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Problem Description
In a not too distant future, millions of tiny, invisible, self-sufficient, and communicating wireless
sensors will assist our daily lives and improve the quality of life. Such wireless sensor nodes
(WSN) consist out of components such as a radio for communication, sensors, and a processor for
on-node processing of the data. The WSNs use scavenged energy harvested from the environment
to avoid dependency of a depleting battery. The scavenged energy, however, is neither high nor
continuous and requires that the aforementioned components are highly optimized for low energy
consumption.

The application specific instruction set processors (ASIP) developed at Holst Centre / IMEC-NL are
targeting high processing power (> 100MIPS) with a minimum amount of power (under 100uW) in
the domains of biomedical and wireless communication. This requires high optimizations for both
dynamic and static power. The ASIPs consist out application specific issue slots, function units,
register files and/ or memories, which remain unused for other algorithms. Since leakage
becomes significant if not dominant with the upcoming technologies, it is desirable to switch off
unused resources at a fine-grained level.

The purpose of this thesis is to optimize a wireless communication processor for energy
consumption without loss of performance by using power shut-off techniques applied to the data
path of the processor. The ultra wide band processor is available as a reference generated with
Target® and TSMC 90nm technology. Based on preliminary findings of simulations the processor
will be optimized for energy wherever possible using fine-grained hardware techniques supported
by software.

Specific tasks which are to be performed during this assignment include a detailed research of
methods for power-off techniques; the results are analyzed and compared in terms of a multi-
issue VLIW-processor. Based on these findings, a power-off scheme is proposed and implemented
on the architectural level. Finally, the scheme is analyzed and qualified to determine the realistic
power consumption benefit for the system.

Assignment given: 09. March 2009
Supervisor: Kjetil Svarstad, IET



 



Abstract
Power consumption in portable electronic devices is a crucial design factor.
While technology at 90 nm and above is still dominated by dynamic power, it
is expected that leakage power will gain importance in sub-90 nm technologies.
One commonly used technique to reduce leakage power is power gating, which
is still an active research topic, especially on the �ne-grained level.
The purpose of this thesis was to explore the impact of �ne-grained power gating
on the datapath of a VLIW processor. Also, a detailed analysis of the savings
versus introduced overhead was performed to derive a generic formula for a
quick estimation of the energy e�ciency of power gating.
During the work, a work-�ow to partition the system into power domains was
developed. Furthermore, a veri�cation method was implemented that validates
whether a power gated resource is scheduled by the compiler or not. A con-
�gurable HSPICE simulation �ow was implemented to determine how many
power switches were required for a speci�c power domain as well as the energy
consumption to switch a power domain on.
Two processors with di�erent usage pro�les, designed with the help of di�erent
tools, were investigated in this thesis. The processors were modi�ed to support
power gating, and, furthermore, a synchronous power manager was developed.
After RTL-level veri�cation of functional correctness, the resulting systems were
synthesised and placed and routed for 100 Mhz with two di�erent 90nm TSMC
libraries (low power and general purpose) to evaluate the variation between
di�erent technology �avours. The results showed, that a large contributor to the
energy overhead of power gating is the dynamic power of additionally required
modules, e.g., the isolation cells at the output of a power domain and the power
manager. Also it was proven that the power domains need a very low duty cycle
in order to apply power gating e�ciently.
It has been shown that the energy overhead for �ne-grained power gating is
signi�cant and it is mainly caused by additional modules that have to be added
to the system. Therefore, power gating can only be bene�cial on designs with
su�cient large power domains with a low duty cycle. However, it must be said
that power is mainly consumed by the memories. Also, for 90 nm, leakage power
is a rather small fraction of the total power consumption. The possible overall
savings when focussing on the datapath are therefore very limited.
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Chapter 1

Introduction

Due to downscaling of technology, portable embedded systems have gained in-
creasing popularity. Besides multimedia applications, like mobile music or gam-
ing devices, a promising �eld of application is in the medical sector [1], [2]. As
these systems usually are battery-powered or even use energy scavenging [3],
optimisation of power consumption is crucial in order to meet the strict energy
constraints.
While power consumption was historically dominated by dynamic switching
power, leakage power consumption has gained more and more impact in both
absolute numbers [4] as well as in power consumption per area [5] in the sub-
90 nm technologies. One promising method to save leakage power is power
gating [6, ch. 4], [7, ch. 10], i.e. shutting o� unused blocks while they are not
used.
Power gating is nowadays a commonly used technique for power management
on system level [8] [9], i.e. switching o� complete components of a chip like a
processor or memory banks. However, it is still an active research topic on a
more �ne grained level like on the datapath of a processor.

1.1 Related work

In [10], an exploration of the potential of power gating applied on the level of
execution units in the datapath is performed. Also, an analytical equation for
the break-even point is derived. For the estimation, the authors use a state-
of-the-art superscalar processor model which they calibrate against a pre-RTL
processor model. In their analysis for the break-even point they assume the
power consumed by the switch to be the only source of the energy overhead.
They conclude that for an idle period of 10 cycles, power gating can bring
bene�ts.
The authors of [4] also perform an analysis of the break-even point for power
gating. They include, besides the power switch, also additionally required de-
cap area in their model. They conclude that the overhead which is caused by
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additional dynamic power consumed by the switch and the additional decap is
too high for 130 nm technology, but they assume that for future technology it
will bring bene�ts.
In [11], an implementation methodology for power gating and an analysis of
the overhead are presented. The authors base their methodology on exploit-
ing existing clock-gating control signals which they assume to be present in the
design. Based on the clock-gating domains, they provide an algorithm to parti-
tion the system automatically into power domains. Also the control signals for
power gating are derived from the clock-gating control. In their analysis of the
overhead, they only consider the power switch. They applied their methodology
on a 32-bit RISC embedded CPU and performed synthesis and place and route
(P&R). Afterwards they performed power analysis by using Toshiba 90nm de-
vice models. They conclude that signi�cant amounts of leakage power can be
saved at a reasonable area penalty.
In [12], a more detailed analysis of power gating than in the previous papers is
presented. The authors base their trade-o� analysis on �ve factors, namely per-
formance degradation, sleep transistor size, leakage power savings, power mode
transition time and power mode transition energy. They implement a power
gated design with 65 nm STMicroelectronics technology and present power num-
bers extracted after place and route. They conclude that they can achieve up
to 75 % leakage power savings.
All of the previously presented publications have in common that they do not
consider the energy consumed by the isolation cells at the boundary of a power
domain. Neither, any statements are given regarding the energy consumption
of additional modules, like a power manager.

1.2 Approach, contribution of this work

The hypothesis of this work is that applying power gating in the datapath of a
processor can lead to energy savings. Also, it is expected that the overhead of
power gating is not only determined by the energy to switch a power domain on,
like concluded in previous publications on power gating, but also by additionally
required modules like isolation cells.
The purpose of this thesis is therefore an exploration of the impact of power
gating in the data path of a processor. Henceforth, a detailed analysis of the
break-even point of power gating is derived to evaluate if power gating could
bring bene�ts. Furthermore, a method to partition a processor into power
domains, followed by the implementation and evaluation of power gating is
proposed. Finally, an analysis of the main challenges of �ne grained power gating
in the datapath is given. The analysis was based on power �gures obtained from
a post-P&R netlist for 90 nm TSMC.
The procedure for implementing power gating was as follows: After a careful
analysis of the power consumption of the blocks in the datapath and their duty
cycle, the system is partitioned into power domains. In order to determine both
the powering-on time and energy, spice simulations are performed. Further spice
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simulations were performed to identify the number of required power switches.
Following, power gating was integrated into the design using the Common Power
Format (CPF) [13]. The resulting system was synthesised and placed and routed
using the Cadence Design Tools [14]. Afterwards, the power consumption was
analysed using PrimeTime from Synopsis [15]. The obtained power numbers
were used for the �nal analysis to determine whether energy could be saved by
using power gating.

1.3 Document structure

The remainder of this report is structured as follows: In chapter 2, the back-
ground for power consumption in CMOS circuits is described including a brief
overview of power saving techniques. Then, in chapter 3 a detailed analysis of
the bene�ts and costs of power gating is performed. In chapter 4, the method-
ology which is used in this work is explained. In chapter 5, the implementation
of power gating is described. The results are presented in chapter 6, followed
by a discussion in chapter 7. A short overview of possible future work is given
in chapter 8. Finally, the conclusions are drawn in chapter 9.
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Chapter 2

Background

In this chapter, the background theory of this work is explained. First, an
introduction to the di�erent sources of power dissipation in CMOS circuits,
including a brief overview of power reduction techniques, is given in section 2.1.
As power gating is primarily used in this work, the principles of power gating
are explained in section 2.2. Finally in section 2.3, an overview of leakage power
aware compliation techniques is given.

2.1 Power consumption in CMOS

The average power dissipation in CMOS devices (Pavg) can be described by the
following equation [16], [17]:

Pavg = Pshort + Pdynamic + Pleak =
β

12
· (Vdd − 2VT )3 · τ

T
+ αCLV 2

ddf + IleakVdd

(2.1)
Pshort is caused by short circuit currents that occur when both the NMOS and
PMOS transistor in a CMOS cell are in their conductive state for a short time
during transitions. β is the gain factor of a MOS transistor, VT is the threshold
voltage, τ is the rise or fall time of a signal, T is the period time of a signal and
Vdd is the supply voltage [18].
Pdynamic represents the dynamic power due to switching activity in the circuit.
It is determined by the node transition factor α, the load capacitance CL, theclock frequency f and Vdd.
Pleak represents the leakage power consumption and is a product of the leakage
current Ileakage and Vdd.

4



2.1.1 Dynamic power consumption

Dynamic power is caused by charging and discharging of node capacitances
in the design. To minimise dynamic power consumption, several techniques are
available. In the following, an overview of the most common techniques is given.
One approach is dynamic frequency and voltage scaling (DFVS). The principle
is to lower the voltage and/ or frequency of a design to a level that the circuit
just remains functional and reaches its timing constraints ([7], [19, ch. 4]). This
is also supported by several application compilers, like presented in [20], [21] or
[22].
Another technique is clock gating, which is applied to idle blocks of the design
([6, ch. 2], [23]. In order to reduce switching power dissipation caused by the
clock, which can be up to 50 percent of the total power consumption, the clock
is turned o� for blocks that are not performing any useful task.
Usually, several modules share a common input source, typically a register or
a memory. When the inputs of a module are changing, but the output is not
needed, it is performing redundant computation during which dynamic power
is consumed. In order to prevent that, the inputs of a module can be isolated
using operand isolation [24].
Minimising the switching capacitance is another method. Hereby the switching
activity or the capacitive load is reduced by several optimisation techniques,
like described in for example [19, ch. 7] or [25].
Besides the mentioned methods, there are further optimisation techniques, a
good summary can be found in [26] and [27]. Several methods which focus on
software optimisation techniques for low power are presented in [28].

2.1.2 Leakage power consumption

According to [16], there are �ve major sources of leakage current, namely sub-
threshold current, gate leakage, pn-junction leakage, Gate Induced Drain Leak-
age (GIDL) and Punchthrough. Of those, leakage due to subthreshold current,
which is �owing between the source and the drain when the transistor is in the
subthreshold region (i.e. when the gate voltage is below the threshold voltage),
has the highest impact. This current is also strongly depending on the temper-
ature the circuit is operating at, it increases with higher temperatures [29]. A
detailed analysis of leakage power can also be found in [30], [31] and [32].
While the total power consumption was historically dominated by dynamic
power, leakage power gains more and more impact in sub-90nm designs [5].
Therefore, optimisation methods that focus on leakage power minimisation be-
come of increasing interest in addition to methods for minimisation of dynamic
power dissipation.
One method to reduce leakage power is reverse body biasing (RBB), as explained
for example in [7], [30] and [33]. The principle is to apply a deep reverse body
bias during standby to increase the threshold voltage and thus force the tran-
sistor into the o� region to reduce subthreshold leakage.
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Leakage power consumption of a gate is depending on its input vector [34].
Another method to minimise the leakage power when a module is idle, is called
minimum leakage vector (MLV). The principle is to shift the input vector which
causes the least leakage current into the module whenever it is idle. A method
to determine the MLV for a given combinational logic, including a short review
of related methods, is presented in [35].
A popular technique for leakage power reduction is power gating, also called
power shut-o�. In the remainder of this report, the term power gating will be
used. The basic principle of this method is to disconnect idle blocks from the
supply voltage, as described in more detailed in the next section.

2.2 Power gating

Power gating relies on switching o� idle blocks in the design, thus saving leakage
power. A very good overview can be found in [6] and [7].
There are two basic design approaches for power gating ([7, ch. 10.3.4.1]). One
is the coarse-grained approach, in which complete blocks are switched o�. An
illustrating example for a system with coarse grained power gating could be a
wireless sensor node ([36]) which consists of a microprocessor, a sensor and a
radio. Power gating could be applied to the radio whenever no communication
is needed. Or, the sensor is powered down as long as data is transmitted.
The other approach is �ne-grained power gating, where individual modules
within a block can be switched o� while keeping other modules switched on
at the same time. Fine-grained power gating could be applied to a processor
with several dedicated modules, for example one multiplier and one multiply-
accumulate (MAC) unit. Whenever the multiplier is used, the MAC-unit could
be powered down or vice versa.
A general overview of a power gated system is illustrated in Figure 2.1. A
part of the system which is in one switchable power domain is represented
by PD_switchable. Its output signals are connected to another power domain
(PD_always_on), which is an always-on domain in this example. It can be seen,
that the outputs are isolated to prevent unknown signals propagating through
the design when PD_switchable is switched o�. Also, a power switch is inserted
between the voltage supply VDD and the power domain. Furthermore, a power
manager is integrated into the system to control the power gating related cells.
In the coming sections, the individual parts of the scheme and the general
considerations for power gating will be described in more detail.

2.2.1 Power domain

A part of a design which is connected to the same power supply is called a
power domain. When no power gating is used, the complete design is in the
same, always-on, power domain. When power power gating is used, usually
several power domain are present in the design. In Figure 2.1, all modules
that are contained in the power domain PD_always_on are connected to the
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PD_switchable PD_always_on

switch

isolation

VDD

power
manager

Figure 2.1: General power gating scheme

supply voltage VDD which is always on. All modules which belong to the power
domain PD_switchable are connected to VDD through a switch, hence they are
connected to an own power supply.

2.2.2 Power switch

To cut o� the power supply of a power domain, a sleep-transistor which is
controlled like a switch is used. There are two possibilities to cut o� the power
supply of a power domain. Either, a header or a footer switch is used as depicted
in Figure 2.2 and Figure 2.3, respectively. The header switch is placed between
the supply voltage and the power domain, thus introducing a virtual voltage
supply. The footer switch is placed between the power domain and ground,
thus introducing a virtual ground. In Figure 2.1, a header switch is used. An
overview of the advantages and disadvantages of both approaches is given in [6,
ch. 5.1].

VDD 

virtual VDD

power
domain

control

Figure 2.2: Header switch
The insertion of power switches in�uences the system's behaviour in multiple
ways, namely rush-in current, area overhead and voltage drop.
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VDD 

virtual ground

power
domain

control

Figure 2.3: Footer switch

When a module is powered on after a sleep period, a sudden rush-in current is
introduced. This current a�ects the power-on energy signi�cantly and causes
noise in the circuit. It can be controlled by connecting the power switches in a
daisy-chain con�guration, so that they are turned on one after another and so
limit the current �ow ([37]).
Power switches also introduce area overhead to the design which translates
into a higher total power consumption. Several approaches to reduce this area
overhead have been proposed, for example to connect the power switches in a
cluster ([38]) or in a distributed network ([39]).
Another important factor is the voltage drop over the switch during active mode,
if it is too high, the required frequency cannot be reached which leads to timing
problems. The voltage drop is related to the number of power switches and
their size [40].

2.2.3 Isolation

Interfaces between power gated domains and other domains, in Figure 2.1 be-
tween PD_switchable and PD_always_on have to be taken special care of.
When a power domain is shut o�, its output signals are �oating, i.e. it is not
known which value they have. In order to prevent unknown values propagating
through the design, the output signals of the power domains have to be iso-
lated. Therefore, the outgoing signals have to be forced to either 0 or 1 by
using special isolation cells.
When output signals of switched-o� power domains are forced to zero, an isola-
tion cell like in Figure 2.4 is used. As long as the power domain is switched on,
iso is low. As soon as it is switched o�, iso becomes high to enforce the output
of the isolation cell to be low. The truth table can be found in Table 2.1.
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isolation_enable

power
domain

Figure 2.4: Principle of an and-isolation cell

Data iso Out
1 0 1
0 0 0
x 1 0

Table 2.1: Truth table of an and-isolation cell

When the output signals are forced to one, an isolation cell like in Figure 2.5 is
used. The truth table is shown in Table 2.2.

isolation_enable

power
domain

Figure 2.5: Principle of an or-isolation cell

Data iso Out
0 0 0
1 0 1
x 1 1

Table 2.2: Truth table of an or-isolation cell

Another consideration is whether the isolation cells should be placed at the
output of the power domain, in Figure 2.1 PD_switchable, or at the input of
the next module, which is using the output signals of the power gated module
as inputs, in Figure 2.1 PD_always_on.
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In terms of functionality, there is no di�erence, but as one power domain usually
provides input values to multiple modules, there is more area overhead when the
signals are isolated at their destination. Furthermore, analysis and veri�cation is
simpli�ed when signals are isolated at their output. In Figure 2.1, the isolation
cells are placed at the output of the power domain.
Introducing isolation cells can also a�ect the timing of the design and therefore
the maximum achievable frequency. It can occur that due to isolation cells the
timing of a path cannot be reached anymore. Hence this path becomes a critical
path. This can lead to additionally required bu�ers or faster cells in the path,
increasing power consumption. Moreover, synthesis and layout tools are more
restricted in performing design optimisation.

2.2.4 State retention and restoration

When registers are shut o�, they lose their internal state. When the stored
value still has to be present after a shutdown period, the register's state can be
retained or restored.
State retention (SR) can be implemented by three methods:

1. Software based, where the value of the register which is to be switched
o� is written to an external memory or another register which remains
switched on.

2. Exploiting already existing scan chains by shifting the scan registers as
scan-in-testing while the outputs are routed to an external memory during
the power-down sequence.

3. Usage of special state retention �ip �ops which are capable of saving the
internal state during. power-down

A detailed comparison between the methods can be found in [6, ch. 5.3]. In
this work, the focus is explicitly on SR registers.
A state retention register is a special register that contains, in addition to the
normal functionality, a shadow register which can retain the state during shut
o�. A schematic can be seen in Figure 2.6. This type of SR registers has two
latches, a main latch for the active mode which is connected to the virtual
voltage supply, V Vdd, and a SR latch which dissipates less leakage power than
the main latch which is connected to an always-on voltage supply (Vdd). Beforea SR register is shut o�, the save signal has to be set in order to transfer the
stored value from the main latch into the SR latch. At wakeup, the restore
signal has to be set so that the data is written back.
An advantage of state retention cell compared to the other state retention meth-
ods is that the design and the design �ow itself does not have to be changed,
apart from assigning the save and restore signals properly. A drawback is, that
the retention cells have area overhead, typically 20% or more ([6]) and require
additional control signals. To avoid the use of control signals, a sense-ampli�er-
based state retention �ip �op is proposed in [41]. The presented design has
a retention time in the range of milliseconds and a small area overhead. The
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VVdd

data_in

save

restore

data_out

Vdd

main latch

SR

latch

Figure 2.6: State retention register

rather long retention time, however, makes these SR registers less suitable for
fast power-gating.

2.2.5 Power manager

The power manager is in charge of providing the control signals to the power
switches, isolation cells, and, if present, to the SR registers. It can be imple-
mented as a dedicated hardware module or in software. In Figure 2.1, the power
manager is implemented in hardware. The control sequence for a system with-
out SR can be seen in Figure 2.7. When registers are included in the power
domain, a reset signal has to be provided before de-isolation to set the registers
in the power domain in a known state. The control sequence for a system with
SR can be seen in Figure 2.8.

reset

clock

isolate

poweroff

Figure 2.7: Control sequence for a design without state retention

2.3 Power aware compilation

The compiler has a large in�uence on the power e�ciency of an application.
Considering power gating, it is relevant in which cycle a resource is used and
how long its idle periods are. Usually, the compiler has a lot of freedom how to
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clock

isolate

poweroff

save

restore

Figure 2.8: Control sequence for a design with state retention

schedule as it is only constrained by data �ow and control demands. That can
lead to ine�cient resource usage in terms of idleness.
In the following section the di�erent principles of leakage power aware compila-
tion are explained. Basically, there are two principles:

1. Post-procesing: The program code is scheduled �rst before a post-processing
algorithm is executed to analyse the generated assembly code for possi-
bilities to shut o� certain blocks. Then, power gating instructions are
inserted into the assembly code.

2. Smart scheduling: Already during the initial scheduling phase, the idle
periods of functional unit are increased without a�ecting the performance.
This is achieved by smart mapping of the instructions to the hardware.

2.3.1 Method one: Post-processing

In [42], a patent is �led for automatic scheduling of power gating instructions.
The principle is to translate the high-level code into assembly, followed by an
analysis of the data�ow and utilisation of hardware-blocks. Based on the results,
power-gating instructions are inserted into the code. In a next step, power gating
instructions are merged together if possible in order to minimse instruction
execution power. To determine possible savings, the leakage energy of the block
is traded o� against the energy required to fetch and decode a power-gating
instruction. Other overhead is not considered in this approach.
In [43], several compiler techniques for power aware scheduling are described.
It covers both dynamic and static power minimisation. Power gating awareness
is reached by inserting power-o� and power-on instructions into the assembly
code.
The authors of [44] �rst compare hardware-based methods to analyse the re-
source utilisation with compiler based methods. They draw the conclusion that
the compiler based methods are suited better as a compiler has an overview
of the total data�ow, the hardware based methods require a certain history
to base assumptions on. Then they describe their compiler approach, which
starts with an initial scheduling of the code, followed by a partitioning of the
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program into hot and cold blocks. Afterwards, an analysis of the utilisation of
these blocks is performed. Based on a power model which considers expected
idle time, power-on and power-o� energy, the compiler inserts power-o� and
power-on instructions into the code.
In [45], a similar approach like in [44] and [42] is described. The program is
scheduled �rst, then a data �ow diagram is set up. Based on that, the compiler
inserts power gating instructions into the code. Their power model takes the
power-o� and power-on energy into account.
All presented methods have the drawback that they do not consider the addi-
tional energy overhead which is introduced into the system due to power-gating
related cells like power switches or isolation cells. Also they give the compiler
during the initial scheduling all freedom. No consideration is made of possi-
bilities to select di�erent function units in instruction level parallelism (ILP)
or delay instructions in order to leave a module switched o� longer without
in�uencing the functionality.

2.3.2 Method two: Smart scheduling

In [46], a scheduling method which increases the idle time of function units
is described. The idea behind the method is that if a resource has a longer
continuous idle period, it can be shut o�. The approach is to schedule in a
way that functional units are used in blocks. However, this method does not
consider ILP.
In [47], a scheduling approach for clustered VLIW architectures is described.
The principle is as follows: Whenever a functional unit is idle for one clock
cycle, it is marked as sleeping. During scheduling, when there is more than one
functional unit of the desired type, the one which has slept for the longest time
is selected by the compiler to compensate for the wakeup-energy. The energy
model that is used in this work to determine the break-even point trades o� the
leakage energy of the functional unit with the energy required to power it on.
Another method is developed in [48], in which a loop scheduling is described
where resources are rescheduled to better locations to increase idle periods in
other resources.
In [49], the authors present another leakage energy aware scheduling method,
which has the focus on the utilisation of arithmetic logic units (ALUs) in loops.
First they identify all the loops in the program, then they analyse the critical,
most executed block in each loop. Within this block, they analyse how many
ALUs are necessary, they call it instructions issued per cycle (IPC). After analy-
sis, the program is rescheduled with the previously determined subset of ALUs.
This could cause a overhead due to increased execution time when there were
more ALUs necessary in the non-critical blocks of the loop then in the criti-
cal block. The scheduling algorithm therefore has to take the energy overhead
caused by that into account and make sure that the savings due to shut-o� ALUs
are larger than the energy overhead. After rescheduling is complete, power-o�
and power-on instructions are inserted before and after the loops to shut o�
the unused ALUs. The authors base their trade-o� on the leakage energy that
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could be saved versus the energy overhead due to switching on a function unit
and the additional energy required for extra required execution cycles. Energy
overhead caused by other power gating related cells that have to be added to
the design, like isolation cells, they do not consider.
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Chapter 3

Analysis of the break-even

point

An important task within this thesis was the evaluation whether applying power
gating to a system can bring bene�ts. The analysis is presented in this chapter.
The chapter is organised as follows: First, the power dissipation characteristics
of a system that uses power gating is described in section 3.1. In section 3.2,
the energy consumption in the di�erent states of a processor is analysed. In
section 3.3, the savings are explained, followed by an analysis of the energy
overhead in section 3.4. Afterwards, the break-even point for power gating
based on the �ndings is derived in section 3.5. Finally, two example power
pro�les of power gated systems are illustrated in section 3.7.

3.1 Power pro�le of a power gated system

A digital system like a processor is usually not constantly active. It has periods
where computations are performed followed by idle periods. A schematic of an
example power pro�le of a system is illustrated in Figure 3.1. During active,
the system is performing useful tasks. The power consumption is illustrated
as an average over the complete active period. Afterwards, the system is not
performing any useful tasks, i.e. it is idle. The power consumption during that
period is determined by the leakage power consumption of the system, assumed
that the clock is stopped, i.e. that clock gating is applied.
In Figure 3.2, the power consumption characteristics of a system that uses power
gating is depicted. At tidle, the system has �nished the active state and is
switched o�. The switching o� process is �nished at toff . Then, the system
remains switched o� until tsleep. At that moment, it is switched on again.
At ton, it is again fully functional. The individual components of the power
consumption will be explained in the remainder of this chapter.

15



time

Power 
active idle active

Figure 3.1: Power dissipation of a non power-gated system
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Figure 3.2: Power dissipation of a power gated system

3.2 Energy consumption in the di�erent states

The total energy consumption of a power gated system is composed of the energy
which is consumed by the power domain and the energy which is consumed by
the additional power gating related modules. The modules which are constantly
active, like a power manager, are consuming energy all the time (Eadd.modules).The energy consumption of the remaining components depends on the state of
the processors.
During tactive, the system is in its active state. The energy in this state is con-
sumed by the power domain (Emod,active), the isolation cells (Eiso,active) and the
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SR registers which consume more energy than regular registers (∆ESR,active).
At tidle, the system has �nished the active state and goes immediately to the idle
state by switching o� the clock. At the same time it is powered o�. The powering
o� process takes place until toff . During that time, the power domain still leaks
but the leakage energy of the power domain (Emod,leak,on) is converging to the
o�-level.
Then, the system remains switched o� during tdown. The energy which is con-
sumed depends on the leakage of the power switch(es) (Eswitch,leak), the leakageof the isolation cells (Eiso,leak) and the leakage of the SR registers (ESR,leak).
At tsleep, the power domain is switched on again. The switching-on process
takes until ton. The energy which is consumed during that period is the leakage
energy of the power domain (Emod,leak,on) and the additional energy required
to switch the power domain on (Epoweron). Afterwards, the system is fully
functional.

3.3 Energy savings

The energy savings are de�ned as the amount of energy that is saved when
power gating is applied to a system. In Figure 3.2, it is represented by the blue
areas.
The energy savings of a power gated module are determined by two factors:

1. Emod,leak, the energy which the module would consume during the idle
period if it was not switched o�. It is determined by the leakage power of
the power domain (Pmod,leak) multiplied by time the module is switched
o� (tdown).

2. Epowerdown, which is the di�erence between the leakage energy the power
domain would normally consume during powering o� (between tidle and
toff ) and the energy which is still consumed (Emod,leak,on). That implies
that from the moment the power-down signal is given, energy is saved.

Both contributors can be combined to the total energy savings Esavings:

Esavings = Emod,leak + Epowerdown

= Pmod,leak · tdown + Epowerdown (3.1)
For future analysis, the equation is rewritten to

Esavings = α · tdown + ϕ (3.2)
with α = Pmod,leak and ϕ = Epowerdown.
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3.4 Energy overhead

The energy overhead is de�ned as the additional energy consumption of a system
due to the required components for power gating. In Figure 3.2, the overhead
is represented by the pink, purple, and orange areas. The energy overhead can
be divided into four subgroups, namely

1. Eoverhead,down, the additional energy which is consumed while the power
domain is switched o�. It is represented by the purple areas.

2. Eoverhead,active, the additional energy which is consumed while the power
domain is active. It is represented by the pink areas.

3. Eoverhead,always, the additional energy which is consumed during the total
run-time. It is represented by the dark orange area.

4. Epoweron, which is required to power a module back on after it has been
switched o�. It is represented by the light orange area.

Eoverhead,down is determined by the leakage power of the power switch(es)
(Pswitch,leak), the leakage power of the isolation cells (Piso,leak), the leakage
power of the SR registers (PSR,leak), and the time during which the power do-
main is switched o� (tdown). The equation for Eoverhead,down is as follows:

Eoverhead,down = Eswitch,leak + Eiso,leak + ESR,leak

= tdown · (Pswitch,leak + Piso,leak + PSR,leak) (3.3)
Eoverhead,active depends on the energy consumed by the isolation cells dur-
ing active mode (Piso,active), the additional power consumed by the SR reg-
isters compared to what regular registers would consume during active mode
(∆PSR,active), and the time during which the power domain is active (tactive).The equation for Eoverhead,active is as follows:

Eoverhead,active = Eiso,active + ∆ESR,active

= tactive · (Piso,active + ∆PSR,active) (3.4)
Eoverhead,always is caused by always-on components that have to be added to
the design in order to enable power gating, as for example control registers or a
power manager. Their power consumption (Padd.modules) and the total run time,
(ttotal) determine the total energy consumption. Summarising, Eoverhead,alwaysis de�ned as follows:

Eoverhead,always = ttotal · Padd.modules (3.5)
Epoweron is determined by the number and size of the power switches and the
size of the power domain.
To evaluate the impact of the power gating related cells and components in-
troduced in section 2.2, a short summary is given below which of the energy
overhead components they in�uence.
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• Power switches. They leak when the power domain is switched o�, they
therefore have an impact on Eoverhead,down.

• Isolation cells. One factor is the energy they consume while the power
domain is active. Whenever the output of the power domain switches, the
isolation cells have to switch as well. This in�uences Eoverhead,active. Theother factor is the leakage energy consumed by the isolation cells while
the power domain is switched o�. That has an impact on Eoverhead,down.

• SR registers. During active mode of the power domain, they introduce
a certain energy overhead, namely the di�erence in energy consumption
compared to regular registers. This in�uences Eoverhead,active. The leak-age energy during of the SR registers the period the power domain is
switched o� impacts Eoverhead,down.

• Additional modules, like a power manager or function units. As they are
switched during the complete run-time, they in�uence Eoverhead,always.

Summarising, the energy overhead can be written as follows:

Eoverhead = Eoverhead,down + Eoverhead,active + Eoverhead,always + Epoweron

= tdown · (Pswitch,leak + Piso,leak + PSR,leak)
+ tactive · (Piso,active + ∆PSR,active)
+ ttotal · Padd.modules

+ Epoweron (3.6)
For simplicity's sake for the �nal analysis, the individual factors are merged,
which leads to the following equation:

Eoverhead = tdown · β + tactive · γ + ttotal · δ + ε (3.7)
with β = Pswitch,leak + Piso,leak + PSR,leak, γ = Piso,active + ∆PSR,active, δ =
Padd.modules and ε = Epoweron.

3.5 Derivation of the break-even point

Building on the above analysis of the savings and the overhead, an analytical
equation can be derived for the minimum percentage of time that the module
has to be switched o� in order to gain energy savings, i.e. the break-even point.
Energy is saved when the energy savings exceed the energy overhead:

Esavings > Eoverhead (3.8)
By using the above de�nitions for the savings and the overhead, and expressing
tactive with ttotal− tdown, a condition for the minimum down time tdown,min can
be found:
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α · tdown,min + ϕ > β · tdown,min + γ · tactive + δ · ttotal + ε

tdown,min (α − β) − γ (ttotal − tdown,min) > δ · ttotal + ε − ϕ

tdown,min (α − β + γ) > ttotal (γ + δ) + ε − ϕ

tdown,min >
ε − ϕ + ttotal (γ + δ)

α − β + γ
(3.9)

Some of the factors of the above analysis can be omitted because they are
neglegible, namely the leakage power of the switch (Pswitch,leak), the leakage
power of the isolation cells (Piso,leak), the energy to switch a power domain on
after it has been switched o� (Epoweron) and the energy which is saved during
powering down before reaching the lowest energy state (Epowerdown). This willbe shown in the results section (chapter 6). Then, the condition for tdown,min is
not longer depending on the total run time but can be expressed percentage-wise
with reference to ttotal:

tdown,min

ttotal
>

Piso,active + ∆PSR,active + Padd.modules

Piso,active + ∆PSR,active + Pleak,mod + PSR,leak
(3.10)

Using the previously de�nitions for α, γ and δ and de�ning β′ = PSR,leak, theequation can be written as follows:

tdown,min

ttotal
>

γ + δ

γ + α + β′ (3.11)

where α = Pleak,mod, β′ = PSR,leak, γ = Piso,active + ∆PSR,active and δ =
Padd.modules

3.6 Absolute energy savings

For the calculation of the absolute energy savings, the break-even point is a �rst
indication. After the break-even point for a given system has been calculated, it
can be determined whether the system can be switched o� for a su�cient long
time in order to gain energy savings. When this is the case, it also has to be
calculated how big the total energy savings are. This is done the following way:
The absolute savings are the di�erence between the possible energy savings and
the introduced overhead:

Esavings,tot = Esavings − Eoverhead (3.12)
Using the de�nitions for α, β, γ and δ, the equation can be rewritten:

20



Esavings,tot = Esavings − Eoverhead

= α · tdown + ϕ − (tdown · β + tactive · γ + ttotal · δ + ε)
= tdown · (α − β + γ) − ttotal · (γ + δ) + ϕ − ε (3.13)

An illustration can be seen in Figure 3.3. The slope of the line is determined
by the term α − β + γ, the o�set is determined by ttotal · (γ + δ) + ϕ − ε. The
bigger α, i.e. the leakage power of the power domain, the bigger is the steepness
of the line, i.e. the energy savings.

break-even point

x

ttotal*(g+d)+f‐e

tdown

Energy
savings

x

a‐b+g

Figure 3.3: Illustration of the absolute energy savings

3.7 Example for a power gating scheme

To illustrate the power characteristics of power domains, two examples are il-
lustrated. The �rst example depicts the power consumption scheme of a power
domain where power gating leads to energy savings, the second example shows
a power domain where power gating leads to extra energy consumption. Both
examples are for illustration purposes and not based on numbers obtained from
experiments. The color scheme corresponds to the color scheme used in Fig-
ure 3.2.
In Figure 3.4 the power characteristics of a power domain which can be switched
o� for a signi�cant amount of time is displayed. It can be seen that the leakage
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energy (blue) of the power domain is relatively high and the introduced overhead
(orange, pink, purple) rather low. Therefore, power gating is justi�ed in this
system.

time

Power 

Figure 3.4: Example of a power gated module where power gating makes sense
As a counterexample, in Figure 3.5 the power power distribution of another
power domain is shown. There it can be seen, that the introduced energy
overhead, especially caused by additional modules and the isolation cells, is
larger than the savings, which implies that power gating is not e�cient in this
case.

time

Power 

Figure 3.5: Example of a power gated module where power gating does not
makes sense
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Chapter 4

Methodology

In this chapter, the methodology that has been developed and used during this
work is explained. It is a design �ow that can be applied to a system, in this
work a processor, to implement �ne-grained power gating. In Figure 4.1, an
overview is depicted. In the �ow, the system is partitioned into power domains,
then power gating is implemented into the design. Finally, a veri�cation is
performed to prove that the system is still functionally correct, furthermore,
the energy savings are evaluated.

find power consumption
of modules

find module utilisation 
during application

determine partitioning
into power domains

determine if 
state retention needed

find number of 
required switches

implement power gating
in design

Verify that System
is still working 

Evaluate energy savings

Figure 4.1: General power gating design �ow
The chapter is organised as follows: In section 4.1, the tools that were used
during this work are introduced. In section 4.2, the methodology to obtain
power consumption values is described. In section 4.3, it is explained how the
module utilisation is determined. Based on those section, the partitioning into
power domains is described in section 4.4. Afterwards, the method to determine
if state retention (SR) is required in section 4.5 is presented. A description
how the number of required power switches can be identi�ed is presented in
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section 4.6. In section 4.7, the work�ow for implementing power gating into a
design on RTL level is described. In section 4.8 it is explained how it can be
veri�ed that the system still is functionally correct. Finally, the evaluation of
energy savings is explained in section 4.9.

4.1 Tools used in this work

In this section, a brief introduction of the tools that were used in this work is
given.

• Target IP Designer [50], a tool for the design of application speci�c in-
struction set processors (ASIP). It uses a high-level description language
(nML, [51, ch. 4]) to specify the functionality and architecture of the
desired processor. From this description, synthesisable HDL code and a
compiler are generated. Also, a cycle-accurate and instruction-accurate
simulator are provided that can be used for veri�cation and debug pur-
poses. A typical design �ow for the design of a processor with Target IP
Designer is presented in [52].

• Silicon Hive's Hive Logic [53], also a tool for the design of ASIPs. Like
in Target, the architecture of the desired processor is described in a Sil-
icon Hive proprietary description language called TIM (The Incredible
Machine). From the description, the HDL code, compiler and simulator
are generated. A description of the design �ow of Hive Logic can be found
in [54].

• The Cadence [14] design tools, including NCSim (for rtl- and netlist sim-
ulations), RTL Compiler (for synthesis) and Encounter (for place and
route).

• PrimeTime [55] from Synopsis [15], used for the extraction of power num-
bers after layout.

• HSPICE [56] from Synopsis, used for circuit-level simulations required to
obtain accurate numbers for the analysis.

• Matlab from MathWorks [57], used for plots.
• tcl, a scripting language used for automation of design processes or simu-
lations.

4.2 Determination of power consumption values

For extraction of power numbers, the �ow which is depicted in Figure 4.2 was
used. Initially, a netlist after place and route and a SDF (standard delay for-
mat) [58] �le which de�nes the delays of each gate in the design is required,
i.e. the complete design �ow from RTL to layout has to be executed (refer sec-
tion 4.7). A simulation has to be executed with a realistic application to obtain
the switching activity. During simulation, a VCD (value change dump) �le is
generated containing the switching activity of all signals and nodes. This �le is

24



Netlist

SDF File

Parasitics

Machine code

of

application

Simulation

Value change

dump

cell 

libraries

power number

extraction

power numbers

Figure 4.2: Flow for the extraction of the power numbers

then used to extract power numbers with primetime. The power consumption
is broken down into static power which consists of mainly subthreshold leak-
age, internal power which is consumed within the boundaries of a cell including
power due to charging and discharging of internal capacitances and short circuit
currents, and switching power which is caused by charging and discharging of
load capacitances at the output of a cell.
When the power consumption of all modules is known, the main consumers of
leakage power have to be identi�ed, as the focus is on leakage power consump-
tion is this work. For this purpose, a tcl-script was written which produced a
report with the required information at a glance. In the script, the modules
of interest are de�ned and then the power concumption report generated by
PrimeTime is scanned for these modules. Then, the power numbers are writ-
ten out and the leakage power consumption related to the total leakage power
consumption is calculated. The script can be found in the electronic appendix
(�lename get_power_numbers.tcl), a code snippet for the calculation of the
relative leakage power consumption of a module can be found in Listing 4.6.

1 # get t o t a l leakage power as re ference
2 i f { [ string match ${top_module_name } [ lindex $words 0 ] ] == 1} {
3 set tota l_leakage [ lindex $words 3 ]
4 }
5
6 i f { [ string match ${module_name } [ lindex $words 0 ] ] == 1} {
7 set re l_leakage [ expr [ lindex $words 4 ] / $tota l_leakage∗100 ]
8 puts $re l_leakage
9 }

Code Snippet 4.1: Extract relative leakage power consumption of report �le
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4.3 Resource utilisation over time

The complete �ow to determine the resource utilisation over the complete run-
time of the application is illustrated in Figure 4.3.
When the power consumption of the resources is known, it has to be determined
if they have su�cient idle periods where they can eventually be switched o�.
For this purpose, a script was written during this thesis that could provide
this information. For this script, the following information is required: First
it has to be determined which resources are used for which instruction (where
one instruction represents all operations used during one cycle). The second
information is the sequence in which the instructions are executed during the
complete run-time of the application.
For this purpose, Target IP Designer provides useful features. One is a mech-
anism that gives information about resource usage for each instruction. The
desired resources that are to be monitored have to be speci�ed and the result
will be information about which instruction requires the desired resource. The
result will be saved in a resource usage �le. Another useful feature is that a
log �le of the register content is generated for the complete run-time with the
corresponding program counter (PC) value. The result is stored in a register log
�le.
These two �les can be exploited to �nd the utilisation of speci�c resources over
time. The register log �le is parsed for the value of the program counter which is
also listed in the resource usage �le. If a speci�c resource is used for the speci�c
program counter, a '1' is saved in a result �le, otherwise a '0'. A code snippet
for the explained procedure is shown in Code Snippet 4.4. The complete scripts
can be found in the electronic appendix (folder resource_usage).

1 set curr_PC [ lindex [ sp l i t [ lindex $words 1 ] ( ) ] 1 ]
2 puts $ r e s u l t s_ f i l e "PC: ${curr_PC} ,  c y c l e :  [ l i ndex  $words  0 ] => [ l i ndex  

$un i t s  ${curr_PC} ] "
3 i f { [ string length [ lindex $un i t s ${curr_PC} ] ] > 0} {
4 puts −nonewline $un i t s_ r e s u l t s_ f i l e "1 "
5 } else {
6 puts −nonewline $un i t s_ r e s u l t s_ f i l e "0 "
7 }

Code Snippet 4.2: Link resource usage �le with register log �le
This result �le can be used in Matlab to plot the usage over time for an easy
overview, the matlab script can be found in the electronic appendix (�lename
plot_usage.m).

4.4 Partitioning into Power Domains

In this section, the steps that are required to divide a system into di�erent power
domains are explained. The modules with a signi�cant leakage power consump-
tion should be considered as possible power domains. Also, it is important
how the modules are utilised during the application. For an initial partitioning
of the system, modules with similar utilisation pro�les and a relatively high
leakage power consumption should be grouped into power domains. However,
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Figure 4.3: Flow for the determination of the resource usage over time

the �nal partitioning requires good knowledge of the system and the executed
application.

4.5 Determination if state retention is required

When the power domains are determined, it has to be decided whether state
retention (SR) is required. When a power domain contains registers, it has to be
analysed if their internal state has to be retained during shutdown. For example,
a power domain can contain registers that are used to store temporary variables
of the application. When this power domain is switched o� during the the
execution of the application, it is most likely that the state has to be retained.
However, when a power domain contains registers that are of a special type,
for example vector registers, it can be di�erent. A possible use-case is that an
application consists of di�erent function calls. Only one of the functions requires
the presence of vector registers, otherwise they are not needed. Then, the state
does not have to be retained.
In the end, extensive knowledge of the system and the application is required to
determine if state retention is required or not. As it was described in chapter 3,
SR registers also come with a certain overhead. For the �nal decision, several
possibilities should be evaluated.

4.6 Number of required switches

An important issue for power gating is the number of required power switches
for a power domain. It has to be ensured that the voltage drop over the switches
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is low enough that the timing constraints can still be reached. For that purpose,
the circuit is modelled as shown in Figure 4.4. Ron is the equivalent resistance
of the power domain in active mode.

switches

R on

control

V DD

Figure 4.4: Equivalent circuit for determination of required number of switches
To determine Ron, the design is simulated with a testbench with high load
for the power domain. Afterwards, power numbers are extracted. Then the
equivalent resistance can be calculated using the basic formula

Ron =
VDD

2

Ptotal
(4.1)

A disadvantage of this method is, that it is application dependent. Therefore,
the testbench has to be carefully chosen to make sure that a su�cient high
Ron is found, otherwise the switches are eventually dimensioned too small. An
advantage is, that it is a very fast method and it can easily be integrated into
the existing design �ow.
When the value for Ron is known, the circuit from Figure 4.4 is simulated in
HSPICE using the spice-model of the power switch provided by the vendor. The
simulation is performed using a con�gurable �ow, where the desired number of
power switches can be speci�ed as well as Ron. During the simulation, it is
checked if the voltage drop over the switches is low enough in order to reach the
timing constraints. The scripts can be found in the electronix appendix (folder
number_of_switches).
The relevant parts of the script to generate the circuit including Ron and power
switches is shown below:

1 # generate model of power domain
2 puts $ o u t f i l e " r1  vvdd_0 vss  ${REQ_CUR}"
3
4 # generate switch net
5 for { set loopcount 0 } { $loopcount < ${row } } { incr loopcount } {
6 puts $ o u t f i l e " xswitch$ { loopcount }_1 ns l e ep in0  ${ loopcount }_01 vss  vdd 

vvdd ${SWITCH}"
7 for { set i 1 } { $ i < ${column } } { incr i } {
8 puts $ o u t f i l e " xswitch$ { loopcount }_[ expr  ${ i }+1] ${ loopcount }_[ expr  ${ i

}−1 ] ${ i } ${ loopcount }_${ i } [ expr  ${ i }+1] vss  vdd vvdd ${SWITCH}"
9 }
10 }

Code Snippet 4.3: Generation of the spice circuit
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The spice netlist for the simulation is as follows:
1 ∗∗∗ supply vo l tage and VSS ∗∗∗
2
3 vdd vdd 0 1 . 2
4 vss vss 0 0
5
6 ∗∗∗∗∗∗∗∗∗∗∗ c i r c u i t ∗∗∗∗∗∗∗∗∗∗
7
8 . i n c l u d e switch_chain .sp
9 . i n c l u d e c i r c u i t . s p
10
11 vin_ns leep in0 n s l e ep in0 0 dc 1 . 2
12
13 .END

Code Snippet 4.4: Spice netlist for the simulation for the determination of the
required number of switches

4.7 Implementation of power gating

When the preparation steps which were presented in the previous sections are
�nished, the implementation itself has to be performed. For this purpose, the
processor has to be modi�ed with the required changes to support power gating.
The resulting design has to be veri�ed to make sure it is still functionally correct,
for example by RTL-level simulations or by simulation tools provided by the
processor-design-tool itself. In a next step, the additional modules, if required,
have to be designed and also veri�ed. Afterwards, they have to be integrated
into the system followed by another veri�cation of the resulting design.
The �nal step in the implementation is to integrate power gating into the actual
design �ow. For that, the scripting language CPF, which stands for Common
Power Format, is used. It was initially designed by Cadence Design Systems,
later it was transferred to the Silicon Integration Initiative (Si2) [59] which is
now in charge of controlling the ongoing development of the CPF standard.
CPF is used during all steps of the design �ow, beginning with simulation RTL
level where a power domain which is switched o� is represented by all signals
going to X. During synthesis, the de�nitions in the CPF �le are used to insert
isolation cells and to replace normal �ip �ops with state retention �ip �ops where
required. In the place and route step, the actual power switches are inserted
and all control signals are routed.
The complete design �ow is is depicted in Figure 4.5. First, the new processor
architecture has to be described using the processor modelling language (i.e.
nML for the use of Target IP Designer and TIM for Hive Logic). Then, this
information is used by the processor design tool to generate the HDL code (in
this work, VHDL was used) of the RTL model of the processor. This RTL
model, together with the CPF de�nitions, the design constraints and the tech-
nology libraries is used to performe the synthesis of the processor. Synthesis
was performed with RTL Compiler by Cadence. The outcome is a synthesis
netlist. Afterwards, the synthesis netlist, together with the CPF de�nitions,
the design constraints and the technology libraries is used to perform place and
route (P&R). Place and route was performed using Encounter by Cadence. The
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outcome of this step is a place and route - netlist, information about the para-
sitics in the design and a SDF (standard delay format) �le in which the delays
of each cell in the design are stored.

processor
description

VHDL generation

RTL
model

technology
library

Synthesis
Netlist

Place and route
Netlist

Parasitics

Synthesis

Place and Route

SDF File

CPF
definitions

design
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Figure 4.5: Design implementation �ow

4.8 Veri�cation that the system still works func-

tionally correct

After the implementation of power gating it has to be veri�ed that the system
still works functionally correct. This is achieved by simulating the application
on the post-P&R netlist. The application should therefore be self-testing or it
should compute a speci�c result at the end which can be veri�ed.
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While a resource is switched o�, it cannot be used. However, the compiler is
not necessarly aware of that. Therefore, it has to be made sure that whenever a
switch o� signal for a speci�c power domain is given, it is not scheduled before it
is switched on again. In Target IP Designer, there are several methods available.
For example, a speci�c class of instructions, which have to be de�ned, can be
deactivated for a function. This will be explained more detailed in section 5.4.
Sometimes, however, it is not possible to deactivate a speci�c power domain for
scheduling, for example when it is switched o� within a function. But when the
application designer knows for sure, that the resource is not used it can still be
switched o�. But still a veri�cation method is needed to verify the resource is
really not used. For this purpose, a script was written in this Thesis. It takes
the resource usage over time �le, which is generated with the script explained in
section 4.3. For each cycle, it is checked if a power domain is switched o�. If yes,
a �ag is set. In the following cycles, it is checked for each instruction whether
the speci�c resources are scheduled. If yes, than the power-down scheme is
incorrect and a violation is reported. If it is not used, the resource can savely
be switched o�. The software �ow can be seen in Figure 4.6. The scripts can
be found in the electronic appendix (folder resource_not_used).

4.9 Evaluate energy savings

In this section, the methodology for the evaluation of possible energy savings is
described. In order to determine the impact of power gating, the values for the
factors which dictate the break-even point, as described in chapter 3, have to
be known.
As a reminder, the factors for the determination of the break-even point accord-
ing to Equation 3.9 are summarised shortly:

• Pmod,leak: the leakage power consumption of the power domain
• Pswitch,leak, Piso,leak, PSR,leak: the leakage power of the power switch(es),isolation cells, and SR registers, respectively
• Piso,active, ∆PSR,active: the power consumption of the isolation cells dur-
ing active mode and the power consumed by the SR registers compared
to what regular registers would consume during active mode

• Padd.modules: the power consumption of additional modules
• Epowerdown: the energy which is still consumed during powering down
• Epoweron: the energy required to switch on a power domain
• ttotal: the total runtime

Pmod,leak, Piso,active, and Padd.modules can be determined by power number ex-
traction as described in section 4.2. Pswitch,leak, Piso,leak, and PSR,leak can
either be determined by power number extraction or the information can be ex-
tracted from the corresponding datasheets. ∆PSR,active has to be determined by
comparing the power consumption values of SR registers with power consump-
tion values of the corresponding, non-SR registers provided in the datasheet.
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Figure 4.6: Flow for the veri�cation that a resource is not used while it is
switched o�.

Epowerdown and Epoweron have to be determined using HSPICE simulations.
This will be described in the following section. ttotal is the total runtime of the
application which can be determined by the required number of cycles.
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4.9.1 Power-on /-o� energy

In this section the determination of Epowerdown, Epoweron and the time required
to switch on a power domain is described. A con�gurable HSPICE simulation
�ow for accurate analysis was developed during this work.
Furthermore, the time required to switch on a power domain is identi�ed during
this �ow. When �ne-grained power gating is applied to the datapath in a pro-
cessor, the power-on and power-o� times are important. Depending on the time
it takes to power down a power domain, it has to be determined how often and
for how long it can be powered down. When it takes only a few clock cycles, it
can be powered down more often than if it takes a long time. Power-o� time
a�ects the power-on time; when the power domain is not fully discharged, it
takes shorter to switch it on.

Cdecap

VVDD
V DD

power
switch

power
domain

Requ
Cswitch

sleep control

Figure 4.7: Spice model of the circuit
The power domain is modelled as shown in Figure 4.7. The power gated module
is represented by its switching capacitance Cswitch and equivalent resistance
Requ. In addition, the decoupling capacitor Cdecap is present in the model. VDDand V VDD represent supply voltage and virtual supply voltage, respectively.
The switching capacitance can be determined with help of the following expres-
sion for the switching power:

Pswitching = Cswitching · V 2
DD · f (4.2)

where Pswitching stands for the total switching power of a module, Cswitchingfor the total switching capacitance, VDD for the system's supply voltage and f
for the clock frequency. This equation can be converted in order to calculate
Cswitching:

Cswitching =
Pswitching

V 2
DD · f

(4.3)
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The equivalent resistance Requ can be found as follows:

Requ =
V 2

DD

Pleakage
(4.4)

where Pleakage represent the leakage power consumed by the module.
The values for Pswitching and Pleakage have to be determined using the method
described in section 4.2. The supply voltage VDD is technology dependend and
the clock frequency f is a design constraint that has to be speci�ed.
With the known switching capacitance, Cdecap can be estimated with the fol-
lowing rule of thumb according to [60]:

Cdecap = 9 · Cswitching (4.5)
Furthermore, the way the power switches are connected and how many switches
are used has an in�uence on the power-on energy. A schematic of the switches
used in this work is depicted in Figure 4.8. The pin Vdd is connected to the
always-on voltage supply, VVdd is the pin for the virtual voltage, Vss is the
connection to ground, sleep in is the input for the control signal, and sleep out
is connected to sleep in and can be used as an control input for the next switch.

VVddVdd

sleep in

Vss

sleep out

Figure 4.8: Schmeatic of the power switch
The switches are usually connected in a daisy chain with one switch controlling
the next switch in the chain like it can be seen in Figure 4.9. The switches
are modelled using the accurate spice model provided by the vendor. The daisy
chain ensures that the power domain is not charged at once, but slowly to con�ne
the power-on peak current. The sleep in signal of the �rst switch in the chain is
connected to the sleep control signal of the power gating control unit. The sleep
out signal is then connected to the next switch in the chain, thus introducing a
delay in the switch-on process. It is crucial that the delay of the switch is larger
than the time required for charging the module, otherwise daisy chaining does
not have any e�ects on the peak current.
From the technology point of view, the size of the sleep transistors inside the
power switch has a large impact on factors like peak current and power-on
time. However, in this work 90 nm LP o�-the-shelf power switches are used and
modifying its transistor dimensions is out of scope for this thesis.
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Figure 4.9: Spice model of the power gated block with a net of switches

The simulation �ow is sketched in Figure 4.10. All required scripts were writ-
ten in this thesis. They can be found in the electronic appendix (folder en-
ergy_and_time).

config
file

read config

create netlist according
to config

simulate circuit

extract
charge time
peak current

power-on energy
power-off energy

write results
to result files

results
file

Figure 4.10: Spice simulation �ow
In the con�g �le, the values for Cdecap, Cswitching and Requ are speci�ed. Also
the con�guration of the switch-net is speci�ed in rows and columns. Based on
that information, the circuit is generated. The relevant code snippets are shown
below.
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1 # generate model of power domain
2 puts $ o u t f i l e " cswitch  vvdd_0 vss  ${CSW_CUR}"
3 puts $ o u t f i l e " cdecap vvdd_0 vss  ${CDEC_CUR}"
4 puts $ o u t f i l e " r1  vvdd_0 vss  ${REQ_CUR}"
5
6 # generate switch net
7 for { set loopcount 0 } { $loopcount < ${row } } { incr loopcount } {
8 puts $ o u t f i l e " xswitch$ { loopcount }_1 ns l e ep in0  ${ loopcount }_01 vss  vdd 

vvdd ${SWITCH}"
9 for { set i 1 } { $ i < ${column } } { incr i } {
10 puts $ o u t f i l e " xswitch$ { loopcount }_[ expr  ${ i }+1] ${ loopcount }_[ expr  ${ i

}−1 ] ${ i } ${ loopcount }_${ i } [ expr  ${ i }+1] vss  vdd vvdd ${SWITCH}"
11 }
12 }

Code Snippet 4.5: Generation of the spice circuit
The relevant excerpts from the spice netlist for the simulation are presented
below:

1 ∗∗∗∗∗∗∗∗ measurements ∗∗∗∗∗∗∗∗
2
3 . t r an 1n 302u
4
5 ∗ charge time => time r equ i r ed for powering on a power domain
6 .MEAS tcharge WHEN V(vvdd )="vdd∗0.95 " RISE=2
7
8 ∗ peak cur rent during powering on
9 .MEAS TRAN PeakI MAX I ( vsense ) FROM=300us TO=302us
10
11 ∗ energy for powering on
12 .MEAS TRAN ton WHEN I (vdd )="1 .05∗ ILeak " RISE=1 TD=300us
13 .MEAS TRAN Ipena l ty INTEG I (vdd ) FROM=300us TO=ton
14 .MEAS E_on_penalty PARAM=' −Ipenalty∗1.2 '
15
16 ∗ energy during powering−off
17 .MEAS t o f f WHEN I (vdd )=" ILeak∗0.05 " RISE=1 TD=2us
18 .MEAS TRAN I o f f INTEG I (vdd ) FROM=2us TO=toff
19 .MEAS E_off PARAM=' − Io f f∗1 .2 '
20
21 ∗∗∗ supply vo l tage and VSS ∗∗∗
22
23 vdd vdd 0 1 . 2
24 vss vss 0 0
25
26 ∗∗∗∗∗∗∗∗∗∗∗ c i r c u i t ∗∗∗∗∗∗∗∗∗∗
27
28 . i n c l u d e switch_chain .sp
29 . i n c l u d e c i r c u i t . s p
30
31 ∗ s l e ep con t r o l
32 vin_ns leep in0 n s l e ep in0 0 pu l se 0 1 . 0 0 250p 250p 2u 300u

Code Snippet 4.6: Spice netlist for the simulation

4.9.2 Evaluate total energy savings

When the indidual components for the possible savings and the introduced
overhead are determined, the total energy savings can be calculated. For that
purpose, a tcl script was written during this thesis. It requires the values for
the components for the savings and overhead, introduced as α, β′, γ, and δ in
chapter 3, those values are stored in a con�g �le which is sourced by the script.
In the script, Equation 3.13 is applied.

36



1 foreach domain $POWER_DOMAINS {
2 puts [ lindex $MODE $count ]
3 set SAVINGS [ expr [ lindex $RUN_TIME $count ] ∗ [ lindex $OFF_TIME_PERCENT

$count ] / 1 0 0 ∗ [ lindex $LEAKAGE $count ] ]
4 puts " s a v i n g s :  $SAVINGS J"
5 set OVERHEAD [ expr [ lindex $RUN_TIME $count ] ∗ [ lindex $ADD_MODULES

$count ] + [ lindex $RUN_TIME $count ] ∗ (100−[ lindex
$OFF_TIME_PERCENT $count ] ) /100∗ [ lindex $ISO_DYNAMIC $count ] + [
lindex $OFF_TIME_PERCENT $count ] /100 ∗ [ lindex $RUN_TIME $count ] ∗
[ lindex $ISO_LEAKAGE $count ] ]

6 puts " overhead:  $OVERHEAD J"
7 set BENEFIT [ expr $SAVINGS − $OVERHEAD]
8 puts "BENEFIT: [ expr  ${BENEFIT} ] J\n"
9 incr count
10 }

Code Snippet 4.7: TCL script for the evaluation of total energy savings
To visualise the possible energy savings depending on the o�-time, a simple
matlab script was written to plot the characteristics. The script is shown below.
In the script, the values of α, β, γ, δ, ε and ϕ, which are named a, b, c, d, e,
and f , respectively, in the script, have to be de�ned.

1 % def ine required va r i a b l e s here
2
3 x = tdown . ∗ ( a − b + c ) − t t o t a l ∗ ( c+d) + f − e ;
4 plot ( x )

Code Snippet 4.8: TCL script for the evaluation of total energy savings
The scripts can be found in the electronix appendix (folder energy_savings).

37



Chapter 5

Implementation of Power

Gating

In this chapter, the actual implementation of power gating is described. First,
the di�erent processors which were used during this thesis are explained in sec-
tion 5.1. Then, the partitioning into power domains is described in section 5.2.
In section 5.3 and section 5.4, two di�erent implementation approaches for power
gating are presented. Finally, the actual implementation of the power domains
into the processors is described in section 5.5.

5.1 Architecture description

In this work, two di�erent processors were used to explore the possibilities of
power gating. The processors were designed for di�erent purposes and with the
help of di�erent tools. In the following section, they will be explained in more
detail.

5.1.1 Ultra wide band processor

The processor which is used in this work is an improved version of the Ultra
Wide Band (UWB) processor designed at IMEC-NL as presented in [61]. The
development of the processor was performed using the Target IP Designer (see
section 4.1). Originally, the processor contained four issue slots, two for scalar
operations and two for vector operations. The improved version has merged
one of the scalar slots and one of the vector slots, leading to a three issue slot
processor with one issue slot for scalar operations only, one combined issue slot
for both scalar and vector operations, and one for vector operations exclusively.
A schematic can be seen in Figure 5.1, the dotted rectangles represent the
issue slots. The scalar issue slots contain an address generator for load/ store
operations and two ALUs which can work in parallel. The vector issue slots
contain a vector adder, an address generator for vector load/store operations,
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and several function units which were implemented to execute speci�c operations
during di�erent stages in the UWB application of which the biggest one is a
correlator. Furthermore, three vector registers are present. For this work, also
a multiplier was added to the processor in order to make the processor suitable
for a wider range of applications.

R1 SCV1R2 V2

IS2

function units

IS1

function units

VIS1 VIS2

function units

Scalar
Data

Memory

Vector
Data

Memory

Program
Memory

Figure 5.1: Overview of the UWB processor

UWB Application The processor was originally designed for an UWB appli-
cation. The application iterates through several states, the corresponding state
machine can be seen in Figure 5.2. First, an initialisation phase is executed
during which the system is set up. Afterwards, a noise estimation is performed
to determine the threshold values for signal detection which is executed after-
wards. The number of iterations of the signal detection state depends on when
a signal is detected. As soon as the signal detection was successful, the sys-
tem is performing a �ne delay search to perform accurate synchronisation. The
mentioned states can be summarised as Synchronisation / Timing Acquisition
Phase. Following, a start frame delimiter (SFD) search is performed to detect
the end of the header. Finally, the data is decoded in the payload demodulation
phase. The number of iterations depends on the length of the received message.
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Figure 5.2: States of the UWB application

DWT Application The other application which is run on the processor is
a discrete wavelet transform (DWT) like it is also used for JPEG2000. In the
application, �rst a forward transform is executed and afterwards an inverse
transform to check the results.
The DWT application was mapped on the processor to have a use-case of an
algorithm which does not use the vector issue slots and registers, as they are a
signi�cant contributor to the leakage power consumption. The algorithm only
relies on the normal scalar part of the processor, hence the vector part could
be switched o�. Therefore, it can be evaluated if it could make sense to have
processors for several applications during which only their dedicated hardware
is active.
For this work, the following use-case is assumed: First, the UWB receiver ap-
plication is executed, afterwards, the DWT algorithm is performed.

5.1.2 Biomedical DSP

The second processor which was explored during this work was a biomedical
digital signal processor (DSP), also designed at IMEC-NL. It was developed
using the Silicon Hive's Hive Logic (refer section 4.1). The processor is part
of a bigger design as depicted in Figure 5.3. Besides the processor (red block),
it contains also device handlers (gray blocks) to be able to receive data from
attached sensors and control and management blocks (green blocks).
The processor itself contains four issue slots, one RISC-like (RISC, one for load/
store operations and address calculations (LD / ST ), one for EEG applications
(EEG) and one for communication with devices (I/O).
The processor is designed for two di�erent applications, one is an EEG (for
detecting brain waves) algorithm based on the work presented in [62], the other
one an ECG (for detecting heart beats) algorithm based on the algorithm devel-
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Figure 5.3: Biomedical DSP overview

oped in [63]. The processor can only be used for either of them simultaneously,
i.e. it executes either the EEG application or the ECG application. For both
applications, the system works as follows: The external sensors measure data
and send it via the device handlers into the FIFO-bu�ers. When enough data
is collected, the data is processed.

5.2 Partitioning into power domains

In this section the actual partitioning of the design into power domains is de-
scribed. It is based on the methodology presented in chapter 4.
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5.2.1 UWB processor

First, the power consumption of the modules in the datapath of the UWB
processor is analysed. Then, the utilisation of the most signi�cant modules is
examined.
The analysis of the power consumption of the processor showed that the vector
issue slots and the vector registers are a signi�cant contributor to leakage power
consumption. Within the vector issue slots, the main consumer of power is
the vector adder and the correlator. In the scalar issue slots, the multiplier is
signi�cant.
The next important step is the determination of the utilisation of the modules.
The two applications (UWB and DWT) are analysed in terms of the modules
which were presented in the previous section.
The correlator is used during the complete runtime of the UWB application, so
it is not a candidate for power gating, at least not during the UWB application.
The vector adder is only used during two states, namely signal detection and
Fine delay search. The vector issue slots including vector registers are utilised
heavily during the UWB application, during the DWT application they are, as
intended idle. The multiplier is used only during the DWT application but not
in the UWB application. For the three relevant blocks, i.e. the vector adder
vec, the multiplier mul and the vector issue slots including the vector registers
VIS, the utilisation during selected phases within the UWB application and the
DWT application is analysed further.
The resource utilisation of the blocks during the complete algorithm can be seen
in Figure 5.4.
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Figure 5.4: Resource utilisation of the power domains during complete UWB
algorithm
The detailed resource usage durin the signal detection phase can be found in
Figure 5.5, the utilisation during the �ne delay search phase is shown in Fig-
ure 5.6.
The utilisation of the complete DWT algorithm can be seen in Figure 5.7.
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Figure 5.5: Resource utilisation of the power domains during signal detection
in UWB application
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Figure 5.6: Resource utilisation of the power domains during �ne delay com-
pensation in UWB application
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Figure 5.7: Resource utilisation of the power domains during complete DWT
algorithm

Grouping
Based on the results from the power numbers and the utilisations, a partitioning
into power domains can be performed. The vector adder is put into one power
domain (PD_vec), the multiplier is also taken as one power domain (PD_mul).
The vector issue slots are grouped to a big power domain, PD_VIS. Here, also
the registers V1, V2 and SC are included, hereby it is assumed that no state
retention is required as this power domain can only be switched o� during the
DWT application. Also, whenever PD_VIS is switched o�, PD_vec can be
switched o� too, as it requires the vector registers and the control logic within
PD_VIS. The remaining modules are in the always-on power domain PD_top.
A complete schematic about the power domains can be seen in Figure 5.8. An
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overview of the power domains is also presented in Table 5.1.

Table 5.1: Power domains in the UWB processor
Power Domain Modules Gates Outputs
PD_vec vector adder 898 96
PD_mul multiplier 1202 32
PD_VIS vector issue slots,

vector registers
13718 144
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VIS1

PD_vec

fu_vec

VIS2

PD_VIS

IS1

fu_is1_mul

PD_mul

IS2

PD_top

Figure 5.8: Power Domains in the UWB processor

Isolation
As explained in subsection 2.2.3, it is necessary to isolate the output of a power
domain if the output signals go into a power domain which can be switched on.
However, it has to be taken care that no isolation cells are put into the design
that are not required as they contribute to the overhead (refer chapter 3).
The power domains PD_VIS and PD_mul have to be isolated against the
always-on power domain PD_top. PD_vec has to be isolated against PD_VIS.
PD_VIS, however, does not have to be isolated against PD_vec although it has
output signals going to it. The reason is that whenever PD_VIS is switched
o�, PD_vec is switched o� as well. The resulting isolation scheme can be seen
in Figure 5.9.
Based on these �ndings, a power-o� scheme for the UWB processor can be
proposed. mul can be switched o� during the complete UWB application. vec
only needs to be switched on in signal detection and Fine delay search within
the UWB application, otherwise it can also be switched o�. VIS is used during
the complete UWB application, but not in the DWT application, so it can be
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Figure 5.9: Isolation scheme for the UWB processor

switched o� during the DWT application. An overview of the proposed power-
o� scheme can be found in Figure 5.10.
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Figure 5.10: Possible power o� scheme for the UWB processor

Number of switches
5.2.2 Biomedical DSP

As explained before, does the biomedical DSP contain four issue slots. Three
of them, namely the RISC issue slot, the LD / ST issue slot and the I/O
issue slots are used constantly during the applications. The remaining issue
slot, EEG, is only used depending on the application. It was mentioned before,
that the processor can either execute an EEG algorithm or an ECG algorithm.
Therefore, the EEG issue slot was taken as the only power domain (PD_EEG)
within this processor.
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When the ECG algorithm is executed, the utilisation of the EEG issue slot is
zero. During the EEG algorithm, it is used blockwise but only 2.6 % of the
time. A schematic of the utilisation during the EEG algorithm is depicted in
Figure 5.11. During the idle period, the processor is waiting for new input data.
In that time, the issue slot EEG is not needed, only the remainding parts of
the processor, represented by the green part in the graph. During the R-peak
search period, the actual brain wave detection computation is performed and
EEG is needed, represented by the blue part in the graph.

R-peak search

idle

0.974 ms

26 us

time

Figure 5.11: EEG algorithm
The proposed power-o� scheme is therefore quite simple: When the ECG al-
gorithm is executed, PD_EEG can be switched o� completely. The power-o�
scheme for the EEG algorithm is depicted in Figure 5.12.

R-peak
seach

PD_EEG on PD_EEG off

idle

Figure 5.12: EEG power o� scheme
Also isolation is simpler than for the UWB processor, as there is only one power
domain, all its output have to be isolated.
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5.3 Proposed power gating topology 1: HW based

power manager

In this section, the �rst implementation is described. The proposed architecture
relies on a dedicated control module which manages the power shutdown and
power-up sequence as described in Figure 2.7. An overview can be seen in Fig-
ure 5.13. In the scheme, two switchable power domains (PD_1 and PD_2 ) and
one always-on power domain PD_always_on) are illustrated. During this work,
the hardware based topology was only implemented for the UWB processor and
not for the biomedical processor.

PD_always_on

power manager
PD_1

power manager
PD_2

PD_1

switch

PD_2

switch

Vdd Vdd

iso iso

PD_1 PD_2

Figure 5.13: HW based power manager

5.3.1 HW implementation

In this section, the implementation of the additional modules which are added to
the UWB processor is described. As mentioned before, has this processor been
designed with the Target IP Designer which relies on the processor modelling
language nML. In this language, all changes to the processor have been modelled.
In the following section, they will be presented.
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Power gating control register In order to control the on/o� status of a
power domain, i.e. if it is currently switched on or o�, the current desired
status of the power domain has to be stored. In this implementation, that
was ensured with a control register. As the datapath of the processor is 16-bit
wide, an additional 16 bits control register was added to the processor as shown
in Figure 5.14. Its purpose is the control of the current status of the power
domains. It contains one bit per power domain, bit set indicates that the power
domain is shut o�, otherwise it is on.
In this design, only three power domains were present, leading to a certain
overhead in bits in the control register. It would also have been possible to im-
plement a smaller register, but then an extra datapath for the desired number of
bits and type-conversions would have to be implemented, too. This would pre-
sumably lead to additional power consumption and also a higher design-e�ort.
However, in this implementation, the bits of the power domains were also made
individually accessible, for which a dedicated function unit was implemented.
The design choices were motivated by the possibility to explore the di�erent
impacts on the �nal power consumption of the control register.

PD0PD1PD2PD3. . . PD15 

15 0

Figure 5.14: Power Gating Control Register
As explained in section 5.2.1, the UWB processor contains three switchable
power domains. The bits of the register that are used to control the current
status of the power domains, are each de�ned as single bit registers such that
they can be accessed independently in the application. The single bits are
concatenated to form a 16-bit register in order to enable single-cycle access to all
bits simultaneously. The unused bits in the register are �lled with dummy bits.
Those can be used in the future when further power domains are implemented.
The implementation can be seen below.

1 reg PG_VIS<uint1 >;
2 reg PG_vec<uint1 >;
3 reg PG_mul<uint1 >;
4 reg PG_dummy<uint13 >;
5
6 reg PG<width>
7 {
8 PG_VIS ; PG_vec ; PG_mul ;
9 PG_dummy;
10 }
11 read (pg_r pg_c) wr i t e (pg_w) ;
12 outport pg_c_out<word>;

Code Snippet 5.1: Declaration of the control register
In order to be able to access the single bits registers from the application, each
register has to be uniquely encoded in the instruction word. The implementation
is shown in the code snippet below. In the lines 1 to 3, it is de�ned which
register is accessed (value) and the corresponding name used in the assembly
code (syntax ). Following, it is de�ned which bit-pattern is assigned to which
register. For example, the register PG_VIS is encoded with the bit pattern
"00".
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1 mode pg_VIS_reg ( ) { value : PG_VIS; syntax : "PG_VIS" ; }
2 mode pg_vec_reg ( ) { value : PG_vec ; syntax : " PG_vec" ; }
3 mode pg_mul_reg ( ) { value : PG_mul ; syntax : "PG_mul" ; }
4
5 mode pg_reg (pg_VIS_reg | pg_vec_reg | pg_mul_reg )
6 {
7 image :
8 " 0 0 " : : pg_VIS_reg
9 | " 0 1 " : : pg_vec_reg
10 | " 1 0 " : : pg_mul_reg
11 ;
12 }

Code Snippet 5.2: Merge individual bits to one register

Additional instructions In order to be able to give speci�c power down
instructions in the program code, four instruction were declared. Two instruc-
tions operate with a 16-bit value, one read and one write instruction, the other
two are able to set and clear a speci�c bit. The 16-bit instructions rely on the
existing register move operations, the single-bit instructions require a dedicated
function unit, as described above.
The instruction to read a 16-bit value from the register is de�ned as follows, the
syntax of the assembly instruction is 'mv t, PG', where t de�nes the destination
register.

1 opn pg_inst_r ( t : opn_alut_is1 )
2 {
3 ac t i on {
4 s tage E1 :
5 a lur_is1 = pg_r = PG;
6 a lut_is1 = alur_is1 ;
7 t ;
8 }
9 syntax : "mv " t " , PG" ;
10 image : t c l a s s ( pg ) ;
11 }

Code Snippet 5.3: Read a value from the control register
The instruction to write a 16-bit value to the register is de�ned as follows,
the syntax of the assembly instruction is 'mv PG, r', where r de�nes the source
register.

1 opn pg_inst_wr ( r : opn_alur_is1 )
2 {
3 ac t i on {
4 s tage E1 :
5 r ;
6 a lut_is1 = alur_is1 ;
7 PG = pg_w = alut_is1 ;
8 }
9 syntax : "mv PG, " r ;
10 image : r c l a s s ( pg ) ;
11 }

Code Snippet 5.4: Instruction to write a value to the control register
To be able to access the single bit registers, a dedicated functional unit (fu_clearset)
was implemented.
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The instruction to set a single bit is shown below. The syntax of the instruction
is de�ned as 'sb_PG, pgreg' where pgreg follows the de�nition of the mode, as
described in section 5.3.1.
In line 1, the function unit is de�ned. In the lines 3 to 5, the behaviour of
the primitive operation is declared. In the remainder, the data �ow (action),
assembly syntax (syntax ), and instruction word encoding (image) are de�ned.

1 fu fu_c l ea r s e t ;
2
3 uint1 s e t b i t ( ) {
4 return 1 ;
5 }
6
7 opn pg_inst_sb ( pgreg : pg_reg )
8 {
9 ac t i on {
10 s tage E1 :
11 pgreg = pg_trn = s e t b i t ( ) @ fu_c l ea r s e t ;
12 }
13 syntax : " sb_PG, " pgreg ;
14 image : " 0 0 0 " : : pgreg ;
15 }

Code Snippet 5.5: Instruction to set a bit in the control register
Finally, the instruction to clear a single bit is de�ned as shown below. The
syntax of the instruction is de�ned as 'cb_PG, pgreg' where pgreg follows the
de�nition of the mode, as described in section 5.3.1.

1 uint1 c l e a r b i t ( )
2 {
3 return 0 ;
4 }
5
6 opn pg_inst_cb ( pgreg : pg_reg )
7 {
8 ac t i on {
9 s tage E1 :
10 pgreg = pg_trn = c l e a r b i t ( ) @ fu_c l ea r s e t ;
11 }
12 syntax : " cb_PG, " pgreg ;
13 image : pgreg c l a s s (pg_up) ;
14 }

Code Snippet 5.6: Instruction to clear a bit in the control register
In order to force the compiler to use those instructions, a variable has to be
assigned to the corresponding storage element, i.e. the control register. The
code for that looks like this:
INT16 chess_storage(PG) pg_reg;

In this case, the variable pg_reg is assigned to the power gating control register
PG. In order to write a speci�c value to the register, the line
pg_reg = 0x01;

can be inserted into the code. The e�ect would be, that the value 0x01 is written
into the register, using the previously de�ned instruction.
In order to set one speci�c bit, the compiler has to be forced to use the previously
de�ned instruction. Therefore, a one-bit variable is declared and assigned to

50



the corresponding storage and the primitive setbit() is called. Therefore, a
variable assigned to the speci�c bit in the register would have to be de�ned:
uint1 chess_storage(PG_VIS) pg_VIS_reg;

Then, the previously declared instruction can be used to set the bit:
pg_VIS_reg = setbit();

During the hardware generation of the function units in Target IP Designer, a
framework for the described function unit is generated. The entity and architec-
ture including the input signals and output signals and required control signals
are implemented automatically. The relevant part of the generated framework
is shown in Code Snippet 5.7. The functionality itself, however, has to be im-
plemented manually. For the function unit fu_clearset, it is quite trivial as it
only sets a '1' or a '0' to its output. The relevant part of the implementation is
shown in Code Snippet 5.8. The only line that had to be changed was line four,
in the generated default implementation, all output signals are set to '0'.

1 case bin_selector_E1 i s
2 when "01" =>
3 c l e a r b i t ( pg_trn_out ) ;
4 when "10" =>
5 s e t b i t ( pg_trn_out ) ;
6 when others =>
7 null ;
8 end case ;

Code Snippet 5.7: Framework of the function unit fu_clearset
1 procedure s e t b i t (
2 signal pg_trn_out : out t_uint1 ) i s
3 begin
4 pg_trn_out <= '1 ' ;
5 end s e t b i t ;
6
7 procedure c l e a r b i t (
8 signal pg_trn_out : out t_uint1 ) i s
9 begin
10 pg_trn_out <= '0 ' ;
11 end c l e a r b i t ;

Code Snippet 5.8: Functionality of the function unit fu_clearset

The dedicated power gating module
To implement the control sequence that was explained in subsection 2.2.5, a
dedicated power gating control module, a power manager, was designed. It uses
the current value of the corresponding bit for the power domain in the power
gating register as input. For each power domain one power gating module is
instanciated.
A block diagram can be seen in Figure 5.15. The inputs of the power gating
module are the system clock (clk), a reset input (rst) to set the module in an
initial state and the power gating control signal (pg_ctrl), which is connected to
the corresponding bit for the power domain in the control register, as depicted
in Figure 5.13. The outputs are the control signal for the isolation cells (iso),
the control signal for the power switch (ps) and the reset signal (pd_reset) for
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the power domain that is required when the power domain contains registers
that have to be set to a known state after the power domain has been switched
on after it was switched o�.
The state machine for the power gating module can be seen in Figure 5.16.
After reset, the module is in the state UP, i.e. the corresponding power domain
is switched on. While the control signal pg_ctrl signal remains '0', the power
gating module remains in this state, its output signals are all zero. As soon as
the control signal switches to '1', the modules goes into the ISOLATE state.
In this stage, the isolation control signal iso is set to '1' to enable isolation of
outputs of the power domain. When the control signals stays '0', the module
switches to the next stage, DOWN, otherwise it goes back to the state UP,
meaning that the switch o�-procedure was cancelled.
In the DOWN state, iso remains '1' and also the control signal of the power
switch, ps, is set to '1' to disconnect the power domain from the power supply,
i.e. switch it o�. The modules stays in this state as long as the control signal re-
mains '1'. As soon as it is set to '0', the switch-on procedure has to be executed.
For that purpose, the module switches to the POWER_UP state. In this state,
iso is still '1', but ps is set to '0' in order to switch the power domain on. Also,
the reset signal pd_reset is set to '1' to reset the registers in the power domain.
When the control signal remains '0', i.e. the switchin on procedure is not can-
celled, the system proceeds to the next state (RESET_STATE ), otherwise it
goes back to the DOWN state.
In RESET_STATE, the pd_reset is set to '0'. By doing that, the reset is
�nished. Next, the system goes to the UP in which also iso is set back to '0',
i.e. the outputs of the power domain are not isolated anymore.

 clk

 rst

 pg_ctrl

iso 

ps 

pd_reset 

Figure 5.15: Block diagram of power gating control unit

5.3.2 SW implementation

The �nal step of the implementation of power gating into the processor was
the actual implementation of the power-shutdown signal in the application. For
that, the previously de�ned instructions to write to the power gating control
register were used as explained. One main problem is that it has to be ensured
that the instruction is scheduled at the correct position. The instruction to
switch o� a power domain has to be scheduled at a speci�c place within the
application, as well as the switch-on instruction. For the switch-on instruction
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Figure 5.16: State machine of power gating control unit

it is of great importance that it is executed su�cient long before the modules
within the power domain, that was switched o�, are scheduled again by the
compiler. For that, Target provides some useful features. It can be de�ned that
instructions from a certain kind have to be scheduled ASAP, which can be used
for the power-o� instructions. But this still cannot ensure a scheduling at a
speci�c position in the program �ow. So, in this thesis another option was used,
which is a seperator-instruction that is inserted in the program code. Everything
before this instruction has to be scheduled before the separator. This can be
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used to force the compiler to schedule the power-down and -up instruction at
speci�c places. A disadvantage of this method is that the compiler loses freedom
to generate a dense schedule when shutting o� and powering on power domains.
An illustration for power gating power domain PD_VIS is given below:

1 <code which i s us ing VIS>
2
3 // switch o f f VIS
4 chess_separator_scheduler ( ) ;
5 pg_VIS_reg = s e t b i t ( ) ;
6
7 chess_separator_scheduler ( ) ;
8
9 <code which i s not us ing VIS>
10
11 // switch on VIS
12 chess_separator_scheduler ( ) ;
13 pg_VIS_reg = c l e a r b i t ( ) ;
14 chess_separator_scheduler ( ) ;
15
16 <code which i s us ing VIS>

Code Snippet 5.9: Force compiler to schedule power-gating instructions at a
speci�g position
The example above shows the case that a power domain is switched o� within
a function. However, it could also be the case that a speci�c power domain has
to be switched o� for a speci�c function. For example, an algorithm consists of
di�erent function calls which are executed sequentially. In one of the functions,
one power domain can be switched o� because it is not needed. For this case,
Target provides a useful feature that enables the programmer to disable a certain
function-class for a speci�c function. Therefore, the class attribute has to be
used during de�nition of the instructions. In the illustration for the de�nition
of the read-instruction for the control register, shown in Code Snippet 5.3, the
instruction was added to the class pg. In the same way, all instructions that are
executed on modules belonging to a speci�c power domain, can be grouped in
one class. As an example, let us assume, all instructions of PD_vec are assigned
to the class vec. In the code below, they are disabled for the function fct_1().
In the main function, this function is executed after PD_vec has been switched
o�. After execution of fct_1(), PD_vec is switched on again.

1 void fct_1 (void ) property ( d i sab l e_ins t ruc t i on_c la s s_vec )
2 {
3 <code>
4 }
5
6 int main ( )
7 {
8
9 <code>
10
11 switcho f f_vec ( ) ;
12
13 fct_1 ( ) ;
14
15 switchon_vec ( ) ;
16
17 <code>
18
19 . . .
20
21 }

Code Snippet 5.10: Disable instruction class for a speci�c function
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5.4 Proposed power gating topology 2: SW based

power manager

In this section, an alternative control topology is presented. The method pre-
sented in the previous section relies on a dedicated power gating control unit.
However, it is also possible to implement the power shutdown and power-up
sequence completely in software, hence the extra hardware for the control unit
becomes obsolete. A schematic can be found in Figure 5.17. This topology was
implemented for both the UWB processor and the biomedical processor.

PD_always_on

PD_1

switch

PD_2

switch

Vdd Vdd

iso iso

PD_1
switch

PD_1
iso

PD_2
iso

PD_2
switch

Figure 5.17: SW based power manager

5.4.1 Implementation on the UWB processor

In this section, the implementation of the SW based power manager on the
UWB processor is explained. First, the additionally required modules, i.e. the
necessary changes in the hardware of the processor, are explained. Besides, a
comparison to the implementation of the power gating topology which relied on
the HW based power manager is drawn. Afterwars, the implementation in the
software itself it described.
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Additional modules For this approach, no power gating control unit is
needed. Furthermore, the power gating control register is implemented in a
di�erent way. In the �rst implementation, the register was split into single bit
to access each bit separately. This, however, had the disadvantage that clock
gating cannot be applied reasonably, leading to a large overhead due to the
continously switching clock input. This also removes the need for a separate
function unit to set or clear a bit (fu_clearset). Clock gating is usually imple-
mented using a special clock-gating latch. This latch also consumes power when
the clock is deactivated. When the clock-gated part of the design is su�cient
large, the additional power consumed by the clock gating latch is clearly justi-
�ed by the power which is saved due to clock gating. However, when only one
single �ip-�op is clock gated with a latch, the overhead power consumption of
the clock gating latch does not exceed the savings that can be obtained.
In this implementation, more bits are needed for each power domain. One for
isolation, one for power-shuto� and, if there are registers in the power domain,
a bit that controls the reset. The principle is illustrated in Figure 5.17. The
bit-con�guration is depicted in Table 5.2, ps represents the switch-o� control
signal that is connected to the power switch, iso is the isolation control signals
which is connected to the isolation block and rst is the reset signal which is
connect to the reset signal of the power domain (if available).

Bit Function
0 ps PD_VIS
1 iso PD_VIS
2 rst PD_VIS
3 ps PD_vec
4 iso PD_vec
5 ps PD_mul
6 iso PD_mul
7-15 unused

Table 5.2: Bit con�guration for the control register

Additional instructions The instructions to read and write a 16-bit value
from and to the register remain the same, the instructions to clear and set one
bit are dismissed.

SW implementation The implementation in the application code becomes
a bit more complicated in this method. Whenever a value is written to the
control register it has to be ensured, that no bits, which are responsible for the
control of other power domains, are changed accidently. That can either be done
by carefully writing the correct value to the register while remembering which
bits are already set. This, however, is very error-prone. The other possibility is
to read the value �rst and then perform a locical or -operation (to set speci�c
bits) or an and -operation (to clear speci�c bits). This method is safer than
the �rst one but also requires more cycles. Furthermore, the correct power
gating sequence, which was presented in Figure 2.7 has to be implemented in
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the application, i.e. the bits of the control register have to be set/cleared in the
correct order following Figure 2.7.
Below, the implementation for the power domain PD_VIS is shown. The re-
quired instructions to switch the power domain o� and on have been combined
to a function each to simplify the implementation in the application code. The
funtion to switch PD_VIS o� is shown below:

1 i n l i n e void shutdown_VIS ( )
2 {
3 // shut o f f PD_VIS and PD_vec
4 chess_separator_scheduler ( ) ;
5
6 // i s o l a t e PD_VIS, PD_vec
7 pg_reg = pg_reg | 0 x0012 ;
8 chess_separator_scheduler ( ) ;
9
10 // switch o f f PD_VIS, PD_vec
11 pg_reg = pg_reg | 0 x0009 ;
12 chess_separator_scheduler ( ) ;
13 }

Code Snippet 5.11: Function to switch o� VIS
The function to switch PD_VIS on is implemented as follows:

1 i n l i n e void switchon_VIS ( )
2 {
3 // switch on
4 pg_reg = pg_reg & ~0x0009 ;
5 chess_separator_scheduler ( ) ;
6
7 // re se t
8 pg_reg = pg_reg | 0 x0004 ;
9 chess_separator_scheduler ( ) ;
10 pg_reg = pg_reg & ~0x0004 ;
11 chess_separator_scheduler ( ) ;
12
13 // de−i s o l a t e
14 pg_reg = pg_reg & ~0x0012 ;
15 chess_separator_scheduler ( ) ;
16 }

Code Snippet 5.12: Function to shut down VIS
The actual implementation in the application code is shown below.

1 <code which uses VIS>
2
3 shutdown_VIS ( )
4
5 <code which does not use VIS>
6
7 switchon_VIS ( )
8
9 <code which uses VIS>

Code Snippet 5.13: Function to shut down VIS

5.4.2 Implementation on the Biomedical DSP

The software based power manager approach depicted in Figure 5.17 was also
implemented in the biomedical DSP. This processor was designed using Hive
Logic. In the following section, the modi�cations which were applied to the
processor are presented.
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HW implementation
As explained in subsection 5.2.2, the processor only has only one power domain.
Furthermore, this power domain does not require state retention. To control the
power switches and the isolation cells, a 2-bit control register was added to the
datapath. This was performed by the following declaration in the description
�le of the processor. In line 1, the number of bits in each register is de�ned.
In line 2, the number of registers in the register �le is declared. Afterwards, a
register �le with one read port and one write port is instantiated.

1 signed r f_pg_ctr l_s ize := 2 ;
2 signed rf_pg_ctrl_cap := 1 ;
3
4 RFwc1x1 rf_pg_ctr l <rf_pg_ctr l_size , rf_pg_ctrl_cap> ( i s_s ca l a r . op_pg) ;

Code Snippet 5.14: Declaration of the control register
In order to write a value to the register, a special pass-unit was implemented.
The declaration can be seen below. In the lines 1 to 3, the semantics for the
pass-operation are de�ned. In line 5, the function unit is de�ned with two
arguments (the width of an integer and the width of the control register). In
line 7, the in and output ports are de�ned. In line 10, the timing information
for the operation is declared. In line 11, the actual operation is instantiated and
renamed to clarify the purpose of the operation (std_pass_pg). Line 12 tells
the tools that the VHDL for this operation is user-de�ned.

1 OP std_pass_u ( Unsigned A) −> (Unsigned R) {
2 SEM R(A)= {R = (unsigned<Width :=(Width (R) )>)A; } ;
3 } ;
4
5 FU HLUD_cfu_pass_pg <signed intWidth , signed pgWidth>
6
7 ( portW<intWidth> ip0 ) −> ( portW<pgWidth>op0 )
8
9 {
10 Cycle [ 0 ] : = { ip0 , op0 } ;
11 std_pass_pg : op0 = std_pass_u ( ip0 ) ;
12 Implementation := ex t e rna l ;
13 } ;

Code Snippet 5.15: Declaration of the pass unit
The pass unit is then instantiated in the datapath of the processor. First, the
parameters for the instantiation of the function unit are de�ned in lines 1 and
2. Then, an instantiation of the function unit with the name pgu is created.

1 signed intWidth := 32 ;
2 signed pgWidth := 2 ;
3
4 HLUD_cfu_pass_pg pgu <intWidth , pgWidth> ( ip0 ) ;

Code Snippet 5.16: Instantiation of the pass unit

SW implementation
The previously de�ned instruction std_pass_pg can be used to write a value
to the control register. As illustration, it is shown how the power domain in
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the biomedical DSP can be switched o�. Bit 0 controls the isolation cells, bit 1
controls the power switches.

1 // pg wri te
2 int a ;
3
4 // i s o l a t e power domain , s e t b i t 0
5 a = 0x1 ;
6 L01 : pg=OP_std_pass_pg( a ) VOLATILE;
7
8 // switch power domain of f , s e t b i t 1
9 a = 0x3 ;
10 L02 : pg=OP_std_pass_pg( a ) VOLATILE AFTER ( L01 , 2 ) ;
11
12 in it_system ( ) AFTER ( L02 , 1 ) ;

Code Snippet 5.17: Instanciation of the pass unit
The variable a is used to specify the value which is written to the control register
pg. By using the operation pg=OP_std_pass_pg(a) VOLATILE; the compiler is
forced to use the previously de�ned dedicated pass-unit which is connected to
the control register. By doing that, the value which is stored in a is transferred
to the control register pg. The VOLATILE attribute is used to prevent that the
instruction is optimised away by the compiler.
L01 and L02 are labels used to control the sequence of the instructions. In
the code above, line 8 is scheduled at least two clock cycles after L01 (by us-
ing the attribute AFTER). By doing so, it is ensured that the power domain is
�rst isolated before being switched o�. The function to initialise the system
(init_system()) is scheduled at least one clock cycle after L02.
In Hive Logic, a speci�c function unit can be deactivated for an application. This
is performed by passing '-fdisable-fu <function_unit_name>' as argument
to the compiler, where <function_unit_name> has to be replaced with the
name of the function unit that has to be deactivated.

5.5 CPF Flow

When the modi�cations presented in the previous section are performed and
the system is simulated to verify correct functionality, the required steps to
synthesise and place and route the design have to be performed. The general
�ow has been presented in Figure 4.5.
To implement the power domains into the design, CPF is used. The basic
principle was explained in section 4.7. The required declarations are described
in the following.
First, the power gating related cells have to be declared. During this work,
isolation cells and power switch cells had to be de�ned:

1 d e f i n e_ i s o l a t i o n_c e l l − c e l l s <cell_name> −power <power_supply_pin>
−ground <ground_pin> −enable <iso_pin>

2 def ine_power_switch_cel l − c e l l s <cell_name> −power_switchable <
switchable_power_supply_pin > −power <power_supply_pin>
−stage_1_enable <ps_pin> −stage_1_output <out_pin> −type header

Code Snippet 5.18: Declaration of the power gating cells
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Then, the power and ground nets have to be de�ned for place and route. In
the example below, an always-on power supply, a ground connection and the
switchable power supply for the power domain PD_VIS are de�ned. The power
supply voltages are 1.2 V.

1 create_power_nets −nets VDD −voltage 1 .20
2 create_power_nets −nets VDD_VIS −voltage 1 .20 − interna l
3 create_ground_nets −nets VSS

Code Snippet 5.19: Declaration of the power and ground lines
Following, the power domains have to be de�ned. As an example, PD_VIS is
illustrated. The power domain contains the instances inst_VIS inst_reg_V1
inst_reg_V2 and inst_reg_SC. The control signal for the power switch is
pg_vis/ps. The virtual supply voltage is connected to the pin VDD_VIS.

1 create_power_domain −name PD_VIS − instances { inst_VIS inst_reg_V1
inst_reg_V2 inst_reg_SC } −shutof f_condit ion pg_vis/ps

2 create_global_connect ion −domain PD_VIS −net VDD −pins <power_supply_pin
>

3 create_global_connect ion −domain PD_VIS −net VDD_VIS −pins <
switchable_power_supply_pin>

4 create_global_connect ion −domain PD_VIS −net VSS −pins <ground_pin>
5 update_power_domain −name PD_VIS −internal_power_net VDD_VIS

Code Snippet 5.20: Declaration of the power domains
Afterwards, the isolation rules have to be de�ned, i.e. which signal is used to
control the isolation and to which value the signals have to be forced. Below,
the de�nition for PD_VIS is shown. The isolation cells are put at the output
of the power domain, speci�ed by the condition -from PD_VIS -to PDtop. The
control signal for the isolation cells is pg_vis/iso.

1 c r ea t e_ i s o l a t i on_ru l e −name ISO_VIS_low −from PD_VIS −to PDtop
− i s o l a t i on_cond i t i on pg_vis/ i s o − i so lat ion_output low

2 update_iso la t ion_ru le s −names ISO_VIS_low − locat ion to −pref ix iso_VIS

Code Snippet 5.21: Declaration of the isolation
Finally, the power switches have to de�ned. The implementation is shown for
PD_VIS. They are connected to the supply voltage VDD.

1 create_power_switch_rule −name PS_VIS −domain PD_VIS −external_power_net
VDD

2 update_power_switch_rule −name PS_VIS − c e l l s <cell_name>

Code Snippet 5.22: Declaration of the power switches
The script with the above de�ntions is used during di�erent steps in the design
�ow, as explained in section 4.7.
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Chapter 6

Results

In this chapter, the results for the power consumption breakdown of the overhead
(Pswitch,leak, Piso,leak, Piso,active and Padd.modules) and the savings (Pmod,leak) ofpower gating, as introduced in chapter 3 are presented. Padd.modules is composed
of the power consumption of the control register (Pctrl.reg) and, if available,
the power manager (Ppwr.man). For the power consumption, both the relative
distribution as well as the total numbers are shown. Furthermore, the results of
the HSPICE simulations regarding the power-on and power-o� energy (Epoweronand Epowerdown, respectively) and the required time to switch on a power domain
are shown. Also, the required number of switches for each power domain is
presented.
For both processors, the power numbers for the analysis of the break-even point
were determined as follows: The power consumption of the isolation cells during
active mode was extracted during an active period of the application. Therefore,
a state of the application was taken that was representative for the time the
power domain is switched on. The power numbers for the additional numbers
were extracted during the complete run-time of the application as they are
switched on all the time. The leakage power numbers were extracted during the
time of the application when the power domain was idle and could be switched
o� as the leakage power is also depending on the input values.
In this chapter, the results are only presented, a detailed discussion is performed
in the next chapter. However, a short summary is given for the results already
in this chapter in order to point the reader to the most relevant aspects of the
presented graphs and numbers.

6.1 UWB processor

In this chapter, the results for the UWB processor are presented. It was syn-
thesised with 90nm TSMC libraries in two di�erent �avours, namely LP (low
power) and G (general purpose) [64]. For the G library, the power numbers were
extracted for the worst case (WC), i.e. 1.08V, 125◦C. For the LP library, both
the WC and the typical case (TC), i.e. 1.2V, 25◦C were extracted. The reason
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to extract power numbers for both the typical and worst case is that leakage
power has an exponential relation to temperature. Therefore, the temperature
is expected to have great in�uence on the break-even point.
The results are presented for the three cases for both implementations, the
hardware based power manager as explained in section 5.3 and the software
based power manager, as illustrated in section 5.4.

6.1.1 HW based power manager

In the following, the results for the hardware based power manager implemen-
tation are presented.

G library, WC measurements
The breakdown of the savings and the overhead for the UWB processor, imple-
mented with the G library, for the WC is presented in Figure 6.1.

90nm G, WC, HW based

0%
20%
40%
60%
80%

100%

P sw itch,leak 4.68E-07 4.68E-07 4.68E-07

P mod,leak 1.64E-05 3.65E-06 1.85E-04

P pw r.man 7.93E-06 7.93E-06 7.93E-06

P ctrl.reg 7.34E-06 7.34E-06 7.34E-06

P iso,leak 9.69E-07 2.12E-07 8.15E-08

P iso,active 1.19E-05 2.16E-05 7.45E-06

mul vec VIS

Figure 6.1: Results for G, WC, HW in [J]

It can be seen that for the power domains PD_mul and PD_vec, the possible
power savings, i.e. the leakage power (Pmod,leak), which is the dark blue section,is smaller than the power consumption overhead, represented by the remaining
sections. For PD_VIS, the power consumption overhead is small compared to
the possible power savings.
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LP library, WC measurements
The WC results for the implementation with the LP libraries can be seen in
Figure 6.2.

90nm LP, WC, HW based
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P sw itch,leak 2.86E-08 2.86E-08 8.58E-08

P mod,leak 1.97E-06 6.36E-07 2.41E-05

P pw r.man 4.35E-06 4.35E-06 4.39E-06

P ctrl.reg 8.81E-07 8.71E-07 8.80E-07

P iso,leak 1.29E-08 1.98E-07 6.04E-08

P iso,active 2.18E-06 4.72E-05 2.95E-06

mul vec VIS

Figure 6.2: Results for LP, WC, HW in [J]

Compared to the implementation with the G libraries, it can be seen that the
absolute values for the power consumption are smaller. The distribution of the
components of the overhead is similar with slight variations.
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LP library, TC measurements
The results for the typical case and the LP library are depicted in Figure 6.3.

90nm LP, TC, HW based
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P sw itch,leak 1.20E-09 1.20E-09 1.20E-09

P mod,leak 2.40E-07 7.88E-08 9.37E-07

P pw r.man 5.43E-06 5.43E-06 5.43E-06

P ctrl.reg 1.61E-06 1.61E-06 1.61E-06

P iso,leak 1.19E-08 6.97E-08 4.63E-09

P iso,active 3.52E-05 1.84E-04 4.93E-06

mul vec VIS

Figure 6.3: Results for LP, TC, HW in [J]

For the measurements for the typical case it can be seen that the leakage power
consumption of the power domain (Pmod,leak) is much smaller than for worst
case measurements, in this case on average a factor of 8. Also, the power
consumption overhead is much bigger than the possible power savings for all
power domains.
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6.1.2 SW based power manager

In this section, the results for the software based power manager implementation
are shown.

G library, WC measurements
The results for the WC measurements and the implementation with the G li-
brary can be found in Figure 6.4.

90nm G, WC, SW based
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P sw itch,leak 4.68E-07 4.68E-07 4.68E-07

P mod,leak 1.64E-05 3.65E-06 1.85E-04

P ctrl.reg 1.35E-06 1.35E-06 1.35E-06

P iso,leak 9.69E-07 2.12E-07 8.15E-08

P iso,active 1.19E-05 2.16E-05 7.45E-06

mul vec VIS

Figure 6.4: Results for G, WC, SW in [J]

Compared to the �rst implementation presented in the previous section, it can
be seen that the overhead has been reduced signi�cantly. However, the power
consumption overhead still exceeds the possible power savings for the power
domains PD_mul and PD_vec.
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LP library, WC measurements
The WC results for the implementation in the LP library can be found in Fig-
ure 6.5.

90nm LP, WC, SW based
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P sw itch,leak 2.86E-08 2.86E-08 2.86E-08

P mod,leak 1.98E-06 7.04E-07 1.73E-06

P ctrl.reg 2.73E-07 2.73E-07 2.73E-07

P iso,leak 2.88E-07 6.53E-07 5.48E-08

P iso,active 2.87E-05 1.14E-04 4.04E-06

mul vec VIS

Figure 6.5: Results for LP, WC, SW in [J]

Compared to the implementation with the G libraries, the leakage power, i.e.
the possible savings, is smaller for the LP libraries in both absolute numbers and
also in relation to the overhead. For all power domains, the power consumption
overhead exceeds the possible power savings.
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LP library, TC measurements
The results for the TC and for the LP library are presented in Figure 6.6.

90nm LP, TC, SW based
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P mod,leak 2.40E-07 7.88E-08 9.37E-07

P ctrl.reg 2.72E-07 2.72E-07 2.72E-07

P iso,leak 1.19E-08 6.97E-08 4.63E-09

P iso,active 3.52E-05 1.84E-04 4.93E-06

mul vec VIS

Figure 6.6: Results for LP, TC, SW in [J]

For the TC measurements, the leakage power consumption of the power domain
is much lower than for WC measurements, like it has already be seen in the
�rst implementation approach. The overhead is almost exclusively determined
by the power consumed by the isolation cells during active mode.
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6.2 Biomedical DSP

In this section, the results for the biomedical DSP are presented. This system
was only synthesised for the LP library, also the power numbers were only
extracted for the TC. This was done because there was already enough data
present from the UWB to analyse the impact of di�erent library �avours (G
vs. LP) and di�erent temperature conditions (WC vs TC). The purpose of the
implementation of power gating on the biomedical DSP was to explore how easy
the implementation could be ported to another processor-design software (in
this case, from Target IP Designed to Hive Logic) and how di�erent processor
design tools in�uence the break-even point itself. Also the duty cycle of the
power domain is much lower than for the UWB processor which enables an
analysis for that case (i.e. a power domain with a low duty-cycle).
In subsection 5.2.2, the two use-cases for the power-o� scheme were presented.
The results for the �rst case, i.e. the EEG algorithm is executed and the power
domain is shut o� whenever possible during the application, are presented in
the left bar of Figure 6.7. The results for the second use-case, i.e. the ECG
algorithm is executed and the power domain can be shut o� completely, are
depicted in the right bar of Figure 6.7.

90nm LP, TC, SW based
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P iso,leak 1.61E-08 1.36E-08

P iso,active 5.88E-06 1.36E-08

off during EEG off during ECG

Figure 6.7: Results for LP, TC, SW in [J]

It can be seen that for the o� during EEG case, the overhead is dominated
by the power consumed by the isolation cells (Piso,active). Also, the possible
savings, i.e. Pmod,leak, are rather small in relation. However, for the o� during
ECG case, the possible savings are dominant in the power breakdown.
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6.3 Results from the spice simulations

The results presented above were extracted using PrimeTime using netlist-
simulations and the library-information of the standard cells. For the simu-
lation, the LP libraries were used. However, in order to �nd out the power-on
and power-o� energy (Epoweron and Epowerdown, respectively), the required time
to switch on a power domain (tswitchon are shown and the required number of
switches Nswitches, spice simulation were performed. The used methodology
was described in subsection 4.9.1 and section 4.6, respectively.
The results for both processors are presented in Table 6.1.

PD_mul PD_vec PD_VIS PD_EEG
tswitchon 1.1 ns 2.5 ns 1.9 ns 1.7 ns
Epoweron 6.4 pJ 1.5 pJ 11.8 pJ 14 pJ
Epowerdown 0.4 pJ 0.04 pJ 0.4 pJ 0.4 pJ
Nswitches 1 1 1 1

Table 6.1: Results of the spice simulations
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6.4 Results for the break-even point

Having obtained all the necessary results, the determination of the break-even
point, i.e. the minimum down times, can be calculated. In Table 6.2, both
the extensive equation (Equation 3.9) as well as the simpli�ed equation (Equa-
tion 3.11) are used. The results are labeled tdown,min,ext and tdown,min,simple,respectively.
The results for the UWB processor are shown in Table 6.2.

PD_mul PD_vec PD_VIS
90G, WC, HW
tdown,min,ext [%] 99 146 12
tdown,min,simple [%] 96 146 12
90LP, WC, HW
tdown,min,ext [%] 179 110 31
tdown,min,simple [%] 179 110 30
90LP, TC, HW
tdown,min,ext [%] 119 104 204
tdown,min,simple [%] 119 104 204
90G, WC, SW
tdown,min,ext [%] 49 92 5
tdown,min,simple [%] 47 91 5
90LP, WC, SW
tdown,min,ext [%] 95 100 76
tdown,min,simple [%] 94 100 75
90LP, TC, SW
tdown,min,ext [%] 100 100 89
tdown,min,simple [%] 100 100 89

Table 6.2: Results of the break-even point of the UWB processor

The results for the biomedical DSP are presented in Table 6.3.
o� during EEG o� during ECG

tdown,min,ext [%] 95 16
tdown,min,simpl [%] 94 15

Table 6.3: Results of the break-even point of the biomedical DSP

It is noticeable that for some cases the required minimum down time is above
100 %. This indicates, that the overhead will always exceed the possible savings,
i.e. the power domain can never be switched o� su�ciently long to gain energy
savings. Furthermore, most of the remainding required down times (i.e. those
which are not above 100 %) are rather high. This gives an indication that the
overhead of power gating is signi�cant.
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6.5 Detailed analysis of the break-even point for

selected cases

In order to analyse the di�erent components of the overhead and savings better,
an detailed energy breakdown was performed. Therefore, it was analysed how
the di�erent factors of energy savings and of the energy overhead were composed
when the respective power domain was switched o� for exactly the minimum
down time, as presented in the results. For the UWB processor, the power
domain PD_VIS was analysed for the cases G, WC, HW (G libraries, WC
power numbers, HW based power manager), to have a scenario for the G library,
LP, WC, HW (LP libraries WC power numbers, HW based power manager), to
have a worst case scenario for the LP library and LP, TC, SW, (LP libraries, TC
power numbers, SW based power manager) to have a typical case scenario for
the LP library. The biomedical DSP was analysed for both existing use-cases.
In the presented graphs, the savings are shown in the left side of the graph. They
are composed of the leakage energy of the power domain which could be saved
(Emod,leak) and the energy which is saved during switching o� (Epowerdown).The overhead is represent by the right side of the graph. It is composed of the
leakage energy of the switch and the isolation cells (Eswitch,leak and Eiso,leak,respectively), the energy composed by the additional modules (Ectrl.reg and
Epwr.man if available), the energy consumed by the isolation cells during ac-
tive mode (Eiso,active) and the energy required to switch a power domain on
(Epoweron).
The results for the UWB processor, power domain PD_VIS, G library, WC,
HW based power manager can be found in Figure 6.8. For the G library, the
energy to switch on a power domain could not be measured, as the spice models
for the power switches were unfortunately not available.

90nm G, WC, HW based, PD_VIS

0.02%

50.00%

18.10%

14.99%

16.76%

0.13%

E iso,active
E iso,leak
E ctrl.reg
E pwr.man
E mod,leak
E switch,leak

Figure 6.8: Detailed analysis for G, WC, HW in [J]

The results for the UWB processor, power domain PD_VIS, LP library, WC
power numbers and HW based power manager implementation are depicted in
Figure 6.9.
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90nm LP, WC, HW based, PD_VIS
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Figure 6.9: Detailed analysis for LP, WC, HW

The results for the UWB processor, power domain PD_VIS, LP library, TC
power numbers and SW based power manager are illustrated in Figure 6.10.

90nm LP, TC, SW based, PD_VIS
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Figure 6.10: Detailed analysis for LP, TC, SW

The results for the biomedical DSP for the second use-case, i.e. the power
domain is switched o� during the EEG algorithm, are presented in Figure 6.11.

90nm LP, TC, SW based
off during EEG
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E ctrl.reg
E poweron
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E mod,leak
E switch,leak

Figure 6.11: Detailed analysis, o� during EEG
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Finally, the results for the biomedical DSP, use-case one, i.e. the power domain
is switched o� during the ECG application, are shown in Figure 6.12.

90nm LP, WC, SW based,
 off during ECG
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3.01%
0.00%

0.00%
10.39%

0.08%

E iso,active
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E ctrl.reg
E pwr.man
E poweron
E poweroff
E mod,leak
E switch,leak

Figure 6.12: Detailed analysis, o� during ECG

6.6 Absolute energy savings

In this section, the possible absolute energy savings are presented for the most
relaistic cases, i.e. the implementation with the LP libraries and the SW based
power manager and power number extraction for the typical case.
For the UWB processor, no energy savings can be achieved for that case. The
required minimum down times (presented in Equation 3.9, in the block labelled
90LP, TC, SW) for PD_mul and PD_vec are 100 %, for PD_VIS 89 %.
However, PD_VIS cannot be switched o� for the required time, as it has a high
duty cycle (refer subsection 5.2.1).
For the biomedical DSP, the analysis of the total energy savings can be per-
formed, as the duty cycles of the power domain are low enough to be switched
o� for the required minimum down time like presented in Table 6.3. For the �rst
use-case, i.e. the power domain was switched o� during execution of the EEG
algorithm, the energy savings are evaluated per brain wave detection - iteration,
i.e. per 1 ms (refer subsection 5.2.2). For the second use-case, i.e. the power
domain is switched o� complete during execution of the ECG algorithm, the en-
ergy savings were evaluated per iteration of the heart-beat detection algorithm.
The principle of the ECG application is, like for the EEG application, that
the system waits for input data, then it performes the required computations,
then it waits again for input data. The waiting period for the ECG algorithm
is 4.9694 ms, the computation period is 39.6 us. The results for the possible
energy savings compared to the total energy consumption in the datapath, are
shown in Table 6.4.
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o� during EEG o� during ECG
possible o�-time 97.4 % 100 %
total savings 1.79E-10 J 8.55E-10J
total energy consumption 7.53E-7 J 3.06E-6 J
percentage 0.024 % 0.028 %

Table 6.4: Results for the possible absolute energy savings in the biomedical
DSP
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Chapter 7

Discussion

In this chapter, the results which were presented in the previous chapter, are
analysed and discussed.
For this chapter, the naming conventions which were already used in the previous
chapters for the individual components of the overhead are used. As a short
reminder, they are listed below:

• Pmod,leak: leakage power of the power domain
• Pswitch,leak: leakage power of the power switch(es)
• Piso,leak: leakage power of the isolation cells
• Piso,active: power consumption by the isolation cells during active mode
• Padd.modules: power consumption of additional modules
• Epowerdown: energy saved during powering down
• Epoweron: energy required to switch a power domain on

In literature about power gating, it is stated that the overhead is dominated by
the energy to switch a power domain on (refer section 1.1). The energy which
is consumed by modules that have to be added to the system in order to enable
power gating, like isolation cells, are not considered. In this work, however, they
are also taken into account for the derivation for the break-even point.

7.1 UWB processor

First, the results obtained from the implementation on the UWB processor are
analysed.

7.1.1 HW based power manager

In this section, the results for the hardware based power manager are discussed.
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G libraries, WC
The �rst implementation of the HW based power manager on the UWB pro-
cessor was performed using general purpose (G) libraries. These libraries are
primarly designed for speed and not for a low power consumption. The results
of the power consumption break down of the components to the savings and
overhead, were shown in Figure 6.1. The power numbers were extracted for the
worst case (WC).
For the power domain PD_mul, the overhead is mainly caused by the power con-
sumption of the additional modules, in this implementation the power manager
(Ppwr.man) and the control register (Pctrl.reg). Also, the power consumption of
the isolation cells during active mode and the additional modules a�ects the
overhead. The power consumption of the additional modules, however, has a
greater in�uence on the overhead as the power is consumed constantly during
the complete run-time of the application (i.e. they introduce a constant over-
head) while the power consumption of the isolation cells is only relevant during
active mode. When the power domain is switched o�, the isolation cells only
leak, which is, as it can be seen in the graph, not a signi�cant factor. Further-
more, it is noticeable that the leakage power of the power domain is smaller
than the introduced overhead. The minimum down time, presented in in the
�rst column, �rst two rows in Table 6.2, also shows that the power domain basi-
cally would have to be switched o� during almost the complete run time (99 %)
in order to save energy.
The power distribution for PD_vec is similar to PD_mul with the main di�er-
ence that the minimum down time, shown in the second column, �rst �rst block
(labelled 90G, WC, HW), Table 6.2 is above 100 %. That means, that an
energy bene�t can never be reached as the overhead will always be bigger than
the savings.
The power domain PD_VIS has a relatively high leakage power consumption,
which also leads to a relatively small minimum down time of 12 %, presented
in the third column, �rst block, Table 6.2.
For PD_VIS, also a more detailed analysis was performed to further evalu-
ate the break-even point. For that purpose, the minimum down time, i.e. the
break-even point, was used to calculate the distribution of the components of the
energy savings and the energy overhead according to Equation 3.1 and Equa-
tion 3.6, respectively. As mentioned before, the spice simulations to determine
Epoweron and Epowerdown could not be performed as the spice models of the
power switches were not available. Therefore, those components are missing in
the analysis. The result was presented in Figure 6.8. It is shown that one third
of the overhead is caused by the active power of the isolation cells and two third
by the additional modules.

LP libraries, WC
As the G libraries are, as mentioned, not optimised for power consumption,
another synthesis was performed, this time using low-power (LP) libraries. The
power numbers were extracted for the worst case (WC). The power consumption
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values are shown in Figure 6.9. It can be noted that the absolute values are
lower, as expected. Moreover, the leakage power of the power domain is, in
relation to the overhead power, smaller than for the G libraries. This also re�ects
on the minimum down times, shown in the second block (labelled 90LP, WC,
HW). Only for the power domain PD_VIS could an energy saving be achieved
(if it can be switched o� for more than 30 % of the time), for the other power
domains the overhead always exceeds the savings.
For PD_VIS, also a detailed analysis of the break-even point was performed.
The values for the energy consumption were calculated for the case that sav-
ings and overhead are equal. Additionally, the spice simulations could be per-
formed as the spice models of the power switches were available for the LP
libraries. Therefore, the number of switches, the power-on time and Epoweronand Epowerdown could be determined. The results for the energy breakdown are
shown in Figure 6.10. The overhead is dominated by the power consumed by
the additional modules, the major part is caused by the power manager, the
control register is a less signi�cant contributor. Also the power consumed by
the isolation cells during active mode is a noticeable contributor to the over-
head. The energy required to switch on the power domain (Epoweron) was onlyresponsible for 0.06 % of the overhead, i.e. it is neglegible. This is an interesting
observation, Epoweron has been stated as the main overhead in previous works
on power gating (refer section 1.1).

LP libraries, TC
Leakage power is strongly depending on the temperature, refer subsection 2.1.2.
Therefore, the chosen temperature during extraction of power numbers has a
strong in�uence on the break-even point. The temperature for the WC is 125◦C
where it is 25◦C for TC. According to [29], the percentage of the leakage power
consumption compared to the total power consumption increases from 6 % for
30◦C to 56 % for 110◦C for 100nm technology. So it is expected that also for the
UWB processor the break-even point will change signi�cantly when the analysis
is performed for the typical case. Furthermore, a temperature of 25◦C is a more
realistic case for the UWB processor as it is designed to be used within a Body
Area Network (refer [61]) which implies an operating temperature which is in
the range of the human body temperature.
The results for the power breakdown was presented in Figure 6.3. It is noticeable
that the leakage power consumption is much lower than for the WC measure-
ments. Like for the previous cases, the power consumed by the isolation cells
has strong in�uence on the overhead. The minimum down times, presented in
the block labelled 90LP, TC, HW in Table 6.2 are all above 100 %. That
means, for none of the power domains is it possible to save energy by applying
power gating which is not very surprising as Pmod,leak is almost not visible in
the graph.
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7.1.2 SW based power manager

In this section, the results for the implementation with the software based power
manager on the UWB processor are discussed. Besides the di�erent power man-
ager, also the control register was implemented in a di�erent way to make clock
gating applicable. Due to those changes in the implementation, the constant
part of the energy overhead is expected to be reduced signi�cantly.

G libraries, WC
First, the results for the implemention with the G libraries is discussed. The
power breakdown can be found in Figure 6.4. It can be seen that, compared
to the HW based implementation, the overhead of the additional modules was
reduced signi�cantly leaving the isolation cells as main contributor to the over-
head. The minimum down times, shown in the block labelled 90G, WC, SW
in demonstrate that it is possible to save energy for all power domains, PD_mul
requires a minimum down time of 49 %, PD_vec 92 %, which is still quite high
and PD_VIS, only 5 %. The results for the power consumption are also a clear
indicator that the power consumption of the isolation cells during active mode
are an important contributor to the overhead.

LP libraries, WC
The results for the implementation with the LP libraries and WC power number
extraction are shown in Figure 6.6. It can be seen that the overhead is almost
exclusively caused by the isolation cells, only for PD_VIS also the power con-
sumption of the control register is visible in the graph. The minimum down
times for the power domains, shown in the block labelled 90LP, WC, SW
show that for PD_mul a minimum down time of 95 % is required, which means
that it has to have a very low duty cycle and that the overhead will always be
quite signi�cant. PD_vec even requires a down time of 100 %, which means
that no energy savings are possible. This also corresponds to the observation
that Pmod,leak is not visible in the graph. For PD_VIS, a minimum downtime
of 76 % is required.

LP libraries, TC
The last case for the UWB processor is the most interesting one. As mentioned
before, are power numbers which were extracted at TC much more realistic
than WC power numbers. The results for the power consumption breakdown
are shown in Figure 6.6. It can be seen that the isolation cells are the almost
exclusive contributor to the power overhead of all power domains.
The leakage power consumption of the power domain, which could be saved (i.e.
Pmod,leak) is signi�cantly smaller than the power consumption of the isolation
cells during active mode (Piso,active). For PD_VIS, Pmod,leak is a factor of 5
smaller than Piso,active, for PD_mul it is a factor of 150 smaller, and for PD_vec
it is even a factor of 2300 smaller. Also for this case, Pmod,leak is not visible in
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the graph. The minimum down times, presented in the block labelled 90LP,
TC, SW demonstrate that only for PD_VIS energy savings are possible if
PD_VIS can be switched o� for more than 89 % of the time. For the other
power domains, a minimum down time of 100 % is required which means that
power gating will never lead to energy savings.
For PD_VIS, also a detailed analysis of the break-even point was performed.
Like for the previous detailed analysis, the energy consumption values were
calculated for the break-even point case, i.e. the power domain was switched
o� for 89 % of the time. The result is depicted in Figure 6.10. The overhead
is dominated by the isolation cells but also the control register has a relevant
e�ect. This, however, shows that the isolation cells play an important role as
they have so much in�uence on the energy overhead even if the power domain
is only switched on for 11 % of the time. Furthermore, the energy to switch
on a module (Epoweron) is neglegible compared to the other contributors to the
overhead.

Energy overhead caused by isolation cells
A surprising observation for both implementations (HW based and SW based
power manager) is the large di�erence in power consumption of the isolation
cells between the power domains. For PD_vec it is a factor of in average almost
40 compared to PD_VIS, which has 1.5 times so many output signals. This
is caused the fact that the isolation block of PD_vec are in a critical path in
the design, therefore extra bu�ers were required to meet timing constraints.
Therefore, it is not only the isolation cells that consume additional power but
also bu�ers

7.2 Biomedical DSP

In this section, the results for the biomedical DSP are discussed. In this proces-
sor, only one power domain is used. This power domain contains the EEG issue
slot. As explained before, two di�erent use-cases were analysed in this work.
The �rst scenario was that the power domain is switched o� during the EEG
algorithm which uses the power domain during a short period. The other sce-
nario that it was switched o� completely while an ECG algorithm was executed
that did not require the power domain. The processor was implemented using
the LP libraries, all results were obtained for TC power number extraction. The
results for the power breakdown were shown in Figure 6.7.
The left bar displays the results for the �rst scenario, i.e. the power domain
was switched o� during execution of the EEG application. The overhead is
clearly dominated by the power consumption of the isolation cells during active
mode, the control register does not have an important e�ect in this design. The
minimum down time for that case, presented in the column labelled o� during
EEG, shows that the power domain requires a minimum down time of 95 %.
This is not surprising, considering the strong dominance of the power overhead
compared to the savings. The break-even point is analysed further, using the

79



same methodology as for the detailed break-even point analysis for the UWB
processor. The results are presented in Figure 6.12. The energy overhead is
dominated by the energy which is consumed by the isolation cells during active
mode, the control register only has a small in�uence. Noticeable in this imple-
mentation, compared to previous analysis, is that the leakage of the isolation
cells has a noticeable in�uence (2 %) and also the energy to switch the power
domain on has a more signi�cant in�uence (2 %) than for the previous imple-
mentations. Still, the factors are marginal compared to the energy consumed
by the isolation cells during active mode.
The results for the second scenario, i.e. the power domain is powered down
complete, are presented in the right bar. This is an interesting case as it is
di�erent from the previously discussed scenarios. As the power domain is not
used at all during the application, the isolation cells do not switch, hence they
do not consume active power, only leakage power. The minimum down time,
shown in the column labelled o� during ECG is still 16 %.
The detailed analysis was performed for the case that the power domain is
switched o� constantly. The results were presented in Figure 6.12. The results
reveal that the energy overhead is dominated by the energy consumed by the
control register, but also Epoweron has a noticeable in�uence of 3 %. As the
power domain is switched o� completely, no energy overhead is caused by the
isolation cells during active mode as they never have to switch. Their leakage
energy (Eiso,leak), however, contributes to the overhead with 3 %.
The results for the achievable total energy savings, presented in Table 6.4,
demonstrate that the possible energy savings are only marginal. Even when
the power domain can be switched o� complete, only savings of 0.0028 % can
be reached. For this analysis, the energy savings were only evaluated on the
energy consumption of the datapath. However, the datapath itself is only a
small consumer of the total energy, the majority of the energy is consumed in
the memories. This implies that the energy savings, that could be reached by
applying �ne-grained power gating on the datapath, are even smaller than the
presented numbers. In any case, it is obvious that a energy saving of 0.0028 %
is not a signi�cant saving.

7.3 Results from the spice simulations

The results for the spice simulations which determined the number of switches,
required switch on time, Epoweron and Epowerdown were shown in Table 6.1.
Epoweron and Epowerdown were already discussed in the previous sections. The
switch-on times demonstrate that each power domain can easily be switched on
during one clock period. Both processors were synthesised for 100 MHz (which
corresponds to a clock period of 10 ns) and the power-on times are never above
2 ns.
Furthermore, only one power switch is required per power domain. This is
surprising on the one hand as in literature it is usually claimed that multiple
switches are needed, even hundreds to thousands of switches are mentioned
([65]). On the other hand, the switches that are used are relatively big and are
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designed to have a very low voltage drop. Also, the power domains are quite
small compared to a power domain which includes a memory, for example.

7.4 Comparison of the detailed versus the sim-

pli�ed formula for the break-even point

In section 3.5, the equation derived for the break-even point (Equation 3.9)
was simpli�ed to Equation 3.11 by neglecting the leakage power of the switch
(Pswitch,leak), the leakage power of the isolation cells (Piso,leak), the energy to
switch a power domain on after it has been switched o� (Epoweron) and the
energy which is saved during powering down before reaching the lowest energy
state (Epowerdown). In Table 6.2 and Table 6.3, where the break-even points for
the UWB processor and the biomedical DSP, respectively, are presented using
both the simpli�ed and the detailed formula, it can be seen that the results do
not di�er signi�cantly. Also, in the graphs where the power breakdown and in
the detailed analysis of the energy overhead it became clear that the assumptions
that were made during the simpli�cation of the equations were valid.

7.5 General analysis of the overhead

In previous publications on the break-even point of power gating it was con-
cluded, that the overhead is mainly caused by the required energy to switch a
power domain on (Epoweron). Factors like isolation cells or additional modules
were not considered. During this work, it became clear that the main part of
the overhead was missing in the previous publications as Epoweron is marginal
compared to the energy consumed by the isolation cells during active mode and
the additionally required modules.
The power which is consumed by additional modules is very implementation
dependent. The HW based power manager, which was used in the �rst imple-
mentation approach, only contained a simple state machine but still its power
consumption was a signi�cant contributor to the overhead. This problem can
be solved by using a software based power manager, but that also comes with
certain drawbacks. The implementation of the power-gating sequence into the
algorithm has to be perfomed with care, furthermore, additional cycles are in-
troduced into the application. Also, this method is error-prone. Therefore,
the hardware based power manager could be improved further for lower power
consumption. One simple method would be to clock it with a lower frequency.
This, however, would lead to a longer power-on time. For example, a processor
operating at 100 MHz uses a power manager which is clocked at 1 MHz. When
the processor sends a power-on signal for a certain power domain, it takes until
the next clock edge of the slower power manager before the power on sequence
starts. Depending on the sequence itself (i.e. is state retention required, are only
isolation cells and power switches to be controlled?), it takes further slow clock
cycles. When power gating is applied on the datapath, these delays are usually
not acceptable. Another possibility would be to implement the power manager
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asynchronously. This leads to further implementation problems, for example,
a certain delay is required for the control signals of the isolation cells and the
power-switches. But the implementation of a �xed delay in an asynchronous
circuit is not trivial.
The number of isolation cells depend on the number of outputs of a power
domain. The more outputs, the more isolation signals. However, this is not the
only impact they have on the introduced overhead. It could happen that their
delay increases the timing of a path in such a way that the timing constraints
cannot be met anymore. Then, the design compiler inserts additional bu�ers to
improve timing. Those additional bu�ers, however, also consume power. This
was the case in the power domain PD_vec.
For all analysed cases, except for PD_VIS for the implementation with the G
libraries for the WC, the required minimum down times were relatively high
(between 30 % up to 99 % if the down times above 100 % are ignored as they
cannot be reached). That implies that the power domains need a low duty cycle
for power gating to become bene�cial. In the UWB processor, PD_mul and
PD_vec had a low duty cycle. However, for both power domains the overhead
was too high compared to the possible savings in the majority of the analysed
cases. Also for the two most realistic cases, i.e. the analysis for the TC, the
minimum down time was 100 % or above. PD_VIS on the other hand has a
very high duty cycle during the application, hence it cannot be switched o� for
the required time was shown in subsection 5.2.1.
Another important result of this work is that the leakage power for 90nm is still
quite low compared to the active power. In the break-even point analysis for
power gating, the leakage power of the power domain (which could be saved) is
traded o� agains active power (which is additionaly consumed). As the active
power is much higher than the leakage power, �ne-grained power gating can
hardly become bene�cial. For future technologies, this might look di�erent. It
is expected that the leakage power will gain much more in�uence on the total
power consumption than for 90 nm (refer chapter 1).
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Chapter 8

Future work

During this work it was demonstrated that power gating in the datapath of a pro-
cessor does not lead to signi�cant energy savings in the used designs. One reason
is that leakage power consumption for the used technologies (90 nm TSMC) is
still quite low compared to the total power consumption. Furthermore, the
introduced overhead is relatively high compared to the possible savings. More-
over, the main source of power consumption is usually not the datapath but the
memories, I/O pads and the clock-tree.
Therefore, the presented break-even point analysis could be used to evaluate
the energy savings when power gating is applied on other parts of the processor
as it is expected that greater energy savings can be obtained.
A signi�cant overhead was caused by the power manager. Therefore, the power
manager could be improved. For example, an asynchronous implementation
could be designed including an voltage-sensing circuit which detects when a
power domain is fully powered on.
The isolation cells were a signi�cant contributor to the overhead due to their dy-
namic power consumption during the active mode of the power domain. There-
fore, an interesting approach on circuit level would be to design more power-
e�cient isolation cells.
The developed scripts require manual control. Automating the implemetation
and the estimation of power savings could minimise the burden for the designer.
Although beyond the work of this thesis, a power aware compiler could increase
the energy e�ciency signi�cantly. The discussed previous work on compiler
techniques could be combined to design a compiler which takes the possibilities
of power gating into account already during the scheduling phase and inserts
automatically power gating instruction into the assembly code.
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Chapter 9

Conclusion

In this work, it was studied whether applying �ne-grained power gating on the
datapath of a processor can lead to energy savings. A detailed analysis of the
possible energy savings as well as the introduced energy overhead was performed.
Based on the �ndings, an analytical equation of the break-even point of power
gating was derived. A novel work-�ow to implement and evaluate power gating
was developed and applied to two di�erent processors.
Analysis of the introduced overhead of power gating revealed that the main
contributor is not the energy to switch a power domain on, as it was concluded
in previous publications. Instead, the overhead is dominated by power consumed
by additional modules, like the isolation cells or a power manager. The obtained
results also demonstrated that the power domains require a low duty cycle. The
determined minimum switch-o� time for the di�erent power domains for the
most representative cases was in the range of 90 % (for the cases where the
minimum down time did not exceed 100 %).
An important factor that made power gating at best marginally bene�cial was
the fact that leakage power is still very low when compared to the total power
consumption for 90 nm technologies. In the evaluation of the break-even point,
the possible savings, i.e. the leakage power of the power domain, were compared
with the overhead, i.e. the dynamic power of isolation cells and additional
modules. This combination makes power gating just marginally bene�cial.
It was shown that the break-even point is in�uenced by many di�erent factors.
The temperature has a strong in�uence on the leakage power, hence on the
possible savings. The implementation of the additional modules also has a
signi�cant impact on the overhead. Also the number of necessary isolation cells
and whether they are placed in a critical path in the design, thus possibly leading
to the need of additional bu�ers, has a large impact on the overhead.
For future research, it would be interesting to use sub-90 nm libraries, as it is
expected that leakage power will gain a much greater in�uence on the total power
consumption due to downscaling of technology. Also, the design of isolation cells
could be improved for active power consumption. The power manager could be
implemented in a more power e�cient way.
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