
Implementation of the Epileptic Seizure
Prediction Algorithm on the SHMAC
Platform

Sunniva Nergaard Berg

Electronics System Design and Innovation

Supervisor: Per Gunnar Kjeldsberg, IET

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

Problem Description

Candidate name: Sunniva Nergaard Berg

Thesis title: Implementation of the Epileptic Seizure Prediction Algorithm on the

SHMAC Platform

Problem Description

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) is an ongoing re-

search project within the Energy Efficient Computing Systems (EECS) strategic research

area at NTNU. SHMAC is planned to run in an FPGA and be an evaluation platform

for research on heterogeneous multi-core systems. Due to battery limitations and the

so called Dark silicon effect, future computing systems in all performance ranges are ex-

pected to be power limited. The goal of the SHMAC project is to propose software and

hardware solutions for future power-limited heterogeneous systems.

An existing algorithm for epileptic seizure prediction is going to be mapped on the

SHMAC platform. An important part of this algorithm is calculation of a Short-Term

maximum Lyapunov exponent (STLmax). There currently exist several versions of this

STLmax calculation, both in Matlab and in C, and at different levels of optimization,

e.g., floating point and fixed point versions.

The main parts of this assignment are as follows:

� Study the epileptic seizure prediction algorithm and its STLmax calculation.

� Study different approaches found in the literature for mapping of algorithms on

heterogeneous platforms consisting of general processing units and hardware accel-

erators.

� Adapt the STLmax calculation to the SHMAC single instruction set architecture

and run it on a general SHMAC processing tile.

� Select one or more kernels in the STLmax calculation and adapt the general pro-

cessing tile for its efficient execution.

� Evaluate performance and energy gains achieved as well as area overhead.

Supervisor: Per Gunnar Kjeldsberg

Abstract

This study concerns mapping of the Epileptic Seizure Prediction Algorithm to the SHMAC

platform by analysing the algorithm and designing specialized hardware. The work is con-

stituted through consideration of design approaches and variations within the different

approaches and implementations of these designs. As the SHMAC platform uses the 32-

bit floating point standard for number representations, the design approaches consists of

either direct operations on floating point numbers or conversion from floating point to

fixed point and operations with fixed point numbers within the module.

Two of the approaches in this study use the floating point and fixed point packages

of VHDL and the float and sfixed types included in these packages, while the third uses

standard VHDL and the std logic vector type. The approaches were analysed through

simulation in ISim and synthesis using Xilinx’s XST, and verified through a golden device-

similar method.

The three approaches result respectively to each other as follows(these results assume

utilization RAM resources in synthesis):

� Float package: Low design time, low speed, high area consumption.

� Fixed package: Low design time, medium speed, medium area consumption.

� Standard VHDL: High design time, high speed, low area consumption.

To conclude: standard VHDL appears to be the best choice due to the high speed

and low area. It especially appears promising to keep to the standard VHDL as the

Xilinx platform does not seem fully compatible with the float and fixed point packages.

Therefore it seems more likely to avoid unexpected problems and incompatibility with

the surrounding interface when the time comes for implementing the accelerator to the

platform.

i

Sammendrag

Denne avhandlingen omhandler implementering av ”the Epileptic Seizure Prediction Al-

gorithm” til SHMAC plattformen ved å analysere algoritmen og designe spesialisert

hardware. Arbeidet er gjennomført ved å vurdere ulike fremgangsmåter for design og

variasjoner innad i de ulike fremgangsmåtene samt implementering av disse designene.

Ettersom SHMAC plattformen bruker 32-bit floating point standarden for nummerrep-

resentasjon, best̊ar fremgangsm̊atene enten av direkte behandling av floating point tall

eller konvertering fra floating point til fixed point og deretter behandling av fixed point

tall innad i modulen.

To av fremgangsmåtene i denne avhandlingen bruker floating point og fixed point

pakkene i VHDL samt float- og sfixed -typene inkludert i disse pakkene, mens den tredje

bruker standard VHDL og std logic vector -typen. Fremgangsm̊atene ble analysert ved

simulering i ISim og syntetisert ved bruk av Xilinxs XST og verifisert ved å bruke en

golden device-lik metode.

De tre fremgangsm̊atene resulterte i det følgende, respektivt hverandre(resultatene

antar utnyttelse av RAM ressursene ved syntese):

� Float package: Lav designtid, lav hastighet, høyt arealforbruk.

� Fixed package: Lav designtid, medium hastighet, medium arealforbruk.

� Standard VHDL: Høy designtid, høy hastighet, lavt arealforbruk.

For å konkludere: standard VHDL virker å være det beste valget, grunnet høy

hastighet og lavt areal. Det virker særlig lovende å holde seg til standard VHDL et-

tersom Xilinx plattformen ikke virker fullstendig kompatibel med float og fixed point

pakkene. Derfor virker det mer sannsynlig å unng̊a uventede problemer og inkompati-

bilitet med det omsluttende grensesnittet ved bruk av standard VHDL, n̊ar tiden kommer

for implementering av akseleratoren til plattformen.

iii

Preface

This thesis constitutes the end of my Master of Science degree in Electronics at the

Norwegian University of Technology and Science.

Throughout the work on this study, I have received a lot of great support from my

supervisor Per Gunnar Kjeldsberg. I would like to thank him, saying that without his

guidance, contributions and advice, this work would have been most challenging. I would

also like to thank H̊akon Wikene who helped me running of codes and profiling on the

SHMAC platform, and the others working on SHMAC who have contributed expertise

within their respective areas.

v

Contents

Abstract i

Sammendrag iii

Preface v

Contents vi

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

2 Theory and Related Work 9

2.1 SHMAC . 9

2.2 Heterogeneous systems . 11

2.3 Accelerators . 12

2.4 Partitioning of Applications . 15

2.5 Number representations . 17

2.6 Lyapunov Exponent . 20

3 Analysis of the Lyapunov Exponent Calculation Algorithm 27

3.1 General profiling . 28

3.2 System specific profiling . 29

4 Implementation and Verification 35

4.1 Design . 35

4.1.1 Approach expansion package, floating point 37

4.1.2 Approach expansion package, fixed point 39

4.1.3 Approach standard VHDL, fixed point 39

4.2 Verification . 41

5 Results 45

5.1 Results from Simulation . 45

vii

Contents

5.2 Results post Synthesis . 48

5.2.1 Approach expansion package, floating point 49

5.2.2 Approach expansion package, fixed point 49

5.2.3 Approach standard VHDL, fixed point 50

5.2.4 Power estimates . 51

6 Discussion 53

7 Conclusion and Future work 59

A Profiling of C-similar Matlab-code 61

B Timing of most time consuming calculations 63

C Deviations 69

D VHDL codes 75

D.1 Float approach . 75

D.1.1 Design 1 . 75

D.1.2 Design 2 . 77

D.2 Fixed approach . 79

D.2.1 Design 1 . 79

D.2.2 Design 2 . 81

D.3 Standard VHDL . 82

E Verification scripts 93

E.1 C-script calculation differences . 93

E.2 Matlab-script for sorting . 94

Bibliography 95

viii

List of Figures

1.1 Mean value(a) and standard deviation(b) of EEG over time from 5 patients[1].
Vertical lines denote seizure onset. 2

1.2 STLmaxover time from 5 patients[1]. Vertical lines denote seizure onset. . 3

1.3 Control of seizures in a rat using the epileptic seizure prediction algorithm
and different schemes of stimuli via electrodes[2]. 4

1.4 The tile-based architecture of the SHMAC platform[3]. 6

2.1 FPGA . 10

2.2 Amber Tile . 10

2.3 Process execution tree . 13

2.4 Difference in execution on single and multi threaded CPUs (Figure inspired
from [4, p. 361]) . 13

2.5 Effect of unrolling . 14

2.6 (a) Source-based and (b) binary-based partitioning[5]. 16

2.7 How floating point numbers are represented. 17

2.8 How fixed point numbers are represented. 18

2.9 Algorithm for addition/subtraction in FPU[6]. 19

2.10 (a)STLmax values between two seizures. (b) T-index for the three most
optimal groups of sites between two seizures[1]. 22

2.11 Evolution of points along the fiducial trajectory for Lyapunov exponent
calculation[7]. 23

2.12 Flowchart of algorithm for calculating Lyapunov exponents using fixed
evolution time as described by Wolf et al.[7]. 24

3.1 Illustration of codes available for profiling. 27

4.1 Illustration of general module. 37

4.2 Illustration of the module using standard VHDL. 40

4.3 Illustration of the technique used for verification. 42

5.1 Waveform from simulation of a module without(left) and with(right) Read-
out-module. 47

5.2 7 cycles between outputs for design without Readout-module and no un-
rolling of k. 48

6.1 Graph showing area and speed(in estimated new total runtime, new sec)
of different design choices. 54

ix

List of Figures

6.2 Graph showing area and speed(in estimated new total runtime, new sec)
of different design choices. 55

6.3 Graph showing area and speed(in estimated new total runtime, new sec)
of the approach implementing fixed point from std logic vector. 56

x

List of Tables

1.1 Dennadrian versus Post-Dennardian scaling [8] 5

3.1 Profiling of Matlab code working on matrices. 28

3.2 Most run lines from Matlab profiling . 29

3.3 Total execution time . 30

3.4 Cycles for instructions in Fix1 code if rewritten for integer utilization.
Addition and subtraction spend same amount of cycles. 30

3.5 System specific profiling, calculation times for different code versions in
milliseconds. 31

3.6 System specific profiling, percentage of total runtime spent on calculations. 31

4.1 Area and performance for float extension package approach 38

4.2 Area and performance for fixed extension package approach 39

4.3 Area and performance for standard VHDL fixed point approach 40

4.4 Deviation for float expansion package approach 43

4.5 Deviation for fixed expansion package approach 44

4.6 Deviation for standard VHDL approach 44

5.1 Simulation time from float and fixed extension package approach, and the
standard VHDL approach . 46

5.2 New timing for float extension package approach 49

5.3 New timing for fixed extension package approach 50

5.4 New timing for standard VHDL approach 50

5.5 Table of power estimates. 51

6.1 Table which compares qualities of the different approaches. 57

A.1 Profiling of C-syntax like Matlab code 61

B.1 Timing of most time consuming calculations, algorithm float 1 63

B.2 Timing of most time consuming calculations, algorithm float 2 64

B.3 Timing of most time consuming calculations, algorithm fix 1 65

B.4 Timing of most time consuming calculations, algorithm fix 1 66

B.5 Timing of most time consuming calculations, algorithm no malloc 66

B.6 Timing of most time consuming calculations, algorithm FloatOpt from
fixed point experiences. 68

C.1 Deviation for float extension package approach 70

xi

List of Tables

C.2 Deviation for float extension package approach 72

C.3 Deviation for the approach using standard VHDL 74

xii

Abbreviations

APB Advanced Peripheral Bus

BRAM Block Random Access Memory

CPU Central Processing Unit

CSL Configurable System Logic

EEG Electroencephalogram

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

ISA Instruction Set Architecture

ISE Instruction Set Extention

ISEGEN ISE Generation

Lmax Maximum Lyapunov exponent

LUT LookUp Table

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SHMAC Single-ISA Heterogeneous MAny-core Computer

STLmax Short-term maximum Lyapunov exponent

STP System ThroughPut

V HDL VHSIC Hardware Description Language

xiii

List of Tables

V HSIC Very High Speed Integrated Circuit

ZBT Zero Bus Turnaround

xiv

Chapter 1

Introduction

The Single-ISA Heterogeneous MAny-core Cumputer, SHMAC, project is an ongoing re-

search project at NTNU. This is planned to be a platform for evaluation of heterogeneous

systems. The platform is continuously changing and evolving, i.e. increasing the quality

of the system. As for the beginning of this project, there is for instance no hardware

support for floating point numbers, which will prove crucial for the scope of this thesis,

to map an epileptic seizure prediction algorithm to the SHMAC platform.

Epilepsy is a neurological disorder characterized by epileptic seizures. These seizures

are results of a temporary electrical disturbance of the brain[1]. The seizures are followed

by postictal slowing and disorganization of the EEG rhythm, and can incapacitate the

patient during as well as after the seizure[9]. Epileptic seizures can, if not controlled,

have a severe impact on the patients social, vocal and educational activities, and thereby

reduce the patient’s quality of life[2]. 1% to 2% of the world’s population, at all ages, are

affected by this disorder. It was previously believed that seizures occurred abruptly and

could not be anticipated[2]. This, however, proved to be incorrect.

The algorithm proposed by Iasemidis et al. [1][9] aims to be able to predict an oncom-

ing seizure and thus enable the possibility of implantable devices for diagnostic or ther-

apeutic purposes. The epileptic seizure prediction suggested by Iasemidis et al.[1][2][9],

use the EEG recordings of the brain and utilize these recordings to predict an oncoming

seizure. These recording, however, does not change consistently across patients: Figure

1.1 illustrates EEG recordings before, during and after a seizure in five patients. For ex-

ample, the mean recording shows an upward trend in Patient 4, but no significant trend

is visible in the other patients before the seizure.

1

Introduction

Figure 1.1: Mean value(a) and standard deviation(b) of EEG over time from 5
patients[1]. Vertical lines denote seizure onset.

This inconsistency applies to all cases, before, during and after the seizure, across all

five patients. Because of this inconsistency, an other measure called Short-term maximum

Lyapunov exponent, STLmax, is introduced. STLmax exponents quantify the rate of

production/destruction of information within short periods of time (here 10.24s) of EEG

measurements[1]. Looking at the STLmax values in Figure 1.2 for the same patients in

the same timespan, it is obvious that STLmax values change consistently across patients.

All the STLmax values are higher after than before the seizure, indicating that STLmax

values can be used for seizure prediction.

2

Introduction

Figure 1.2: STLmaxover time from 5 patients[1]. Vertical lines denote seizure onset.

A brain in a normal state is characterized by chaos, i.e. that measurements of

production or destruction of information in different brain sites are incoherent. These

measurements are carried out by calculating Lyapunov exponents of the system, in this

case the nonlinear, dynamical system - the brain. Lyapunov exponents are amongst the

most important measures of the dynamics of a linear or nonlinear system[2]. These expo-

nents measure average information flow in bits per second. Positive exponents indicate

generation of information while negative exponents indicate destruction.

For a dynamical system to be chaotic, at least one of the system’s Lyapunov exponents

needs to be positive[2]. Due to this, the calculation of Lyapunov exponents is crucial

to determine whether or not the system is chaotic in the epileptic seizure prediction

algorithm. The calculation will be further elaborated in Chapter 2.

The algorithm has also been tested on rats, using electrodes implanted in their brains

and stimulating the rats brains according to warnings issued by the prediction algorithm.

Using different schemes of stimuli, the combination of the seizure prediction algorithm

and electrical pulses to stimulate the brain seems promising, as illustrated in Figure 1.3.

3

Introduction

Figure 1.3: Control of seizures in a rat using the epileptic seizure prediction algorithm
and different schemes of stimuli via electrodes[2].

Schemes C and D in Figure 1.3 seem to reduce the numbers of seizures to zero for

days at a time. The epileptic seizure prediction thus appears to be a useful application,

and could possibly be used in human implants in the future. It is, however, important

that implants are as energy efficient as possible, as changing batteries or harvesting energy

inside the body is a challenging task.

The scope of this thesis is to map the epileptic seizure algorithm to the SHMAC

platform. The Single-ISA Heterogeneous MAny-core Computer(SHMAC) platform, is as

previously stated, an ongoing research project within the research initiative Energy Effi-

cient Computing Systems(EECS) at the Faculty for Information Technology, Mathematics

and Electrical Engineering, NTNU. SHMAC is planned to be an evaluation platform for

research on heterogeneous multi-core systems. Heterogeneous systems are required partly

due to the Dark Silicon effect.

As an important goal of the SHMAC platform also is to be energy efficient, imple-

menting this algorithm to the SHMAC platform could be of beneficial use both for the

purpose of implementing the algorithm itself, and to explore the efficiency attainable on

the SHMAC platform.

4

Introduction

The future of electronic devices is expected to be power limited. This is both due

to the limitation of batteries and the Dark silicon effect. The Dark Silicon effect comes

from the breakdown of Dennardian scaling. Dennardian scaling used the concept of

scaling the threshold voltage to improve energy efficiency. The formula for a chip’s power

consumption is shown in Table 1.1. As the power relates to the voltage squared, scaling

the voltage will result in an improvement of S2 in energy efficiency.

The relationship between Dennardian scaling and Post-Dennardian scaling is exposed

in Table 1.1. The scaling factor S comes from the ratio between the feature size of two

processes, for example the ratio S = 1.4× for two processes of 32 and 22 nm[8]. Post-

Dennardian scaling is also called leakage-limited scaling, and in that regime, one cannot

exploit the fact that reduction in threshold voltage gives a reduction in operating voltage

resulting in a S2 improvement of energy efficiency. This is what distinguishes Dennardian

from post-Dennardian scaling, and is as shown in lines 4 through 6 in Table 1.1. This

also causes the shortfall of S2 for each process generation. The percentage of chips that

needs to be powered off, or dark, will thus increase.

Scaling

Transistor property Dennardian Post-Dennardian

∆Quantity S2 S2

∆Frequency S S

∆Capacitance 1/S 1/S

∆V 2
dd 1/S2 1

⇒ ∆Power = ∆QFCV 2 1 S2

⇒ ∆Utilization = 1/Power 1 1/S2

Table 1.1: Dennadrian versus Post-Dennardian scaling [8]

The SHMAC platform is a tile-based architecture, illustrated in Figure 1.4. The

interconnections are in a mesh grid, meaning that all tiles have connections to their

north, east, south and west, excluding tiles at the boundaries.

5

Introduction

Figure 1.4: The tile-based architecture of the SHMAC platform[3].

The platform supports tiles of types[3]:

� Processor tile

� Scratchpad tile

� Main Memory tile

� APB Interface tile

� Dummy tile

For this project, the processor tile is the relevant tile. A tile of this type primarily

consists of a processor, caches, peripherals and a router, but can also be equipped with

accelerators. Accelerators are execution units optimized for their task.

The idea with the SHMAC-project, is to reduce the Dark Silicon effect by two main

strategies, of which exploiting a heterogeneous architecture is one. A heterogeneous

architecture is an architecture consisting of different resources, each included to achieve

higher performance or a more energy efficient system[10].

By including cores both for high performance and for energy efficiency, one can

dynamically schedule a system to have high performance or low energy consumption[11].

Heterogeneous systems will be further discussed in Chapter 2. Another way of addressing

6

Introduction

the problem of the Dark Silicon effect, is to add application specific elements, accelerators,

to the architecture that are very energy efficient at their task, and can be turned off if their

task does not occur. This will actually increase the heterogeneity of the system, and is as

such not a completely different strategy compared to the utilization of a heterogeneous

architecture. Accelerators will be further elaborated in Chapter 2. The objective of this

study is to map the Epileptic Seizure Prediction Algorithm on the SHMAC Platform by

examining the algorithm and investigate parts of the code that could benefit from the

implementation of specialized hardware.

The remaining of the thesis is organized as follows. Chapter 2 will go into details

regarding the SHMAC platform and related theory, calculation of the Lyapunov expo-

nent, partitioning of applications, and number representations. Analysis of the codes are

presented out in Chapter 3 including both general and system specific profiling. Chapter

4 concerns design approaches, data from synthesis and verification of designs. Results

from simulation in ISim and post synthesis estimations are placed in Chapter 5 and the

results and how they are affected by the synthesis results are discussed in Chapter 6.

Chapter 7 contains suggestions for future work and the conclusion.

7

Chapter 2

Theory and Related Work

As stated in Chapter 1, two main ideas have been suggested to address the Dark Silicon

effect on the SHMAC platform. One is implementing a heterogeneous system and the

other is adding accelerators to the architecture, increasing its heterogeneity. This chapter

will go more into detail about what heterogeneous systems and accelerators are and

different ways to represent numbers, as well as the calculation of the Lyapunov exponents

used in the algorithm related to this work.

2.1 SHMAC

The SHMAC platform is, as previously stated, a research project at NTNU. The platform

is planned to be an evaluation platform for research on heterogeneous multi-core systems.

The platform’s architecture is described in the following.

9

Theory and Previous work

Figure 2.1: FPGA

As can be seen in Figure 2.1, the SHMAC platform consists of several tiles, here

represented by APB, ZBT, BRAM and Amber tiles. The Amber tiles are equivalent to

the processor tiles described in the project plan for the SHMAC project [3]. A lower level

of abstraction than the Amber Tile is the Amber Wrapper. Illustrated in Figure 2.2,

the wrapper excludes the router. Within the next level of abstraction from the Amber

wrapper, one finds the Amber system, which amongst other, contains the Amber CPU

[12].

Figure 2.2: Amber Tile

10

Theory and Previous work

The Amber processor core is a 32-bit RISC processor running at 60 MHz with a

5-stage pipeline, which is fully compatible with the ARM v2a ISA[12]. An important

detail for this project is the delay of each instruction in the Amber core. As can be found

in the reference manual for the Amber core[12], register based instructions are executed

in one cycle, excluding instructions involving multiplication. Multiplication as well as

multiply-accumulate operations take 34 clock cycles, making these operations obvious

bottlenecks amongst the standard instructions. The multiplication on the Amber core

uses the Booth algorithm[13], which is a small and slow implementation of a multiplier.

The algorithm repeatedly adds one of two predetermined values to a product and then

makes a rightward arithmetic shift on the product. The complete algorithm can be found

in the Amber manual[12] or further reading in the article ”A signed binary multiplication

technique” by Booth[13].

2.2 Heterogeneous systems

A heterogeneous system is a system consisting of different resources. Which, relating to

the SHMAC platform, would say that the different tiles in the SHMAC platform can have

different characteristics due to additional units on the tile, i.e. an accelerator, additional

memory or other units not featured on a standard tile.

Heterogeneity can be classified in three classes. The weakest form for heterogeneity,

is systems having the same ISA and micro architecture across the cores, only varying in

clock frequency. Then there is a stronger form where the cores have the same ISA, but

have different micro architectures. The strongest form of heterogeneity is systems which

have both different ISAs and micro architectures. The SHMAC is Single-ISA, meaning

that the different cores all implement the same instruction set architecture.

K. V. Craeynest and L. Eeckhout [11] present some results regarding homogeneous

versus heterogeneous designs. Compared to homogeneous designs, heterogeneity yields a

better performance, up to 32% of a weighted speed-up, STP. This increase comes from

heterogeneous systems’ ability to map jobs to cores most appropriate. As heterogeneous

systems are more specialized than homogeneous, they are more complex, as the cores in

homogeneous systems all contain of the same tiles, while the tiles within a heterogeneous

system varies. This presumably makes a homogeneous system easier to implement.

11

Theory and Previous work

The complexity of heterogeneous systems can, however, often be accounted for by

the benefits regarding energy consumption and performance. When executing a program

on a heterogeneous multi-core system, the program is divided into smaller parts, each

executed on the most suitable core[14, p. 14], leading to speed-ups and/or less energy

consumption.

2.3 Accelerators

The fastest processors are considered to be very expensive, so splitting the application

and dividing it to be performed on several smaller processors can be cheaper, even when

considering the cost of assembling those components [4, p. 354]. In addition, some

algorithms may not map well onto a CPU, and may as such be better executed on a

specially designated processing element, such as an accelerator.

An accelerator is a processing element attached to the CPU bus [4, p. 357]. This is to

be able to execute tasks quickly. The basic concern with accelerators is how much gain can

be achieved. This depends in part on whether the system in which it is to be integrated

is single threaded or multi threaded: does the CPU wait for the accelerator while it is

operating, or does the CPU run with the accelerator running in the background? Figure

2.3 illustrates a tree of processes, where process A1 is executed on an accelerator whilst

the other four processes are executed on the CPU. Figure 2.4 illustrates the difference

in executing the sequence of processes from the process tree in Figure 2.3 on a single

threaded and a multi threaded CPU, respectively.

12

Theory and Previous work

Figure 2.3: Process execution tree

Figure 2.4: Difference in execution on single and multi threaded CPUs (Figure in-
spired from [4, p. 361])

A simple equation for the speed-up using an accelerator in a system is[4, p. 362]:

S = n(tCPU − taccel) = n[tCPU − (tin + tx + tout)] (2.1)

In this equation, n is the number of times the accelerated block is executed, tCPU is

the execution time of the function in software, tin and tout are the times spent reading

and writing variables, and tx is the execution time of the accelerator when all the data is

available.

13

Theory and Previous work

From this, one can conclude that it is of greater value to accelerate a task which

is executed a significant number of times. In a single threaded system, the total exe-

cution time is reduced by S, while it is more complex for multi threaded systems. In

multi threaded systems, there are several execution paths. So, to find the total execu-

tion time, one have to find the longest path from the beginning to the end of the execution.

An example of targets that are executed a significant number of times, are the ones

inside loops, especially nested loops. In this case loop unrolling is an interesting approach

for an accelerator. In the case of double nested for-loops, loop unrolling can be done in

more or less extensive ways, unrolling both the for-loops entirely, one entirely and the

other partly, or both partly. Unrolling both loops to the fullest, will yield the highest

performing hardware regarding speed, but also the most area consuming, and vice versa.

It is therefore important to evaluate how the calculation speed and area of this specific

hardware are influenced by different degrees of unrolling, to find a optimal solution.

Figure 2.5 illustrates how unrolling will affect the area and performance. By having

no unrolling only one calculation module is needed. This means lower speed as the one

module has to be run (sizeloop1) × (sizeloop2) = n times, but it also means lower area

consumption. By completely unrolling both for-loops, we would have the exact opposite

situation; n parallel modules, high speed and large area consumption.

Figure 2.5: Effect of unrolling

Another aspect concerning accelerators is if they operate on a large amount of data.

So, if this is the case, it can be beneficial to give it direct memory access. The accelerator

14

Theory and Previous work

can thus read and write data directly, not having the CPU as a shuttle between the

accelerator and the memory. In that case, the CPU and accelerator can communicate

through a shared memory. To decide if an accelerator is needed, the specific system needs

to be analysed. Other issues in the system, such as moving data, may be a bottleneck. In

that case the inclusion of an accelerator may not be as beneficial as intended[4, p. 357].

2.4 Partitioning of Applications

Partitioning is a crucial aspect when one is to implement an accelerator to a system.

The partitioning has a first order impact on the cost/performance of the final system[15]

as it takes into account the gain and/or drawback of the resulting hardware or software

blocks. The partitioning is, relating to this study, to map the Epileptic Seizure Prediction

Algorithm partly onto an accelerator while the remaining code will run on the Amber

CPU.

An approach to partitioning is the ISEGEN algorithm. This algorithm uses the

Kernighan-Lin min-cut algorithm[16] for partitioning. The goal of Biswas et al.[17] is to

make an iterative improvement technique to generate solutions close to the ones provided

manually by expert designers. The algorithm starts with all nodes in either hardware or

software and toggles each unmoved node from hardware to software or vice versa. For

each toggled node, the gain function is computed to measure how the toggle affects the

cost/performance of the system. The ISEGEN algorithm also takes into account how

many outputs and inputs the resulting ISE will have. As an example, moving a node

with one input and no output will increase the numbers of inputs and outputs of the ISE

by one and zero, respectively.

A more straight forward approach is to examine the loop regions of a code and make

the most time-consuming software into specialised hardware. Stitt and Vahid [5] applied

such an approach by mapping critical loops of embedded applications to configurable

system logic. They did, however, consider two different approaches to partitioning, source-

based and binary-based. The two approaches are depicted in Figure 2.6.

15

Theory and Previous work

Figure 2.6: (a) Source-based and (b) binary-based partitioning[5].

For area and power characteristics they used Xilinx VirtexE. For estimation of total power

consumption, Equation 2.2 was applied:

TotalPower = %SW × PSW + %CSL× (PCSL + 0.25× PSW)

+ InterconnectPower +QuiecentPower
(2.2)

PCSL is the power of the configurable system logic when it is active and PSW is

the power of the software when the microprocessor is active. It is also assumed that an

inactive microprocessor uses 1
4

of the power used while being active. Stitt and Vahids

approach include implementing blocks and replacing the corresponding software region

by a handshaking behavior[5]. Determination of potential improvements was done by

converting C-code for the previously mentioned critical loops into VHDL-code.

Stitt and Vahid extracted the parallelism of the C-code and created appropriate

hardware[5]. The authors also suggest to implement techniques such as loop unrolling

and pipelining to achieve a greater speed-up. For partitioning at source-level, Stitt and

Vahid achieved an average speed-up of 1.5 times and energy savings of 27% compared to

running the benchmarks in pure software.

16

Theory and Previous work

2.5 Number representations

Since the algorithm is written in C using float-numbers, the numbers being input to

the accelerator will be represented in floating point. Floating point numbers have got

this notation due to the fact that the decimal point is not set between a specific bit-

pair, but is floating. The Amber core uses the 32-bit format of the IEEE Standard 754

for Floating-Point. According to the IEEE Standard for Floating-Point Arithmetic, the

standard representation of 32-bit floating-point numbers is as follows[18]:

� Bit 31: sign

� Bits 30-23: exponent

� Bits 22-0: significand/mantissa

The floating point standard also requires that the most significant ’1’ in the number

to be represented is removed and made implicit. Therefore, when converting to or from

floating point, one always have to take this implicit 1 into account. This means that a

number represented by floating point has implicitly 24 bits for the mantissa, resulting in

an accuracy of 2−24 = 59.60× 10−9.

Figure 2.7: How floating point numbers are represented.

Floating point numbers can according to the IEEE Standard 754 also use bit widths

such as 64 and 128 bit. The decimal value of the floating-point numbers are calculated

as in Equation 2.3:

decimal value = (−1)sign ∗ bexponent−exponent bias ∗ (1 + significand) (2.3)

The distinction between fixed and floating point numbers is that the fixed point has,

as the name indicates, the decimal point at a fixed bit. To avoid erroneous calculations

the user has to keep track of its location. The decimal point can be placed where desired,

depending on the required size of the integer and accuracy of the fractional part. For

example as illustrated in Figure 2.8: one bit is used for sign, 10 for the integer number and

17

Theory and Previous work

21 for the fractional part. This means that the accuracy of numbers in this representation

is 2−21 = 476.83× 10−9, and the integer part can be up to 210 − 1 = 1023.

Figure 2.8: How fixed point numbers are represented.

Conversion from the fixed point representation as presented in Figure 2.8 to the 32

bit floating point standard can be carried out in the following way:

1 . Sign b i t : no convers ion , d i r e c t l y t r a n s f e r .

2 . Find number o f b i t s r equ i r ed to r ep r e s en t the i n t e g e r o f the f i x ed po int ←↩
r ep r e s en t a t i on .

3 . Add exponent base to f i nd c o r r e c t exponent in the f l o a t i n g po int standard .

4 . S h i f t f r a c t i o n equal to number o f b i t s so that the most s i g n i f i c a n t b i t o f the ←↩
i n t e g e r i s at index 21 .

5 . Remove most s i g n i f i c a n t b i t o f i n t e g e r .

Listing 2.1: Conversion strategy floating point to fixed point

Doing operations on floating-point numbers is not straight forward. Jidan Al-Eryan

implemented an FPU and documented it in an accompanying paper. He there added the

algorithms for addition, subtraction, multiplication and division[6]. The addition and

subtraction algorithm is depicted in Figure 2.9.

18

Theory and Previous work

Figure 2.9: Algorithm for addition/subtraction in FPU[6].

Due to this, implementation of modules for addition/subtraction and multiplication

would be necessary to directly work on the numbers sent from the CPU to the accelerator.

However, in VHDL there exists extension packages which include fixed point and

floating point number-types, conversion from floating to fixed-point representations and

vice versa[19][20][21]. These packages are:

� float pkg c.vhdl

� fixed pkg c.vhdl

� fixed float types c.vhdl

David Bishop states in ”Floating point package user’s guide”, that the hardware of

the fixed point can be almost 3X less than that of floating point[20]. He also says in the

19

Theory and Previous work

fixed point guide, that because the fixed point is a step between integer math and floating

point, it is almost as fast as the numeric std arithmetic of VHDL[21].

2.6 Lyapunov Exponent

Lyapunov exponents can be used to diagnose the dynamics in a chaotic system [7]. They

quantify the average rate of separation for nearby trajectories[22]. For a system to be

chaotic, it needs to contain at least one positive Lyapunov exponent. Lyapunov exponents

measure the rate of creation or destruction of information in system processes, and are

expressed in bits/s or bits/orbit[7].

The seizure algorithm uses short-term maximum Lyapunov exponents(STLmax) which

are more accurate than the traditional maximum Lyapunov exponents(Lmax). STLmax

profiles are created from recordings of EEG signals from different sites for 10 seconds,

each recording site resulting in one STLmax estimation[2]. Progressive convergence of

STLmax profiles is called dynamical entrainment [1][2][9]. The brain sites involved in

measuring this dynamical entrainment are called critical sites, while the corresponding

pairs of sites interacting are called critical pairs[2].

The selection of sites is however not straight forward, as the sites participating in

the pre-ictal transition can vary from seizure to seizure even within the same patient.

Iasemidis et al. [9] resolved this by selecting k critical sites after the occurrence of the

first seizure. Their selection procedure leads to the selection of the k sites that were

most entrained 10 minutes prior to the seizure as well as being disentrained postically.

This procedure is then carried out after each seizure, and new critical sites are updated

automatically for optimal prediction[9].

When it comes to determining entrainment amongst the detected critical electrode

sites, the authors use a period of time in which the difference of the mean STLmax values

of two sites are statistically estimated. They use 10 minute periods1, which include

approximately 60 STLmax values, and do the test at significance level α = 0.01[9]. As

the entrainment is calculated by comparing two sites, the pair T-statistic is used. The T-

index for electrode sites i and j in the epileptic seizure prediction algorithm is calculated

as in Equations 2.4 to 2.8[1]:

1denoted w(t)

20

Theory and Previous work

Lti =
{
STLmax

t
i, STLmax

t+1
i , ..., STLmax

t+59
i

}
(2.4)

Ltj =
{
STLmax

t
j, STLmax

t+1
j , ..., STLmax

t+59
j

}
(2.5)

Dt
ij = Lti − Ltj =

{
dtij, d

t+1
ij , ..., dt+59

ij

}
(2.6)

dt
′

ij =
{
STLmax

t′

i − STLmaxt
′

j

}
(2.7)

Li and Lj are vectors of the 60 STLmax values for the 10 minute period, and D is

the distance between the electrode sites i andj at a time t. This results in Equation 2.8,

the pair T-statistic:

T tij =
|Dt

ij|
σ̂d√
60

(2.8)

The pair-T statistic shown in Equation 2.8 use D
t
ij and σ̂d which are the sample aver-

age and standard deviation respectively. Significance level 0.01 means that the threshold

value for disentrainment is Ti,j > Tα
2
,59 = T0.005,59 = 2.662. The choice of significance

level is explained in Iasemidis et al. [1, p. 619].

The threshold value of T = 2.622 indicates, as mentioned, disentrainment of the

sites. A second threshold has been introduced at significance level α = 0.00001, this

corresponds to a T-value of 5.000. Thus, there are two threshold values, T1 = 5.000 and

T2 = 2.662. A dynamical transition toward a seizure is recognized when the T-value tran-

sits from a value T > T1 at time t1 to a value T < T2 at a time t2 > t1. If this transition

results from the initially selected sites, a warning of an impending seizure will be issued[9].

21

Theory and Previous work

Figure 2.10: (a)STLmax values between two seizures. (b) T-index for the three most
optimal groups of sites between two seizures[1].

Figure 2.10 shows the T-index and STLmax between two seizures. The two solid

vertical lines are seizure onset while the dashed lines indicate where the T-index crosses

the two threshold values T1 and T2. As Figure 2.10 depicts, the warning of an impending

seizure will for these electrode sites and this seizure be issued about 55 minutes prior to

the seizure.

The calculation of Lyapunov exponents in the Epileptic Seizure Prediction algorithm

is carried out by expanding the EEG-signals into a m-dimensional2 phase portrait with

2In this case 7-dimensional.

22

Theory and Previous work

delay coordinates[7]:

{x(t), x(t+ T), ..., x(t+ [m− 1]T)} (2.9)

where T is the delay time. At a time t0, the nearest neighbour3 to the initial point

is located, and the distance x(t0) − x(t) is denoted L(t0). After a constant propagation

time, at time t1, this distance will have evolved to L′(t1). At this point in time, a point

to replace the evolved point is searched for to better meet the following criteria[7]:

� The distance between the new chosen point and the evolved fiducial point is small

� The angular separation between them is small

This procedure is then executed throughout the provided data, and at last the Lyapunov

exponent is estimated by Equation 2.10[7]:

λ1 =
1

tM − t0

M∑
k=1

log2
L′(tk)

L(tk−1)
(2.10)

Figure 2.11: Evolution of points along the fiducial trajectory for Lyapunov exponent
calculation[7].

Figure 2.11 illustrates how the procedure of estimating Lyapunov exponents works,

traversing the fiducial trajectory and choosing new points nearer the trajectory if the

absolute value of the vector between two points becomes too large. It is then essential

that the replacement point minimize both the distance between the new point and the

fiducial trajectory as well as the angular separation, denoted θ in Figure 2.11.

3Euclidean

23

Theory and Previous work

Figure 2.12: Flowchart of algorithm for calculating Lyapunov exponents using fixed
evolution time as described by Wolf et al.[7].

Figure 2.12 describes the algorithm for calculating Lyapunov exponents using the

fixed evolution time program proposed by Wolf et al. [7]. As can be seen in Figure 2.12,

the program contains a main loop where all the data is traversed. Inside the main loop,

the distances between the evolved points are calculated. The goal is to find points as

little separated as possible down to a lower threshold SCALMN4. The upper threshold

for separation of points is SCALMX, and for angular separation, ANGLMX. All distances

within the interval 〈SCALMN,SCALMX〉 are examined and the new point is deter-

mined based on the angular separation. If no points in the interval exist, or the points

within the interval have a too large angular separation, the upper threshold SCALMX is

increased. This can be repeated a predetermined number of times. When SCALMX has

been increased the maximum amount of times, and no points have been found to fit the

criteria, ANGLMX is increased and SCALMX is reset to its initial value.

4Lower threshold SCALMN is introduced due to noise considerations.

24

Theory and Previous work

This procedure is repeated until ANGLMX and SCALMX are both at their maximum

values. If no points satisfy the criteria, the initial evolved point of this time step5 is kept.

The exponent is then updated by adding the new points in the sum in Equation 2.10.

5e.g. t1 in Figure 2.11

25

Chapter 3

Analysis of the Lyapunov Exponent

Calculation Algorithm

There are several versions of the Lyapunov Exponent Calculation Algorithm. The initial

ones are written in Matlab. Using Matlab is beneficial as matrices and matrix operations

are heavily featured in the algorithm. From these initial versions, others have been

developed by translating the codes to C-language. This evolution is illustrated in Figure

3.1.

Figure 3.1: Illustration of codes available for profiling.

27

Analysis of the Lyapunov Exponent Calculation Algorithm

To determine which blocks of the code that are the most computational demanding

and thus good targets for acceleration, the codes need to be profiled. As the objective of

this study is to map the algorithm to the SHMAC platform, the profiling is divided in

two. First the Matlab code is profiled using the built-in tools of Matlab version R2013b.

The data attained from the general profiling are then used as a pointer for the system

specific profiling. This is done due to a necessity of narrowing down blocks to record time

consumption of, when run on the SHMAC platform.

3.1 General profiling

The run time from the profiling in Matlab is shown in Table 3.1. This code uses a C-

similar syntax instead of exploiting the matrix operations available in Matlab. The datum

in the first row of Table 3.1 is for calculating 3516 Lyapunov exponents. To calculate one

exponent it thus takes an average of 4975,14
3516

= 1.42 seconds, when run on a computer with

8GB RAM and 3.20GHz processor.

Profiling in Matlab

Code Time

For calculating 3516 exponents 4975.142 seconds

For calculating one exponent 1.42 seconds

Table 3.1: Profiling of Matlab code working on matrices.

While looking into the profiling data, six lines stood out as the absolutely most run

lines. This is illustrated in Table 3.2, where more time is spent on the top six lines than

on the seventh. To make this profiling data more comparable with the system specific

profiling, the data in Table 3.2 have been divided by 3516 to estimate run times per

exponent. This is because the system specific profiling was run for calculation of one

exponent. The raw data can be found in Appendix A. The information in Table 3.2

indicate that the vast majority of the execution time is spent on calculating d1partial,

which corresponds to the code in Listing 3.1.

28

Analysis of the Lyapunov Exponent Calculation Algorithm

f o r k=1:7

f o r n=1:2008

d1pa r t i a l=curr xV (k)−xV(n+(k−1)*4) ;
d 1pa r t i a l=d1pa r t i a l * d1pa r t i a l ;

d1 (1 , n) = d1 (1 , n)+d1pa r t i a l ;

end

end

Listing 3.1: Snippet of C-similar Matlab code

Most run lines from Matlab profiling

Line number Code Time in msec % of total time

156 d1partial = curr xV (k)− xV (n+ (k − 1) ∗ tau);

157 d1partial = d1partial ∗ d1partial;

158 d1(1, n) = d1(1, n) + d1partial; 742.19 52.35

334 select = cv(n) + (k − 1) ∗ tau;

335 dot2partial(n) = dot2partial(n) + (diffpoint(k) ∗ xV (select)); 167.55 11.81

342 dot2(i) = (dot2(i) ∗ dot2(i))/(d1(cv(i)) ∗ df); 33.51 2.36

361 sub = fudpoint− xV (ind : tau : ind+ xV expanse)′; 5.55 0.39

Table 3.2: Most run lines from Matlab profiling

The general profiling indicates that over 50% of the total execution time is spent in

the code blocks described by row one in Table 3.2. As seen in Listing 3.1, these three

code lines are inside a double nested for-loop. This indicates that is it possible to use the

method of Stitt and Vahid (ref. Chapter 2 Section 2.4) and extract the parallelism of the

C-code in the possible implementation of an accelerator.

3.2 System specific profiling

For the system specific profiling, four different versions of the Lyapunov Exponent Cal-

culation algorithm were profiled. They were all based on the initial Matlab code as

illustrated in Figure 3.1. The codes listed in the tables in this section are as follows:

� Float1: First translation from Matlab to C. Uses floating point.

� Float2: First revision of Float1. Uses floating point.

� Fix1: First translation to fixed point from floating point.

29

Analysis of the Lyapunov Exponent Calculation Algorithm

� FloatOpt: Floating point version with optimizations based on experiences from

fixed point version, includes loop unrolling.

To determine which version of the algorithm to use for further reference, the execution

times while running on the SHMAC platform were measured. This is important data for

comparison with timing data after the implementation of an accelerator, as a goal is to

run the algorithm within a time schedule of having 10.24 seconds to calculate 32 Lyaponov

exponents, i.e. 10.24
32

= 0.32 seconds per exponent. The total execution times per exponent

are listed in Table 3.3.

Comparison of execution time on the SHMAC platform

Code Float1 Float2 Fix1 FloatOpt

Time in seconds 71.66 69.57 7935.48 52.46

Table 3.3: Total execution time

As can be seen from Table 3.3, the fixed point version of the algorithm spends a

tremendous amount of time compared to the floating point versions. The algorithm

for fixed point is more complicated than the floating point algorithms, as displayed in

Table B.4. This is because the Fix1 version emulates fixed point by using floating point,

which again is emulated in software on the SHMAC platform. However, if the Fix1 code

is rewritten to utilize the integer compatible hardware on the SHMAC platform, the

emulation of fixed point via floating point would be not be necessary. H̊akon Wikene

at the Department of Computer and Information Science, highlighted that the amount

of cycles required for integer instructions are a lot lower than those required for floating

point instructions. The differences in cycles are presented in Table 3.4.

Change in cycles [float/integer]

Add/sub Multiplication Division

Emulating cycles/integer cycles 1000/17 3300/17 2500/17

Table 3.4: Cycles for instructions in Fix1 code if rewritten for integer utilization.
Addition and subtraction spend same amount of cycles.

This would presumably lead to a reduction in run time for the Fix1 code on the SHMAC

platform.

30

Analysis of the Lyapunov Exponent Calculation Algorithm

Comparison of calculation times

Code Float1 Float2 Fix1 FloatOpt

d1partial1 223.27 216.18 37,870.46 156.91

d1partial2 37,686.96 36,488.21 6,393,424.96 26,464.31

dot2partial 14,535.65 14,057.00 918,770.47 14,475.42

dot2 2777.12 2777.06 504,950.10 20.63

Table 3.5: System specific profiling, calculation times for different code versions in
milliseconds.

Table 3.5 compares the time it takes to run the calculations that stood out in the

general profiling on the SHMAC platform. Based on the numbers in Table 3.3 and Table

3.5, the percentage of the total execution time spent in each of the calculations can be

found. This further helps to illustrate where most of the execution time is spent, as shown

in Table 3.6.

Comparison of percentage of runtimes

Code Float1 Float2 Fix1 FloatOpt

d1partial1 0.31% 0.31% 0.48% 0.30%

d1partial2 52.59% 52.45% 80.57% 50.45%

dot2partial 20.28% 20.21% 11.58% 27.60%

dot2 3.88% 3.99% 6.36% 0.04%

Table 3.6: System specific profiling, percentage of total runtime spent on calculations.

The calculations of d1partial in codes Float1 and Float2 are carried out as in Listing 3.2.

f o r (k=0; k < m; k++)

{
f o r (i =0; i < d1 s i z e ; i++)

{
d1pa r t i a l=curr xV [k]−xV[i+k* tau] ;

d 1pa r t i a l=d1pa r t i a l * d1pa r t i a l ;

d1 [i] = d1 [i]+ d1pa r t i a l ;

}
}

Listing 3.2: Snippet of C code calculation of d1partial

31

Analysis of the Lyapunov Exponent Calculation Algorithm

After analysis of the percentage of total time spent on the different blocks (ref.

Table 3.6), two of the calculations stood out: d1partial2 and dot2partial, d1partial2 is

more than twice as time consuming as dot2partial. Further, the codes for d1partial1

and d1partial2 are basically the same, only differing in starting value in their for-loops1.

d1partial1 is the calculation of the first point, while d1partial2 is of the remaining 167.

The time spent on calculating d1partial2 is therefore about 167 times greater than the

time spent on calculating d1partial1.

Based on the data evolved from the analysis in this chapter and the aim of making the

calculation of Lyapunov exponents faster than the previously mentioned time frame on the

SHMAC platform, the timing results from the FloatOpt version is chosen as a reference

for results after implementation of an accelerator. The FloatOpt version spends 16.8

seconds less time than the second fastest code. Without altering the SHMAC platform

it takes minimum 52.46 seconds to calculate one Lyapunov exponent. It is necessary to

decrease the run time for it to be applicable in the seizure prediction.

Due to the massive percentage of total execution time spent on calculating d1partial,

this will be the first target for acceleration in the effort to speed up the code, with

dot2partial as a possible extension.

The calculation of d1partial in FloatOpt differs from the others in that instead of

having a double-nested for-loop, the outer loop, running from k = 0 : 7, is unrolled.

This loop unrolling is shown in Listing 3.3. Loop unrolling has also been exploited in the

calculation of dot2partial in FloatOpt, illustrated in Listing 3.4. The two code excerpts

in Listings 3.3 and 3.4 do look somewhat similar, enabling the opportunity to exploit this

similarity to speed up the code even further than with just looking at d1partial. The

calculation of dot2partial is, however, in a for-loop which varies in size, making it more

challenging to implement.

1Iterating from i = th : d1size and i = 0 : d1size, respectively.

32

Analysis of the Lyapunov Exponent Calculation Algorithm

f o r (i = 0 ; i < d1 s i z e ; i++)

{
f l o a t d1temp = 0 ;

//Complete loop un r o l l o f k−loop
d1pa r t i a l=curr xV [0]−xV[i+0*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [1]−xV[i+1*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [2]−xV[i+2*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [3]−xV[i+3*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [4]−xV[i+4*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [5]−xV[i+5*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d 1pa r t i a l=curr xV [6]−xV[i+6*tau] ;

d1temp += d1pa r t i a l * d1pa r t i a l ;

d1 [i] = d1temp ;

}

Listing 3.3: Snippet of calculation of d1partial2 in FloatOpt

s e l e c t=cv [i] ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [0] *xV[s e l e c t]) ;

s e l e c t=cv [i]+tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [1] *xV[s e l e c t]) ;

s e l e c t=cv [i]+2* tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [2] *xV[s e l e c t]) ;

s e l e c t=cv [i]+3* tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [3] *xV[s e l e c t]) ;

s e l e c t=cv [i]+4* tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [4] *xV[s e l e c t]) ;

s e l e c t=cv [i]+5* tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [5] *xV[s e l e c t]) ;

s e l e c t=cv [i]+6* tau ;

d o t 2pa r t i a l=do t 2pa r t i a l+(d i f f p o i n t [6] *xV[s e l e c t]) ;

Listing 3.4: Snippet of calculation of dot2partial2 in FloatOpt

This loop unrolling, extracting the parallelism of the C-code, is somewhat the same

idea Stitt and Vahid exploited in their Hardware/software partitioning of software bi-

naries. The replacement of software with hardware has, however, not yet been carried

out in this case, and is therefore a natural next step in the process of speeding up the

calculation.

33

Chapter 4

Implementation and Verification

The first step in discovering the benefits of implementing d1partial is to design the

hardware module. One way to implement the d1partial is to make a multiply-accumulate

module which is likely to enhance the run time of this calculation, especially if one utilizes

pre-fetching of the data by having an own module for address calculation. However, due to

the nature of the intended target, another approach is to unroll the nested for-loops. This

would probably, contrary to a pure multiply-accumulate acceleration, lead to less cycles

required to run the accelerator. An example of unrolling of the d1partial-calculation

is shown in the FloatOpt code in Listing 3.3. The target for implementation takes, as

displayed in Table 3.6, 50.45% of the execution time of the FloatOpt code. As stated in

Chapter 3, a Lyapunov point is based on 32 simultaneous Lyapunov exponents, and the

Lyapunov exponent is calculated based on a 10.24 second time window. This, together

with the percentage of total execution time, means that the accelerator should spend less

than 0.50× 10.24
32

= 0.16 seconds.

4.1 Design

Initially, when looking at the target, two options for the design were clear. The C-

codes which are going to work with the accelerator, operates on numbers represented

in the floating point standard. Therefore, making an accelerator which takes in floating

point numbers and operates on these was an option. Another option was conversion to

fixed point and then operate directly on these. However, two other options appeared

while learning about the fixed point package[19, p.283] and floating point package[19,

35

Implementation and verification

p.284] of VHDL. This means that there are four different approaches to implementing

the accelerator:

� Including separate modules for addition/subtraction and multiplication in the de-

sign using standard VHDL, floating point.

� Converting floating point input to std logic vectors and make logic from standard

VHDL to assure the location of the decimal point, fixed point.

� Use functions and type included in the floating point package, floating point.

� Use functions and type included in the fixed point package. This package includes

conversion from floating point to fixed. Fixed point.

The first option concerns the implementation of modules for doing floating point

operations and directly operating on the data from the CPU using standard VHDL. This

approach will however not be implemented, as it basically is like adding an FPU with little

functionality to the design, and a full function FPU is currently being worked on by others

on the SHMAC project. The second is about conversion from floating point to fixed point

and uses the standard package of VHDL to implement the code and the necessary logic

to keep track of the location of the decimal point. The third and fourth are somewhat

similar in the description, as they both use expansion packages to VHDL, which includes

types float, sfixed and ufixed and arithmetic operators for these types. Hence, the third

and fourth approaches are to use these packages to make a floating-point and fixed-point

implementation of the d1partial calculation, respectively.

The general structure of the design will however be somewhat equal for all ap-

proaches, and is illustrated in Figure 4.1. The actual implementations of all approaches

are attached in Appendix D.

36

Implementation and verification

Figure 4.1: Illustration of general module.

4.1.1 Approach expansion package, floating point

This approach uses the expansion package for floating point numbers and operators, such

as +, −, ∗ and /. It has two 32-bit floating point input ports and a 32-bit floating

point output port. The first design is a straight forward implementation of the C-code

without any performance enhancements. After this, the technique used for increasing

the performance is loop unrolling, as discussed in Chapter 2 Section 2.3. The unroll

factors are for the k -loop either not unrolled or completely unrolled, due to the fact that

it iterates over 7 numbers, and 7 is a prime number. Therefore, unrolling factor of 7

or none are the two available options whilst avoiding additional control for other unroll

factors. For the i -loop, the factors are 2,4 or 8. Next possible unroll factor for the i-loop

without making additional control logic is 251, as the number 2008 can be factorized to

2 ∗ 2 ∗ 2 ∗ 251 and 251 is a prime number.

Table 4.1 displays the synthesis data for the different designs. As exposed by the

data, the designs utilize different unroll factors for k and i. Designs 1 through 8 in

Tables 4.1 and 4.2 are as illustrated in Figure 4.1, with a Readin-module, one or several

Calculation-module(s) and a Readout-module. Designs 9 and 10 are without inclusion of

a Readout-module, and values are continuously read out as they are calculated.

37

Implementation and verification

Designs: 207,360 Slice LUTs available on Virtex5 model

Design number Unroll factor k,i #Slice LUTs % of Slice LUTs Maximum Frequency

1 None,0 9505 4% 15.565MHz

2 None,2 144,056 69% 11.872MHz

3 None,4 268,887 129% 9.682MHz

4 None,8 470,221 226% 9.495MHz

5 Full,0 40,558 19% 5.706MHz

6 Full,2 210,065 101% 5.061MHz

7 Full,4 400,558 193% 4.595MHz

8 Full,8 727,126 350% 4.556MHz

9 None,0 w/o RO 6498 3% 15.617MHz

10 Full,0 w/o RO 36,400 17% 6.341MHz

Table 4.1: Area and performance for float extension package approach

Design 1 is not at all unrolled, each of the d1[i]-s are calculated at separate clock

cycles. This results in the hardware having just one calculation-module. The designs

of Table 4.1 iterates first over i and then increments k and repeats. This makes the

Readout module necessary; one needs to iterate through all ks, as the d1[i] calculation is

dependent on each of the ks from 0 to 6. To save hardware area, this can be implemented

differently, iterating firstly over k and then increment i. This means, that every seventh

clock cycle, a value of the d1-vector is ready to be output. These can then be read into

a vector in the C-code or to memory, and eliminate the necessity of saving the d1-vector

until all 2008 calculations are done, which saves both area and cycles. Removing the

Readout module does, however, eliminate the opportunity to have other unroll factors

for i than 0, without implementing multiple output ports. There are therefore only two

designs without Readout module, no unrolling, and full unrolling of k. Full unrolling of k

will result in a d1-value on the output every clock cycle, while no unrolling will result in

a value every seventh clock cycle.

The maximum frequencies of the floating point designs are low, indicating long crit-

ical paths. This can be explained by David Bishop’s statement: ”the hardware of the

floating point can be up to 3× more than that of the fixed point package”[20].

38

Implementation and verification

4.1.2 Approach expansion package, fixed point

The fixed point approach uses the expansion package for fixed point numbers and oper-

ators, such as +, −, ∗ and /. It has two 32-bit floating point input ports and a 32-bit

floating point output port, which makes it necessary to convert from floating point to

fixed point and vice versa. This has also been included in the package, thus conversion

to/from float/fixed is not a design issue. The designs 1 through 10 are otherwise carried

out in the same way as those of the floating point approaches.

Designs: 207,360 Slice LUTs available on Virtex5 model

Design number Unroll factor k,i #Slice LUTs % of Slice LUTs Maximum Frequency

1 None,0 5450 2% 29.485MHz

2 None,2 141,143 68% 28.091MHz

3 None,4 263,119 126% 25.815MHz

4 None,8 452,204 218% 25.308MHz

5 Full,0 15,920 7% 21.261MHz

6 Full,2 163,578 78% 20.183MHz

7 Full,4 309,559 149% 19.096MHz

8 Full,8 553,642 266% 18.653MHz

9 None,0 w/o RO 3035 1% 29.296MHz

10 Full,0 w/o RO 13,420 6% 22.407MHz

Table 4.2: Area and performance for fixed extension package approach

As can be seen in Table 4.2, the maximum frequencies of the fixed point implemen-

tations are significantly higher than that of the floating point implementations. It is also

clear that the areas of the fixed point designs are smaller, in line with David Bishops

statement, even though these need extra logic for conversion to/from floating point and

resizing of vectors within the module. This is needed because operators included in the

package result in longer result vectors than the operand vectors.

4.1.3 Approach standard VHDL, fixed point

The approach using standard VHDL has a more intricate calculation-module than those

using the predefined packages. VHDL does not support operators such as +, −, ∗ and /

for std logic vector -types, and not using packages with fixed point types means that one

39

Implementation and verification

must implement the fixed point type and keep track of the decimal point manually. The

Amber core uses 32 bit floating point numbers as described in Chapter 2 Section 2.5.

Conversion to and from floating point is due to this needed on the input and output of

the accelerator. This is carried out by using the conversion as described in Listing 2.1,

Section 2.5.

Figure 4.2: Illustration of the module using standard VHDL.

The additional logic for correct calculation using the fixed point representation and

conversion on inputs and outputs increases the area consumption of the module compared

to the equivalent designs using the floating and fixed point packages.

Designs: 207,360 Slice LUTs available on Virtex5 model

Design number Unroll factor k,i #Slice LUTs % of Slice LUTs Maximum Frequency

1 None,0 112,778 54% 44.139MHz

Table 4.3: Area and performance for standard VHDL fixed point approach

An advantage of using the standard VHDL is that you have more control of the de-

sign. Using the packages may include additions which may consume additional space and

make critical paths longer than necessary. The design shown in Table 4.3 is synthesised

without utilizing the available RAM resources. This results in the synthesiser generating

one FlipFlop for each bit in the arrays, which is very inefficient compared to synthesis-

ing arrays as RAM, and causes tremendous area consumption. In this case, a total of

40

Implementation and verification

32×7 = 224 FlipFlops are generated for saving the curr xV values, and 32×2048 = 65, 536

FlipFlops for the xV values. Still, the frequency of this design is almost 50% higher than

the design with the highest frequency amongst the package utilizing designs, indicating

that using standard VHDL results in more efficient hardware and shorter critical paths.

4.2 Verification

For the standard VHDL-approach, the conversion modules needed local verification. To

do this, several numbers with different qualities were applied to the converters and com-

pared to the number’s corresponding floating or fixed point representation. The numbers

were different cases such as:

� Between 0 and -1

� Between 0 and 1

� Zero

� Larger numbers requiring several bits for integer part

This was, however, done progressively during the design time, and no established test

bench was used.

The plan for verification of the entire system is to use the existing EEG recordings

attached to the codes, and generate numbers using the software. These numbers will then

be used in a golden device-like strategy. To check this only for the code that is to be

implemented in hardware, all the intermediate d1 values are written to a file. With the

attached EEG signals, there is an opportunity to calculate a total of 32×3516 = 112, 512

Lyapunov exponents, as there are EEG signals from 32 channels. This means that it is

possible to test the hardware against the software 32× 3516× 2008 = 225, 924, 096 times

for each d1[i]-value calculated, or the entire d1 vector 32 × 3516 = 112, 512 times. As

this would be done manually, running all 21 designs 112,512 times would be very time

consuming. Therefore 28 of these 112,512 d1-calculations have been chosen from the first

seven channels. Within the seven channels, data at four different intervals of the EEG-

signals have been chosen, for four calculations within each channel. This spreading is

done to hopefully get different characteristics of the EEG signals in the test.

41

Implementation and verification

An important part of the Lyapunov exponent calculation is accuracy, as increased

accuracy in calculating exponents will contribute to the accuracy in issued seizure warn-

ings. Therefore, an important part of the verification is looking at deviations between

values produced by the software code and the hardware module. This will also indicate

correctness of the code if the deviations are small, for example less than 0.1. Exactly

how accurate the calculation needs to be is not possible to decide without running the

entire prediction algorithm with the numbers presented via this hardware and evaluate

correctness of issued seizure warnings. Unfortunately the entire code is not accessible.

The deviation arises, as mentioned, due to the fact that implementing a software

code in hardware will probably lead to rounding errors due to the limitation in number of

bits used to represent the number, as discussed in Section 2.5. Due to this, a direct com-

parison on whether or not the output from the C-code and the output of the implemented

hardware are equal, appears not to be a good solution. To make a good comparison, a

code calculating the difference between the different d1[i]s from software and hardware

has been written. This technique is illustrated in Figure 4.3. Excerpts of the results from

this comparisons as presented in Tables 4.4, 4.5 and 4.6 show the deviations from seven

file pairs from each channel. Which exponent the deviation is calculated for is decided

by choosing file pairs which are 3516
7
' 502 file pairs apart for even distribution.

Figure 4.3: Illustration of the technique used for verification.

42

Implementation and verification

The actions described in the green boxes of Figure 4.3 are carried out by scripts

written in C++ and Matlab. The source codes are attached in Appendix E.

Verification of module utilizing the floating point expansion package

Table 4.4 is an excerpt of absolute mean deviations. The average mean value at the

bottom of Table 4.4 is the average value after calculating mean deviations of 28 randomly

selected file pairs. Each file pair contain values for calculating one total d1 array of 2008

elements.

Deviation

Channel,exponent Absolute mean deviation

1,1 0.000077

2,503 0.000019

3,1005 0.000015

4,1507 0.000066

5,2009 0.000012

6,2511 0.000012

7,3516 0.000014

Average mean value: 0.000022

Table 4.4: Deviation for float expansion package approach

Verification of module utilizing the fixed point expansion package

The average mean deviation after calculating deviations from 28 different datasets, result-

ing in 28× 2008 = 56, 224 d1-values, is 0.050554, as displayed in Appendix C Table C.2.

This rather large average deviation does, however, not give the full picture of the design’s

quality. As seen in Appendix C, Tables C.2, two file-pairs, from Channel 4 exponent 3516

and Channel 7 exponent 1, increase the average mean deviation significantly compared

to the contribution of the other 26 pairs. Even though this relatively huge deviation

originates from only 2 out of 28 file-pairs, it still questions the quality of the design. To

try to eliminate this deviation, the calculation of these values was debugged. During that

process, everything seemed to work fine, until an addition went wrong and resulted in a

larger number than expected. As it was just a simple addition which apparently works

fine for the other file pairs, I am not sure how to address this issue.

43

Implementation and verification

Deviation

Channel,exponent Absolute mean deviation

1,1 0.000075

2,503 0.000019

3,1055 0.000015

4,1507 0.000066

5,2009 0.000012

6,2511 0.000012

7,3516 0.000015

Average mean value: 0.050554

Table 4.5: Deviation for fixed expansion package approach

Verification of module using standard VHDL

The verification plan of calculating average deviation for the d1-values was also used for

the module using the standard VHDL. As for the two other approaches, a total of 28

file-pairs were used for verification. The results of this process is presented in Appendix

C Table 4.6. The average mean deviation as seen in the last row of Table 4.6 implies that

using the standard VHDL approach and using fixed point numbers in the calculation is

on average accurate to 10−4.

Deviation

Channel,exponent Absolute mean deviation

1,1 0.000091

2,503 0.000024

3,1005 0.000021

4,1507 0.000073

5,2009 0.000013

6,2511 0.000016

7,3516 0.000016

Average mean value: 0.000027

Table 4.6: Deviation for standard VHDL approach

44

Chapter 5

Results

5.1 Results from Simulation

This section presents results from simulation using Xilinx’s ISim and synthesis using Xil-

inx’s XST. Firstly the general results from the pre-synthesis simulations without delays

are presented, and then the specific results which take into account the physical limita-

tions post synthesis. The unroll factor for k is either ”none” or ”full” as described in

Section 4.1.1. The fixed point package designs, floating point package designs, and the

standard VHDL design with same unrolling factor, spent exactly the same amount of

time calculating the d1-vector during simulation. This is due to an ideal environment,

i.e. no delays, equal clock frequency and that the designs spend the same amount of cy-

cles for calculation with the same unroll factors. The timing data from the pre-synthesis

simulations at 60 MHz are shown in Table 5.1. The columns 4 and 5 present the amount

of time spent calculating the d1-values and the total run time from the start of the read

in until the last value is read out. Please note, however, that there only exists one design,

which has unroll factor None,0, for the standard VHDL approach.

45

Results

Timing[us]

Unroll factor k,i Read in data Read out data Calculation Total

None,0 34.131968 33.465328 234.257296 301.854592

None,2 34.131968 33.465328 117.128648 184.7259442

None,4 34.131968 33.465328 58.564324 126.161620

None,8 34.131968 33.465328 29.282162 96.879458

Full,0 34.131968 33.465328 33.465328 101.062624

Full,2 34.131968 33.465328 16.732664 84.329960

Full,4 34.131968 33.465328 8.366332 75.963628

Full,8 34.131968 33.465328 4.183166 71.780462

None,0, w/o RO 34.131968 N/A 234.257296 268.389264

Full,0, w/o RO 34.131968 N/A 33.465328 67.597296

Table 5.1: Simulation time from float and fixed extension package approach, and the
standard VHDL approach

To illustrate the difference between the designs with a Readout-module and those

without, some waveforms from the simulations are added. The waveforms, as seen in

Figure 5.1, compare the total runtime of an accelerator without(left) and with(right) a

Readout-module. This figure illustrates how the d1 values are not stored intermediately

in the accelerator, but are read out continuously as they are ready. As shown in Figure

5.1, this happens at the first marker, at time 34.140301 us, in the left-hand waveform.

46

Results

Figure 5.1: Waveform from simulation of a module without(left) and with(right)
Readout-module.

47

Results

Figure 5.2 illustrates how a d1-value is output every seventh clock cycle when sim-

ulating an accelerator without a Readout-module and no unrolling of k as described in

Chapter 4.

Figure 5.2: 7 cycles between outputs for design without Readout-module and no
unrolling of k.

5.2 Results post Synthesis

Results after the synthesis provide a picture of what limitations the implemented design

will have. The actual frequencies the accelerators are able to run on will affect the

run times from the simulation without delays. Sections 5.2.1, 5.2.2 and 5.2.3 present

estimations of run times and calculation times when using the new maximum frequencies.

The new timing was estimated by multiplying the pre-synthesis timing with the factor of

reduction in frequency after synthesis, as in Equation 5.1

New time = Old time× 60MHz

New freq
(5.1)

This method has been chosen due to unresolved difficulties with post-synthesis sim-

ulation using the float and fixed packages. Due to the fact that the float ports1 were

synthesised to a type std logic vector1 which handles negative indices, these difficulties

made post-synthesis simulation unavailable. It lead to a mismatch with the test-bench,

which is not synthesised, and still works with the float-type. Within the time-limits of

this study it was not time to study the std logic vector1 -type to possibly create working

a test-bench with this type.

1Both approaches use float-type as ports

48

Results

5.2.1 Approach expansion package, floating point

The synthesis results for the floating point expansion package approach were mainly

presented in Chapter 4 Table 4.1. Table 5.2 presents new timing data estimations from

the post-synthesis maximum frequencies.

Estimated timing with new frequencies

Design Frequency post synthesis Calculation time[us] Total time[us]

1 15.565MHz 903.015597 1163.58982

2 11.872MHz 591.967453 933.587992

3 9.682MHz 362.927023 781.831977

4 9.495MHz 185.037359 612.192468

5 5.706MHz 351.896193 1062.69846

6 5.061MHz 198.371832 999.762418

7 4.595MHz 109.244814 991.908091

8 4.556MHz 55.0899824 945.308982

9 15.617MHz 900.008821 1031.14272

10 6.341MHz 316.656628 639.621158

Table 5.2: New timing for float extension package approach

The first column enumerates the designs from 1 to 10. This is to make the reading

more easy than using their unroll factors. The designs are ordered as in Table 5.1.

The second column presents the maximum clock frequency of the designs post-synthesis.

These are together with the simulation timing data used to estimate new times with the

new frequencies, in accordance to Equation 5.1. The resulting new calculation times and

run times are presented in Columns 3 and 4.

5.2.2 Approach expansion package, fixed point

Corresponding data for estimated time consumed post-synthesis for the fixed point imple-

mentations are presented in Table 5.3. These results suggest that the hardware created

using the fixed point package is more efficient than the floating point. Even though the

fixed point approach has the resizing and conversion logic mentioned in Chapter 4, the

critical paths are smaller than that of the floating point hardware. This results in higher

frequencies and significantly lower calculation and total run time.

49

Results

Estimated timing with new frequencies

Design Frequency post synthesis Calculation time[us] Total time[us]

1 29.485MHz 476.697906 614.253876

2 28.091MHz 250.176885 394.558992

3 25.815MHz 136.116965 293.228635

4 25.308MHz 69.4219109 229.681029

5 21.261MHz 94.4414505 285.205655

6 20.183MHz 49.742845 250.696011

7 19.096MHz 26.2871764 238.679183

8 18.653MHz 13.4557422 230.891959

9 29.296MHz 479.773271 549.677630

10 22.407MHz 89.6112679 181.007621

Table 5.3: New timing for fixed extension package approach

The data in Table 5.3 corresponds to those in Table 5.2 for the fixed point package

approach, and they are explained in Section 5.2.1.

5.2.3 Approach standard VHDL, fixed point

The approach using standard VHDL resulted in the largest post-synthesis frequency. As

seen in Table 5.4, the total run time increases by 410−301
301

×100 = 36%. Table 5.4 illustrates

that the higher post-synthesis frequency of the approach using standard VHDL is about
44
15
' 2.9 and 44

29
' 1.5 times higher than those of the other two comparable designs.

Estimated timing with new frequencies

Design Frequency post synthesis Calculation time[us] Total time[us]

1 44.139MHz 318.4357996 410.3236485

Table 5.4: New timing for standard VHDL approach

The post-synthesis calculation and run times for this approach are also estimated.

Because of not using the RAM resources, the placing and routing of this design took too

much time2, so the results from Place and Route is missing. This means that the power

2Several days

50

Results

estimation tool could not be used properly, as it requires the Place and Route to be done.

It also lead to that the post-synthesis simulation never launched.

5.2.4 Power estimates

It was initially difficult to get a power consumption estimate for the standard VHDL

approach. This is due to the fact that the power analysis tool XPower Analyzer needs

to run a Place and Route to generate an .ncd -file to get good estimates for the power

consumption. This was overcome by using the .ncd -file from synthesis, which probably

will not give as good estimates as the ones generated from Place and Route. However, it

is clear from the power estimates shown in Table 5.5 that the estimates of the Standard

VHDL approach are a lot larger than those of the package approaches. This is most likely

due to the arrays being synthesised as logic instead of memory. The power estimates

seems to be proportional to the number of LUTs used. So according to this, the power

consumption of the standard VHDL approach would be similar to that of the fixed package

approach if the RAM resources were utilized.

Power estimates[mW]

Approach Dynamic/static Logic Signal Clocks

Float package 55.24/2951.79 3.90 16.32 32.68

Fixed package 51.56/2951.79 2.90 11.81 34.60

Standard 622.35/2951.79 65.52 116.27 435.82

Table 5.5: Table of power estimates.

51

Chapter 6

Discussion

All the designs have one thing in common; accessing arrays at different indices(multiple

addresses) adds RAMs to design. This implies not unrolling k and unrolling i by a factor

of 2 leads to implementation of two RAMs of size 32×2048 and two RAMs of size 32×7,

because this means accessing the xV -array and curr xV -array at two different indices in

the same clock cycle. This multiple accessing is as shown in Listing 3.3. If all of the

accesses shown in Listing 3.3 are carried out within the same clock cycle, the xV -array

and curr xV -array are accessed at seven locations simultaneously, causing seven copies of

the xV -array and curr xV -array RAMs. Increased unrolling factor increases the number

of RAMs implemented in the synthesis leading to increased area.

When looking into area vs performance some designs for both the floating point and

fixed point package approaches can be discarded rather quickly. This is due to the fact

that they consume a larger area than available on the Virtex5 platform. This upper area

limit is displayed as a horizontal red line in Figure 6.1 for the float approach. This line

eliminates design 3, 4, 7 and 8. They could be discussed if the FPGA was larger, but

additionally, their run times are not low enough to make up for the area consumption,

as there are smaller designs which spend less time or almost equal time, such as Design

10. A graphical representation of the area and estimated calculation times and total run

times is presented in Figure 6.1.

53

Discussion

Figure 6.1: Graph showing area and speed(in estimated new total runtime, new sec)
of different design choices.

Further it is important to notice that the increased area also leads to prolonged

critical paths, which in turn result in reduced frequencies. Figure 6.1 shows how the

performance gains are diminished by significantly reduced clock frequencies. Another

aspect is that the performance gain of unrolling only applies to the calculation time. The

number of cycles required for reading in and reading out are constant across designs,

when applicable. This makes the decrease in run times stagnate at the larger unrolling

factors, where the read in plus read out times are up to 33+34
4

= 16.75 times larger than

the calculation time. This effect especially manifests itself for designs 5, 6, 7 and 8,

where the k -loop is fully unrolled. This could be addressed by implementing multiple

I/Os. However, one would also then have to implement the same number of conversion

modules because having only one conversion for the multiple I/Os would cause the same

bottleneck considered.

As designs with both small area and low time consumption are wanted, Design 10

seems to stand out as the most optimal design amongst the designs of the floating point

package approach. This is, however, a design without a Readout-module, which needs

to be taken into consideration when the accelerator shall cooperate with surrounding

hardware.

Regarding performance for the fixed point package approach these designs seem to

benefit more from the loop unrolling than the corresponding floating point designs. This

54

Discussion

is likely due to the less hardware demanding nature of the fixed point logic. The higher

maximum frequencies post synthesis also reflect the same. As for the floating point

designs, the reduction in run time stagnates at higher unroll factors, as illustrated in

Figure 6.2, especially for designs 5 to 8. This is for the fixed point designs, as for the

floating point designs, due to the fact that the calculation times are small compared to

the read in and read out times and reduced frequency.

The graphical representation of area and run time shown in Figure 6.2 also immedi-

ately discards designs 3, 4, 7 and 8 due to area limitations. Generally, the designs using

the fixed point logic have more equal run times than the floating point designs. However,

the designs using no unrolling, Designs 1 and 9, stand out as particularly time consum-

ing especially compared to Designs 5 and 10, which spend about 400 us less and not

significantly more area. These qualities make Designs 5 and 10 the most interesting for

further work and implementation to the SHMAC platform. Design 10 does not include

the Readout-module, while Design 5 does. Apart from this, these two designs seem to

have reasonably similar qualities in both area and performance.

Figure 6.2: Graph showing area and speed(in estimated new total runtime, new sec)
of different design choices.

The results from not utilizing the packages and implementing fixed point operations

from scratch are quite interesting. Firstly, the post-synthesis frequency is significantly

higher than for the other two approaches. This frequency makes the approach with

55

Discussion

standard VHDL to be most effective. It is faster than all of the floating point package-

designs and two of the fixed point package-designs even though only Design 1 presented

in Tables 5.2 and 5.3 have the same building structure with no parallel calculation. The

standard VHDL approach does, however, occupy a smaller area than the designs which

consume less time.

Secondly, the area of this design is rather large compared to the corresponding designs

in the two other approaches, i.e. with unroll factors k and i as 0. This is likely due to

the trouble of getting the arrays implemented utilizing the RAM resources on the FPGA.

Instead the arrays are implemented as one FlipFlop per bit within the array, resulting in

a rather large design.

Figure 6.3: Graph showing area and speed(in estimated new total runtime, new sec)
of the approach implementing fixed point from std logic vector.

Extending the standard VHDL design to include loop unrolling would be more de-

manding than for the other two approaches, as the calculation module of the standard

VHDL approach is more intricate than for the other two. One clear-cut way to do this,

would be by implementing the entire calculation as a subcomponent. Then the process of

designing having different unrolling factors would be to implement the number of subcom-

ponents equivalent to the wanted unroll factor. This would, with the current control logic,

be for unrolling of the i -loop. The fully unroll of the k -loop would need seven parallel

subcomponents and some alteration of the logic controlling the indexing. As for the other

approaches, it is expected that unrolling will lead to increased area, lowered maximum

56

Discussion

clock frequency, but also a reduction in clock cycles corresponding to the unroll-factor

needed for calculating the d1-values.

Comparison

I have, in this section, compared the characteristics of the corresponding designs from

the different approaches. Due to the previously mentioned memory synthesis problems

with the standard VHDL approach, some estimations have been made to compare the

areas. The synthesis of the float and fixed approaches’ Design 1 exposed that the three

arrays of sizes 32× 7, 32× 2008 and 32× 2048 use a total of 3480 LUTs when the RAM

resources are utilized. The RAMs are in this case implemented on LUTs due to currently

unsupported block RAM features according to the synthesis tool. If these resources are

not utilized, the arrays take up ”number of bit” FlipFlops1. Based on a synthesis of a

design without any of the arrays, it is estimated that the calculation and conversion logic

of the standard approach use 1722 LUTs. It is from this estimated that if using the RAM

resources for the arrays, the area of the Standard-approach is 1722 + 3480 = 5202 LUTs.

To make the the power statistics comparable, all are run on the same clock fre-

quency2.

Comparison qualities of designs

Area Performance Power estimates[mW]

Approach Total/logic [Max.freq] Dynamic/static Logic Signal Clocks

Float package 9505/6025 15.565 55.24/2951.79 3.90 16.32 32.68

Fixed package 5450/1970 29.485 51.56/2951.79 2.90 11.81 34.60

Standard 5202/1722 44.129 622.35(51.56)/2951.79 65.52(2.90) 116.27(11.81) 435.82(34.60)

Table 6.1: Table which compares qualities of the different approaches.

The data presented in Table 6.1 exposes the standard VHDL approach as the most

area efficient and fastest. The numbers in the parenthesis for the standard approach are

equal to those estimated by the XPower Analyzer -tool for the Fixed package approach.

As discussed in Section 5.2.4, these are estimated to be fairly equal to the data for the

Standard VHDL approach if it was synthesised with the RAM resources.

Another aspect of the difference between the approaches, is the time spent on de-

signing. For the two package approaches this time is almost equal. The designs of these

1One ”slice LUT” contains a FlipFlop and a LUT
212.2MHz to avoid timing conflicts in slowest design

57

Discussion

approaches are quite similar, mostly differing in types used and the fact that the fixed

point approach needs some extra attention for conversion and resizing to keep the 32-bit

width. This is, however, easily done by using predefined functions included in the pack-

age. Due to the need for learning the packages, the first design, i.e. Design 1 using the

float approach, was time consuming. The remaining 19 could, to a great extent, be based

on this first design. Concerning the design time, the standard approach is definitely the

most demanding, taking several more days than the other approaches. This is both due

to that it was not possible to base anything on the package-designs, and that the fixed

representation, as well as the conversion procedure, needed to be handled from scratch.

Furthermore, all the designs satisfy the timing criteria of spending less than 0.50×
10.24
32

= 0.16 seconds, as the most time consuming design only spend 1.164 milliseconds.

This means that there is room for 0.158837 seconds, or 0.158837× 60MHz = 9, 530, 220

cycles for overhead, communication and data transfer.

58

Chapter 7

Conclusion and Future work

Conclusion

As Xilinx does not seem to be fully compatible with the floating point and fixed point

packages, resulting in problems during and after synthesis, the best solution seems to

be to keep to standard VHDL when designing for a Xilinx platform. Post synthesis

simulation has been a major issue, as I have not been able to make it run properly. This

also narrows the possibility to run a good power estimation using the built in XPower

Analyzer, as it makes use of switching data generated during post-synthesis simulation

to calculate power usage.

Due to the issues mentioned above, it seems to be more likely to avoid unexpected

problems and incompatibility with the surrounding interface when the time comes for

implementing the accelerator on the platform. It also seems like from scratch implemen-

tation, as it is when not using the packages, generates a smaller circuit than utilizing the

packages. However, all the designs meet the timing criteria stated in Chapter 4.

All designs presented in this study are designed to be tested locally, using the previ-

ously described verification technique (ref. Chapter 4). It thus follows that these designs

are different from how they would be when implemented on the SHMAC platform with a

fully functioning framework with the CPU and the interface. Some alterations have to be

made, and some of them will presumably reduce the area of the designs quite remarkably.

These alterations are considered in the following section.

As for the assignment described in the problem description, the algorithm and

its STLmax calculation have been studied. The STLmax calculation was successfully

59

Chapter 8. Conclusion

adapted to run on a general SHMAC processing tile. A kernel was selected and an ac-

celerator was implemented using multiple approaches to evaluate different advantages or

disadvantages of the different approaches, these were performance and area, as well as

estimating the power consumptions.

Future Work

Regarding future work, there is a lot to be done. Firstly it would be interesting running

the algorithm in software when the FPU is implemented on the platform. As one then has

support for floating point numbers rather than them being emulated in software as they

currently are, this will presumably result in a much lower run time than those presented

in Chapter 3.

Another interesting issue is to rewrite the Fix1-code so it utilizes the integer hardware

on the SHMAC platform, avoiding the double emulation which is currently the case for

the fixed point code, as stated in Section 3.2. In this case, the conversions to and from

floating point conversion of the fixed point approach and standard VHDL approach can

be removed, leading to less area consumption and probably a higher maximum frequency.

A natural way to proceed with the accelerator of this assignment is to firstly get

the standard VHDL design to utilize RAM resources, and then implement designs on the

SHMAC platform. The current designs are written to enable local testing by calculating

all 2008 d1-values using data output from the C-code as described in Chapter 4. To

be compatible with the interface designed by Marton Teilg̊ard[23], some changes need

to be made. Instead of loading in the entire matrices for calculating all 2008 d1 values,

it’s beneficial to load in for calculating one of the 2008 at a time. If one uses a design

which iterates firstly over k, this is possible due to the need of only 2 × 7 inputs for

d1[i], before moving on to d1[i + 1]. At d1[i + 1] one only needs seven new values, as

the one matrix(curr xV in Listing 3.2) of values is equal for all d1-calculations of one

exponent. Together with some logic for calculating addresses of the data needed for the

currently calculated exponent, this alteration should presumably be sufficient to make

the accelerator work with Marton Teilg̊ard’s interface.

60

Appendix A

Profiling of C-similar Matlab-code

This appendix contains profiling data of running the algorithm for Lyapunov exponent

calculation in Matlab. The code profiled here use syntax close to the one of C++. Note

that this code calculates 3516 Lyapunov Exponents, whereas the codes in Appendix B

calculate one.

Profiling

Line number Code Total #of Calls Total Time(s) % of Total Time

Main

30 lmax = lmax hazelnut(data, 7, 4, 0.005, 12, 24, 20); 3516 4975,142 99.8%

lmax hazelnut

156 curr d1partial = curr xV (k)− xV (n+ (k − 1) ∗ tau); 8,253,289,632 893,554 17,92%

157 curr d1partial = curr d1partial ∗ curr d1partial; 8,253,289,632 834,379 16,74%

158 d1(1, n) = d1(1, n) + curr d1partial; 8,253,289,632 881,613 17,68%

334 select = cv(n) + (k − 1) ∗ tau; 2,747,136,252 285,832 5,73%

335 dot2partial(n) = dot2partial(n) + (diffpoint(k) ∗ xV (select)); 2,747,136,252 303,283 6,08%

342 dot2(i) = (dot2(i) ∗ dot2(i))/(d1(cv(i)) ∗ df); 392,448,036 117,833 2,36%

361 sub = fudpoint− xV (ind : tau : ind+ xV expanse)′; 585,811 19,505 0,39%

Table A.1: Profiling of C-syntax like Matlab code

61

Appendix B

Timing of most time consuming

calculations

Timing

Algorithm version Line Calculation code Time in msec % of total time

Float 1 Total execution time: 71,662.400018 100

140 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

141 curr d1partial = curr d1partial ∗ curr d1partial;

142 d1[i] = d1[i] + curr d1partial; 223.265181 0.31

201 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

202 curr d1partial = curr d1partial ∗ curr d1partial;

203 d1[i] = d1[i] + curr d1partial; 37,686.958847 52.59

393 select = cv[i] + k ∗ tau;

394 dot2partial[i] = dot2partial[i] + (diffpoint[k] ∗ xV [select]); 14,535.652115 20.28

406 dot2[i] = (dot2[i] ∗ dot2[i])/(d1[cv[i]] ∗ df); 2777.115973 3.88

Table B.1: Timing of most time consuming calculations, algorithm float 1

63

Timing

Timing

Algorithm version Line Calculation code Time in msec % of total time

Float 2 Total execution time: 69,568.340331 100

First calculation 144, 153 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

k=0 in separate 145, 154 curr d1partial = curr d1partial ∗ curr d1partial;

loop 146, 155 d1[i] = d1[i] + curr d1partial; 216.182544 0.31

First calculation 212, 222 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

k=0 in separate 213, 223 curr d1partial = curr d1partial ∗ curr d1partial;

loop 214, 224 d1[i] = d1[i] + curr d1partial; 36,488.212672 52.45

412 select = cv[i];

413 dot2partial[i] = (diffpoint[0] ∗ xV [select]);

422 select = cv[i] + k ∗ tau;

423 dot2partial[i] = dot2partial[i] + (diffpoint[k] ∗ xV [select]); 14,057.002424 20.21

435 dot2[i] = (dot2[i] ∗ dot2[i])/(d1[cv[i]] ∗ df); 2777.064773 3.99

Table B.2: Timing of most time consuming calculations, algorithm float 2

64

Timing

Timing

Algorithm version Line Calculation code Time in msec % of total time

Fix 1 Total execution time: 7,935,481.866744 100

297 curr d1partial = curr xV [0]− xV [i];

298 assertFract(curr d1partial);

299 curr d1partial = fixround(curr d1partial, bitwidth);

300 curr d1partial = curr d1partial ∗ curr d1partial;

301 curr d1partial = fixround(curr d1partial, bitwidth);

302 d1[i] = curr d1partial;

308 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

309 assertFract(curr d1partial);

310 curr d1partial = fixround(curr d1partial, bitwidth);

311 curr d1partial = curr d1partial ∗ curr d1partial;

312 curr d1partial = fixround(curr d1partial, bitwidth);

313 d1[i] = curr d1partial;

314 assertFract(d1[i]);

315 d1[i] = fixround(d1[i], bitwidth); 37,870.464553 0.48

367 curr d1partial = curr xV [0]− xV [i];

368 assertFract(curr d1partial);

369 curr d1partial = fixround(curr d1partial, bitwidth);

370 curr d1partial = curr d1partial ∗ curr d1partial;

371 curr d1partial = fixround(curr d1partial, bitwidth);

372 d1[i] = curr d1partial;

379 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

380 assertFract(curr d1partial);

381 curr d1partial = fixround(curr d1partial, bitwidth);

382 curr d1partial = curr d1partial ∗ curr d1partial;

383 curr d1partial = fixround(curr d1partial, bitwidth);

384 d1[i] = curr d1partial;

385 assertFract(d1[i]);

386 d1[i] = fixround(d1[i], bitwidth); 6,393,424.958187 80.57

412 select = cv[i] + k ∗ tau;

413 dot2partial = dot2partial + (diffpoint[k] ∗ xV [select]);

422 assertFract(dot2partial);

423 dot2partial = fixround(dot2partial, bitwidth); 918,770.471380 11.58

Table B.3: Timing of most time consuming calculations, algorithm fix 1

65

Timing

Timing

Algorithm version Line Calculation code Time in msec % of total time

577 dot2[i] = mulpoint− dot2partial;
578 assertFract(dot2[i]);

579 dot2[i] = fixround(dot2[i], bitwidth);

581 dot2nom = (dot2[i] ∗ dot2[i]);

582 assertFract(dot2nom);

584 remove0return = fixRemove0(dot2nom);

585 dot2nom = remove0return.x;

586 removed0nom = remove0return.num;

587 dot2nom = fixround(dot2nom, bitwidth);

588 dot2denom = d1[cv[i]] ∗ df ;

589 assertFract(dot2denom);

591 remove0return = fixRemove0(dot2denom);

592 dot2denom = remove0return.x;

593 removed0denom = remove0return.num;

594 dot2nom = fixround(dot2nom, bitwidth); ;

These two are 598 dot2[i] = dot2nom/dot2denom;

in an if-statement 599 dot2[i] = dot2[i]/powf(2, removed0nom− removed0denom);

Associated else 602 dot2[i] = MAXFIX; 504,950.097280 6.36

Table B.4: Timing of most time consuming calculations, algorithm fix 1

Timing

Algorithm version Line Calculation code Time in msec % of total time

NoMalloc Total execution time: 69,303.887770 100

First calculation 149, 157 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

k=0 in separate 150, 158 curr d1partial = curr d1partial ∗ curr d1partial;

loop 151, 159 d1[i] = d1[i] + curr d1partial; 216.188233 0.31

First calculation 212, 221 curr d1partial = curr xV [k]− xV [i+ k ∗ tau];

k=0 in separate 213, 222 curr d1partial = curr d1partial ∗ curr d1partial;

loop 214, 223 d1[i] = d1[i] + curr d1partial; 36,487.143166 52.65

400 select = cv[i];

401 dot2partial[i] = (diffpoint[0] ∗ xV [select]);

409 select = cv[i] + k ∗ tau;

410 dot2partial[i] = dot2partial[i] + (diffpoint[k] ∗ xV [select]); 13,983.792425 20.18

422 dot2[i] = (dot2[i] ∗ dot2[i])/(d1[cv[i]] ∗ df); 2759.093650 3.98

Table B.5: Timing of most time consuming calculations, algorithm no malloc

66

Timing

Timing

Algorithm version Line Calculation code Time in msec % of total time

FloatOpt Total execution time: 52,455.45 100

curr d1partial = curr xV [0]− xV [i+ 0 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [1]− xV [i+ 1 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [2]− xV [i+ 2 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [3]− xV [i+ 3 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [4]− xV [i+ 4 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [5]− xV [i+ 5 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [6]− xV [i+ 6 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

d1[i] = d1temp; 156.91 0.30

curr d1partial = curr xV [0]− xV [i+ 0 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [1]− xV [i+ 1 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [2]− xV [i+ 2 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [3]− xV [i+ 3 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [4]− xV [i+ 4 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [5]− xV [i+ 5 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

curr d1partial = curr xV [6]− xV [i+ 6 ∗ tau];

d1temp+ = curr d1partial ∗ curr d1partial;

d1[i] = d1temp; 26,464.31 50.45

67

Timing

Timing

Algorithm version Line Calculation code Time in msec % of total time

select = cv[i];

dot2partial = dot2partial + (diffpoint[0] ∗ xV [select]);

select = cv[i] + tau;

dot2partial = dot2partial + (diffpoint[1] ∗ xV [select]);

select = cv[i] + 2 ∗ tau;

dot2partial = dot2partial + (diffpoint[2] ∗ xV [select]);

select = cv[i] + 3 ∗ tau;

dot2partial = dot2partial + (diffpoint[3] ∗ xV [select]);

select = cv[i] + 4 ∗ tau;

dot2partial = dot2partial + (diffpoint[4] ∗ xV [select]);

select = cv[i] + 5 ∗ tau;

dot2partial = dot2partial + (diffpoint[5] ∗ xV [select]);

select = cv[i] + 6 ∗ tau;

dot2partial = dot2partial + (diffpoint[6] ∗ xV [select]); 14,475.42 27.60

dot2nom = mulpoint− dot2partial;
dot2nom = dot2nom ∗ dot2nom;

dot2denom = d1[cv[i]] ∗ df ;

ifdenom > nom dot2[i] = dot2nom/dot2denom;

else dot2[i] = 1; 20.63 0.04

Table B.6: Timing of most time consuming calculations, algorithm FloatOpt from
fixed point experiences.

68

Appendix C

Deviations

Mean absolute value between d1 values calculated by C script and values calculated by

the hardware modules. Channel in Table 4.4 describes which of the files containing EEG-

signals1 the calculation is based on. Exponent in Table 4.4 describes which exponent from

the channel the deviation calculation is based on.

Deviations of module utilizing the floating point expansion package

Deviations

Channel,exponent Absolute mean deviation

1,1 0.000077

1,1000 0.000033

1,2000 0.000029

1,3516 0.000038

2,1 0.000023

2,503 0.000019

2,2000 0.000026

2,3516 0.000031

3,1 0.000007

3,1005 0.000015

3,2000 0.000018

3,3516 0.000014

1Channels 1 to 32.

69

Deviations. Deviations

Deviations

Channel,exponent Absolute mean deviation

4,1 0.000021

4,1000 0.000019

4,1507 0.000066

4,3516 0.000015

5,1 0.000008

5,1000 0.000010

5,2009 0.000012

5,3516 0.000008

6,1 0.000009

6,1000 0.000009

6,2511 0.000012

6,3516 0.000015

7,1 0.000016

7,1000 0.000027

7,2000 0.000029

7,3516 0.000014

Average mean deviation: 0.000022

Table C.1: Deviation for float extension package approach

Deviations of module utilizing the fixed point expansion package

70

Deviations. Deviations

Deviations

Channel,exponent Absolute mean deviation

1,1 0.000075

1,1000 0.000033

1,2000 0.000029

1,3516 0.000037

2,1 0.000023

2,503 0.000019

2,2000 0.000026

2,3516 0.000032

3,1 0.000008

3,1005 0.000015

3,2000 0.000019

3,3516 0.000015

71

Deviations. Deviations

Deviations

Channel,exponent Absolute mean deviation

4,1 0.000020

4,1000 0.000019

4,1507 0.000066

4,3516 0.471068

5,1 0.000007

5,1000 0.000010

5,2009 0.000012

5,3516 0.000009

6,1 0.000009

6,1000 0.000009

6,2511 0.000012

6,3516 0.000015

7,1 0.943861

7,1000 0.000028

7,2000 0.000029

7,3516 0.000015

Average mean deviation: 0.050554

Table C.2: Deviation for float extension package approach

Deviations of module using standard VHDL syntax

72

Deviations. Deviations

Deviations

Channel,exponent Absolute mean deviation

1,1 0.000091

1,1000 0.000041

1,2000 0.000034

1,3516 0.000042

2,1 0.000031

2,503 0.000024

2,2000 0.000030

2,3516 0.000043

3,1 0.000010

3,1005 0.000021

3,2000 0.000019

3,3516 0.000017

73

Deviations. Deviations

Deviations

Channel,exponent Absolute mean deviation

4,1 0.000024

4,1000 0.000021

4,1507 0.000073

4,3516 0.000021

5,1 0.000010

5,1000 0.000014

5,2009 0.000013

5,3516 0.000017

6,1 0.000009

6,1000 0.000014

6,2511 0.000016

6,3516 0.000014

7,1 0.000020

7,1000 0.000031

7,2000 0.000029

7,3516 0.000016

Average mean deviation: 0.000027

Table C.3: Deviation for the approach using standard VHDL

74

Appendix D

VHDL codes

D.1 Float approach

D.1.1 Design 1

l i b r a r y std ;

l i b r a r y IEEE ;

l i b r a r y i e e e p ropo s ed ;

use IEEE . STD LOGIC 1164 .ALL;

use IEEE .NUMERIC STD.ALL;

use std . t e x t i o . a l l ;

use i e e e p ropo s ed . f i x e d f l o a t t y p e s . a l l ;

use i e e e p ropo s ed . f i x ed pkg . a l l ;

use i e e e p ropo s ed . f l o a t pkg . a l l ;

e n t i t y f l oa t po in t package modu l e i s

port (

c l k : in STD LOGIC;

enable : in STD LOGIC;

curr xV : in f l o a t (8 downto −23) ;
xV : in f l o a t (8 downto −23) ;
d1 : out f l o a t (8 downto −23)) ;

end f l oa t po in t package modu l e ;

a r c h i t e c t u r e Behaviora l o f f l oa t po in t package modu l e i s

constant tau : i n t e g e r := 4 ;

type a r r a y f l o a t sma l l i s array (0 to 6) o f f l o a t (8 downto −23) ;

75

VHDL codes

type a r r a y f l o a t b i g i s array (0 to 2047) o f f l o a t (8 downto −23) ;
type a r r a y f l o a t i s array (0 to 2007) o f f l o a t (8 downto −23) ;

s i g n a l read enable , c a l c enab l e , w r i t e enab l e : STD LOGIC := ' 0 ' ;

s i g n a l ar ray curr xV : a r r a y f l o a t sma l l ;

s i g n a l array xV : a r r a y f l o a t b i g ;

s i g n a l array d1 : a r r a y f l o a t ;

s i g n a l e n d o f f i l e : b i t := ' 0 ' ;

s i g n a l l inenumber : i n t e g e r :=1;

begin

proce s s (c l k)

v a r i ab l e i , index : i n t e g e r := 0 ;

v a r i ab l e k : i n t e g e r := 0 ;

v a r i ab l e d1temp : f l o a t (8 downto −23) :=(o the r s => '0 ') ;

v a r i ab l e d1 f i x ed : a r r a y f l o a t :=((o the r s=> (o the r s => '0 '))) ;

f i l e o u t f i l e : t ex t i s out ” . / Te s tF i l e s /d1 1 . txt ” ; −−de c l a r e output f i l e

v a r i ab l e ou t l i n e : l i n e ; −− l i n e number d e c l a r a t i on

begin

i f (c lk ' event and c l k = '1 ') then

i f enable = '1 ' then

read enab l e <= ' 1 ' ;

end i f ;

i f r ead enab l e = '1 ' then

read enab l e <= ' 1 ' ;

i f (i<=6)then

array curr xV (i) <= curr xV ;

end i f ;

array xV (i) <= xV;

i := i +1;

i f (i = 2048) then

read enab l e <= ' 0 ' ;

i := 0 ;

c a l c e n ab l e <= ' 1 ' ;

end i f ;

e l s i f c a l c e n ab l e = '1 ' then

d1temp := (array curr xV (k)−array xV (i+k* tau)) *(ar ray curr xV (k)− ←↩
array xV (i+k* tau)) ;

d1 f i x ed (i) := d1 f i x ed (i) + d1temp ;

i := i +1;

i f (i = 2008 and k < 6) then

i := 0 ;

k := k+1;

e l s i f (i =2008 and k=6)then

i := 0 ;

k := 0 ;

c a l c e n ab l e <= ' 0 ' ;

w r i t e enab l e <= ' 1 ' ;

76

VHDL codes

end i f ;

e l s i f w r i t e enab l e = '1 ' then

d1 <= d1 f i x ed (index) ;

−−−−−−−−−−−−−−−−−−−−−−−−ADDED FOR TEST PURPOSES−−−−−−−−−−−−−−−−−−−− Writing to f i l e

−− i f (e n d o f f i l e = '0 ') then −− i f the f i l e end i s not reached .

−− wr i t e (out l i n e , t o r e a l (d1 f i x ed (index) , f a l s e , f a l s e) , r i ght , 10) ;

−−t o r e a l f o r readab le numbers

−− wr i t e l i n e (o u t f i l e , o u t l i n e) ;

−− l inenumber <= linenumber + 1 ;

−− e l s e

−− nu l l ;

−− end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−END TEST PURPOSES−−−−−−−−−−−−−−−−−−−−−−−
index := index+1;

i f (index = 2008) then

index := 0 ;

wr i t e enab l e <= ' 0 ' ;

end i f ;

end i f ;

end i f ;

end proce s s ;

end Behav iora l ;

D.1.2 Design 2

l i b r a r y std ;

l i b r a r y IEEE ;

l i b r a r y i e e e p ropo s ed ;

use IEEE . STD LOGIC 1164 .ALL;

use IEEE .NUMERIC STD.ALL;

use std . t e x t i o . a l l ;

use i e e e p ropo s ed . f i x e d f l o a t t y p e s . a l l ;

use i e e e p ropo s ed . f i x ed pkg . a l l ;

use i e e e p ropo s ed . f l o a t pkg . a l l ;

e n t i t y f l oa t po in t package modu l e i s

port (

c l k : in STD LOGIC;

enable : in STD LOGIC;

curr xV : in f l o a t (8 downto −23) ;
xV : in f l o a t (8 downto −23) ;
d1 : out f l o a t (8 downto −23)) ;

end f l oa t po in t package modu l e ;

a r c h i t e c t u r e Behaviora l o f f l oa t po in t package modu l e i s

constant tau : i n t e g e r := 4 ;

type a r r a y f l o a t sma l l i s array (0 to 6) o f f l o a t (8 downto −23) ;

77

VHDL codes

type a r r a y f l o a t b i g i s array (0 to 2047) o f f l o a t (8 downto −23) ;
type a r r a y f l o a t i s array (0 to 2007) o f f l o a t (8 downto −23) ;

s i g n a l read enable , c a l c enab l e , w r i t e enab l e : STD LOGIC := ' 0 ' ;

s i g n a l ar ray curr xV : a r r a y f l o a t sma l l ;

s i g n a l array xV : a r r a y f l o a t b i g ;

s i g n a l array d1 : a r r a y f l o a t ;

begin

proce s s (c l k)

v a r i ab l e i , index : i n t e g e r := 0 ;

v a r i ab l e k : i n t e g e r := 0 ;

v a r i ab l e d1temp : f l o a t (8 downto −23) :=(o the r s => '0 ') ;

v a r i ab l e d1 f i x ed : a r r a y f l o a t :=((o the r s=> (o the r s => '0 '))) ;

begin

i f (c lk ' event and c l k = '1 ') then

i f enable = '1 ' then

read enab l e <= ' 1 ' ;

end i f ;

i f r ead enab l e = '1 ' then

read enab l e <= ' 1 ' ;

i f (i<=6)then

array curr xV (i) <= curr xV ;

end i f ;

array xV (i) <= xV;

i := i +1;

i f (i = 2048) then

read enab l e <= ' 0 ' ;

i := 0 ;

c a l c e n ab l e <= ' 1 ' ;

end i f ;

e l s i f c a l c e n ab l e = '1 ' then

d1temp := (array curr xV (k)−array xV (i+k* tau)) *(ar ray curr xV (k)− ←↩
array xV (i+k* tau)) ;

d1 f i x ed (i) := d1 f i x ed (i) + d1temp ;

d1temp := (array curr xV (k)−array xV (i+1+k* tau)) *(ar ray curr xV (k)− ←↩
array xV (i+1+k* tau)) ;

d1 f i x ed (i +1) := d1 f i x ed (i +1) + d1temp ;

i := i +2;

i f (i = 2008 and k < 6) then

i := 0 ;

k := k+1;

e l s i f (i =2008 and k=6)then

i := 0 ;

k := 0 ;

c a l c e n ab l e <= ' 0 ' ;

w r i t e enab l e <= ' 1 ' ;

end i f ;

78

VHDL codes

e l s i f w r i t e enab l e = '1 ' then

d1 <= d1 f i x ed (index) ;

index := index+1;

i f (index = 2008) then

index := 0 ;

wr i t e enab l e <= ' 0 ' ;

end i f ;

end i f ;

end i f ;

end proce s s ;

end Behav iora l ;

D.2 Fixed approach

D.2.1 Design 1

l i b r a r y std ;

l i b r a r y IEEE ;

l i b r a r y i e e e p ropo s ed ;

use IEEE . STD LOGIC 1164 .ALL;

use IEEE .NUMERIC STD.ALL;

use std . t e x t i o . a l l ;

use i e e e p ropo s ed . f i x e d f l o a t t y p e s . a l l ;

use i e e e p ropo s ed . f i x ed pkg . a l l ;

use i e e e p ropo s ed . f l o a t pkg . a l l ;

e n t i t y f i xed po in t package modu le i s

port (

c l k : in STD LOGIC;

enable : in STD LOGIC;

curr xV : in f l o a t (8 downto −23) ;
xV : in f l o a t (8 downto −23) ;
d1 : out f l o a t (8 downto −23)) ;

end f ixed po in t package modu le ;

a r c h i t e c t u r e Behaviora l o f f i xed po in t package modu le i s

constant tau : i n t e g e r := 4 ;

type a r r a y f i x e d sma l l i s array (0 to 6) o f s f i x e d (11 downto −20) ;
type a r r a y f i x e d b i g i s array (0 to 2047) o f s f i x e d (11 downto −20) ;
type a r r a y f i x e d i s array (0 to 2007) o f s f i x e d (11 downto −20) ;

s i g n a l read enable , c a l c enab l e , w r i t e enab l e : STD LOGIC := ' 0 ' ;

s i g n a l ar ray curr xV : a r r a y f i x e d sma l l ;

s i g n a l array xV : a r r a y f i x e d b i g ;

s i g n a l array d1 : a r r a y f i x e d ;

s i g n a l d1 f i x ed : a r r a y f i x e d :=((o the r s=> (o the r s => '0 '))) ;

79

VHDL codes

begin

proce s s (c l k)

v a r i ab l e i , index : i n t e g e r := 0 ;

v a r i ab l e k : i n t e g e r := 0 ;

v a r i ab l e d1temp : s f i x e d (11 downto −20) ;

begin

i f (c lk ' event and c l k = '1 ') then

i f enable = '1 ' then

read enab l e <= ' 1 ' ;

end i f ;

i f r ead enab l e = '1 ' then

read enab l e <= ' 1 ' ;

i f (i<=6)then

array curr xV (i) <= t o s f i x e d ((curr xV) ,11 ,−20) ;

end i f ;

array xV (i) <= t o s f i x e d (un r e s o l v e d f l o a t (xV) ,11 ,−20) ;

i := i +1;

i f (i = 2048) then

read enab l e <= ' 0 ' ;

i := 0 ;

c a l c e n ab l e <= ' 1 ' ;

end i f ;

e l s i f c a l c e n ab l e = '1 ' then

d1temp := r e s i z e ((ar ray curr xV (k)−array xV (i+k* tau)) * ←↩
(ar ray curr xV (k)−array xV (i+k* tau)) ,11 ,−20) ;

d1 f i x ed (i) <= r e s i z e ((d1 f i x ed (i) + d1temp) ,11 ,−20) ;

i := i +1;

i f (i = 2008 and k < 6) then

i := 0 ;

k := k+1;

e l s i f (i =2008 and k=6)then

i := 0 ;

k := 0 ;

c a l c e n ab l e <= ' 0 ' ;

w r i t e enab l e <= ' 1 ' ;

end i f ;

e l s i f w r i t e enab l e = '1 ' then

d1 <= t o f l o a t (d1 f i x ed (index)) ;

index := index+1;

i f (index = 2008) then

index := 0 ;

wr i t e enab l e <= ' 0 ' ;

end i f ;

end i f ;

end i f ;

end proce s s ;

end Behav iora l ;

80

VHDL codes

D.2.2 Design 2

l i b r a r y std ;

l i b r a r y IEEE ;

l i b r a r y i e e e p ropo s ed ;

use IEEE . STD LOGIC 1164 .ALL;

use IEEE .NUMERIC STD.ALL;

use std . t e x t i o . a l l ;

use i e e e p ropo s ed . f i x e d f l o a t t y p e s . a l l ;

use i e e e p ropo s ed . f i x ed pkg . a l l ;

use i e e e p ropo s ed . f l o a t pkg . a l l ;

e n t i t y f i xed po in t package modu le i s

port (

c l k : in STD LOGIC;

enable : in STD LOGIC;

curr xV : in f l o a t (8 downto −23) ;
xV : in f l o a t (8 downto −23) ;
d1 : out f l o a t (8 downto −23)) ;

end f ixed po in t package modu le ;

a r c h i t e c t u r e Behaviora l o f f i xed po in t package modu le i s

constant tau : i n t e g e r := 4 ;

type a r r a y f i x e d sma l l i s array (0 to 6) o f s f i x e d (11 downto −20) ;
type a r r a y f i x e d b i g i s array (0 to 2047) o f s f i x e d (11 downto −20) ;
type a r r a y f i x e d i s array (0 to 2007) o f s f i x e d (11 downto −20) ;

s i g n a l read enable , c a l c enab l e , w r i t e enab l e : STD LOGIC := ' 0 ' ;

s i g n a l ar ray curr xV : a r r a y f i x e d sma l l ;

s i g n a l array xV : a r r a y f i x e d b i g ;

s i g n a l array d1 : a r r a y f i x e d ;

begin

proce s s (c l k)

v a r i ab l e i , index : i n t e g e r := 0 ;

v a r i ab l e k : i n t e g e r := 0 ;

v a r i ab l e d1temp , temp1 , temp2 : s f i x e d (11 downto −20) ;
v a r i ab l e d1 f i x ed : a r r a y f i x e d :=((o the r s=> (o the r s => '0 '))) ;

begin

i f (c lk ' event and c l k = '1 ') then

i f enable = '1 ' then

read enab l e <= ' 1 ' ;

end i f ;

i f r ead enab l e = '1 ' then

read enab l e <= ' 1 ' ;

i f (i<=6)then

array curr xV (i) <= t o s f i x e d ((curr xV) ,11 ,−20) ;

end i f ;

array xV (i) <= t o s f i x e d (un r e s o l v e d f l o a t (xV) ,11 ,−20) ;

81

VHDL codes

i := i +1;

i f (i = 2048) then

read enab l e <= ' 0 ' ;

i := 0 ;

c a l c e n ab l e <= ' 1 ' ;

end i f ;

e l s i f c a l c e n ab l e = '1 ' then

temp1 :=array xV (i+k* tau) ;

temp2 :=array xV (i+1+k* tau) ;

d1temp := r e s i z e ((ar ray curr xV (k)−temp1) * ←↩
(ar ray curr xV (k)−temp1) ,11 ,−20) ;

d1 f i x ed (i) := r e s i z e ((d1 f i x ed (i) + d1temp) ,11 ,−20) ;

d1temp := r e s i z e ((ar ray curr xV (k)−temp2) * ←↩
(ar ray curr xV (k)−temp2) ,11 ,−20) ;

d1 f i x ed (i +1) := r e s i z e ((d1 f i x ed (i +1) + d1temp) ,11 ,−20) ;

i := i +2;

i f (i = 2008 and k < 6) then

i := 0 ;

k := k+1;

e l s i f (i =2008 and k=6)then

i := 0 ;

k := 0 ;

c a l c e n ab l e <= ' 0 ' ;

w r i t e enab l e <= ' 1 ' ;

end i f ;

e l s i f w r i t e enab l e = '1 ' then

d1 <= t o f l o a t (d1 f i x ed (index)) ;

index := index+1;

i f (index = 2008) then

index := 0 ;

wr i t e enab l e <= ' 0 ' ;

end i f ;

end i f ;

end i f ;

end proce s s ;

end Behav iora l ;

D.3 Standard VHDL

To make the conversion more accurate, extend the if-statement in the conversions,

f.ex add elsif(d1temp(6)=’1’)then and so on

l i b r a r y std ;

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 .ALL;

use IEEE .NUMERIC STD.ALL;

82

VHDL codes

use std . t e x t i o . a l l ;

e n t i t y f i x po in t modu l e i s

port (

c l k : in STD LOGIC;

r s t : in STD LOGIC;

enable : in STD LOGIC;

curr xV : in s t d l o g i c v e c t o r (31 downto 0) ;

xV : in s t d l o g i c v e c t o r (31 downto 0) ;

d1 : out s t d l o g i c v e c t o r (31 downto 0) ;

o rdy : out STD LOGIC) ;

end f i x po in t modu l e ;

a r c h i t e c t u r e Behaviora l o f f i x po in t modu l e i s

constant tau : i n t e g e r := 4 ;

constant exp base : i n t e g e r := 128 ; −−Design f o r 32−b i t f l o a t

type ram small i s array (0 to 6) o f s t d l o g i c v e c t o r (31 downto 0) ;

type ram big i s array (0 to 2047) o f s t d l o g i c v e c t o r (31 downto 0) ;

type ram 8 i s array (0 to 2007) o f s t d l o g i c v e c t o r (31 downto 0) ;

s i g n a l read enable , c a l c enab l e , w r i t e enab l e : STD LOGIC := ' 0 ' ;

s i g n a l ram curr xV : ram small ;

s i g n a l ram xV : ram big ;

s i g n a l ram : ram 8 ;

begin

proce s s (c l k)

v a r i ab l e i , index : i n t e g e r := 0 ;

v a r i ab l e k : i n t e g e r := 0 ;

v a r i ab l e f r a c t i o n c u r r , f r a c t i on xV : s t d l o g i c v e c t o r (19 downto 0) :=(o the r s => '0 ') ;

v a r i ab l e r e s : s t d l o g i c v e c t o r (63 downto 0) ;

v a r i ab l e temp1 , fix num xV , f ix num curr : s t d l o g i c v e c t o r (31 downto 0) ←↩
:=(o the r s => '0 ') ;

v a r i ab l e temp2 : s t d l o g i c v e c t o r (11 downto 0) ;

v a r i ab l e f r a c t i o n r e s u l t : s t d l o g i c v e c t o r (19 downto 0) :=(o the r s => '0 ') ;

v a r i ab l e i n t e g e r cu r r , in teger xV : s t d l o g i c v e c t o r (11 downto 0) :=(o the r s => '0 ') ;

v a r i ab l e i n t e g e r r e s u l t : s t d l o g i c v e c t o r (11 downto 0) :=(o the r s => '0 ') ;

v a r i ab l e d1temp : s t d l o g i c v e c t o r (31 downto 0) :=(o the r s => '0 ') ;

v a r i ab l e exp , upper index , lower index , exp bi t , shi ft number xV , ←↩
sh i f t number cu r r : i n t e g e r := 0 ;

begin

i f (c lk ' event and c l k = '1 ') then

i f (enable = '0 ' and wr i t e enab l e = '0 ') then

o rdy <= ' 0 ' ;

e l s e

nu l l ;

end i f ;

i f (r s t = '1 ') then

ram <= (othe r s=>(o the r s => '0 ')) ;

ram curr xV <= (othe r s=>(o the r s => '0 ')) ;

83

VHDL codes

ram xV <= (othe r s=>(o the r s => '0 ')) ;

i := 0 ;

k := 0 ;

index := 0 ;

f i x num curr :=(o the r s => '0 ') ;

fix num xV :=(othe r s => '0 ') ;

f r a c t i o n c u r r := (o the r s => '0 ') ;

f r a c t i on xV := (othe r s => '0 ') ;

i n t e g e r c u r r := (o the r s => '0 ') ;

in teger xV := (othe r s => '0 ') ;

f r a c t i o n r e s u l t := (o the r s => '0 ') ;

d1temp := (othe r s => '0 ') ;

r e s := (o the r s => '0 ') ;

temp1:= (o the r s => '0 ') ;

temp2:= (o the r s => '0 ') ;

r ead enab l e <= ' 0 ' ;

w r i t e enab l e <= ' 0 ' ;

c a l c e n ab l e <= ' 0 ' ;

o rdy <= ' 0 ' ;

e l s e

i f enable = '1 ' then

read enab l e <= ' 1 ' ;

o rdy <= ' 0 ' ;

e l s e

nu l l ;

end i f ;

i f r ead enab l e = '1 ' then

read enab l e <= ' 1 ' ;

i f (i<=6)then

−−Due to d i f f e r e n c e in f r a c t i o n in f i x and mantissa in f l o a t , s e e r epor t s e c t i o n 2 .5

sh i f t number cu r r := t o i n t e g e r (unsigned (curr xV (30 downto 23)))←↩
−exp base ;

−−−−−−−−−−−−−−−−NOT BENEFICIAL WITH VARIABLE INDEXING AT SYNTHESIS−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−t h i s code i s r ep l aced by * at synthe s i s−−−−−−−−−−−−−−−−−−−−−−−−−
−− concatenat ing and adding imp l i c i t 1

i f (sh i f t number cu r r > 2) then

−−add ze ro s in vector , rounding

f ix num curr (20+ sh i f t number cu r r downto sh i f t number cur r −1) ←↩
:= '1 ' & curr xV (22 downto 0) ;

f i x num curr (sh i f t number cur r−2 downto 0) ←↩
:= (o the r s => '0 ') ;

e l s i f (sh i f t number cu r r < 2) then

f ix num curr (20+ sh i f t number cu r r downto 0) ←↩
:= '1 ' & curr xV (22 downto 2−sh i f t number cu r r) ;

e l s e

f i x num curr (20+ sh i f t number cu r r downto 0) ←↩
:= '1 '& curr xV (22 downto 0) ;

end i f ;

84

VHDL codes

f i x num curr (31 downto 21 + sh i f t number cu r r) ←↩
:= (o the r s => '0 ') ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−Replaced by * at synthe s i s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−*−−
−−−−−−−−−−−−−−−−−−−−−−REPLACES ABOVE IF−STRUCTURE AT SYNTHESIS−−−−−−−−−−−−−−−−−−−−−−−
−− i f (sh i f t number cu r r = 9) then

−− f i x num curr (29 downto 6) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 30) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 8) then

−− f i x num curr (28 downto 5) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 29) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 7) then

−− f i x num curr (27 downto 4) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 28) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 6) then

−− f i x num curr (26 downto 3) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 27) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 5) then

−− f i x num curr (25 downto 2) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 26) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 4) then

−− f i x num curr (24 downto 1) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 25) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 3) then

−− f i x num curr (23 downto 0) := '1 ' & curr xV (22 downto 0) ;

−− f i x num curr (31 downto 24) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 2) then

−− f i x num curr (22 downto 0) := '1 '& curr xV (22 downto 1) ;

−− f i x num curr (31 downto 23) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 1) then

−− f i x num curr (21 downto 0) := '1 ' & curr xV (22 downto 2) ;

−− f i x num curr (31 downto 22) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = 0) then

−− f i x num curr (20 downto 0) := '1 ' & curr xV (22 downto 3) ;

−− f i x num curr (31 downto 21) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −1)then
−− f i x num curr (19 downto 0) := '1 ' & curr xV (22 downto 4) ;

−− f i x num curr (31 downto 20) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −2)then
−− f i x num curr (18 downto 0) := '1 ' & curr xV (22 downto 5) ;

−− f i x num curr (31 downto 19) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −3)then
−− f i x num curr (17 downto 0) := '1 ' & curr xV (22 downto 6) ;

−− f i x num curr (31 downto 18) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −4)then
−− f i x num curr (16 downto 0) := '1 ' & curr xV (22 downto 7) ;

−− f i x num curr (31 downto 17) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −5)then
−− f i x num curr (15 downto 0) := '1 ' & curr xV (22 downto 8) ;

−− f i x num curr (31 downto 16) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −6)then
−− f i x num curr (14 downto 0) := '1 ' & curr xV (22 downto 9) ;

−− f i x num curr (31 downto 15) := (o the r s => '0 ') ;

−− e l s i f (sh i f t number cu r r = −7)then

85

VHDL codes

−− f i x num curr (13 downto 0) := '1 ' & curr xV (22 downto 10) ;

−− f i x num curr (31 downto 14) := (o the r s => '0 ') ;

−− e l s e

−− f i x num curr (12 downto 0) := '1 ' & curr xV (22 downto 11) ;

−− f i x num curr (31 downto 13) := (o the r s => '0 ') ;

−− end i f ;

−−−−−−−−−−−−−−−−−END REPLACEMENT OF ABOVE IF−STRUCTURE AT SYNTHESIS−−−−−−−−−−−−−−−−−−
−−*−−

i f (curr xV (31) = '1 ') then

f ix num curr := not f ix num curr ;

e l s e

f i x num curr := f ix num curr ;

end i f ;

ram curr xV (i) <= f ix num curr ;

e l s e

nu l l ;

end i f ;

i f (t o i n t e g e r (unsigned (xV(30 downto 23)))=exp base) then

shi ft number xV := 0 ;

e l s e

−−Due to d i f f e r e n c e in f r a c t i o n in f i x and mantissa in f l o a t , s e e r epor t s e c t i o n 2 .5

shi ft number xV := t o i n t e g e r (unsigned (xV(30 downto 23))) ←↩
− exp base ;

end i f ;

−− concatenat ing and adding imp l i c i t 1

i f (shi f t number xV > 2) then

−−add ze ro s in vector , rounding

fix num xV(20+ shi ft number xV downto 0) ←↩
:= '1 ' & xV(22 downto 0) ;

fix num xV (shift number xV−2 downto 0) ←↩
:= (o the r s => '0 ') ;

e l s i f (shi ft number xV < 2) then

fix num xV(20+ shi ft number xV downto 0) ←↩
:= '1 ' & xV(22 downto 2−shi ft number xV) ;

e l s e

fix num xV(20+ shi ft number xV downto 0) ←↩
:= '1 ' & xV(22 downto 0) ;

end i f ;

−−F i l l in z e r o s

fix num xV (31 downto 21 + shi ft number xV) := (o the r s => '0 ') ;

i f (xV(31) = '1 ') then

fix num xV (31 downto 0) := not fix num xV (31 downto 0) ;

e l s e

fix num xV (31 downto 0) := fix num xV (31 downto 0) ;

end i f ;

ram xV(i) <= fix num xV ;

fix num xV := (othe r s => '0 ') ;

f i x num curr := (o the r s => '0 ') ;

i := i +1;

i f (i = 2048) then

read enab l e <= ' 0 ' ;

i := 0 ;

c a l c e n ab l e <= ' 1 ' ;

86

VHDL codes

e l s e

r ead enab l e <= ' 1 ' ;

end i f ;

e l s i f c a l c e n ab l e = '1 ' then

f ix num curr := ram curr xV (k) ;

fix num xV := ram xV(i+k* tau) ;

f r a c t i o n c u r r := f ix num curr (19 downto 0) ;

f r a c t i on xV := fix num xV (19 downto 0) ;

i n t e g e r c u r r := f ix num curr (31 downto 20) ;

integer xV := fix num xV (31 downto 20) ;

−−Di f f e r e n t ope ra t i on s depending on s i gn o f numbers :

−−curr xV negat ive & xV negat ive : −a − (−b) => −a+b

−−curr xV negat ive & xV po s i t i v e : −a − (+b) => −a−b => −(+a + (+b))

−−curr xV po s i t i v e & xV negat ive : +a − (−b) => +a+b

−−curr xV po s i t i v e & xV po s i t i v e : +a − (+b) => +a−b

i f ((i n t e g e r c u r r (11) = '1 ' and integer xV (11) = '0 ') ←↩
or (i n t e g e r c u r r (11) = '0 ' and integer xV (11) = '1 ')) then

−−curr xV negat ive & xV po s i t i v e : −a − (+b) => −a−b => −(+a + (+b))

i f (i n t e g e r c u r r (11) = '1 ' and integer xV (11) = '0 ') then

f r a c t i o n c u r r := not f r a c t i o n c u r r ;

i f (unsigned (i n t e g e r c u r r) /= 0) then

i n t e g e r c u r r := not i n t e g e r c u r r ;

e l s e

nu l l ;

end i f ;

−−curr xV po s i t i v e & xV negat ive : +a − (−b) => +a+b

e l s e

f r a c t i on xV := not f r ac t i on xV ;

i f (unsigned (integer xV) /= 0) then

integer xV := not integer xV ;

end i f ;

end i f ;

f r a c t i o n r e s u l t := s t d l o g i c v e c t o r (unsigned (f r a c t i o n c u r r) ←↩
+ unsigned (f r a c t i on xV)) ;

−−t e s t f o r over f l ow in f r a c t i on−addit ion , i f over f low , add one to (one o f the) i n t e g e r s

i f ((f r a c t i o n r e s u l t <f r a c t i o n c u r r) ←↩
or (f r a c t i o n r e s u l t <f r a c t i on xV)) then

i n t e g e r c u r r := s t d l o g i c v e c t o r (s igned (i n t e g e r c u r r)+1) ;

e l s e

nu l l ;

end i f ;

temp2 := s t d l o g i c v e c t o r (unsigned (i n t e g e r c u r r) ←↩
+ unsigned (integer xV)) ;

87

VHDL codes

−−curr xV negat ive & xV negat ive : −a − (−b) => −a+b => b−a
e l s i f (i n t e g e r c u r r (11) = '1 ' and integer xV (11) = '1 ') then

f r a c t i o n c u r r := not f r a c t i o n c u r r ;

f r a c t i on xV := not f r ac t i on xV ;

integer xV := not integer xV ;

i n t e g e r c u r r := not i n t e g e r c u r r ;

f r a c t i o n r e s u l t := s t d l o g i c v e c t o r (unsigned (f r a c t i on xV) ←↩
− unsigned (f r a c t i o n c u r r)) ;

−−r a t i o between numbers dec ide s whether to add/ subt rac t / f l i p

−−b i t s (i f f r a c t i o n r e s u l t i s negat ive (curr>xV))

i f (f r a c t i o n c u r r > f r a c t i on xV) then

temp2 := s t d l o g i c v e c t o r (unsigned (integer xV) ←↩
− unsigned (i n t e g e r c u r r)) ;

i f (i n t e g e r cu r r>in teger xV) then

i f (s igned (temp2) < 0) then

temp2 := s t d l o g i c v e c t o r (unsigned (not temp2) + 1) ;

e l s e

temp2 := not temp2 ;

end i f ;

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

e l s i f (i n t e g e r cu r r<in teger xV) then

temp2 := s t d l o g i c v e c t o r (unsigned (temp2)−1) ;
e l s e

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

end i f ;

e l s e

i f (i n t e g e r cu r r>in teger xV) then

temp2 := s t d l o g i c v e c t o r (unsigned (i n t e g e r c u r r) ←↩
− unsigned (integer xV)−1) ;

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

e l s e

temp2 := s t d l o g i c v e c t o r (unsigned (integer xV) ←↩
− unsigned (i n t e g e r c u r r)) ;

end i f ;

end i f ;

−−curr xV po s i t i v e & xV po s i t i v e : +a − (+b) => +a−b
e l s i f (i n t e g e r c u r r (11) = '0 ' and integer xV (11) = '0 ') then

f r a c t i o n r e s u l t := s t d l o g i c v e c t o r (unsigned (f r a c t i o n c u r r)←↩
− unsigned (f r a c t i on xV)) ;

−−cor re spond ing to same as above f o r curr neg & xv neg

i f (f r a c t i o n c u r r < f r a c t i on xV) then

i f (i n t e g e r c u r r = integer xV) then

temp2 := s t d l o g i c v e c t o r (unsigned (i n t e g e r c u r r)←↩
− unsigned (integer xV)) ;

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

e l s i f (i n t e g e r c u r r > in teger xV) then

temp2 := s t d l o g i c v e c t o r (unsigned (i n t e g e r c u r r)←↩
− unsigned (integer xV)−1) ;

88

VHDL codes

e l s e

temp2 := s t d l o g i c v e c t o r (unsigned (integer xV) ←↩
− unsigned (i n t e g e r c u r r)) ;

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

end i f ;

e l s e

i f (in teger xV > i n t e g e r c u r r) then

temp2 := s t d l o g i c v e c t o r (unsigned (integer xV) ←↩
− unsigned (i n t e g e r c u r r)−1) ;

f r a c t i o n r e s u l t := not f r a c t i o n r e s u l t ;

e l s e

temp2 := s t d l o g i c v e c t o r (unsigned (i n t e g e r c u r r)←↩
− unsigned (integer xV)) ;

end i f ;

end i f ;

e l s e

nu l l ;

end i f ;

−−concatenate due to mu l t i p l i c a t i on , w i l l not have over f low , so decimal po int i s ” s a f e ”

temp1 := temp2 & f r a c t i o n r e s u l t ;

r e s := s t d l o g i c v e c t o r (unsigned (temp1) *unsigned (temp1)) ;

d1temp := r e s (51 downto 40) & r e s (39 downto 20) ;

−−accumulate

ram(i) <= s t d l o g i c v e c t o r (unsigned (ram(i)) + unsigned (d1temp)) ;

i := i +1;

i f (i = 2008 and k < 6) then

i := 0 ;

k := k+1;

e l s i f (i =2008 and k=6)then

i := 0 ;

k := 0 ;

c a l c e n ab l e <= ' 0 ' ;

w r i t e enab l e <= ' 1 ' ;

e l s e

nu l l ;

end i f ;

e l s i f w r i t e enab l e = '1 ' then

d1temp := ram(index) ;

−−d1 ass ignments in f o l l ow i ng i f−s t r u c tu r e r e p l a c e s next i f−s t r u c tu r e f o r d1 at ←↩
synthe s i s , as v a r i a b l e index ing i s n t b e n e f i c i a l at s yn th e s i s

i f (d1temp (30) = '1 ') then −−To f l o a t conver s i on

exp b i t := 10 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (29 downto 7)) ;

e l s i f (d1temp (29)= '1 ') then

exp b i t := 9 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (28 downto 6)) ;

e l s i f (d1temp (28)= '1 ') then

exp b i t := 8 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (27 downto 5)) ;

e l s i f (d1temp (27)= '1 ') then

89

VHDL codes

exp b i t := 7 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (26 downto 4)) ;

e l s i f (d1temp (26)= '1 ') then

exp b i t := 6 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (25 downto 3)) ;

e l s i f (d1temp (25)= '1 ') then

exp b i t := 5 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (24 downto 2)) ;

e l s i f (d1temp (24)= '1 ') then

exp b i t := 4 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) & (d1temp (23 downto 1)) ;

e l s i f (d1temp (23)= '1 ') then

exp b i t := 3 ;

−− d1 <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((exp base + ←↩
exp b i t) , 8))) &(d1temp (22 downto 0)) ;

e l s i f (d1temp (22)= '1 ') then

exp b i t := 2 ;

−− d1 (31 downto 1) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩
exp base + exp b i t) , 8))) &(d1temp (21 downto 0)) ;

−− d1 (0) <= ' 0 ' ;

e l s i f (d1temp (21)= '1 ') then

exp b i t := 1 ;

−− d1 (31 downto 2) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩
exp base + exp b i t) , 8))) &(d1temp (20 downto 0)) ;

−− d1 (1 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (20) = '1 ') then

exp b i t := 0 ;

−− d1 (31 downto 3) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩
exp base + exp b i t) , 8))) &(d1temp (19 downto 0)) ;

−− d1 (2 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (19) = '1 ') then

exp b i t := −1;
−− d1 (31 downto 4) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (18 downto 0)) ;

−− d1 (3 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (18) = '1 ') then

exp b i t := −2;
−− d1 (31 downto 5) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (17 downto 0)) ;

−− d1 (4 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (17) = '1 ') then

exp b i t := −3;
−− d1 (31 downto 6) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (16 downto 0)) ;

−− d1 (5 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (16) = '1 ') then

exp b i t := −4;
−− d1 (31 downto 7) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (15 downto 0)) ;

−− d1 (6 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (15) = '1 ') then

90

VHDL codes

exp b i t := −5;
−− d1 (31 downto 8) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (14 downto 0)) ;

−− d1 (7 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (14) = '1 ') then

exp b i t := −6;
−− d1 (31 downto 9) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned ((←↩

exp base + exp b i t) , 8))) &(d1temp (13 downto 0)) ;

−− d1 (8 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (13) = '1 ') then

exp b i t := −7;
−− d1 (31 downto 10) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (12 downto 0)) ;

−− d1 (9 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (12) = '1 ') then

exp b i t := −8;
−− d1 (31 downto 11) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (11 downto 0)) ;

−− d1 (10 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (11) = '1 ') then

exp b i t := −9;
−− d1 (31 downto 12) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (10 downto 0)) ;

−− d1 (11 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (10) = '1 ') then

exp b i t := −10;
−− d1 (31 downto 13) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (9 downto 0)) ;

−− d1 (12 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (9) = '1 ') then

exp b i t := −11;
−− d1 (31 downto 14) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (8 downto 0)) ;

−− d1 (13 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (8) = '1 ') then

exp b i t := −12;
−− d1 (31 downto 15) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (7 downto 0)) ;

−− d1 (14 downto 0) <= (othe r s => '0 ') ;

e l s i f (d1temp (7) = '1 ') then

exp b i t := −13;
−− d1 (31 downto 16) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (6 downto 0)) ;

−− d1 (15 downto 0) <= (othe r s => '0 ') ;

e l s e

exp b i t := −14;
−− d1 (31 downto 17) <= d1temp (31) & (s t d l o g i c v e c t o r (to uns igned←↩

((exp base + exp b i t) , 8))) &(d1temp (5 downto 0)) ;

−− d1 (16 downto 0) <= (othe r s => '0 ') ;

end i f ;

upper index := exp b i t +19;

i f (upper index > 22) then

lower index := upper index −22;

91

VHDL codes

d1 <= d1temp (31) ←↩
& (s t d l o g i c v e c t o r (to uns igned ((exp base + exp b i t) , 8))) ←↩
& (d1temp (upper index downto lower index)) ;

e l s i f (upper index < 22) then

lower index := 22−upper index ;

d1 (31 downto lower index) <= d1temp (31) ←↩
& (s t d l o g i c v e c t o r (to uns igned ((exp base + exp b i t) , 8))) ←↩
& (d1temp (upper index downto 0)) ;

d1 (lower index−1 downto 0) <= (othe r s => '0 ') ;

e l s e

d1 <= d1temp (31) ←↩
& (s t d l o g i c v e c t o r (to uns igned ((exp base + exp b i t) , 8))) ←↩
& (d1temp (upper index downto 0)) ;

end i f ; −−End to f l o a t conver s i on

o rdy <= ' 1 ' ;

index := index+1;

i f (index = 2008) then

index := 0 ;

wr i t e enab l e <= ' 0 ' ;

o rdy <= ' 0 ' ;

e l s e

nu l l ;

end i f ;

e l s e

nu l l ;

end i f ;

end i f ;

e l s e

nu l l ;

end i f ;

end proce s s ;

end Behav iora l ;

92

Appendix E

Verification scripts

E.1 C-script calculation differences

inc lude <s t d i o . h>

inc lude <math . h>

inc lude < f l o a t . h>

inc lude <s t d l i b . h>

inc lude <iostream>

inc lude <fstream>

i n t main (void)

{

std : : f s t ream myf i l e1 (” . . / d1 3 1005 . txt ” , s td : : i o s b a s e : : in) ;

s td : : f s t ream myf i l e2 (” . . / d 1 f i l e 3 1 0 0 5 . txt ” , std : : i o s b a s e : : in) ;

s td : : f s t ream myf i l e3 (” . . / d i f f e r e n c e . txt ” , std : : i o s b a s e : : out) ;

f l o a t temp1 ;

f l o a t temp2 ;

f o r (i n t i = 0 ; i < 2008 ; i++)

{
myf i l e1 >> temp1 ;

myf i l e2 >> temp2 ;

myf i l e3 << abs (temp1 − temp2) << ' \n ' ;

}

}

93

Verification scripts

E.2 Matlab-script for sorting

% Construct f i l e names

format long

f i l e name1 = s p r i n t f (' . / D i f f s c r i p t / d i f f e r e n c e . txt ') ;

double so r t ed data ;

double data ;

% Open the f i l e s :

f i d 1 = fopen (f i l e name1 , ' r ') ;

f i d 3 = fopen ('data sorted CHANNEL EXPONENT . txt ' , 'w ') ;

% I f opening o f f i l e f a i l s , end the program :

i f (f i d 1 < 0 | | f i d 3 < 0)

d i sp (' cannot open f i l e s ') ;

break ;

end ;

samples = 0 ;

% Read data from the f i l e :

[data , count] = f s c a n f (f id1 , '%f ' , [2008 1]) ;

whi l e (count == 2008)

[so r ted data , i n d i c e s] = so r t (data) ;

max element = max(data) ; %Used f o r in t e rmed ia te check ing

min element = min (data) ; %Used f o r in t e rmed ia t e check ing

f p r i n t f (f id3 , '%f \n\n ' ,mean(data))

f o r i =0:2008

end

f p r i n t f (f id3 , '%f \n ' , s o r t ed data) ;

[data , count] = f s c a n f (f id1 , '%f ' , [2008 1]) ;

end

% Close the f i l e s :

f c l o s e (f i d 1) ;

f c l o s e (f i d 3) ;

94

Bibliography

[1] Leon D. Iasemidis, Deng-Shan Shiau, Wanpracha Art Chaovalitwongse, J. Chris

Sackellares, Panos M. Pardalos, Jose C. Principe, Paul Richard Carney, Awadhesh

Prasad, Balaji Veeramani, and Konstantinos Tsakalis. Adaptive epileptic seizure

prediction system. IEEE Transactions on Biomedical Engineering, pages 616–627,

May 2003.

[2] Leon D. Iasemidis. Seizure prediction and its applications. Neurosurgery Clinics of

North America, pages 489–506, October 2011.

[3] EECS. Single-ISA Heterogeneous MAny-core Computer project plan. page 5, Octo-

ber 2013.

[4] Wayne Wolf. Computers as components, principles of embedded computing system

design. Elsevier Inc, 2008.

[5] Greg Stitt and Frank Vahid. Hardware/software partitioning of software binaries.

Computer Aided Design, pages 164 –170, November 2002.

[6] Jidan Al-Eryani. Floating point unit. http://opencores.org/websvn,

filedetails?repname=fpu100&path=%2Ffpu100%2Ftrunk%2Fdoc%2FFPU_doc.pdf,

April 2014.

[7] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining

Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, pages

285–317, July 1985.

[8] Michael B. Taylor. Is dark silicon useful? Design Automation Conference, June

2012.

[9] Leon D. Iasemidis, Deng-Shan Shiau, Panos M. Pardalos, Wanpracha Art Chaoval-

itwongse, K. Narayanan, Awadhesh Prasad, Konstantinos Tsakalis, Paul Richard

95

http://opencores.org/websvn,filedetails?repname=fpu100&path=%2Ffpu100%2Ftrunk%2Fdoc%2FFPU_doc.pdf
http://opencores.org/websvn,filedetails?repname=fpu100&path=%2Ffpu100%2Ftrunk%2Fdoc%2FFPU_doc.pdf

Bibliography

Carney, and J. Chris Sackellares. Long-term prospective on-line real-time seizure

prediction. Clinical Neurophysiology, pages 532–544, March 2005.

[10] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-ISA heterogeneous multi-core architectures: The potential

for processor power reduction. International Symposium on Microarchitecture, pages

81–92, December 2003.

[11] Kenzo Van Craeynest and Lieven Eeckhout. Understanding fundamental design

choices in single-ISA heterogeneous multicore architectures. ACM Transactions on

Architecture and Code Optimization, 9, January 2013.

[12] Open cores. datasheet amber core. http://opencores.org/websvn,filedetails?

repname=amber&path=%2Famber%2Ftrunk%2Fdoc%2Famber-core.pdf, October

2013.

[13] Andrew D. Booth. A signed binary multiplication technique. The Quarterly Journal

of Mechanics and Applied Mathematics, pages 236–240, 1951.

[14] Kunio Uchiyama, Fumio Arakawa, Hironori Kasahara, Tohru Nojiri, Hideyuki Noda,

Yasuhiro Tawara, Aiko Idehara, Kenichi Iwata, and Hiroaki Shikano. Heterogeneous

Multicore Processor Technologies for Embedded Systems. Springer, 2012.

[15] Giovanni De Micheli and Rajesh K. Gupta. Hardware/software co-design. Proceed-

ings of the IEEE, pages 349 – 365, March 1997.

[16] Brian Wilson Kernighan and Shen Lin. An efficient heuristic procedure for parti-

tioning graphs. Bell System Technical Journal, September 1970.

[17] Partha Biswas, Sudarshan Banerjee, Nikil D. Dutt, Laura Pozzi, and Paolo Ienne.

ISEGEN: An iterative improvement-based ISE generation technique for fast cus-

tomization of processors. IEEE Transactions on Very Large Scale Integration (VLSI)

systems, pages 754–762, July 2006.

[18] IEEE. IEEE standard for floating-point arithmetic. IEEE std 754-2008, August

2008.

[19] IEEE. IEEE standard VHDL language reference manual. IEEE std 1076-2008,

August 2009.

[20] David Bishop. Floating point package user’s guide. http://vhdl.org/fphdl/

Float_ug.pdf, April 2014.

96

http://opencores.org/websvn,filedetails?repname=amber&path=%2Famber%2Ftrunk%2Fdoc%2Famber-core.pdf
http://opencores.org/websvn,filedetails?repname=amber&path=%2Famber%2Ftrunk%2Fdoc%2Famber-core.pdf
http://vhdl.org/fphdl/Float_ug.pdf
http://vhdl.org/fphdl/Float_ug.pdf

Bibliography

[21] David Bishop. Fixed point package user’s guide. http://vhdl.org/fphdl/Fixed_

ug.pdf, April 2014.

[22] J.-C. Roux, Reuben H. Simoyi, and Harry L. Swinney. Observation of a strange

attractor. Physica D: Nonlinear Phenomena, pages 257–266, December 1982.

[23] Marton Leren Teilg̊ard. Integration of Hardware accelerators on the SHMAC plat-

form. June 2014.

97

http://vhdl.org/fphdl/Fixed_ug.pdf
http://vhdl.org/fphdl/Fixed_ug.pdf

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Theory and Related Work
	2.1 SHMAC
	2.2 Heterogeneous systems
	2.3 Accelerators
	2.4 Partitioning of Applications
	2.5 Number representations
	2.6 Lyapunov Exponent

	3 Analysis of the Lyapunov Exponent Calculation Algorithm
	3.1 General profiling
	3.2 System specific profiling

	4 Implementation and Verification
	4.1 Design
	4.1.1 Approach expansion package, floating point
	4.1.2 Approach expansion package, fixed point
	4.1.3 Approach standard VHDL, fixed point

	4.2 Verification

	5 Results
	5.1 Results from Simulation
	5.2 Results post Synthesis
	5.2.1 Approach expansion package, floating point
	5.2.2 Approach expansion package, fixed point
	5.2.3 Approach standard VHDL, fixed point
	5.2.4 Power estimates

	6 Discussion
	7 Conclusion and Future work
	A Profiling of C-similar Matlab-code
	B Timing of most time consuming calculations
	C Deviations
	D VHDL codes
	D.1 Float approach
	D.1.1 Design 1
	D.1.2 Design 2

	D.2 Fixed approach
	D.2.1 Design 1
	D.2.2 Design 2

	D.3 Standard VHDL

	E Verification scripts
	E.1 C-script calculation differences
	E.2 Matlab-script for sorting

	Bibliography

