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The Single-ISA Heterogeneous MAny-core Computer (SHMAC) is an ongoing research
project within the Energy Efficient Computing Systems (EECS) strategic research area at
NTNU. SHMAC is planned to run in an FPGA and be an evaluation platform for research
on heterogeneous multi-core systems. Due to battery limitations and the so called Dark sil-
icon effect, future computing systems in all performance ranges are expected to be power
limited. The goal of the SHMAC project is to propose software and hardware solutions
for future power-limited heterogeneous systems.

In an autumn project, a first methodology for accelerator selection and design for the
SHMAC platform has been developed. There are multiple ways for such accelerators to
be integrated on the SHMAC platform.

The main parts of this assignment are as follows:

e Study different approaches found in the literature for integration of hardware accel-
erators on heterogeneous multiprocessor platforms.

e Discuss different possibilities for accelerator integration on the SHMAC platform.

e Develop one or more technique for integration of the accelerators on the SHMAC
platform and evaluate the effectiveness through implementation.

e Evaluate performance, energy, and area overhead for alternative accelerator integra-
tion techniques.







Abstract

The historical trend of rampant processor performance gain has slowed down in recent
years due to the Dark Silicon Effect, which arises when Moore’s law meets the breakdown
in Dennard scaling for sub-130nm architectures. This effect has caused the industry to
move into heterogeneous multicore architectures in an attempt to utilize this ’dark sili-
con”. Heterogeneous systems offer the ability to increase performance in applications by
implementing accelerators specifically designed to the application. The SHMAC project
aims to create a platform for research into heterogeneous systems, where an FPGA plat-
form can provide quick implementation of systems for evaluation.

This thesis proposes a system where an accelerator quickly can be implemented into the
SHMAC platform through a set of three different Interface Modules(IFM), and be con-
trolled by the Amber Core through instructions in the ARM ISA. Furthermore the thesis
proposes a script based system that generates an accelerated Amber Tile ready for integra-
tion into the SHMAC platform. Accelerators that are to be implemented with the IFMs
need to meet specific criteria for interface. In order to define these, this thesis proposes a
General Accelerator Interface designed to accommodate a wide range of diverse accelera-
tors.
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Sammendrag

Historisk sett har utviklingen innen prosessorytelse steget raskt og jevnt. I den senere tid
har derimot "The Dark Silicon Effect”’(Den mrke silisium-effekten) bremset utviklingen.
Denne effekten oppstr nr Moore’s lov og sammenbruddet i Dennard skalering mtes i pro-
duksjonsmetoder under 130nm. Prosessorindustrien prver motvirke denne utviklingen
ved utvikle heterogene flerkjerneprosessorer. Heterogene systemer tilbyr muligheten til
forbedre ytelsen i gitte oppgaver ved lage oppgavespesifikke akselleratorer som er i stand
til utfre ofte gjentatte utregninger i oppgaven. SHMAC-prosjektet jobber med ml om
utvikle en forskningsplattform for heterogene systemer der bruk av en FPGA kan gi rask
implementering av foresltte systemer.

Denne oppgaven foreslr et system der en gitt aksellerator raskt kan implementeres i SHMAC-
plattformen gjennom et sett av tre forskjellige grensesnittsmoduler(IFM) som kan kon-
trolleres av Amber-kjernen ved hjelp av instruksjoner i ARM ISAet. Videre foresls det ett
skriptbasert system som genererer en Amber-flis som er klar for integrering med SHMAC-
plattformen. Akselleratorer som skal implementeres med en IFM m mte spesifikke kri-
terier nr det kommer til grensesnitt. Denne oppgaven definerer et Generelt Aksellerator-
grensesnitt laget for konkretisere disse kriteriene, samtidig som det er beregnet for vre
brukbart for et bredt spekter av akselleratorer.
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Chapter

Introduction

1.1 Motivation

In the 60 years that have passed since the first general purpose electronic computer was
created, we have seen a massive increase in computing performance. The development
has, until about 2002 followed Moore’s law[1] with a performance growth of about 52%
annually.

10000 Intel Xeon, 3.6 GHz _64-bit Intel Xeon, 3.6 GHz
AMD Opteron, 2.2 GHz g_—#g=8 00>
Intel Pentium 4,3.0 GHz o~
4195
1000
5
2
g
% ~20%
=
2 100
@
3
2
5
E
S
5 52%/year
10
VAX-11/780 .27
e 25%lyear

0
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 1.1: Historical Processor Performance [2, p. 3]

Figure 1.1 shows the historical development of processor performance from 1978 until
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2005. As seen in the figure, the growth in processing power diminishes from 2002 and
onwards. According to Hennessy and Patterson[2] the slowed growth rate is caused by the
limitations of power, the available Instruction Level Parallelism and memory latency.

The limitations of power are an effect of the breakdown of Dennardian scaling[3]. The
continued decrease in production size, in order to keep up with Moore’s law, has histor-
ically been possible with a fixed power budget due to the effect known as Dennard, or
Dennardian, scaling[4]. However, as production size has decreased past the 130 nm level,
the power has moved in to the Post-Dennardian Scaling[3] shown in Figure 1.2.

Transistor Dennardian Post-
Property Dennardian
A Quantity S? S?

A Frequency S S

A Capacitance 1/8 1/8
AV 1/52 1

—> A Power = A QFCV? 1 S?

— A Utilization = 1/Power 1 1/S?

Figure 1.2: Dennardian vs. Post Dennardian scaling [3]

This breakdown in power scaling causes what is called the Dark Silicon Effect[5]. This
term means that not all transistors on a System on Chip(SoC) device can be powered at
the same time due to the increased power demand and the difficulty to dissipate the heat
related to the power increase. This has created a move in to heterogeneous multicore sys-
tems.

Ying Zhang et al.[6] proposes exploiting the dark silicon by utilizing heterogeneity in
multicore processors. When there is a surplus of area that can not always be used, it
is possible to create specialized hardware units that can perform specific calculations in
order to accelerate certain applications. W.Wolf[7] describes an accelerator as a process-
ing element connected to a general purpose processor, able to increase performance for
specific applications. Recent work in the field of heterogeneous multicore systems move
towards automated and highly generalized acceleration target detection and integration
[81,[9],[10]. The SHMAC project at the Norwegian University of Science and Technology
is part of this movement in to heterogeneous multicore systems.
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1.2 the SHMAC project

1.2 the SHMAC project

The Single-ISA Heterogeneous MAny-core Computer(SHMAC) project is an ongoing
project at the Energy Efficient Computing Systems(EECS) research area at the Norwegian
University of Science and Technology. The project proposes an infrastructure for explor-
ing heterogeneous systems at all abstraction levels in an attempt to answer, in regard to
heterogeneous hardware, the research question:

e How should a heterogeneous processor architecture be designed in terms of core
composition, accelerators, interconnect and memory system?

Rusten and Sortland[11] have created a prototype for the SHMAC project that implements
a reconfigurable tile structure on an FPGA. The SHMAC project plan[12] describes how
the development has continued further, implementing the Amber Tile that includes an
ARM ISA[13] Amber Core[14], hosted by OpenCores[15]. This tile is the main process-
ing tile for the project moving forward, and it is the tile that will control any accelerators
implemented in the SHMAC platform. The most important aspects of the SHMAC plat-
form, for this thesis, are explained in Chapter 3.

In order to effectively research the impact of accelerators in heterogeneous systems, it
is vital to have a fast and easy way to implement and control accelerators of any type.
This thesis proposes an answer to this problem with a set of memory mapped or on-core
INterface Modules(IFM) and a Tile Generator that generates new SHMAC tiles with an
IFM, modified from the Amber Tile.

1.3 Contributions

The thesis makes several contributions to the SHMAC project, listed below.

e acomprehensive definition of a General Accelerator Interface, which forms the basis
for development of IFMs and future accelerators for the SHMAC project. (Chapter
4)

e several alternative options for integrating an accelerator on the SHMAC platform,
through InterFace Modules(IFM).(Chapter 5)

e a Python script that generates a modified tile type for a given accelerator, named
TileGenerator (Chapter 6)
1.4 Thesis Organisation
This thesis is organized in chapters. A brief description of each chapter is listed below.

Chapter 2: Theory explains concepts from literature relevant to this thesis as well as
those components of the Amber Tile that are not developed in the SHMAC project.

3
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Chapter 3: SHMAC Parent System gives an introduction to the SHMAC architecture
and details the Amber Tile, which is the basis for the work in this thesis.

Chapter 4: Definition of a General Accelerator Interface describes the general accel-
erator interface developed in order to design the IFM modules

Chapter 5: Design of the Interface Modules explains in detail how the IFMs are de-
signed, as well as an evaluation of different levels of accelerator integration

Chapter 6: IFM and tile scripted generation explains the design and functionality of
the Tile Generator in detail

Chapter 7: Verification and Overhead explains how the designs were verified and de-
tails the overhead associated with the [IFMs

Chapter 8: Using the IFM system contains a comprehensive user guide for the TileGen-
erator, the programming of the IFMs and the interface towards the accelerator. This
Chapter is designed to help accelerator designers and programmers utilize the [IFM
system.

Chapter 9: Discussion and Future Work contains a discussion of the proposed IFMs
and scripted tile generator, as well as suggestions on what can be improved further
in future work.

Chapter 10: Conclusion draws conclusions based on the work described in this thesis.




Chapter

Theory

This chapter explains concepts from literature relevant to the work with this thesis, as well
as the components of the Amber Tile not developed in the SHMAC project.




Chapter 2. Theory

2.1 ARM Amber core

The ARM Amber core is a 32 bit RISC processor hosted at OpenCores [15], a website
dedicated to develop and distribute open source hardware. It is fully compatible with the
ARM v2a instruction set[14], and is an implementation of the ARM7 family. The general
ARMT core is shown in Figure 2.1.There are two versions of the Amber core, Amber23
and Amber25. The SHMAC platform incorporates the Amber25 core. Amber25 has a 5
stage pipeline, an internal 32-bit Wishbone bus and separate instruction and data caches.
The Amber architecture supports 2, 3, 4 and 8 way caches, in the SHMAC implementation
both cashes are 3-way.

2.1.1 pipeline architecture

Figure 2.2 shows the five stages of the Amber 25 pipeline.

The pipeline consists of the three stages in the Amber 23 structure, Fetch, Decode and
Execute, with the addition of two more stages, Memory and Write Back. The Fetch stage
does a cache try with the instruction address. If there is a cache miss, the Amber core is
stalled while the cache fetches the instruction from the system memory. The Decode stage
interprets the instruction and sets datapath control signals. The stage contains a Finite State
Machine (FSM) to handle multi cycle instructions and interrupts. In the Execute stage any
ALU operations are executed on the operands in the register bank. The next address for the
Fetch stage is generated in this stage. The Memory stage handles any memory operations,
and the Write back stage handles the update of the register bank with new data. A more
detailed description of the pipeline can be found in the Amber Core Specification[14].

2.1.2 Instruction set

The ARM v2a instruction set[13] is an older version of the ARM instruction set. All
instructions are one-cycle instructions, apart from the coprocessor instructions, multiply
and multiply accumulate. The coprocessor register transfer instructions take two cycles.
The Amber core utilizes Booth’s algorithm to calculate the multiply instructions in a 34
cycle operation.

2.1.3 coprocessor support

The ARM v2a instruction set[13] supports several instructions for communication and
control with coprocessors. However, in the Amber 25 core only a subset of these are
implemented. There are already fully implemented instructions for passing data between
the Amber core registers and a coprocessor. In addition the instruction set includes in-
structions for data transfer between coprocessor and memory and for passing operation
arguments from the amber core to a coprocessor.

6
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Figure 2.1: ARM7 core diagram. [13, p. 7]
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Figure 2.2: Amber 25 pipeline.[14, p. 5]




2.2 Wishbone bus

2.2 Wishbone bus

The Wishbone[16][17] bus is an open source System-on-Chip(SoC) Interconnect Archi-
tecture hosted by OpenCores[15]. The Wishbone bus is used both in the Amber core and
in the tile architecture on the SHMAC platform. The Wishbone bus specification declares
two bus interfaces, Master and Slave. The master interface is a core capable of initiating a
bus cycle, the slave is a core capable of receiving a bus cycle. The connections between the
different interfaces can be established in a large number of ways, examples include point-
to-point transfers and arbitrated bus systems with several Master and Slave units. Figure
2.3 shows how two units, which both have Master and Slave interfaces can communicate.

MASTER 4:> Interconnect <— MASTER
interface interface

SLAVE _ SLAVE
interface :> interface

Figure 2.3: Connection between two modules with both Master and Slave Wishbone interfaces.
[17,p. 1]

2.2.1 Wishbone Signals

The Wishbone bus system defines several signals common to all interfaces. The list below
describes the signals most relevant to this thesis and the SHMAC system. Unless other-
wise stated, the Master interface has the SIGNAL_O port and the Slave interface has the
SIGNAL_I port.

ADR I/ADR_O This is a bus signal that indicates the address of the data requested by the
Master.

SEL_I/SEL_O This is a bus signal indicating where on the data port there will be valid
data. The size of this bus is determined by the granularity of the data port.

WE_I/WE_O This signal indicates if the data transfer cycle is a write where data passing
from Master to Slave, or a write where data is passed from Slave to Master

CYCI/CYC_O This signal indicates a valid bus cycle in progress. This signal can be
held high during a block transfer of several data transfers.

STB_I/STB_O This signal indicates a valid data transfer data cycle. In the case of the
SHMAC platform, this signal is used in combination with the ADR_ signal to arbi-
trate between different modules with Slave interface.
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CLKl M
cYc_o /
/

STB_O

A
a N
ACK_ / N~

Figure 2.4: Standard transfer protocol, synchronous Slave [16, p. 33]

CLK I

CYC_O /<
- N/

Figure 2.5: Standard transfer protocol, asynchronous Slave [16, p. 34]

il

ACK_I/ACK_O The ACK signals are reversed in comparison to the other signals, with
the ACK_O in the Slave interface and the ACK_I in the Master interface. It is used
to acknowledge a valid data transfer.

DAT _I/DAT_O Both Master and Slave interfaces have both of these ports. They are bus
signals transferring the data in or out of the module, respectively.

2.2.2 Wishbone Cycle

The Wishbone specification defines two types of standard transfer protocols, synchronous
and asynchronous Slave. Figures 2.4 and 2.5 shows these in waveforms, from the perspec-
tive of the Master interface.

In both cases the data is read and STB_O is negated on the first rising clock edge that
the ACK I signal is high. These standard transfer cycles are known as SINGLE READ-
/WRITE Cycles in the Wishbone specification[16]. The Wishbone specification also de-
fines another type of transfer cycle that is relevant to the SHMAC platform, the BLOCK
READ/WRITE Cycles. Figure 2.6 shows a block transfer cycle. The Master can indicate
such a block transfer by holding the CYC_O signal high after the STB_O signal is negated,
and keeping it high through several consecutive transfer cycles.
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2.3 Hardware Accelerators

Figure 2.6: Block transfer protocol, synchronous Slave [16, p. 47]

2.3 Hardware Accelerators

Hardware accelerators are used in multiprocessor systems for a large number of appli-
cations, ranging from scientific and business applications to private computers and hand
held devices. W. Wolf [7, p. 356] describes an accelerator as a processing element that
can give large performance increases for applications that use a lot of time in small sec-
tions of code. This can be code that is exceptionally slow to execute, applications that only
focus on one small task or code that is repeated often in for example a nested loop. Where
W. Wolf[7] mostly focuses on speedup and execution time, G. Venkatesh et al. [8] focus
on energy conservation, even at the cost of slower execution. Accelerators are described
in both [7] and [8] as CPU-near Application Specific Integrated Circuits (ASIC) that do
some computational work on data provided by the CPU or through memory bus.

Accelerator examples from theory

In order to create a general interface it is necessary to describe some examples of acceler-
ators and try to find commonalities and general traits between them. I will here describe
some accelerators found in literature.

W. Wolf[7] gives a general description of an accelerator without any specifics, as shown
in Figure 2.7.
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Figure 2.7: Accelerator description and interface. W. Wolf[7, p. 356]

This is an accelerator interfaced through the CPU bus as an I/O device. It uses control
registers to accommodate a control interface for the CPU. This can be used to check states,
set options and give start signals. In addition there are data registers, used to hold and pass
data needed by the accelerator. The accelerator logic module in Figure 2.7 is designed to
effectively execute a given task, for example a small section of code that is often used.

In the paper ”Quantifying Acceleration”[18] the authors B.Reagen et al. do not focus
too much on the design of the accelerator, but they write that they focus on a type of accel-
erator that specializes in certain limited tasks, with it’s own memory system and created
for the large design space.

Although the authors of the paper ”Conservation Cores: Reducing the Energy of Ma-
ture Computations”[8], G. Venkatesh et al. separates their Conservation Cores(CCore)
from the term accelerators due to the focus on energy saving at the cost of performance
and area, in essence they are the same thing. They implement their CCores as a set of
ASICs closely connected to the CPU, with a shared cache. They are logical accelerators
that implement a specialized hardware structure to calculate often used code.

In my semester project for the fall of 2013, ”Evaluation of basic block accelerators for
use on the SHMAC platform™ [19], co written with Sunniva Nergaard Berg, we look in to
several accelerator targets. The project describes several possible acceleration targets from
a set of benchmarks, and includes a design of a multiply-add accelerator for the SHMAC
system. The accelerator in this project is a hardware implementation of a simple equation
that the parent system[14] does slowly, with input and output variables stored in registers
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that are updated on every clock, in addition to a start port. To summarize, it is a special-
ized, clocked hardware unit that takes input data and control signals from a parent system
and produces output data to be read back. The future work section of this paper also points
to the possibility of adding more functionality, such as the ability to subtract in stead of
adding, by setting control options from the parent system.

2.4 CPU to accelerator interface

There are many different ways of interfacing an accelerator from a CPU system in litera-
ture. The optimal interface is dependent on such issues as what the accelerator does, how
fast it operates, the level of control necessary, how much data it requires, what infrastruc-
ture the CPU and the parent system use and what resources are available in terms of area
and energy. I will now look into some examples of accelerator interfaces found in litera-
ture.

W. Wolf[7] gives in his book two examples of CPU to accelerator interface, both con-
nected to the CPU bus and gives the CPU control through control registers. One of these
uses direct data passing from the CPU to the accelerator and the other interface is able
to access the memory directly through the bus, with only control signals passed from the
CPU. The first type is shown in Figure 2.7, and the other is shown in Figure 2.8.
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__:__ - = — - p=| Memory
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Vo DMA
CPU —
I |
i R
: '——-—*—-;" Rcalid
: 3 unit .
] E 2
! E Gﬁc | Core
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Accelerator

Figure 2.8: Accelerator interface with memory access. W. Wolf[7, p. 358]
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The interface shown in Figure 2.8 has a higher complexity and requires more area, but
the memory access makes it well suited for accelerators with a high data demand, as it
frees up the CPU to work in parallel with the accelerator.

G.Venkatesh et al.[8] takes a slightly different approach in interfacing their CCores to
the parent CPU. They use a more CPU near connection, where the accelerators, called
CCores, share the L1 data cache with the CPU. To allow the parent CPU to control the
accelerators they use Scan Chains[8].

Tile |
< GCN |

‘ I-Cache H D-Cache

4

=

v v

< Goore Jot
CPU < 91—

FPU

4

Figure 2.9: CPU tile with CCore interface. G. Venkatesh et al.[8, p. 3]

‘ Scan Chain Select ’

These scan chains gives the CPU a high level of control, giving it access to read and
write arguments and states, perform context switching and patching of the accelerators.
Figure 2.9 shows a tile with several CCores interfaced to one parent CPU. The tile shown
in the figure is one of many in a multicore system.

In the paper called "Dynamically Specialized Datapaths for Energy Efficient Computing”
[9], the authors V. Govindaraju et al. take an even more core near approach to integrate
their accelerators, referred to as DySER blocks, with the parent CPU. They place them in
the pipeline of the CPU as a set of Functional Units(FU) and switches, controlled directly
by the CPU’s Decode and Execute pipeline stages. In this way they insert highly special-
ized and controllable hardware directly into the CPU architecture, and the DySER blocks
integrates completely in to the CPU module.

P. M. Stillwell jr. et al. proposes a very independent interface in the article "HiPPAI:
High Performance Portable Accelerator Interface” [10]. They utilize a high level applica-
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2.4 CPU to accelerator interface

tion function and accelerators working in the virtual address domain with a special purpose
hardware interface to control and use the accelerators. In the terms used earlier, these ac-
celerators can almost be seen as specialized cores, or functional units on the SoC device.
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Chapter

SHMAC parent system

In this chapter I will go through the SHMAC system, the Amber tile and the Amber core
to provide the necessary understanding of the system for which the IFM system is meant.
This chapter contains an overview of the previous work completed in the SHMAC project

that are relevant for this thesis.
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Figure 3.1: High level architecture SHMAC [12, p. 5]

3.1 SHMAC system overview

The Single-ISA Heterogeneous MAny-core Computer(SHMAC) project is a research project
meant to provide a fast and easy way to develop and test heterogeneous processing sys-
tems. As stated in the SHMAC project plan[12], "The key idea is to create a flexible
framework in which different heterogeneous processors can be created from a collection
of processing elements and accelerators.” This is a research project with a heavy focus on
hardware/software co-design, meant to do research on heterogeneous systems at all ab-
straction levels. The SHMAC system is currently being developed on a FPGA platform, to
enable fast testing and verification of different heterogeneous systems. The FPGA device
used is a xc5vIx330 chip from the Virtex 5 family of Xilinx FPGAs.

SHMAC Tile Architecture

SHMAC is a tile based architecture, made up of several tile types laid out in a rectangu-
lar grid, with each tile identified by its position in the grid. The identification is on the
form (n,m) where n denotes the row and m denotes the column. Figure 3.1 shows the tile
structure of the SHMAC system.

The different tiles are connected to each other using a mesh interconnect system. This
means that each tile has connections to its neighbours in up to four directions, north, south,
east, west. An edge tile only has connections in the directions where there is neighbours,
a non-edge tile has connections in all four directions. Every type of tile has a router that
handles the flow of data.

The SHMAC project has the potential for a large amount of different tiles, but a small
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Table 3.1: SHMAC system memory map

Start End Description
0000 0000 | 0000 001F | Exception Table
0000 0020 | F7FF FFFF | Main Memory
F800 0000 | FFFD FFFF | BRAM Memory
FFFE 0000 | FFFE FFFF | Tile Registers
FFFF 0000 | FFFF FFFF | System Registers

set of tile types are already defined and are described in the list below.

CPU core Also known as Amber Tile. The main processor tile of the SHMAC project,
containing a modified Amber ARM compatible core and some extra units. See
Section 3.2 for more details.

APB 1/0 tile, implements I/O support over an APB bus

Main Memory a tile that communicates with the ZBM RAM of the parent FPGA plat-
form

Scratchpad This tile is a RAM tile using the FPGA internal BRAM

Table 3.1 shows the memory map of the SHMAC system.

3.2 Amber Tile

The Amber Tile is the main CPU tile in the SHMAC system[12]. A high level architecture
schematic is shown in Figure 3.2. The tiles main components are a router and an Amber
core. The router handles the off tile communication, in addition to passing packages. The
Amber core is a modified version of the OpenCores Amber core described in Section 2.1.
In addition to these two main components, the Amber tile includes a set of tile registers,
an Interrupt controller and a Timer Module. The tile registers are used to store information
about the specific tile, such as processor ID and tile coordinates. The Interrupt controller
sorts all interrupt sources and relay interrupts to the Amber core. The Timer Module con-
tains three separate timers that can be controlled by the Amber core and it is able to set
interrupt signals through the interrupt controller.

The tile components are connected by a 128 bit Wishbone bus. The Amber core con-
trols the different tile modules through memory mapping. The tile memory map is shown
in Table 3.2.
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Figure 3.2: Overview of the Amber Tile
Table 3.2: Amber Tile memory map
Start End Description
FFFE 0000 | FFFE OFFF | Tile Register Module
FFFE 1000 | FFFE 1FFF | Timer Module
FFFE 2000 | FFFE 2FFF | Interrupt Controller
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3.3 Development and test tools

Xilinx ISE

Xilinx ISE(Integrated Software Environment)[20] is a HDL synthesizer and design tool
that is used in this project due to the fact that the project is using a Xilinx FPGA. ISE offers
HDL synthesis, simulation, RTL diagram generation and timing analysis. ISE supports
several OS platforms, including MAC OS, Windows and several Linux distributions. All
development and most of the tests run during the work with this thesis has been done with
Xilinx ISE.

ISim

In order to run simulations, Xilinx ISE uses the simulation tool ISim. ISim is an advanced
HDL simulator with a project navigator and waveform window. It is used for verification
and debugging of complex systems, with its main functionality tightly bound to the ISE
environment and the Xilinx FPGAs.

Amber test framework

Included in the Amber OpenCores project there is a set of tests and testbenches meant
to verify and debug the functionality of the core[21]. These have been modified further
to work with the SHMAC project and are a part of the SHMAC repository. The Amber
test framework uses a Linux based Gnu compiler and ISim to run the assembly level tests,
verify and debug.
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Chapter

Definition of a General Accelerator
Interface

In order to create a general interface module for communicating with an accelerator, even
though the goal of this thesis is to create a set of as general as possible [FMs, some lim-
itations and definitions have to be made. In this section I will propose a definition for
a general accelerator in terms of ports and explain the reasoning behind this definition.
Communication cycles and timing waveforms for communication between accelerator and
IFM can be found in Section 8.3. Any accelerator conforming with these definitions will
be possible to implement in to the SHMAC platform through one or more of the IFMs
proposed in this thesis, depending on the limitations of the specific IFM.

4.1 Interviews with SHMAC accelerator designers

One of the approaches taken in order to determine what is required in a accelerator in-
terface was to interview several accelerator designers currently working in the SHMAC
project. This section consist of descriptions of three of them.

Audun Lie Indegaards [22] accelerator is a Floating Point Unit (FPU) with variable word
width and exception handling. At the time of synthesis the designer can determine the
word width and the propagation time through the accelerator. It is a accelerator that takes
input data and control signals including a start signal and some operational options from
the parent system, calculates the values and sets a ready signal when it is done. It can be
synthesized as a asynchronous module that can function with a propagation time of less
than one cycle and so function without clock, but in most cases the accelerator is clocked.

Einar Johan Tran Smen[23] has created a accelerator with a very different functional-
ity, namely a Game of Life simulator, that can amongst other things be used as a pseudo
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random number generator. It can be created in several sizes, decided at the time synthesis.
It functions by shifting in input data and rule sets through a number of input ports and by
using an options input to determine what type of data enters the accelerator. It also uses
the options input to give start and read commands, and control which data is to be read.

Sunniva Nergaard Berg[24] is working on a accelerator that performs several arithmetic
operations on two matrices nested in two for loops. It is part of an algorithm for Epileptic
seizure prediction. It has large demands on memory access, as it requires 7 + 2048 32 bit
input values,and produces 2008 32 bit output values per calculation. It uses a start signal
to indicate start of operation, and signals completion with a ready signal.

4.2 General accelerator traits

Based on the accelerators described in Sections 4.1 and 2.3, I have outlined a set of traits
common in accelerators. These are important to design the [FMs, and are described here.

Accelerators does computations on data As expected, but it is an essential character-
istic for accelerators. Accelerators take input data, perform some form of calculation on
the data and produce output data.

Accelerators execute a set operation This means that accelerators generally execute a
very specific operation, and it does so every time it is used. Some accelerators implement
the possibility to set options to give small variations on this operation, but in general these
are very limited. Normally an accelerator implements a subset of instructions in the par-
ent’s ISA or a part of the application’s high level code, but this is not necessarily the case.

Accelerators are controlled by a parent CPU All accelerators are in smaller or greater
detail controlled by a CPU. This is normally done with control registers and signals such
as interrupts, start signals, readable states and options. There are different ways of doing
this, examples include memory mapped, connected to CPU bus, coprocessor interfaced
and custom IO ports.

Most accelerators are clocked and have reset functionality Most accelerators require a
clock signal, both to function internally and to communicate with the parent system. This
is however a trait with some exceptions. Accelerators can be created as pure combinatorial
circuits, where the propagation of data through the accelerator is not controlled by a clock.
These are normally accelerators with functionality that always completes in a fixed time
and with limited complexity and control options. The reset functionality is normal in all
digital hardware, and is also common in accelerators.

4.3 General interface design

The design of the accelerator interface supported by the IFM structure is done in such a
way that it is as general as possible, while giving concise constraints in order to make it
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possible to build functioning interface solutions for connection to the Amber system. The
general traits of an accelerator, as defined in Section 4.2, is the basis for this design.

The accelerator interface is clocked and includes a reset port. Both of these will with
the use of an IFM from this project be connected to the system clock and system reset
signals. In addition to these system wide signals, the accelerator interface includes a start
and a ready port used by the IFMs, and in turn the parent system, to control the accelerator
and to give feedback to the system upon completion. These are one bit ports and the signal
given to indicate a start signal is one high cycle, synchronous with the system clock. The
ready signal is treated asynchronously by the two basic IFMs, with the system reacting to
the rising edge of this signal. The For loop IFM reads this signal synchronously on the
rising edge of the clock signal. This difference is included to allow the basic IFMs to work
with asynchronous accelerators, as they do not require the same strict operational sequence
as the For loop IFM. See Section 8.3 for details on the differences in the communication
cycles between the IFMs and the given accelerator.

The interface definition also includes a 32 bit options port. This is included to give the
parent system the ability to give options to the accelerator. The size is determined due
to the ISA’s word size of 32 bits. Note that it is possible for an accelerator designer to
use one of the input data ports as an extra options port, but not with the For loop IFM.
In addition to these control ports the definition includes an undefined number of input and
output ports. These are 32 bits wide, again to conform with the ISA word size. The current
IFM designs has limitations on the number of input and output ports, but the accelerator
interface definition does not.
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4.4 Accelerator ports
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Figure 4.1: Accelerator module with N inputs ports and M output ports

Figure 4.1 shows the general accelerator module. The module is clocked and has a fairly
minimal interface. The ports are described in the list below.

i_clk: This port is the system clock connected directly from the Amber core.

i_rst: This port is the system reset connected directly from the Amber core. The reset is
active high and is treated synchronously in the Amber system.

i_start: This port is used to give the accelerator a start signal. The signal is a one cycle
active high set by the IFM. In the Coprocessor(5.4) and the Slave(5.5) IFMs, this
signal is set synchronously with the i_opt port. For the For loop(5.6) IFM, the i_start
port will be set high once every cycle while the i_opt is held. This is described in
detail in sections 8.3.1 and 8.3.2.

i_opt: This port is a 32 bit input array used to pass options to the accelerator. The op-
tions passed to the IFM will be held on this port constantly. As mentioned in the
description of the i_start port, this port will be set synchronously with the i_start
port.

o_rdy: This port determines when the interrupt or polling values in the IFMs is set, and
when accelerators have new data on the acc_out ports. It is treated slightly different
in the different IFMs, this is explained in detail in sections 8.3.1, 8.3.1 and 8.3.2,
but the general idea is that the output buffers of the IFM are updated when this port
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goes high, in other words at the rising edge. The acc_out ports has to be set before
the signal to avoid loss of data.

acc_in_0 to acc_in_n-1: These are the N 32 bit input data ports. There can theoretically
be any number of these, but the accelerator design will need to comply with the
limitations of the IFM chosen. Table 8.1 summarizes the IFM traits. They are
not changed while i_start is held high, but can be changed before a calculation
is finished, indicated by a high signal on o_rdy, in the basic IFMs. The different
interactions for the different modules are described in detail in sections 8.3.1, 8.3.1
and 8.3.2.

acc_out_0 to acc_out_m-1: These are the M 32 bit output data ports. As with the input
ports, M is only limited by the limitations of the IFM chosen. The data on these
ports are clocked in to the output buffer of the IFM on a rising edge on the o_rdy
port. There are variations regarding the timing of these operations in the different
IFMs, see sections 8.3.1, 8.3.1 and 8.3.2 for details.
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Design of the Interface Modules

In this chapter I will elaborate on the design choices and the structure of the different [IFMs.
The first section gives an overview of a few possible solutions of IFMs for integrating an
accelerator with the Amber Tile, and an explanation of the major design decisions made
with the implementation of the IFMs. The following sections gives a detailed explanation
of the architecture, functionality and verification of the IFMs.

5.1 Different options for IFM integration level

One of the major questions when designing an interface module is deciding the integration
level of the accelerator. In this case integration level means on what level in the system
architecture the accelerator is connected to the system. An accelerator implemented on
it’s own tile is at a higher level, architecturally, than an accelerator implemented with a
coprocessor interface. To decide this we need to know a few things about the accelerator.
An accelerator with a short execution time and low level of independence should be CPU
near to avoid considerable communications overhead, while the opposite case of an inde-
pendent accelerator with long execution time can be placed further away to allow the CPU
to operate more independently. Below I have listed four alternatives, with some charac-
teristic attributes, that stood out as options for the SHMAC system due to the architecture
and topology of the SHMAC system and the Amber core[14].

e Coprocessor Interface

— Amber CPU internal component, low amount of changes needed
— direct ISA support

— small area and time overhead

basic control logic

one word transfer only
high level of CPU control
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suitable for small, fast accelerators with low data demands and a low degree of
operational independence

e Wishbone slave interface

Amber tile component, low amount of changes needed
memory mapped CPU control

small area and time overhead

basic control logic, bus control needed

one word write, four word read

high level of CPU control

interrupt capability

suitable for accelerators with low data demands and a low degree of opera-
tional independence

o Wishbone master interface

Amber tile component, medium amount of changes needed
memory mapped CPU control

able to access off tile memory

medium area overhead, small time overhead

advanced control logic

low level of CPU control

interrupt capability

suitable for accelerators with high data demands and a high degree of opera-
tional independence

e Tile interface

Separate Tile component, high level of changes needed

memory and tile mapped CPU control

able to access off tile memory

large area and time overhead

advanced control logic

low level of CPU control

can be a shared resource between several CPUs

interrupt capability possible, not finalized in the SHMAC project

suitable for accelerators with high data demands, a high degree of operational
independence and tolerance for high time delay
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As can be seen from the list above, the interface type suited for a given application or
accelerator is highly dependent on the properties of said accelerator and the demands of
the application. However, the task in this thesis is to create an interface that is as general as
possible, which can fit any type of accelerator and application. In order to do this I decided
to create more than one interface type, and to make a system where the accelerator designer
can choose between several options to find the best suited interface. This would also give
an opportunity to test and characterize the different interface possibilities. The need to
limit the amount of work required forced the decision to drop the Tile interface at an early
stage. This is the most complex of the interface types, and would require large amounts of
work. It was dropped to increase the probability of designing a functioning system with
several interface options.

5.2 Start signal handling

The start signal of the IFMs are synchronised with writing the options register for all the
IFM variations. In the Coprocessor and Slave IFMs writing the options register imme-
diately triggers a high start signal with a duration of one clock cycle on the accelerators
start port. In the For loop IFM writing the options register progresses the FSM and starts
the execution of the for loop.

The decision to handle start signalling between CPU and accelerator in this way was made
after careful consideration between this method and a method where the start signal was
handled separately. The separate start method would have meant that the options register
and start register would have been written separately.

With the separate start method, the programmer would be able to set and change the op-
tions register without giving the accelerator a start signal. For the Coprocessor and Slave
IFMs this would have made the interface between CPU and accelerator even more general.
In addition, a designer could use the options register as an extra input for accelerators that
does not require options, and by doing so save area in the design. For the For loop IFM this
advantage is not there due to the strict timing of the For loop start procedure. One could
however argue that this approach would have made the For loop IFM safer and easier to
use with a one transfer one function policy.

However, the synchronised start method alsohas its advantages. For all three IFMs the
synchronised start method saves one interaction per start procedure. This saves time and
energy, which are vitally important resources for any SoC or processing system.

As already stated, the decision was made to go with the synchronised start method. I
consider the saved time and energy, achieved by limiting the necessary CPU to accelerator
interactions as much as possible, to far outweigh the advantages in generalisation, easy
programming model and area requirements of the separate start method. In addition to this
one could argue that with some clever design an accelerator designer could achieve the
separate start functionality for the Coprocessor and Slave IFMs. By using an extra input
port as an options port in the accelerator design, you could achieve this functionality at
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the cost of some area. The area cost would be the logic and wires connected to the now
unused options port.

5.3 Completion notification

The IFMs handle Completion handling differently from each other. The Slave and For
loop IFMs both use an interrupt port connected to the tile’s Interrupt Controller, while
the Coprocessor IFM use a poll register. The Slave IFM sends a one cycle high interrupt
signal as a direct response to the rising edge of the ready signal from the accelerator, the
For loop IFM sends a one cycle high interrupt signal on the completion of the loop execu-
tion. The Interrupt Controller receives these signals and gives a one cycle high interrupt
signal to the Amber Core. The Coprocessor IFM uses a one bit register to indicate com-
pletion. This register is written low when the start signal is given to the accelerator, and is
written high upon the first following ready signal from the accelerator. The poll register is
readable for the controlling CPU.

These methods for handling the ready signalling and secure completion of calculations
were decided upon after evaluating several options. One option is stalling the CPU pipeline.
While this method can offer some benefits for accelerators with a short execution time and
applications that does not benefit from parallelization by saving energy usage by hindering
unnecessary switching activity, this method does not keep in line with the idea of generali-
sation. This method would severely limit the different accelerators able to use the IFM. In
addition to the generalisation issues, this method is only really viable for the Coprocessor
IFM due to the Amber Tile architecture, and this would require substantial changes in the
Decode and Execute modules of the Amber Core. These changes would create difficulties
for any future work on optimizing the Amber Core.

The interrupt method has great merits when it comes to generalisation. It creates a “fire
and forget” use case where the CPU can work on different tasks while the accelerator ex-
ecutes. In addition it allows the accelerator designer to utilize several consecutive ready
signals, where all signals will send an interrupt signal to the CPU. This method requires
some changes to logic and Tile architecture, but uses existing functionality in both the
Amber Core and the Amber Tile.

The poll methods main attribute is the small amount of changes necessary to the Am-
ber Tile structure. It only requires the logic necessary to read a one bit register through the
IFM interface in order to function. An implementation of an IFM with the poll methods
keeps the architecture changes to a minimum. This method does however limit the gener-
alisation characteristics of the IFM, as it requires a start signal to set the poll register low,
making the system only able to react to one ready signal per start signal. This method
also limits the possibilities of utilizing parallelization in the accelerated tile. The CPU is
required to check if the accelerator is done, often with a continuous loop performing read
operations. This costs time and energy the CPU could use for other tasks.

Evaluating these different methods, I decided that in order to approach the goal of an
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Figure 5.1: Amber System with the Coprocessor [IFM

as general as possible interface system, the best option was the interrupt method. This
was then implemented in the Slave and For loop IFMs. However, when looking at the
architectural changes of the Amber Core required to allow the Coprocessor IFM to send a
interrupt signal to the Interrupt Controller, I decided that the poll method was better suited
to the Coprocessor IFM. While the goal of a high level of generalization is important, the
necessity of keeping the changes to the Amber Core as small as possible, in order to not
hamper any further development of the CPU architecture, took precedence here.

5.4 Coprocessor Interface Module

The Coprocessor Interface Module is an accelerator interface designed to be as core near as
possible and require the smallest possible changes to the Amber Tile structure. The ARM
ISA[13] includes several instructions for coprocessor data passing and control, but only a
subset of these are implemented in the Amber Core. The Amber Core implements a simple
coprocessor designed to handle cache control and the basic register to coprocessor one
word data transfer instructions(mrc and mcr). Figure 5.2 illustrates how the Coprocessor
IFM expands the coprocessor module without making any changes to the interactions with
the Amber Core. The Coprocessor IFM offers a small and core near accelerator interface
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Coproc IFM

Cache
-
Coprocessor #15
Cache control
Amber Core | )
-

Coprocessor 14
Accelerator interface

Figure 5.2: The coprocessor module replacing the standard module in the Amber Core

while limiting the changes to the Amber Core and Amber Tile architecture.

5.4.1 Implementation

Figure 5.3 shows the top level schematic for the Coprocessor IFM. As mentioned in section
5.4, the Amber Core only implements a small subset of the ARM ISA’s coprocessor in-
structions. As a consequence of this several of the interconnects to the Amber Core serves

no function. This includes the following ports: i_copro_opcodel, i_copro_opcode2 and
i_copro_crm. In addition, the ports named o_cache_enable, o_cache_flush, o_cacheable_area,
i_fault, i_fault_status and i_fault address are only used by the existing coprocessor unit,
and are not explained further in this thesis. See [14] for details. The rest of the ports are
described below.

i_clk, i_rst, i_core_stall Standard core wide control signals, synchronous to the entire Am-
ber Core. i_core_stall stops all operation

i_copro_crn Four bit coprocessor register number. Addresses the register written or read
by the Amber Core
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i_copro_num Four bit coprocessor number. Indicates the coprocessor called by the in-
struction

i_copro_operation Two bit operation number. 2’d2 indicates a write(rmcr) instruction,
2’d1 indicates a read(mrc) instruction, 2°d0 indicates no operation

i_copro_write_data, o_copro_read_data 32 bit data transfer buses. Transmits one word
of data to or from the coprocessor, respectively

In addition to the interface towards the Amber Core the Coprocessor IFM incorporates
an interface for the accelerator. For a detailed definition of the general accelerator interface
used in the IFM, see Section 4.3. The Coprocessor IFM uses several registers as interface
buffers for the accelerator, listed below:

acc_start: 1 bit register used to give the accelerator a one cycle high start signal

poll: 1 bit register used to indicate a ready signal from the accelerator following a start
signal. Coprocessor register number 15, read only

acc_opt: One 32 bit options register, connected to the accelerator’s options port. Copro-
cessor register number 15, write only

acc_in: An array of N 32 bit registers, where N is the number of input ports to the accel-
erator. Coprocessor register numbers 0 to 14, write only

acc_out: An array of M 32 bit registers, where M is the number of input ports to the
accelerator. Coprocessor register numbers O to 14, read only

The next two subsections explains the implementation of the Coprocessor IFM, sorted
by actions initiated by the Amber Core and by the interfaced accelerator.

5.4.1.1 Amber Core initiated actions

The Amber Core can in essence only do two things, write or read a register. The Copro-
cessor IFM expands on this by allowing the writing of one of these registers to set the
acc_opt register, give the accelerator a start signal and setting the Coprocessor IFMs poll
register low. Note that a high signal on the i_core_stall port stops the Coprocessor [FM
from responding to any input from the Amber Core. The only exception to this is a reset
signal, which takes precedence.

A write operation is initiated by the Amber Core by setting the appropriate values to the
i_copro_num and i_copro_crn ports and setting the value 2°d2 on the i_copro_operation
port. On the next rising edge of the clock the value on the i_copro_data is stored in the
corresponding register. If the register number on i_copro_crn denotes an accelerator input
port, the corresponding register in acc_in is written. If the register number denotes the
options register the acc_opt register is written with the data value of i_copro_data. In ad-
dition the acc_start register is set high for one cycle and the poll register is set low.

A read operation is initiated by the Amber Core by setting the appropriate values to the
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Figure 5.4: Amber System with the Slave [IFM

i_copro_num and i_copro_crn ports and setting the value 2’d1 on the i_copro_operation
port. On the next rising clock the value of the corresponding register will be set on the
o_copro_data port. This includes the poll and the acc_out registers.

5.4.1.2 Accelerator initiated actions

The accelerator can only initiate one action. By setting a one cycle high ready signal on
the o_rdy port, it initiates a store output action. On the consecutive rising edge of the clock
the value of the accelerator’s o_acc_out ports is stored in the acc_out registers. In addition,
the poll register is set high.

5.5 Slave Interface Module

The Slave IFM is an accelerator interface designed to be as simple as possible, provid-
ing the same passive control regime as the Coprocessor IFM. The Slave IFM is memory
mapped and connected to the Amber Core’s Wishbone bus with a slave Wishbone bus
controller. Figure 5.4 shows the Slave IFM’s in the context of the Amber Tile architecture.
The IFM is able to handle both four word writes and reads over the 128 bit Wishbone
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bus. Note that at the time of writing the Amber Core is only capable of doing four word
Wishbone reads, not writes.

5.5.1 Implementation
Figure 5.5 is the schematic of the Slave IFM. The ports are described in the list below.
o_irq Interrupt signal connected to the Amber Tile Interrupt Controller.

Wishbone Slave Interface The remaining ports in the schematic is the Wishbone Inter-
face. See See Section 2.2 for details

clk and rst(omitted from figure) Standard system wide control signals, synchronous to
the entire Amber Tile.

In addition to the interface towards the Amber Tile Wishbone bus the Slave IFM incor-
porates an interface for the accelerator. For a detailed definition of the general accelerator
interface used in the IFM, see section 4.3. The Slave IFM uses several registers as interface
buffers for the accelerator, listed below:

acc_start: One bit register used to give the accelerator a one cycle high start signal
o_irq: One bit register used to control the interrupt signal to the Amber System.

acc_opt: One 32 bit options register, connected to the accelerator’s options port. Tile
memory address 0x37FC, write only

acc_in: An array of N 32 bit registers, where N is the number of input ports to the accel-
erator. Tile memory addresses 0x3000 to 0x37F8, write only

acc_out: An array of M 32 bit registers, where M is the number of input ports to the
accelerator. Tile memory addresses 0x3800 to Ox3FFC, read only

The next two subsections explains the implementation of the Slave IFM, sorted by
actions initiated by the Amber Core and by the interfaced accelerator.

5.5.1.1 Amber Core initiated actions

The Amber Core can in essence only do two things, write or read a register. The Slave [FM
expands on this by allowing the writing of one of these registers to set the acc_opt register
and give the accelerator a start signal. The Slave IFM is memory mapped, so both actions
are completed through memory operations through the Amber Tile’s Wishbone bus.

5.5.1.2 Accelerator initiated actions

The accelerator can only initiate one action. By setting a one cycle high ready signal on
the o_rdy port it initiates a store output action. On the consecutive rising edge of the clock
the value of the accelerator’s o_acc_out ports is stored in the acc_out registers. In addition,
the o_irq register is set high for one cycle.
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Figure 5.6: Amber System with the Master [IFM

5.6 For loop Interface Module

The For loop IFM is a very specific IFM meant to perform the independent execution
of a for loop containing a given accelerator. This solution moves away from the passive
and heavily generalised interfaces provided by the Coprocessor and Slave IFMs, and takes
on the task of providing a module capable of executing a for loop with minimal input
required from the parent CPU. Due to the specific nature of a for loop, the For loop IFM
requires specific interaction procedure of accelerators. This sets specific requirements
to accelerator timing, described in Section 8.3.2, and limits the type of accelerators to
those that can function as the action of a for loop. The For loop IFM implements both a
Master and a Slave Wishbone interface, and is capable of direct interaction with the off tile
memory. The Slave Wishbone controller allows control of the IFM by the Amber Core.
Figure 5.6 shows the For loop IFM implemented in the Amber System module. As is
apparent from Figure 5.6, the implementation of the For loop IFM in the Amber System
module requires a Wishbone Master Arbiter to handle off tile communication.
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For Loop IFM
o_irq <
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Wishbone <&
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Signals €—— < acc_out_1

Figure 5.7: Schematic of the For Loop IFM interfacing a two input two output accelerator. Note
that clock and reset signals are omitted.

5.6.1 Implementation

The For loop IFM consist of three major parts as seen in Figure 5.6: an accelerator in-
terface, a Wishbone Master Buffer(WMB) and a FSM. The WMB reads and writes the
memory and sorts the data to and from the accelerator inputs and outputs. The FSM
controls the entire loop execution. It takes the input arguments from the CPU over the
Wishbone Slave interface, controls the WMB and the accelerator, and sends an interrupt
signal when the loop execution is done.

5.6.1.1 Interface

Figure 5.7 is the top level schematic of the For loop IFM. The ports are described in the
list below.

i_clk and i_rst Standard system wide control signals, synchronous to the entire Amber
Tile.

o_irq Interrupt signal connected to the Amber Tile Interrupt Controller.

Wishbone Slave Interface The ports marked _wbs_in the schematic is the Wishbone Slave
Interface, used to pass control signals from the Amber Core. See Section 2.2 for de-
tails on the Wishbone interface
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Wishbone Master Interface The ports marked _-wbm_in the schematic are the Wishbone
Master Interface, used to fetch input data and write output data to the off tile mem-

ory.

5.6.1.2 Finite State Machine

The state chart in Figure 5.8 gives the functionality of the For loop IFM’s FSM. The list
below gives a description of each state.

Idle This is the Idle state. The FSM moves to the next state with any activity on the
Wishbone Slave interface

Recieve The For loop IFM recieves arguments over the Wishbone Slave interface in this
state. When the Options argument is received, the FSM moves to the next state.

Adress Set The input address and output address arguments received in the previous
state is written to the WBM

Fetch Input Data The WBM is signalled to fetch input data and place it on the accelerator
interface. The FSM moves to the next state when the WBM’’s stall port is low

Calculation The accelerator is given a start signal. The FSM moves to the next state
when a ready signal is recieved

Store Output Data The WBM is signalled to get store the output data from the acceler-
ator interface and write it to memory. The next state is determined by subtracting
1 from the Main_i argument and checking for zero. If this was the last iteration,
the next state is Interrupt Set. If not, the next state is Fetch Input Data The FSM
moves to the next state when the WBM’s stall port is low.

Interrupt Set Gives the Amber Tile’s Interrupt Controller an interrupt signal. FSM moves
to the next state immediately.

5.6.1.3 Wishbone Master Buffer

The Wishbone Master Buffer(WMB) is one of the main components of the For loop IFM,
its function is to handle the necessary memory operations required to execute the for loop.
A schematic of the WMB is shown in Figure 5.9. The WMB reads and writes the off tile
memory and handles all data passing to and from the accelerator, controlled by the FSM.
It is able to handle any number of I/O ports of a given accelerator and at the same time
utilize the full capacity of the 128 bit Wishbone bus by arranging the data in four word
transfers as far as is possible. The last transfers might not add up to four data words, but
are of course executed to complete the calculation. This is done with the use of several
buffers and First In First Out(FIFO) queues, and an adaptation by the Tile Generator script.

At the beginning of a for loop execution, the FSM passes the input and output address
arguments to the WMB. During the execution, they are kept and updated in the WMB
internally. The stall signal is used to halt the FSM execution when the WMB is busy and
unable to comply with any control requests.
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Figure 5.8: State chart for the For loop IFM’s FSM control unit

43



Chapter 5. Design of the Interface Modules

FSM
interface

|
Input
read in Adr stall
Output
set adress| write out Adr

» Accelerator
. Input Buffer T -
Control Logic input ports
Wishbone =+ —
Master : Output Buffer T Accelerator
Signals - : output ports

]
Write Buffer 4*32 bit .
Wishbone

A

Input FIFO Master

Buffer

Output FIFO

Figure 5.9: Schematic of the Wishbone Master Buffer

The input data to the accelerator is read sequentially in four word transfers from mem-
ory by incrementing the given input address. Afterwards it is placed directly into the in-
put FIFO queue. When the read in signal is given by the FSM the correct number of data
words are sent to the Input Buffer filling it with one word per input port on the accelerator.

The output data follows a similar path, only in the other direction. When the write out
signal is given by the FSM, the Output Buffer is written, and read in to the Output FIFO.
If the Output FIFO contains more than four words, a Wishbone write operation is initiated.

This module is the one most modified in the For loop IFM during script generation. The
size of both the FIFO queues and I/O buffers are generated to adapt the WMB to the given
accelerator and amount of data.

5.6.1.4 Wishbone Master Arbiter

The Wishbone Master Arbiter(WMA) is a simple two input one output round robin bus ar-
biter, placed in the Amber System level of a For loop IFM Tile. It reacts to the cyc signals
from both Masters and assigns priority based on first come first serve. If the unprioritised
Master sets its cyc signal high while the prioritised Master is transferring, it will be as-
signed priority as soon as the prioritised master is done. The fact that this arbiter reacts to
the cyc signal allows for a multi transfer Wishbone cycle to pass unhindered. Figure 5.10
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Figure 5.10: Top level Wishbone Master Arbiter

shows the top level of the WMA.
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Chapter

IFM and tile scripted generation

In this chapter I will elaborate on the functionality and set up of the Tile Generator, a
IFM and tile generation script, as well as elaborate on the reasoning for using a high level
scripting language to generate tile structures and verilog modules. Please note that a user
guide for the tile generation script can be found in Section 8.1.

6.1 Overview of the Tile Generator

The Tile Generator is a Python script designed to generate a new tile based on the Amber
Tile with a functioning IFM adapted to match a given accelerator. Figure 6.1 shows an
overview of the script. The script takes some arguments from the user, loads up the nec-
essary source and template files, and outputs a modified version of the Amber Tile with a
new name and a functional IFM. The script operation is described in more detail in Sec-
tions 6.3.2 and 6.3.1.

The IFM system described in this thesis is meant to be as general as possible. In order
to achieve this, a certain degree of flexibility, with regard to all the different accelerators
that can be developed, is necessary. The general accelerator interface described in Section
4.3 offers this to a certain degree, but in order to cater to the differences in accelerator
attributes, Section 5.1 describes the need for several IFM types. On top of this, the verilog
HDL offers no easy way to generalise an unknown number of ports when writing a mod-
ule interface. SHMAC is also a tile based architecture, so some way to easily differentiate
between different tiles are necessary in order to keep the project easy to navigate and work
with.

All of these issues complicate the IFM system and make it difficult for an accelerated
system designer within the SHMAC project to create an accelerator tile with the correct
IFM that has the correct module instantiation. In order to simplify these issues and keep the
IFM system as general as possible, without the need for other designers and participants
of the system to manipulate the IFM source files, I have created a script that generates a
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Chapter 6. IFM and tile scripted generation
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their own

Figure 6.1: Overview of the Tile Generator script
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6.2 Use of source and template files

new tile type with a unique name, its own high level source files and an adapted IFM with
the correct module instantiation for the given accelerator.

6.2 Use of source and template files

The Tile Generator script uses a mix of template files and source files to generate the
new tile structures and IFMs. The source files are the files used in the Amber Tile and
Amber core as part of the working SHMAC repository. These files are, as a consequence
of the project’s development and progress, subject to change. This, in turn, makes the Tile
Generator script and the entire [FM system vulnerable to compatibility issues and conflicts
with future changes. Figure 6.2 shows a visual representation of how the two files are used.
Note that the a25_coprocessor.v file is one of the source files for the unmodified Amber
Tile’s Amber Core module.

One alternative to this approach that would solve the danger of conflicting changes to
the source files is to use a template only solution. This would mean to only use a template
file, and modify this through the script. This would guarantee a working generated tile, but
the accelerated tiles would not benefit from any future changes. In effect, this would mean
branching off the affected files at this point in the development. This could be mitigated
through manually keeping the template files updated, but this would mean a substantial
extra workload for any designer that would improve the Amber Tile in the future.

Evaluating these options against each other the current solution with the use of working
source files were chosen. This means that any designer working on one of the affected files
will need to take great care not to create any conflicts, but I consider this the best option.
In order to mitigate the danger of designers unaware of the danger creating conflicts, all
files that are used as source files have been given a warning in the top of the file, in the
form of a comment. This warning lets the designer know that the file is used as a source
file, in addition to a list of the template files and the script file that might cause a conflict.
Listing 6.1 gives an example of one of these warnings.

Listing 6.1: excerpt from a25_coprocessor.v: Danger of conflict warning

I rrrrrsl

[171//WARNING! '/ /11117

[T rrrrrsl

/1

// This file is used as a source file for accelerator interface tile
generation !

//' It contains tags used for automatic navigation by the generator script.

//make sure any changes made to this file is compatible with the rest of
the system

// Files that can cause compatibility issues are listed below

// /shmac/hardware/tileGenerator/tileGenerator .py

/! /shmac/hardware/tileGenerator/templates/coproc.TEMP.v

// /shmac/hardware/units /amber/hw/vlog/amber25/a25_core.v

/1

// Marton Teilgard mteilgard@gmail .com

THTEErrrrrrrrrrrrrrrry
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coproc_TEMP.v
a25_coprocessor.v

tileGenerator.py

a25_coprocessor_
accNAME.v

Figure 6.2: Script merging source file and template file in to the coprocessor IFM source file
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6.3 Detailed Functionality

The script takes four arguments from the user, listed below. The script then generates the
high level modules required to instantiate the new tile type, and the new IFM modules.
Modified versions of some low level Amber modules is also created in some cases.

Accelerator Name Name of the accelerator module, used to name the new tile and its
files, and to generate the accelerator instantiation in the IFM

IFM type Decides what type of IFM to generate

N and M Integers denoting the number of input ports and output ports on the accelerator,
respectively

The high level source files are generated, as explained in the next subsections, by mod-
ifying existing source files by direct changes and sections from template files. The high
level source files are updated with new module names and instantiations, with the excep-
tion of Amber_system.v, which is changed more extensively when modified for the For loop
IFM. The IFM modules relies mostly on template files only, except from when generating
the Coprocessor IFM, which creates a modified version of the a25_coprocessor.v source
file from the Amber Core architecture. The IFM source files are generated by copying
sections from template files and generating the structures necessary to fit the dimensions
of the accelerator.

6.3.1 Generating the tile structure

In order to generate the tile structure a new folder in the /shmac/hardware/tiles/ direc-
tory has to be created. Furthermore the high level tile architecture source files have to
be copied and modified from the source files of the Amber Tile module. The script first
creates the new folder and names it amber_tile_[IFMTYPE]_[ACCNAME], then it starts
the copying and modifying of the high level tile modules from the Amber Tile, and
creates the files amber_tile_[ACCNAME].vhd, amber_wrapper_[ACCNAME].v and am-
ber_system_[ACCNAME].v. These files are created by the script by first opening a source
file and a template file, and the output file. Then it sequentially runs through the source
file line by line, copying it in to the output file, all the while checking each read line for
a commented tag. These tags are unique, and are placed in the source files at the points
where modifications and/or sections from a template file is required. An example of such
a tag is shown in Listing 6.2. In this particular case, the script removes the tag, inserts
the modified module name, skips through the source file to the ...DONE tag, and finally
resumes the copying of the source file in to the output file.

Listing 6.2: excerpt from amber_system.v: commented tag for the Tile Generator

‘include ”common_defs.v”

// ACCTAGSYSINST
module amber_system
// ACCTAGSYSINSTDONE
#(
parameter tile_x = 4’b0,
parameter tile_y = 4’b0,
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Figure 6.3: Detailed illustration of scripted file generation

parameter cpu_id = 8’ hff

)

In other cases the scripts copies sections from the template files at such tags and in some
cases the ...DONE tag is omitted, as there is no need to skip lines in the source file.
The template files are equipped with similar tags for the same reason. These are slightly
different to make it easier to distinguish the different types of files. An example is given in
Listing 6.3. Note that these tags also make the verilog template files uncompilable, adding
a barrier for unintentional misuse of these files.

Listing 6.3: excerpt from slave_sys_ TEMP.v: tag #0 for the Tile Generator

assign int_sources = {26’b0,irq,acc , irq-timers , i,irq};

#0
ci-elk (i-clk),
ci_rst(i_rst),

The script goes through a sequential program for each file, modifying them by alternating
between lines from source files, lines from template files and lines written directly from
the script. The script differentiates which files are created and how they are modified based
on the IFM type selected. An illustration of how a modified tile source file is created is
shown in Figure 6.3.
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6.3 Detailed Functionality

6.3.2 Generating the IFM

Large sections of the IFM files are generated with the same method as the tile structure
files, by mixing parts from source files, template files and directly generated lines. How-
ever, in order to adapt the IFMs to the dimensions of the given accelerator, some parts of
the modules are generated directly as a function of the number of input and output ports in
the accelerator interface. This is where the user arguments N and M are used.

Listing 6.4: excerpt from tileGenerator.py: script generating the instantiation of an accelerator in
the Slave IFM

#2 found

for i in range(inputsN):
oFile . write ("\t.acc_in_-" + str(i) +7 (acc-in[”+ str(i) +71),\n”)

for i in range (outputsM):
oFile . write ("\t.acc_out_

”

+ str(i) +” (acc_out_” + str(i))

if i == (outputsM — 1):
oFile . write (")\n"™)
else:

oFile . write () ,\n")

Listing 6.4 shows the part of the script where the instantiation of the accelerator is gener-
ated. The input and output ports are connected to the previously generated I/O registers.
Listing 6.5 shows a generated instantiation of an accelerator named acc_dummy_4_1 with
four input ports and one output port.

Listing 6.5: excerpt from slave_acc_.dummy_4_1.v: generated accelerator instantiation

acc_.dummy_4_1 accelerator (
.i_clk (i-clk),

ci_rst (i_rst),
.i_start (acc_start),
.i_opt (acc-opt),
.o_.rdy (acc.rdy),
.acc_-in_0 (acc_.in[0]),
.acc_in_1 (acc_in[1]),
.acc-in_2 (acc-in[2]),
.acc-in_3 (acc-in[3]),
.acc_out_0 (acc_out_0)
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Chapter

Verification and Overhead

This chapter will go in to how the IFMs and the Tile Generators functionality were verified,
and what overhead that area associated with the different IFM solutions.

7.1 Verification method and tools

The Amber Tile structure is made up of several different components, some of which have
been created for the SHMAC project, and some that have been modified from other work,
like the Amber Core. The Amber Core is the most important component of the Amber
Tile, as it is the CPU, and is therefore the most important component to test the IFMs
with. This section will show how the different tools and methods were used to verify the
functionality of the IFM system.

7.1.1 Amber Test Framework

The Amber Test Framework(ATF) detailed in 3.3 is able to run assembly files on the
Amber Core. This system has been used to test the Coprocessor IFM’s functionality,
but the complexity of the framework, and the fact that it is designed mainly to test the
Amber Core, made it impractical to use for testing of the Slave and For loop IFM. I was
however able to document the Amber Core’s Wishbone interactions, which made me able
to emulate these in the Amber dummy module, detailed in Section 7.1.2.

7.1.2 Amber Core dummy module

The a25_core_dummy, or Amber dummy module, is a simple verilog module with the
Amber Core’s interface created to emulate the Amber Core’s Wishbone interactions. The
timing which this module is created to emulate was recorded with the use of the ATF.
These interactions are shown in Figures 7.1 and 7.2.

The Amber dummy contains of a simple FSM. It is made up of two sequential state
strings, one for testing the Master IFM and one for the Slave IFM, selected by the verilog
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Waveform showing four consecutive Wishbone writes made by the Amber Core
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Waveform showing one Wishbone read made by the Amber Core
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Start and
Interrupt Set

Slave 0 Master O
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Figure 7.3: Amber dummy state chart

test bench via the first Wishbone read. A simple version of the state chart is shown in Fig-
ure 7.3 This is made in such a way that it is easy to manipulate by adding or modifying the
states, easily creating new Wishbone interactions and test regimes. By using this module
as an Amber Core, it is possible to easily test an entire generated Amber Tile with an IFM.
For all intents and purposes, this FSM was the main test bench for the final verification of
the Tile Generator and the Slave and For loop [IFMs. The Amber Core dummy module can
be found in Appendix .1.

7.1.3 Accelerator dummy modules

In order to test an accelerator interface method, you need an accelerator, preferably several.
In order to be able to test as simply as possible, I opted to create several very basic accel-
erator like modules with different versions of the accelerator interface defined in Chapter
4. These are very basic modules that reacts to inputs and options and create easily veri-
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fiable output data. These modules make it very easy to verify that the IFMs are working,
and have been used to test all the [FMs throughout development. The Accelerator dummy
source file can be found in Appendix .1.

7.1.4 Verilog Testbenches

Verilog testbenches are used throughout the development of the IFM system, to test sep-
arate components and debug specific issues and to test the high level accelerated Amber
Tiles. They are used with the Xilinx ISE and ISim plugin described in Section 3.3 to
simulate, test and debug various verilog modules. One specific testbench needs to be men-
tioned, the genSysTB. It is used to test the generated Amber system modules, and is the
highest level testbench used in verification. It emulates an off tile memory, and together
with the Amber Core dummy module in Section 7.1.2 makes it possible to easily test
both the Slave and For loop IFMs and the tile structures. The genSysTB can be found in
Appendix .1.

7.1.5 Xilinx ISE synthesis

In addition to the above methods, the Tile Generator has been extensively tested by syn-
thesising the entire generated tile structures. Tile types with several variations of each [FM
have been synthesised to verify that the script generates modules that can be programmed
to the Xilinx FPGA.

7.2 Coprocessor IFM verification

The Coprocessor IFM has been verified directly in the Amber Test Framework. Several
Coprocessor IFMs have been generated with an Accelerator dummy module and imple-
mented in the existing Amber Core structure of the SHMAC project. The Amber Test
Framework was the initialized with an assembly program designed to verify the IFM. The
assembly program passes data and options to the IFM, reads the poll register until it reads
as high, reads the output data and verifies that it is correct. An example of the assembly
programs can be found in Appendix .1. In addition the waveform files are submitted with
the Thesis.

7.3 Slave IFM verification

The Slave IFMs functionality is verified with the use of the Amber Core dummy module in
Section 7.1.2 and the genSysTB in Section 7.1.4. Several generated tiles have been tested,
the one used as an example in this section implements a four input four output dummy
accelerator. The testbench is simulated in ISim and the functionality is verified visually,
by checking that the data moves correctly and that the control signals act accordingly.
One example is shown in Figure 7.4, where a write of the options register initiated by the
Amber Core dummy results in that both the options argument and the start signal is passed
to the accelerator. The Amber Core test for this IFM system writes input data and options
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Figure 7.4: Waveform showing the write options action through the Slave IFM
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to the IFM, waits for an inferrupt signal, and reads the output data in both one and four
word transmissions. Figure 7.5 shows how a ready signal from the accelerator translates
to an interrupt signal to the Amber Core dummy, and a four word Wishbone read of the
output data from the accelerator. Figure 7.6 shows how a single word read is translated to
the correct placement on the Wishbone data bus by checking the select signal.

The waveform files are submitted with the Thesis.

7.4 For loop IFM verification

The For loop IFMs functionality is verified with the use of the Amber Core dummy mod-
ule in Section 7.1.2 and the genSysTB in Section 7.1.4. Several generated tiles have been
tested, this section includes examples from the verification of a system implementing a
one input one output accelerator dummy, and a system implementing a six input six output
accelerator dummy. The tests are controlled by an Amber Core dummy that writes the
necessary arguments one word at a time, waits for the inferrupt signal, and then writes
all four arguments in one transfer. The genSysTB emulates a memory with two address
spaces. The For loop IFM reads one of the address spaces and writes the other one. The
tests are simulated in ISim and the functionality is verified visually, by checking that the
data moves correctly and that the control signals act accordingly.

Figure 7.7 shows the For loop IFM writing four words to off tile memory, the data is
output from a one output accelerator organised in four word transfers. Figure 7.8 shows
the Wishbone Master Buffer(WMB) transferring six data words from the internal input
FIFO to the accelerator’s six input ports. The waveform files are submitted with the The-
sis.

7.5 Time Overhead

This section details the overhead time associated with each IFM, excepting the execution
time of the accelerator and any time used by the Amber Core to fetch data and instructions
relevant to the IFM control. Note that this section does not take in to account parallelism,
see Section 9.1.4 for details.

7.5.1 Coprocessor IFM

The Coprocessor IFM is an internal component of the Amber Core, and is controlled di-
rectly by the Amber Core pipeline. The Coprocessor IFM is a passive IFM and requires
that the Amber Core passes all input and output data, in addition to the options argument.
As is shown in Figure 7.9, every transfer from the Amber Core to the Coprocessor IFM
takes two cycles. The Amber Core passes one 32 bit word per transfer, both in read and
write. In addition to this, the Coprocessor IFM takes one cycle to update the Poll register
after a ready signal from the accelerator, shown in Figure 7.10.

Equation 7.1 shows the overhead time of one calculation with the Coprocessor IFM
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Figure 7.5: Waveform showing an interrupt sequence and a four word read through the Slave IFM
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Figure 7.7: Waveform showing the For loop IFM writing system memory
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i_copro_write_data[31:0]

Figure 7.9: Waveform showing input data written to the accelerator through the Coprocessor IFM
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in clock cycles. I and O,represents the number of input and output ports in the accelerator
interface, respectively. The three extra cycles represents the two cycles needed to pass the
options argument and the one cycle delay needed to update the poll register.

T, =3+2I+20 (7.1)

7.5.2 Slave IFM

The Slave IFM is connected to the Amber Core through the Wishbone bus with a slave
interface. As this is a passive IFM, the Amber Core has to write all input data and options
to the Slave IFM, and read all output data back again. The Amber Core writes one word
per Wishbone transfer, and uses one clock cycle per transfer, as seen in Figure 7.1. The
Amber Core can read up to four words per Wishbone transfer, as shown in Figure 7.5. In
addition to this, Figures 7.5 and 7.4 show that the IFM passes both the start signal and the
interrupt signal without delay. This adds up to total time, in clock cycles per calculation,
given in Equation 7.2, where [ is the number of input ports and O is the number of output
ports on the accelerator interfaced by the IFM. The extra cycle represents the options write.

T,—1+1+ m (12)

7.5.3 For loop IFM

The For loop IFM is connected through the Amber Core through the Wishbone bus with
a slave interface. This connection is used to pass four different control arguments from
the Amber Core. As with the Slave IFM and as shown in Figure 7.1, the write interaction
from the Amber Core uses one clock cycle and writes one word. When these arguments
are passed, the for loop execution starts, then there is no need for any further communica-
tion with the Amber Core until the interrupt signal is sent when the for loop execution is
completed.

During the for loop execution, there is some overhead time consumed by the IFM. Fig-
ure 7.11 shows that the minimum time between a ready signal from the accelerator until a
new start signal is given, is five.

In addition to this, the For loop IFM reads and writes data to memory in batches of
four. Equation 7.3 gives the overhead time, in clock cycles per execution. The variable it
is the number of iterations the for loop runs, 77, is memory access time. / is the number of
input ports and O is the number of output ports on the accelerator interfaced by the IFM.

I
To4+5it+it*Tm*[4—‘+it*Tm*{§—‘ (7.3)

7.6 Area Overhead

The area overhead of the IFMs are related to the number of ports on the accelerator, as they
are generated to fit. In other words, the area size of the interface is directly dependent on
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the accelerator it is created to support, and are therefore difficult to predict. In an attempt
to solve this I have assumed that there is a linear relation between the number of ports and
the size of the interface. Equation 7.4 shows the assumed relation.

Atat:K+NI+MO (74)

In Equation 7.4 K represents a base area for the IFM, I represents the size increase to
the IFM of one input port and O represents the size increase to the IFM of one output port.
N and M represents the umber of accelerator input and output ports, respectively. The
values of K, I and O needs to be calculated for each IFM. In order to do so, the Equations
7.5, 7.6 and 7.7 where set up and solved for K, I and O in Matlab[25].

A=K +4I +40 (7.5)
B=K+4I+10 (7.6)
C=K+1I+40 7.7
The solutions are shown in Equations 7.8, 7.9 and 7.10.
4B +4C —5A
K = ¢ (7.8)
3
A-C
[=—— 7.9
3 (7.9)
A-B
O = 3 (7.10)

The values of K, I and O can be calculated by synthesising IFMs with the structure
of Equations 7.5, 7.6 and 7.7 to obtain values for A, B and C. This was done for all three
IFMs, and the resulting constants, usable for area prediction, are shown in Tables 7.1, 7.2
and 7.3.

Table 7.1: Constants for area prediction for the Coprocessor IFM

Constant for size calc | Nr of slice registers | Nr of slice luts
base size 204,00 116,33
size of one input 32,00 -10,33
size of one output 32,00 27,00

Table 7.2: Constants for area prediction for the Slave IFM

Constant for size calc | Nr of slice registers | Nr of slice luts
base size 162,00 87,67
size of one input 32,00 22,33
size of one output 32,00 31,00

These numbers have been calculated by synthesizing modified versions of the IFM
modules with XIlinx ISE[20]. They have been modified by removing the accelerator from
the module and reclassifying the accelerator interface as an I/O interface. Full tables with
the raw data are included in Appendix .3.
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Table 7.3: Constants for area prediction for the For loop IFM

Constant for size calc

Nr of slice registers

Nr of slice luts

base size 1043,67 983,33
size of one input 32,00 -4,00
size of one output 32,33 548,67
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Chapter

Using the IFM system

This chapter is meant to function as a user guide for any accelerator designers and pro-
grammers interested in working with the IFM system. The chapter is split into three sec-
tions. The first one will summarize the different IFM types to help select which one to
use for a given accelerator and give a user guide for the tile generation script. The next
section is a programmers manual that will explain how to program the controlling Amber
core for the different IFMs, at assembly level. The last section of this chapter will define a
general interface for an accelerator, explain the requirements for an accelerator to function
with the different IFMs, and explain the different communication interactions between an
accelerator and the IFMs.

The general attributes of the different IFMs are shown in Table 8.1. However, it is highly
recommended to check the detailed descriptions in Chapter 5 before deciding on an IFM

type.

IFM module Coprocessor Slave For loop
15 input 511 input N\A, theoreticall

10 ports supported 16 ouIzput 512 ouI;put un\limited ’

Ready handling pollab.le o tille interrupt tille interrupt
ready indication signal signal

Options 32 bits 32 bits 32 bits

Start signal synchronous synchronous one per iteration
with options write with options write | controlled by IFM

Programming interface mre and et . memory mapped | memory mapped
assembly instructions

Data fetch/store CPU CPU IFM

Table 8.1: Summary of the IFM general attributes
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8.1 Tile Generator Usage

The Tile Generator is a Python script that requires four input options to function. The
options and their valid values are listed in Table 8.2.

Table 8.2: Options and their input values for the Tile Generator

Option | Description valid entry

-t IFM type one of the following strings: coproc, slave, floop
-m accelerator module name | string

-i number of input ports integer

-0 number of output ports integer

In order to generate a working accelerated tile, all these options must be set and have
the correct values. Note that the script does not check if the input values are valid, or that
it has one of each option, so the user must take care to get this right. An example of the
correct use of the Tile Generator is given in Listing 8.1.

Listing 8.1: Usage example of the Tile Generator

python.exe tileGenerator.py —t floop —m acc_.dummy.5.5 —i 5 —0 5

The example call creates a tile structure named amber_tile_floopl FM _acc_dummy_5_5 with
a For loop IFM interfacing the accelerator acc_dummy_5_5 with five input and five output
ports. Note that the input to the -m option is the accelerator module name, not the name
of the verilog file containing the accelerator. The accelerator file should be placed in the
/shmac/hardware/units/accelerator/ folder, and will need to be included in the SHMAC
project separately. See Section 9.2.3 for details on project integration.

8.2 Programmers manual

The programmers manual is a description of how a programmer will work with the differ-
ent IFMs. I will go in to the different methods to work with the IFMs and detail how they
can and should be used through the Amber core. The manual is split in to three parts, each
detailing the programming methods and mapping of one IFM.

8.2.1 Programming the Coprocessor IFM

The list below summarizes the attributes relevant to programming of the Coprocessor IFM.
e Uses ARM coprocessor instructions
e Uses the coprocessor 14 tag

e Amber core writes control and data directly

Passive command passing
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e Start signal given to accelerator when writing options register

e Completion handling by setting poll register

register reg nr ARM instruction
Input O to 14 0x0 OxE | mcr
Output O to 14 | 0xO OxE | mrc
Options OxF mcr
poll OxF mrc

Table 8.3: Adress list for Coprocessor [IFM

The Coprocessor IFM is the most core-near of the [IFMs and is controlled by using the
coprocessor register transfer instructions, mecr and mrc, found in the ARM ISA[13]. The
standard use case is pretty straight forward, but the IFM’s passive control nature will allow
for some variations. See Section 5.4 for details on the module implementation.

The Coprocessor IFM has very little control on the interactions between the program-
mer and the accelerator. The programmer can decide to write or read any register at any
time, and the corresponding values and signals will be passed on to the accelerator without
any check of context. For example, if an input register is written during a calculation, the
input port of the accelerator will be updated without any regard to preceding start signals
or the state of the accelerator’s ready signal. This means that the IFM does not limit the
possibility of several consecutive start signals from the programmer or several consecutive
ready signals from the accelerator.

There is however one feature on the Coprocessor IFM that is reliant on a more traditional
way of passing signals, the poll functionality. The IFM has a poll register, that can be used
to check if the previously initiated calculation has completed. When a start signal is given,
in other words when the options register is written, the value of the poll register is set to 0.
It will remain O until the first following ready signal from the accelerator. Any consecutive
ready signals does not change the value, only a new start signal will change the value back
to 0. This allows for a traditional use of an accelerator, shown in the example code in
listing 8.3.

There are only a few commands a programmer can give the accelerator through the IFM.
These commands and the responding actions are listed below.

Write input Writing an input port on the accelerator is done with the mcr instruction,
with the corresponding coprocessor register number set.

Write options This is done by using the mcr instruction with the coprocessor register
number 15. This action does three things, it sets the options given on the i_options
port of the accelerator, gives a one cycle high start signal on the i_start port of the
accelerator, and sets the value of the poll register to 0.
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Read outputs Reading an accelerator output is done with the mrc instruction with the
corresponding coprocessor number set. This will return to the Amber core the value
in the corresponding output buffer in the IFM. See section 8.3.1 for details on how
the buffers are updated.

Read poll Reading the poll signal is accomplished by using the mrc instruction with the
coprocessor register number 15. This returns a value of 1 if there has been a ready
signal from the accelerator after the previous start signal. If there has been a start
signal and no following ready signal, this will return a value of 0.

Listing 8.2: ARM coprocessor register transfer instructions with examples of use

mcr p#, opcode, Rs, crn, crm
mrc p#, opcode, Rd, crn, crm

@examples for use with coprocessor IFM
mcer 14, 0, rO, crl, cr5
mrc 14, 0, rl1, cr0O, cr5

As we see in listing 8.2, the mcr and mrc take several arguments, not all of which is
relevant to the Coprocessor IFM. The opcode and crm arguments are ignored by the IFM,
so the value given are irrelevant. The other arguments are described in Table 8.4.

Table 8.4: Arguments used for the mrc/mcr instructions

Argument | Description

p# Coprocessor nr

Rd Destination register

Rs Source register

crn Coprocessor register nr

Lets look at the first example, line 5 in listing 8.2. This instructions writes the contents
of the Amber core’s r0 to coprocessor register 1(cr/) in coprocessor /4. The next example,
at line 6, reads coprocessor register 0(cr0) in coprocessor /4 to the Amber core’s r0.
Finally, in listing 8.3, a small program that runs one calculation on an accelerator in the
Coprocessor IFM is given.

Listing 8.3: Simple assembly program to run a 2 input 2 output accelerator in the coprocessor [IFM

mcr 14, 0, rO, crl, cr5 @ write acc_in O
mer 14, 0, rl, cr2, cr5 @ write acc_in 1
mcr 14, 0, r2, crl5, cr5 @ write options to start

@check if ready
ldr r0, =0x00000001
pollpoint:
mrc 14, 0, rl, crl5, cr5 @ read poll port
cmp 10, rl
bne pollpoint
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mrc 14, 0, r0, cr0O, cr5 @read acc_out 0
mrc 14, 0, rl1, crl, cr5 @read acc_out 1

The program writes the two input registers and then the options register, triggering a start
signal to the accelerator. It then waits for the accelerator to give a ready signal by checking
the poll register of the IFM. When the poll goes high, the program continues on to reading
the two output registers from the Coprocessor [IFM.

8.2.2 Programming the Slave IFM

The list below summarizes the attributes relevant to programming of the Slave IFM.
e Memory mapped programming interface
e Uses the wishbone bus system through a slave interface
e Amber core writes control and data directly

e Passive command passing

Start signal given to accelerator when writing options register

Completion handling by giving an interrupt signal to the on tile Interrupt controller

unit Absolute address [31:0] Local byte address Local word address

Slave IFM O0xFFFE 3000 [15:0] 0x3000 [15:2] 0xCOO0

Input O to 511 OxFFFE 3000 OxFFFE 37F8

11:0] 0x000 0x7F8 | [11:2] 0x000 Ox1FE

[
Output 0 to 512 | OxFFFE 3800 OxFFFE 3FFC | [11:0] 0x800 OxFFC | [11:2] 0x200 Ox3FF
Options OxFFFE 37FC [11:0] Ox7FC [11:2] Ox1FF

Table 8.5: Address mapping for Slave IFM, bit indication given from absolute address

The Slave IFM is a memory mapped IFM connected to the Amber System’s 128 bit
wishbone bus with a slave bus controller, and is capable of handling four word bus trans-
fers for both reading and writing. Please note that at the time of writing the Amber core
does not support more than one word writes. See section 5.5 for details on the module
implementation.

The Slave IFM incorporates the same passive level of control as the Coprocessor IFM.
The Slave IFM passes signals both ways without context, meaning that the timing of input
writes, start signals, ready signals and output buffer writes is completely in the hands of
the programmer and the accelerator designer.

The interrupt feature of the Slave IFM is implemented with a port connected to the In-
terrupt Controller on the Amber Tile, and is controlled without any interference by the
IFM. when a ready signal is given by the accelerator, a one cycle interrupt signal is given
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to the Interrupt Controller. This functionality does not require any preceding start signals
or register writes.

As with the Coprocessor IFM, the commands that a programmer is able to give to the
IFM is limited. These commands and the responding actions are listed below.

Write input Writing an input port on the accelerator is completed by writing a word to
the corresponding memory address, given in table 8.5, by the Amber core.

Write options This is done by writing the memory address given in table 8.5. This action
does two things, it sets the options given on the i_options port of the accelerator and
gives a one cycle high start signal on the i_start port of the accelerator.

Read outputs Reading an accelerator output is done by reading the memory address in
table 8.5. This will return to the Amber core the value in the corresponding output
buffer in the IFM. See section 8.3.1 for details on how the buffers are updated.

8.2.3 Programming the For loop IFM
The list below summarizes the attributes relevant to programming of the For loop IFM.
e Memory mapped programming interface

e Runs a self contained for loop execution, able to run in parallel with the Amber Core

e Fetches input data and writes output data to off tile memory with minimal control
from the Amber Core

e Uses the wishbone bus system, with both slave and master controllers
e Amber core writes control data only

e Strict command passing, actively controls the accelerator

e Starts loop execution when writing the options register

e Completion handling by giving an interrupt signal to the on tile Interrupt controller

unit Absolute address [31:0] | Local byte address | Local word address
Master IFM 0xFFFE 3000 [15:071 0x3000 [15:2] 0x000
Options 0xFFFE 3000 [15:0] 0x3000 [11:2] 0x000
Main i 0xFFFE 3004 [15:0] 0x3004 [11:2] 0x001
input address OxFFFE 3008 [15:0] 0x3008 [11:2] 0x002
Output address | OxFFFE 300C [15:0] 0x300C [11:2] 0x003

Table 8.6: Address mapping for For loop IFM

The For loop IFM differs a great deal from the other IFMs. It is a For loop accelerator
interface capable of running parallel to the Amber core. This feature creates the necessity
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of a stricter handling of control signals, this means that the For loop IFM does not pass in-
structions between the programmer and accelerator passively. The tile design is modified
with a round robin arbiter to share the outgoing memory interface between the IFM and
the Amber Core. See Section 5.6 for details on the module implementation.

The For loop IFM is controlled by a Finite State Machine(FSM) that handles the con-
trol variables from the programmer, the execution of the for loop and the flow of variables
and control signals to the accelerator. This has some major implications for the program-
ming model. First and foremost, the IFM does only accept input control words when in
the appropriate state. This is after a reset signal, before the first start signal or after a loop
execution is completed, in other words when a given start signal has been answered with
an interrupt signal from the IFM.

The programming control interface holds some similarities to the other IFMs, but is clearly
distinct. It takes four control variables to operate, filling the options, Main_i, input_address
and output_address control registers. The IFM’s Wishbone interface accepts any number
of words written, up to and including the bus width of four words. Please note that at
the time of writing the Amber core is only capable of writing one 32 bit word on the bus.
These are written by addressing the memory according to table 8.6. It is important to re-
member that writing the options control register also initiates the loop execution. Make
sure that the other three control registers are written before or at the same time as the op-
tions register, as the IFM will not accept any new input until the execution is done. All
control registers are 32 bit registers, and are described below.

options, tile address 0x3000 This is the options register, passed directly to the accelera-
tor. Writing this control register also initiates the for loop execution, so it should
always be written after or at the same time as the other control registers.

Main i, tile address 0x3004 This is the iterator variable of the for loop. The IFM will
iterate for as many cycles as indicated by the value written to this register.

Input_address, tile address 0x3008 This is the memory address of which the IFM will
fetch the input data for the accelerator. The IFM assumes that the first input data
value, going to the input_0 port of the accelerator on the first iteration of the first
loop is at this address, and that the consecutive input data words are in the consec-
utive addresses. In order to comply with the off tile memory system, this address
need to be four word aligned. This means that to avoid errors due to address offset,
this address need to comply with the form 0xXXXX XXXO0.

Output_address, tile address 0x300C This is the memory address of which the IFM will
write the output data from the accelerator. The IFM will write the first output data
word from the first for loop iteration to this address, and the following data words
to the consecutive addresses. This value is also subject to the limitations of the off
tile memory system, and will need to comply with the form 0xXXXX XXXO0.
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8.3 Communication between accelerator and IFM

This section gives a quick look at the communication cycles between the different [FMs
and a given accelerator. For details on the design and architecture of the accelerator inter-
face required to work with the IFMs, see Chapter 4.

8.3.1 Communication cycles with the Coprocessor and Slave IFMs
General interaction

Figure 8.1 shows the standard communication cycle between the basic IFMs, the Slave
and the Coprocessor, and interface of an accelerator with four inputs and one output. The
first action that happens is that the acc_in_ signals are set by the IFM. When the options
array, i_opt, is set, the i_start signal is set high for one cycle. Next, the accelerator sets
o_rdy high for one cycle. When this happens, the IFMs acc_out buffer is written on the
rising edge of the o_rdy signal. The o_rdy signal also triggers the ready handling of the
IFM, see section 8.3.1 for details.

Special cases and differences between the Coprocessor and Slave IFMs

The basic [FMs does not actively limit the interactions between the controlling Amber
system, in other words the programmer, and the accelerator. Any interaction initiated by
either the Amber system or the accelerator are treated separately by the IFM. I will now
elaborate on what this means for the accelerator communication cycles.

Figure 8.2 shows that the options signal, with the synchronously set i_start signal, can
change several times before the accelerator gives the o_rdy. With the basic IFMs these
interactions are solely controlled by the parent system, and must be carefully timed by the
programmer and accelerator designer. Note that the IFM responds normally to the high
state of the o_rdy signal, by setting the acc_out buffer on the following rising clock edge.

Similar to the [IFM’s handling of several option writes, the IFM responds to every ready
signal, indicated by o_rdy, regardless of preceding start signal, as shown in figure 8.3.

So far in this section the two basic IFMs have been equal in their interface to the ac-
celerator. Now we shall look at the differences. Figure 8.4 shows four modules. From the
top we have Accelerator 1, who is connected to the module IFM_coproc, a coprocessor
IFM. Accelerator 2 is interacting with the IFM_slave module. Note that there is no con-
nection between the IFMs or the accelerators, they are shown in the same figure purely for
comparison purposes.

When the acc_start signal of Accelerator 1 goes high, an internal signal in IFM_coproc,
called acc_poll goes low. This is a register than can be polled by the parent system to check
if a calculation is completed. When the next high ready signal is set, this register is set high.
The acc_poll register can only be set low by a new start signal, and will not be changed
by any consecutive ready signals from the accelerator. The writing of the IFM_coproc’s
acc_out buffer register is not affected by this, and will update as previously described.

The lower half of figure 8.4 shows the response of the IFM_slave module to the o_rdy
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ﬂu i_start
i_opt[31:0]
acc_in_0[31:0]
acc_in_1[31:0]
acc_in_2[31:0]
acc_in_3[31:0]
o_rdy
acc_out_0[31:0]

B acc_out[0:0,31:0]

(0000003 ]

Figure 8.2: Several options writes unrelated to the responding ready signal from the accelerator
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B i_start
» B acc_out 031:0]
.__mu o_rdy

» B acc_out 031:0]
.__mu o_rdy

B B acc_out[D:0,31:0]

.__mu o_irg

Figure 8.4: A waveform showing the differences between the response to a ready signal from the Coprocessor and the Slave IFMs
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signal of Accelerator 2. The Slave IFM has a port named o_rdy, that is connected to
the interrupt controller in the Amber Tile(3.2). Figure 8.4 shows how the o_rdy triggers
an interrupt signal from the IFM _slave module, in addition to the acc_out buffer write.
This signal resets after one clock cycle, and will therefore be set on any consecutive ready
signals.

8.3.2 Communication cycles with the For loop IFM

The For loop IFM differs from the Coprocessor IFM and the Slave IFM in the way it
communicates with the accelerator. The operation of the for loop structure and the unpre-
dictable interaction with the memory through the wishbone bus sets some extra demands
and constraints on the accelerator interface. Figure 8.5 shows the interface timing of ac-
celerator execution by the For Loop IFM. The accelerator used for this simulation is a two
input, two output accelerator.

The cycle starts with a one cycle start signal on the accelerators i_start signal. The
input signals, acc_in_n, is held from the rising flank of the start signal until the next start
signal. The For loop IFM then waits for the accelerators o_rdy signal to go high for one
cycle. It is important to note here that the acc_out_m is not read on the falling flank of the
ready signal. Due to the unpredictable nature of the Wishbone communications, the [IFM
might stall at this point for a number of cycles. It is therefore important that the accelerator
holds the values on the output ports until the next start signal, to avoid loss of data.

It is important to note that there are no special cases for the accelerator interface of the
For loop IFM. The communication timing is strict. Failure to comply with the timing can
result in loss of data and a situation where the IFM stalls in an infinite loop.
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opt[=1:0]
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Figure 8.5: Accelerator interactions with the For loop IFM
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Chapter

Discussion and Future work

9.1 Discussion

9.1.1 General Accelerator Interface

When defining a generalisation, it is almost impossible to create something that works
perfectly for every conceivable application of that generalisation. This is also true for the
General Accelerator Interface proposed in Chapter 4. The interface is designed to work
with as many different accelerators as possible. One effect of this is that there are several
accelerators for which this interface is not optimal. One example of this is the fact that the
interface is clocked, which for an asynchronous accelerator is unnecessary, and therefore
an unused port. The interface, as well as the IFMs, does however support asynchronous
accelerators, remaining useful for this type of accelerator.

Another feature of the interface that might not be optimal is the 32 bit options port. Many
accelerators do not require any options, and others require only a few. On the other hand,
this feature enables accelerators to expand its functionality greatly, and is a requirement
for many accelerators.

With the previous points in consideration, the General Accelerator Interface remains a
highly functional and versatile interface. All accelerators mentioned in Section 4.1 and in
[19] can easily be fitted in to this interface, with only small modifications and excess area.

9.1.2 IFM Design

The IFM modules were designed first with functionality in mind, and then optimized.
They need to function with accelerators of unknown size, which made the functionality
very important. There are no known issues with the Coprocessor or Slave IFM that are
unoptimized. However, the For loop IFM has some known issues making it ineffective in
some areas.
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The Wishbone Master Buffer(WMB) is designed to handle memory reads and writes in
four word transmissions for any number of accelerator ports. Furthermore, the nature of a
for loop and the FSM requires that the WMB is able to present and store data to and from
the accelerator at specific times in the execution process to ensure data validity. In order
to ensure this functionality in the amount of time available for design, the WMB has been
designed in a safe but slow way. The read and write tasks are not handled separately, and
the buffer to FIFO process is not optimized. This, in combination with the FSMs flow, is
the main reason for the five cycle overhead time found in Section 7.5.3. Suggestions for
improvements can be found in Section 9.2.1.

9.1.3 IFM verification

The verification of the IFMs have been completed with the methods mentioned in Section
7.1. The Coprocessor IFM has been verified by simulating in the Amber Test Frame-
work(ATF), and the Slave and For loop IFMs have been verified with a testbench and a
module simulating the behaviour of an Amber Core as recorded with the ATE. While the
Coprocessor IFMs verification is clearly safer, with fewer sources for error, than the Slave
and For loop IFM, both verification methods suffer from the fact that they are simulations.
The functionality of the IFMs are not completely verified before they are tested in the
SHMAC FPGA platform, but the SHMAC project is not at a level where it can offer this
yet.

This means that I can not say that there will not be any issues with the design and function-
ality when the generated tiles and the IFMs are implemented in to the SHMAC architec-
ture, but I am confident that the basic functionality has been verified to the extent possible
with the available resources.

9.1.4 IFM Overhead
Time

In Section 7.5 the time used as overhead with the use of the different IFMs is given in
Equations 7.1, 7.2 and 7.3. It is however important to take in to consideration the level of
parallelism offered by the different IFMs when discussing time overhead.

The Coprocessor IFM offers practically no parallelism in the conventional use case due
to its use of the poll method for completion notification 5.3. This means that the Copro-
cessor IFM needs to continuously check if the accelerator is finished, which takes up the
entire potential of the Amber Core.

The Slave IFM offers a higher level off parallelism than the Coprocessor due to its use
of the interrupt method for completion notification. This means that as soon as the Amber
Core has started the calculation it can complete other tasks as the IFM will notify with
an interrupt signal when the accelerator completes its calculation. It does however still
require that the Amber Core reads output and writes input data, which takes the amount of
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time stated in Equation 7.2.

The For loop IFM, which is very independent and uses the interrupt method, offers the
greatest level of parallelism. When the Amber Core has passed the four arguments re-
quired to start the calculation, all data passing is done by the IFM. This means that the
Amber Core can execute any other task while the For loop executes. It is however im-
portant to take in to consideration that while the For loop IFM runs, the off tile memory
interface is shared. This will impact the execution time of the Amber Core, especially if
the accelerator interfaced by the IFM has a short execution time.

Area

The calculations we have for area overhead in Section7.6 are compromised in several ways.
We are interested in the size of the IFM, not the accelerator. However, in HDL synthesis
it is non trivial to separate these without compromising the area overhead data. It is nec-
essary to construct the test module in such a way that no important overhead is removed
by optimization and the accelerator is as small as possible, or possible to subtract from
the design after the fact. The only solution found giving reasonable data was to reclassify
the internal accelerator interface as an I/O interface on the IFM module. This does create
extra overhead related to I/O logic, but it was the best option available.

Area calculations are split into two mayor parts for FPGAs, number of registers and num-
ber of LUTs. The calculations in Section 7.6 show that for number of registers there are a
clear linear relationship between number of ports of the implemented accelerator and the
number of registers. Every 32 bit port adds 32 registers, in addition to a constant base size
for each IFM. With the LUT calculations the relationship is not as clear. For example, the
size of a Coprocessor IFM, in LUTs, are diminishing with every extra input port, according
to Table 7.1. This is clearly wrong, and shows that the relationship between the number
of accelerator ports and the number of LUTs are not strictly linear. However, comparisons
made with these numbers and synthesis results from other Coprocessor IFMs show that
the factors give a usable approximation for [FMs with small numbers of accelerator ports.

The results of area predictions are, as mentioned, compromised. The numbers can be
used for rough area predictions, with more precise results for registers than LUTs, but
the best way to get a solid number is to implement an accelerator with the TileGenera-
tor, synthesize the tile and get overhead data for the entire tile. This will give the Xilinx
synthesizer full use of it’s optimizations and give the most precise results.

Energy

One of the major focus area of the SHMAC project is energy efficiency. Unfortunately
the current state of the SHMAC project[12] does not include an easy way to measure and
calculate energy usage at module level and due to time constraints I have not been able to
circumvent this. However, one can say in general terms that the use of overhead energy is
closely related to overhead in time and area. In other words, a short overhead time and a
small overhead area translates to less overhead energy.
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9.1.5 TileGenerator

The TileGenerator is able to generate synthezisable tiles from four arguments, creating a
new tile structure interfacing a given accelerator. The functionality of the script is tested
and verified and the generated modules are used in the tests performed in order to verify
the designed IFM modules, described in Chapter 7.

However, the script has some minor issues, some of which are described as targets for
further development in Section 9.2.2. In addition to this there is the known issue of check-
ing and recognising erroneous arguments. The script does not do this at this point and
requires the user to only input the correct number of valid arguments to function properly.

9.2 Future Work

In this project, there are several features and optimizations that have been left out due to
time constraints. This section describes the most prominent unoptimized issues and the
most important expansions that are possible to make in future work.

9.2.1 Improving the IFMs

The IFMs as they stand today offer proven functionality, but there are possible improve-
ments and optimizations known today. In order to change the generated IFMs, the template
files in /shmac/hardware/tileGenerator/templates/ will need to be changed. I recommend
generating an IFM, modifying it in Xilinx ISE, and update the template files with verified
modifications only.

Expanding poll and interrupt functionality The IFMs today are equipped with one type
of completion notification method each. The Coprocessor IFM uses the poll method
and the Slave and For loop IFMs use the interrupt method. It is however viable to
expand on this and implement both for all IFMs. I suggest to combine it with the
suggestion in Section 9.2.2 to give the script an option to choose between the two
methods.

Expanding the address space of the Coprocessor IFM In Section 5.4 it is explained that
the Coprocessor IFM uses the four bit crn signal to address the internal registers,
allowing 16 addresses in total. There are however several unused signals in this in-
terface, including crm. If this signal was added to the addressing method, the total
number of addresses would be 256.

Optimizing the For loop IFM The For loop IFM is a complex and independent IFM, but
at the moment it is slow. Most of the five cycles(Section 7.5.3) spent in overhead
between an accelerator’s computations are spent waiting for the Wishbone Master
Buffer(WMB). I would suggest focusing optimizing efforts on this module. Exam-
ples of improvements would be to separate the read and write functionality into two
separate modules, and to try to increase the combinatorial fraction of the control
logic in this module. In addition, the size of the FIFO queues in this module is
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generated after the “at least big enough” philosophy, and would benefit from a more
optimized calculation of size based on the number of accelerator ports.

9.2.2 Expanding the TileGenerator script

The Tile Generator as it stands today supplies a basic IFM tile generation functionality.
However, there are a lot that can be added in functionality. A list of suggested expansions
is listed below.

Improving structure the script would definitely benefit from some work with the struc-
ture. Placing often used code in to functions and making the script easier to under-
stand and read would help any future developers intent on expanding and improving
the TileGenerator

Option for poll/interrupt can be implemented to give the accelerator designer the option
between a poll or an interrupt(or both) completion notification from the IFM, given
the suggestion for future work in Section 9.2.1

Several accelerators per tile it could be preferable to have several accelerators per tile,
and the script could be expanded to include such possibilities

Option for the Options port can be implemented as a way of optimizing area for accel-
erators that does not require an options input. This does however require extensive
modification of the IFM templates, and will require large amounts of work.

Any new feature the script is an easy to use and easy to modify Python script, and could
easily be adapted to include any future customization wanted in the tile architecture,
whether related to accelerator development or not, the TileGenerator is an efficient
way of adapting tiles.

9.2.3 System integration of generated tiles

The TileGenerator as it stands today creates a modified tile compatible with the SHMAC
platform, but it does not integrate it for compilation and synthesis. In order to do this, a
few files in the shmac repository needs to be changed, listed below.

/shmac/hardware/scripts/toplevel.py needs to be updated with a def section for the new
tile

/shmac/hardware/scripts/create.py has to be updated with a letter assignment for the
new tile, for use with the /shmac/hardware/shmac/setup.txt file

/shmac/hardware/shmac.prj all generated files will need to be added in this file
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Conclusion

The main goal of this thesis has been to design and implement a general and efficient
method for interfacing a wide variety of accelerators. I have created a system that can
offer three different Interface Modules(IFM) for programming and interfacing a given ac-
celerator. Furthermore I have created a scripted system for generating a modified Amber
Tile that implements the given IFM and is compatible with the SHMAC platform.

In order to create a general technique for accelerator integration in the form of IFMs a
General Accelerator Interface has been defined. This interface is modelled on several
known accelerator traits from both literature and accelerators currently being developed
for the SHMAC platform and provides a minimal interface that can be used by a wide
variety of accelerators.

The IFMs have been designed to provide several levels of integration and control of an ac-
celerator by the Amber Core structure. Ranging from the minimal structural changes and
high control demands of the Coprocessor IFM to the highly independent but structurally
large For loop IFM, the proposed IFMs are able to meet the requirements and demands of
a wide range of diverse applications.

The Tile Generator Python script wraps the IFMs and the complexity of the different ar-
chitectures into an easy to use system. This system offers a user the possibility, with a
minimum of effort and design time, to generate an accelerated Amber Tile. This acceler-
ated Amber Tile implements a given accelerator with the chosen IFM, ready for integration
into the SHMAC platform.

The General Accelerator Interface and the IFMs, together with the Tile Generator pro-
vides a simple and functional method for interfacing and programming a wide variety of
accelerators without too much of the compromise to efficiency normally associated with
heavily generalized interface solutions.
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.1 Appendix A: verification files

Listing 1: acc_coproc.S: Assembly file verifying the functionality of a 4 input 1 output coprocessor
IFM

#include “amber_registers.h”

.section .text
.globl main

main :
@
@ Straight forward test of ADD
@ ADD 93, 0.07
@
ldr r0, =0x00000004 @ acc_in O
1dr rl, =0x00000008 @ acc_in 1
ldr r2, =0x00000010 @ acc_in 2
1dr r3, =0x00000020 @ acc_in 3
ldr r4, =0x00000004 @ options
mcer 14, 0, rO, crl, cr5 @ write acc_in 0
mcr 14, 0, rl, cr2, cr5 @ write acc_in 1
mcer 14, 0, r2, cr3, cr5 @ write acc_in 2
mer 14, 0, r3, crd4, cr5 @ write acc_in 3
mcer 14, 0, r4, cr0O, cr5 @ write options

@ check for ready

Idr r0, =0x00000001
pollpoint:
mrc 14, 0, r1, cr0O, cr5 @ read poll port
cmp r0, rl
bne pollpoint

Idr r0, =0x0000003C
mer 14, 0, rl, crl, cr5 @read results port

@ Check that the output is correct

cmp r0, rl
bne testfail
@passed

b testpass

@

@

testfail :
1dr rll1, AdrTestStatus
str rl0, [rll]
b testfail

testpass:
1dr rll, AdrTestStatus
mov r1l0, #17
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str rl0, [rll]
b testpass

/% Write 17 to this address to generate a Test Passed message =/
AdrTestStatus: .word ADR_AMBER_TEST_STATUS
AdrTestBase .word 0x001fffcO

/% sum of numbers 0 to 2047 inclusive x/

MagicNumber1024 : .word 523776
MagicNumber2048 : .word 2096128
/[ *

*/
/%

*/

Listing 2: acc_wb.S: Assembly file used to record the Amber Cores wishbone timing

*****************************************************************/
#include “amber_registers.h”

.section .text
.globl main

main :
1dr r0, =0x00000004 @ acc_in O
ldr rl, =0x00000008 @ acc_in 1
1dr r2, =0x00000010 @ acc_in 2
1dr r3, =0x00000020 @ acc_in 3
ldr r4, =0x00000004 @ options

ldr r5, =0xfffe0001 @adr in
ldr r6, =0xfffe0002 @adr in
Idr r7, =0xfffe0003 @adr in
ldr r8, =0xfffe0004 @adr in O

Idr r9, =0xfffe0000 @adr options

(=N o]

str r0, r5, #0
str rl, r6, #0
str r2, r7, #0
str r3, r8, #0
str 4, r9, #0

Idr r0, =0x00000000 @ acc_in O
1dr rl, =0x00000000 @ acc_in 1
ldr r2, =0x00000000 @ acc_in 2
1dr r3, =0x00000000 @ acc_-in 3
Idr r4 , =0x00000000 @ options

Idr r0, r5, #0
Idr rl, r6, #0
ldr r2, r7, #0
Idr r3, r8, #0
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36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53
54
55
56
57
58
59
60
61
62

64

65

W N =

1dr rd, 19, #0

b testpass
testfail :
1dr rll1, AdrTestStatus
str rl0, [rl11]
b testfail
testpass:
1dr rll1, AdrTestStatus
mov rl0, #17
str rl0, [rl11]
b testpass

/* Write 17 to this address to generate a Test Passed message x/
AdrTestStatus: .word ADR_AMBER_TEST_STATUS
AdrHiBootBase: .word ADR_HIBOOT_BASE

Datal : .word 0x3
.word Ox4
.word 0x5
.word 0x6
.word 0x7
Data2: .word 0x44332211
Data3: .word 0x12345678
/%
*/
/%
*/

Listing 3: genSysTB.v

‘timescale Ins / 1ps

NNy
// Company :

// Engineer:

11/

/l Create Date: 15:09:07 05/16/2014

// Design Name:

// Module Name: D:/ AmberWrapper/genSysTB . v
// Project Name: AmberWrapper

// Target Device:

/! Tool versions:

// Description:

// Verilog Test Fixture created by ISE for module:
amber_system_floop_acc_dummy_4_4

// Dependencies:
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// Revision:

/! Revision 0.01 — File Created
// Additional Comments:

/1

LITILEEEE i i rr i b i r i r b r i i i rrrr i rrrrrrrrrry

‘define CYC 16.667 //ca 60 MHZ
‘define MEMSIZE 8
module genSysTB;

// Inputs

reg i-clk;

reg i-_rst;

reg i_irq;

reg i_-system-_rdy;

reg [127:0] i_-wb_dat;
reg i_-wb_ack;

reg i-wb_err;

/! Outputs

wire [31:0] o_wb_adr;
wire [15:0] o_wb_sel;
wire o_wb_we;

wire [127:0] o_wb_dat;
wire o_wb_cyc;

wire o_wb_stb;

wire o_ld_excl;

reg [127:0] wbMem[O: ‘MEMSIZE—1];
reg [127:0] wbRec[0: ‘MEMSIZE—1];
‘include “wbMemTB.v”

integer 1i;

// Instantiate the Unit Under Test (UUT)
amber_system_floop_acc_.dummy_6_6 uut (
.i-clk (i-clk),
ci_rst(i_rst),
.i-irq(i-irq),
ci_system_rdy (i_system_rdy),
.o_wb_adr(o_wb_adr),
.o_wb_sel(o_wb_sel),
.o_.wb_we(o_wb_we) ,
.i-wb_dat(i-wb_dat),
.o_wb_dat(o_wb_dat),
.o_wb_cyc(o_-wb_cyc),
.o_wb_stb(o_wb_stb),
.i_wb_ack (i-wb_ack),
.i_wb_err(i_wb_err),
.o_ld_excl(o_ld_excl)

)
always
begin
//#16.667 clk = “clk;
#(0.5% ‘CYC) i-clk = "i_clk;
end

//wb slave response
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110
111
112
113
114
115
116
117
118
119
120
121
122

(oY R T R S

always @(posedge o_wb_stb)begin
#(0.5% ‘CYC) ;
if (lo_wb_we)
begin
if (o_.wb_adr[7:4] < ‘MEMSIZE && !(o_wb_adr[31:28] ==
begin
i_wb_dat = wbMem[o_wb_adr[7:4]];
#(0.6% ‘CYC) i-wb_ack = 1;
end
else if (o_wb_adr == 32°h20000000)
begin
i_wb_dat = 128°h2;//slave(l) / master(2) select
#(0.6x ‘CYC) i_wb_ack = 1;
end
else
begin
i_wb_dat = 128°h0;
#(0.6x ‘CYC) i_wb_ack = 1;
end
end
else
begin
if (o_wb_adr[7:4] < ‘MEMSIZE)
wbRec[o_wb_adr[7:4]] = o_wb_dat;
#(0.6% ‘CYC) i_wb_ack = 1;
end
end
always @(negedge o_wb_stb)begin
i_wb_ack = 0;
end

initial begin
// Initialize Inputs

i_clk = 1;
i_rst = 1;
i-irq = 0;

i_system_rdy = 0;
i_wb_dat = 0;
i_wb_ack = 0;
i_wb_err = 0;

// Wait 100 ns for global reset to finish
#(2%x ‘CYC) i_rst = 0;

2))

end
endmodule
Listing 4: wbMemTB.v
// end/*
initial
begin
wbMem[0] = 128’ h00000004000000030000000200000001 ;

wbMem[1] = 128> h00000008000000070000000600000005 ;
wbMem[2] = 128°h0000000c0000000b0000000a00000009 ;
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10
11
12

14
15
16
17
18
19

21

wbMem[3] = 128°h000000100000000f0000000e0000000d ;
wbMem[4] = 128 h00000014000000130000001200000011 ;
wbMem[5] = 1287 h00000018000000170000001600000015 ;
wbMem[6] = 128°h0000001c0000001b0000001200000019 ;
wbMem[7] = 128°h000000200000001f0000001e0000001d ;

wbRec[0] = 128°h00000000000000000000000000000000 ;
wbRec[1] = 128’h00000000000000000000000000000000 ;
wbRec[2] = 128 h00000000000000000000000000000000 ;
wbRec[3] = 128”h00000000000000000000000000000000 ;
wbRec[4] = 128’ h00000000000000000000000000000000 ;
wbRec[5] = 128”h00000000000000000000000000000000 ;
wbRec[6] = 128’ h00000000000000000000000000000000 ;
wbRec[7] = 128”h00000000000000000000000000000000 ;
end

Listing 5: a25_core_dummy.v

‘define ACCADR 32’ hfffe3000
‘define INITADR 32°h20000000
‘define MEMADR 32°h00000000
‘define FLOPTADR 32’ hfffe3000
‘define FLMAADR 32’ hfffe3004
‘define FLINADR 32’ hfffe3008
‘define FLOUTADR 32’ hfffe300C

‘define SLOPTADR 32’ hfffe37fc
‘define SLINADR 32’ hfffe3000
‘define SLOUTADR 32’ hfffe3800
‘define SLPOLLADR 32’ hfffe3ffc

‘define FLOPT1 32°h00000002
‘define FLMAI 32°h00000002
‘define FLINI 327h80000000
‘define FLOUT1 32°h90000000

‘define FLALL 128°h90000040800000400000000100000002

‘define SLOPT 32°h00000004
‘define SLIN1 32’hbabebabe
‘define SLIN2 32’hcafecafe
‘define SLIN3 32’hdadedade
‘define SLIN4 32’hcafebabe
‘define SLIN5 32°h00001005
‘define SLIN6 32°h00001006
‘define SLIN7 32°h00001007
‘define SLIN8 32°h00001008

‘define IRQ 128°h00000020000000200000002000000020
module a25_core_dummy

(
input i_clk ,

input i_rst,
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request ,

active high

active high

stalled when this is

input i_irq, // Interrupt request,
input i_firq , // Fast Interrupt
input i_system_rdy , // Amber is

// Wishbone Master I/F

output reg [31:0] o_wb_adr,

output reg[15:0] o_wb_sel,

output reg o_wb_we ,

input [127:0] i_-wb_dat,

output reg[127:0] o-wb_dat,

output reg o_wb_cyc,
output reg o_wb_stb ,
input i_wb_ack ,
input i_wb_err ,

// interface for
output

)3

exclusive op
o_ld_excl

reg [31:0] state;

// statelist

localparam START = 32°h0,
TSEL = 32’hl,
Ml = 32°h2,
M2 = 32°h3,
M3 = 32’°h4,
M4 = 32°h5,
M5 = 32°h6,
M6 = 32°h7,

IRQSET = 32°h2000,
S1 = 32°h1001,
S2 = 32°h1002,
S3 = 32°h1003,
S4 = 32°h1004,
S5 = 32°h1005,
S6 = 32°h1006,

S7 = 32°h1007,
S8 = 32°h1008,
S9 = 32°h1009,
Sa = 32°h100a;

always @(posedge i-clk)
begin
if(i_rst)
begin
state = START;
o_wb_adr <= "hO;
o_wb_sel <= ’hO0;

o_wb_we <= 'h0;
o_wb_cyc <= "hO;

low
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97 o_wb_stb <= 'hO0;

98 o_wb_dat <= ’h0;

99 end

100 else

101 begin

102 case(state)

103 START:

104 begin

105 o_wb_adr <= 32’ hfffe2008;
106 o_wb_sel <= 16°h0f00;

107 o.wb_we <= 1;

108 o_wb_cyc <= 1;

109 o_wb_stb <= 1;

110 o_wb_dat <= ‘IRQ;

111 state = IRQSET;

112

113 end

114 IRQSET:

115 begin

116 if (i-wb_ack)

117 begin

118 o_wb_adr <= ‘INITADR;
119 o_wb_sel <= 16°h000f;
120 o_wb_we <= 0;

121 o_wb_cyc <= 1;

122 o_wb_stb <= 1;

123 state = TSEL;

124

125 end

126 end

127 TSEL:

128 begin

129 if (i_wb_ack)

130 begin

131 if (i_wb_dat[1])

132 begin

133 o_wb_adr <= ‘FLMAADR;
134 o_wb_sel <= 16" h00f0;
135 o_wb_we <= 1;

136 o_wb_cyc <= 1;

137 o_wb_stb <= 1;

138 o_wb._dat <= {‘FLMAI, ‘FLMAI, ‘FLMALI, ‘FLMAI1 };
139 state = MIl;

140 end

141 else if(i-wb_dat[3:0] == 4’hl)
142 begin

143 o_.wb_adr <= ‘SLINADR + ’hO;
144 o_wb_sel <= "h000f;
145 o_wb_we <= ’hl;

146 o_wb_cyc <= ’hl;

147 o_wb_stb <= ’hl;

148 o_wb_dat <= {‘SLINI, ‘SLINI1, ‘SLIN1, ‘SLIN1 };
149 state = S1;

150 end

151 else

152 begin

153 o_wb_adr <= ’h0;
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154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

o_wb_sel <= "hO;

o_wb_we <=

"hO;

o_wb_cyc <= "hO;
o_wb_stb <= "h0;
state = START;

end
end
end
Ml:
begin
if (i_.wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_.wb_we <=
o_wb_cyc <=
o_wb_stb <
o_-wb_dat <=
state = M2;
end
end
M2:
begin
if (i—_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_wb_stb <=
o_-wb_dat <=
state = M3;
end
end
M3:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o-wb_we <=
o_wb_cyc <=
o_-wb_stb <=
o_wb_dat <=
state = M4,
end
end
M4
begin
if (i-wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_.wb_we <=
o_wb_cyc <=

‘FLINADR ;
16’ h0f00;
1;
1;
1
{‘FLIN1, ‘FLINI, ‘FLINI, ‘FLIN1 };

‘FLOUTADR ;
16 hf000;
1;
L
1;
{ ‘FLOUTI, ‘FLOUTI1, ‘FLOUTI, ‘FLOUT1 };

‘FLOPTADR;
16 h000f;
1;
1;
1;
{ ‘FLOPT1, ‘FLOPT1, ‘FLOPT1, ‘FLOPT1 };

0;

0;

0;
0;

o_wb_stb <= 0;
o_wb_dat <= 0;
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211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

end

if(i-irq)

begin// Set all
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_wb_stb <=
o_wb_dat <=
state = MS;

end

end
M5:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc
o_wb_stb
o_-wb_dat <=
end
if(i-irq)
state = M6;
end
S1:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_wb_stb <
o_-wb_dat <=
state = S2;
end
end
S2:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_-wb_stb <=
o_wb_dat
state =
end
end
S3:
begin
if (i-wb_ack)

S3;

at once
‘FLOPTADR ;
16> hffff;
1;

1

1;
‘FLALL ;

‘SLINADR +
16> h00f0;
1;

1;

L;

{“SLIN2, “SLIN2, ‘SLIN2, ‘SLIN2};

‘SLINADR +
16 h0f00;
L;

1

1;

"h4;

’h8;

<= {‘SLIN3, ‘SLIN3, ‘SLIN3, ‘SLIN3 };
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268
269
270
271
272
273
274
275
276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

begin
o_wb_adr <=
o_wb_sel <=
o-wb_we <=
o_wb_cyc <=
o_wb_stb <=
o_wb_dat <=
state = S4;
end
end
S4:
begin
if (i-wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o.wb_we <=
o_wb_cyc <=
o_wb_stb <=
o_-wb_dat <=
state = S5;
end
end
S5:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_wb_stb <=
o_wb_dat <=
end
if (i-irq)
begin//read al
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_-wb_stb <=
state = S6;
end
end
S6:
begin
if (i_wb_ack)
begin
o_wb_adr <=
o_wb_sel <=
o_wb_we <=
o_wb_cyc <=
o_wb_stb <=
state = S7;
end
end
S7:

‘SLINADR + ’hC;
16 hf000;
1;
1;
1;
{*SLIN4, *SLIN4, *SLIN4,

‘SLOPTADR;
16> hf000;
1
1;
1;
{‘SLOPT, ‘SLOPT, ‘SLOPT,

1
‘SLOUTADR ;
16° hffff;

0

B

1
1;

‘SLOUTADR ;
16> h000f;
0;

1

L;

“SLIN4 };

‘SLOPT};
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325 begin

326 if (i_wb_ack)

327 begin

328 o_wb_adr <= ‘SLOUTADR + ’h4;
329 o_wb_sel <= 16h00f0;
330 o_wb_we <= 0;

331 o_wb_cyc <= 1;

332 o_wb_stb <= 1;

333 state = S8;

334 end

335 end

336 S8:

337 begin

338 if (i_wb_ack)

339 begin

340 o_wb_adr <= ‘SLOUTADR + ’h§;
341 o_wb_sel <= 16" h0f00;
342 o.wb_we <= 0;

343 o_wb_cyc <= 1;

344 o_wb_stb <= 1;

345 state = S9;

346 end

347 end

348 S9:

349 begin

350 if (i-wb_ack)

351 begin

352 o_wb_adr <= ‘SLOUTADR + ’'hC;
353 o_wb_sel <= 16’ hf000;
354 o.wb_we <= 0;

355 o_wb_cyc <= 1;

356 o_wb_stb <= 1;

357 state = Sa;

358 end

359 end

360 Sa:

361 begin

362 if (i_wb_ack)

363 begin

364 o_wb_adr <= 0;

365 o_wb_sel <= 0;

366 o.wb_we <= 0;

367 o_wb_cyc <= 0;

368 o_wb_stb <= 0;

369 o_wb_dat <= 0;

370 end

371 end

372 endcase

373 end

374 | end

375

376

377

378

379 | endmodule

Listing 6: accelerator_.dummy.v
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‘timescale 1ns / 1ps

TITTTEELE i rr i i i i i i i i i i rrr g

/1 Company :
// Engineer:

// Create Date: 15:04:21 04/15/2014

// Design Name:

// Module Name: acc_.dummy
// Project Name:

// Target Devices:

// Tool versions:

/! Description:

// Dependencies:
// Revision:

// Revision 0.01 — File Created
// Additional Comments:

NN NN NN NNy,

module acc_dummy_6_6(

input i_clk ,
input i_rst ,
input i_start ,
input [31:0] i—opt,
output reg o_rdy ,

input [31:0] acc_-in_0,
input [31:0] acc-in_1,
input [31:0] acc.in_2,
input [31:0] acc-in_3,

input [31:0] acc.in_4,

input [31:0] acc.in_5,
output reg [31:0] acc-out_0,
output reg [31:0] acc_out_1,
output reg [31:0] acc-out_2,
output reg [31:0] acc_out_3,
output reg [31:0] acc-out_4,
output reg [31:0] acc_out.5
)3

reg [31:0] counter;
reg [31:0] input_buffer [0:5];
reg start_state;
always @(posedge i-clk or posedge
begin

if(i_rst)

begin

counter = 'hO;

acc_out_0 = ’hO;
acc_out_1 = "hO;
acc_out_2 = "hO;
acc_out_3 = "hO;
acc_out_4 = "hO;
acc_out_5 = "hO0;

i_rst)
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56 o_rdy = ’hO;

57 start_state = ’hO;

58 end

59 else if(start_state) //TODO: warning, possible bug, start state more
important then start_i

60 begin

61 if (counter > 0)

62 begin

63 counter = counter — 1;

64 o_rdy = ’hO;

65 end

66 else

67 begin

68 acc_out_0 = input_buffer[0];

69 acc_out_-1 = input_buffer[1];

70 acc_out_2 = input_buffer[2];

71 acc_out-3 = input_buffer[3];

72 acc_out-4 = input_buffer[4];

73 acc_out_5 = input_buffer[5];

74 counter = 0;

75 o_rdy = 1;

76 start_state = 0;

77 end

78 end

79 else if(i_start)

80 begin

81 counter = i_opt;

82 input_buffer[0] = acc_in_0;

83 input_buffer[1] = acc_.in_1;

84 input_buffer[2] = acc_.in_2;

85 input_buffer [3] = acc_-in_3;

86 input_buffer[4] = acc_.in_4;

87 input_buffer [5] = acc_.in_5;

88 o_rdy = 0;

89 start_state = 1;

90 end

91 else

92 o_rdy = 0;

93 end

94

95 | endmodule

96

97 | module acc_dummy_-5_3(

98 input i_clk ,

99 input i_rst ,

100 input i_start ,

101 input [31:0] i—opt,

102 output reg o_rdy ,

103 input [31:0] acc_-in_0,

104 input [31:0] acc-in_1,

105 input [31:0] acc.in_2,

106 input [31:0] acc-in_3,

107 input [31:0] acc_.in_4,

108 output reg [31:0] acc-out_0,

109 output reg [31:0] acc_out_1,

110 output reg [31:0] acc_out.2

111 )
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112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

reg [31:0] counter;

reg [31:0] input_buffer [0:4];

reg start_state;

always @(posedge i_clk or posedge i_rst)

begin
if(i_rst)
begin
counter = 'hO;
acc_out_0 = "hO;
acc_out_1 = "hO;

acc_out_2 = "hO;
o_rdy = "hO;
start_state = ’hO;
end
else if(start_state) //TODO: warning, possible bug,
important then start_i

begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy = ’hO;
end
else
begin
acc_out_-0 = input_buffer[0] + input_buffer[3];

acc_out_1 = input_buffer[1] + input_buffer[4];
acc_out-2 = input_buffer[2] + input_buffer[1];
counter = 0;
o_rdy = 1;
start_state = 0;
end
end
else if(i_start)
begin
counter = i_opt;
input_buffer[0]
input_buffer[1]
input_buffer[2] acc_in_2;
input_buffer[3] acc_-in_3;
input_buffer[4] = acc_.in_4;

acc_in_0;
acc_in_1;

o_rdy = 0;
start_state = 1;
end
else
o_rdy = 0;
end
endmodule

module acc_dummyV2_6_6(

input i_clk ,
input i_rst ,
input i_start ,
input [31:0] i—opt,
output reg o_rdy ,

start

state more
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168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

input [31:0] acc.in_0,
input [31:0] acc_.in_1,
input [31:0] acc_-in_2,
input [31:0] acc-in_3,

input [31:0] acc.in_4,

input [31:0] acc-in_5,
output reg [31:0] acc_out_0,
output reg [31:0] acc_out_1,
output reg [31:0] acc_out_2,
output reg [31:0] acc_out_3,
output reg [31:0] acc-out_4,
output reg [31:0] acc_out.5
)

reg [31:0] counter;

reg [31:0] input_buffer [0:5];

reg start_state;

always @(posedge i-clk or posedge i_rst)

begin

if(i_rst)

begin
counter = 'hO;
acc_out_0 = "hO;
acc_out_1 = "hO;
acc_out_2 = "hO;
acc_out_3 = "hO;
acc_out_4 = "hO;
acc_out-5 = ’hO;
o_rdy = "hO;
start_state = ’'hO;

end

else if(start_state) //TODO: warning, possible bug,
important then start_i

begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy = ’hO;
end
else
begin

acc_out_-0 = input_buffer[0];
acc_out_1 input_buffer[1];
acc_out_2 input_buffer[2];
acc_out_3 input_buffer [3];
acc_out_4 input_buffer[4];
acc_out_5 input_buffer [5];
counter =
o_rdy = 1;
start_state = 0;
end
end
else if(i_start)
begin
counter = i_opt;
input_buffer [0] = acc-in_0 + acc-in_1;

(<]

start

state more
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224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280

input_buffer[1] = acc_in_1
input_buffer[2] = acc_in_2
input_buffer[3] = acc_in_3
input_buffer[4] = acc_-in_4
input_buffer[5] = acc_.in_5

o_rdy = 0;
start_state = 1;
end
else
o_rdy = 0;
end
endmodule
module acc_dummy_4_4(
input i_clk ,
input i_rst ,
input i_start ,
input [31:0] i_opt,
output reg o_rdy ,

input [31:0] acc.in_0,
input [31:0] acc-in_1,
input [31:0] acc.in_2,
input [31:0] acc.in_3,

output [31:0] acc_out_0,
output [31:0] acc-out_1,
output [31:0] acc_out_2,
output [31:0] acc-out_3
)
assign acc_out_-0 = acc_-in_-0 &
assign acc_out_1 acc_in_1 &
assign acc_out_2 acc_in_2 &
assign acc_out-3 acc_in_3 &

always @(posedge i-clk)
o_rdy = li_start;
endmodule

module acc_.dummyV2_4_4(

input i_clk ,
input i_rst,
input i_start ,
input [31:0] i_opt,
output reg o_rdy ,

input [31:0] acc.in_0,
input [31:0] acc_.in_1,
input [31:0] acc_-in_2,
input [31:0] acc-in_3,

output reg [31:0] acc-out_0,
output reg [31:0] acc_out_1,
output reg [31:0] acc-out_2,
output reg [31:0] acc_out_3

)

+ acc_.in_2;
— acc_in_3;
+ acc_.in_4;
— acc_in_5;
+ acc_in_0;

i_opt;
i_opt;
i_opt;
i_opt;
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281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

reg [31:0] counter;

reg [31:0] input_buffer [0:5];

reg start_state;
always @(posedge i_clk or posedge
begin
if(i_rst)
begin
counter = 'hO;
acc_out_0 = "hO;
acc_out_1 = "hO;
acc_out_2 = "hO;
acc_out_3 = ’hO;
o_rdy = ’hO;
start_state = ’"hO;
end
else if(start_state) //TODO:
important then start_i
begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy = "hO;
end
else
begin
acc_out_0 = input_buffer[0]
acc_out_-1 = input_buffer[1]

acc_out_2 = input_buffer[2]
acc_out-3 = input_buffer[3]
counter = 0;
o_rdy = 1;
start_state = 0;
end
end
else
begin
counter = i_opt;
input_buffer[0]
input_buffer[1]
input_buffer[2]
input_buffer[3] =
o_rdy = 0;
start_state = 1;
end
else
o_rdy = 0;

if(i_start)

acc_in_0;
acc_in_1;
acc_in_2;
acc_in_3;

end
endmodule

module acc_dummy_1_4(

input i_clk ,
input i_rst ,
input i_start ,
input [31:0] i—opt,

i_rst)

warning ,

+

possible bug,

input_buffer[1];
input_buffer[2];
input_buffer[1];
input_buffer [0];

start

state more
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337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364
365
366
367
368
369
370
371
372
373
374
375

output
input

reg

[31:0]
[31:0]
[31:0]
[31:0]

output
output
output
output

reg
reg
reg
reg

)

reg [31:0] counter;
reg [31:0]

input_buffer

o_rdy ,
[31:0] acc_in_

0,

acc_out_0 ,
acc_out_1,
acc_out_2 ,
acc_out_3

[0:5];

reg start_state;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
counter = 'hO;
acc_out_0 = "hO;
acc_out_1 = "hO;
acc_out_2 = "hO;
acc_out_3 = "hO;
o_rdy = "hO;
start_state = ’"hO;
end
else if(start_state) //TODO: warning, possible bug, start
important then start_i
begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy = "hO;
end
else
begin
acc_out_0 = input_buffer[0];
acc_out_-1 = input_buffer[1];

acc_out_2 =

input_buffer[2];

acc_out-3 = input_buffer[3];

counter = 0;
o_rdy = 1;

start_state = 0;

end
end
else
begin
counter = i_opt;
input_buffer [0] =
input_buffer[1] =

if(i_start)

input_buffer[2] =
input_buffer[3] =
o_rdy = 0;
start_state = 1;
end
else
o_rdy = 0;

acc_in_0 x 2;
acc_in_0 + 8;
acc_in_0 — 4;
acc_in_0;

state

more
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393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

end

endmodule

module acc_.dummyV3_4_1(

input i_clk ,
input i_rst ,
input i_start ,
input [31:0] i—opt,
output reg o_rdy ,

input [31:0] acc_-in_0,
input [31:0] acc-in_1,
input [31:0] acc.in_2,
input [31:0] acc-in_3,
output reg [31:0] acc_out_0
)

reg [31:0] counter;
reg [31:0] input_buffer [0:3];
reg start_state;
always @(posedge i_clk or posedge i_rst)
begin

if(i-rst)

begin

counter = 'hO;

acc_out_0 <= "hO0;
o_rdy <= "hO;

start_state = ’“hO;
end
else if(start_state)
begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy <= ’hO;
end
else
begin

acc_out_-0 <= input_buffer[0] + input_buffer[l] + input_buffer[2] +
input_buffer [3];

counter = i_-opt;
o_rdy <= 1;
end
end
else if(i_start)
begin
counter = i_opt;

input_buffer [0] = acc-in_0;

input_buffer[1] = acc_.in_1;
input_buffer [2] = acc-in_2;
input_buffer[3] = acc_.in_3;
o_rdy <= 0;
start_state = 1;

end

else
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449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

o_rdy <= 0;
end

endmodule

module acc_.dummyV2_4_1(

input i_clk ,
input i_rst,
input i_start ,
input [31:0] i_opt,
output reg o_rdy ,

input [31:0] acc.in_0,
input [31:0] acc.in_1,
input [31:0] acc.in_2,
input [31:0] acc.in_3 ,
output reg [31:0] acc-out-0
)

reg [31:0] counter;
reg [31:0] counter2;
reg [31:0] input_buffer [0:3];
reg start_state;
always @(posedge i_clk or posedge
begin
if(i-rst)
begin
counter = 'hO;
counter2 = 'hO;
acc_out_0 = "hO;
o_rdy <= ’hO;
start_state = ’hO;
end
else if(start_state)
begin
if (counter < i_opt )
begin
counter = counter +1;
counter2 = counter2 +1;
o_rdy <= ’hO;
end
else
begin
acc_out_.0 =
counter = 0;
o_rdy <= 1;
end
end
else if(i_start)
begin
counter = 0;
counter2 = 'hO;
input_buffer [0] = acc_-in_0;
input_buffer[1] = acc_.in_1;
input_buffer [2] = acc_.in_2;
input_buffer[3] = acc-in_3;

counter?2;

i_rst)
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506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

o_rdy <= 0;
start_state = 1;
end
else
o_rdy <= 0;
end
endmodule

module acc_dummy_2_2(

input i_clk ,
input i_rst,
input i_start ,
input [31:0] i_opt,
output reg o_rdy ,

input [31:0] acc.in_0,

input [31:0] acc_-in_1,
output reg [31:0] acc-out_0,
output reg [31:0] acc_out_1
)

reg [31:0] counter;
reg [31:0] input_buffer [0:5];
reg start_state;
always @(posedge i_clk or posedge i_rst)
begin

if(i_rst)

begin

counter = 'hO;

acc_out_0 = "hO;
acc_out_1 = "hO;
o_rdy = "hO;
start_state = ’"hO;
end
else if(start_state) //TODO: warning,
important then start_i
begin
if (counter > 0)
begin
counter = counter — 1;
o_rdy = ’hO;
end
else
begin
acc_out_0 = input_buffer[0];
acc_out_-1 = input_buffer[1];
counter = 0;
o_rdy = 1;
start_state = 0;
end
end
else if(i_start)
begin
counter = i_opt;
input_buffer[0] = acc_in_0;
input_buffer[1] = acc-in_1;

possible bug,

start

state

more
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562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

o_rdy = 0;
start_state = 1;
end
else
o_rdy = 0;
end
endmodule

module acc_dummy_1_1(

input i_clk ,
input i_rst,

input i_start ,
input [31:0] i_opt,
output reg o_rdy ,

input [31:0] acc.in_0,
output reg [31:0] acc-out_0
)

always @(posedge i-clk)
begin
if(i_rst)
begin
acc_out_.0 = "hO;
o_rdy = ’hO;
end
else
begin
if (o_rdy)
o_rdy = 0;
if(i_start)
begin
acc_out_0 = acc_in_0;
o_rdy = 1;
end
end
end

endmodule

module acc_.dummy_3_1(

input i_clk ,
input i_rst,

input i_start ,
input [31:0] i-opt,
output reg o_rdy ,

input [31:0] acc.in_0,
input [31:0] acc_.in_1,
input [31:0] acc_-in_2,
output reg [31:0] acc-out-0
)

always @(posedge i_clk)
begin
if(i_rst)
begin
acc_out_.0 = "hO;
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619 o_rdy = ’hO;
620 end

621 else

622 begin

623 if (o_rdy)
624 o_rdy = 0;
625 if (i_start)
626 begin

627 acc_out_0 = acc_in_0;
628 o_rdy = 1;
629 end

630 end

631 end

632

633 | endmodule
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.2 Appendix B: Tile Generator and Template Files

Listing 7: tileGenerator.py

import sys, getopt, os

def main(argv):

ifType = *°

moduleName = "’

inputsN = 0

outputsM = 0

amber25Path = ”../units/amber/hw/vlog/amber25/”
amberTilePath = ”../tiles/amber_tile/”
TilesPath = ”../ tiles/”

outputPath = ../ tiles/amber_tile_"”

try :

opts, args = getopt.getopt(argv, ht:m:i:o:’)
except getopt.GetoptError:
print ("ERROR, lacking options, Script exited.”)
print(’tileGenerator.py —t <interfacetype (coproc, slave, floop)> —-m <
Module name> —i <nr of input ports> —o <nr of output ports >’)
sys.exit(2)

if len(opts) < 4:
print ("ERROR, lacking options, Script exited.”)
print(’tileGenerator.py —t <interfacetype (coproc, slave, floop)> —m <
Module name> —i <nr of input ports> —o <nr of output ports >’)
sys.exit(2)

for opt, arg in opts:
if opt == "—h’:
print(’tileGenerator.py —t <interfacetype (coproc, slave, floop)> —m
<Module name> —i <nr of input ports> —o <nr of output ports >’)
sys.exit()
elif opt =="—t":
ifType = arg
elif opt =="—m":
moduleName = arg
elif opt == "—i":
inputsN = int(arg)
elif opt == "—0":
outputsM = int(arg)
print( ’Interface type is 7’, ifType, ’7’)
print( “Accelerator module is ”’, moduleName, ’”’)
print( ’number of input ports is:’, inputsN)
print( ’number of output ports is:’, outputsM)
#creating tile

H#EH S HH R R
#H## coproc IF generate #H##
H#H#EH S S S

if ifType == ”coproc”:
outputPath = outputPath + “coprocIFM_.” + moduleName + 7/”
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if not os.path.exists(outputPath):
os.makedirs (outputPath)

if not os.path.exists(outputPath + ”/a25_placeholder/”):
os.makedirs (outputPath + ”/a25_placeholder/”)

#creating tile files

#tileregs .v

sourceFile = open(amberTilePath + "tile_regs.v”, ”r”)
oFile = open(outputPath + “tile_regs.v”, "w”)

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()

#amber_wrapper.v
sourceFile = open(amberTilePath + “amber_wrapper.v”, 7r”
oFile = open(outputPath + “amber_wrapper-” + moduleName +”.v”,

#find // ACCTAGMOD
for line in sourceFile:
if ”//ACCTAGMOD” in line:
break
oFile. write (line)

)

oFile . write ("module amber_wrapper_-” + moduleName + “\n”)
#find // ACCTAGMODDONE
for line in sourceFile:
if ”//ACCTAGMODDONE” in line:
break

#find // ACCTAGSYS
for line in sourceFile:
if ”//ACCTAGSYS” in line:
break
oFile . write (line)

»

oFile . write ("\ tamber_system_-" + moduleName + “\n”)
#find //ACCTAGSYSDONE
for line in sourceFile:
if ”//ACCTAGSYSDONE” in line:
break

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()

#amber_tile . vhd
sourceFile = open(amberTilePath + "amber_tile.vhd”, "r”)
oFile = open(outputPath + “amber_tile.” + moduleName +”.vhd”,

w”)

“w”)
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

#find —ACCTAGENT
for line in sourceFile:

if "——ACCTAGENT” in line:

break
oFile . write (line)

oFile . write (”entity amber_tile_

#find —ACCTAGENTDONE
for line in sourceFile:

2

+ moduleName + 7 is\n”)

if "——ACCTAGENT” in line:

break

#find —ACCTAGENTEND
for line in sourceFile:

if "——ACCTAGENTEND” in

break
oFile . write (line)

oFile. write (”end amber_tile_

oFile . write (" architecture

7)

#find —ACCTAGENTENDDONE

for line in sourceFile:

if "——ACCTAGENTENDDONE”

break

#find —ACCTAGWRA
for line in sourceFile:

line :

”»

+ moduleName + “;\n\n”)

”»

rtl of amber_tile_

in line:

if "——ACCTAGWRA” in line:

break
oFile. write (line)

oFile . write ("amber_u: amber_wrapper_

#find —ACCTAGWRADONE
for line in sourceFile:
if "——ACCTAGWRADONE”
break

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()

#amber_system .v

in

»

+ moduleName + ”\n”)

line :

sourceFile = open(amberTilePath + “amber_system.v”, "r”

oFile = open(outputPath + “amber_system_

#find //ACCTAGSYSINST
for line in sourceFile:
if ”//ACCTAGSYSINST”
break
oFile. write(line)

in

i

+ moduleName +”.v”,

line:

+ moduleName + ” is\n\n

w”)
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164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

”»

oFile . write ("module amber_system_” + moduleName + ”\n”)
#find //ACCTAGSYSINSTDONE
for line in sourceFile:
if ”//ACCTAGSYSINSTDONE” in line:
break

#find //ACCTAGCORE
for line in sourceFile:
if ”//ACCTAGCORE” in line:
break
oFile. write (line)

”

oFile . write (”a25_core_” + moduleName + “\n”)
#find //ACCTAGCOREDONE
for line in sourceFile:
if ”//ACCTAGCOREDONE” in line:
break

for line in sourceFile:
oFile . write (line)
#creating coprocessor file

sourceFile = open(amber25Path + “a25_coprocessor.v”, ”r”)

templateFile = open(”templates/coproc.TEMP.v”, 7r”

oFile = open(outputPath + “a25_placeholder/a25_coprocessor_-” +
moduleName +7.v”, "w”

wireOutName = “wire [31:0] acc_out_”

#find //ACCTAGDEF
for line in sourceFile:
if ”//ACCTAGDEF” in line:
break
oFile . write (line)

#ACCTAGDEF found

oFile . write (”// Script generated defines \n”)

oFile . write (" “define ACC.INPUTS\t\t” + str(inputsN) + ”\n”)
oFile . write (" “define ACC.OUTPUTS\t\t” + str(outputsM) + “\n\n")

oFile . write ("module a25_coprocessor-” + moduleName + "\n”)
#skip until next tag, no write
#find //ACCTAGMOD
for line in sourceFile:
if ”//ACCTAGMOD” in line:
break
#find //ACCTAGINST
for line in sourceFile:
if ”//ACCTAGINST” in line:
break
oFile . write (line)

#ACCTAGINST found
#Moving to template file
#find #0

124




220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

for line in templateFile:
if 7#0” in line:
break
oFile . write (line)

# #0 found
for i in range (outputsM):
oFile . write ("\ t”+ wireOutName + str(i) +”;\n”)

#find #1
for line in templateFile:
if 7#1” in line:
break
oFile . write (line)

# #1 found
oFile . write(”\t” + moduleName +

”»

accelerator (\n”)

#find #2
for line in templateFile:
if ”#2” in line:
break
oFile . write (line)

# #2 found

for i in range (inputsN):
oFile . write ("\t.acc_in-

for i in range (outputsM):
oFile . write ("\t.acc_out_

”

+ str(i) +” (acc_in["+ str(i) +71).\n")

i

+ str(i) +” (acc_out.” + str(i))

if i == (outputsM — 1):
oFile . write (")\n"”)
else:

oFile . write () ,\n”)

#find #3
for line in templateFile:
if ”#3” in line:
break
oFile . write (line)

# #3 found, end of section
#moving back to sourcefile
#find //ACCTAGREGW
for line in sourceFile:
if ”//ACCTAGREGW” in line:
break
oFile . write (line)

#ACCTAGREGW found
#Moving to template file
#find #4
for line in templateFile:
if ”"#4” in line:
break
oFile . write (line)

# #4 found
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271
278
279
280
281
282
283
284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

332

for i in range (outputsM):
oFile . write ("\ tacc_out[” + str(i) +7] <= acc_out_.” + str(i) + ";\n”)

for line in templateFile:
oFile . write (line)

sourceFile.close ()
templateFile.close ()

oFile.close ()

# Generate compatible amber_core

sourceFile = open(amber25Path + “a25_core.v”, "r”)
oFile = open(outputPath + “a25_placeholder/a25_core_.” + moduleName +”.
v, W)

#find //ACCTAGCOPROC
for line in sourceFile:
if ”//ACCTAGCOPROC” in line:
break
oFile . write (line)

”

oFile . write ("a25_coprocessor.” + moduleName +” u_coprocessor ( \n”)
for line in sourceFile:
oFile. write(line)

sourceFile.close ()
oFile.close ()

print (”Done!”)
print (”Your verilog files can be found in the output folder”)

HEHHH R AR R R
### slave IF generate #H##
HEHFHHHHHH R R R R R R R

elif ifType == "slave”:
outputPath = outputPath + ”slavelFM_” + moduleName + ”/”
if not os.path.exists(outputPath):
os.makedirs (outputPath)

if not os.path.exists(outputPath + ”/a25_placeholder/”):
os.makedirs (outputPath + ”/a25_placeholder/”)

#creating tile files

#tileregs .v

sourceFile = open(amberTilePath + “tile_regs.v”, "r”)
oFile = open(outputPath + “tile_regs.v”, "w”)

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()
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333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
371
378
379

#amber_wrapper.v
sourceFile = open(amberTilePath + “amber_wrapper.v”, "r”)
oFile = open(outputPath + “amber_wrapper.” + moduleName +7.v”,

#find // ACCTAGMOD
for line in sourceFile:
if ”//ACCTAGMOD” in line:
break
oFile. write (line)

3

oFile . write ("module amber_wrapper-” + moduleName + "\n”)
#find // ACCTAGMODDONE
for line in sourceFile:
if ”//ACCTAGMODDONE” in line:
break

#find // ACCTAGSYS
for line in sourceFile:
if ”//ACCTAGSYS” in line:
break
oFile . write (line)

>

oFile . write (”\ tamber_system_" + moduleName + ”\n”)
#find //ACCTAGSYSDONE
for line in sourceFile:
if ”//ACCTAGSYSDONE” in line:
break

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()

#amber_tile . vhd
sourceFile = open(amberTilePath + “amber_tile.vhd”, "r”)
oFile = open(outputPath + “amber_tile.” + moduleName +”.vhd”,

#find —ACCTAGENT
for line in sourceFile:
if "——ACCTAGENT” in line:
break
oFile . write (line)

”»

oFile . write ("entity amber_tile_” + moduleName + ” is\n”)
#find —ACCTAGENTDONE
for line in sourceFile:
if "——ACCTAGENT” in line:
break

#find —ACCTAGENTEND
for line in sourceFile:
if "——ACCTAGENTEND” in line:
break

»

w”)

29

w”)
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390
391
392
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

oFile . write (line)

oFile. write ("end amber_tile-” + moduleName + ”;\n\n”)
oFile . write (" architecture rtl of amber_tile-” + moduleName + ” is\n\n

)

#find —ACCTAGENTENDDONE
for line in sourceFile:
if "——ACCTAGENTENDDONE” in line:
break

#find —ACCTAGWRA
for line in sourceFile:
if "——ACCTAGWRA” in line:
break
oFile . write (line)

2

oFile . write ("amber_u: amber_wrapper-” + moduleName + "\n”)

#find —ACCTAGWRADONE
for line in sourceFile:
if "——ACCTAGWRADONE” in line:
break

for line in sourceFile:
oFile. write(line)

sourceFile.close ()
oFile.close ()

### Generate slave IFM

sourceFile = open(amberTilePath + “amber_system.v”, "r”)
templateFile = open(”templates/slave_.TEMP.v”, 7r”
oFile = open(outputPath + ”slave_-” + moduleName +”.v”,
wireOutName = “wire [31:0] acc_out_”

w”)

#find #0
for line in templateFile:
if ”#0” in line:
break
oFile . write (line)

#0 found

oFile . write (”// Script generated defines \n”)
oFile. write (” “define ACCINPUTS\t\t” + str(inputsN) + ”\n”)
oFile . write (" “define ACC.OUTPUTS\t\t” + str(outputsM) + “\n\n")

oFile . write ("module IFM_slave-” + moduleName + "\n”)

#find #1
for line in templateFile:
if ”#1” in line:
break
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446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487
488
489

490
491
492
493
494
495
496
497
498
499
500

oFile . write (line)

#1 found

for i in range (outputsM):
oFile . write ("\ t”+ wireOutName + str(i) +”;\n”)

oFile . write ("\n")

oFile . write ("\ t” + moduleName +

2

accelerator(\n”)

#find #2
for line in templateFile:
if ”#2” in line:
break
oFile . write (line)

#2 found
for i in range(inputsN):
oFile . write ("\t.acc_in_
for i in range (outputsM):
oFile . write ("\t.acc_out.” + str(i) +” (acc_out.” + str(i))
if i == (outputsM — 1):
oFile . write (")\n”)
else:
oFile . write () ,\n")

»

+ str(i) +” (acc-in[”+ str(i) +7]),\n”)

#find #3
for line in templateFile:
if ”#3” in line:
break
oFile . write (line)

#3 found
for i in range (outputsM):
oFile. write (”\ t\tacc_out[” + str(i) +7] <= acc_out_” + str(i) + 7;\n

)

for line in templateFile:
oFile . write (line)

oFile.close ()
templateFile.close ()
### slave IFM generation completed

#generate new amber_system file
templateFile = open(”templates/slave_sys_.TEMP.v”, ”r”
oFile = open(outputPath + “amber_system_slave_-” + moduleName +”.v”, "w

)

#find //ACCTAGSYSINST
for line in sourceFile:
if ”//ACCTAGSYSINST” in line:
break
oFile . write (line)

#find //ACCTAGSYSINSTDONE
for line in sourceFile:
if ”//ACCTAGSYSINSTDONE” in line:
break
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501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

2

oFile . write ("module amber_system_slave._

#find //ACCTAGINST
for line in sourceFile:
if ”//ACCTAGINST” in line:
break
oFile . write (line)

#move past lines not to be written
#find //ACCTAGINSTDONE
for line in sourceFile:
if ”//ACCTAGINSTDONE” in line:
break

#move to template file
#find #0
for line in templateFile:
if ”#0” in line:
break
oFile . write (line)

#0 found
oFile. write (”\t” +”IFM_slave_"+ moduleName +

#find #1
for line in templateFile:
if ”#1” in line:
break
oFile . write (line)

#1 found
#move to source file
#find //ACCTAGSTBRST
for line in sourceFile:
if ”//ACCTAGSTBRST” in line:
break
oFile . write (line)

oFile . write (” wb_stb_acc = 0;\n”)

#find //ACCTAGSTB
for line in sourceFile:
if ”//ACCTAGSTB” in line:
break
oFile . write (line)

for line in templateFile:
oFile . write (line)

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
templateFile.close ()
oFile.close ()

”»

+ moduleName + "\n”)

u_acc_if_slave (\n”)
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558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

print (”Done!”)

print (”Your verilog files can be found in the output folder”)
H##t#### R
#H## master IF generate #H##

####

elif ifType == "floop”:

outputPath = outputPath + "floopIFM_.” + moduleName + 7/”
if not os.path.exists(outputPath):
os.makedirs (outputPath)

if not os.path.exists(outputPath + ”/a25_placeholder/”):
os.makedirs (outputPath + ”/a25_placeholder/”)

#creating tile files
#tileregs .v
sourceFile = open(amberTilePath + “tile_regs.v”, "r”)

»

oFile = open(outputPath + “tile_regs.v”, "w”)

for line in sourceFile:
oFile . write (line)

sourceFile.close ()
oFile.close ()

#amber_wrapper.v
sourceFile = open(amberTilePath + “amber_wrapper.v”, "r”)
oFile = open(outputPath + “amber_wrapper_.”

#find // ACCTAGMOD
for line in sourceFile:
if ”//ACCTAGMOD” in line:
break
oFile . write (line)

5

oFile . write ("module amber_wrapper-” + moduleName + "\n”)
#find // ACCTAGMODDONE
for line in sourceFile:
if ”//ACCTAGMODDONE” in line:
break

#find // ACCTAGSYS
for line in sourceFile:
if ”//ACCTAGSYS” in line:
break
oFile . write (line)

>

oFile . write(”\ tamber_system_” + moduleName + ”\n”)
#find //ACCTAGSYSDONE
for line in sourceFile:
if ”//ACCTAGSYSDONE” in line:
break

for line in sourceFile:
oFile . write (line)

+ moduleName +7.v”,

w”)
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615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

sourceFile.close ()
oFile.close ()

#amber_tile .vhd
sourceFile = open(amberTilePath + “amber_tile.vhd”, "r”)
oFile = open(outputPath + ”"amber_tile.” + moduleName +”.vhd”, "w”)

#find —ACCTAGENT
for line in sourceFile:
if "——ACCTAGENT” in line:
break
oFile . write (line)

”»

oFile . write ("entity amber_tile-” + moduleName + ” is\n”)
#find —ACCTAGENTDONE
for line in sourceFile:
if "——ACCTAGENT” in line:
break

#find —ACCTAGENTEND
for line in sourceFile:
if "——ACCTAGENTEND” in line:
break
oFile. write(line)
oFile.write ("end amber_tile_”
oFile . write (" architecture rtl of amber_tile_

)

+ moduleName + ”;\n\n")
” + moduleName + ” is\n\n

#find —ACCTAGENTENDDONE
for line in sourceFile:
if "——ACCTAGENTENDDONE” in line:
break

#find —ACCTAGWRA
for line in sourceFile:
if "——ACCTAGWRA” in line:
break
oFile . write (line)

oFile . write ("amber_u: amber_wrapper-” + moduleName + "\n”)
#find —ACCTAGWRADONE
for line in sourceFile:
if ”——ACCTAGWRADONE” in line:
break

for line in sourceFile:
oFile . write(line)

sourceFile.close ()
oFile.close ()

### Generate For loop IFM
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671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

724
725

#1

”»

templateFile = open(”templates/floop.TEMP.v”, "r”
oFile = open(outputPath+”floop_.” + moduleName +”.v”,
wireName = "\ twire [31:0] buf_acc.”

2

w”)

oFile . write ("module IFM_floop.” + moduleName + “\n™)

#find #0
for line in templateFile:
if ”"#0” in line:
break
oFile . write (line)

#0 found
oFile . write (”// script generated output wires\n”)
for i in range (inputsN):
oFile . write (wireName +”in_" +str(i)+7;\n")
for i in range (outputsM):
oFile . write (wireName +”out_"+str(i)+";\n")

oFile . write ("\n")
oFile . write ("\ twbm_buffer.” + moduleName + ” wbm_buffer(\n”)

#find #1
for line in templateFile:
if 7#1” in line:
break
oFile . write (line)

for i in range (inputsN):
oFile. write ("\t\t.acc_in-" + str(i) 47 (buf_acc_in_"+ str(i) +7),\n
)
for i in range (outputsM):
oFile . write ("\ t\t.acc_out_-” + str(i) +” (buf_acc_out-” + str(i))
if i == (outputsM — 1):
oFile . write (")\n"”)
else:
oFile . write () ,\n”)

oFile. write("\'t);\n")
oFile . write ("\n")
oFile . write ("\ t” + moduleName +

”»

accelerator(\n”)

#find #2
for line in templateFile:
if 7#2” in line:
break
oFile . write (line)

#2
for i in range (inputsN):
oFile . write ("\ t\t.acc_in_” + str(i) +” (buf_acc_in_"+ str(i) +”),\n
»)
for i in range (outputsM):
oFile . write ("\ t\t.acc_out-

»

+ str(i) +” (buf_acc_out.” + str(i))
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726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
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758
759
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762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
771
778
779
780
781
782

if i == (outputsM — 1):
oFile . write (")\n™)
else:
oFile . write () ,\n")

for line in templateFile:
oFile . write (line)

###Floop IFM finished!

oFile.close ()
templateFile.close ()

### generating wb buffer
oFile = open(outputPath +”wb_buffer_.” + moduleName +”.v”, "w”)
templateFile = open(”templates/wb_buffer TEMP.v”, "r”

oFile.write (”//Script generated defines \n”)
oFile . write (" “define ACC.IINPUTS\t\t” + str(inputsN) + "\n”)
oFile. write (” “define ACC.OUTPUTS\t\t” + str(outputsM) + “\n\n”)

if (inputsN > 4):

oFile . write (" “define OUTQUEUESIZE\t\t” + str(inputsN=x2) + "\n”)
else:

oFile. write (” “define OUTQUEUESIZE\t\t” + str(8) + ”\n”)

if (outputsM > 4):

oFile . write (" “define INQUEUESIZE\t\t” + str (outputsM=2) + "\n\n")
else:

oFile . write (" “define INQUEUESIZE\t\t” + str(8) + ”\n\n”)

”»

oFile . write ("module wbm_buffer.” + moduleName + ”\n”)
#find #0
for line in templateFile:
if ”#0” in line:
break
oFile . write (line)
#0
for i in range (inputsN):
oFile. write (”\ toutput reg\t[31:0]\ tacc_in_" + str(i) +”,\n”)
for i in range (outputsM):
oFile. write (”\ tinput\t\t[31:0]\ tacc_out_” + str(i))
if i == (outputsM — 1):
oFile . write ("\n"™)
else:
oFile . write (”,\n")

#find #1
for line in templateFile:
if 7#1” in line:
break
oFile . write (line)

#1
for i in range (inputsN):
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784
785
786
787
788
789
790
791
792

793
794
795
796
797
798
799
800
801
802
803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

oFile . write ("\ t\t\t\t\tacc_.in_" + str(i) +” <= input_fifo[” + str(i)
+ ”];\nﬂ)

#find #2
for line in templateFile:

if "#2” in line:

break

oFile . write (line)
#2
for i in range (outputsM):

oFile . write ("\ t\t\t\t\toutput_buffer[” + str(i) + "] = acc-out-” +

str(i) + 7;\n7)

for line in templateFile:
oFile . write (line)

###wb buffer completed!

oFile.close ()
templateFile.close ()

### generating amber_system

oFile = open(outputPath +”amber_system_Floop._
)

templateFile = open(”templates/Floop_sys. TEMP.v”, "r”)

2

+ moduleName +7.v”, ”w

#find #0
for line in templateFile:
if 7#0” in line:
break
oFile. write (line)

»

oFile . write ("module amber_system_floop_” + moduleName + “\n”)
#find #1
for line in templateFile:
if 7#1” in line:
break
oFile . write (line)

oFile . write ("\ tIFM_floop-” + moduleName + ” IFM_floop\n™)
for line in templateFile:
oFile . write (line)

###Floop IFM finished!

oFile.close ()

templateFile.close ()

print ("Done!”)

print (”Your verilog files can be found in the output folder”)

##Unknown ifType

else:
print ("ifType not recognized”)

main(sys.argv[1:])
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Listing 8: coproc _.TEMP.v

// start of generated section from template file
reg [31:0] acc-in [0:( “ACC.INPUTS — 1)];

reg [31:0] acc_out[0:( “ACC.OUTPUTS — 1)];

reg [31:0] acc_opt;

wire acc_poll;

#0

reg acc._start;
wire acc_rdy;
integer 1i;

assign acc_poll = ((!acc_start) & (acc_rdy || acc_poll));

#1
cicclk (i-clk),
ci_rst (i_rst),
.i_start (acc_start),
.i_opt (acc_opt),
.o_rdy (acc.rdy),

#2

)3

//end of generated section
#3
/111 start of generated section from template file

always @(posedge acc_rdy)
begin
#4
end

always @ ( posedge i-clk )

if(i_rst)

begin
cache_control <= 3°b000;
cacheable_area <= 32’h0;
updateable_area <= 32°h0;
disruptive_area <= 32°h0;
acc_start <= "hO;

end

else

begin
if (acc_start)

acc_start <= 0;

if ( li_core_stall )

begin
if ( i_copro_operation == 2°d2 )
if (i_copro_num == ’dl14) //TAG.ACC
begin
if (i—.copro_crn == 4’hf)
begin
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acc_opt <= i_copro_write_data[31:0];
acc_start <= 1;
end

if (i-copro_crn <= (“ACC.NPUTS))
acc_in[i_copro_crn] <= i_copro_write_data[31:0];
end
else
case ( i-copro_crn )
4°d2: cache_control <= i_copro_write_data[2:0];
4°d3: cacheable_area <= i_copro_write_data[31:0];
4°d4: updateable_area <= i_copro_write_data[31:0];
4°d5: disruptive_area <= i_copro_write_data[31:0];
endcase
end
end

// Flush the cache

assign coprolS5S_regl_write = li_core_stall && i_-copro_operation == 2°d2 &&
i_copro_crn == 4’dl && i_copro_num == ’dl15;

/1

// Register Reads

/1l

always @ ( posedge i-clk )
if ( li_core_stall )

if (i_copro_num == ’dl14)//TAG.ACC
begin
if (i_copro_crn == 4’hf)
o-copro_read_data <= {31°b0,acc_poll};
else
o_copro_read_data <= acc_out[i_copro_crn];
end
else
case ( i-copro_crn )
4°d0: o_copro_read_data <= 32°h4156.0300;
4°d2: o_copro_read_data <= {29°d0, cache_control };
4°d3: o_copro_read_data <= cacheable_area;
4°d4: o_copro_read_data <= updateable_area;
4°d5: o_copro_read_data <= disruptive_area;
4°d6: o_copro_read_data <= {24°d0, fault_status };
4°d7: o_copro_read_data <= fault_address;
default: o_copro_read_data <= 32°d0;
endcase
endmodule

Listing 9: Floop_sys_.TEMP.v

/L

I

/l Title : Amber system

/!l Project : SHMAC

/L

/! File : amber_system_<acc module>.v

/! Author : Asbjorn Djupdal <djupdal@idi.ntnu.no>, edited by
Marton Teilgard

/1 for module generation
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/!l Created

// Last modified

/L

06.09.2013
?77.06.2014

I

// Description
// interrupt
/1l

/L

Wishbone based system containing CPU,
controller and tile

timer ,
register

I

/1 Copyright (c) 2013 by ARM/CARD

/i

I

// Modification history

/1 ?7?7.07.2013

/L

created

I

‘include ”common_defs.v”
#0

#(
parameter tile_x = 4’b0,
parameter tile_y = 4’b0,
parameter cpu-id = 8’ hff

)

(
input wire i_clk ,
input wire i_rst,
input wire i_irq ,
input wire i_system_rdy ,
output wire [31:0] o_wb_adr,
output wire [15:0] o_wb_sel,
output wire o_wb_we ,
input wire [127:0] i_-wb_dat,
output wire [127:0] o_wb_dat,
output wire o_wb_cyc,
output wire o_wb_stb ,
input wire i_wb_ack ,
input wire i_wb_err,
output wire o_ld_excl
)5

[IEPEEEr i i i i rrrrrrrrrry

wire
wire
wire [31:0]
wire [15:0]
wire
wire [127:0]

irq;
firq;

in0_o_wbm_adr;
in0_o_wbm_sel ;

in0_o_wbm_we ;

in0_o_wbm_dat ;
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109
110
111
112
113
114
115

wire in0_o_wbm_cyc;
reg in0_o_wbm_stb ;

wire [127:0]

in0_i_wbm_dat;

wire [31:0] acc_o_wbm_adr;
wire [15:0] acc_o_wbm_sel;
wire acc_o_wbm_we;

wire [127:0] acc_o_wbm_dat;
wire acc_o_wbm_cyc;
wire acc_o_wbm_stb;

wire [127:0]

reg [127:0]
wire [127:0]
wire [127:0]
wire [127:0]
wire [127:0]

acc_i-wbm_dat;

wb_dat_r_cpu;
wb_dat_r_tileregs;
wb_dat_r_timer;
wb_dat_r_irq;
wb_dat_r_acc;

reg wb_ack_cpu;

wire wb_ack_tileregs;

wire wb_ack_timer ;

wire wb_ack_irq;

wire wb_ack_acc;

reg wb_err_cpu;

wire wb_err_tileregs ;

wire wb_err_timer ;

wire wb_err_irq;

wire wb_err_acc;

wire wb_stb_cpu;

reg wb_stb_tileregs ;

reg wb_stb_timer;

reg wb_stb_irq;

reg wb_stb_acc;

wire [2:0] irq_timers;

wire irq-acc;

wire [31:1] int_sources ;

wire [31:0] tile_base = ‘TILE_.BASE;
wire [15:0] tilereg = ‘TILE_REGS;
wire [15:0] timer_mod = ‘TIMER;
wire [15:0] int_ctrl = ‘INT_.CTRL;
wire [15:0] acc = ‘ACC;

LELITEELLEE i i i i i i i i i rrrrrry

a25_core u_amber

(
.i_clk
Li_rst

Li-irq

(i-clk),
(i_rst),

(irq),
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116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

.i-firq (firq),

.i_system_rdy (i_system_rdy),

.o_wb_adr (in0_o_wbm_adr) ,
.o_wb_sel (in0_o_wbm_sel) ,
.0o_wb_we (in0_o_wbm_we) ,
.i_wb_dat (wb_dat_r_cpu),
.o_wb_dat (in0_o_wbm_dat) ,
.o_wb_cyc (in0_o_wbm_cyc),
.0o_wb_stb (wb_stb_cpu),
.i_wb_ack (wb_ack_cpu),
.i_wb_err (wb_err_cpu),
.o_ld_excl (o_ld_excl)
)
tile_regs
#(

.WBDWIDTH (128),
.WB_SWIDTH (16) ,
Ltile_x (tile_x),
Ltile_y (tile-y),
.cpu_id (cpu.id)
)
u_tile_regs

(

ci-celk (i-clk),
ci_rst (i-rst),

.i_wb_adr (in0O_o_wbm_adr),
.i_wb_sel (in0_o_wbm_sel),
.i_wb_we (in0_o_wbm_we) ,
.o_wb_dat (wb_dat_r_tileregs),
.i_wb_dat (inO_o_wbm_dat),
.i_wb_cyc (in0.o_wbm_cyc),
.i-wb_stb (wb_stb_tileregs),
.o_wb_ack (wb_ack_tileregs),
.o_wb_err (wb_err_tileregs)

)3

timer_module
#(
.WBDWIDTH (1238),
.WB_SWIDTH (16)
)
u_timer
(
.i_clk (i_clk),
ciorst (i-rst),

.i_wb_adr (in0_.o_wbm_adr),
.i_wb_sel (inO_o_wbm_sel),
.i_wb_we (in0_o_wbm_we),
.o_wb_dat (wb_dat_r_timer),
.i_wb_dat (inO_o_wbm_dat),
.i-wb_cyc (inO_o_wbm_cyc),
.i_wb_stb (wb_stb_timer),
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173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

.o_wb_ack (wb_ack_timer),
.o_wb_err (wb_err_timer),
.o_timer_int (irq-timers)

)3

interrupt_controller
#(
.WBDWIDTH (128),
.WB_SWIDTH (16)
)
u_irq-ctrl
(
cicclk (i-clk),
ci_rst (i_rst),

.i_wb_adr (inO_o_wbm_adr),
.i_wb_sel (in0_o_wbm_sel),

.i_wb_we (in0_o_wbm_we) ,
.o_wb_dat (wb_dat_r_irq),

.i_wb_dat (inO_o_wbm_dat),
.i_wb_cyc (in0_o_wbm_cyc),

.i-wb_stb (wb_stb_irq),
.o_wb_ack (wb_ack_irq),
.o_wb_err (wb_err_irq),

.o_irq (irq),
.o_firq (firq),

)3

.i-clk (i-clk),
ciorst(i-rst),
.o_irq(irq-acc),
.o_wbm_adr(acc_o_wbm_adr),
.o_.wbm_sel (acc_o_wbm_sel) ,
.o_.wbm_we (acc_o_wbm_we) ,
.i-wbm_dat(acc_i-wbm_dat) ,
.o_wbm_dat(acc_o_wbm_dat) ,
.o_wbm_cyc(acc_o_.wbm_cyc),
.o_wbm_stb (acc_o_wbm_stb) ,
.i_wbm_ack (acc_i_wbm_ack),
.i_wbm_err(acc_i_wbm_err) ,
.i_wbs_adr (in0O_o_wbm_adr),

.i_wbs_sel (inO_o_wbm_sel),

.i_wbs_we (in0O_o_wbm_we) ,

.i_int_sources (int_sources)

)

.o_wbs_dat (wb_dat_r_acc),
.i_wbs_dat (inO_o_-wbm_dat),
.i_wbs_cyc (in0.o_wbm_cyc),
.i_wbs_stb (wb_stb_acc),
.o_wbs_ack (wb_ack_acc),
.o_wbs_err (wb_err_acc)

wb_arbiter u_arbiter (
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ciorst(i-rst),
.o_wbm_adr(o_wb_adr),
.o_.wbm_sel(o_wb_sel),
.o_.wbm_we (o_wb_we) ,
.i_wbm_dat(i_wb_dat),
.o_wbm_dat(o_wb_dat) ,
.o_.wbm_cyc(o_wb_cyc),
.o_.wbm_stb(o_wb_stb) ,
.i_wbm_ack (i_wb_ack),
.i_wbm_err(i-wb_err),
.in0_o_wbm_adr(in0_o_wbm_adr) ,
.in0_o_wbm_sel (in0_o_wbm_sel) ,
.in0_o_wbm_we (in0_o_wbm_we) ,
.in0_i_wbm_dat(inO_i_wbm_dat),
.in0_o_wbm_dat(in0O_o_wbm_dat) ,
.in0_o_wbm_cyc (in0_o_wbm_cyc) ,
.in0_o_wbm_stb (inO0_o_wbm_stb) ,
.inO_i_wbm_ack (inO_i_wbm_ack) ,
.inO_i_wbm_err(in0_i_wbm_err),
.inl_o_wbm_adr(acc_o_.wbm_adr) ,
.inl_o_wbm_sel (acc_o_wbm_sel),
.inl_o_wbm_we (acc_o.wbm_we) ,
.inl_i_wbm_dat(acc_i_wbm_dat),
.inl_o_wbm_dat(acc_o_wbm_dat) ,
.inl_o_wbm_cyc(acc_o_.wbm_cyc),
.inl_o_wbm_stb(acc_o_wbm_stb) ,
.inl_i_wbm_ack (acc_i_-wbm_ack) ,
.inl_i_wbm_err (acc_i_wbm_err)

)

[IEPLEEEr i i i i i rrrrrrrrrry

assign int_sources = {26°b0,irq-acc, irq-timers, i-irq};

always @x begin
// default is router

wb_dat_r_cpu = inO_i_wbm_dat;
wb_ack_cpu = in0O_i_wbm_ack;
wb_err_cpu = inO_i_wbm_err;

in0_o_wbm_stb = wb_stb_cpu;
wb_stb_tileregs = 0;
wb_stb_timer = 0;
wb_stb_irq = 0;

wb_stb_acc = 0;

// override default for local wishbone addresses
if (in0_o_wbm_adr[31:16] == tile_base[31:16]) begin
case (in0_o_wbm_adr[15:12])
tilereg [15:12]: begin

wb_dat_r_cpu = wb_dat_r_tileregs;
wb_ack_cpu = wb_ack_tileregs;
wb_err_cpu = wb_err_tileregs;

in0O_o_wbm_stb = 0;
wb_stb_tileregs = wb_stb_cpu;
end
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timer_mod [15:12]: begin

wb_dat_r_cpu = wb_dat_r_timer;
wb_ack_cpu = wb_ack_timer;
wb_err_cpu = wb_err_timer;

in0_o_wbm_stb = 0;

wb_stb_timer = wb_stb_cpu;

end

int_ctrl[15:12]: begin

wb_dat_r_cpu = wb_dat_r_irq;
wb_ack_cpu = wb_ack_irq;
wb_err_cpu = wb_err_irq;

in0O_o_wbm_stb = 0;

wb_stb_irq = wb_stb_cpu;

end

acc[15:12]: begin

wb_dat_r_.cpu = wb_dat_r_acc;
wb_ack_cpu = wb_ack_acc;
wb_err_cpu = wb_err_acc;

in0_o_wbm_stb = 0;

wb_stb_acc = wb_stb_cpu;

end
endcase
end
end
endmodule
Listing 10: floop_.TEMP.v
(
input i_clk ,
input i_rst ,
output reg o_irq ,
// Wishbone Master I/F
output [31:0] o_wbm_adr,
output [15:0] o_wbm_sel ,
output o_wbm_we ,
input [127:0] i_wbm_dat ,
output [127:0] o_wbm_dat ,
output o_wbm_cyc,
output o_wbm_stb ,
input i_wbm_ack ,
input i_wbm_err ,
// wishbone Slave IF
input [31:0] i_wbs_adr ,
input [15:0] i_wbs_sel ,
input i_wbs_we ,
output reg [127:0] o_wbs_dat ,
input [127:0] i_wbs_dat ,
input i-wbs_cyc,
input i_wbs_stb ,
output reg o_wbs_ack ,
output reg o_wbs_err
)
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// statelist
localparam IDLE = 4°h0,

REC = 4°hl,
ADRS = 4’h2,
FETCH = 4°h3,
CALC = 4’h4,
STORE = 4’h5,
IRQ = 4°h6;
// control registers
reg [31:0] options ;
reg [31:0] main_i;
reg [31:0] in_adr;
reg [31:0] out_adr;
reg [3:0] state ;
reg reset_buffer;

// accelerator control
reg acc_start;

wire acc._rdy;

wire [31:0] acc_-opt;

// wishbone master buffer IF
reg [31:0] buf_input_adr;
reg [31:0] buf_output_adr;
reg buf_set_adr;

reg buf_read_input;

reg buf_write_output;

reg buf_last_read;

wire buf_stall;

wire buf_rst;

#0
.i_clk (i-clk),
.i_rst(buf_rst),
.i_input_adr(in_adr),
.i_output_adr (out_adr),
.i_set_adr(buf_set_adr),
.i_read_input(buf_read_input),
.i_write_output(buf_write_output),
.i_last_read (buf_last_read),
.o_stall(buf_stall),
.o_wbm_adr(o_wbm_adr) ,
.o_.wbm_sel (o_wbm_sel) ,
.o_wbm_we (o_wbm_we) ,
.i_wbm_dat(i_-wbm_dat) ,
.o_wbm_dat (o_wbm_dat) ,
.o_wbm_cyc(o_wbm_cyc),
.o_wbm_stb (o_wbm_stb) ,
.i_wbm_ack (i_wbm_ack) ,
.i_wbm_err(i_wbm_err) ,
#1
.i_clk (i-clk),
ci_rst (i_rst),
.i_start (acc_start),
.i_opt (options),
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.o_rdy (acc.rdy),
#2
)3
//assign signals
assign buf_rst = i_rst

| reset_buffer;

//main operation

always @(posedge i-clk)

begin

if(i-rst)
begin

o_wbs_dat <= "hO;
o_wbs_ack <= ’hO0;
o_wbs_err <= "h0;
options <= 'hO0;
main_i <= "h0;
in_adr <= ’h0;
out_adr <= ’h0;
state = IDLE;
//wb buffer reset
reset_buffer <= 0;
buf_input_adr <= ’hO;
buf_output_adr <= "hO;
buf_set_adr <= ’h0O;
buf_read_input <= "hO;
buf_write_output <= ’hO;
buf_last_read <= "hO;

end//reset
else
begin
case(state)
IDLE:
begin
o.irq <= 0;
reset_buffer <= 0;
buf_last_read <= 0;
if (i_.wbs_stb)
state = REC;
end
REC:
begin
if (i_.wbs_stb)
begin
if (lo_wbs_ack)
begin
if(i_wbs_adr[11:4] == 8°h00)
begin
if(i_wbs_sel [3])
begin
options <= i_wbs_dat[31:0];
buf_set_adr <= 1;
state = ADRS;
end
if(i_wbs_sel[7])
main_i <= i_-wbs_dat[63:32];
if (i_wbs_sel[11])
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in_adr <= i_wbs_dat[95:64];
if (i_wbs_sel[15])
out_adr <= i_wbs_dat[127:96];
o_wbs_ack <= 1;
end
end
else
o_wbs_ack <= 0;
end
else
o_wbs_ack <= 0;
end//rec
ADRS:
begin
buf_set_adr <= 0;
o_wbs_ack <= 0;
if (! buf_stall)

begin
buf_read_input <= 1;
if (main_i == 1)

buf_last_read <= 1;
state = FETCH;
end
end //ADRS
FETCH:
begin
if (! buf_stall)
if (buf_read_input)
buf_read_input <= 0;
else
begin
acc_start <= 1;
state = CALC;
end
end //FETCH
CALC:
begin
acc_start <= 0;
if (acc_rdy)
begin
buf_write_output <= 1;
main_i <= main_i —1;
state = STORE;
end
end //CALC
STORE:
begin
if (buf_write_output)
buf_write_output <= 0;
else
begin
if (main_i == 0)
state = IRQ;
else if (main_.i == 1)
begin
if (!buf_stall)
begin
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buf_read_input <= 1;
buf_last_read <= 1;
state = FETCH;
end
end
else
begin
buf_read_input <= 1;
state = FETCH;

end
end
end //STORE
IRQ:
begin
if (!buf_stall)
begin
reset_buffer <= 1;
o_irq <= 1;
state = IDLE;
end
end //IRQ
endcase
end//normal op
end// @i_clk
endmodule
Listing 11: slave_sys_ TEMP.v
wire [127:0] wb_dat_r_acc;
wire wb_ack_acc;
wire wb_err_acc;
reg wb_stb_acc;
wire irq-acc;
wire [15:0] acc = ‘ACC;
assign int_sources = {26°b0,irq_acc, irq-timers, i_-irq};

#0

.i_clk (i-clk),

ci_rst(i_rst),

.i_wb_adr (o_wb_adr),
.i_wb_sel (o_wb_sel),
.i_wb_we (o_wb_we),
.o_wb_dat (wb_dat_r_acc),
.i_wb_dat (o_wb_dat),
.i-wb_cyc (o-wb_cyc),
.i_wb_stb (wb_stb_acc),
.o_wb_ack (wb_ack_acc),
.o_wb_err (wb_err_acc),

.o.irq (irq-acc)

#1

acc[15:12]: begin
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wb_dat_r_cpu = wb_dat_r_acc;

wb_ack_cpu = wb_ack_acc;
wb_err_cpu = wb_err_acc;
o_wb_stb = 0;

wb_stb_acc = wb_stb_cpu;

end

Listing 12: slave_ TEMP.v

NN NNy

/1 /1
// Slave Interface Module /1]
/1 /1
// Description /1

// This is a generated Accelerator interface module connected //
// To the Amber Cores wishbone interface in the SHMAC system /1

/1l /1
/! Author(s): /1
/1 — Marton Teilgard , mteilgard@gmail .com /1

11/ /1

TILILELTE i i i i i i rrrrrrrr

‘include ”common_defs.v”

//ACC IF parameters generated

#0

(
input i_clk ,
input i_rst ,
input [31:0] i_wb_adr,
input [15:0] i_wb_sel ,
input i_wb_we ,
output reg [127:0] o_wb_dat,
input [127:0] i_wb_dat ,
input i_wb_cyc,
input i_wb_stb ,
output o_wb_ack ,
output o_wb_err,

output o_irq

)

reg [31:0] acc-in [0:( “ACCINPUTS — 1)];
reg [31:0] acc_out[0:( “ACC.OUTPUTS — 1)];
reg [31:0] acc-opt;

reg acc._start;

wire acc_rdy;

assign o_irq = acc_rdy;
// Output wires generated
#1

cioclk (i-clk),
ci_rst (i_rst),
.i_start (acc_start),
.i_opt (acc_opt),
.o_rdy (acc.rdy),

148



#2

// Wishbone interface
wire wb_start_write ;
wire wb_start_read ;

reg wb_start_read_dl = ’d0;

/1]
// Wishbone Interface
/1]

// Can’t start a write while a read is completing. The ack for the
cycle

// needs to be sent first

assign wb_start_write = i_wb_stb && i_wb_we && !wb_start_read_dl1;

assign wb_start_-read = i_-wb_stb && !i_wb_we && !o_wb_ack;

always @( posedge i_-clk or posedge i_rst) begin

if(i_rst)
wb_start_read_d1l <= 1°b0;
else
wb_start_read_dl <= wb_start_read;
end
assign o_wb_err = 1°d0;
assign o_wb_ack = i-wb_stb && ( wb_start_write || wb_start_-read_dl

always @(posedge acc_rdy)
begin
#3
end
11
// Register Writes
11/
always @( posedge i_clk or posedge i_rst) begin
if(i_rst)
begin//ACC IF generate this list

acc_start <= "hO0;

end
else
begin
if (acc_start)
acc_start <= 0;
if ( wb_start_write && !i_wb_adr[11])
begin
if(i_wb_sel [3])
acc_in[{i-wb_adr[10:4],2°b00}] <= i_wb_dat[31:0];
if (i-wb_sel[7])
acc_in[{i_wb_adr[10:4], 2°b01}] <= i_wb_dat[63:32];
if (i_wb_sel[11])
acc_in[{i-wb_adr[10:4], 2°b10}] <= i_wb_dat[95:64];
if (i_wb_sel[15])
begin
if (i-wb_adr[10:2] == 9’ hlff)
begin

re

ad
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acc_opt <= i_-wb_dat[127:96];
acc_start <= 1;

end
else
acc_in[{i-wb_adr[10:4], 2°bl1}] <= i_wb_dat[127:96];
end
end
end
end
/1]
// Register Reads
/1]
always @( posedge i_clk or posedge i_rst ) begin
if(i_rst)
o_wb_dat <= 127’h0;
else
begin
if ( wb_start_read && i_-wb_adr[11])
begin
if (i_wb_sel[3])
o_-wb_dat[31:0] <= acc-out[{i-wb_adr[10:4],2°b00}];
if(i_wb_sel[7])
o-wb_dat[63:32] <= acc_out[{i-wb_adr[10:4],2°b01}];
if(i_wb_sel[11])
o.wb_dat[95:64] <= acc_out[{i-wb_adr[10:4],2°b10}];
if (i_-wb_sel[15])
o-wb_dat[127:96] <= acc_out[{i_wb_adr[10:4],2 bl1}];
end
else
o_-wb_dat[127:0] <= 128°b0;
end
end
endmodule

Listing 13: wb_arbiter TEMP.v

‘timescale Ins / 1ps

LITPLEEEEEr i r i i r i r i r i i r i rrrrrrrrrrr g

// Company :

// Engineer:

11/

/! Create Date: 16:52:09 05/03/2014

// Design Name:

// Module Name: wb_arbiter

// Project Name:

// Target Devices:

/!l Tool versions:

// Description: This is a basic two input, one output round robin wishbone
master

// arbiter. It checks on start and end of cycle on the wb_cyc signals of
the two

// masters, and therefore it supports multi—read/write—cycle operations
without interrupting

// the transfer.
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70
71

/1
/1
/1
11/
/1
11/

Dependencies :

Revision:
Revision 0.01 — File Created
Additional Comments:

LITPLEEEEEr i r i b b rrr i r i r i r i rrrrrrrrrrr g

module wb_arbiter (

input i_rst,

// Wishbone Master I/F

output [31:0] o_wbm_adr ,
output [15:0] o_wbm_sel,
output o_wbm_we ,
input [127:0] i_wbm_dat ,
output [127:0] o_wbm_dat ,
output o_-wbm_cyc,
output o_wbm_stb ,
input i_wbm_ack ,
input i_wbm_err ,
//in0

input [31:0] in0_o_wbm_adr ,

input [15:0]

output [127:0] in0_i_wbm_dat
input [127:0] in0_o_wbm_dat ,
input in0_o_wbm_cyc
input in0_o_wbm_stb
output in0_i_wbm_ack
output in0_i_wbm_err
//inl

input [31:0] inl_o_wbm_adr
input [15:0] inl_o_wbm_sel

input inl_o_wbm_we ,
inl_i_wbm_dat

output [127:0]

in0_o_wbm_sel ,
input in0_o_wbm_we ,

input [127:0] inl_o_wbm_dat ,
input inl_o_wbm_cyc,
input inl _o_.wbm_stb ,
output inl_i_wbm_ack ,
output inl_i_wbm_err
reg sel;

reg cycO;

reg cycl;

wire cyc;

// outputs

assign o_wbm_adr = (sel) ? inl_o_wbm_adr
assign o_wbm_sel = (sel) ? inl_o_wbm_sel
assign o.wbm_we = (sel) ? inl_o_wbm_we
assign o_wbm_dat = (sel) ? inl_o_wbm_dat
assign o_wbm_cyc = (sel) ? inl_o_wbm_cyc

in0_o_wbm_adr;
in0_o_wbm_sel ;
in0_o_wbm_we ;
in0_o_wbm_dat;
in0_o-wbm_cyc;
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assign o_wbm_stb =

//inputs

assign in0_-i_wbm_dat =
assign inl_i_wbm_dat =
assign inO_i_wbm_.ack =
assign inl_i_wbm_ack =
assign inO_i_wbm_err =
assign inl_i_wbm_err =

(sel)
(sel)
(sel)
(sel)
(sel)
(sel)
assign cyc = cyc0 || cycl;
always @«
if(i_rst)
begin
sel <= 0;
cycl <= 0;
cycl <= 0;
end
else
begin
if (lcyc)
begin
if (in0_o_wbm_cyc)
begin
sel <= 0;
cycl <= 1;
end
if (inl_o_wbm_cyc)
begin
sel <= 1;
cycl <= 1;
end
end
else
begin
if (cyc0)
begin
if (!inO_o_wbm_cyc)
if (inl_o_wbm_cyc)
begin
sel <= 1;
cycl <= 1;
end
else
cycO <= 0;
end
if (cycl)
begin
if (!linl_o_wbm_cyc)
if (in0_o_wbm_cyc)

begin
sel <= 0;
cycl <= 1;
end
else
cycl <= 0;

(sel) ? inl_o_wbm_stb

in0_o_wbm_stb;

127°h0 i-wbm_dat;
i_wbm_dat: 127’h0;
0 : i_wbm_ack;
i_wbm_ack: 0;
0 : i_wbm_err;
i_wbm_err: O;
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end
end
end
endmodule

Listing 14: wb_buffer TEMP.v

(

input i-clk ,
input i_rst,

input [31:0] i_input_adr ,

input [31:0] i_output_adr ,

input i_set_adr ,

input i_read_input ,

input i_write_output ,

input i_last_read ,

output o_stall ,

// wishbone IF here

output reg [31:0] o_wbm_adr,

output reg [15:0] o-wbm_sel ,

output reg o_wbm_we ,

input [127:0] i_wbm_dat ,

output [127:0] o_wbm_dat ,

output reg o_wbm_cyc,

output reg o_wbm_stb ,

input i_wbm_ack ,

input i_wbm_err ,

//script generated interface

#0

)

//regs

reg [31:0] input_adr;

reg [31:0] output_adr;

reg [31:0] output_buffer [0: ACC.OUTPUTS—1];
reg [31:0] output_fifo [0: ‘OUTQUEUESIZE—1];
reg [31:0] input_fifo [0: “INQUEUESIZE—1];
reg [31:0] read_buffer [0:3];

reg [31:0] write_buffer [0:3];

integer out_i; //TODO generate size of these?
integer in_i;

reg new_dataout;

reg new_datain ;

reg read ;

reg first_read ;

reg read_stall;

reg write_stall ;

reg write ;

integer 1i;

assign o_stall = read_stall || write_stall;
assign o_wbm_dat [31:0] = write_buffer[0];
assign o_wbm_dat [63:32] = write_buffer[1];
assign o_wbm_dat [95:64] = write_buffer[2];
assign o_wbm_dat [127:96] = write_buffer[3];
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always @(posedge i_clk or posedge i_rst)
begin
if (i-rst)
begin

for (i=0; i<‘ACCOUTPUTS; i=i+l)
output_buffer[i] = "hO;

for (i=0; i<4; i=i+1)
write_buffer[i] = "hO;

for (i=0; i<‘OUTQUEUESIZE; i=i+1)
output_fifo[i] = "hO;

for (i=0; i<‘INQUEUESIZE; i=i+1)
input_fifo[i] = "hO;

out_i = ’h0;

in_i = "hO;

new_dataout = "hO;

new_datain = “hO;

read_stall = ’hl;

write_stall = "hO;

read = *hO;

first_read = "hO;

input_adr = "hO;

output_adr = ’hO;

//wb rst

o_wbm_adr <= ’h0;

o_wbm_sel <= "h0;

o_wbm_we <= 'hO0;

o_wbm_cyc <= 'h0;
o_wbm_stb <= "hO0;
write = "hO;
end// rst
else
begin
if(i_set_adr)
begin
input_adr = i_input_adr;

output_adr =
read_stall
read = 1;
first_read
end
else if
begin
if (i_read_input)
begin
#1
for(i = 0; i <
input_fifo[i] =
in_i = in_i — ‘ACC.INPUTS;
read_stall = 1;
end //read input
if (i_write_output)
begin
write_stall
new_dataout
#2
end// write out
end//if not stalls

i_output_adr;
13

1;

(lo_stall)

1;
1;

‘INQUEUESIZE—‘ACC_INPUTS; i =
input_fifo[i+‘ACC_LNPUTS ];

i+1)
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

else// stalls

begin
if (write_stall)
begin
if (new_dataout)
begin
for(i = 0; i < ‘ACC.OUTPUTS; i = i+1)
begin
output_fifo[out_i] = output_buffer[i];
out_i = out_i + 1;
end
new_dataout = 0;

end // new dataout
if (write)
begin
// write to wbm
if (o.wbm_stb == 0)
begin
o_wbm_adr <= output_adr;
o-wbm_sel <= 16" hffff;
o.wbm_cyc <= 1;
o_wbm_stb <= 1;
o_wbm_we <= 1;
end// strobe ==
else if (i_wbm_ack)

begin
output_adr = output_adr + ’hl0;
write = 0;

for (i=0; i<4; i=i+1)
write_buffer[i] = "hO;
o_wbm_adr <= 32°h0000;
o_wbm_sel <= 16’h0000;
o_wbm_cyc <= 0;
o_wbm_stb <= 0;
o_.wbm_we <= 0;
end// ack
end// write
else if(out_i > 3)
begin
for(i = 0; i < 4; i = 1i+1)
write_buffer[i] = output_fifo[i];
for(i = 0; i < ‘OUTQUEUESIZE—4; i = i+1)
output_fifo[i] = output_fifo[i+4];

out_i = out_i — 4;
write = 1;
end
else if(i-last_read)
begin

case(out_i)

hO: write_stall = 0;

"hl:

begin
write_buffer [0] = output_fifo[O0];
write_buffer[1] 32°h0;
write_buffer[2] = 32°h0;
write_buffer [3] 32°h0;
write = 1;

155




165 end

166 *h2:

167 begin

168 write_buffer [0] = output_fifo[O0];
169 write_buffer[1] = output_fifo[1l];
170 write_buffer[2] = 32°h0;

171 write_buffer[3] = 32°h0;

172 write = 1;

173 end

174 "h3:

175 begin

176 write_buffer [0] = output_fifo[O0];
177 write_buffer[1] = output_fifo[1l];
178 write_buffer[2] = output_fifo[2];
179 write_buffer[3] = 32°h0;

180 write = 1;

181 end

182 endcase

183 out_i = 0;

184 end//last_read

185 else

186 write_stall = 0;

187 end// o_write _stall

188 else //o_read_stall

189 begin

190 if(first_read)

191 begin

192 if (read)

193 begin

194 if (!o_wbm_stb)

195 begin

196 o_wbm_adr <= input_adr;

197 o_wbm_sel <= 16" hffff;

198 o_wbm_cyc <= 1;

199 o_wbm_stb <= 1;

200 o.wbm_we <= 0;

201 end//! strobe

202 else if(i_wbm_ack)

203 begin

204 o_wbm_adr <= 0;

205 o_-wbm_sel <= 16°h0;

206 o_wbm_cyc <= 0;

207 o_wbm_stb <= 0;

208 o.wbm_we <= 0;

209

210 read_buffer[0] = i_wbm_dat[31:0];
211 read_buffer[1] = i_-wbm_dat[63:32];
212 read_buffer[2] = i_wbm_dat[95:64];
213 read_buffer[3] = i_wbm_dat[127:96];
214 input_adr = input_adr + ’hl0;

215 new_datain = 1;

216 read = 0;

217 end

218

219 end// read

220 else if(new_datain)

221 begin
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222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

for(i = 0; i < 4; 1 =1+ 1)

begin
input_fifo[in_i] = read_buffer[i];
in_i = in_i + 1;

end

new_datain = 0;

if (in_i >= ‘ACCINPUTS || i-last_read)
read_stall = 0;
else
read = 1;
end
else if(in_.i < ‘ACCINPUTS)
read = 1;
else
read_stall = 0;
end// first read
end// read_stall
end//else stalls
end// rst else
end//posedge i_-clk

endmodule
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.3 AppendixC: Area calculations

Table 1: Area calculations for Coprocessor IFM

Module Nr of slice registers | Nr of slice luts

coproc IFM with acc 4 4 IO 460 183
coproc IFM with acc 4 1 10 364 102
coproc IFM with acc 1 4 10 364 214
base size 204 | 116,3333333333
size of one input 32 | -10,3333333333
size of one output 32 27

Table 2: Area calculations for Slave IFM

Module Nr of slice registers | Nr of slice luts
Slave IFM with acc 4 4 1O 418 301
Slave IFM with acc 4 1 IO 322 208
Slave IFM with acc 1 4 IO 322 234
base size 162 | 87,6666666667
size of one input 32 | 22,3333333333
size of one output 32 31
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Table 3: Area calculations for For loop IFM

Module Nr of slice registers | Nr of slice luts

Floop IFM with acc 4 4 10 1301 3162
floop IFM with acc 4 1 IO 1204 1516
floop IFM with acc 1 4 10 1205 3174
base size 1043,6666666667 | 983,3333333333
size of one input 32 -4
size of one output 32,3333333333 | 548,6666666667
wb_arbiter 3 444
Constant for size calc Nr of slice registers | Nr of slice luts

base size 1046,67 1427,33
size of one input 32,00 -4,00
size of one output 32,33 548,67
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