  accelerator  is  made  up  of  a  2-dimensional  grid  of  
“processing nodes”,  connected to each other through a network-on-chip,  where each processing 
node is associated to one or a set of “map segments” and performs the trajectory cost calculation for 
that/those  specific  segment(s).  Refer  to  Figure  4.  Each  trajectory  cost  calculation  problem  is 
represented by a packet (called flight trajectory record, FTR) that is passed along the processing 
array in the required order, while each node incrementally adds its contribution of the cost to the 
packet, and the calculation finishes when the packet reaches its destination.

The map folding strategy described in Section 1.3.1 implies that a processing node at the edge of 
the processing array may be associated to multiple neighboring map segments. When a trajectory 
passes  between  such map  segments,  the  “looped  back  interconnects”  as  shown above  may  be 
utilized to route the corresponding computation packet from the corresponding processing node 
back to itself.
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CNW Routing

The network-on-chip involved in thus transporting the FTR packets has been termed “computation 
network” (CNW). As is clear from Section 1.3.1, the mapping of the “terrain data map” onto the 
processing array is performed in such a fashion that any pair of neighboring map segments either 
map onto the same processing node, or onto a pair of neighboring processing nodes. Also, because 
the  trajectories  are  assumed  to  be  continuous,  it  follows  that  all  packet  exchanges  are  limited 
between neighboring processing nodes. However, when a trajectory enters as well as exits a map 
segment very close to one of its vertices (or when the trajectory passes from one segment to one of 
its diagonally neighboring segments exactly through their common vertex), the calculation may be 
somewhat sped up by routing the corresponding packet  diagonally and accepting a cruder cost 
approximation  of  the  short  omitted  segment  using  the  cost  function  of  one  of  its  computing 
neighbors.  The  support  of  “diagonal  routing”  introduces  some  cases  where  the  inter-node 
communication is no more local, rather goes through the intermediary of exactly one node, which is 
a neighbor to both the source node and the diagonally located destination node. To make things 
easier, the switching mechanism in this case has been taken to be “store-and-forward” (SAF).

CNW Deadlock Resolution

It is to be notes, however, that the trajectories may involve any kind of turns and twists, thus making 
it  imperative that the CNW be able to route packets in all  possible directions. As explained in 
Sections 2.5 and 4.1.3 in [11], this is expected to lead to unavoidable deadlock situations in the 
network. Hence, a deadlock-resolution strategy was developed to solve this problem. The strategy is 
based on a deadlock-timeout counting. Each time a processing node tries to pass on a packet to its 
next neighbor, it initiates a timeout counter, and if the packet cannot be successfully sent out within 
this period, a deadlock is assumed to have been detected, and the corresponding packet is “dropped” 
from processing.  If  the  external  application  requires,  it  can  relaunch  the  computation  of  those 
“dropped” packets later on. But in order for this to happen, the external application needs to be 
informed  of  the  identity  of  the  dropped  packets.  Therefore,  a  mechanism  is  required  for  a 
processing  node  to  communicate  this  information  outside  the  hardware  accelerator,  when  it  is 
already facing  a  deadlock in  the  CNW. In order  for  this  to  happen reliably,  a  secondary  low-
bandwidth  deadlock-free  network-on-chip,  called  the  “injection-ejection  network”  (IENW) was 
envisioned to connect all the nodes in addition to CNW.

IENW

IENW doubles  in  for  transporting  the  FTR  packets  from  the  external  application  to  the  first 
processing node inside the hardware accelerator, and also from the last node out of the hardware 
back to the application. Different possible topologies for IENW were discussed and compared in 
Section 4.2 in [11]. During the course of the work in the present semester, however, a quite different 
topology was developed and implemented as described in  Section 6.2/Figure 35 of  the present 
document. All in all, however, the existence of the IENW ensures that all packets launched by the 
external application reaches the respective first  processing node,  and all  packets  ejected by the 
hardware, whether because of a detected deadlock or because the computation was finished for it, 
are transported back to the application. As explained above, the IENW was, however, expected to 
be simple and low-bandwidth,  and thus occupied a lower priority  in the design task.  Thus the 
SystemC model developed in last semester did not try to model it accurately, and instead used a 
very simple replacement as described in Section 6.2/Figure 14 of [11], concentrating instead on 
modeling the CNW and the processing nodes.
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2.2 Processing Node Hardware
The basic  structure  of  the  processing  node  was  taken to  be  made up of  the  logic  required  to 
communicate over CNW and IENW, as well as the logic required to execute the cost calculation. 
Thus the basic logical structure of the node was envisioned as below on Figure 5, where FIFO's 
were instantiated on the CNW output interfaces. FIFO's could alternatively be instantiated on the 
input interfaces.

RAM Optimization

A direct hardware implementation of this architecture is, however, deemed to be inefficient in terms 
of memory usage, especially if targeting an FPGA implementation, as each FIFO needs its own 
associated  memory,  but  FPGA's  only  have  a  limited  number  of  block  RAM's  to  efficiently 
implement that. Thus, it was decided to merge the RAM's of the FIFO's as well as the data memory 
of the processor into one physical dual port RAM. This way, the required number of RAM's per 
processing node is minimized. At the same time, this also eliminated any requirement of copying 
the FTR data from the FIFO's into the processor data memory. However, it was noticed that this is 
much easier to implement if the FIFO's are instantiated on the input CNW/IENW interface rather 
than  the  output  interface,  because  the  knowledge  of  the  correct  output  interface  for  a  packet 
presupposes the completion of the local routing calculation, which may actually be performed by 
the processor, and thus requiring the storage of the packet in the data memory. If the FIFO's are 
placed on the output, then the packet will need to be copied into the correct FIFO (which may share 
the same memory, but will likely have its own separate address space) after the completion of the 
routing calculations, thus introducing extra delay. If the FIFO's are introduced on the inputs, on the 
other hand, then there is no such copying involved. The sharing of memory among different FIFO's, 
however, can be achieved only at the expense of a reduced data transfer rate, as only one FIFO can 
be read/written in any clock-cycle, thus giving rise to a TDMA-like scheduling of the RAM access 
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for the different FIFO's. This was, however, expected to be a reasonable limitation, because the data 
availability rate is expected to be determined by the much lower throughput of the processor, which 
is  required  to  perform fairly  complex  tasks  of  arbitration,  routing,  cost  computation,  etc.  The 
resultant micro-architecture of the processing node (ignoring the difference between IENW and 
CNW) is shown on Figure 6 below.

The “TDMA scheduler+FIFO logic” block interfaces with the input CNW/IENW ports and writes 
the  incoming packets  into  the  dual  port  RAM, implementing  the  FIFO's.  It  also reads  out  the  
packets and sends them to the send-module on request, in order for the packets to be sent out to the 
next  downstream node  or  to  be  ejected  through  the  IENW.  The  processor  can  manipulate  the 
packets in situ inside the dual port RAM, to be implemented as a block RAM, in case of an FPGA 
implementation.  The  “Receive  List”  data-structure  is  used  by the  FIFO-Logic  to  communicate 
availability of packets in the FIFO to the processor. Similarly, the “Send List” data-structure is used 
by the processor to communicate the completion of computation of a packet to the Send-Module, 
which can then try to send out the completed packet. This design, after some minor modifications, 
has been used as a starting point for further development and implementation of the hardware in the 
present semester, as has been explained in Chapter 6.

2.3 Communication Protocols
Packet level protocols for the communication were also worked out in the work described in [11]. 
As described in Section 5.2 of [11], two kinds of packets were planned for – Virtual Map Records 
(VMR) and Flight Trajectory Records (FTR). VMR is used to load the map data into the processing 
nodes,  whereas  FTR is  used  to  represent  a  trajectory  in  the  map,  and  is  manipulated  by  the 
processing array to compute the associated cost. A list of the required fields in these packets has 
been presented in the afore-mentioned section. These structures have been found to be adequate 
during the work performed in this semester, but a couple of restrictions have been imposed on them:

1. The least significant 2 bytes of the 2nd (4 byte-)word of an FTR has to be the num_via (i.e.  
via-list size) field.
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2. The hardware treats VMR packets the same way as FTR's. Hence, the least significant 2 
bytes of the 2nd (4 byte-)word of a VMR packet has to equal the size of the packet in words  
minus the size of FTR header in words, allowing the hardware to calculate the packet size 
correctly.

Apart from the packet structure, a routing calculation algorithm was also developed, and presented 
in Section 4.1.4 of [11] for CNW.

2.4 Modeling and Simulation
The design described above was modeled in SystemC, as described in Chapter 6 of [11]. Some 
simplifications  were  made  for  the  ease  of  implementation,  when  they  were  not  expected  to 
influence the system behavior significantly, e.g. the IENW was implemented as two rooted trees of 
height 1, and the FIFO's were instantiated between the processing nodes, instead of inside as the 
connecting elements. The resultant structure is shown on Figure 7.

This model was used to thoroughly evaluate many performance parameters of the system, and the 
results  have  been presented  in  Chapter  7  of  [11].  The results  were  consistent  with  the  design 
expectations, including the fact that the folding concept introduced in Section 1.3.1 does ensure 
good utilization of the hardware resources when computing costs of random trajectories. Some of 
the important characteristics of the system as designed and validated by simulation are as follows:

1. When the incoming packet characteristics (e.g. trajectory length, number of via points, etc.) 
remain statistically stable (e.g. when the packets are completely random), the system seems 
to have a maximum supported throughput. When packets are fed in at a higher rate than that, 
many  packets  are  ejected  to  approximately  maintain  this  saturation  throughput  of 
successfully computed output packets (Figure 18 of [11]). So the hardware may be thought 
of as behaving statistically like a pipeline with initiation interval given by this saturation 
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throughput.

2. It is hard to predict the computation latency of an individual packet inside the hardware, as it 
depends on factors like presence and number of other packets in the different nodes it visits,  
and whether they have arbitration and routing conflicts with this packet, etc. However, the 
latency also includes a trajectory-length dependent component, which is easier to estimate.

3. Because  of  the  unpredictable  latency,  and  also  because  the  time  interval  between  the 
incoming packets is usually much smaller than the average latency (in order to exploit the 
“pipelining”  effect  described  above),  the  order  of  completion  of  packet  computation  is 
unpredictable.

4. Not all packets that are launched for computation may finish successfully. Some may be 
“dropped”/“ejected”  in  order  to  solve  possible  CNW deadlocks,  as  described  above  in 
Section  2.1.  As  expected,  the  packet  dropping  becomes  significant  when  the  input 
throughput exceeds the maximum supported throughput, and statistically increases linearly 
after that.

Any application  that  would use the  proposed hardware as  an accelerator  for  its  trajectory  cost 
calculations must be aware of and accommodate this system behavior.

2.5 Conclusion
It can be concluded that the work from the last semester (autumn 2013) led to a good high level 
understanding of  the expected  behavior  of  the  design under  development,  and it  also provided 
guidelines to further work. While a significant part of the design work has been further developed 
leading to the hardware implementation in RTL in this semester (Chapter 6), it has also been used to 
develop a higher level C-model, with help from additional SystemC simulations (Section 5.2) to 
help in developing and evaluating an application (Chapter 4). The following Chapters 3-5 provide 
an  overview  of  what  kinds  of  applications  may  possibly  use  the  proposed  hardware  as  an 
accelerator, describe a simple application, explain the motivation behind it, and demonstrate that it 
is indeed possible to use the proposed hardware efficiently with a carefully designed application. 
This exercise provides useful data about factors to be considered in both application development as 
well  as  hardware  development.  Chapters  6-8,  on  the  other  hand,  describe  a  hardware 
implementation based on the findings of last semester as explained in this chapter, as well as with 
guidance from the application development. Hence the present work may legitimately be viewed as 
the continuation of the work done last semester and described in [11]. 

14



Chapter 3

3. Application: Theory and Research
As explained in Chapter 1, the system under consideration is envisioned to be used as a hardware 
accelerator for computing trajectory costs over a 2-dimensional domain. Evidently, such a hardware 
will be useful to speed up applications which require computation of many 2D trajectory costs. One 
obvious application would be the determination of the optimal trajectory between two points on a 
map under different constraints and cost functions using heuristics that need to evaluate the costs of 
many different trajectories. The literature was surveyed to find out the state-of-the-art techniques in 
the relevant field of motion and trajectory planning, Cf. [1] – [10].

3.1 Motion and Trajectory Planning
Motion and trajectory planning, as discussed in [1], is a vast field of investigation with numerous 
practical  applications,  e.g.  finding  the  best  or  a  feasible  trajectory  between  two  points  on  a 
geographical 2D map under different constraints. The quality of the trajectory may be decided, e.g. 
by its length, or the time consumed to traverse it by a given vehicle, or the energy expended in 
doing so, etc. The constraints may be environmental, e.g. the terrain may have obstacles, or it may 
derive from the degrees of freedom of movement, the body under motion possesses, e.g. human 
beings can control their speed and direction of motion in all possible directions on a 2-D surface, 
i.e. they have 2 degrees of freedom of translational motion – along the two perpendicular Cartesian 
axes on the 2-D surface, and 1 degree of freedom of rotational motion around the axis perpendicular 
to the surface. A car, on the other hand, can only accelerate or decelerate along the front-rear axis, 
and turn left-right around the vertical axis, and thus has 2 degrees of freedom. These two kinds of 
planning problems are described respectively as holonomic – having full control over motion in all 
directions – and nonholonomic problems, which concern less controllable bodies or vehicles. In 
either case, the motion (i.e. speed or direction) of a moving body can be altered in a specific way by 
applying a specific “control input” (e.g. turning the steering wheel or stepping on the gas or brake  
pedal of a car) for a specified amount of time. The solution of a motion planning problem is thus 
given by an ordered set of {control input, duration} pairs. In order to optimize a trajectory, it is 
often required to first solve a feasible motion planning problem, and then use trajectory planning 
techniques to optimize the resulting trajectory.

[2]  proposes  an  efficient  algorithm  for  finding  a  feasible  solution  to  a  nonholonomic  motion 
planning problem. Explained in terms of a geographical terrain, the problem is to find a feasible 
trajectory for a nonholonomic body to move from one point to another on a 2-D surface under 
environmental constraints like obstacles. The heuristics first divides up the terrain coarsely into a 
rectangular grid of subsections, and searches for a feasible trajectory from the given start point, 
assuming that the control input changes at most one time in every map segment. It builds a search 
tree using constrained depth-first search (i.e. the depth difference between the search tree leaves is 
below a specified constraint at all points) while satisfying all nonholonomic constraints. The terrain 
divisions are made finer in stages, i.e. control inputs are allowed to change more frequently, if it is 
necesary to find a solution. This approach finds feasible, but not optimal, trajectories as can be seen 
on Figure 8.
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3.2 Trajectory Optimization Problems
Some optimal trajectory planning problems have been discussed in [3]–[6]. [3] presents a detailed 
modeling of radar cross sections of unmanned aerial vehicles (UAV), hostile air defense systems 
involving RADARs and surface-to-air missiles (SAM), and aircraft controls. It then goes on to plan 
the motion and the trajectory of such a UAV that has to fly into an area under air defense coverage 
with  known RADAR locations  and  go  from one given  point  to  another,  while  minimizing  its 
probability of getting shot down. The UAV may have other “mission tasks” specified as a list of fly-
by points along with the times of arrival at those points. The algorithm characterizes the location 
and movement of the UAV on the map as either unthreatened or threatened, and tries to minimize 
the time spent under high threat.

[6] describes another military application where the task is to plan the motion of a UAV to follow a 
target while there are threats from known RADAR locations on the map. The proposed algorithm 
tries to keep the UAV within a defined proximity radius of the target as long as possible. Under 
some circumstances, e.g. in order to avoid some threat on the map, it may have to move so far away 
from the target that its sensors cannot track the target any more. In such cases it tries to estimate the 
trajectory of the target and tries to meet it at a point on this estimated trajectory in future. If the  
target remains undetected for a specified time-out, the UAV returns to base avoiding the threats. 
This involves an online alogirthm with dynamic inputs about the target's motion, as well as changes 
in the threat map.

[4] presents another UAV motion planning problem, but now for reconnaissance missions without 
threat. It has to photograph some given targets in a terrain. Assuming that the UAV always flies on a 
plain at constant altitude, the areas on this plain from where various targets are photographable are 
polygons, as the terrain may hide the objects from specific locations. The algorithm proposes a way 
to find out the optimal trajectory to visit all the polygons and then come back to the initial point.  
This  is  a  variant  of  the  traveling  salesman problem,  called  Polygon-Visiting  Dubin's  Traveling 
Salesman Problem, where the UAV has been modeled as Dubin's vehicle, i.e. a vehicle that only 
goes forward and turns left/right in an arc. An illustrative solution for such a problem, as computed 
by a genetic algorithm is shown below:
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Figure  8:  Example solution trajectory for a feasible  nonholonomic motion planning  
problem in 2-D under presence of obstacles. Ref [2]



[5]  discusses  a  general  aircraft  trajectory  optimization  problem,  relevant  to  both  military  and 
civilian applications. It provides a detailed 6 degrees of freedom (DOF) aircraft motion model, viz. 
translation along the 3 Cartesian axes and rotations around them, with a 4-DOF control model: 
throttle (1-axis translation), and elevator,  aileron and rudder providing control on the 3 rotation 
axes. It  then determines a point to point trajectory on a given terrain to optimize one of the 3 
parameters (or a linear combination of them): minimize time of flight, minimize energy expended in 
flight or maximize time within a given elevation over the terrain – the last one is motivated by 
requirements to avoid detection by RADAR. There may or may not be threats present on the map. 
Figure 10 presents two example solutions found for a purely time-optimization problem using this 
algorithm but two different optimization heuristics:
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Figure  10: Example solution trajectories for a flight time optimization problem for an airplane  
flying over a 3-D terrain – using two different optimization heuristics – PSO-SQP and DE-SQP. Ref  
[5]

Figure 9: Example solution for finding the shortest trajectory of a Dubin's vehicle visiting all the  
green polygons and coming back to its source – as computed by a genetic algorithm. Ref [4].



The algorithms in [3]–[5] can be regarded generally as composed of a system model, a formulation 
of the problem as a static motion optimization problem on a known map, and then executing the 
optimization.  Different  papers  employ  different  optimization  algorithms,  e.g.  [3]  uses  Matlab 
fminimax() function, [4] uses a genetic algorithm, and [5] uses a number of advanced optimization 
algorithms, e.g. Particle Swarm Optimization – Sequential Quadratic Programming (PSO-SQP) and 
Differential  Evolution  –  Sequential  Quadratic  Programming  (DE-SQP)  combinations.  [6]  also 
involves the similar setup of modeling, stating the optimization problem and applying optimization. 
While  modeling  and  problem  statement  is  a  design  decision  for  all  of  these  algorithms,  the 
optimization has to be run for each problem configuration, and in case of [6] it has to be done on-
line in  real  time in a  possibly changing threat  map.  This  means,  it  is  crucial  to accelerate  the 
optimization process to make the implementation of these algorithms feasible. The optimization 
problems generally involve evaluating the cost or fitness of many different trajectories. Thus it is 
expected that it is useful to design a hardware accelerator that can parallelize and speed up this cost 
calculation, and the proposed hardware in the present work may indeed fill in this requirement.

3.3 Parallelization of Optimization Algorithms
One key factor that influences the performance of such a hardware accelerator is the degree of  
parallelizability of the implemented optimization algorithm itself. Two well-known and widely used 
optimization algorithms are simulated annealing (SA) and genetic algorithms (GA), the latter one 
has in fact been used in [4]. In order to find out a practical application suitable for the hardware 
under development, the literature was surveyed to find out ways to parallelize these algorithms.

3.3.1 Genetic Algorithm
Genetic algorithm (GA) is  an iterative optimization heuristic based on the principles of natural 
selection and biological evolution. In case of biological organisms, the principle of natural selection 
states that in each generation, the fitter individuals have higher reproductive success and pass on 
their genes, and thus tend to produce a fitter next generation, where the fitness is evaluated with 
respect to the environment the population lives in. Thus, it is expected that after the elapse of an 
appropriate  number of  generations,  the population contains  individuals  very close to  the  fittest 
possible organisms for that particular ecological environment. In terms of the general optimization 
problem, the fitness to the environment is emulated by a fitness function of a candidate solution, 
which  acts  as  the  analogue  of  an  individual  organism.  Just  like  in  the  case  of  the  biological 
population,  the  evolution progresses by deriving new generations of a population of candidate 
solutions.  Each  solution  is  encoded  as  a  “chromosome”  containing  multiple  “genes”.  The 
reproductive success of the organisms is paralleled by a “parent selection strategy”,  and sexual 
reproduction is  imitated by a  cross-over  operation,  akin to  the same phenomenon in biological 
meiosis cell division, that generates the gametes, the basic cells involved in sexual reproduction. In 
more concrete terms, in genetic algorithm, the cross-over is applied on two “parent” chromosomes 
to  derive  two  “child”  chromosomes  by  exchanging  some  genes  between  the  two  parent 
chromosomes. Biological mutation may also be emulated in the GA by inducing small perturbations 
in the chromosome structure. The algorithm can also incorporate other optional operations.

[7] provides a general survey of various parallel GA implementations. It divides them into 3 main 
groups:

1. Single population master-slave: A “master” process maintains the population of solutions 
globally  and  perform  the  genetic  operations  on  them,  e.g.  cross-over  and  mutation. 
However,  the evaluation of  the fitness of different  solutions  is  distributed over multiple 
parallel processes.
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2. Single population fine grained: There is a global population, but each process treats only 
one  (or  a  small  number  of)  individual  solutions,  and  there  is  no  global  master.  The 
individuals are assumed to be connected with each other through a topology in a connected 
graph  –  usually  same  as  the  connection  topology  of  the  parallel  computer,  that  the 
computation is running on. Parent selection and cross-over are localized, i.e. each process 
can only interact with its neighbours.

3. Multiple  population  coarse  grained: In  this  approach,  each  process  treats  a  separate 
population,  and  applies  GA on  it  independently  to  evolve  it.  Only  occasionally,  some 
individuals “migrate” between the processes allowing exchange of information among them.

It can be observed that if an application is developed that uses GA to optimize 2-D trajectories, then 
the  hardware  structure  proposed  in  Chapters  1  and  2  can  be used  to  accelerate  any  of  these 
parallelization approaches, as long as the hardware is used only to accelerate the computation of the 
fitness of the candidate solutions.

3.3.2 Simulated Annealing
Simulated  annealing  is  another  popular  iterative  optimization  heuristics,  based  on the  physical 
phenomenon of annealing in metals. This involves heating the material to a temperature above a 
critical temperature and then cooling it slowly so that the crystal structure inside always remains at 
thermal  equilibrium.  When the  metal  is  thus  brought  to  room temperature,  its  crystal  structure 
assumes the lowest possible energy state, being the most regular possible, avoiding internal stress 
and lattice defects. This process is paralleled in the domain of general optimization algorithms by 
drawing an analogue of the general solution quality function to the physical energy function, and by 
defining  a  gradually  diminishing temperature  at  each  iteration  which  determines  the  degree  of 
acceptable “disorder” in the solution. In each iteration, the present solution is slightly perturbed and 
its energy-function is evaluated. This is accepted as the new solution if it has a lower energy than 
the  previous  solution.  Even  if  its  energy  is  higher,  it  may  still  be  accepted  probabilistically, 
depending on the exact amount of energy increase and the iteration-temperature (i.e. acceptable 
degree of disorder). Smaller increases have higher probability of being accepted if the iteration 
temperature remains fixed, and higher iteration temperature allows higher probability of acceptance 
when the  energy-increase  is  same.  The basic  algorithm is  completely  specified  by  defining  an 
energy function, a cooling schedule and an acceptance criterion. The last is often defined as an 
exponential function producing the probability of acceptance (PA) of a new solution as

PA = 1 if M >1
= M otherwise

where M =e(−Δ E /T )

Δ E= Increment of energy
T= Iteration temperature

 

[8]  discusses  some strategies  to  parallelize  simulated  annealing  (SA).  This  paper  proposes  the 
following approaches:

1. Asynchronous (AS): This is  parallelization of the multi-start  approach, i.e.  independent 
runs of the SA algorithm with different random initial solutions are executed in parallel by 
multiple processes, and the best solution is chosen at the end.

2. Synchronous with occasional solution exchange (SOS): Similar to AS, but after  some 
specified number of iterations, all the solutions are gathered by a master process, and some 
genetic operations (e.g. cross-over) and selection are applied on them to form a new solution 
population,  and  SA is  again  applied  on  them in  a  distributed  manner  for  the  specified 
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number of iterations, before gathering the population in the master again and repeating the 
process.  The  annealing  temperature  is  globally  managed  at  each  synchronization  at  the 
master. This approach is a combination of SA and GA.

3. Synchronous with occasional enforcement of best solution – fixed interval (SOEB-F): 
In this approach, all processes start with the same random initial solution and temperature. 
Like in SOS, all the results are gathered by a master after a specified number of iterations in  
each  process,  and  then  the  best  solution  from the  population  is  chosen  for  further  SA 
iterations to be done parallelly on the distributed processes. The temperature is controlled 
globally at each synchronization step, like in SOS.

4. Synchronous with occasional enforcement of best solution – varying interval (SOEB-
V): Like SOEB-F, all processes start with the same initial condition and temperature, and 
apply the SA algorithm independently. However, each process controls its own annealing 
temperature,  and  communicates  its  result  to  the  master  when  a  specified  temperature 
reduction  has  been  achieved.  When  the  master  has  received  results  from  all  parallel 
processes, it chooses the best one from them and broadcasts it to all processes for further  
processing till all of them reach the next temperature target. The process is repeated. In this 
process, all the processes are synchronized when they are at the same temperature.

5. Highly coupled synchronous approach (HCS): All processes start with the same random 
initial solution and the same temperature. The results are reported back to the master after 
each iteration in each process. Additionally, each process is allowed to perturb only one 
axis/variable of the solution in each iteration. The master then chooses the best solution after 
perturbation,  and  integrates  other  less  performing  perturbations  into  it  as  long  as  that 
improves  the  solution.  Then,  each  process  receives  this  composite  solution  and gets  an 
axis/variable  specified,  on which  to  perform the  perturbation  in  the  next  iteration.  This 
approach has a very high communication overhead on a traditional parallel computer.

6. Modified  highly  coupled  synchronous  approach  (MHCS): In  order  to  reduce  the 
communication overhead in HCS, the synchronization/merging of solutions is  performed 
only at an interval of a specified number of iterations, yielding the MHCS algorithm.

These methods are then benchmarked in [8] with respect to a standard suit of test functions. MHCS 
was found to be the best performing in terms of speed and quality of result  for most kinds of 
problems. AS was found to be the usually the worst performing.

[9] proposed two parallel SA implementations. The first of them, viz. “Clustering algorithm” is in  
essence same as the SOEB-F from [8], except that the initial solutions for the different processes are 
different.  The second algorithm is  called  “Genetic  clustering  algorithm”,  and it  uses  a  genetic 
algorithm to find a population of good solutions, which are then used as the initial solution for the 
“clustering algorithm” mentioned above.

[10] is a highly theoretical paper that explores the Markov process based optimization heuristics, 
e.g.  SA and GA,  and explores  their  relationships.  It  proposes  a  “Parallel  simulated  annealing” 
algorithm by performing the perturbations in parallel and then choosing the best among them using 
an acceptance probability.  This  seems similar  to  SOEB algorithms from [8],  assuming that  the 
synchronization  is  performed  after  every  iteration.  The  paper  then  introduces  the  “Massively 
parallel simulated annealing”. This is exactly same as the AS algorithm from [8]. This algorithm is  
then extended by defining a “parallel neighbourhood model”, where the processes are assumed to 
be connected to each other in a defined topology in a connected graph like in the case of “single  
population fine grained” parallel GA described in [7]. A “parallel neighborhood algorithm” has been 
defined on this topology that allows interaction between the neighboring processes, just like in the 
corresponding GA schemes, allowing improvement of the solution population as a whole.
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3.4 Different Implementation Options
The  parallel  algorithms  described  in  [7]  – [10]  have  been  discussed  for  shared  or  distributed 
memory processors. When these approaches are applied to solve the trajectory planning problems, 
as  described  in  [3]  –  [6],  some  challenges  are  faced.  Because  a  realistic  map  of,  e.g.  terrain 
elevation, threat location, etc. is difficult to store in a compact representation (e.g. as analytical 
functions), these data are in general memory intensive. This leads to the following challenges in 
different parallelization approaches:

1. Shared memory: In case of parallel  shared memory processors (e.g.  GPU using global 
memory), though the map data may be shared, because of the parallel execution of different 
processes dealing with different trajectories, a lot of memory access conflicts are generated. 
This leads to memory bandwidth bottleneck.

2. Distributed memory: In this case, two different approaches can be taken:

(a) Data duplication: In this  approach the map data  is  duplicated in the locally  accessible 
memory of each processor.  However,  this  is  expected to be quite expensive in terms of 
memory requirements.

(b) Data fragmentation: In this approach, the map data is divided up into smaller fragments, 
each of which is stored in a small memory, local to a processor. Then the cost calculation for 
each  trajectory  can  be  accomplished  by communicating  between  these  processors,  each 
computing the cost of its local part of the trajectory. This, however, assumes that the overall 
cost of a trajectory can be determined by (linear or some other analytical) combination of 
the costs of the individual trajectory segments. This way, only one copy of the map data is 
needed to be stored, and because it is distributed in many memories, there is no memory 
bandwidth  limitations  either.  However,  this  improvement  comes at  an  increased  cost  of 
communication  between  the  processors,  which  is  expected  to  be  acceptable  as  all 
communications take place between neighbors.

It is apparent that the data duplication approach may be suitable for distributed systems with lot of 
memory  but  relatively  slow  communication,  e.g.  computing  clusters.  The  data  fragmentation 
approach would be more suitable for systems with low amount of memory, but relatively faster  
communication, e.g. a network-on-chip connecting an array of on-chip processor cores.

As explained above, all three approaches have their own advantages and disadvantages. For the off-
line  optimization  problems  described  in  [3]  –  [5],  probably  any  of  these  three  parallelization 
techniques can be applied. The on-line optimization problem, discussed in [6], however, probably 
needs an energy-efficient low-memory on-chip solution, e.g. a GPU-based (shared memory) or a 
NoC-based (fragmented distributed memory) solution. The present work aims to realize this last 
solution:  a  NoC-based  “fragmented”  distributed  memory  system  for  parallelization  of  these 
trajectory optimization problems.

3.5 Conclusion
It is apparent from the discussion in this chapter that trajectory optimization problems are one of the 
most  important  group  of  problems  with  practical  applications,  and  the  NoC-based  distributed 
hardware  proposed  in  Chapters  1  and  2  is  perfectly  placed  to  accelerate  such  computations. 
However,  the  architecture  has  some  limitations  and  specific  characteristics  which  need  to  be 
accommodated by the application to optimize the hardware usage. The next two chapters describe 
the  design  and  evaluation  of  some  such  applications,  and  demonstrates  the  usefulness  of  the 
hardware to accelerate the solution of some interesting practical problems by these applications.
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Chapter 4

4. Application: Design
One of the key steps in system design is  to estimate its  performance early in the design cycle 
through a high level model,  and demonstrate its effectiveness. The same was attempted for the 
present problem by developing a high level model incorporating both a model of the hardware 
accelerator and an application, that would exploit the capabilities of this hardware. The aim of this 
exercise is to demonstrate the feasibility and the performance of the proposed system at a high 
level,  as  well  as  to  provide  guidance  to  future  design  of  its  two  separate  components  –  the 
application and the hardware. As explained in the Chapters 1 and 2, and as justified in Section 3.4, 
the targeted hardware is a NoC based homogeneous distributed computing system, each node of 
which will run its own low level software/firmware. But at the global level, an application software 
will  run  on  an  external  master  processor,  which  is  envisioned  to  offload  the  trajectory  cost 
calculations to the NoC-based hardware accelerator. The master processor itself may be distributed 
too.  The  connection  fabric  between  the  accelerator  and  the  processor  has  to  take  care  of  the 
necessary arbitration and routing in that case.  So, the rough high-level view of the application-
hardware interaction is as shown on Figure 11:

4.1 Hardware Modeling
The hardware accelerator,  described in Chapters 1 and 2,  possesses the following properties as 
explained in Section 2.4. These require to be implemented in the high-level hardware model: 

1. Pipelined execution: This means that in order to use the hardware optimally the application 
should be able to feed trajectory cost calculation problems into the accelerator at a near 
constant rate close to the accelerator's  saturation through-put,  which may, however,  drift 
slowly during the execution.  Some variations are acceptable due to buffering of packets 
inside the hardware, but stopping and starting repeatedly after relatively short bursts of busy 
time is  inefficient.  It  also implies that  the transaction through-put,  generated by a well-
designed  application,  should  adapt  itself  to  the  changing  saturation  through-put  of  the 
hardware.

2. Weakly predictable latency: The main component of the computation latency of a packet, 
when the hardware has low load, is the product of the number of processing nodes it visits 
and the average processing time at each node. The former can be estimated by noting that 
most of the times, if a trajectory has two consecutive via-points in segments (x1, y1) and (x2, 
y2), the packet has to traverse (|x1-x2|+|y1-y2|+1) nodes to cover these points. This is also an 
exact upper limit on the quantity. The processing time at each node is somewhat harder to 

22

Figure 11: Proposed high-level design partitioning between application and hardware accelerator

External Master
Processor Executing

Application

NoC-based
Hardware

Accelerator



know as the processing software may involve many asymmetric branches,  but it  can be 
estimated within some range. On top of these quantities, there also exists latency, stemming 
from network congestion inside the accelerator, when the load on the hardware is nontrivial. 
This is hard to understand and estimate from outside. As a result, the latency of each packet 
is only weakly predictable. Thus, the packet latency may be estimated based on the list of 
via-points by deriving from it the approximate number of processing nodes visited, with a 
hardware load-dependent random overhead added to it.

3. Out of  order execution: The execution latency of  each packet  strongly depends on its 
content (e.g. the list of via points) as well as other factors (e.g. congestion). As a result, 
packets often finish execution in a different order than they were launched in.

4. Packet dropping: It is possible that some packets are dropped by the hardware because of 
network congestion, in order to resolve potential deadlocks.

The parallel  global  optimization  heuristics  described in  Section  3.3  can  be  implemented  in  an 
application, adapted to the hardware under consideration. Each individual trajectory cost or fitness 
calculation  can  be  performed  through  an  FTR  packet.  The  results  can  then  be  used  by  the 
application running the optimization algorithm on the master processor. For simplicity, it is assumed 
in the sample application that the master processor is sequential, though the accelerator hardware 
does not depend on this assumption,  as explained before.  Two different applications have been 
explored, as explained below.

4.2 Application Implementing Simulated Annealing
The  first  algorithm explored  is  based  on  the  “Asynchronous  Parallel  Simulated  Annealing”  as 
explained in Section 3.3.2. The sample problem to solve is to find the lowest cost trajectory from 
one given point to another on a 2-D map with local costs. In the beginning, the map is divided into 
rectangular grids, each grid with uniform cost in it, and this information is loaded into the hardware 
accelerator. Then the application runs two parallel threads – dispatcher and recipient, and maintains 
a “packet queue” of N number of FTR packets, and an “accounting table” containing N entries, each 
comprising the fields – present cost, temperature and associated trajectory.

Recipient thread:

1. Initially the costs and temperatures in the “accounting table” are initialized at the maximum 
possible values, and N random initial paths from point A to B – each path described by an 
FTR packet with a unique packet ID between 0 and N-1 – are generated, and they are stored 
in the “packet queue”.  Each packet with ID = k is associated with the entry in the k-th 
location  of  the  accounting  table,  and  the  corresponding  trajectory  is  also  stored  there. 
(Dispatcher thread dispatches these packets to the hardware.)

2. Then  the  thread  continually  receives  packets  from the  hardware  accelerator,  and  if  the 
packet was ejected due to congestion, puts it back into the packet queue, or else calculates 
the acceptance probability of the trajectory using the newly calculated cost as well as the 
temperature and past cost associated with this packet retrieved from the accounting table. 
Then  a  random  number  in  [0,1)  is  generated  and  compared  against  the  acceptance 
probability to determine whether this trajectory is acceptable. If accepted, the table entry is 
updated, and a perturbation is applied on the trajectory to produce a new FTR, which is then 
put into the “packet queue”. If not accepted, then the corresponding trajectory stored in the 
accounting table is retrieved and a perturbation is applied on that to produce a new FTR, 
which is then put into the packet queue. In either case, the packet ID is kept intact. This way, 
the  algorithm  is  completely  independent  of  unpredictability  of  the  packet  latency  and 
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execution order, but packet dropping will slow down the convergence rate.

3. At the end, the cost entries in the table are compared, and the trajectory with the best cost is  
chosen as the solution to the problem of finding the best trajectory.

Dispatcher thread:

1. The dispatcher thread takes a packet from the head of the packet queue after each interval of 
a specified time, as long as there is  an available packet,  and sends it  into the hardware 
accelerator  for  cost  calculation.  This  way  a  smooth  controllable  throughput  into  the 
accelerator is ensured.

These threads can be scheduled with a well-defined period, making them attractive for real time 
applications. It is possible to reduce the size of the FTR queue to a small value (~3-4) by careful 
scheduling of the recipient and dispatcher threads.

4.3 Application Implementing Genetic Algorithm
The next  algorithm considered for  implementation is  based on the “Multiple  population coarse 
grained parallel GA” approach as explained in Section 3.3.1. In this approach, M populations of N 
individual candidate trajectories are created in the master processor. The trajectories, represented by 
FTR's, are, as usual, sent in to the accelerator to calculate their cost, which then gives their fitness 
inside the respective population. As before, we need a queue of FTR's from which a dispatcher 
thread extracts packets to send into the accelerator. We need another thread that receives the packets 
from the accelerator and fills in an MxN array. Whenever one population is complete, it is evolved 
into the next generation through crossover and mutation, and occasional migration is also applied.

4.3.1 Algorithm Description
[4] describes a GA implementation to solve the optimization problem of a closed loop trajectory. 
This algorithm has been adapted here to solve a point to point trajectory optimization problem. 
Following are the different design details of the implemented algorithm:

Genetic encoding:

Each chromosome corresponds to a trajectory. Each via-point, including the start and end points, is 
a gene. The start and the end points, or equivalently the first and the last genes, are identical for all 
chromosomes. It is assumed that each chromosome (trajectory) has at least 3 and at most a user 
defined constant number of genes (via points).

Fitness value:

The fitness value of each chromosome has been defined to be the reciprocal of the corresponding 
trajectory's cost. Thus, the lower the cost, the higher the fitness.

Elitism:

Like in [4], an elitist version of GA has been used, i.e. a small number of the fittest chromosomes 
are passed to the next generation unaltered. This ensures that the fitness of the fittest chromosome 
in  the  population  can  never  go  down from one  generation  to  the  next.  The  proportion  of  the 
chromosomes thus passed on is user-defined.

Parent selection strategy:

The selection scheme is “fitness proportionate”, also known as the “roulette wheel” strategy, as 
described in [4]. In other words, the normalized fitness of a chromosome is equal to its probability 
of getting selected in any draw.
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Cross-over:

For crossover, two parents are chosen from the population of chromosomes by random draws using 
the selection strategy as explained above. It is permitted for the same chromosome to be chosen as 
both parents. Then, a cut-point is chosen for each trajectory. The cut-points in the two parents are 
aligned  and  a  cross-over  is  then  performed.  Because  the  cut-points  are  chosen  (more  or  less) 
independently for the two chromosomes, they allow for length variation in the chromosomes, or 
equivalently, variation in the number of via points in the trajectories. When choosing the via points,  
it is however ensured that no chromosome with less than 3 or more than a user-specified constant 
number of genes is generated. This strategy is very different from the one described in [4] owing to  
the fundamental difference in the chosen problem to solve.

Mutation:

Mutation is a very important part of the algorithm as it has been implemented. Two different kinds 
of mutations have been implemented:

– Gene insertion:  It  has been observed that the cross-over scheme used seems to lead to 
production  of  many  children  with  very  asymmetric  chromosome lengths,  the  longer  of 
which  tend to  have  lower  fitness  and get  eliminated  quite  early,  leading  to  an  over-all 
diminished average chromosome length in the population, as it evolves. Many a times, the 
population would thus get dominated by shorter chromosomes quite early on, even though 
they  may  not  be  globally  the  fittest.  In  order  to  counter  this  bias  towards  shorter 
chromosomes, a gene insertion mutation scheme has been developed. After crossover, the 
shorter child-chromosome is chosen, or if both the child chromosomes have the same length, 
then both are chosen. With a user-specified probability, it is decided whether to add a gene 
into them. If it is so decided, a point is selected on the corresponding trajectory uniform-
randomly,  and  a  new  via-point,  and  equivalently  a  gene,  is  created  at  that  point.  This 
mutation does not alter  the underlying physical trajectory,  but creates a new gene in its 
encoding,  which  is  now available  for  gene  mutation  as  well  as  for  the  placement  of  a 
crossover cut-point in the next generation.

– Gene mutation: After the crossover and possible gene insertion, the child chromosomes are 
chosen for mutation with a user-specified probability. If a child is so chosen, then one of the 
intermediate  via-points  (i.e.  excluding  the  start  and  end  points)  of  the  corresponding 
trajectory is chosen at random. This via-point is then set to a random point within a unit-
square around it. In case, a point thus selected falls outside the terrain under treatment, the 
nearest point on the edge of the terrain is chosen instead. This mutation scheme is loosely 
based on the “position shift” mutation strategy of [4].

Refer to Figure 12 for a pictorial explanation of the cross-over and mutation operations.

Migration:

The  algorithm  implements  a  fixed  ring  topology  of  migration.  Thus,  population  0  passes  to 
population 1, population 1 to 2, ... , population (N-1) to N and population N to 0, where (N+1) is the 
number of populations. User can, however, choose to enable or disable migration, and can control 
the exact behavior of migration by the following two parameters:

MIGR_GEN_GAP = number of generations passed between two successive migrations
MIGR_PERC = %-age of population size that is passed in each migration
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Because of re-computation of packets, which may be necessary when too many packets are dropped 
by  the  hardware,  different  populations  may  be  in  different  generations,  even  within  the  same 
application iteration. The migration strategy ignores this difference in generation, and simply uses 
the  latest  available  generation  of  the  migration  source.  The  uniform  generation  gap  of 
MIGR_GEN_GAP is maintained at the destination population. Under the unlikely event that not 
enough completed solutions are available in the present iteration in the source population (due to 
excessive  packet  ejection  because  of  deadlocks),  the  destination  population  uses  only  those 
solutions which are actually available for migration.

4.3.2 Application Design
The sample problem chosen to be solved is same as in Section 4.2, viz. to find the lowest cost 
trajectory  from  one  given  point  to  another  on  a  2-D  map  with  local  costs.  The  application 
implementing the above-mentioned algorithm is envisaged as consisting of 3 parallel threads:

– Dispatcher
– Gatherer
– Genetic operator

They communicate amongst themselves through two shared memory data structures:

– Population table (Array of arrays of chromosomes/trajectories + their costs)
– Dispatch queue (Queue of chromosomes/trajectories, whose costs have yet to be calculated)

At the  beginning of  the  execution,  Dispatcher  and Gatherer  threads  are  initiated,  and the  data 
structures are initialized to empty. Then the “Initializer” routine initializes M populations and stores 
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them into the Dispatch queue as well as population table. After that, all the threads are initiated.

Dispatcher thread:

The  Dispatcher  thread  polls  for  available  chromosome/trajectory/FTR  in  the  dispatch  queue 
periodically, and if  an FTR is available,  it  is read out of the queue and sent into the hardware 
accelerator  to  calculate  its  cost.  Ideally,  at  the steady state,  the frequency of polling should be 
matched to the saturation throughput of the hardware for the best performance.

Gatherer thread:

The Gatherer thread receives all FTR's coming from the hardware accelerator, and identifies which 
population each of them belongs to, by their packet ID. It then puts each packet into the right slot of 
the population table. Each population is assigned a specific memory area in the table, so that they 
can be accessed at random as normal arrays.

Genetic Operator thread:

1. When the genetic operator thread is idle, it tries to read from the “Population Table” the 
population, which has the current turn. The read gets blocked until the population completes 
execution in the hardware, and gets stored into the proper population table by the Gatherer 
thread. The turns are given in a predefined order (0, 1, 2, …, N, 0, 1, 2 …). After having 
read a population, the Genetic Operator thread applies the genetic operators on it to derive 
the  next  generation  for  that  population  and  writes  the  resultant  FTR's  back  into  the 
population table, as well as in the dispatch queue, except for the “elite” solutions. The costs 
of  the  elite  solutions  are  already known from the  previous  generation,  and hence  these 
packets are not needed to be recomputed, and hence not placed into the dispatch-queue. As 
explained above, the genetic operations include sorting the chromosomes with valid cost 
(i.e. packets that finished execution in the HW, and were not ejected due to deadlock) in 
order of their fitness, applying cross-over using a roulette-wheel selection strategy on them, 
applying elitism and mutation, and thereby deriving the new generation.
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Figure 13: Basic Simulation Architecture of Application. The modules enclosed by 
the dotted line are all part of the “Dispatcher” thread for the simulation purpose.
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2. The  application  is  packet-dropping  aware,  so  that  whenever  a  new  generation  of  a 
population is derived, it is derived based solely on the completed packets from the parent 
generation.  Under  the  most  drastic  packet  dropping  circumstances,  the  algorithm  can 
produce new generations if there is at least one completed packet in the first generation, and 
none later  on,  based  solely  on the  first  completed  packet  which  becomes the  sole  elite 
solution, acting as both parents for all subsequent generations. Of course, this is not useful, 
as the algorithm does not progress. But this means, the application is quite robust. However, 
this mode of operation will severely reduce the diversity of the population, and even if the 
HW becomes less congested and able to finish packet computations later on, the subsequent 
evolution will show a population-bottleneck effect, likely resulting in lower quality of result.

3. In order to solve the above-mentioned problem, i.e. to avoid population bottlenecks, it is 
possible to enforce through a user-defined parameter (SUCC_PERC) a minimum size of the 
parent population required to derive the next generation from. If this size is not reached 
because of excessive packet-dropping due to deadlocks in the hardware, then the ejected 
packets are placed into the dispatch-queue once again without advancing the generation of 
the present population.

4. It should also be noted that the algorithm does nothing special to take care of any packets 
with unusually long latency. As long as the populations have enough number of packets, the 
last packets to finish execution in every population do so in sequence of their start time. 
Thus, the new generation of a population is derived only after all the packets of the same 
population for the previous generation have finished executing (either successfully or by 
being ejected due to deadlock).

One  key  feature  for  ensuring  optimal  use  of  the  hardware  is  to  be  able  to  adapt  the  polling 
frequency of the Dispatcher thread, and thereby the hardware input throughput, to the hardware load 
conditions. As a rule,  the loading is very difficult to evaluate accurately, but the rate of packet 
dropping/ejection from the hardware provides a rough guideline. The aim is to maintain a user 
specified low rate of packet dropping. This may entail in varying the throughput over the execution 
time of the algorithm, because it is directly related to the average length of the trajectories in the 
populations, as well as hardware congestion inside the accelerator. Depending on the map data and 
the optimization problem, this average may increase or decrease gradually.

Implementation of Timing

Only the Dispatcher thread has been made directly timing-sensitive.  The other  two threads co-
ordinate  themselves with this  thread through the availability of their  respective input data.  The 
hardware accelerator model is also called from inside the Dispatcher thread in order to synchronize 
its timing, thus effectively incorporating the hardware in simulation into the Dispatcher thread. 

1) Whenever an FTR packet is dispatched to the hardware, it is assigned a dispatch-time. This 
is done using the present value of the dispatch-rate and the dispatch-time of the previous 
packet. For example, if we assume a uniform dispatch-rate, where one packet is dispatched 
every C hardware clock periods, then the first packet has a dispatch time = 0, the second 
packet = C, the third packet = 2C, etc. In general, however, the dispatch-rate may vary over 
the period of execution as described in Section 4.3.5.

2) The HW module calculates the trajectory cost for the packet and adds a processing time, 
depending on the number of map segments visited and number of via-points, to the dispatch 
time to estimate a finish-time. The packet is then put into an output reordering queue, which 
is ordered by the finish time of the packets. The HW processing time is modelled as:

BASE_PROC_TIME*number_of_segments_visited + 
VIA_PROC_TIME*(number_of_vias-2)

28



3) Similar to the dispatch-time above, this thread also keeps track of an eject-time, based on the 
EJECT_PER parameter providing the period as described in Section 4.3.4. At the end of 
each period of this length, some packets are transferred from the output reordering queue to 
the hardware output queue, depending on their finish time-stamp. Therefore the granularity 
of the output packet timing is given by EJECT_PER. See Section 4.3.4 for more details. 

4) Towards  the end of the simulation,  when no new packets  are  dispatched any more,  the 
remaining finished packets in the reordering queue are simply flushed out.

5) The dispatch-time of the first packet of each population and generation is dumped in a file 
(timing_summary.log)  during  the  simulation.  Let  us  call  it  the  dispatch  time  of  the 
corresponding population and generation. The latest finish-time among all the packets in 
each population and generation is also dumped in the same file, and let us call it the finish-
time of the corresponding population and generation.

6) For each population, the gap between the finish-time of one generation and the dispatch time 
of the next generation represents the time available to the application from the hardware 
output queue to the dispatcher module, to compute the chromosomes in the new generation. 
This time is expected to be dominated by the “genetic operator” module. If the computation 
cannot be finished within this time, it leads to an underutilization of the hardware, but no 
catastrophic failure. So, it can be visualized as a soft real time scheduling problem. The 
scheduling, at its most basic, according to the scheme described on Figure 13,  is a non-
preemptive scheme, where one of the populations ready for the genetic operations can be 
chosen when the “genetic operator” thread is  idle,  and when a population is chosen, its 
computation  of  the  next  generation  is  not  preempted.  However,  more  sophisticated 
scheduling schemes may be used if necessary.

4.3.3 Potential Simulation Deadlock and Resolution
The hardware  model  –  having a  notion  of  timing  and emulating  a  parallel  system –  needs  to 
synchronize  its  inputs  and outputs  in  correct  temporal  sequence,  thus  the  production of  output 
packets has a temporal dependency on the availability of unrelated input packets. It means, that the 
availability  of  the  last  output  packet  of  any  population  in  the  output  queue  depends  on  the 
availability of subsequent input packets till the former has been put into the hardware output queue. 
At the population level,  the finish-time of computation usually maintains the original ordering. 
However, it is not guaranteed to do that, e.g. when there are small populations with widely varying 
trajectory lengths. The “gatherer” thread maintains input order in its output. The “genetic operator” 
thread, however, reads its inputs in a specified order and produces the outputs in the same order. 
Hence, it does not process any population, even if it is ready, unless it is its turn. This restriction 
makes  it  simple  to  implement  the  routine,  but  introduces  a  small  probability  of  deadlock  in 
simulation (but never in actual application). This happens when the “genetic operator” thread is 
waiting  for  a  specific  population  to  end executing  in  the  hardware,  while  the  hardware  model 
consumes all other available packets in the dispatch queue but cannot produce the output for all the 
packets, that the “genetic operator” is waiting for. Then the simulation fails to proceed in the HW 
model because it needs more inputs to take the simulation forward, and the “genetic operator” is  
waiting for the HW to finish computation for a specific population. The “genetic operator” being an 
untimed sequential program, fails to notify the HW-thread that this is the case. In such cases, the 
simulation runs into a deadlock.

The deadlock is guaranteed to occur when there is only 1 population, which could be handled by 
specifically identifying that case. However, it may happen with multiple populations too, when the 
population size is small, there are few populations and there are a few very long trajectories in one 
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population, which take too long to finish execution before the HW consumes all available input 
packets (also those for other populations). This is a rare scenario, but cannot be ruled out. In order 
to solve this problem, a deadlock detection has been implemented in the HW model, based on a 
time-out. Whenever a simulation deadlock is detected, the simulation time is put forward till the 
time when the next output is due. This produces, at least one output without waiting for an input, 
and with any luck it breaks the deadlock. If not, the deadlock detection and resolution is performed 
again. But this is a purely simulation problem. In real HW, the time progresses with the clock, not 
depending on the input. So, there will be no such deadlocks.

It should be noted that adding too many software I/O operations (e.g. calling printf()) in the Genetic 
Operator thread slows it down, in turn starving the hardware model. This can also lead to deadlock 
timeout. This does not affect the quality of the results achieved, but it makes the simulation timings 
diverge from what would be expected in the actual system behavior, where such deadlocks can 
never occur.  Thus when running such timing sensitive simulations,  an eye needs to be kept on 
whether  too  many  unexpected  deadlock  timeouts  are  occurring  (messages  are  printed  on  the 
terminal to notify, if they do). If they do, unnecessary I/O's should be disabled.

4.3.4 Hardware Modeling – Packet Dropping Rate
One of  the defining  characteristics  of  the  hardware  being developed is  that  it  may eject  some 
packets before completing computation on them, if a hardware deadlock is detected. Based on the 
hardware simulation results, described in Section 5.2, the ejection decisions have been implemented 
in the following way in the high-level  hardware model.  It  is  based on a user-defined temporal 
granularity  (EJECT_PER),  e.g.  equal  to  the initial  packet  dispatch period.  The probability  of  a 
packet  being ejected over  this  period of  time is  based  on the number  of  packets  active in  the 
hardware  during  this  time  –  which  is  taken  to  be  approximately  constant.  The  probability  is 
modeled as a linear approximation to an S-curve as shown in Figure 14. The idea is to check the  
number of active packets in the hardware after each interval of an EJECT_PER, and find out the 
ejection probability for that. Then it is decided whether a packet is to be ejected or not based on a  
uniform random number generated.  If yes, then an active packet is  chosen at  random from the 
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Figure 14: Packet ejection probability over a user-defined time interval
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“output  reordering  queue”  and  ejected.  Then  the  process  is  repeated  –  without  changing  the 
simulation time-step – with the  number of  active  packets  reduced by 1,  until  one  of  the trials 
decides in favor of not ejecting any packet. This way, there is a chance of ejecting multiple packets, 
and the number of active packets is never allowed to go above EJECT_THR1. It also ensures that 
there is no ejection if the number of active packets is below EJECT_THR0. This, however, does not 
model the “bunch ejection” phenomenon (Ref. Section 5.2) observed in the hardware under high 
congestion very closely, and thus is accurate only under low and moderate congestion conditions. 
This is, however, reasonable when the application implements a “Dispatch rate adaptation” strategy 
as explained below in Section 4.3.5.

4.3.5 HW and SW Modeling – Dispatch Rate Adaptation
As  has  been  described  in  Section  5.2,  the  behavior  of  the  hardware  towards  the  end  of  the 
application run, when the population is converging, is very much dependent on the exact trajectory, 
that the solutions are converging towards. This may be modeled as changing EJECT_THR0 and 
EJECT_THR1 accordingly over the life of the application run. The exact nature of this change is, 
however, dependent on a few mutually opposing trends:

1. When the solutions converge to an optimal trajectory, they are often more regular on an 
average  than  at  the  beginning  of  the  simulation,  leading  to  fewer  via-points  and 
consequently  smaller  packet  sizes.  Thus  the  hardware  FIFO's  may  tend  to  be  able  to 
accommodate  more  active  packets.  This  translates  to  higher  EJECT_THR0  and 
EJECT_THR1.

2. Due  to  the  increasing  localization  of  the  paths,  that  the  packets  follow inside  the  HW, 
congestion  in  the  relevant  parts  of  the  hardware may actually  increase,  correspondingly 
reducing the maximum packet throughput. However, for a highly folded map, the change is 
expected to be small, because the folding is expected to spread the load over to the whole 
processing array.

3. In some cases, however, depending on the exact nature of the trajectory, that the solutions 
are converging towards, some of the processing nodes may experience elevated congestion 
(essentially creating performance bottle-necks), leading to decrease in EJECT_THR0 and 
EJECT_THR1.

It should be additionally noted, that even if the thresholds do not change appreciably, the packet 
through-put supported by the hardware may change due to the change in the average length of the 
trajectories,  leading to  a  change in  their  latency inside the hardware.  Predicting these changes, 
however, would require a detailed model of the hardware, like the SystemC model described in 
Chapter 2. But that would be computationally rather inefficient when it comes to evaluating the 
application. This observation implies that it is important for the application to be able to change the 
dispatch  rate  to  dynamically  adapt  to  this  changing  congestion  scenario,  even  if  it  cannot  be 
predicted.  If  the  congestion  increases  –  e.g.  because  of  the  development  of  some performance 
bottle-neck – the dispatch rate should be relaxed accordingly, in order to avoid too many packet 
ejections leading to worse quality of result. On the other hand, if the congestion decreases – e.g.  
because of average length of the trajectories in the population becoming shorter – the dispatch rate 
may be increased in order to fully exploit the HW resources and decrease the application run-time – 
of course, assuming that the SW implementation of the application, i.e. mainly the execution of the 
genetic operators to derive new generations – can keep pace. Thus, the application is guaranteed to 
optimize the HW usage, irrespective of whether EJECT_THR0 and EJECT_THR1 change during 
the execution or not. Hence, the hard task of modeling this change can be foregone.
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The adaptation algorithm is based on the following parameters:

DISP_ADP_PER = number of packets, in interval of which adaptation is made – time granularity
MIN_EJ_RATIO, MAX_EJ_RATIO = min and max of the range of proportion of packets dropped
RELAX_RATE, TIGHT_RATE = define how quickly dispatch rate is relaxed or tightened
Defining,  targ_no_eject =  mean  of  the  max  and  min  number  of  ejections  allowed  within 
DISP_ADP_PER packets,  no_eject = actual no of ejection during one DISP_ADP_PER interval, 
the adaptation equations used are:

dispatch_per = dispatch_per * (1.0 + (RELAX_RATE * (no_eject-targ_no_eject) / 
(float) (DISP_ADP_PER – targ_no_eject)))  // If too high an ejection rate is 
observed

dispatch_per = dispatch_per * (1.0 - (TIGHT_RATE * (targ_no_eject-no_eject) / 
(float) targ_no_eject)) // If too low an ejection rate is observed

It is important to choose a MIN_EJ_RATE > 0 in order to be able to load the hardware optimally. If it 
is taken to be 0 or less, then the application can never detect an under-loading of the hardware.

4.4 Conclusion
Based  on  the  findings  described  in  the  previous  chapter,  it  was  understood  that  trajectory 
optimization algorithms have many important applications. Thus, two such algorithms, employing 
the popular heuristics of SA and GA, were designed for evaluation. In order to exploit the hardware 
under  development  optimally,  they  were  needed  to  be  parallelized.  As  it  is  explained  in  the 
subsequent Section 5.1 however, the parallel GA implementation using multiple populations and 
migration strategy was found to be the better choice, and was optimized to perfectly match the 
hardware capabilities,  as explained in this  chapter. This is designed to accommodate the packet 
ejections in the hardware,  as well as to optimally load the hardware for any point-to-point 2-D 
trajectory optimization problem. In the next chapter these capabilities of the application are tested 
by simulating their performance on some sample test-cases.
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Chapter 5

5. Application: Simulation and Evaluation

5.1 Comparison of SA and GA
The  two  application  models  tried  out  were  the  one  using  simulated  annealing  as  described  in 
Section 4.2 and the one using genetic algorithm as described in Section 4.3. To start with, on a 
simple serial implementation of both the algorithms was made and tested on a simple problem, 
where the map is divided into two regions with different but constant local costs, and the trajectory 
with the smallest cost has to be determined between two points lying in these two regions:

It was observed that both SA and GA using applications could easily solve such simple problems. 
However,  as described in Section 3.3.2,  the asynchronous parallel  implementation of SA is not 
expected to perform very well. On the other hand, a proven GA implementation from [4] was found 
to be reasonably close to the present problem, and hence adapted. It was also possible to parallelize 
it  using  the  advanced “Multiple  population  coarse  grained”  as  explained  in  Section  3.3.1,  and 
exploit  the hardware under  development  quite  efficiently,  as  described in  Section  4.3.  For  any 
implementation  of  SA,  it  is  also  important  that  all  the  packets  finish  evaluation,  which  is  not 
guaranteed by the present hardware proposal. By the very nature of the algorithm itself, GA can,  
however, tolerate some amount of packet dropping. Therefore, it was only the application using 
genetic algorithm, that was developed in all its details, and will be considered for all subsequent 
evaluations.

5.2 SystemC Simulation
In order to develop the high-level hardware model described in Chapter 4,  it  was necessary to 
understand  the  hardware  behavior  throughout  the  execution  of  the  application  for  different 
optimization  problems,  especially  to  understand  the  loading  profile  as  well  as  packet  ejection 
probability from the hardware. These data were particularly needed to take the modeling decisions 
described in Sections 4.3.4 and 4.3.5.
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Figure 15: The problem and solution of determining the trajectory with  
lowest cost between two sections with different but constant costs.
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The  SystemC model  as  described  in  Chapter  2  was  used  to  find  a  suitable  abstraction  of  the 
deadlock probability and contribution of congestion to the packet delay and to investigate how well-
suited  the  simulation  results  with  random  trajectories  as  described  in  [11]  are  to  the  GA 
optimization application, developed in the present work. Here are the key findings:

1. Once the GA starts to converge, the behavior of the hardware becomes pretty erratic – in the 
sense that it strongly depends on the nature of the trajectory, the solution is converging towards. 
Assuming that the final trajectories won't be too irregular, only 4-via-point trajectories were 
investigated. It was observed that, everything else remaining same (including the start and end-
points), the HW behavior starts to depend on the exact trajectory a lot, in a way that is not very 
easy to understand or model. Consider the following data for trajectories from (8.5, 5.5) → 
(181.5, 188.2) on a 190x190 map using a 10x10 processing array injecting one packet every 750 
clock cycles. The two middle via points are each chosen randomly from a map segment, that 
remains unchanged for the whole population – this emulates a converging population.

1. Trajectories (8.5, 5.5) → (71.x, 134.x) → (102.x, 125.x) → (181.5, 188.2):
• 42% packets are ejected due to deadlock
• Trajectories cross ~375 map segments (=> latency contribution = 26 Kclocks)
• Avg latency of finished packets = 55 Kclocks => avg latency due to congestion = 29 

Kclocks
2. Trajectories (8.5, 5.5) → (180.x, 97.x) → (114.x, 69.x) → (181.5, 188.2):

• 85% packets are ejected
• ~545 segments crossed  (=> latency contribution = 38 Kclocks)
• Avg latency of finished packets = 59 Kclocks => avg latency due to congestion = 21 

Kclocks.
3. Trajectories (8.5, 5.5) → (126.x, 24.x) → (71.x, 165.x) → (181.5, 188.2):

• ~0% packets ejected
• ~465 segments crossed  (=> latency contribution = 33 Kclocks)
• Avg latency of finished packets = 56 Kclocks => avg latency due to congestion = 23 

Kclocks
This means that the congestion (expected to show up as ejection and delay in packet processing) 
is not monotonically related to how many map segments the trajectories pass through on an 
average, as was originally believed it would. It was expected that the high degree of folding 
(19x19) would take care of the load distribution. But it seems it could not. In fact, the load 
distribution is  quite  uneven.  The mean absolute  difference of loading among all  processing 
nodes is 70%, 27% and 23% of the average processing node load respectively for the 3 cases 
above (as opposed to <2% for fully random trajectories). Also interestingly, the most unevenly 
distributed load did not lead to the highest instance of deadlocks! Thus, the deadlock probability 
could not be correlated to the average length of the trajectories.

2. Simulation results in [11] use random 3-via point paths. These results are too optimistic even for 
the  starting  random population  for  the  present  problem,  even  if  only  3-via  point  paths  are 
assumed, because, unlike in [11], the start and end points are not random. This problem will 
likely be less pronounced if there are more via points, though – which is very likely. So, it is not 
a dramatic failure, but the data for [11] cannot be used directly.

3. The system seemed to be leading to serial ejections, i.e. the ejections seemed to be bunched 
together, bringing down the system loading quite a bit intermittently. Observe the plot in Figure 
16 with 4-via point trajectories, simulating the converging GA case. Following are the details of 
the test-case:

Trajectories: (8.5, 5.5) → (91.x, 170.x) → (124.x, 136.x) → (181.5, 188.2)
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Packet through-put = 750 clocks/packet
Rate of packet ejection = 41% of the injected packets.
It should be noted that while around 60 packets are normally active inside the HW at any time, 
sometimes it comes down to as low as 20 packets, clearly because of the bunched ejections.

4. One promising metric  found for estimating the ejection probability  is  the number of active 
packets in the HW. As would be apparent from Figure 16, the number of active packets hardly 
ever goes beyond 70 packets (the HW contains total of 400 packets' slots in the connecting 
FIFO's between the processing nodes. So, it is 17.5% of the total). With a 3-via-point case, peak 
FIFO-occupancy was observed slightly above 25%. It is hard to explain why it is more for the 
3-via point case, but normally with 4 via-point cases, the FIFO occupancy seemed to be more or 
less maxed at 20%. This upper-limit has been modeled in the high-level hardware model as the 
threshold EJECT_THR1 in Section 4.3.4. It is also apparent that when the number of active 
packets is below a threshold, EJECT_THR0 from Section 4.3.4, packet ejects are very rare or 
non-existent,  as  can be  observed on Figure 17 for  the  following simulation  run,  where the 
number of active packets remains around 50 during the simulation leading to 0 packet ejection. 
Here are the details of the test-case:

Trajectories: (8.5, 5.5) → (150.x, 189.x) → (170.x, 184.x) → (181.5, 188.2)
Packet through-put = 750 clocks/packet
Rate of packet ejection = 0.
Thus these simulation results provide empirical support for the packet ejection probability, as 
modeled at a high-level and described in Section 4.3.4.
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Figure 16: Example of instantaneous number of active packets in HW as derived from 
SystemC model simulation – high congestion case
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5.3 Influence of Packet-dropping
Simulations were run on the high level C model to understand the effect of packet dropping on the 
performance  of  the  GA algorithm.  The  test-case  used  was  as  shown  in  Figure  18,  where  the 
trajectory with the lowest cost between the start and end points needs to be determined. The optimal 
trajectory has to take quite a long detour, resulting in a relatively complicated shape. The problem 
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Figure 17: Example of instantaneous number of active packets in HW as derived from SystemC 
model simulation – Low congestion case

Figure 18: Sample problem for evaluation of GA application and its solution.
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also has an alternative local minimum, given by the direct straight-line path between the start and 
end-points. Also, in order to study the effects of packet dropping, the hardware model was taken to  
implement a uniform rate of packet-dropping, i.e. it ejected packets with a user-defined constant 
probability,  rather than using the strategy described in Section 4.3.4.  So,  it  was a slightly non-
standard  hardware  model.  Also,  the  dispatch-rate  adaptation  (Section  4.3.5)  was  not  enabled, 
because it would have no effect on the quality of results, but could slow down simulation to account 
for high packet ejection rate, that was used for some of the simulation runs. Also, re-computation of  
ejected packets was not enabled, i.e. the parameter SUCC_PERC, explained in Section 4.3.2, was 
effectively set to 0. A selection of the simulation results have been tabulated in Appendix B, and 
used here to plot the next three graphs, which compare under different conditions the convergence 
behavior  of  the algorithm, given by how close the best solution found by it  after  any specific 
number of iterations (or equivalently, generations) is to the known best solution.

In general, the algorithm appeared to be quite robust. The convergence hardly breaks down, even 
under very severe packet dropping – tested till a packet dropping probability of 0.9, i.e. when only 
about 10% of the packets finish execution successfully on an average. The following graphs show 
the performance of the algorithm, solving the problem in Figure 18. The trajectory with the globally 
minimum cost  has  a  cost  of  168.5,  while  the  other  local  minimum,  given by the  straight-line 
trajectory is 180. The error bars in the graphs represent ±σ (i.e. standard deviation of the solution 
costs).  The  graphs  show  the  results  of  only  those  runs  which  converged  towards  the  global 
minimum (168.5), instead of the other local minimum (180).

The results from this simulation suggests that the effect of packet dropping does not affect the result 
of  the  algorithm  in  the  long  run,  but  it  deteriorates  its  consistency,  as  well  as  the  rate  of  
convergence. The next graph (Figure 20) also upholds this view, but it also suggests that using 2 
populations of smaller sizes rather than one population of double the size makes the consistency of 
the results less dependent of packet-dropping rate. Figure 21 shows, however, that the quality of 
result and the rate of convergence do not seem to be strongly dependent on whether one or multiple 
propulations are used.
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Figure 19: Cases with only 1 population of 100 packets, and ejection probabilities of 0.0 and 0.9



Using the  same set  of  data  as  in  the  previous  two curves,  but  now showing  the  performance 
comparison of using 1 big population of 100 packets versus 2 smaller populations of 50 packets for 
an ejection probability of 0.9:

It can be concluded from these simulation runs that:

1. The application always converges, even under very severe packet dropping. This is expected 
because of the elitist nature of the specific GA implementation. It ensures that the solutions 
can never become worse from one generation to the next. However, it is possible that the 
convergence leads to a local minimum.

2. However, the higher the rate of packet dropping, the slower the rate of convergence.
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Figure 20: Cases with 2 populations of 50 packets each, and ejection probabilities of 0.0 and 0.9

Figure 21: Comparison between 1 population of 100 packets and 2 populations of 50 packets each.



3. Under  severe  packet  dropping,  distributed  solution  with  multiple  populations  may  have 
better convergence in the medium term than a solution where all the packets are lumped in 
one  population.  This  is,  however,  not  prominent  when  more  packets  are  used  in  every 
generation.

4. One point not shown on these plots is the probability of converging at a local minimum. It 
was observed that smaller population sizes lead to higher probability of converging to a 
local minimum.

5. Thus, it can be surmised from points 3 and 4 that it is better to use multiple medium-sized 
populations (~100 packets each) than to use a very big single population. This is also ideal, 
in terms of HW usage, as big single population translates into idle time of the HW when the 
application is calculating the new generation for that sole population.

5.4 Influence of Dispatch Rate Adaptation
In order to evaluate the efficacy of the dispatch-rate adaptation strategy described in Section 4.3.5, 
the same problem in Figure 18 was solved again using the standard S-curve based packet ejection 
probability computation, as described in Section 4.3.4, enabled in the hardware model. When the 
dispatch rate adaptation is disabled, the resultant loading profile of the hardware was as follows:

The HW is quite under-loaded towards the end of the execution, and it takes about 37 million clocks 
to finish the application run (200 iterations of GA). On the other hand, when the dispatch rate  
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Figure 22: Hardware load profile without dispatch-rate adaptation



adaptation is enabled, the resultant profiles is as follows:

In this case, the hardware is quite uniformly loaded for the most part, and the application finishes is 
about 22 million clocks. That is 40% improvement in execution time – of course, assuming that the 
software can cope with it. The adaptation may even improve the quality of the results by reducing 
number of cases when a new generation of a population is computed from a small part of the older 
generation, triggered by too many dropped packets, resulting from too high a dispatch rate. It is 
observed to a limited extent in the simulation runs which used an initial dispatch period of 200 
clocks/packet, which is same as the fixed dispatch rate in the nonadaptive runs. As the adaptive run 
shows, an initial dispatch period of around 340 clocks is more suitable, and the algorithm adapts 
quickly to that level. Initially this leads to a lot of packet ejections in the non-adaptive run, leading 
to somewhat lower quality, but the adaptive run minimizes such ill effects.

Figure 24 shows the adaptation of the dispatch rate over the period of simulation run. As this figure 
shows, the later  iterations of the simulation could support  a higher  packet  rate.  The simulation 
assumed constant EJECT_THR0 and EJECT_THR1; yet this happened because the average length 
of the trajectories in the later iterations was less than that in the initial runs with completely random 
trajectories. This led to a lowering of the execution time for each packet in the hardware, leading to 
lower  congestion.  This  is  also  the  reason why the  hardware  becomes  underloaded in the  non-
adaptive run towards the later iterations of the application, as shown by Figure 22.
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Figure 23: Hardware load profile with dispatch-rate adaptation



5.5 Conclusion
It can be concluded from the above-mentioned results that the hardware envisioned in Chapters 1 
and 2 can indeed be used to perform multiple trajectory cost calculations in parallel as long as the 
application can ensure that it can feed packets into the hardware at regular intervals, and can adapt 
itself to the changing maximum throughput support of the hardware. It should also be able to cope 
with ejection of incomplete packets due to hardware deadlocks. The simulation results in Sections 
5.3 and 5.4 clearly show that the parallel GA-based application designed in Chapter 4 is one perfect 
example application that solves a practical problem, that of optimizing trajectories between two 
points on a 2-D map, by efficiently exploiting the capabilities of the proposed hardware. As is clear 
from the discussion on motion and trajectory planning Chapter 3, this is a very important problem 
with many applications in military as well as civilian domains.
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Figure 24: Adaptation of dispatch-rate



Chapter 6

6. Hardware: Design – Micro-architecture
As has been demonstrated in the previous chapters, when coupled with careful application design, 
the hardware proposed in Chapters 1 and 2 can indeed be an excellent tool to function as a hardware 
accelerator. In addition, as with any NoC-based homogeneous multiprocessor system, this hardware 
is highly repetitive, and is essentially an array of processing nodes connected to each other through 
computation network (CNW) and insertion-ejection network (IENW). The basic architecture for 
such a processing node was already developed in [11] and mentioned in Chapter 2. This serves as 
the starting point for all subsequent hardware design. It should be noted that the processor(s) shown 
in the architecture of the processing node is a part of the processing node, and thus a part of the 
hardware accelerator, and must not be confused with the processor executing application, which is 
external to it, as has been shown on Figure 11.

The proposed processing node architecture in [11] assumed that the CNW and IENW interfaces and 
protocols were identical. This is, however, unlikely because of the different requirements on these 
two networks, and it will be clear from the subsequent discussion in this chapter. Therefore, an 
additional logic, called IENW node, is necessary to interface this module with the IENW. Thus, the 
processing node architecture that would satisfy the requirements for IENW as well as CNW, would 
look like below:

The following sections describe in detail the micro-architecture of the IENW node and the CNW 
node, as well as various relevant design considerations, including the bus protocols, and constraints 
on the software to be run on the processor.

6.1 CNW Node Architecture
As mentioned before, the architecture, shown on Figure 6 in Section 2.2, has been used as the base 
line  for  developing  the  processing  node  architecture  minus  the  IENW  node.  The  following 
relatively  minor  changes  have,  however,  been  made  to  this  design  in  light  of  more  detailed 
planning, yielding the CNW node architecture shown on Figure 26:
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Figure 25: Micro-architecture of Processing Node including IENW node. The section inside the  
dotted line defines the “NoC communication infrastructure”
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1. The receive-list has been put inside the dual port RAM, thus removing the need of extra 
storage elements (e.g. Flip-flop bank), as well as multiple I/O access ports of the processor.

2. In  the  same  spirit,  the  send-list,  which  has  now been  included  inside  the  send-module 
acknowledging the close connection between these two modules, has been made to share the 
same I/O interface of the processor as the dual port RAM.

This way, the processor needs only one I/O interface to interact with the rest of the processing node, 
as has been assumed in Figure 25.

The part of the design above the dashed blue line represents the CNW node. It is assumed that – 
seen from the CPU – the “send-list” is available at an address SEND_LIST_BASE, whose three 
LSB are 0. These 3 LSB's are mapped to the physical send-list address. SEND_LIST_BASE should 
be  larger  than  the  address  of  the  last  word in  the  DPRAM. The processor  itself  has  not  been 
implemented, but for some of the area and performance estimations, a Microblaze micro-controller 
has been instantiated as a stand-in for the processor and its program memory [15].

6.1.1 Memory Mapping
The dual port RAM has been split into 7 separate areas, as shown in Figure 27. The first 5 areas all 
have the same depth, fifo_depth = 2^(FIFO_DEPTH_W) words. Each of these areas is maintained 
by the FIFO-controller as the storage for an input FIFO, which is implemented as a circular buffer. 
The next area is the “receive list” which is just 5 words deep. Each of its words contains the current  
head-pointer of one of the input FIFO's (i.e. the memory offset from the base of that FIFO area),  
and a rec_flag which – when set to 1 – indicates that there is a valid packet at the location indicated 
by the head pointer for the processor to read. The last area in the memory serves as the main data 
memory of the processor.
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Figure 26: Micro-architecture of Processing Node except IENW. The part above blue dashed line is 
the CNW node.
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The following assumptions have been made in this design:
– Word size of 32 bits
– The lower 16 bits of the 2nd word in FTR contain the number of via-points in it.  The 

FIFO controller uses this information to update the FIFO pointers. Hence, it is important to 
adhere to this requirement.

– The head pointers in receive-list are offsets within the range of that FIFO (0 to fifo_depth-1)
– The via list of an FTR packet is stored and transmitted in reverse order, i.e. the first via last,  

and the last via first, as shown in the figure.
– The FIFO controller has R/W access of the FIFO0 ... FIFO4 space and the Receive-list space 

in the memory, but no access into the processor main memory space.
– The processor has full R/W access on the processor main memory space, and it updates the 

intermediate data record and forward bits in the FTR's inside the FIFO space. Otherwise, it 
uses only read-only access to the Receive-list, as well as most words in the FIFO space. 
Most notably, it does not modify the num_via field in the packets. If it needs to do that, it is 
effected through the send-list as described below in Section 6.1.5.

– It  is  also  assumed  that  the  fifo_depth  is  a  power  of  2,  and  one  word  in  the  FIFO is 
inaccessible, i.e. the accessible depth of the FIFO's is (fifo_depth-1). 

6.1.2 CNW Bus Protocol
The bus protocol used by the external CNW/IENW interface on the FIFO controller is as shown 
below on Figure 28. This is also the over-all CNW bus protocol.  Over-all IENW bus protocol is 
somewhat  different,  and  thus  the  FIFO-controller  IENW interface  is  connected  to  the  IENW 
through a converter, as is shown on Figure 25. 

The external bus protocol is synchronous, but the clock signal has been omitted from Figure 28 for 
the sake of simplicity. Req, Pack and Valid are signals going from upstream to downstream node. 
Grant goes from downstream to upstream node. The Pack nets are used to send packet words, but 
taken to have half the width of a word (i.e. 16 bits), as will be explained below in Section 6.1.4. 
This is done to ensure smooth interleaving of read and write accesses on the DPRAM, which has 
the same width as a word.  During the transfer of a word the lower half word is transferred first, 
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Figure 27: RAM organization and utilization
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followed by the corresponding higher half word.  Pack is also used to specify the number of via 
points in the packet about to be sent, when the upstream node asserts its Req signal. Theoretically, 
this imposes a restriction on the maximum number of via-points in the packet at 2^16 = 64K, but 
this is expected to be far beyond the expect range of this parameter.

The  vertical  dashed  lines  on  Figure  28  represent  the  points  of  synchronizations  between  the 
different bus signals, but the number of clocks between any two of them is freely variable but >0. 
The duration of each packet data (marked “Word0 LSB”, “Word0 MSB”, ... “1st via MSB” in the 
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Waveform A: Normal successful data transmission

Waveform B: Failed transmission due to timeout

Waveform C: Successful transmission: grant received just after timeout expiry (rare  
situation)

Figure 28: CNW bus protocol – different scenarios
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figure) is 1 clock cycle.

When a processing node (i.e. its send-module) wants to send a packet to the downstream processing 
node or IENW, it asserts the req signal and also sets the “pack” signals to the number of via-points 
in the packet it wants to send. When the destination receives this send-request, it may assert the 
grant if it can service it (i.e. has enough space in the FIFO to accommodate this packet in case of a 
node,  and the  bus  is  free  in  case of  IENW).  There  is  no timing requirement  of  how long the 
destination may take to assert the grant. The upstream node may, at its own discretion, however, de-
assert the req, thereby terminate the send-request before receiving a grant (e.g. when the req has 
been high for too long,  thus  leading to  the time-out of a  deadlock detection counter).  It  must, 
however, monitor for a grant in the clock cycle just after the req de-assertion, and if it receives a  
grant in that cycle,  it  should behave as if  it  received it  before the de-assertion of the req.  The 
destination is not allowed to assert  grant any later than this. Some time after a grant has been 
received, the upstream node should start  transmitting the packet  in the “pack” signals with the 
associated  valid  signal  asserted.  There  is  no  timing  requirement  about  the  delay  between  the 
reception of grant and the assertion of valid. Also, the transfer is done in burst mode, i.e. once the 
transfer  starts  the  “valid”  signal  may  be  de-asserted  only  after  the  whole  packet  has  been 
transferred.  At the completion of the transfer the “valid” is de-asserted.  In case of a successful 
packet transfer, the grant and req signals may be de-asserted any time before the end of the transfer 
of the corresponding packet.

6.1.3 Internal Bus Protocol
The Protocol  used  on the  processing  node-internal  interface  between  the  send-module  and the 
FIFO-controller  is  as  shown  below on  Figure  29  (omitting  the  clock  for  simplicity).  On  this 
interface, the signals Req, Num_via and FIFO_no are sent from send-module to FIFO controller, 

and Pack and valid are sent from FIFO controller to send-module. When the send-module wants to 
request to read data from a FIFO, it asserts the req signal on this internal interface to the FIFO-
controller along with specifying the FIFO number on FIFO_no signals, and the number of via-
points to be read for this packet on the Num_via signal. The FIFO-controller starts sending out the 
data to the send-module 2 or 3 cycles later, qualified by the “valid” signal. The data itself is sent 
over the “pack” signals, which are half the word-width wide (i.e. 16 bits), as in the case of the  
external bus. Just like the external bus, the data transfer is effected in burst mode, i.e. the valid is 
de-asserted only after the whole packet transfer is completed. The “req” signal must be de-asserted 
before  the  data  transfer  is  finished but  after  the  data  transfer  has  started.  Each read-request  is 
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Figure 29: Bus protocol for internal bus between FIFO controller and send-module
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guaranteed to be satisfied by the FIFO-controller within 3 clock cycles and no request is allowed to 
be  de-asserted  before  the  FIFO-controller  has  served it.  It  is  important  to  note  that  the  FIFO-
controller does not only read as many via-points of a packet as requested by the send-module, it also 
modifies  the  corresponding “number of  via-points” entry in  the FTR it  sends out  to  the  send-
module, so as to maintain the data integrity of the packet.

6.1.4 FIFO-Controller
The FIFO controller is basically composed of a “Write logic” and a “Read logic” block, with a 
MUX acting as an arbiter between the two, trying to access the DPRAM.

This micro-architecture makes sure that the read and write accesses to the DPRAM are not blocking 
to each other. Otherwise, if the write logic goes into a blocking wait in order to receive new data 
from an upstream node, the read may also get blocked. This leads to the blocking of a shared 
resource (memory) and could easily lead to deadlock through circular wait, e.g. when a processing 
node is trying to write a packet into itself through the loop-back CNW segments at the boundary of 
the processing array (Ref: Section 2.1 for “loop-back”). However, in order to match the bandwidth 
of the CNW interfaces and the memory interface in this architecture, the  DPRAM interface has 
twice the data-width  (i.e. equal to the word width = 32 bits) than the IENW/CNW interfaces, 
which are thus half the word-width wide (i.e. 16 bits).

At the heart of the write and read logics of the FIFO-controller, there are two finite state machines 
(FSM's). The FSM description of the write-logic is as shown below on Figure 31. It is important to 
note  that,  this  logic  cannot  write  directly  into  the  RAM because  it  is  not  synchronized  to  the 
memory  access  arbitration  cycles.  It  writes  into  an  intermediate  parallel-in-parellel-out  buffer 
(PIPO), called write-buffer, and this updation is visible to the memory interface MUX in the next 
clock cycle.

FIFO-Controller Write-Logic

On reset, the FSM is put into state 000 with i=0. In this state it checks if there is a write-request  
from the i-th external interface, and if so if there is enough space in the corresponding FIFO to write 
that packet. If either of this is false, then i is incremented modulo 5 and the state changes to 100. 
The next state is again 000, with a new i. In case, however, the checks at 000 are satisfied, then the 
next state is 001, and the corresponding grant signal is asserted to the external interface. The state 
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Figure 30: FIFO controller micro-architecture
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remains same till the valid is received from the same interface, in which case the next state is made 
011 and the first half word of the packet received with the first valid is put into a temporary buffer. 
In 011 state, the grant is now de-asserted as the data transfer has already started and thus maintain  
the external interface protocol. At the same time, the MSB half word of the same packet word is  
received, and the whole word as well as the memory address where it is to be written, derived from 
the relevant tail pointer, is put into the write-buffer ready to be written into the memory. Then the 
tail pointer is advanced (modulo fifo_depth) and the state is moved always to 010, in which the 
valid signal is checked again to determine whether the data transfer has finished. If the valid is still  
high, the lower half-word of the next word is received and buffered internally, and the FSM goes 
back to the 011 state in order to receive the upper half-word of the same word. If valid were 0, 
however, signifying end of transfer, the next state is 110. In this state, the write-buffer is configured 
to update the receive-list entry no. i with the rec_flag set to 1 and the head-pointer set to the current 
head-pointer for the FIFO i. Then i is incremented modulo 5 and the next state is 100. The write-
buffer is however still maintained unaltered. The next state is back to 000 signifying the end of the 
transaction cycle for the FSM, and the write-buffer is update to disable any memory write.

Note that the write-buffer remains fixed for exactly 2 consecutive clock cycles:  as seen by the 
memory-write MUX, in states 010-011 (normal writing sequence) or 010-110 (for the last word of 
the packet) or 100-000 (for updation of receive list), letting the memory access MUX (Figure 30) 
the necessary time to actually write the relevant data into the DPRAM. This is necessary because 
the write-logic gets to update the memory in every alternate clock-cycle.

It should also be noted that, after each packet is written into the FIFO, the rec-flag in the receive-list 
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Figure 31: FIFO-controller Write-logic FSM
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for the corresponding FIFO is made 1, and the corresponding head pointer entry is updated to the 
current header pointer, which may point to the middle of a packet if the same FIFO is currently 
being read by the read-logic in parallel. However, this is not a problem, as long as the processor 
does not  read a packet  from this  FIFO before the read-logic hardware finishes its  reading and 
updates the receive list accordingly with the correct head pointer, pointing to the beginning of a new 
packet. This is ensured by:

1. Forcing the software to check the send-list to detect that the FIFO, it wants to read, is 
indeed available for reading by comparing “sent_toggle” and “ready_toggle” fields. 
(Cf. Section 6.3, Figure 42)

2. Designing  the  FIFO-controller  write-logic  and  the  send-module  in  a  way  that  the 
updation of “sent_toggle” in send-list at the end of a FIFO read operation happens no 
earlier than the updation of the corresponding receive-list.  (Cf. Section 6.1.6)

The “reject” signal, used by IENW node, is asserted when FIFO-controller write-FSM state is 0, 
i==0 (i.e. FIFO access turn of injection network), req[i] == 1 (i.e. active request to write FIFO from 
IENW),  but  not  enough space available  in  the respective FIFO (i.e.  FIFO0).  This ensures it  is 
asserted for just 1 clock cycle. Refer to Section 6.2.2 for the function of this signal.

Note: It is allowed for the upstream processing node to request for more space in the FIFO than  
required, and then write a smaller packet into it.  However, if it  requests for smaller space, and 
writes a larger packet, it may generate an overflow condition, and corrupt the data. This will be an 
irrecoverable failure, and must be avoided.

FIFO-Controller Read-Logic

The FIFO-controller Read-logic FSM is as follows on Figure 32. At reset the FSM starts in state 
111, in which it stays for 10 clock cycle, during which it gets to write the RAM 5 times, which it  
uses to initialize the receive-list. Assuming that no packet is less than 5 words long and even if it is,  
there is nontrivial IENW handshake delay, the write-logic can finish writing no packet within this 
time. Hence, it is safe to initialize all the receive-list locations to 0. The initialization of the receive-
list could be done using a readmem() function in case of FPGA implementation without needing to 
have  a  separate  state  (111)  for  it.  But  this  is  necessary  for  an  ASIC  implementation,  where 
readmem() is not synthesizable. Thus the state has been introduced to ensure consistency at a very 
little overhead. After initializing the receive-list, the module gets into the idle state 000. In this state, 
the  FSM monitors  the  req  signal  on  the  internal  send-module  to  FIFO-controller  bus.  If  it  is  
received, as well as it is detected that the memory access MUX does not have the turn to give access 
to read-logic, then the next state is made 001. In case, request was received, and it was also the 
read-logic's turn to access the memory, then the FSM goes into the 001 state through 1 cycle delay 
in state 101, thereby aligning the state 001 to the memory access turn of the read-logic. In 001 state,  
the logic initiates a memory write request from the location maintained in the head-pointer of the 
FIFO requested. Then it puts the head-pointer forward by one word (modulo the fifo depth) and 
goes into state 011. In this state the first word of the read packet is already available. So, the valid  
signal of the internal bus is asserted and the lower half-word of the data is transmitted, while the 
upper half-word is buffered for transmission in the next cycle, which is always state 010. In the 010 
state, the FSM checks if there were more words in the memory that needed to read to satisfy the 
current FIFO-read request. This is performed by initiating a counter in 001 state by reading the 
number of via-points requested by the send-module, and decrementing it each time a memory read 
is requested. In any case, the buffered upper half-word from the last cycle is sent out to the send-
module in the 010 state. This state is also aligned to the read-logic's turn to access the memory. So,  
if more data were to be read from the memory, a new memory read-request is made and the FIFO 
head-pointer is advanced, and the next state is made 011. However, if there is no more data to be 
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read, the head pointer is advanced to the location of the next packet in the FIFO, if any, and the next  
state is 110. In state 110, the valid is made 0, signaling to the send-module that the transfer has 
finished. The next state is always 100, which is again aligned to the read-logic's turn to memory 
access. This turn is used to update the receive-list entry for the just received FIFO with the correct  
FIFO head-pointer. The corresponding rec_flag is made 1 if the FIFO is not empty, else it is made 0. 
Note that this updation is visible in the RAM output interface in the next clock cycle, i.e. when the 
state is back to 000. Thus, the receive-list updation is visible 2 cycles after the valid is made 0 
on the internal bus.

It is also worth noting that when sending out the packet, the lower half-word of the 2nd word in the  
packet is taken to be the the num_via entry. The logic reads this entry to determine the old number 
of via-points in the packet, and then updates it with the number of via-points that the send-module 
has requested to read from this packet. Thus the data sent out to the send-module is consistent in 
terms of the number of via-points present in the output packet. The old number of via-points is  
required at the transition from state 010 to 110, i.e. at the end of a read transaction, to determine the 
head-pointer to the next packet in the FIFO.

6.1.5 Send-list
The send-list has been implemented as a register bank inside the send-module, as shown below on 
Figure 33.  The CPU can access  the send-list  through a memory-like interface.  When the CPU 
finishes computation for a packet from an input FIFO number j, it updates the entry for the FIFO 
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* The state '111' lasts for 10 clock cycles after reset deassertion. The 111→111 transition and 
the counter have been omitted from this diagram in order to avoid cluttering.

Figure 32: FIFO-controller Read-logic FSM

true
State 011
Test: NA

Output: valid = 1
Transmit LSB

State 010
Test: more words to read?

Output: Transmit MSB; Valid = 1
If needed: initiate new RAM read

Update FIFO head-pointer

false

State 110
Test: NA

Output: valid = 0

State 001
Test: NA

Output: Initiate RAM read
Advance FIFO head-pointer

State 101
Test: NA

Output: NA

(true, false)(true, true)

(false, x)
State 100
Test: NA

Output: update rec-list

State 000
Test: (req, rd_cycle)

Output: valid = 0

State 111*
Test: NA

Output: initialize rec-list



no. j in send-list to communicate to the send-module that this packet is now available for sending 
out. The processor puts the number of via remaining in the packet after processing in the present 
node into the “new_num_via” field (and does not update the num_via field in the packet itself 
inside the FIFO, as has been mentioned also before in Section 6.1.1). It also calculates a packet-
specific  deadlock  timeout  value  to  be  used  by  the  send-module  to  detect  any  deadlock.  The 
processor should also toggle the ready_toggle (so, it has to keep track of its previous value), which 
will thereby be different from sent_toggle. This difference is, in fact, the signal for the send-module 
that there is now a packet available in this FIFO to be sent out. 

At the reset all the entries are set to 0. By design, the processor can update an entry only if the  
sent_toggle == ready_toggle for this entry, and it has no write-access to the sent_toggle. On the 
other hand, the send-module can update the route_dir, timeout and sent_toggle of an entry when 
sent_toggle != ready_toggle. This way, mutual exclusion is maintained on these fields which are 
read-writable from both the send-module and the CPU. The last entry in the table is a read-only  
field that contains the coordinates of the present processing node inside the whole processing array.

6.1.6 Send-module
The send-module  uses  the  entries  in  send-list  and one  more  data  structure,  called arb_tab  (i.e. 
arbitration table) of size 3x5, with 3 bits for each output IENW/CNW direction. When the data in 
one input FIFO has been provided access to an output interface, that information is entered into this 
table,  e.g. if a packet from FIFO no. 3 gets access to the output direction 2, then arb_tab entry  
number 2 is updated to 3 (or binary “011”). When an output interface is free, an invalid direction is 
entered into the corresponding arb_tab entry, viz. “111”. The send-module FSM has been shown 
below on Figure 34.

At  reset  the  FSM  is  in  state  0000  with  i  =  0.  It  monitors  whether  the  ready_toggle  and  the  
sent_toggle entry for FIFO no. i in the send-list are same. If they are, it indicates that there is no 
data available in this FIFO for sending out, and the state goes to 0010, in which i is incremented 
modulo 5, and the state comes back to 0000 with a new i. If however, the two toggles are found to 
be different, that indicates, as explained above in Section 6.1.5, availability of packet to be sent out 
in the corresponding FIFO, and the next state is made 0001. In this state, the routing direction is 
read from the send-list  entry from FIFO i,  and various signals on the external interface in that 
direction are checked. There are multiple possibilities. If the req in this direction is 0, that means 
that this interface is free for routing to, and hence the FSM goes into state 0011, in which a write-
request is  asserted in this  direction,  by asserting the req signal,  along with sentting the “pack” 
signals  to the number of via_points to be written, the value of which is read from the new_num_via 
field for entry no.  i  in the send-list,  thereby satisfying the protocol requirements as outlined in 
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Section 6.1.2/Figure 28. The arb_tab entry for this direction is also updated to i. If, however, in 
0001 state, it is observed that the req of the required direction is already 1, but the corresponding 

arb_tab  entry  is  not  i,  that  indicates  that  a  different  FIFO is  already  requesting  access  to  this 
interface. In that case, no new request is made, and the next state is made 0010 to try luck with a 
different value of i. If however, the req is 1 as well as the arb_tab entry indicates that the access has  
been given to FIFO i, that means that a request has already been made for the present packet under 
consideration, and the FSM was waiting for a grant from the downstream node. In this case, the  
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Figure 34: Send-module FSM
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grant is checked. If it is 0, the next state is made 0111, else it is made 1001. When the state is 0111,  
signifying that the module is still waiting for the grant for an already asserted send request, the next  
state is 0010 only if either the timeout counter for this request hasn't yet expired or if the routing 
direction being requested is 0 (i.e. IENW, which has no timeout). In this case, the module waits 
longer for the grant while trying to send out other packets in the meantime. However, if timeout 
counter does expire and the routing direction is not 0, the next state is made 1111. In this state, the 
active request is cancelled as a possible detection of deadlock, necessitating ejection of the packet. 
The next state is then 1011. The grant on this routing direction is checked for one last time, to detect 
the corner case of assertion of grant right after the deassertion of req, which is allowed as shown on  
Figure 28C/Section 6.1.2.  If  no grant  is  still  received,  the state  is  advanced to  1010,  in  which 
arb_tab is updated to make the currently occupied interface free for access by any other FIFO, and 
the route_dir field of the entry i in the send-list is made 0, implying the rerouting of the packet 
towards the IENW implying an ejection. If a grant is received in state 1011, however, just as in state 
0001, the next state is made 1001 which initiates the packet sending sequence. In this state the 
external req towards the routing direction is deasserted, in compliance with the bus protocol, and a 
FIFO read-request is made to the FIFO-controller by asserting the req on the internal send-module 
to FIFO-controller bus, along with the proper number of via-points, as read from the send-list entry 
no. i and the fifo number, which is i. It then goes into the next state 1000, where it waits till it  
receives a valid from the FIFO-controller. During this waiting period the pack and valid signals 
from the FIFO-controller are routed without buffering to the output external interface. Thus the first 
data is available on the external interface in the same cycle as the send-module receives it from the 
FIFO-controller. As soon as this happens, the FSM transits to state 1100. The FSM stays in this state 
as long as the valid from the FIFO-controller is high, implying a flow of data. As in the previous 
state, the pack and valid signals from the FIFO-controller are transmitted out directly to the external  
interface. Once the valid goes down, the state becomes 1110 in the next clock cycle. In this state, 
the arb_tab entry for the presently occupied routing direction is freed up for use by some other  
FIFO, and also the sent_toggle field in the send-list entry no. i is toggled to signify the end of  
packet sending. This updation is visible in the send-list in the next clock-cycle. Thus, the send-list 
updation is visible 2 cycles after the valid is made 0 on the internal FIFO-controller Send-module 
bus. The next state from the states 1010, 1110, 0011 is 0010, in which the i is changed giving an 
opportunity for a different packet to be sent out, possibly through a different interface.

As  it  has  been  shown  here,  and  also  in  Section  6.1.4,  both  the  send-list  and  the  receive-list 
updations are visible 2 cycles after the “valid” on the internal bus is made 0 after the completion of 
a packet reading transaction. Thus, one of the two conditions for proper behavior of the system 
mentioned in Section 6.1.4, viz. that the receive-list must be updated no later than the updation of 
the send-list after a successful packet-read, is satisfied.

Timeout Counter

As can be observed, the send-module monitors the timeout counter when it is in state 0111. The 
registers implementing the “timeout” field in the send-module are reused in the hardware for the 
registers of these counters. Originally, the timeout decrementing for FIFO i was envisioned in the 
same 0111 state. It was, however, problematic as instead of keeping track of the length of time spent 
in waiting for a grant, it counted the number of turns FIFO i got for sending out its packet before a  
grant was received. This did not correlate well with the absolute time, because it depends on the 
time spent between two turns given to the same FIFO. This time may vary widely depending how 
much data might have been transfered from the other FIFO's between two such turns. This was not 
quite consistent with the idea of a timeout counter. Hence, the updation of this counter has been 
made more or less independent of the the send-module state machine.  Each time the FSM goes into 
state 0011 and gives access of one external output interface to an input FIFO, the corresponding 
timeout counter starts down-counting. Once initiated, the decrementing operation happens in an 
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interval  of  a  user-defined  compile/synthesis-time  parameter  as  a  power  of  2,  allowing  for  a 
controllable granularity, and the counting stops when the timeout counter expires, i.e. becomes 0, 
indicating that the corresponding packet  sending attempt may be taken to  have failed due to a 
deadlock.

6.1.7 Data Consistency of Shared Resources
There are some shared resources in the design, that may be modified by different modules:

1. FIFO's (FIFO-controller read-logic, write-logic and processor)
2. Receive-list (FIFO-controller read-logic and write-logic)
3. Send-list (processor and send-module)

Because  the  shared  resources  may be  modified  by multiple  modules,  it  is  important  to  ensure 
mutual exclusion between them for the sake of data consistency. Here is how it is achieved:

FIFO's

The FIFO head-pointers can be modified only by the read-logic, and the FIFO tail-pointers can be 
modified only by the write-logic. Thus there is no shared resource violation, as long as it is not 
attempted to write to a FIFO, that does not have enough free-space, or to read from a FIFO, that 
does not contain enough data to be read. The first problem is solved by the design of the FIFO-
control  write-logic,  which  does  not  grant  a  request  unless  there  is  enough  space  to  write,  in 
conjunction with the send-module design which ensures that exactly as much data is written into a 
downstream node as was requested space for. The second problem is however trickier. The read-
logic of the FIFO-control performs no consistency check before serving a read request from the 
send-module,  leading  to  possible  underflow  conditions.  However,  this  reading  is  ultimately 
controlled by the processing node software, which tells the send-module how much data should be 
read from which FIFO. Hence, the software has to ensure that this condition is never encountered. 
The software can make sure of it by ensuring that it always reads valid data as indicated by the 
receive and send-lists and that it never tries to increase the number of via-points in a packet, and 
that it updates the correct send-module entry.

The consistency between the processing software and the FIFO-controller is ensured by always 
modifying only valid packets in the FIFO, as specified by the receive and send-lists. A packet is 
shown to be valid in receive-list only some time after it has been fully written by FIFO-controller, 
and the write-logic will no more update it, and the send-list allows the processor to manipulate it 
only if it has not already been manipulated by the processor. Thus, the software ensures consistency 
of the data by following the mechanism described in Section 6.3.

Receive-list

It needs to be noted that the receive list may be updated by both the write FSM and the read FSM 
inside the FIFO-controller.  The access between them is arbitrated by the memory access MUX 
(Figure 30). The coherency of the data in receive-list is ensured thus:

1. When only read or write is happening, or when read or write are happening from/to two 
different FIFO's: The receive-list updations are independent and the data is always correct.

2. When the same FIFO is being read and written in parallel and both operations finish at the  
same cycle, i.e. the state '110' of both state machines occurs in the same clock cycle: The 
write-FSM state  '110'  always  occurs  when  rd_cycle  is  low.  That  means  the  read  FSM 
updates the receive list in the next cycle, and the write FSM does the same the cycle after.  
The write FSM uses the value of the head pointer from the present cycle (i.e. state '110' of 
both FSM's) for this, and this value is already up-to-date. The read FSM also uses the same 
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value  to  update  the  receive-list,  though it  may indicate  for  1  clock cycle  (before  being 
overwritten by the write FSM) that there was no available packet in the FIFO, if the only 
packet available was the one that had just been written in. This should not be an issue.

3. When the same FIFO is being read and written in parallel and the read operation finishes 
earlier, i.e. the read FSM state '110' occurs when the write FSM is still in either 010 or 011 
state: In this case the read FSM updates the receive list with the correct head pointer, and 
correct packet availability. When the write operation finishes, the head pointer is still correct 
(can only be changed by the read FSM), and write FSM uses this value to update the receive 
list.

4. When the same FIFO is being read and written in parallel and the write operation finishes 
earlier, i.e. the write FSM state '110' occurs when the read FSM is still in either 010 or 011:  
In this case, the write FSM updates the receive list to indicate that there was some packet 
available, but uses a wrong head-pointer, which currently points to the word being read out 
from the FIFO. This is, however, not a problem, as the processor is not supposed to read this 
FIFO when a read-operation is in progress (implying ready_flag != sent_flag in the send-
list), as is implied in Figure 42, and as has been explained in Section 6.3.

Send-list

In case of send-list, the mutual exclusion, and thus data consistency, is ensured at the hardware 
level, where an entry can be modified by the processor only if its ready_toggle == sent_toggle, else 
it can be modified by the send-module. The last address in the send-list is, however, read only, and 
can be modified by no entity in the design.

6.2 IENW Architecture
Different IENW architectures were proposed and evaluated in [11].  However,  a simple  “series” 
connection  of  all  the  processing  nodes  has  been  deemed  sufficient  for  this  network,  as  it  is 
envisioned to have very low traffic, and thus requiring little sophisticated designing. This structure 
has  been  shown on  Figure  35,  and  has  been  implemented  in  the  hardware.  The  main  design 
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Figure 35: Insertion/Extraction network (Series topology)
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constraint was that this network had to interface with the IENW interface of the FIFO-controller as 
well as the Send-module, possibly through a converter. In order to keep the converter as simple as 
possible some of the properties and protocols of these interfaces have been duplicated in the IENW, 
viz. the data-width has been defined as half-word-width (i.e. 16 bits), and all transfers have been 
taken to be performed in a burst mode with a burst of one complete packet. During the transfer of a 
word the lower half word is transferred first, followed by the corresponding higher half word.

In order to support the burst transfer, the following flow control strategies were considered:

– Virtual Circuit Switching
– Virtual cut through
– Store and forward

The popular  and advanced strategy of  wormhole  switching cannot  support  burst  transfer,  as  it 
requires support for blocking transfers. So, it was not considered.

Virtual circuit switching requires the request for a connection to be made by the source including 
the number of via points (translating into the packet-size) it  wants to send, and the destination 
address. The destination will grant this request after some time, establishing a dedicated virtual 
connection  between  the  source  and  destination,  allowing  to  have  burst  transfers  of  complete 
packets. At the end of the packet transfer, the dedicated virtual connection is broken. This may have 
high latency due to the communication overhead required to set up the virtual circuit. This is not a  
serious problem, because the IENW is required to support only a low transfer rate. Still, in order to  
minimize it as much as possible, the packet forwarding logic inside every node has been designed 
as a pure combinational logic (2 MUX delays per processing node), with optional introduction of 
flip-flops (controlled by RTL parameter/generic) on the path, in order to break long timing paths  
when necessary (Ref: Figure 36).

Virtual cut-through and store-and-forward both require extra packet-sized storage. That is expected 
to be a high overhead, and thus discarded.

6.2.1 IENW Node Architecture
As explained  above,  the  flow control  solution  chosen for  IENW is  a  virtual  circuit  switching 
approach. The hardware logic for the IENW node at each processing node has been shown in Figure 
36. It should be noted that the “destination address” signals are the coordinates of the destination 
processing  node,  which  are  specified  as  an  (x,y)  coordinate  over  the  processing  array.  The 
coordinates of a node are same as the last entry in its send-list.  The address to be specified for a 
packet to be ejected from the processing array is taken to be '11...11', i.e. all 1's. It has to be made 
sure that this coordinate does not occur for any processing node in the array, in other words,  the 
processing  array  size  must  not  be  2k x  2k where  k  =  COORD_SIZE,  a  compile/synthesis-time 
parameter that specifies the number of bits required to encode each coordinate in a processing array.

Note that the grant and reject signals are buffered before being used as control signals in the FSM's 
in order to break potentially long timing paths. Whenever the write-FSM gets a request, it checks 
whether it was meant for the present node or another node, downstream from it.  It sets up the 
fwd_ctr and fifo_ctr signals accordingly to route these requests. Similarly, the read-FSM monitors 
the two incoming buses, one after being forwarded by the write-FSM and the other from the Send-
module. When there is a request from either of them, it forwards it to the downstream module – 
after arbitrating between the two if both are active. When a grant is received from the downstream, 
it is also routed to the correct node by the logic. The requests are, however, blocking. Thus if one 
request already has access of the output MUXes controlled by the signal_sel,  it  has the higher 
priority in the arbitration. This ensures that the requests are stable, allowing the destination nodes to 
respond, and to easily route the grant back properly. This blocking request strategy may, however, 
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lead to a deadlock scenario, as described in the next section.

6.2.2 Deadlock Avoidance
It is possible to give rise to cyclic waiting involving both IENW and CNW if the IENW uses a 
blocking request for circuit set-up, as described in the previous section. A simple example of such a  
probable deadlock is shown below on Figure 37. One way of solving this problem is by making the 
circuit set-up protocol in the IENW non-blocking, i.e. there needs to be a mechanism to temporarily 
terminate a transaction request and release the bus for other possibly pending transactions to get 
access, in case the destination is not able to serve the transaction request presently. This has been 
implemented through a “reject” pulse, generated for 1 clock-cycle by the FIFO-controller write-

57

Figure 36: IENW node hardware
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logic when it detects that there is not enough space in the FIFO to serve a FIFO write request 
received from the IENW. When this signal is received by the IENW, it is transmitted back to the 
source, which then releases the bus for at least 1 clock cycle by de-asserting the request before re-
initiating  the  same transaction  or  a  different  one.  During  this  time  the  IENW node inside  the 
processing node where the “reject” was generated also de-asserts the request to its FIFO-controller, 
preparing itself to accept a new request only after its input req signal is de-asserted for at least 1 
clock, signifying the termination of the previous rejected request. When the source is a processing 
node, it releases the bus for exactly 1 clock cycle. Then it checks if there is a pending forwarding 
request from its upstream node, and forwards it in the next cycle, thus giving it higher priority over 
the  packet  to  be  transmitted  from its  own FIFO,  because  this  latter  one  got  rejected  recently. 
However, if there is no such pending forwarding request available in the present node, it re-initiates 
the same transaction after releasing the bus for 1 clock cycle.  The IENW driver, to be used for 
loading packets into the processing array, must also conform to this protocol, which is described in 
further details below in Section 6.2.2.

Evaluation of Deadlock Avoidance Strategy

This section aims at providing more details on the function of deadlock avoidance as implemented 
in the IENW nodes, because it has some important properties that need to be understood for proper 
evaluation of the hardware. The way the IENW has been implemented, each node may receive two 
requests to access the interface to the downstream node – one from its upstream node, and one from 
the local send-module inside the CNW node. If both are present, the node arbitrates between them.

On the other  hand, each rejection is  routed back through IENW to the corresponding request's 
source, which then releases the bus for at least 1 clock cycle, and this release is then propagated 
forward,  informing each downstream node that there was a rejection to the previously asserted 
request. When an upstream node releases the bus due to rejection, the present node gives higher 
priority to any possible request coming from the local send-module in arbitration in the next cycle. 
Similarly, if a local request is rejected by the downstream, the present node releases the bus for 1 
clock-cycle  and  gives  higher  priority  in  arbitration  to  any  possible  request  received  from  an 
upstream node in the next clock cycle. This behavior can be observed on the waveforms on Figure 
38.  which has  been drawn for  a  IENW node that  instantiates  the “optional”  flops  both on the 
forward and reverse paths (Figure 36/Section 6.2).
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Figure 37: Illustration of how IENW could get deadlocked.
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This behavior implies, that if a node has two incoming active bus requests – from upstream as well 
as local CNW node – and if the one, which it forwarded, gets rejected by the destination, then after 
each received rejection the node gives bus access to the request that lost bus access in the previous 
arbitration turn. Hence, the bus access alternates between the two requests if they both keep on 
getting rejected by their respective destination. Now let us assume that two nodes A (upstream) and 
B (downstream) are connected back to back, and they both have their local requests active (say, 
lreq_A and  lreq_B respectively),  as  well  as  there  is  an  active  request  received  by  A from its 
upstream node (say greq). In this case, B gives bus access alternately to lreq_B and to the request it 
receives from A, which may be either lreq_A or greq. A in its turn, alternates the bus access between 
lreq_A and greq. Thus, the bus access granted by B effectively takes the pattern (lreq_B, greq, 
lreq_B, lreq_A, lreq_B, greq, lreq_B, lreq_A, …), i.e. lreq_B gets bus access 2 times as frequently 
as either of the two other requests, though all of them do get bus access. With more and more nodes 
connected in series, the bus access frequency given to the requests with source further away from 
the destination falls exponentially as a power of 2, i.e. the bus access frequency is halved for every 
1 node of additional distance from the destination. Therefore, the mechanism is guaranteed to avoid 
any deadlock, but the worst-case circuit  set-up latency grows exponentially with the number of 
nodes in the design, if all nodes do request bus access at the same time and most of them cannot be 
served by their respective destinations. Thus, this is clearly not an efficient deadlock avoidance 
mechanism under heavy IENW load. But, as explained before, the IENW is expected to have only 
low loading. Also, all the processing nodes use IENW to send packets to the packet sink outside the 
hardware accelerator.  This packet sink will  likely be some big RAM associated to the external 
processor  running  the  application  as  shown in  Figure  11.  So,  it  is  unlikely  that  any  of  those 
transactions will get a reject. Combining these two observations, it  can be concluded that, even 
though the worst case performance of the proposed deadlock avoidance mechanism is quite poor, 
for the present system it is expected to be completely adequate.

6.2.3 IENW Protocol
The IENW is composed of the following signals going from upstream to downstream node: req, 
pack, valid, add, and the signals going from downstream to upstream are reject and grant. When a 
source wants to send some data over the IENW it asserts “req”, and puts the number of via-points in 
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Figure  38: Deadlock-avoidance mechanism at an IENW node (with a flop on both forward and 
backward paths)
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the packet it intends to write in the “pack” signals, and puts the coordinates of the destination node 
in the “add” signals. If the destination gives a “grant” after any number of clocks, a virtual circuit 
has been successfully set up. In that case, the source sends the whole packet in a burst mode after 
another unspecified number of clocks, putting the data into the “pack” signals, and qualifying it 
with the “valid”.  The “req” may be de-asserted any time after getting the grant and before the 
finishing of data transfer. The “grant” may be de-asserted any time when the “valid” is high. On the 
other hand, if the request is rejected by the destination, it asserts the “reject” signal for just one 
clock-cycle. After this, the “req” has to go low for at least one clock-cycle before a new request can 
be made. However, the delay between the assertion of reject and de-assertion of req is unspecified.

6.2.4 IENW Control Logic
As shown in Figure 36, each IENW node is controlled by two FSM's – the read-FSM and the write-
FSM. The operation of the write-FSM has been shown on Figure 40. It starts at reset in the state 
000. It checks if there is an active request from the upstream node, and if so, whether it is for the 
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present node, or for another downstream node. In the first case, the request is routed to the local 
FIFO-controller  and the next  state  is  made 011.  If  there was a request  destined for  a  different 
downstream node then the request is forwarded downstream and the next state is made 100. And if 
there was no request the state remains unchanged at 000. When the 100 state, it stays in that state as 
long as the valid is 0, but either req is still 1 or the grant from upstream is 1, signifying that the  
previous request is still active. However, if all of them are 0, it signifies abortion of a request, and 
the state-machine comes back to the initial 000 state. If, however, a valid is received in state 100, it 
signifies the start of a successful data transfer, and the FSM transitions to state 101. It remains in 
this state as long as valid remains 1. When it becomes 0, it signifies the end of the transfer, and the 
FSM comes back to the 000 state. In both states 100 and 101, where data can be transmitted, the 
incoming signals are forwarded to the next stage.

When in state 011, i.e. expecting to receive data to be written into the local FIFO, it checks both 
valid as well as the reject from the local FIFO-controller. If it gets the reject, the FSM transitions 
into state 001, and disables the request to the FIFO-controller, and the reject is routed upstream. The 
FSM remains in this state till “req” is de-asserted for a cycle, which puts it back into 000 state, 
ready to process a new request. If the transaction is however not rejected, but in fact granted, then 
eventually a valid signal is received in state 011, and the next state achieved is 010. The FSM stays 
in this state as long as the transfer goes on, i.e. valid is high, after which it comes back to the 000  
state. In the 011 abd 010 states, the incoming signals from the upstream are routed to the local 
FIFO-controller for writing into the FIFO.

The Read-FSM design has been shown on Figure 41 below. This starts at state 000 at reset, and 
monitors the req signals coming from the local Send-module as well as forwarded by the Write-
FSM. If a request from the local Send-module is received it is routed to the next downstream node, 
and the FSM transitions into state 100. If there was no local request, but a forwarded request was 
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Figure 40: IENW node Write FSM (req, valid are from the upstream node)

State 000
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add == local coordinates}
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State 101
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fw_ctr = fifo_ctr = 1
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State 011
Test: {valid, reject

 from FIFO}
Output: grant_us_ctr = 2
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Output: grant_us_ctr =
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false

true
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active, then that request is routed to the next downstream node and the FSM transitions to state 001.  
This  steps  performs  an  arbitration  between  the  two  possible  incoming  requests  by  statically 
assigning the local request highest priority. Similar to the forwarding mode of the write-FSM, the 
read-FSM also monitors the forwarded valid,  when it  is  in the forwarding mode (001).  If  it  is 
asserted, it signifies the beginning of a data transfer, and the next state is 010, in which it stays as  
long the data transfer is active, and then goes back to state 000. Otherwise, however in state 001, if 
the forwarded req or the grant from the downstream are high, it signifies that the request is still  
active,  and the FSM stays in the same state.  If  however,  all  these signals are false,  it  signifies  
abortion of the previous request, and the state-machine goes back to 000 state, ready to tackle a new 
request. Note that the local request has higher priority in arbitration, thus if a forwarded request is  
rejected, and there is an active local request at that cycle, then the local cycle gets bus access in the 
next round of arbitration.

If the state is 100, i.e. the bus access has been granted to the local request, then it monitos the valid 
from the local send-module, as well as the “reject” from  for the downstream. If neither is received, 
then the state remains same. If reject is received, it signifies rejection of the present local transaction 
request. So, the output request is disabled and the state goes to 111. If there is a forwarded request 
in this state, then that is granted access to the bus, and the state transitions to 001, the forwarding 
mode. Otherwise, the local request is again granted the bus access and the state goes back to 100. 
Instead of receiving a reject from downstream, if a valid is received from the local send-module n 
state 100, it signifies the beginning of a packet transfer and the state transitons to 101, in which it 
remains till the transfer ends, after which it goes back to the idle 000 state.

Note, when the FSM is in states 001 or 010, the output is connected to the forwarded interface from 
the upstream, and when it is in states 100 and 101, the output is connected to the local send-module 
interface. In state 111, the request is disabled. This implements the release of the bus for exactly 1 
clock cycle by a processing node, if its local IENW request is rejected.
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Figure 41: IENW node Read FSM

State 000
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6.3 Processing Node Software
The processor in a processing node has to run a software to perform the necessary computations on 
the packets. It is envisioned to execute the following tasks:

1. NoC-to-processor  arbitration,  i.e.  deciding the  order  of  selecting packets  from the input 
FIFO's for processing.  It  is  assumed to implement  a  sort  of round robin arbitration,  for 
which an RR-list with maximum 5 entries is maintained, each input FIFO may feature at 
most once on the list. Whenever, no packet from a particular FIFO is present on the list, and 
a packet becomes available in it, that FIFO is added at the end of the list.

2. Routing,  i.e.  determining  the  output  interface  for  a  packet  under  processing,  using  the 
information from its via-list. (Ref. Section 4.1.4 in [11] for the algorithm)

3. Computation of the cost-contribution of the present map segment.

4. Updation  of  the  packet  to  add  the  cost-contribution  directly  to  the  packet  inside  FIFO 
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Figure 42: Conceptual state machine/flow-chart for software. The steps inside the dotted 
lines implement a round-robin arbitration scheme
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memory, and number of via points by writing this information into the send-list, but not 
modifying  that  field  in  the  FIFO-memory.  The  FIFO-controller  modifies  the  packet 
accordingly, when sending out.

The diagram on Figure 42 shows a guideline conceptual state-machine to implement the software. It 
satisfies  the  requirement  outlined  in  Section  6.1.4  that  the  software  must  first  ensure  that  the 
ready_toggle == sent_toggle in the send-list for a particular FIFO, meaning that the corresponding 
FIFO is not being used by the send-module, before it attempts to read that FIFO. This implies a  
limitation that only the topmost packet in a FIFO can be processed by the processor at any time. 
The next packet can be processed only after the older topmost packet has been processed and sent 
out by the send-module.

6.3.1 Virtual Map Records
The conceptual state-machine on Figure 42 describes the normal behavior of the software while 
operating on the flight trajectory record (FTR) packets, that model the trajectories. However, as 
described in Section 2.3 and in [11], there are also the VMR packets required for programming the 
cost-functions to the processing nodes. In fact, for an FPGA implementation of the design without 
support for on-the-fly reconfiguration of the nodes, VMR's can be done away with, by initializing 
the respective data in the respective memory at the compile-time, using the readmem() function in 
the Verilog code. However, for the sake of generality, i.e. to support reconfiguration as well as ASIC 
implementation, it is important to support VMR packets. But it is clear that the hardware does not 
treat them any differently from FTR's. Hence the software needs to tackle that difference. The idea 
is that the hardware views VMR's also as FTR's. When the software reads a VMR from one of the 
input FIFO's, it should initialize the processor data memory by the cost-function values contained in 
it, and then instruct the Send-module to eject this packet through IENW, by specifying through the 
send-list that the new number of via-points in the packet is 0.

More ideas for the development of the software, not necessarily stemming from the CNW/IENW 
node hardware considerations, have been described in Chapter 10 “Further Works”.

6.4 Conclusion
In this chapter, the hardware design of the processing node, and hence that of the whole processing 
array,  which is just  multiple processing nodes instantiated and directly connected to each other 
without any glue logic, has been described in detail, except for the processor which could not be 
designed due to limitation of time. Thus the two main components involved in the design were the 
CNW node and IENW node, which also completely define the two NoC fabrics (CNW and IENW) 
that connect the processing nodes. One top level design for CNW was already proposed in [11] 
which was used as the starting point in the present work, which involved defining it in its minute 
details. The previously offered IENW solutions were, however, not used in the present work, as an 
even simpler solution was found out. The only piece of design remaining, viz. the processor, can be 
plugged into the processing node RTL module developed in the present work very easily, through a 
simple  memory-like  I/O  interface.  In  Section  6.3  a  guideline  has  also  been  offered  for  the 
development  of  the  software  to  be  run  on  that  processor,  which  incorporates  the  hardware 
assumptions  and  constraints,  thus  making  it  easier  for  the  software  developer  to  start  the 
development quickly without first having to understand the details of the hardware design. Thus, 
this activity has furnished a very valuable contribution, that can be easily built upon in order to 
finish the development of this accelerator.
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Chapter 7

7. Hardware: Verification
Verification involves one of the major activities in any hardware development project. It is crucial  
for  ensuring  the  functional  quality  of  design.  In  the  present  work,  the  hardware  RTL  was 
implemented in Verilog, involving multiple processing nodes connected through CNW and IENW 
as has been explained before, except for the processor. A fully-fledged verification activity was, 
however, not undertaken due to the lack of time. In any case, the key design requirements were 
identified, and a set of test-cases were defined that aim to test the design for compliance with these 
requirements.  The  test-cases  were  implemented  as  completely  deterministic  directed  Verilog 
testbenches, and the simulations were carried out using the ISim simulator (default simulator of 
Xilinx ISE). The resultant verification coverage is thus expected to be quite low, and are aimed 
primarily to detect obvious design flaws, rather than to weed out all possible bugs. The design 
requirements and the test-cases, developed here, may, however, be used as a reference for building a 
proper verification plan, and defining coverage goals, as further activities to the present work.

7.1 Design Requirements and Covering Test-Cases
The following table lists the key design requirements, that the hardware needs to be checked for 
compliance with. Each requirement is covered by one or more test-cases (TB1-7) as listed. The test-
cases themselves are explained in the following Section 7.2. The “References” column contains 
further explanations to the requirements, often providing reference to other parts of this report for 
detailed explanations.

Require-
ment #

Requirement Description Covering 
Test Cases

References

1 Check  CNW  grant  is  not  asserted  when  not 
enough space in FIFO

TB4

2a Interleaving of read and write to same FIFO TB2, TB4

2b Interleaving of read and write to different FIFO's TB1

3a First  valid  data  received  from  upstream  node 
when rd_cycle == 0 

TB2 Figure 30 for rd_cycle

3b First  valid  data  received  from  upstream  node 
when rd_cycle == 1

TB2

4a Send-module requests data from FIFO-controller 
when rd_cycle == 0

TB2

4b Send-module requests data from FIFO-controller 
when rd_cycle == 1

TB2

5a Changed number of via-points correctly reflected 
in packets, read out from a FIFO

TB2,  TB1, 
TB7, TB4

5b Old number of via-points used when updating the TB2,  TB1, 
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FIFO head pointer. Thus, a full packet is removed 
from FIFO,  when  it  is  read  out  irrespective  of 
how many via points were requested to be read.

TB7, TB4

5c Changed  number  of  via-points  used  by  send-
module to request transfer to downstream node

TB1,  TB3, 
TB7, TB4

Change  reflected  in 
send-list: new_num_via

6a Occurrence of timeout, as specified by processor TB3, TB4 “timeout” in send-list

6b In case of timeout, change of routing direction to 
0 (Ejection Network)

TB3

7a Specification  of  routing  direction  by  processor 
through send-list.

TB3,  TB1, 
TB7, TB4

“route_dir” field

7b Specification of new number of via's by processor TB1,  TB3, 
TB7, TB4

Included in 5c, 5a

7c Specification  of  ready_toggle  by  processor  in 
send-list

TB1,  TB3, 
TB7, TB4

8 Updation of sent_toggle by send-module in send-
list

TB1,  TB7, 
TB4

9a Receive list initialization after reset TB1-4, 7

9b Receive list updation after a FIFO read TB2,  TB1, 
TB7, TB4

9b.1 Receive  list  updation  after  a  FIFO  read  in  the 
same cycle as sent_toggle updation.

TB1 Sections  6.1.4,  6.1.6, 
6.3 for explanation

9c Receive list updation after a FIFO write TB1-4, 7

10 Two  different  FIFO's  try  to  access  the  same 
output routing direction simultaneously

TB1

11 FIFO  roll-over  –  correctness  of  circular  buffer 
implementation of the FIFO's

TB4

12 CNW  grant  asserted  just  after  timeout  of  a 
request to a downstream node

TB4 Section 6.1.2

Figure 28C

13a IENW forwarding request, i.e. request received 
by a node is not meant for it.

TB5, TB6, 
TB7

13b Packet write from IENW into FIFO TB5, TB6, 
TB7, TB4

13c Ejection of a packet through IENW TB5, TB6, 
TB7

14a IENW is capable of parallel read and write, if it is 
not forwarding a packet.

TB5
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14b IENW packet forwarding is mutually exclusive to 
the other two operations (i.e. FIFO read, and 
FIFO write). None of them can interrupt the 
other. All transfers are done in burst mode.

TB5

15a IENW rejections are routed to correct source TB6, TB7

15b IENW nodes release the bus for 1 clock cycle 
when they get a reject for a request received from 
the send-module interface on that node.

TB6, TB7 Sections 6.2.2, 6.2.3

15c When multiple requests contend for bus access, 
then all of them are assured to get their turn, even 
when other requests are not served, and hence do 
not become inactive.

TB6 Section 6.2.2

15d When an IENW write request is rejected by 
FIFO-controller, the IENW node disables this 
request at once, avoiding getting a new 
reject/grant at a later point for the same request.

TB6, TB4

16 Injection of packet into the network through 
IENW, then computation and transfer through 
CNW and in the end extraction through IENW

TB7 Overall integration 
check

17 FIFO-controller generates “reject” to 
unserviceable IENW request properly

TB4 Sections 6.2.2, 6.1.4

7.2 Details of Test-Cases
Each of the following seven test-cases (TB1-7) has been implemented as a separate Verilog test-
bench by the names test_bench1-7. The following section describes them in details:

TB1

Design under test:

CNW-node (Figures  25,  26).  All  its  interfaces,  including IENW/CNW interfaces as well  as the 
processor interface are controlled by the test-bench.

Description: 

1. Assert req to write a 10-via packet into FIFO2, a 5 via-packet to FIFO3 and a 4 via packet to 
FIFO4 

2. Write them in sequence of getting grant 

3. As soon as the 10-via packet is finished writing put into send-list with 10 via points with 
routing direction 1

4. As soon as send module asserts req to output in direction 1, give it grant 

5. This should ensure some overlap between reading and writing into different FIFO's 

6. After the writing of 2nd and 3rd packets are over, update the send-list to send them out with 
number of vias reduced by 1, but  both to direction 3. 

7. When the send-module asserts the output req in direction 3, give grant. Should happen 2 
times for the 2 packets. 
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8. At the end, the CPU reads all receive list and send list entries 

Things verified: 

1. FIFO2 reading and FIFO4 writing are concurrent 

2. Data integrity  of  packets  -  number of  vias  read,  updation  of  number of  vias  in  packet, 
routing to correct direction 

3. At one point two FIFO's (3 & 4) requested for the same output interface (#3). Correctly 
handled. 

4. After  a  successful  packet  send,  the  receive-list  is  updated  in  the  same  cycle  as  the 
sent_toggle is toggled. 

5. At the end, the receive list is empty but with correct head pointers 

6. At the end, the send-list has ready_toggle == sent_toggle, with 0 for FIFO's 0 and 1, and 1 
for FIFO's 2, 3, 4.

TB2

Design under test:

FIFO-controller  inside CNW-node (Figures  26,  30-32) + DPRAM. The test-bench controls  and 
emulates the incoming CNW/IENW interfaces, as well as the internal bus between Send-module 
and FIFO-controller.

Description:

1. Writes 2 packets into FIFO #4

2. Reads both packets out of FIFO #4, but with reduced number of via points 

3. Reading out of first packet and writing in of second packet overlap 

4. Send-module not used. Only FIFO-controller and memory used. 

Things verified: 

1. Data integrity of the packets 

– including the replacement of the old number of via by new number of via 

– required number of via are read out 

2. Updation of receive-list

– Initialization by read FSM 

– Updation by both read and write FSM's

TB3

Design under test:

CNW-node (Figures 25,  26).  All  its  interfaces,  including IENW/CNW interfaces as well  as the 
processor interface are controlled by the test-bench.

Description: 

1. A packet with 5 via points is written into FIFO 0 

2. When  the  writing  is  visible  from  CPU  through  receive  list,  the  CPU  updates  the 
corresponding send-list entry with a timeout of 20, and routing direction of 2 
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3. No grant is ever provided to the output interface 

Things verified:

1. CPU sees the correct entry in receive list 

2. Send-module sees the correct entries in ready-toggle, timeout, new number of vias and take 
action accordingly, i.e. assert the correct output req with correct new number of vias. The 
req direction changes to 0 after timeout. 

TB4

Design under test:

Processing node except processor, i.e. CNW node + IENW node (Figure 25).  All its interfaces, 
including the IENW interface, the CNW interfaces, as well as the processor interface are controlled 
by the test-bench.

Description:

1. Write a 10-via point packet into FIFO0 through the IENW (15 words, with a 5 word header)

2. When this write is visible in the receive-list, read out this 10-via point packet through the 
Left-interface  (routing  direction  = 1),  by  properly  updating  the  send-list  and generating 
grant. The CPU also changes the number of via points to 3.

3. In parallel, write in a series of 11 6-via point packets (each packet: 11 words) into FIFO0 
through IENW. This will fill up 121 words of the 127 words deep FIFO, as well as induce 
FIFO roll-over.

4. Assert  request  to  write  a  12th 6-via  point  packet  through IENW. The FIFO won't  have 
enough space to write this in, and should generate a single-cycle long “reject” pulse. This 
should also disable the FIFO write-request inside the IENW node.

5. At this point, the CPU allows reading out one packet from FIFO0 through Left-interface. It 
also changes the number of via-points for this packet to 5.

6. The  testbench,  however,  asserts  the  necessary  grant  at  the  same  instant  as  the  req  is 
deasserted by the node, due to timeout. This corresponds to the corner case transfer scenario 
as in Figure 28C.

Things verified:

1. Roll-over of FIFO

2. No more writing into FIFO when not enough space

3. Proper generation of the 1-cycle long “reject” by FIFO controller, when not enough space in 
FIFO.

4. Assertion  of  grant  from  downstream  just  after  req  is  deasserted  due  to  timeout, 
corresponding to Figure 28C scenario, and that it is treated properly by the hardware.

TB5

Design under test:

IENW node (Figures 25, 36). All interafes including the IENW interfaces and the interfaces to the 
CNW node, which follow CNW protocol, were controlled and emulated by the test-case.

Description:

1. First there is an incoming request on IENW to have a packet forwarded to the next node.
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2. Even before a grant is received for this request, a request is received also from the send-
module interface.

3. After a while a grant is received on the IENW (to be associated with the first request), which 
is to be forwarded to the upstream node.

4. After a while, the upstream node starts sends a packet, which should be forwarded to the 
downstream node.

5. After  this  packet  send is  finished,  a  new request  should  be raised  by  the  present  node 
towards the downstream node with respect to the already-asserted request received from the 
send-module interface.

6. A new grant is received with respect to the last request, and data is sent out from the send-
module.

7. While this transfer is active, the upstream node makes a new request to write data into the 
present  node's  FIFO  through  the  FIFO-controller.  The  present  node  should  be  able  to 
forward this request to the FIFO-controller, even when making a transfer from the send-
module interface.

8. The FIFO-controller gives grant, and a corresponding packet transfer is performed.  Right 
after  its  completion,  the  upstream node makes a  fresh  request  for  another  packet  to  be 
forwarded. However, the send-module interface was still making its transfer into the IENW. 
So, the new request should be blocked by the present node.

9. After a while the send-module transfer is completed. The present node should be able to 
forward the request from its upstream node to its downstream node in the next clock cycle.

Things verified:

1. Both state machines come back to the '000' state at the end of a packet transfer, which is  
signaled by at least 1 cycle of valid = 0.

2. The node can process all three kinds of requests properly:

1. Forwarding a request when not destined for itself

2. Assert FIFO write request through FIFO-controller when received a request for itself

3. Make an ejection request when received request from Send-module

3. When a forwarding circuit is setup, the Send-module cannot access the bus, and vice-versa.

4. It is possible to read and write the FIFO's of the same node at the same time, i.e. the node 
can process an incoming IENW request with the same destination address as that of the 
present node, and a bus access request from the send-module.

TB6

Design under test:

3 IENW nodes connected in series. All their interfaces are controlled and emulated by test-bench.

Description

1. In the beginning a transfer request is made, as if from an upstream node, to be forwards 
through all the 3 nodes to downstream node.

2. When this request is active, requests are made for IENW transfer from the send-module 
interface in all the nodes. But these should not get served at this point, as all the nodes are 
currently forwarding the first request.
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3. Once this situation is established, any request received at the most downstream output port 
is always made to be acknowledged with a reject after 4 clock cycles. This way, it can be  
verified that the IENW can send out different requests, each time it receives a reject.

4. The first time a reject is received at the upstream node, the corresponding request is de-
asserted for exactly 1 clock cycle and the same transaction is request again in the next cycle.

5. After the second reject is received by the upstream node, it de-asserts the request for 1 clock 
cycle, and then makes a new request to write data into the FIFO of the middle node.

6. When the middle node receives the request to write into its FIFO, a reject is fed from the 
corresponding FIFO interface.

7. When this reject is received by the upstream node, it waits for a few clock cycles before de-
asserting the req, and then after 1 clock cycle, it makes a new request which is again to be 
forwarded by all 3 nodes.

Things Verified

1. The  transaction  request  received  from the  upstream  node,  as  well  as  the  send-module 
interfaces are properly sent to the downstream node, with proper destination address and 
number of via points.

2. When many requests are active, it is checked that getting a series of rejects gives turn to all 
the pending requests, even if not in equal priority or frequency.

3. When a FIFO-controller interface generates a reject, the corresponding IENW node disables 
that FIFO-request immediately, without waiting for it to be diabled by the source.

4. When the IENW bus request of a send-module is rejected, it releases the bus for exactly 1 
clock cycle.

TB7

Design under test

The DUT in this test-case is made up of 2 processing nodes (except processors), say A and B,  
connected to each other through IENW (in the order: packet source → A → B → packet sink) and 
CNW where A is assumed to be located to the Left of B. The otherwise open interfaces (i.e. Up, 
Down and Left  of  A,  and  Up,  Down and Right  of  B)  are  looped  back onto  themselves.  This 
topology is same as that of an 2x1 processing array. The test-bench emulates the packet-source and 
packet-sink  connected  to  the  primary  input  and  output  IENW interfaces.  The  test-bench  also 
controls and emulates the processor interfaces of the two processing nodes.

Description

1. A packet is written through IENW into node B.

2. The receive-list of B is monitored through the CPU interface of B. When the packet writing 
is visible on this interface, the corresponding Send-list entry is updated through the CPU 
interface to route the packet to the Left (i.e. to A) through CNW without change of number 
of vias.

3. The receive-list  of  A is  monitored through the corresponding CPU interface.  When that 
indicates the reception of a packet from B, the corresponding Send-list entry is updated to 
route this packet out into IENW, with reduced number of via points.

4. When the IENW packet sink receives a request for the first time, it rejects that. However, the 
same request is expected to be received after a gap of 1 cycle.

71



5. When the  new request  is  received by the sink,  a  transaction  is  granted,  and the  packet 
transfer is allowed to complete normally.

6. The content of the packet is checked against the original packet. Only the number of via-
points should change – both in the size of the packet and the corresponding header entry in 
the packet.

Things Verified

1. Processing nodes interface with each other properly, both through the IENW and CNW.

2. The Receive-list and Send-list operations are successful.

3. IENW forwards packets  properly,  e.g.  when source writes  to B,  A forwards  the packet. 
When A ejects packet to sink, B forwards the packet.

4. IENW handles “reject” properly.

5. Packet data integrity is maintained.

7.3 Conclusion
All the afore-mentioned test-cases have been implemented and used to check compliance of the 
hardware design – both at the level of its component blocks, as well as at the top-level system level 
(e.g. TB7). The tests have all passed. Even though, as explained at the beginning of this chapter, this 
approach is not guaranteed to detect all possible bugs in the design, it does provide a good level of  
confidence in the soundness of the design and also provides good confidence in the quality of the 
RTL implementation. While these tests were geared at  evaluating the design with respect to its 
functional requirements, the following chapter is going to present its evaluation with respect to non-
functional attributes, like the clock speed achieved and Silicon area required to implement it.
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Chapter 8

8. Hardware: Synthesis and Evaluation
In order to evaluate the RTL implementation of the design described in Chapter 6 for various non-
functional attributes, like achievable clock speed, Silicon area, etc. it was necessary to synthesize it. 
The synthesis is done with the ISE default setup using XST tool, and a Virtex7 FPGA was used as 
the target device. Virtex7 was chosen as a good benchmark for the capabilities of modern FPGA's. 
The first  synthesis  was run on a  single node processing array, i.e.  an array containing just  one 
processing  node,  where  all  CNW interfaces  were  looped  back  to  themselves  and  the  IENW 
interfaces were available as primary IO's. The processor interface was also available as primary 
IO's, as there was no processor design instantiated. This was used to detect problems and evaluate 
the the design of a single node quickly, and to make any required modification. Then the array size 
was gradually increase to a realistic 8x8 to get more realistic data.

8.1 Performance Bottleneck and Resolution
The first synthesis runs on a single processing node array could achieve a top frequency of about 
180 MHz. The critical path was found to look logically like below:

As indicated on Figure 43, the solution adopted for shortening the critical path was by introducing 
some flip-flops. In general, such an introduction of flip-flops or pipeline stages would change the 
behavior of the hardware – often in unacceptable ways. In this particular case, it was found that 
such a modification of the behavior was, however, acceptable. The output of this logic-cone was 
found to be relevant only when state == 000. Then, this output determines whether the next state 
will be 001 or 100. As is clear from the diagram, after the introduction of the new pipeline-stage, 
the values considered for head, tail and wr_fifo_id would be from one clock-cycle ago, where head 
and tail are collections of 5 head and tail pointers each corresponding to one FIFO. Referring to  
Figure 31, the FSM of the write-logic in the FIFO-controller, to which this logic belongs, it can be 
seen that the state 1 cycle before 000 is always 100, and the value of wr_fifo_id (shown as “i” there) 
remains unchanged over these two states. In the same way, tail also remains unchanged in states 000 
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Figure 43: Logical view (not post-synthesis implementation) of one critical path in pre-retiming 
RTL, with two possible locations of introducing flip-flops marked by green and blue crosses (x).
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and 100. However, head is modified by the read-FSM (Figure 32), which works independent of the 
write-FSM, and thus it is possible that it would change within this 1 clock-cycle. It is, however,  
known that the head-pointer for any FIFO may change in 1 clock-cycle by at  most 1 (modulo 
fifo_depth), showing that one more word has been read out from that FIFO. Thus, it is possible that  
because of introduction of this new pipeline stage, an older value of tail will be used, which will 
imply that the space available in the FIFO may be calculated to be one word smaller than what is  
correct for that clock period. However, it is significant only when a FIFO is being read from, and 
there is a request to write into the same FIFO, and at the same time, the size of the packet about to 
be written is exactly same as the space available in the FIFO. It is expected that such cases are quite 
rare, and even if it occurs, it only entails a somewhat delayed grant to the pending write-transaction, 
and not an outright failure. Thus, the functional impact is expected to be negligible. Hence, this 
solution was implemented, and the two variants shown by the green and blue crosses on Figure 43 
were tried. It was observed that introducing the pipeline stage at the blue cross still makes a part of 
the former critical path the new critical path, whereas that at the green cross cuts the former critical 
path more evenly, giving a completely new critical path at a different section of the hardware. This 
also yields, as expected a higher frequency. In order to reduce the number of required flip-flops for 
the pipe-line stage, a slight modification was carried out by moving one of the constant additions 
after the new pipeline stage, producing the following design:

With this optimization, the hardware became synthesizable at 245 MHz.

Important hardware parameters/generics used for the synthesis were:

WORD_W = 32;    // Width of each word, same as width of the memory interface.
                //   Must be even. 
MEM_ADD_W = 10; // Width of address port of memory. Port on processor

    // is assumed to be 1 bit wider to allow addressing of send-list
HEADER_SIZE = 5; // size of FTR packet header in number of words 
FIFO_DEPTH_W = 7; // Depth of FIFO in number of words = (2^FIFO_DEPTH_W -1)

The “pack” (equivalent of data) signals on communication interfaces (CNW and IENW) have been 
designed to have a width of (WORD_W/2), as explained in Chapter 6.
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Figure 44: Logical view (not post-synthesis implementation) of the former critical path after 
retiming through introduction of the pipeline stages shown in green.
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8.2 Hardware Resource Usage (Single Node)
The Virtex7 device targeted can provide the following hardware resources:

Number of slice registers: 607,200
Number of slice LUT's: 303,600
Block RAMs: 1030
The hardware resource usage of the design was found to be as follows. The percentages in the 
parentheses indicate the percentage of the total available resources in a Virtex7 device.

Processing Node excluding Processor:
The first synthesis was run on a  processing array containing just one processing node (including 
IENW node and CNW node, but excluding the processor), where all CNW interfaces are looped 
back to themselves, but the IENW interfaces are available as primary IO's. The processor interface 
was also available as primary IO's. The resource usage observed was:
Number of slice registers: 499 (<0.1%)
Number of slice LUT's: 1462 (<0.5%)
Number of Flip-Flop LUT pairs: 1475
Block RAMs: 1 (< 0.1%)
Max. Clock Frequency: 245 MHz

Processor:
The processor to be instantiated in the processing node has not yet been designed. However, in 
order to estimate the additional resource that would be required for its instantiation, two popular 
free designs – Picoblaze and Microblaze – were synthesized [14][15]. One block RAM was used to 
implement their program memories. The results are as follows:

Picoblaze:
Number of slice registers: 82 (<0.02%)
Number of slice LUT's: 103 (<0.04%)
Number of Flip-Flop LUT pairs: 139
Block RAMs: 1 (< 0.1%)
Max. Clock Frequency: 299 MHz

Microblaze (with one IO-bus interace, light micro-controller configuration: Microblaze MCS):
Number of slice registers: 420 (<0.1%)
Number of slice LUT's: 665 (<0.3%)
Number of Flip-Flop LUT pairs: 888
Block RAMs: 1 (< 0.1%)
Max. Clock Frequency: 310 MHz

Assuming  that  the  processor  to  be  used  for  the  processing  node  has  a  size  close  to  that  of 
Microblaze,  one  processing  node  would  require  about  919  registers,  2127  LUTs  and  2  block 
RAM's.  The  LUT's  (thus,  combinational  logic)  part  appears  to  dominate,  and  determine  the 
maximum number of nodes that can be put on a Virtex7 FPGA to be around (303600/2127) ≈ 140. 
The actual highest number may, however, be lower because of routing congestion, that may result 
especially  because  of  the  lay-out  of  the  block RAM's  in  columns  inside  the  FPGA, while  the 
processing array is laid-out in a grid which may often be closer to square in shape, thus leading to 
long wiring requirements between the logic and the block RAM's. This is one of the effects that was 
attempted to be studied by gradually synthesizing larger processing arrays, which instantiated the 
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afore-mentioned Microblaze as a stand-in processor.

8.3 Hardware Evaluation: Multi-node
Synthesis and timing runs were necessary to be executed with larger processing node arrays in order 
to evaluate the following:

1. To find out how frequently the “optional” flops need to be instantiated in the IENW (Ref: 
Figure 36)

2. Gather timing and FPGA usage data for more realistic processing node arrays, e.g. 8x8.

In  order  to  perform this  task,  a  top  level  module  “synth_top_8x8”  has  been  built  that  allows 
parameterized instantiation of the processing array, allowing to specify the array size through two 
synthesis-time parameters (thus supporting any array dimensions, notwithstanding the _8x8 in the 
module name):

parameter XSIZE = 8;  // Number of processing nodes in x direction.

parameter YSIZE = 8;  // Number of processing nodes in y direction.

It is also possible in the design to specify through two parameters of the processing node module, 
viz. FLOP_ON_IENW_REQ and FLOP_ON_IENW_GRANT_REJ, whether flops are inserted in the forward 
IENW path (i.e. req, add, pack, valid signals) or the reverse path (i.e. grant and reject) respectively 
for  each  instance  of  the  processing  node.  In  these  synthesis  runs,  a  Microblaze  MCS  was 
instantiated as the processor (including its program memory), in order to obtain realistic area data.

Optimal Optional Flop Insertion

Some of the synthesis data used to find out the optimum insertion of “optional” flops are as follows:
1. 2x2 processing array: All nodes have inserted “optional” flops:

Max. frequency achieved = 247 MHz
Critical path: Inside the FIFO-controller.

2. 2x2 processing array: Only the first and last nodes have inserted “optional” flops.
Max. Frequency acheived = 160 MHz
Critical  path:  IENW forward  path  starting  from node  (0,0)  and  traversing  2  nodes  and 
ending in node (0, 1), giving a length of 3 stages. Comparison with (1) makes it clear that 
this path needs to be broken down in order to reach the highest possible frequency.

3. 2x2 processing array: Flops in forwards path on 2nd and 4th nodes. On reverse path (grant/reject) 
on first and last. 

Max. Frequency acheived = 215 MHz 
Critical path: Still the IENW forward path. This implies that flops must be introduced in 
more frequently on this path, implying in every processing node on the IENW forward path, 
i.e.  FLOP_ON_IENW_REQ = 1 for all nodes.

4. 2x2 processing array: Flops in IENW forward path in all nodes. On reverse path, flops only in 
first and last nodes.

Max. Frequency acheived = 247 MHz (max. Flop-to-flop delay = 4.07 ns)
Critical path: Inside fifo-controller. This potentially indicates that it may be possible to allow 
larger intervals between the flop insertion on the reverse path without hampering operating 
frequency.
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5. 2x4 processing array: Flops in IENW forward path in all nodes. On reverse path, flops only in 
first and last nodes, implying a length of 7 stages. 

Max. Frequency acheived = 231 MHz (max. Flop-to-flop delay = 4.32 ns)
Critical path: IENW reverse path (grant signal). As the longest reverse path was 7 stages 
long with a delay of 4.32 ns, implying a rough delay of 0.617 ns per stage, it seems that the 
proper  interval  of  instantiating  flops  of  the  IENW reverse  path  without  degrading  the 
operating frequency would be floor(4.07/0.617) = 6, where 4.07 ns is the maximum flop-to-
flop delay inside the FIFO-controller.

6. 8x8 processing array: Flops in IENW forward path in all nodes. On IENW reverse path, flops at 
an interval of 6 nodes, including the first and the last node in order to provide isolation to the FPGA 
packaging pins. 

Max. Frequency acheived = 245 MHz.
Critical path: Inside FIFO-control

Details of 8x8 processing array synthesis results:

   Minimum period: 4.069ns (Maximum Frequency: 245.773MHz) 
   Minimum input arrival time before clock: 2.362ns 
   Maximum output required time after clock: 2.253ns 
   Maximum combinational path delay: No path found 

Selected Device : 7vx485tffg1761-2 

Slice Logic Utilization: 
 Number of Slice Registers:           61634  out of  607200    10%  
 Number of Slice LUTs:                139942  out of  303600    46%  
    Number used as Logic:             129062  out of  303600    42%  
    Number used as Memory:            10880  out of  130800     8%  
       Number used as RAM:             8192 
       Number used as SRL:             2688 

Slice Logic Distribution: 
 Number of LUT Flip Flop pairs used:  156037 
   Number with an unused Flip Flop:   94403  out of  156037    60%  
   Number with an unused LUT:         16095  out of  156037    10%  
   Number of fully used LUT-FF pairs: 45539  out of  156037    29%  
   Number of unique control sets:      3137 

IO Utilization: 
 Number of IOs:                          74 
 Number of bonded IOBs:                  74  out of    700    10%  

Specific Feature Utilization: 
 Number of Block RAM/FIFO:              128  out of   1030    12%  
    Number using Block RAM only:        128 
 Number of BUFG/BUFGCTRLs:                2  out of     32     6%  
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8.4 Conclusion
The results obtained through various synthesis runs, as they have been presented in this chapter 
allow to draw conclusions about some key non-functional performance attributes of the design. It is 
understood that the design is well-suited for implementation on FPGAs, such as a Xilinx Virtex7 
device. On such a device it can run up to a clock frequency of 245 MHz. The clock frequency 
supported by the instantiated processor may, however, be different, and it is possible to use different 
clock domains for  the communication infrastructure (i.e.  IENW node and CNW node)  and the 
processors. On the other hand, it was also clear that a Virtex7 could accommodate a realistic array 
size of 8x8 processing nodes quite comfortably (at slice LUT usage of 46%). It also did not show 
any sign of routing congestion, that were anticipated due to the mismatch between the processing 
array lay-out and the block RAM lay-out inside the FPGA. Maybe such problems would become 
prominent with even larger processing array sizes. All the wires, except for those connecting to 
block RAMs, are, however, expected to be very short, because of the very regular 2D structure of 
the hardware.  It  might  have  mitigated the routing  congestion  more  than anticipated.  The other 
important finding from this exercise is that, for the Virtex7 implementation, the optional flops have 
to be instantiated in each node on the IENW forward path, but they can be instantiated at an interval 
of 6 nodes on the reverse path.

Overall, Chapters 6-8 have presented an efficient hardware design and RTL implementation of the 
communication infrastructure involved in the NoC-based hardware envisioned in Chapters 1 and 2. 
The processor necessary to complete this hardware could not be designed due to lack of time, but  
the present RTL allows a simple single-interface plug-in opportunity for the processor whenever it 
is  implemented.  Basic  evaluation  of  the  RTL  has  been  performed  in  terms  of  functional 
requirements (by verification) as well as non-functional attributes (by synthesis and timing), and it 
is clear that the present design fulfills its envisioned design goals quite well. 
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Chapter 9

9. Discussion and Conclusion

9.1 Accelerator Model
As explained in Chapter 1, the present work provides a partial solution to the problem of designing 
and implementing an efficient and scalable hardware accelerator meant for parallelly computing 
costs of trajectories on a 2-D map. The design-work was carried out first at a relatively higher level 
of abstraction using the hardware-software co-design approach for the accelerator, as summarized in 
Chapter 2, and executed in the previous semester. A top-level architecture was worked out, and then 
implemented in a SystemC model, containing both the hardware and the software components. The 
model thus developed is cycle-approximate, i.e. it tries to model the cycle-accurate behavior of the 
system under  some simplifying assumptions.  This  model  was thoroughly simulated to  evaluate 
various performance parameters for the design as documented in Chapter 7 of [11], which may be 
utilized in choosing the optimal design parameters, e.g. number of map folding layers, FIFO depths, 
deadlock time-outs, etc. However, for the final decision on these parameters the model should be 
informed with the correct values of some influencing factors, e.g. the time taken by a processing 
node to process a packet, etc. when those values are known, which may probably be found only 
after  the  processor  and  software  implementations  for  the  accelerator  are  available.  Thus,  the 
finalization of this model and the hardware-software system implementation are, after all, tightly 
coupled and may involve a few iterations.

9.2 Application
The accelerator can, in any case, be meaningfully utilized only by an external application. Thus, it is 
supposed to be a part of a larger computation system, which can use it to parallelize and speed up 
trajectory cost computations. In the present semester (spring 2014), one of the activities undertaken 
was therefore to study and define an application which may benefit from this accelerator hardware. 
As  mentioned  in  Chapter  3,  the  most  obvious  field  of  application  was  in  planning  optimal 
trajectories,  using heuristics  that  would need comparing many trajectories quickly according to 
some cost defined on them. Through a survey of the existing literature, it was found out that this 
was indeed a very important field for many military as well as civilian applications. Some of these 
examples  have  been  summarized  in  Chapter  3.  It  was,  however,  observed  that  they  use  many 
different  optimization  heuristics,  including  genetic  algorithm,  but  most  of  them  do  involve 
computing cost (or equivalently, fitness) of several trajectories. These sources, however, did not go 
into the details of the implementation of the algorithms. But as explained above, an ideal algorithm 
to  benefit  from  the  proposed  hardware  would  be  parallel  in  nature,  thus  exploiting  the 
parallelization  offered  by  the  hardware.  So,  more  literature  was  surveyed  to  find  out  ways  to 
parallelize some of the most popular optimization algorithms, like simulated annealing and genetic 
algorithm (which was used by one of the applications described in Chapter 3).

Building on the findings  of the surveyed literature,  one simulated annealing-based and another 
genetic  algorithm-based  simple  application  was  planned  for  development  and  evaluation,  as 
described in Chapter 4. It was, however, found early that the genetic algorithm (GA) was expected 
to provide opportunities of parallelization, that are better suited for the proposed hardware, and GA 
was also used by one of the applications reviewed in the literature [4]. Hence, a simplified example 
application  was  designed  based  on  a  parallel  genetic  algorithm,  drawing  inspiration  from this 
particular application. At the same time, a high level abstraction of the hardware accelerator was 
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also derived from the findings of the SystemC model simulations, mentioned before. Both this high-
level model,  and the application were implemented in C using POSIX threads,  as explained in 
Chapter 4. This high level system model was subsequently simulated, as reported in Chapter 5, and 
it was found that it could take advantage of the hardware quite optimally. Just like the SystemC 
model, this high-level model can also be further refined by incorporating hardware data, like  the 
time taken by a processing node to process a packet. This may then be utilize to fine-tune different  
design  decisions  for  the  application,  for  example  the  dispatch-rate  (or  through-put)  adaptation 
mechanism (Ref. Section 4.3.5).

9.3 Implementation
After having thus established the soundness of the proposed design, the next step was to actually 
implement the system, which was taken up as another activity in the present semester (spring 2014), 
though all of its subtasks could not be completed due to lack of time. The three main components of 
the design are the hardware for the communication infrastructure, the hardware for the processors, 
and the software to be run on these processors. Only the first of these three activities could be 
performed,  given  the  time  constraints.  A  thorough  micro-architecture  was  defined  for  the 
communication  infrastructure  (Chapter  6),  and  it  was  implemented  in  Verilog  RTL.  This  also 
included defining the bus protocols and providing an interface to easily plug in the processor when 
designed, as well as to spell out software constraints and suggest one skeletal design of the software 
(Ref: Section 6.3).

This hardware design was subsequently unit-tested to weed out any obvious functional problems, by 
identifying the required functional behavior and defining directed tests to check for them. These 
tests were implemented as Verilog test-benches. The details of this activity have been provided in 
Chapter 7. Even though all the test-benches described have been implemented and used to qualify 
the hardware, the verification cannot be taken to be exhaustive, because it was simple deterministic 
directed testing. It is,  however, expected that the requirements and test-cases developed for this 
activities and described in Chapter 7, can be used to help develop a fully fledged verification plan, 
and execute it.

Apart  from functional  evaluation,  the  hardware  was  also  studied  for  its  non-functional  quality 
parameters,  e.g.  maximum clock-frequency and Silicon area,  as  described in  Chapter  8.  Xilinx 
Virtex7 devices were here targeted as the implementation platform. Because the proper processor 
hardware was still unavailable, a simple Microblaze micro-controller system was used to replace it 
[15], assuming that the final processor design will have similar area and speed characteristics. It 
was found that the communication infrastructure required Silicon area resources (1475 flip-flop 
LUT pairs per processing node) on the same order as the Microblaze processors (888 flip-flop LUT 
pairs per node). There probably exist opportunities to optimize the hardware, but it is clear that the 
over-all impact will be diminished by the size of the processors, and hence, it is taken as a relatively 
lower  priority.  On the  other  hand,  it  is  observed that  Virtex7 can  comfortably  accommodate  a 
realistic processing array of size 8x8, providing another vital piece of evidence of the practicality of 
the design.

9.3.1 Model-Implementation Differences
As hinted in Section 9.1 above, the SystemC model and the implementation may involve some 
tightly coupled iterations to direct each other's development. The hardware implemented indeed 
contains some differences from the original SystemC model developed last semester, viz:

1. The write transactions into the different input FIFO's in a processing node can be parallel in 
the SystemC model. This is not so in the hardware, due to memory sharing between the 
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FIFO's.

2. The IENW in SystemC model is rooted – actually it has 2 roots – one for the injection 
network (rooted at the point of injection) and another for the ejection network (rooted at the 
point of ejection). The hardware implements a series connection of all nodes.

Ideally  the  SystemC model  should  incorporate  these  changes  as  feed-backs from the  hardware 
design to be properly aligned; otherwise, it  is more optimistic than the hardware. However, the 
impact of these differences was estimated to be relatively small. The SystemC code already models 
the FIFO read transactions in complete alignment with the hardware; the difference lies only in the 
FIFO write. Because most of the FIFO writes are driven by a send-module performing FIFO-read, 
the actual CNW bandwidth utilized is constrained in the model by the slower read transaction. Thus, 
the behavior is expected to be similar to that of the hardware. The model may still be somewhat 
optimistic, as the bandwidth loss in the hardware in handshaking between the nodes involved may 
be underestimated in the model. Even so, except for the handshake delays, transmission of a 20 via-
point packet with 5-word header takes only 50 clock-cycles, because each via-point is represented 
in one word, and the CNW links are half-word wide (Ref: Section 6.1.4). On the other hand, it is  
unlikely that a simple processor executing the fairly complex software described in Section 6.3 and 
Chapter 10 will be able to finish the computation for one packet in that time. Similarly, though the 
model IENW provides high bandwidth, it is actually utilized for a small bandwidth – 1 packet is  
sent in/out in some hundreds of clock-cycles on an average. Thus, it is expected that the model 
behavior is still sufficiently aligned to the hardware, and the concentration was focused on other 
fields, like implementation, in order to speed up the development process. 

9.4 Conclusions
As mentioned at the beginning (Section 1.1), the proposed hardware system was primarily aimed at 
efficiently parallelizing the relatively complicated problem of cost-estimation of trajectories on 2D 
maps. As would be quite clear from the simulation results presented in Section 5.4, applications 
may indeed utilize the proposed hardware to achieve efficient parallelization by optimally loading 
the hardware. Results presented in Section 5.3 prove that the quality penalty for the over-all result 
of  the  application  run,  incurred  due  to  using this  hardware  for  cost  computation,  is  also quite 
limited. Therefore, the primary requirements of the system can be said to have been satisfied quite 
well by the proposed solution.

There are, however, some additional implementation-oriented requirements for the design which 
have also been presented in the afore-mentioned Section 1.1. The design is required to be scalable 
in order to be able to cope with changing performance requirements. The NoC-based homogeneous 
multiprocessor architecture proposed in Section 1.3 provides an excellent solution to this problem, 
providing unrestricted scalability in principle. In practical terms, only the available Silicon area is 
expected to impose any restriction on this.

In addition to this, the preferred implementation medium was expected to be FPGA's, providing the 
possibility  for  rapid  prototyping  and  hardware  scaling  to  accommodate  changing  performance 
requirements (as supported by the scalable design). While the design has been executed in a way to 
support ASIC implementation directly without any design change, whenever possible it does take 
advantage of available features of FPGA's, e.g. optimizing the design using a dual port RAM (Ref: 
Section 6.1), implemented as an FPGA block RAM. However, because of the specific lay-out of the 
block RAM's inside an FPGA, there was some concern of routing congestions, as the design may 
not always be laid out in a matching fashion at the time of placement-and-routing. It was, however,  
observed that this problem is not significant even for quite practical processing array dimensions of 
8x8, when targeted to a Virtex7 device (Ref: Section 8.3). This way it is proven that the design is 
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indeed well-suited for FPGA implementations.

It can be finally concluded that, even though only a part of the design implementation has been 
completed so far (viz. NoC communication infrastructure hardware), the design has been modeled 
and studied thoroughly, and its feasibility and utility have been demonstrated at all different levels 
of abstraction,  going from application level  down to FPGA prototyping level.  It  has thus been 
shown to meet all the design requirements that were laid out at the beginning. As the first part of the 
system development activity, it provides the required confidence in the design to proceed further, as 
well as defines concrete guide-lines to direct the future works to complete the development.
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Chapter 10

10. Further Work
As described in Sections 1.4 and 1.5, some tasks still remain to be performed in order to complete 
the initially stated design goals, i.e. to build a fully functional hardware accelerator for performing 
trajectory cost computations efficiently and parallelly. The main open tasks, as is apparent from this 
previous discussion, are:

1. Processor hardware:

The hardware for the core computing element at every processing node needs to be designed 
and implemented. It can either be a standard off-the-shelf processor (possibly with some 
modifications/extensions) or a processor designed from scratch. If the second solution is 
chosen, it will also be necessary to design a corresponding compiler in order to able to 
program it efficiently and accurately. Irrespective of which solution is chosen, it is clear, as 
discussed  in  [11],  that  the  processor  must  be  able  to  handle  square-root,  division  (or 
equivalently,  inverse)  and multiplication operations efficiently,  as they are necessary for 
packet routing and trajectory cost computations. It will also be preferred to use a 32-bit 
processor  (e.g.  Microblaze  [15]),  because  that  is  the  system  word-width  assumed,  and 
because that matches the word-width of the block RAM's in a Xilinx FPGA, which is a 
likely candidate as the prototyping platform of the design. The data present in the packets 
themselves are expected to be fixed-point, but the software running may need to use some 
floating-point  internal  variables.  This  point  needs  to  be studied in  more detail,  and will 
certainly affect the requirements for the processor.

2. Processing node software:

The processor in every processing node will have to execute a software program in order to 
perform  certain  tasks.  Its  duties  will  likely  consist  of  choosing  the  order  of  packet 
computation  (NoC to  processor  arbitration),  packet  routing computations  (for  the NoC), 
computing and accumulating the local cost-contribution to the packet (using the length and 
direction  of  the  trajectory  in  the  current  map  segment  as  calculated  during  routing 
computation),  and initiating packet  transmission when finished. A rough sketch of these 
activities have been described in Section 6.3, and the routing algorithm has been explained 
in  Section  4.1.4  of  [11].  These  operations  involve  square-root,  multiplication  and 
division/inversion. It will be nice to have hardware support for these functions. Otherwise, 
they will also have to have their own software solutions. As explained above, the software 
may need to use floating-point internal variables to achieve the required accuracy, but that 
will also be expensive in terms of performance and probably hardware cost, assuming the 
hardware is made to support floating-point arithmetic. Therefore, it is important to consider 
these factors when designing the software and optimize it accordingly.

There are also some other features that are to be supported by the software. It should be able 
to process VMR packets (Ref: Section 2.3, 6.3.1) on the fly, and thus be able to reconfigure 
the processing nodes whenever necessary. This will make it possible to use the accelerator 
for  slowly  changing  cost-functions,  e.g.  when  the  cost  is  determined  by  the  weather 
conditions in a geographical region. The software also has to be able to handle both scalar 
and vector cost-functions, depending on the application, as explained in Chapter 1. It should 
also support (linear) combinations of such cost-functions. One advanced feature could be to 
support different map resolutions at different sections of the map, e.g. at flatter sections, a 
coarser map division should suffice,  but  at  rougher/jagged sections  (i.e.  where the cost-
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function  is  highly variable),  a  finer  division will  be required.  Such a  feature cannot  be 
implemented solely by the  accelerator  without  significant  design change,  and has  to  be 
implemented primarily by the external application, but it should be studied if the processing 
node software needs to incorporate some features to make it possible for the application. As 
will be explained below, it seems it does need to incorporate some support. Note, however, 
that the simple application developed during the present work, and described in Chapter 4, 
does not implement this advanced feature.

3. Prototyping:

When the complete hardware RTL and software binary code for the targeted processor are 
available, they should be used to prototype the accelerator on an FPGA. As explained in 
Chapter 8, Xilinx Virtex7 seems to be a good choice for such a platform, as it can easily 
accommodate  a  realistic  processing  array  of  size  8x8  using  approximately  half  of  its 
hardware resources. The hardware of the processor was not available, as explained before; 
so, a Microblaze micro-controller system was instantiated instead for the hardware resource 
utilization estimates. Once the prototype is available, various test-cases can be run on it to 
test the system, as well as an application, like the one described in Chapter 4, running on an 
external  CPU  (e.g.  personal  computer)  should  also  be  run,  using  the  prototype  as  its 
hardware accelerator to measure the effectiveness of the whole design.

Beyond the tasks described just above and apparent from Figure 3, there is another important task 
that needs to be performed:

4. Communication Infrastructure Verification:

As described in Chapter 7, the RTL of the communicate infrastructure, consisting of the 
CNW and IENW nodes and their mutual connections building the CNW and IENW, have 
only been unit-tested, and not thoroughly verified. However, the information and guide-lines 
required to develop a comprehensive constrained random test-suit have been produced in 
Chapter 7, comprising the system requirements to be tested, and ideas for the test-cases that 
can test them. Obviously, this activity may prompt bug fixes in the hardware.  A similar 
activity will also need to be performed for the processor if it is designed locally.

Beyond the design of the hardware accelerator itself, lies the external application, that uses it to 
speed  up  trajectory  cost  computations.  As  explained  before  it  is  important  to  have  a  realistic 
application  in  order  to  be  able  to  evaluate  and  demonstrate  the  effectiveness  of  the  hardware 
developed.  Such  a  basic  application  has  been  developed  and  described  in  Chapter  4  of  this 
document, but as hinted above, there exist scopes for implementing more advanced features, e.g. 
reconfiguring the accelerator on the fly, and support for different resolutions in different parts of the 
map. This second feature is expected to be quite important for both performance and accuracy of 
the results, but it is also expected to be relative complicated to implement. The idea is to transform a 
standard single-resolution map into a multi-resolution map, by extending the more finely divided 
representations of some map segments to the original map (the blue and orange sections on Figure 
45), while making sure that the nodes associated with the original segments do not process those 
segments any more (shown by the dark green squares on Figure 45B). Then the logical map folding 
concept may be used to fit the extended map into the intended size of processing array as usual.  
Now the softwares running on the various processing nodes are made aware of the boundaries 
between various sections of the map (represented on Figure 45B by different colors), and whenever 
the routing calculations of a packet tries to take it across one of these boundaries, the software ejects 
it from the processing array (using a mechanism similar to CNW deadlock resolution) including the 
information of the coordinates  of  the attempted crossing and the partial  cost  computed for the 
trajectory until that point. The application can then use this information to re-launch this packet, 
using the previously computed crossing point as the new start-point, and launch it in the section of 
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the  extended  map  with  the  proper  resolution.  Thus,  it  should  be  possible  to  implement  this 
functionality using the presently envisioned hardware, but using software and application support.

As would be obvious from this discussion, some additional algorithms will need be devised to

– determine the optimal resolutions to use for different sections of the map

– determine the optimal map extension to be used (as shown on Figure 45). Note that, in 
general,  the  higher  resolution  sections  could  be  appended  to  the  original  map  in  any 
direction and order. So, it is important to find out which of these will be the best to use.

As  described in  Section  9.3.1,  there  are  some mismatches  between the  SystemC model  of  the 
accelerator and the hardware designed. The differences were not felt to be significant enough to 
prompt an immediate modification of the model, but it will be nice in the long run to align the 
model to the implementation.

Thus, the presently known major open points have been summarized above, and will need to be 
closed in order to be be able to fully develop and use the system envisioned. It is expected that by 
executing these tasks, an excellent scalable hardware accelerator for parallelizing trajectory cost 
computation efficiently can be realized. The system has been designed and evaluated mainly with 
an FPGA prototype in mind, but whenever necessary, steps have been taken to make it suitable for  
direct implementation on ASIC as well (e.g. receive-list initialization through hardware, rather than 
readmem() as explained in Section 6.1.4) without any modifications,  even if  it  may not be the 
optimal design (e.g. using a dual port RAM as shown on Figure 26) for ASIC.

85

Figure  45: Transforming a single-resolution map to multi-resolution map, with the dotted lines 
showing some of the foldings. The  blue and  orange regions on A have relatively fast changing 
cost-functions,  i.e.  they  are  “jagged”.  On  B,  finer  resolution  views  of  these  areas  have  been 
appended to the map on A.

A. Single Resolution Map B. Multi-Resolution Map
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Appendix A. Guide to Codes
This appendix will provide a guide to understanding the codes developed during the course of this  
work, viz. the high level C model, the Verilog RTL for the NoC communication infrastructure. This 
guide may be utilized to use and adapt the codes for future needs. Refer to Figure 3 for a depiction 
of the levels of abstraction, each of them represents.

A.1 High Level C Model
As depicted on Figure 3, this model contains a high-level model of the hardware accelerator, and an 
application based on parallel  genetic algorithm, implemented using three POSIX threads, called 
“dispatcher”, “gatherer” and “genetic operator” (Ref: Section 4.3.2). A pseudo-code is presented 
below to explain the organization. Compare it with Figure 13, which represents the corresponding 
logical structure of the system.

The function prototype of write_queue() and apply_g_ops() have been somewhat simplified, and 
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void* Gen_operator (void *dummy) { // “genetic operator” thread
int gen[NUM_POP]; // Current generation of each population
int pop = 0;      // Serial no. of current population to process

while(1) {
// Proceed only if all the packets for current population have been received in
//    population table
   if(pop_tab_cnt[pop] = POP_SIZE) {

// enable_migr is whether there should be a migration in current iteration and
//    population, but its calculation is not shown here.
// Sort the packets in population table for population no. “pop”, and return
//    the number of packets in it which have had the cost successfully computed,
//    if there weren't enough of them to derive new generation, else replace old
//    packets with new generation and return -1.
// At each call of apply_g_ops(), migr_cand is updated with packets in
//    pop_tab[pop] available as migration candidates for the next population.
      num_success = apply_g_ops(pop_tab[pop], enable_migr, migr_cand);

      if(num_success == -1) { // New generation available in pop_tab[pop] :
                              // Elit part of the population in the beginning 
         pop_tab_cnt[pop] = ELIT_NUM;
        gen[pop]++; // Generation of present population advanced 

// Elit packets are not sent out . The rest are written into dispatch-queue
         for(int i=ELIT_NUM; i<POP_SIZE; i++) { 
            copy_ftr(pop_tab[pop][i], &ftr_tmp); 
            write_queue(&dispatch_queue, ftr_tmp); 
         }

      } else {  // Too many ejected packets preventing deriving new generation 
                //    Unsuccessful packets to be resent for finishinng.
                // pop_tab[pop] has been sorted; with unsuccessful packets at end
         pop_tab_cnt[pop] = num_success; 

         for(int i=num_success; i<POP_SIZE; i++) { 
            copy_ftr(pop_tab[pop][i], &ftr_tmp);
            write_queue(&dispatch_queue, ftr_tmp);
} } } } }



some initializations, end conditions, mutual exclusion, loop iteration control, etc. have been omitted 
for the sake of clarity.

As before some of the function prototypes have been simplified and loop control, end condition 
check, corner case handling, etc. have been omitted. The adapt_disp_rate() function maintains an 
internal FIFO of static booleans containing the status (successfully  finished vs dropped) of the 
recent  output  packets  from  the  hardware.  It  uses  this  information  to  adat  the  dispatch  rate 
(“throughput_adp”) using the algorithm described in Section 4.3.5. The parameter DISP_ADP_PER 
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void* Dispatcher(void *dummy) { // “dispatcher” thread
ftr_t *ftr; 
unsigned long long clk_num = 0; 
unsigned long long next_eject = EJECT_PER; // Ref: Section 4.3.4 for 
EJECT_PER
unsigned long long next_inject = 0; 
int num_act_packets = 0;  // Number of packets inside the hardware

while(1) {
//-------------- Generation of outputs from hardware -------------------//
   if(next_eject <= next_inject) {  // It's not yet time to inject 
      clk_num = next_eject; 
      next_eject += EJECT_PER; // Next clock number when data will be output
// Simulation clock tick is aligned to the end of an EJECT_PER period. Now,
//    packets will be output from re-ordering queue to HW output queue.
      while((ftr=read_oqueue(clk_num)) != NULL) { // Any packet with finish
                    // time before clk_num is output normally
         write_queue(&hw_output_queue, ftr); 
         num_act_packets--; 
// Dispatch rate adaptation logic informed of successful completion of packet
         adapt_disp_rate(&throughput_adp, false); 
      } 

// Drop packets using the the logic in Section 4.3.4
      while((num_act_packets-EJECT_THR0)/ (float) (EJECT_THR1-EJECT_THR0) > 
rand() / (float) RAND_MAX) { // Keep on ejecting till ejection fails once 
          ftr = eject_oqueue(num_act_packets); // Random packet dropped
          num_act_packets--; 
          write_queue(&hw_output_queue, ftr); 
// Dispatch rate adaptation logic informed of a dropped packet
          adapt_disp_rate(&throughput_adp, true); 
      }
   }

//--------------- Feeding one packet into hardware ----------------------//
   else if(dispq_h != NULL) {  // Dispatch queue not empty 
      clk_num = next_inject; 
      next_inject += throughput_adp; // Next clock no. for data-input to HW

      ftr = read_queue(&dispatch_queue); 
      num_act_packets++; 

//--------------- Computation inside hardware ----------------------// 
      diff_time = traj_cost(ftr); // Compute trajectory cost, and return the
// time HW would take for this computation using the logic in Section 4.3.2
// Write this packet into the output reordering queue stampling it with
//    its expected finish-time
      write_oqueue(ftr, clk_num+diff_time); 
   }
} }



described there controls the depth of the FIFO maintained by adapt_disp_rate().

These functions have been defined in the “genetic.cpp” file, with the funtions called by them are in 
“genetic.cpp”  file  (those  that  share  mutexes),  “aux.cpp” file  (most  of  the  other  functions)  and 
“traj_cost.cpp” (traj_cost() function and the functions it calls). The main() function contains the 
logic to initialize the populations in the population table as well as to put them into the dispatch-
queue. After this initialization, the main() function launches the 3 threads described above.

Using the Model

The model is written in C++ (mostly using the C subset), but utilizes the POSIX libraries for thread 
management. Therefore, it can be run only on a system that has support for POSIX threads. In order 
to compile with POSIX thread “-pthread” option is required by “g++” compiler. The compilation 
command is however available in the “runme” file, and hence can simply be sourced to compile the  
code: 
> source runme 

To run the code 
> ./a.out 
or to run with a specific simulation seed 
> ./a.out <seed> 

When  thus  run,  it  reads  the  simulation  and  design  parameters  available  in  simparam.h  and 
swparam.h  and  runs  the  simulation  accordingly.  The  simulation  output  contains  the  used 
“simulation seed” at the very top. This can be used to reproduce the same simulation run later, as 
explained above. It also prints the cost of the best trajectory in every population every 20 iterations 
of the genetic algorithm. Thus, the progress of the convergence of the results can be observed. 
Additionally, these runs will dump the following log-files:

– adapt_dispatch.log
– load_profile.log

These two logs can be visualized graphically by using gnuplot,  displaying the evolution of the 
dispatch  rate,  and  the  number  of  active  packets  inside  the  hardware  over  the  period  of  the 
simulation. In order to do that, two simple gnuplot scripts have been written which can be called, as 
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void* Gatherer(void *dummy) { // “gatherer” thread
ftr_t *ftr;

while(1) { 
   if(hwop_h != NULL) { // HW OP available 
      ftr = read_queue(&hw_output_queue); 

// Compute the population and the serial number of the packet inside
//    that population using the packet ID
      int pop = (ftr->ID/POP_SIZE)%NUM_POP; 
      int idx = (ftr->ID)%POP_SIZE; 

// ftr is put into the slot implied by its ID - also dropped packets
//  (i.e. those with no_via > 0 when received by this thread)
      pop_tab[pop][idx]-> data = ftr->data;
      pop_tab[pop][idx]-> no_via = ftr->no_via; 

      delete ftr; 

      pop_tab_cnt[pop]++; 
} } } 



follow. To plot the dispatch rate adaptation profile: 
> gnuplot plotscript_adapt 

and to plot the HW load profile: 
> gnuplot plotscript_load

As explained above, the simulation and the design are specified primarily by the files “simparam.h” 
and “swparam.h”.  Some of the more important parameters are explained here,  and they can be 
varied to simulate different scenarios:

The cost-data for the map are defined as an array in the beginning of the “traj_cost.cpp” file as a 
constant array:

const float cost[...][...] = {{} … {}};

This needs to be updated to update the map data.
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// Ref: Section 4.3.2
#define BASE_PROC_TIME 70 // Basic data processing time for 1 packet
                          //    in a processing node (in clocks) 
#define VIA_PROC_TIME 20  // Extra routing calculation time for every extra
                          //    via point inside the segment (in clocks) 

// Ref: Section 4.3.1
#define POP_SIZE 100  // Total number of packets in each population
#define NUM_GEN 200   // Total number of GA iterations run. Ideally should be
                      //    equal to the num of generations, which may be
                      //    lower due to packet recomputation
#define NUM_POP 10    // Total number of populations
#define ELIT_PERC 5   // Percentage of total population that is elite
#define MUT_PROB 0.5  // Probability of gene mutation
#define INSERT_PROB 0.1  // Probability of gene insertion
#define MIGR_ENABLE true // Migration is enabled
#define MIGR_GEN_GAP 10 // Number of generations between two migration events 
#define MIGR_PERC 2 // Percentage of population that is selected for
                    //    migration to another population.

// Min. percentage of pop_size that must be available (including elite
// packets and currently computed packets) to derive the next generation from 
#define SUCC_PERC 0.8 // Ref. Section 4.3.2 

// Ejection rate control – HW . Ref Section 4.3.4
#define EJECT_PER  THROUGHPUT 
#define EJECT_THR0 20 
#define EJECT_THR1 25 

// Initial throughput in clocks/packet: Adaptation mechanism may change
//    the actual throughput . Ref Section 4.3.5
#define THROUGHPUT 200 

// Dispatch rate control – SW/HW . Ref Section 4.3.5
#define DISP_ADP_ENA true // Dispatch rate adaptation is enabled
#define DISP_ADP_PER 31  /* In terms of number of output packets */ 
#define MIN_EJ_RATIO 0.05 
#define MAX_EJ_RATIO (1-SUCC_PERC) 
#define RELAX_RATE 1.0 
#define TIGHT_RATE 0.1 



A.2 Verilog RTL Design
The hardware architecture of the NoC communication infrastructure has already been described in 
detail in Chapter 6. The present section describes the module hierarchies in the RTL code that have 
been used in synthesis and verification, and correlates them to the blocks in the afore-mentioned 
design description.
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Figure 46: RTL hierarchies. In each entry, the first line gives the Verilog module name and the 
second line gives the corresponding design block, whose reference is given in the third line.

synth_top_8x8
“Processing Array”

Section 8.3 & Figure 34

proc_node_with_mcu
“Processing Node” 

Figure 24
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Figure 24

ie_node
“IENW Node”

Figure 35

send_module
“Send Module”

Figure 25

fifo_ctrl
“FIFO-Controller”

Figure 25

block_ram
“Dual Port RAM”

Figure 25

microblaze_mcs_v1_2
Stand-in “processor”

Ref: Section 8.3
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Section 8.2

proc_node
“CNW Node”

Figure 25



A.3 SystemC Model
As explained in Chapter  2,  the SystemC model  for the hardware accelerator  was developed in 
autumn 2013 semester [11]. It was re-used in the present semester to assist in developing the high 
level hardware model using the simulations presented in Section 5.2. Slight modifications were 
made in the test-bench of the SystemC model for running these simulations, but the model itself 
remained unchanged, as did the regression environment developed around the model.

In order to run a regression (i.e. many simulations in sequence), the regress.sh file needs to be 
updated, which looks something like the following:

The first line compiles a C program that generates the simparam.h file which controls the synthesis 
runs. All subsequent lines have the same structure, the first part calls this program to generate a  
simparam.h file, and the second part (source ./script.sh) runs the corresponding simulation, and at 
the end of that run moves the corresponding simparam.h and the log files into the “results” directory 
after appending .x to their names, where x is the run number read from the file run_num.dat, and 
incremented by every call to new_simparam. The line “./new_simparam 10000, 20, 70, 700, 19, 19, 
190, 190, 1500” generates a simparam.h file with the following parameters:

Once the regress.sh file is ready, it can simply be sourced to run the full regression as: 
> source regress.sh

In  order  to  run  the  test-cases  emulating  the  converging  GA runs,  as  done  in  Section  5.2,  the 
testbench.cpp was updated to produce 4 via trajectories with the middle two via-points chosen in a 
constrained random manner:
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gcc -o new_simparam new_simparam.c

./new_simparam 10000, 20, 70, 700, 19, 19, 190, 190, 1500; source ./script.sh

const sc_time BASE_DL_TOUT (10000, SC_NS); // Basic timeout for deadlock detect 
const sc_time DL_TOUT_COST (20, SC_NS);  // Time out increment for each unit
                                    // cost already invested into the packet
#define NUM_PACK 1500  // Number of packets in simulation
#define THROUGHPUT 700 // Number of clock cycles between launching 2 packets

#define XSIZE 10  // Xsize of processing array
#define YSIZE 10  // Ysize of processing array

#define XLEVELS 19  // Number of layers due to folding along X axis
#define YLEVELS 19  // Number of layers due to folding along Y axis
// Map Xsize = 19x10 = 190; Map Ysize = 19x10 = 190

#define BYTES_FIFO_DEPTH 70  // Depth of FIFO's in bytes.

test_ftr = new ftr_t(id, num_via, via_x, via_y, false); // num_via = 4
                                 // (via_x, via_y) is the start point

// The middle 2 via-points are within two unit squares:
//    (intx1.<>, inty1.<>) and (intx2.<>, inty2.<>). Ref: Section 5.2
   test_ftr->via_x[1] = intx1 + rand()/((float) RAND_MAX);
   test_ftr->via_y[1] = inty1 + rand()/((float) RAND_MAX);
   test_ftr->via_x[2] = intx2 + rand()/((float) RAND_MAX);
   test_ftr->via_y[2] = inty2 + rand()/((float) RAND_MAX);



Appendix B. Selected Simulation Data
This  appendix will  list  out  the simulation results  that  have been presented only graphically  on 
Figures 19-21 (Section 5.3) for easier visualization. These were based on 4 sets of simulation runs, 
comprising of 2 different population configurations (1 population of 100 packets and 2 populations 
of 50 packets), each run under two different packet dropping/ejection probabilities (viz. 0.0 and 
0.9). Each row below displays the cost of the best trajectory (i.e. the trajectory with the minimum 
cost)  among all  the populations being used during a specific simulation run after the elapse of 
specific numbers of generations of the concerned populations.

Case 1: 1 Population of 100 packets; ejection probability = 0.0

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 186.47 173.13 170.35 168.80

Run 2 186.81 172.91 170.38 169.43

Run 3 194.06 172.30 169.45 169.09

Run 4 182.98 172.00 169.35 168.87

Run 5 183.55 173.67 171.03 169.31

Best Cost 182.98 172.00 169.35 168.80

Average 186.77 172.80 170.11 169.10

Estimated 
Standard Deviation

4.415 0.665 0.705 0.272

Case 2: 1 Population of 100 packets; ejection probability = 0.9

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 204.55 179.84 172.66 170.14

Run 2 245.39 222.63 193.45 170.05

Run 3 192.43 179.11 174.30 169.51

Run 4 200.30 180.58 172.02 170.48

Run 5 193.74 179.52 176.40 170.67

Best Cost 192.43 179.11 172.02 169.51

Average 207.28 188.34 177.77 170.17

Estimated SD 21.865 19.178 8.930 0.446
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Case 3: 2 Populations of 50 packets each; ejection probability = 0.0

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 176.62 174.04 170.38 169.12

Run 2 189.37 172.28 170.65 169.35

Run 3 176.81 170.89 169.71 169.11

Run 4 190.70 175.61 171.91 169.31

Run 5 197.36 177.71 174.69 170.65

Best Cost 176.62 170.89 169.71 169.11

Average 186.17 174.11 171.47 169.51

Estimated SD 9.149 2.689 1.970 0.648

Case 4: 2 Populations of 50 packets each; ejection probability = 0.9

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 188.12 176.34 173.35 172.60

Run 2 219.62 181.26 176.94 170.65

Run 3 228.51 181.83 178.23 175.50

Run 4 209.57 179.85 174.94 171.42

Run 5 205.43 184.77 175.85 172.20

Best Cost 188.12 176.34 173.35 170.65

Average 210.25 180.81 175.86 172.47

Estimated SD 15.286 3.075 1.866 1.850

These  results  were  chosen  from  among  many  other  simulation  runs  with  many  different 
configurations, and also only those runs which converged towards the global minimum, avoiding 
the other local minimum, as explained in  Section 5.3, because otherwise the results could not be 
compared properly. The results presented here may be deemed somewhat unrealistic because of the 
relatively small population-size. More realistic data was obtained by simulating systems where the 
performance of a single 1000 packet population was compared with that of 10 populations of 100 
packets each. The results show similar trends as above, but the differences were less dramatic, and 
hence not as amenable to graphical representation. In any case, the data itself is presented on the 
next pages for the sake of completeness.
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Case 5: 1 Population of 1000 packets; ejection probability = 0.0

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 176.77 169.64 168.87 168.53

Run 2 176.65 169.34 168.93 168.70

Run 3 176.09 169.32 168.84 168.80

Run 4 181.00 169.39 168.85 168.65

Run 5 176.79 170.65 168.85 168.54

Best Cost 176.09 169.32 168.84 168.53

Average 177.46 169.67 168.87 168.64

Estimated SD 1.999 0.564 0.036 0.113

Case 6: 1 Population of 1000 packets; ejection probability = 0.9

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 186.15 174.26 171.01 169.43

Run 2 179.34 172.91 170.44 169.01

Run 3 190.82 173.85 172.02 169.47

Run 4 186.41 173.78 169.89 169.27

Run 5 196.23 174.92 171.73 169.63

Best Cost 179.34 172.91 169.89 169.01

Average 187.79 173.94 171.02 169.36

Estimated SD 6.253 0.734 0.883 0.235

Case 7: 10 Populations of 100 packets each; ejection probability = 0.0

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 179.94 170.20 169.02 168.57

Run 2 181.24 170.18 168.88 168.65

Run 3 182.61 170.30 169.23 168.74

Run 4 178.05 171.11 168.79 168.62

Run 5 183.00 170.79 169.28 168.71

Best Cost 178.05 170.18 168.79 168.57

Average 180.97 170.52 169.04 168.66

Estimated SD 2.029 0.415 0.213 0.068
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Case 8: 10 Populations of 100 packets each; ejection probability = 0.9

No. of elapsed 
generations

19 59 99 199

Cost of
the best
trajec-
tory

Run 1 186.13 174.37 172.31 169.45

Run 2 183.44 174.72 171.32 169.25

Run 3 195.06 174.32 172.14 169.18

Run 4 192.25 175.10 172.23 169.57

Run 5 184.91 174.87 170.87 168.82

Best Cost 183.44 174.32 170.87 168.82

Average 188.36 174.68 171.77 169.25

Estimated SD 5.028 0.332 0.643 0.288
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